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ABSTRACT: The local dynamic mode decomposition with
control (LDMDc) technique combines the concept of
unsupervised learning and the DMDc technique to extract
the relevant local dynamics associated with highly nonlinear
processes to build temporally local reduced-order models
(ROMs). But the limited domain of attraction (DOA) of
LDMDc hinders its widespread use in prediction. To
systematically enlarge the DOA of the LDMDc technique,
we utilize both the states of the system and the applied inputs
from the data generated using multiple “training” inputs. We
implement a clustering strategy to divide the data into
clusters, use DMDc to build multiple local ROMs, and
implement the k-nearest neighbors technique to make a
selection among the set of ROMs during prediction. The
proposed algorithm is applied to hydraulic fracturing to
demonstrate the enlarged DOA of the LDMDc technique.

■ INTRODUCTION

Many chemical processes are usually represented by high-
dimensional complex models which accurately describe the
dynamics of the system, but their utility in the design of
feedback control systems is limited due to the model
complexity which puts considerable strain on the computa-
tional resources. Nonetheless, the solutions of such large-scale
complex systems can be approximately explained by a very
specific set of low-dimensional equations. For example, only
three ordinary differential equations (ODEs) were required to
represent the essential features of a laminar fluid flow passing a
2D cylinder.1 Many model order reduction techniques are
based on this idea and they have been widely used in
industrially important engineering problems to deal with high-
dimensional models without losing much accuracy. One
reduced-order model (ROM) technique is network-based
wherein complex chemical systems are divided into a network
of small units, the characteristics of each unit can be defined by
very few ordinary differential equations, and solving these
equations for each unit would give a distribution of properties
such as mass, energy, and momentum. More recently, this
network-based ROM technique has been applied to gasifier
which is represented as a network of ideal reactors consisting
of plug flow reactors (PFRs) and continuously stirred tank
reactors (CSTRs).2−4 Two of the commonly used modal
decomposition techniques in model order reduction methods
are proper orthogonal decomposition (POD) and dynamic

mode decomposition (DMD). Both of these techniques extract
coherent structures within the system by analyzing sequential
data obtained either by simulation of the high-fidelity model of
the high-dimensional system or obtained via experimental
studies. POD technique extracts structures that capture the
most energy5 and can be used to build a ROM for the system.
The POD technique has been applied to build ROMs for
various applications.6−13 But using energy as a criterion for
identifying these coherent structures is not always useful as it
ignores those structures with zero-energy that are, however,
dynamically relevant.14

DMD was initially introduced in the fluid community to
extract flow structures by observing the high-dimensional data
that can accurately represent the dynamics of the flow.15 In
comparison to POD, this method extracts those structures that
are dynamically relevant and contribute toward the long-term
dynamics of the system16 rather than selecting those that carry
the most energy.
Mathematically, DMD assumes that nonlinear systems with

complex models can be represented using a linear form and
this may seem inaccurate at first but understanding DMD as a
numerical approximation of Koopman spectral analysis has
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validated this representation.17−19 DMD has been successfully
applied to both numerical20−24 and experimental25−31 fluid
flow data to represent relevant physical mechanisms in a linear
form. Many works have been carried out regarding the
numerics of the DMD algorithm which include the develop-
ment of memory efficient algorithms,32,33 a method for
selection of a sparse basis of DMD modes,34 and an error
analysis of DMD growth rates.31 Apart from this, theoretical
works have been carried out to explore and understand its
relationship with other methods such as Fourier analysis,35

POD,20 and Koopman spectral analysis.17−19 Also, different
methods have been proposed as variations of DMD such as
optimized DMD35 and optimal mode decomposition.36,37

Within this context, dynamic mode decomposition with
control (DMDc), a purely data-driven modal decomposition
technique, was developed to represent nonlinear systems,
especially those whose dynamics are influenced by external
inputs, in a discrete state-space form by extracting dynamically
relevant spatial structures using both measurements of the
system and the external inputs applied on it.38 DMDc provides
an understanding of the input-to-output behavior, which can
be utilized to predict and design feedback control systems.
However, for a highly nonlinear system, a global linear
representation might not be a good approximation considering
the fewer degrees of freedom associated with the linear model.
Because of this limitation, the global method may fail to
capture the effect of the changes in the process parameters
such as permeability and Young’s modulus of the rock
formation on the local dynamics in the case of hydraulic
fracturing as these constants are space-dependent. In order to
better capture the local dynamics, temporal clustering can be
integrated to DMDc to develop local ROMs that better
represent the dynamics of the overall system, and this
technique was introduced as LDMDc.39 LDMDc divides the
snapshot data into different clusters, obtains a linear operator
pair for each cluster, and each pair represents the
corresponding local ROM. The local ROM will approximately
explain the dynamics of the system under the conditions in
which the snapshots belonging to that particular cluster were
obtained. It has been shown that LDMDc performs better than
global DMDc when a single data set obtained under a
particular operating condition is used to build the models.39

However, the drawback of these models is that their domain of
attraction (DOA) is limited by the data used for model
training; in other words, these models will perform poorly
when used for prediction under other operating conditions.
Our contribution in this work is to enlarge the DOA of

LDMDc technique by implementing supervised and un-
supervised learning techniques on multiple “training” data
sets to build and utilize multiple local ROMs, respectively.
These data sets are obtained under different operating
conditions by performing simulations of the high-fidelity
model. In order to obtain highly accurate local ROMs, we
implement a particular clustering strategy instead of the
conventional approaches available in the literature. The
clustering strategy involves considering each “training” data
set individually and clustering it using only the information on
the inputs such that the optimal number of clusters are
obtained along with the clustered output. The reason we opted
for the clustering strategy is that it is easier to implement, and
the resulting clustered output satisfies constraints required to
build highly accurate ROMs which will be discussed later in
this text. Using the clustered output, DMDc-based local ROMs

are built and these ROMs will be used for prediction. During
prediction, at any instance, the selection of a local ROM is
accomplished by utilizing the k-nearest neighbors (kNN)
classification technique. Another novelty is that in our
proposed algorithm, we utilize both the states of the system
and the external inputs applied on it which is necessary
because the dynamics of the system are influenced by both the
state and the applied external input. This aspect of our
algorithm makes it different from the LDMDc technique
proposed by Narasingam and Kwon39 wherein only the states
of the system were utilized to cluster the data. Also, in the
LDMDc technique proposed by Narasingam and Kwon39

selection of ROM was not necessary as only one “training”
input was used to build the model. On the contrary, in our
proposed algorithm any input profile satisfying an imposed
constraint within the enlarged DOA can be utilized for
prediction and this necessitates the use of the kNN
classification technique. Despite the differences, our proposed
technique still holds the advantages of the LDMDc technique
proposed by Narasingam and Kwon39 in that it is completely
data-driven and captures local dynamics efficiently all while
requiring no knowledge in terms of the system model.
The remainder of this text is organized as follows: In Local

Dynamic Mode Decomposition with Control we provide the
methodology proposed by Narasingam and Kwon39 to build a
LDMDc-based ROM. In Enlarging the DOA of Local DMDc
we present our proposed algorithm to expand the DOA of the
LDMDc technique. In Application to Hydraulic Fracturing we
present the application of our proposed technique on the
hydraulic fracturing system which includes a series of
numerical simulation results.

■ LOCAL DYNAMIC MODE DECOMPOSITION WITH
CONTROL

Recall, the technique of DMDc represents the underlying
dynamics of a nonlinear system in a linear state-space form by
utilizing both the measurements of the system and the external
input applied on it. Mathematically, this would mean that the
snapshots are related to each other by a linear operator pair.
But considering that most of the systems are inherently
nonlinear, this linear representation will not be accurate. To
accurately represent a nonlinear system using DMDc,
Narasingam and Kwon39 proposed a framework to divide the
snapshots into clusters wherein in each cluster its underlying
local dynamics can be captured and be represented in a linear
form by using DMDc on the snapshots within that cluster. To
divide the snapshots into clusters, the global optimum search
(GOS) algorithm was used, and the set of all local ROMs will
together be used to describe the nonlinear system. This
technique is discussed in detail below:

Temporal Clustering. The GOS algorithm aims to
partition the snapshots into clusters by solving a mixed integer
nonlinear programming (MINLP) optimization problem
formulated to minimize the distance between the snapshots
and the cluster centers.40 In the case of time-series data,
consecutive snapshots will be clustered together to an extent as
the optimization problem uses euclidean distance as a metric.
Suppose there are n snapshots in the generated data set which
are to be partitioned into m clusters. Assuming that these
snapshots are sampled at uniform time intervals, they can be
represented as xj for j = 1, 2, 3, ..., n where n is the total number
of snapshots. The MINLP problem is presented below:where i
denotes the spatial points such that i = 1, 2, 3, ..., s where s is
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the dimension of xj, yjk are binary variables used to indicate
whether a snapshot j lies in the kth cluster, cki are continuous
variables which represent the cluster centers, and cki

L , cki
U denote

the lower and upper bounds on the cluster center cki,
respectively. The first constraint represents the necessary
optimality condition which ensures that the vector distance
sum of all the data points within a cluster to the cluster center
is zero. The second constraint makes sure that each snapshot
can lie in only one cluster. The third constraint makes sure that
each cluster will contain at least one and no more than (n − m
+ 1) snapshots in it. The clusters are obtained by solving the
above formulated MINLP optimization problem. The optimal
number of clusters is derived from the clustering balance
curve40 where the clustering balance, ε, is defined as
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where the first term is the intracluster error sum, and the
second term is the intercluster error sum, and c xi n j

n
ij

o 1
1= ∑ =

is the global cluster center. The above-mentioned m clusters
can be obtained by solving the MINLP problem and the
resulting cluster configuration can be represented as

k

x x c x c( ) ( ),k
j j k j2

2
2
2= { | || − || ≤ || − ||

∀ ≠ } (3)

where Ck is the kth cluster and ck is the center of the kth
cluster. The optimal number of clusters is obtained from the
clustering balance curve at the minimum value of ε.
Capturing Local Dynamics. DMDc is applied to each

cluster using its corresponding snapshots to obtain a linear
operator pair A and B to build a ROM that will capture the
cluster’s underlying local dynamics. Algorithm 1 describes how
to apply DMDc to each cluster and obtain the pairs (Aj, Bj) for
every cluster in detail. The ROM to describe the dynamics of
the system in each cluster can be formulated as follows:

x A x B ui j i j i1 = × + ×+ (4)

The above equation represents the system as a discrete-time
linear state space model. Therefore, we recognize that DMDc
can be used for system identification of a high dimensional,
nonlinear system as a linear state-space model by capturing its
underlying dynamics using the data.

Remark 1. If the augmented system matrix is ill-conditioned, it
is recommended to calculate its pseudoinverse in order to obtain
the linear operators.

■ ENLARGING THE DOA OF LOCAL DMDC
As mentioned previously, the DOA of the LDMDc technique
proposed by Narasingam and Kwon39 is narrow with respect to
both the input and the state space, meaning that the model
built using this technique can only reproduce accurately the
“training” data when the “training” input is applied and
applying any other input on the model will produce
unsatisfactory results. In this work we use a variety of
operating conditions to obtain the “training” data which
would then be used to enlarge the DOA of LDMDc.
Suppose h is the trajectory followed by the state x ∈ s

when an input u ∈ l is applied on the high fidelity model, and

r is the trajectory followed by the state xr ∈
s when the

same input u ∈ l is applied on the reduced-order model
obtained from the proposed algorithm. Then

x x t f x t u t
x u t t

x x k A x k B u k
x A A B B u k k

: : ( ) ( ( ), ( ))
s.t. (0) 0, , 0,
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= { ∈ ̇ =
= ∈ ∀ ∈ [ ]}

= { ∈ + = × + ×
= ∈ ∈ ∈ ∀ ∈ [ ]}

(5)

where f represents the high-fidelity model as a function of state
x and input u, te is the end of fracturing time, and Ak and Bk are
the linear operator pairs obtained by using the “training” data.
The DOA  is then defined as
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x x x x: , :r
s

r  ε= { ∈ | − | < } (6)

where ε is the error. In other words, the DOA is the set of all
states obtained from the reduced-order models which can
satisfactorily describe the system under well-defined con-
ditions.
Data Generation. The “training” data can be obtained by

implementing various input profiles on the system either on an
experimental basis or by carrying out simulations of the high
fidelity model. In this work we choose the latter option for data
generation. An important point to remember here is that it is
very crucial to identify the DOA for which the model is
intended to be built, and to select inputs within this region. To
identify this region, it is necessary to understand the
application of the ROM. One of the important applications
of ROMs is in the design of controllers and one of the most
widely used control techniques in these days is an
optimization-based control scheme to obtain the optimal
control action. Therefore, it would be ideal to select a region
which would contain the solution (optimal control action) to
the optimization (control) problem. Also, these multiple inputs
need to be spread all across this finite region to make sure that
the “training” data is “rich”. Consequently, the resultant model
will be able to accurately predict for any input under a
constraint, which will be discussed later, within this finite
region. Finally, the number of “training” inputs to be used is up
to the discretion of the users. Large amounts of data would
definitely improve the accuracy of the model but this would
come at the cost of high computational expenses. Having a
priori knowledge of the system, and an understanding of the
application of the model will help in deciding the number of
“training” inputs necessary to build the model. To summarize,
the following guidelines should be taken into account when
defining the “training” inputs.

1. To identify the region, information from the existing
literature/experimental studies must be considered along
with other system and practical constraints.

2. The selected “training” inputs should cover the entire
identified input region to maximize the predictive
capability of the reduced-order model.

3. To reduce the computational expenses, the “training”
inputs should be unique but within the defined region.

Once the “training” inputs have been identified, “training”
data sets can be generated by performing numerical
simulations of the high-fidelity model. Assuming that “d”
“training” data sets are generated and each data set contains
“n” snapshots, the nomenclature used to represent the state
and input matrices are shown in Table 1.
Remark 2. In the case of experimental data corrupted with

noise and unmeasured disturbances, it is advised to denoise the
data using f ilters and then use the proposed algorithm to build the
ROMs in order to be used in the design of feedback controllers.
When obtaining “training” data in the case of unstable systems, it
is recommended that closed-loop identif ication be utilized in
unstable regions.
Temporal Clustering. Recall that the LDMDc technique

divides the generated snapshots of data temporally into
clusters. The GOS algorithm was used to partition the
snapshots into clusters and it was sufficient to use only the
state vectors as only one “training” input profile was used to
obtain the local ROMs via Local DMDc.39 But in this work,
since multiple “training” inputs are considered, we propose to
use both the state vector and the input by stacking them

vertically to form an “augmented” vector, and these
“augmented” vectors will now constitute our “training” data
sets. Before applying any clustering technique, it is essential to
normalize the data as the components of the “augmented”
vector operate in two different spaces (i.e., the state space and
the input space) and the range of each component varies with
the other. To perform normalization, we first concatenate all
the “augmented” vectors horizontally to form one “combined”
data matrix. To further understand this “combined” data
matrix, its rows represent the components of the “augmented”
vector and its columns represent the time instances. Each row
of the “combined” data matrix must be normalized individually
across all the columns of the “combined” data matrix. The
nomenclatures used to represent above-mentioned matrices
are shown in Table 1. In Algorithm 1, the state vectors and the
input vectors have been defined to contain s and l components,
respectively. As a result, the “augmented” vector contains s + l
components. Therefore, the normalization process is repeated
for the entire s + l rows in the “combined” data matrix.
A point to consider here is the dimensions of the state vector

and the input vector. It is usually the case where the dimension
of the state vector is much larger compared to the dimension
of the input vector. Furthermore, considering that clustering
algorithms typically use “distance” as a metric based on which
snapshots are divided into clusters, it is quite possible that the
contribution of the state vector toward this metric might
numerically outweigh the contribution of the input vector. To
overcome this imbalance, we propose to apply two weights on
the “augmented” vector (Table 1), wherein one weight is
equally divided among all the components of the “augmented”
vector that represent the state vector, and similarly, the other
weight is applied on the input component of the “augmented”
vector. Numerically, these weights have to be ascertained by
trial and error as they depend on the system, and the type of
“training” inputs used to generate “training” data to build the
model. We then perform principal component analysis (PCA)
on the weighted matrix. PCA helps in reducing the number of
dimensions that we have to deal with when clustering the data,
validating the model, and using the model for prediction.
Applying PCA transforms the weighted matrix into its PCA
scores (PCSs) which represent the data in the principal
component space, and we will only use those scores whose
corresponding components can together be used to represent
at least 90% of the variance in the data. Now, we have the

Table 1. Nomenclature

term mathematical description

states X x x x...d
n d1 2= { }

inputs U u u u...d
n d1 2= { }

augmented matrix

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
X

U
d

d

d
Ω =

combined matrix

Ä
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
X X X

U U U
...

...

...
d

d

d
1 2

1 2

1 2
Ω = [Ω Ω Ω ] =

normalized matrix

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
X X X

U U U
...

...

...
N N N N

d
d

N

d
N

1 2
1 2

1 2
Ω = [Ω Ω Ω ] =

[ ]

[ ]

weighted matrix

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑÑÑ
w w X X X

U U U

...

...
w x u

d
N

d
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1 2

1 2
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necessary transformed data to implement the clustering
strategy.
The clustering strategy to be implemented is highly

dependent on the “training” data used, and the application in
which the resultant model will be used. Nonetheless, it should
satisfy the following output criteria: (a) no two data points
from two different “training” data sets will lie in the same
cluster, (b) no two data points with different inputs will lie in
the same cluster. The reasons for the above criteria are that
when snapshots belonging to different “training” data sets, or
belonging to the same “training” data set but having different
inputs are kept in the same cluster, the resultant operator pair
(A, B) will capture the local dynamics inaccurately for that
cluster and this linear operator pair will give inaccurate results
when used for prediction. Conventional clustering techniques
can be applied but it would be much easier to satisfy the above-
mentioned criteria by implementing a clustering strategy which
involves considering each “training” data set individually and
clustering based on the inputs such that the optimal number of
clusters is obtained along with the clustered output. Once
clustering is done, the cluster centers can be calculated in
terms of the PCSs by calculating the average of all the PCSs of
the data points within each cluster, and these centers will be
used in the selection of the local ROM which is explained in
the section below.
Remark 3. The above transformation of the “training” data was

performed to aid the algorithmconsidering the fact that we need
to utilize both the state and the input in implementing a clustering
strategy, and in selecting the correct ROM during model
validation/model prediction. To build the local ROMs, we will
use the “training” data obtained from the simulations of the high
f idelity model.
Local ROM Selection. After building a ROM for each

cluster, we use this set of local ROMs for validation and for
model prediction. In both the cases we adopt the same
approach to select the appropriate local ROM. Recall, at a
given time instance, the future state of the system is dependent
on both the current state of the system and the input to be
applied on it. Hence, we will use both the information in the
selection of the appropriate ROM.
At this stage it is important to understand that each local

ROM is developed for a cluster of state vectors and their
corresponding inputs. At any time instance, given the state and
the input, we need to find a snapshot in the “combined” matrix
whose state vector and the input closely match with the ones in
consideration. Next, we locate the cluster in which this selected
snapshot belongs to and use that particular cluster’s ROM to
predict the future state for an applied input profile. But finding
the closest snapshot in the “combined” matrix is a computa-
tionally expensive task considering the huge amounts of data in
use. Instead it would be much easier to find the nearest cluster
center to both the state vector and the input in consideration
and use the corresponding local ROM to predict the future
state trajectory.
Considering that the state vector and the input operate in

two different spaces, it is difficult to make a selection of which
ROM to use without an appropriate transformation. To
overcome this, we apply the transformation similar to the one
used in the clustering step of our algorithm. We first stack
them vertically to form the “augmented” vector, normalize
each row of the “augmented” vector using the corresponding
mean and variance of that row in the “combined” matrix
obtained in the clustering step, and apply weights on the state

vector and the input in the exact manner as done in the
clustering step. Recall, in the clustering step, we perform PCA
on the weighted matrix to reduce the number of dimensions
we have to deal with in various steps of our algorithm, which
includes the selection of the local ROM. Considering that we
transformed the “training” data into PCSs of its dominant PCA
components in the clustering step, we similarly calculate the
PCS of the weighted vector in consideration by using the same
dominant PCA components. Now the transformation of the
state vector and the input in consideration is complete and the
above calculated PCSs will be further used in the ROM
selection step.
We use kNN technique to select the appropriate local ROM.

Recall, kNN technique selects “k” points from a data set that
are closest to the query point with respect to the Euclidean
distance metric. In our method the above calculated dominant
PCSs of the weighted vector in consideration is the query
point. The set of cluster centers given to the kNN technique as
the input data set will not comprise all the cluster centers.
Using all the cluster centers will result in the incorrect selection
of the local ROM because it is entirely possible that there exists
two “augmented” vectors whose states and inputs are dissimilar
respectively but may have approximately the same PCSs. To
avoid such scenarios we include the following constraint in our
algorithm: at the given time instance, those cluster centers are
selected in the subset of cluster centers to the kNN technique
whose respective clusters contain the snapshot having the same
time instance. Implementing the kNN technique with the
above constraint will help the algorithm in selecting the correct
local ROM. Given a (xi, ui) at the time instance ti, the right
pair of (Ai, Bi) can be selected and the next state of the system
can be calculated as defined in eq 4.
The proposed methodology is summarized and presented

below as Algorithm 2.
Remark 4. In our proposed algorithm, we transform the

“training” data set into its PCA scores and reduce the dimensions
of the “combined” matrix by selecting only few of the principal
components. The resulting dimension depends on the “training”
data used, dimensionality of the system, and the weights used. It is
not possible to predict this beforehand. The amount of data to be
used should be carefully identif ied considering the above-
mentioned parameters in order to avoid any computational issues
considering that this proposed method is data-based.

■ APPLICATION TO HYDRAULIC FRACTURING
Shale gas is natural gas trapped within rocks of low porosity
and low permeability, and hydraulic fracturing is a technique to
obtain shale gas by stimulation of such rocks by controlled
explosions along the length of the wellbore resulting in the
formation of fractures. A clean fluid called pad is then
introduced inside the wellbore at high pressures to extend the
length of the initial fractures. A fracturing fluid containing
water, proppant, and additives is then introduced to further
extend the fractures. Once pumping is stopped, the remaining
fluid is allowed to leak off into the reservoir resulting in the
formation of a medium of proppant in the fractures. The
natural stresses in the rocks cause the closure of fractures,
thereby, trapping the proppant which would then act as a
conductive medium for the extraction of the gas present in the
reservoir. Two control objectives usually associated with
hydraulic fracturing during proppant injection is to obtain
uniform proppant concentration throughout the length of the
fracture and to obtain a desired fracture geometry. In this
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section we applied our proposed methodology to build a
LDMDc-based ROM which can be used to predict the
proppant concentration at various locations of the fracture at
various times of the proppant injection process for a wide
range of proppant pumping schedules.
Dynamic Modeling of Hydraulic Fracturing Process.

Hydraulic Fracturing can be classified into three subprocesses
which are as follows: (1) fracture propagation, (2) proppant
transport, and (3) proppant bank formation.
Fracture Propagation. The fracture propagation is assumed

to follow the Perkins, Kern, and Nordgren (PKN) model41,42

which is shown in Figure 1. The other assumptions considered
with regard to the fracture propagation are as follows: (1) the
fracture length is much greater than its width, and hence, the
fluid pressure along the vertical direction remains constant; (2)
large stresses in the rock layers above and below the fracture
result in the fracture being confined to a single layer; and (3)
the rock properties such as Young’s modulus and Poisson’s
ratio remain constant with respect to both time and space and
the fracturing fluid is incompressible. Considering the above
assumptions, it must be noted that the fracture will take an
elliptical shape and its cross-sectional area will be rectangular.
Fluid momentum is explained using the lubrication theory
which relates the fluid flow-rate in the horizontal direction, qz,

to the sustained pressure gradient, zP
z

− ̂∂
∂ , as follows:

q
HW P

z64z

3π
μ

= − ∂
∂ (7)

where P is the net pressure varying with the z coordinate, H is
the fracture height, W is the width of the fracture, and μ is the
fracturing fluid viscosity. The maximum width of the fracture

can be related to the net pressure exerted by the fracturing
fluids as follows:

W
PH v

E
2 (1 )2

= −
(8)

where E is the Young’s modulus and ν is the Poisson’s ratio of
the formation. The continuity equation obtained by local mass
conservation of an incompressible fluid is given by

A
t

q

z
HU 0z∂

∂
+

∂
∂

+ =
(9)

where A = πWH/4 is the cross-sectional area of the fracture, t
is the time elapsed since the beginning of the fracturing
process, z is the time-dependent spatial coordinate in the
horizontal direction, and U is the fluid leak off rate per unit
height into the reservoir. The fluid leak off rate is in the
orthogonal direction to the fracture plane and is given by43,44

U
C

t z

2

( )
leak

τ
=

− (10)

where Cleak is the overall leak off coefficient and τ(z) is the
time instance at which the fracturing fluid reached the
coordinate z for the first time. Plugging eqs 7−8 into eq 9
results in the following partial differential equation:
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The two boundary conditions and an initial condition for the
process are formulated as follows:45,46

q t Q W L t t(0, ) ( ( ), ) 0z 0= = (12)

W z( , 0) 0= (13)

where Q0 is the fluid injection rate at the wellbore and L(t) is
the fracture tip varying with time.

Figure 1. PKN fracture model.
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Proppant Transport. In this model, the proppant is
assumed to travel with the superficial velocity of the fracturing
fluid in the horizontal direction, and it is assumed to travel
with the settling velocity relative to the fracturing fluid in the
vertical direction due to the effect of gravity. The other
assumptions adopted are as follows: (1) the proppant particle
size is assumed to be large enough to neglect the diffusive flux
while only convective flux is taken into consideration; (2) the
interactions between the proppant particles are neglected while
only drag and gravity effects are considered; and (3) the
proppant particles have a uniform size. Based on these
assumptions, the advection of proppant in the z direction
can be computed as

WC
t z

WCV
( )

( ) 0p
∂

∂
+ ∂

∂
=

(14)

C t C t C z(0, ) ( ) and ( , 0) 00= = (15)

where C(z, t) is the suspended proppant concentration at the
coordinate z, and at time t. C0(t) is the proppant concentration
injected at the wellbore. Vp is the net velocity of the proppant
particles and is obtained by47

V V C V(1 )p s= − − (16)

where V is the superficial fluid velocity in the horizontal
direction and Vs is the gravitational settling velocity which can
be computed as48

V
C gd(1 ) ( )

10 18s
sd f
C

2 2

1.82

ρ ρ

μ
=

− −

(17)

where ρsd is the proppant particle density, ρf is the pure fluid
density, d is the proppant particle diameter, g is the
gravitational constant, and μ is the fracture fluid viscosity
which can be related to the proppant concentration as
follows:49

i
k
jjjjj

y
{
zzzzzC

C
C

( ) 10
max

μ μ= −
α−

(18)

where μ0 is the pure fluid viscosity, Cmax is the maximum
theoretical concentration determined by Cmax = (1 − ϕ)ρsd
where ϕ is the proppant bank porosity, and α is an exponent in
the range of 1.2−1.8.

Proppant Bank Formation. The proppant settling results in
the formation of a proppant bank and the variation of the bank
height, δ, can be explained using the following equations:45,50

W
t

CV Wd( )
d (1 )

sδ
ϕ

=
− (19)

z( , 0) 0δ = (20)

where eq 20 is the initial condition for eq 19.
Numerical Simulations. In this section, we solve the

dynamic model of the hydraulic fracturing process for various
input profiles in the selected finite region of the input space. A
numerical scheme is adopted considering the highly nonlinear
nature of the model and the moving boundary of the system.51

We used fixed mesh strategy to solve the high-fidelity model,
and the numerical scheme used is as follows:52

1. At time step tk, the fracture tip is elongated by Δz to
obtain the fracture length L(tk+1).

2. The coupled equations of eqs 7−19 are solved together
to obtain suspended proppant concentration C(z, tk+1),
fracture width W (z, tk+1), proppant bank height δ (z,
tk+1), settling velocity Vs(z, tk+1), flow rate Q(z, tk+1), and
net pressure P(z, tk+1) across the fracture using a finite
element method.

3. Iteratively solve for τ(zk+1) in eqs 9 and 10 by repeating
steps 2 and 3.

4. The time interval Δtk is obtained. To handle computa-
tional efficiency, the numerical integration time step is
adopted based on the Courant−Friedrichs−Lewy (CFL)
condition which is 1u t

z
≤Δ

Δ , where u is the fracture

propagation speed in the width direction.
5. Set k ← k + 1 and go to step 1.

The various parameters used in our process calculations are
as follows:45 H = 20 m, μ = 0.56 Pa·s, E = 5 × 103 MPa, ν =
0.2, and Cleak = 6.3 × 10−5 m/s1/2. A constant flow rate of Q0 =
0.03 m3/s was utilized throughout the fracturing process. A
finite region of the input space was selected in which a total of
13 distinct “training” input profiles were chosen as shown in
Figure 2. Note that the proppant injection was started at t =
220 s. The reason for this design of the “training” input profiles
is to closely imitate the practically viable inlet proppant
concentration in the field which is usually an increasing
staircase profile. The step increases have been kept constant at

Figure 2. Different “training” input profiles used to generate open-loop simulation data for model training.
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0.5 ppga in all the cases. Another reason for this kind of pattern
is to make sure that we cover the entire finite region so as to
obtain rich “training” data sets and the amount of data used in
model building would be optimal. Random input profiles can
be considered within this region but the number of “training”
inputs required to cover the entire region would be larger.
Also, to avoid using many “training” inputs and to cover the
entire region would require the step increase to be greater than
0.5 ppga, which is usually not practical to be implemented in
the field.
Each “training” input profile is implemented on the open-

loop system, and the corresponding response of the system is
obtained by solving the high fidelity model. The simulations
are carried out for tf = 1236.4 s which resulted in a total of
12365 snapshots in each “training” data set. The high-order
discretization scheme resulted in a total of 501 spatial points
across the length of the fracture out of which only 101 were
selected at equidistant points. The same discretization scheme
was applied to the simulations of all the “training” input
profiles. The “training” data obtained in these simulations were
used in building ROMs through LDMDc.
Building LDMDc-Based ROMs. Our algorithm can be

divided into three sections: (1) temporal clustering, (2)
building ROMs for each cluster, and (3) model selection for
validation/prediction. Note that only the data after the
proppant injection began was used in this work.
Temporal Clustering. We first built the “augmented”

vectors by stacking the state vector with its corresponding
input vertically, formed the “combined” matrix by stacking
horizontally all the “augmented” vectors from all the “training”
data sets, normalized each row of the “combined” matrix, and
applied weights on the resultant “normalized” matrix. In this
work we applied equal weights [0.5, 0.5] on the state vector
and the input. And, the weight 0.5 on the state vector was
equally divided among the components of the state vector
whereas the weight on the input was kept the same. The reason
we chose this weights is that both the current state of the
system and the input applied on it are equally important in
propelling the system forward. In other applications it is
possible that this may not be the case, and therefore, we
suggest that a trial and error scheme needs to be adopted to
obtain these weights. We performed PCA on weighted matrix
and found that the 1st principal component (PC) was able to
capture 99.59% of the total variance. Therefore, it was

sufficient for us to just use the 1st PCS of all the data points
in the clustering step as well as in the model selection step of
the algorithm. The clustering strategy was implemented that
satisfies the criteria mentioned previously; that is, no two data
points from two different “training” data sets will lie in the
same cluster, and no two data points having the same input will
lie in the same cluster. We obtained a total of 143 clusters and
the output of this clustering strategy in the input space is
shown in Figure 3 wherein each color represents a cluster. The
cluster centers were computed in terms of the 1st PCS and
stored to be used in the local ROM selection step of the
algorithm.
Remark 5. The clustering criteria stated in the proposed

algorithm is suited for systems and applications with step input
prof ile. In the cases where nonstep input prof iles are used, the
clustering criteria need to be modif ied such that each cluster better
captures local dynamics of the system.

Building ROMs for Each Cluster. We applied the DMDc
method to every cluster wherein we set the tolerance limit on
the singular values as 1 to determine the corresponding p and r
values for the purpose of model order reduction. For each
cluster, we obtained a pair of linear operators, (Aj, Bj), that
captures the underlying local dynamics exhibited by the
snapshots of that particular cluster. This pair of linear
operators is then used to build the linear state-space model
which will be then used for model validation and for prediction
in the case of random inputs selected within the finite region.

Model Selection for Validation/Prediction. During model
validation or model prediction, at any time step, a local ROM
needs to be selected based on the current state of the system
and the input to be applied on it to further propagate the
system. To achieve this objective, we implemented the kNN
technique by setting the k value as 1 as we only need to select
one local ROM. To obtain the subset of cluster centers, we
implemented the constraint that at any time step only those
cluster centers will be used in the selection process whose
corresponding clusters contain the snapshot which was
obtained at the same time instance during the open-loop
data generation process. Also, at every time step, the query
points (i.e., the current state and the input) were transformed
in the exact manner adopted in the clustering step. Recall, the
parameter used in the selection process is the PCSs with
respect to the dominant components. In this work, the 1st
PCSs of the subset of cluster centers, and of the query point

Figure 3. Clustering output representation in the input space.
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were used as the 1st PC was able to capture 99.59% of the total
variance in the data.
Model Validation. To verify the accuracy of our proposed

methodology, we implemented one of the “training” inputs
which is shown in Figure 4. We utilized the developed
LDMDc-based ROMs to compute the output for the selected
“training” input and it is compared against the output of the
full-order model. Figure 5 shows the comparison of these two
models with respect to the evolution of the proppant
concentration at four different locations during the injection
process. It can be seen that the output obtained using the
proposed algorithm mimics the output from the full-order
model. We used a relative error metric, E(t), to quantify the

performance of our proposed methodology in comparison to
the full-order solution. The relative error is calculated by using
the Frobenius norms of the state vectors as follows:

E t
x x

x
( ) full rom fro

full fro

=
|| − ||

|| || (21)

where ∥.∥fro is the Frobenius norm, xfull is the state vector
obtained from the full-order solution, and xrom is the state
vector obtained from a ROM developed by the proposed
methodology. The relative error for the approximate solution
obtained from our proposed methodology is presented in
Figure 6. From the plot we observe that the proposed
methodology is able to provide an accurate approximation

Figure 4. Validation input.

Figure 5. Comparison of the approximate solution computed using LDMDc-based ROMs with the full-order solution.
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when compared to the full-order solution. Similarly, our
proposed methodology will give accurate solutions when any
of the other 12 “training” inputs are used for validation
purposes. Thus, these results validate the proposed method-
ology and warrant its use for the purposes of prediction when
random inputs are used within the selected finite input space.
Remark 6. Considering the distinct “training” input prof iles

used and the constraint to obtain the subset of cluster centers in the
local ROM selection process, it is possible to use just the input
information in the proposed methodology to obtain accurate
results. This modif ication can be made by putting a weight of 0 on
the states and 1 on the inputs. But for a dif ferent set of “random”
inputs it is absolutely necessary to use both the information on the
states and the inputs as proposed in this work.
Model Prediction. Equipped with the set of LDMDc-

based ROMs, we used our model selection step of the
proposed methodology to predict the output when a random
input is considered within the selected finite input region.
Random Input. In this case a random input was generated

with the constraint that the injected proppant concentration
was varied at every 100s as in the “training” inputs. The
generated random input is shown in Figure 7. Note that in all
the “training” inputs, as described in Figure 3, the step increase
of 0.5 ppga in the injected proppant concentration was kept
constant throughout the pumping process. But in the case of
this model prediction a different constraint was implemented

that when generating the random input the step increase in the
injected proppant concentration will lie in the range of [0.425
0.575]. The reason we implemented this constraint is that it
makes the generated random input closely mimic the “training”
inputs and also allows flexibility to deviate from them to a
limited extent. The output predicted by the proposed
algorithm is compared with the output from the high-fidelity
model at four different locations along the length of the
fracture and are presented in Figure 8. From the figure we
observe that the proposed methodology is able to accurately
predict the concentration at four different locations when
compared to the full-order solution. To quantify the accuracy
of the prediction, we calculated the relative error as defined in
eq 21 and is plotted at various times during the injection
process as shown in Figure 9.
Remark 7. To use our proposed methodology for prediction

purposes, the input used should closely mimic the “training” inputs
without much deviation for high accuracy. To obtain more
f lexibility in this regard, we can train our model for a wide variety
of inputs. But use of random inputs which have random amount of
step increase is not practically feasible in the hydraulic f racturing
process. For this reason we considered a uniform step increase in
the “training” inputs. For other systems which do not have such
practical constraints on the input, random “training” inputs can be
used to build the model and consequently similar random inputs

Figure 6. Profile for E(t) with time for solution obtained from our proposed methodology when the validation input is used.

Figure 7. Random input profile used for model prediction.
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can be used for prediction. In such cases a dif ferent constraint
would be required.
Comparison with LDMDc. In this section, we illustrate

the superior performance of our proposed methodology in
comparison to the performance of the LDMDc technique
proposed by Narasingam and Kwon39 for a randomly
generated, constrained input within the finite region of input
space. To do so, we first generated the required data by
carrying out open-loop simulations of the high-fidelity model.
The “training” input used mimics the ones used in our
proposed methodology; in particular, the step increase in the
concentration of the injected proppant is kept constant at 0.5
ppga all throughout the injection process as shown in Figure
10. We then used just the information on the states to cluster
the data into 11 clusters, where for each cluster we captured
the local dynamics using LDMDc-based ROMs. These ROMs
are then used to calculate the approximate solution of the full-

order model. Now that the LDMDc technique has been used
to build the model, we used the prediction input shown in
Figure 7 to compare its performance with the performance of
our proposed methodology by plotting the relative error
profiles for both the techniques as shown in Figure 11. Note
that the relative errors for each technique was obtained by
comparing their corresponding approximate solutions to the
solution of the high-fidelity model. From the plot we observe
the limitation of the LDMDc technique, which is its poor
performance when a random input is used, which can be
overcome by using our proposed methodology.
Remark 8. The above reasonable performance of the LDMDc

technique can be attributed to the fact that the “training” input
used and the prediction input are reasonably close. But when an
ever wider input domain is considered in our proposed
methodology, for any random input in that domain the
performance of the LDMDc technique will only get poor.

Figure 8. Comparison of the prediction output computed using LDMDc-based ROMs with the full-order solution.

Figure 9. Profile for E(t) with time for the prediction when the random input is used.
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We further compare the prediction accuracy of our proposed
methodology with that of the LDMDc-based model for 100
random input profiles within the selected input region. We
calculate the relative root mean squared errors (RMSE), as
defined in eq 22, for each technique averaged over the 100
random inputs. The Average RMSE value for both the
techniques has been reported in Table 2. The superior

performance of our proposed methodology in this comparison
warrants its use for prediction purposes and its application in
the design of closed-loop controllers for the hydraulic
fracturing process.
Remark 9. The proposed methodology can be used to design

stable closed-loop controllers for hydraulic f racturing. Recently, lot
of ef forts have been carried out in this direction which include the
use of high-f idelity model to design model predictive control
(MPC)-based controller,53 the use of LDMDc-based ROM in the
design of MPC controller,39 approximate dynamic programming

based controller,54 and the use of POD based ensemble Kalman
f ilter to handle spatial uncertainties during feedback control.55

x x

x
RMSE 100

full pred 2
2

full 2
2

= ×
∑ || − ||

∑ || || (22)

■ CONCLUSION
In this article a novel strategy was proposed utilizing data to
enlarge the DOA of the LDMDc method. In this method,
“training” inputs within a finite region were used to run
numerical simulations of the high-fidelity model to obtain the
“training” data. Unlike the conventional LDMDc technique,39

both the information on the state and the input were utilized in
various steps of the algorithm as they both contribute toward
the output of the system. The PCA technique was utilized to
combine the information on both the variables and transform
the data. A clustering strategy was implemented and the cluster
centers were defined in terms of the dominant PCSs. Then,
DMDc technique was implemented in each cluster and a pair
of linear operators (A, B) was obtained to represent the local
ROM. Lastly, a model selection strategy was implemented
involving the kNN technique to select the appropriate pair of
(A, B) and predict the system’s future behavior. We validated
our method using one of the “training” inputs and were able to

Figure 10. Input used to build a LDMDc-based ROM.

Figure 11. Comparison of the relative error profiles of our proposed methodology and the LDMDc technique.

Table 2. Prediction ComparisonAverage RMSE over 100
Random Input Profiles

technique average RMSE

proposed methodology 1.2586
LDMDc39 2.6627
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predict the output with high accuracy when compared to the
output from the high-fidelity model. We proved the superior
performance of our proposed methodology to the performance
of the LDMDc technique. The advantage of our proposed
algorithm is that the DOA of LDMDc can be further increased
without compromising on the computational expenses which is
usually not expected in a data-based modeling technique.
Another advantage is that it enables the use of the ROMs built
using LDMDc technique in the design of controllers for a wide
variety of operating conditions.
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