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We derive and study a significance test for determining whether a panel of functional time series is separable. In the context
of this paper, separability means that the covariance structure factors into the product of two functions, one depending only
on time and the other depending only on the coordinates of the panel. Separability is a property that can dramatically improve
computational efficiency by substantially reducing model complexity. It is especially useful for functional data, as it implies
that the functional principal components are the same for each member of the panel. However, such an assumption must be
verified before proceeding with further inference. Our approach is based on functional norm differences and provides a test
with well-controlled size and high power. We establish our procedure quite generally, allowing one to test separability of
autocovariances as well. In addition to an asymptotic justification, our methodology is validated by a simulation study. It is
applied to functional panels of particulate pollution and stock market data.
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1. INTRODUCTION

Suppose {X (s,1),seR?,te R} is a real-valued spatiotemporal random field, with the coordinate s referring to
space and ¢ to time. The field X(-, -) is said to be separable if

Cov(X(s;, 1)), X(S,,1,)) = u(S;, S)v(t;, 1,),

where u and v are, respectively, spatial and temporal covariance functions. Separability is discussed in many
textbooks, e.g. Cressie and Wikle (2015, Chap. 6). It has been extensively used in spatiotemporal statistics because
it leads to theoretically tractable models and computationally feasible procedures; some recent references are Hoff
(2011), Paul and Peng (2011), Sun et al. (2012). Before separability is assumed for the reasons noted above, it
must be tested. Tests of separability are reviewed in Mitchell et al. (2005, 2006) and Fuentes (2006).

Time series of weather- or pollution-related measurements obtained at spatial locations typically exhibit strong
periodic patterns. An approach to accommodate this periodicity is to divide the time series of such type into
segments, each segment corresponding to a natural period. For example, a periodic time series of maximum daily
temperatures at some location can be viewed as a stationary time series of functions, with one function per year.
If the measurements are available at many locations s, this gives rise to a data structure of the form

X,(s:0), k=1,....8, i=1,....1(=365), n=1,...,N,
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where n indexes the year, and ¢; the day within a year. Time series of functions are discussed in several books,
e.g. Bosq (2000), Horvéth and Kokoszka (2012), Kokoszka and Reimherr (2017), but research on spatial fields
or panels of time series of functions is relatively new, e.g. Kokoszka et al. (2016), Gromenko et al. (2016, 2017),
French et al. (2016), Tupper et al. (2017), Liu et al. (2017), and Shang and Hyndman (2017). Testing separability
of spatiotemporal functional data of the above form is investigated in Constantinou et al. (2017), Aston et al.
(2017), and Bagchi and Dette (2017) under the assumption that the fields X,,(-,-), 1 < n < N, are independent. No
tests are currently available for testing separability in the presence of temporal dependence across n. In a broader
setting, the data that motivate this research have the form of functional panels:

X, (0) = [X,,(0), X, 0D .. X,sD]", 1<n<N. (1)

Each X, (+) is a curve, and all curves are defined on the same time interval. The index # typically stands for day,
week, month, or year. For instance, X, (¢) can be the exchange rate (against the Euro or the US Dollar) of currency
s at minute ¢ of the nth trading day, or X, (¢) can be the stock price of company s at minute ¢ of the nth trading day.
Another extensively studied example is daily or monthly yield curves for a panel of countries, e.g. Ang and Bekaert
(2002), Bowsher and Meeks (2008), Hays ef al. (2012), Kowal et al. (2017), among others. As for scalar data, the
assumption of separability has numerous benefits including a simpler covariance structure, increased estimation
accuracy, and faster computational times. In addition, in the contexts of functional time series, separability implies
that the optimal functions used for temporal dimension reduction are the same for each member (coordinate) of
the panel; information can then be pooled across the coordinates to get better estimates of these functions. We
elaborate on this point in the following. However, if separability is incorrectly assumed, it leads to serious biases
and misleading conclusions. A significance test, which accounts for the temporal dependence present in all the
examples listed above, is therefore called for. The derivation of such a test, as well as the examination of its
properties, is the purpose of this work. Our procedure is also applicable to testing separability of the autocovariance
at any lag. We will demonstrate that it works well in situations where the tests of Constantinou et al. (2017) and
Aston et al. (2017) fail.

The remainder of the paper is organized as follows. In Section 2, we formulate the assumptions, the definitions,
and the problem. In Section 3, we derive the test and provide the required asymptotic theory. Section 4 focuses on
details of the implementation. In Section 5, we present results of a simulation study, and, finally, in Section 6 we
apply our procedure to functional panels of nitrogen dioxide levels on the east coast of the United States and to
U.S. stock market data.

2. ASSUMPTIONS AND PROBLEM FORMULATION

We assume that X, in (1) form a strictly stationary functional time series of dimension S. To simplify notation,
we assume that all functions are defined on the unit interval [0, 1] (integrals without limits indicate integration
over [0, 1]). We assume that they are square-integrable in the sense that E||X,,||> = E [ X2 (1) dr < oo. Stationarity
implies that the lagged covariance function can be expressed as

Cov(X,, (1), X, 1 (1)) = Vs, 1,5, 7).

We aim to test the null hypothesis for a fixed value of 4. The most important setting is when & = 0, i.e. testing
separability of the covariance function, but other lags can be considered as well.

Hy: PGs,t,5,0) =", s) @, 0), s €{1,2,...,8) ./ €[0,1]. )

To derive the asymptotic distribution of our test statistic, we impose a weak dependence condition on X,. We use
the concept of LP—m-approximability introduced in Hérmann and Kokoszka (2010), see also Chapter 16 of Horvath
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and Kokoszka (2012). Suppose H is a separable Hilbert space. Let p > 1 and let L{; be the space of H-valued
random elements X such that

v,(X) = (EIXIP)""" < oo

Definition 1. The sequence {Z,}, Z, € L}, is L’-m-approximable if the following conditions hold:

1. There exists a sequence {un} of i.i.d. elements in an abstract measurable space U such that

Zn :f(un9 un_la )’

for a measurable function f : U'* — Hj;
2. For each integer M > 0, consider an approximating sequence Z, ,, defined by

— * *
Zn,M _f(uns Uy 15 eee s Upy_pps un—M—l’ Mn—M—Z’ cee ),

where the sequences {u*} = {u*(n,m)} are copies of {u,} independent across m and n and independent of
the original sequence {un} We assume that Z ,, well approximates Z, in the sense that

[oe]

Y V(Zy = Z,p) < 0. A3)

M=1

Condition 1 of Definition 1 implies that the sequence is strictly stationarity and ergodic. The essence of Con-
dition 2 is that the dependence of f on the innovations far in the past decays so fast that these innovations can
be replaced by their independent copies. Such a replacement is asymptotically negligible in the sense quanti-
fied by (3). Similar conditions, which replace the more restrictive assumption of a linear moving average with
summability conditions on its coefficients, have been used for at least a decade, see e.g. Shao and Wu (2007)
and references therein. We work with Definition 1, as it is satisfied by most time series models, including func-
tional time series, and provides a number of desirable asymptotic properties including the central limit theorem,
see Chapter 16 of Horvath and Kokoszka (2012) and Kokoszka and Reimherr (2013a), among many other ref-
erences. The conditions in Definition 1 cannot be verified; they are analogous to mixing or summability of
cumulants conditions that have been imposed in theoretical time series analysis research. We therefore make the
following assumption:

Assumption 1. The X, form an L*-m-approximable sequence in H = (L*([0, 1]))5.

We use tensor notation analogous to Aston et al. (2017). Let H, and H, denote two real separable Hilbert
spaces with bases {u;} and {v;} respectively. We define H = H;, ® H, to be the tensor product Hilbert
space. The tensors {u; ® v;} form a basis for H. In other words, the tensor product Hilbert space can be
obtained by completing of the set span{u; ® v, : i = 1,... j = 1,...}, under the following inner
product:

(; @ vy uy @ o) = (U )V, ve), Uy uy € Hyyviv, € Hy.

In the context of our study, H;, = RS and H, = L?*([0, 1]). Therefore, the tensor product Hilbert space in our
contextis H = H, ® H, = RS ® L*([0,1]) = (L*([0,1]))S =: Lg, where we omit [0, 1] for simplicity. Each
X, is thus an element of a tensor space formed by the tensor product between two real separable Hilbert spaces,
X, € H, ® H,. We denote by S(H, ® H,) the space of Hilbert—-Schmidt operators acting on H, ® H,. Note that
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734 P. CONSTANTINOU, P. KOKOSZKA AND M. REIMHERR

{u; ® v; ® u, ® v, } is a basis for S(H,; ® H,). The covariance operator between X, and X,,,, € H = H, ® H,,
CW =E[X, ® X,,,] € S(H, ® H,), is called separable if

¥ =c'ec”, )

where CY') is a covariance operator over H; and C;h) is a covariance operator over H,. We define CY’)@C;’” as a
linear operator on H; ® H, satisfying

(C"RCYu@v) = (C"u) @ (CVv), VYu e H,, Ve H,

The covariance operator between X, and X, , € Lg isin § (Lg), i.e. it is an integral operator with the kernel .
Relation (4) is then equivalent to H, stated as (2) above.

3. DERIVATION OF THE TEST AND ITS ASYMPTOTIC JUSTIFICATION
To test hypothesis (4), we propose a statistic that quantifies the difference between 6‘?’”@)6‘;”) and C®:

T=NICPRCY - VI, )

where 6§h>, égh), C™ are estimates defined below, and || - || ¢ is the Hilbert-Schmidt norm. The statistic (5) is a
normalized distance between the estimator valid under the restriction imposed by H,, and a general unrestricted
estimator. The term 65%6;“ is an estimator of the product CY’ ', -)c(zh)(-, -)in (2) (the autocovariance under separa-
bility), whereas C™ is an estimator of the unrestricted spatiotemporal autocovariance function ¢®(-, -, -, -). While
C™ is not difficult to define, it is not obvious how to define 65’“ and /C\‘;h). This section explains how we define
the estimators in (5) and what their joint asymptotic distribution is. This will allow us to derive the asymptotic
properties of T.

The asymptotic null distribution involves the covariance operator of /C\’(lh) @é\’;h) - 6<h>, which we denote by Q.
Note that Q(h) € S(S(H, ® H,)), i.e. it is an operator acting on S(H; ® H,). Therefore, it can be expanded using
basis functions of the form {u; ® v, @ u, ® v, ® u,, ® v, ® u, ® v, }. In the context of (1), Q" e S(S(L‘;)).

We now define the estimators appearing in (5) and obtain their limiting behavior even in the case where C? is
not separable. A natural estimator for the general covariance, C%, is given by

N—-h
~ 1 . .
o= —— DX, - ) ® X, — ) € ST,

n=1

where X, (1) = [X,1(1,X,0(0), .. X,sIT . 1 < n < N, and g@) = [A,(0), fy(0), s fis®O]" with p(1) =
]lv Z:':l X, 1 <5 < S§. Since centering by the sample mean is asymptotically negligible, we assume, without
loss of generality and to ease the notation, that our data are centered. So the estimator takes the form

N-h

~ 1
(h) —
o= - nzzl X, ® X, ©6)
or equivalently, the kernel of C? is

N—h
1

A(h) TN /

(s, t,5,1) = N_7 nzzl X (DX, 0 ().
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Under Hy, C? = C"QCY” with " € SH,) = SRS, C" € SMH,) = SE*([0,1])) and C» € SH) =
SH,®H, =S (Lg). To obtain estimators for Cih) and C;h) , we utilize the trace and the partial trace operators.

For any trace-class operator 7, see, e.g. Section 13.5 of Horvath and Kokoszka (2012) or Section 4.5 of Hsing and
Eubank (2015), its trace is defined by

[so]

Te(T) 1= Y (Te,.e)),

i=1

where (e;);5; is an orthonormal basis. It is invariant with respect to the basis. The partial-trace operators are
defined as

Tr,(A®B) = Tr(A)B, A € H,, B€H,,
and
Try(A®B) = Tr(B)A, A €H,, BEH,.

This means that Tr; and Tr, are bilinear forms that satisfy Tr; : H, ® H, - H, and Tr, : H; ® H, — H,. In
general, the trace of any element of 7 € H; ® H, can be defined using proper basis expansions. More specifically,
let u;,u,, ... be an orthonormal basis for H; and v,, v,, ... an orthonormal basis for H,. Then a basis for H; ® H,
is given by {u; ® vl i=12,....j=12,...}.LetT : H & H, - H, ® H,. Then, the trace of T is
defined by

Te(T) = )" YT, ® v u; ®v), Tr:H @H, > R.

i>1 j>1
IfT = A(§>B, the partial-trace operators in terms of a basis are defined as

Tr,(T) = Tr\(A®B) = Tr(A)B = Y (Au;, u;)B
i>1
= Y (Au,u;) Y By, VA€M, VBEH,

i>1 i1
and

Try(T) = Tr,(A®B) = Tr(B)A = ) (Bv;,v)A
j=1
= ) (Bv.v) Y Au, VAEHM, VBEH,

j>1 i>1

In the context of functional panels, let u,, u,, ..., ug be an orthonormal basis for RS and V|, V,, ... an orthonormal
basis for L*([0, 1]). Then a basis for L“; is given by {u; ® v i=12,..,5,j=1,2,... }. Recall that the products
u; @ uy, viewed as operators, form a basis for S (RS), that is, a basis for the space of Hilbert—-Schmidt operators
acting on RS, Similarly, {vj ® v, } is a basis for S(L*([0, 1])). Finally, {y, ® v, Qu ® v, } is a basis for S(Lg). The
basis expansion of C* is given by

ZZZZC&){%@W@%@V{.
i j k7
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Therefore, its trace is given by

Tr(C?) = Z 2 c.
i

Under the assumption of separability, i.e. C = C(lh)®C;m, the partial trace with respect to H, in terms of a basis
is given by

h) S~ h h h . h h
Tr, (CP) = Tr (C"®CY) = Tr(C")C = 37 ) (2 cjﬁ;) v ®v, with € =% Co.
ioc i

1

and with respect to H, by
Try(C?) = Tr (CP"®CY) = Tr(CIH P = 31 Y <2 C%) w®u, with C =% ch
ik J J

Under the assumption of separability, we define estimators of C(lh) and C;h) as

&0 = — L1, @) and &P =T, @), )

Y (e0))

where 6?” is an §' X § matrix and 6’;}’) is a temporal covariance operator. The intuition behind the above estimators
is that Tr(C®)C® = Tr,(C™)® Tr,(C™). Note that the decomposition C* = Ci”@c;”) is not unique since
Cih) @C(zh) = (aCih))é(a"CEh)) for any a # 0; however, the product Cih)é)Céh) is.

To derive the asymptotic distribution of the test statistic T defined in (5), we must first derive the joint asymp-
totic distribution of 6‘“”, 6?’), and 6‘;}'). A similar strategy was used in Constantinou et al. (2017). However,
there the observations were assumed to be independent, and more traditional likelihood methods were used to
derive the asymptotic distributions. Here, we take a different approach instead, using the CLT for C™, and then
leveraging a Taylor expansion over Hilbert spaces to obtain the joint asymptotic distribution of o, 6}’”, 6(2h)
In this way, we are able to relax both the independence and Gaussian assumptions from Constantinou et al.
(2017). The result is provided in Theorem 1. Because of the temporal dependence, the covariance operator
of the limit normal distribution is a suitably defined long-run covariance operator. It has a very complex, but
explicit and computable, form, which is displayed in Supporting Information, where all theorems that follow are
also proven.

Recall that we are interested in testing

Hy: C"=c"®C)" vs. H,:C"#c"@CP.

In the following theorems, notice that Theorems 1 and 2 hold without the assumption of separability, i.e. they
hold under H,, and under H,. These two theorems are used to establish the behavior of our test statistic under
both the null, Theorem 3, and the alternative, Theorem 4. Under the alternative, both C(lh) and C;h) are still defined
as partial traces of C; it is just that their tensor product no longer recovers the original C™. Before we state our
theoretical results, we mention the asymptotic distribution of C®, which is the key to proof Theorem 1. It follows
from Theorem 3 of Kokoszka and Reimherr (2013a) that, under Assumption 1

VN@® - ) S N, T),
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where I'™ is given by

r® =R+ Y R” +R")'T with R” = E[(X, ® X,,;, - C") ® (X ,; ® X, — C")]. (8)

i=1

Here, (Rgh) )* denotes the adjoint of Rgh). Since we have the asymptotic distribution of 6'(’”, and recalling that

65’” and /C\’;h) are functions of C® from 7, we can use the Delta method to prove the following theorem; details of
the proof of Theorem 1 are given in Section A of Supporting Information.

Theorem 1. Under Assumption 1, one can explicitly define a long-run covariance operator W such that

a(lh) _ C(lh) i
VN[EP — ¢t = N©, w®).
Ch _ ¢

The definition of W is given in (A.2) of Supporting Information.
Armed with Theorem 1, we can derive the asymptotic distribution of 6?”@6;’” —C,

Theorem 2. Under Assumption 1
\/ﬁ((aiméa;m — O™y - (C(lh)éc(zh) — c™y) £ N(@,Q™).
The covariance operator 0" e s(s (H, ® H,)) is defined in (A.7) of Supporting Information.

As a corollary, we obtain the asymptotic distribution of 65’”@63’” — C® under H,.

Corollary 1. Suppose Assumption 1 holds. Then, under H,

A~ A ~ L
VNEPREY - ) > N©,0"),

(h)

where the covariance operator Q" is the same as in Theorem 2.

As noted above, in the context of (1), Q" € S(S (Lg)), i.e. it is a Hilbert—Schmidt operator acting on a space of
Hilbert—Schmidt operators over Lg . The following result is a direct consequence of Theorem 2. While the weighted

chi-square expansion is standard, to compute the weights the operator Q™ must be estimated, so W must be
estimated. Formula (A.2) defining W® is new and nontrivial.

Theorem 3. Suppose Assumption 1 holds. Let Q™ be the covariance operator appearing in Theorem 2, whose
eigenvalues are y,,7,, ... . Then, under Hy, as N — oo

AL
T — Z y,Zf,
r=1
where the Z, are i.i.d. standard normal.
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To describe the behavior of the test statistic under the alternative, some specific form of the alternative must be
assumed, as the violation of (4) can take many forms. A natural approach corresponding to a fixed alternative to
CP®CY — €™ = 0is to assume that

CPRCY — ™ =: A#0. )

Theorem 4. Suppose Assumption 1 holds. If (9) holds, then

A P
T = N||A|]> + Op(N'?) = .

In our applications, X, € H; ® H,, where H, = RS and H, = L*([0, 1]). Therefore, in practice, we must
first project these random elements onto a truncated basis by using a dimension reduction procedure. Note that
H, = RS is already finite. However, if the number of coordinates in the panel is large, then a dimension reduction
in H, = RS is also recommended. Here we present the general case where we use dimension reduction in both
H, = RS and H, = L*([0, 1]). The truncated basis is of the form &, ® P, with 1 <k <K, 1 <j<JwhereK <S
and J < oo. In our implementation, i, and ¥; are the empirical principal components. We can approximate each
X, € H, ® H, by a K X J random matrix Z, € R where Z (k,j) = (X, 0, ® V), 1 <k<K 1<j<J.
Therefore, from now on, we work with observations in the form of random K X J matrices defined as

Z,=lz,, 1<k<K, 1<j<J],

where z;;,, = (X, i, ® 9;). Let ?F be the truncated test statistic T, i.e.

n’

T =N ” C(h) C(/’l) C(/’l) ” 2

where C( ) is a K x K matrix, C( ) is a J xJ matrix, C( ) is a fourth-order array of dimension K XJ XK XJ, and || - ||
is the Frobemus norm, which is the Hilbert— Schmldt norm in finite dimensions. Finally, let Q(h) be the truncated
covariance operator Q" . Qﬁa) is the asymptotic covariance operator in the convergence

\/_ ((C(h) C(h) C(h)) _ (C(h) C(h) C(h))) = N(O, Q(h)

Note that Q(h) is an array of order eight with finite dimensions, ng) € RIXXEXIXEXIXKX] More details are given
in Remark A. 2 in Supporting Information. As a finite array, it has only a finite number of eigenvalues, which we
denote yf s y; s y;. The arguments leading to Theorem 3 show that under H,,, as N — oo

y'Z2, (10)

R

A~ L
rr

r=1

where the Z, are i.i.d. standard normal. The asymptotic argument needed to establish (10) relies on the bounds
iy, — w |l = Op(N=/%) and ||9; = v;|| = Op(N~'/?), which hold under Assumption 1. It is similar to the technique
used in the proof of Theorem 4 in Constantinou et al. (2017), so it is omitted.

4. DETAILS OF IMPLEMENTATION
Recall that we assume that all functions have been rescaled so that their domain is the unit interval [0, 1], and

that they have mean zero. The testing procedure consists of dimension reduction in time and, for large panels,
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SEPARABILITY OF FUNCTIONAL TIME SERIES 739

a further dimension reduction in coordinates. After reducing the dimension, our "observations" are of the form
of K X J matrices, which we use to compute the estimators we need to perform our test. The remainder of this
section explains the details in an algorithmic form. The reader will notice that most steps have obvious variants, for
example, different weights and bandwidths can be used in Step 6, and different percentages of explained variance,
rather than 85%, which is merely a rule of thumb, may work better in different scenarios. Procedure 4.1 describes
the exact implementation used in Sections 5 and 6.

Procedure4.1.

1. [Pool across s to get estimated temporal functional principal components (FPCs).] Under the assumption of
separability, i.e., under the H,, stated in Section 2, the optimal functions used for temporal dimension reduction
are the same for each member (coordinate) of the panel; information can then be pooled across the coordinates to
get better estimates of these functions. In other words, under separability, we can use simultaneously all the N X §

functions to compute the temporal FPCs 7,, ..., ¥; as the eigenfunctions of the covariance function
| &S
6.2(17 t’) = N_S Z ZXm(t)an(t/)~
n=1 s=1

2. Approximate each curve X, (¢) by
J
Xty = Y &9,
j=1

where &, = (X, (t), ¥,(¢)). Construct S X J matrices &, defined as

nsj

where J is chosen large enough so that the first / FPCs explain at least 85% of the variance. This is the FPC
analysis carried out on the pooled (across coordinates) sample.

3. [Pool across time to get panel PCs.] Under the assumption of separability, the panel principal components are
the same for each time. In other words, the panel PCs are the principal components of the following covariance
matrix:

20 [ X 0%, 1) dr
2y (s.9) = slLS
Ntr(C)
However, since we have already reduced the dimension of the observed functions, the panel PCs i, ... , fiy are the

principal components of the covariance matrix

NJ A

n=1 j i

N J
gns'éns"
&\(s.8) = = 3T Y
=1 j
4. Approximate each row &,; = (&1, &,j» - - » &,5) Of the E, matrices by

K
(K) _ ~ _ ~
én.j - Z ij;nuk’ ij;n - <€n~j’ uk)‘
k=1
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740 P. CONSTANTINOU, P. KOKOSZKA AND M. REIMHERR

Construct the K X J matrices Z,, = [ij;n’ 1 <k <K, 1<j<J],where K is chosen large enough so that the first
K eigenvalues explain at least 85% of the variance. This is a multivariate principal components analysis (PCA) on
the pooled (across time) variance-adjusted sample.

If the number of panel coordinates is small, then a multivariate dimension reduction is not necessary, so one can
skip Steps 3 and 4 and use the E, matrices instead of the Z, matrices, and replace K with § in the following
steps: The dimension reduction steps reduce the computational time and the memory requirements by reducing
the matrix size the 4D and 8D covariance tensors.

5. Approximate covariance (6) by the fourth-order array of dimensions K X J X K X J
N-h

L
Cor = 72 hZz ®Z,

n=1

Approximate 6?’) and 63’) in (7) by

¥ Coj K. j) < A
Ok ) = and  C3G.) = Y Gk jik ),
%) KJ
Zk IZ_ Cis (k. js k. J) k=1

where CY’;( is a K X K matrix and C;hj) is a J X J matrix.

RKxeKxeKxeKxJ’ by using

6. Calculate the estimators R (R

*
0,KJ° zKJ’ KJ)

N—h
~(h) 1
Ry = 577 2l @2y = C3) © 2, 82,0, = EY),

—i—

~(h) ~

Riy = —— 2 (2,82, ~ C) ® (Z,,;®Z,...,, ~ CI. an
1 N—i—h

R = ——— Z (Z,1 ® Zysion = C) ® (2, ®Z,,;, = T

; i KXIXKXIXKXIXKX] ; i i
7. Calculate the estimator I',, € R , by using the following Bartlett-type estimator:

N—h-1
A(h) (h)
Rox + (R, ¢, (Rz KJ) )s (12)
i=1
(h) ~0) . , . .
where R0 K lK], (R K]) are defined in 11 and w, are the Bartlett’s weights, i.e.

1--L, ifi<gq,
w; = I+q
0, otherwise,
with i being the number of lags and ¢ the bandwidth, which is assumed to be a function of the sample size, i.e.

q = g(N). In our simulations in Section 5, we use the formula g ~ 1.1447(%)1/ 3 (Horvéth and Kokoszka 2012,
Chapter 16).
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. NGNS
Note that the estimators RO K R

. A ~(h)
estimators RO ,R.

NOI N .
ik (R, and I, defined in Steps 6 and 7 are the truncated analogs of the

A IN0)
,(R; )", andI' ', which can be obtained by simply changing Z, with X, in 11.

1

(h)

8. Estimate the arrays W;?J) (the truncated analog of W<h)) and QKJ

Remark A.2 in Supporting Information.

defined in Section 3. Details are given in

9. Calculate the p-value using the limit distribution specified in (10).

Step 2 can be easily implemented using R function pca. £d, and Step 3 by using R function prcomp. The
matrix QZZJ) can be computed using the R package tensorA by van den Boogaart (2007).

5. A SIMULATION STUDY

The purpose of this section is to provide information on the performance of our test procedure in finite samples.
We first comment on the performance of existing tests. Constantinou et al. (2017) derived several separability tests
based on the assumption of independent X,. For the functional panels that exhibit temporal dependence (we define
them below), the empirical sizes are close to zero; the tests of Constantinou et al. (2017) are too conservative to be
usable unless we have independent replications of the spatiotemporal structure. Aston et al. (2017) proposed three
tests, also for independent X,,. In the presence of temporal dependence, their tests are not useable either; they can
severely over-reject, and the empirical size can approach 50% at the nominal level of 5%. We give some specific
numbers at the end of this section.
For our empirical study, we simulate functional panels as the moving average process

N
X, (6) = Y\ Py le, (1) + e, 1, (0],

s'=1

which is an 1-dependent functional time series. Direct verification shows that it is separable as long the e, () are
separable. We generate e, (f) as Gaussian processes with the following covariance function, which is a modified
version of Example 2 of Cressie and Huang (1999):

o’ <_b2[|S—S’|/(S— 1)]2>

—€X
(alt =]+ D/2 (alt =1+ 1)

ot t) = (13)

In this covariance function, a and b are nonnegative scaling parameters of time and space respectively, and
o2 > 0 is an overall scale parameter. The most important parameter is the separability parameter ¢, which takes
values in [0, 1]. If ¢ = 0, the covariance function is separable, otherwise it is not. We set a = 3, b = 2, and
6% = 1. To simulate the functions, we use 7 = 50 time points equally spaced on [0, 1], and S € {4,6,8, 10, 12, 14}
coordinates in the panel. The MA coefficients are taken as follows:

25(s — 5')?
II"”/ = exXp <—W> .

Notice that in the covariance above, the differences in the coordinates of the panel, i.e. |s — 5’|, are rescaled to be
within the interval [0, 1], i.e. we use |s — §'| /(S — 1).
We set

c¢=0under Hy; c¢=1under H,.

We consider two different cases: the first one with dimension reduction only in time, and the second one with
dimension reduction in both time and coordinates. For each case, we study two different scenarios. The first
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scenario is under the null hypothesis (separability), and the second scenario under the alternative hypothesis. We
consider different numbers of temporal FPCs, J, in the first case, and different numbers of coordinate PCs, K, and
temporal FPCs, J, in the second case. We will also consider different values for the series length N. All empirical
rejection rates are based on 1000 replications, so their standard deviation (SD) is about 0.7% for size (we use the
nominal significance level of 5%) and about 2% for power.

5.1. Case 1: dimension reduction in time only

We examine the effect of the series length N and the number of principal components J on the empirical size
(Table I) and power (Table II) for S € {4, 6, 8}. Each table reports the rejection rates in percent. In parentheses,
the proportion of variance explained by the J PCs is given.

From Table I, we can see that the size of our test is robust to the number of the principal components used. This
is a very desirable property, as in all procedures of FDA there is some uncertainty about the optimal number of
FPCs that should be used. While still within two standard errors of the nominal size, the empirical size becomes
inflated for § = 8. We recommend dimension reduction in panel coordinates if S > 10. In Table II, we see that the
empirical power increases as N and J increase. The power increase with N is expected; its increase with J reflects
the fact that projections on larger subspaces better capture a departure from H,. However, J cannot be chosen too
large so as not to increase the dimensionality of the problem, which negatively affects the empirical size.

5.2. Case 2: dimension reduction in both time and panel coordinates

The general setting is the same as in Section 5.1, but we consider larger panels, S € {10, 12, 14}, and reduce their
dimension to K € {2, 3,4} coordinates. The proportion of variance explained is now computed as

P H

CPV(,K) = = Z" L (14)
24 Zk 1'“k

where the A,, A5, ..., and y;, p,, ..., g are respectively the estimated eigenvalues of the time and panel PCAs.

Table I. Rejection rates under H, (c = 0) at the nominal 5% level

=100 N =150 N =200
J=2 J=3 J=4 J=2 J=3 =4 J=2 J=3 J=4

S=4 55 5.0 5.9 53 6.5 5.5
(87%) (90%) G4%) (85% (90%) (62%) (87%) (90%) (92%)
i Z Z (85520) (9130) (93%) (85%) (91?) (93%) (86‘670) (91%) (9211%7)
(87%) (89%) (94%) (86%) (91%) (94%) (85%) (89%) (93%)

J is the number of temporal PCs. The explained variance of the temporal functional principal component analysis (FPCA) is given in parentheses.

Table II. Empirical power (¢ = 1)

=100 N =150 N =200

J=2 J=3 J=4 J=2 J=3 J=4 J=2 J=3 J=4
§S=4 67.6 90.6 95.1 91.9 99.3 99.8 98.2 100 100

(86%) (90%) (94%) (87%) (90%) (93%) (87%) (92%) (94%)
§S=6 54.5 79.7 89.0 80.7 97.9 99.3 94.5 99.7 100

(88%) (91%) (94%) (85%) (91%) (94%) (88%) (92%) (94%)
§=8 45.2 74.9 5.2 5.1 96.8 98.7 91.5 99.9 100

(89%) (91%) (94%) (89%) (92%) (94%) (88%) (92%) (94%)

J is the number of temporal PCs. The explained variance of the temporal FPCA is given in parentheses.
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Table III. Rejection rates under H;, (¢ = 0)

=100 N =150 N =200
J=2 J=3 J=4 J=2 J=3 J=4 J=2 J=3 J=4

K=2 6.4 6.2 6.1 6.1 52 43 58 5.5 56
(80%) (84%) (90%) (80%) (85%) (88%) (80%) (84%) (88%)

§=10 k=3 6.1 48 56 5.0 5.5 4.7 5.3 5.0
(84%) (88%) (94%) (83%) (89%) (92%) (85%) (89%) (92%)

K=4 5.9 4.7 5.2 53 6.1 58
(84%) (90%) (92%) (85%) (90%) (92%) (84%) (90%) (92%)

K=2 6.3 6.1 5.6 6.0 4.6 6.3 6.4
(83%) (88%) (90%) (83%) (86%) (89%) (80%) (87%) (88%)

S=12 k=3 6.1 5.9 5.1 5.0 56 6.1 6.1
(87%) (91 %) (93%) (87%) (90%) (92%) (85%) (90%) (93%)

K=4 6.0 5.4 5.0 6.3 6.0 5.0 6.5 57
(87%) (91%) (93%) (85%) (90%) (93%) (86%) (90%) (93%)

K=2 6.4 45 6.2 58 56 6.6 53
(82%) (87%) (89%) (82%) (87%) (88%) (82%) (86%) (89%)

S=14 K=3 6.0 52 4.7 4.4 6.0 4.2 6.2
(85%) (90%) (92%) (83%) (88%) (92%) (84%) (90%) (93%)

K=4 6.0 4.6 6.3 5.5 57 6.5 5.7 56
(85%) (90%) (93%) (86%)  (90%)  (93%) 87%)  (89%)  (91%)

K is the reduced panel dimension and J the number of temporal PCs. The explained variance of the dimension reduction is given in parentheses.

Table IV. Empirical power (c = 1)

N =100 N =150 N =200
J=2 J=3 J=4 J=2 J=3 J=4 J=2 J=3 J=4
K=2 313 492 60.8 50.5 78.0 85.9 67.3 92.4 96.4
®5%)  (85%)  (83%) Bl%)  (85%)  (34%) B1%)  B2%)  (34%)
§=10 K=3 4 3 723 952 98.2 90.6 99
87%)  (90%)  (93%) (85%)  ©O1%)  (93%) 86%)  (O1%)  (93%)
K=4 422 735 84.7 71.1 96.6 98.5 90.6 99.8 100
85%) (2%  (93%) ®7%)  (92%)  (94%) 88%)  (90%)  (92%)
K=2 30.8 9.7 57.4 46.6 76.5 2 67 9 95.7
®%)  (83%)  (85%) B1%)  (83%)  (34%) 2%  83%)  (86%)
s=12 K=3 429 725 82.8 67.1 94.8 98.8 89.5 99 99.9
(89%)  (91%)  (94%) (88%)  (92%)  (93%) 87%)  (93%)  (93%)
K=4 433 2.0 82.9 71.1 95.9 97.8 89.0 99.6 100
87%)  (92%)  (94%) (86%)  (92%)  (94%) 86%)  O1%)  (93%)
K=2 277 6.2 55.0 477 74.9 2.8 69.0 90.6 94.0
(86%)  (84%)  (84%) 2%)  (83%)  (34%) B1%)  84%)  (87%)
S=14 K=3 39.2 66.6 81.3 67.5 91.0 93.4 88.1 94.4 94.1
®7%) (2%  (93%) (89%)  (O1%)  (93%) 88%)  (90%)  (93%)
K=4 437 0.4 78.9 70 91.1 937 2 94.4 957
87%)  (92%)  (94%) (88%)  (O1%)  (94%) (88%)  (93%)  (94%)

K and J are as in Table III. The explained variance of the dimension reduction is given in parentheses.

Tables III and IV show that the reduction of the panel dimension does not negatively affect the properties of
the tests. The conclusions are the same as in Section 5.1. Either approach leads to a test with well-controlled size,
which does not depend on J (J, K) as long as the proportion of explained variance remains within the generally
recommended range of 85-95%. If J = 2 or K = 2 are used, this requirement is generally not met, resulting in a
size distortion, which is however acceptable and decreases with N.

As noted at the beginning of this section, the tests of Constantinou ez al. (2017) are too conservative; they almost
never reject under the null for all scenarios considered in this section. The tests of Aston et al. (2017) reject too
often under the null. For example, in the settings considered in Table III, the rejection rates for their asymptotic
test, Gaussian parametric bootstrap test, and Gaussian parametric bootstrap test using Hilbert—Schmidt distance
range 19.0-49.4%, 14.6-32.2%, and 38.1-44.9% respectively. By contrast, the test derived in this paper, in its
both versions and under all reasonable choices of tuning parameters, has precise empirical size at the standard 5%
nominal level and useful power.
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ppb

time

Figure 1. Maximum 1-h nitrogen dioxide curves for December 2012 at the nine locations [Color figure can be viewed at
wileyonlinelibrary.com]

In Section B of Supporting Information, we show the results of other simulations that study the effect of different
covariance functions, the magnitude of the departure from H,, and the lag 4. They do not modify the general
conclusion that the test is reasonably well calibrated and has useful power.

6. APPLICATIONS TO POLLUTION AND STOCK MARKET DATA

We begin by applying our method to air quality data studied by Constantinou ef al. (2017) under the assumption
that the monthly curves are i.i.d. These curves, however, form a time series, so it is important to check whether a
test that accounts for the temporal dependence leads to the same or a different conclusion.

The Environmental Protection Agency (EPA) collects massive amounts of air quality data which are available
through its website http://www3.epa.gov/airdata/ad_data_daily.html. The records consist of data for six common
pollutants, collected by outdoor monitors in hundreds of locations across the United States. The number and
frequency of the observations vary greatly by location, but some locations have as many as three decades worth
of daily measurements. We focus on nitrogen dioxide, a common pollutant emitted by combustion engines and
power stations.

We consider nine locations along the east coast that have relatively complete records since 2000: Allentown,
Baltimore, Boston, Harrisburg, Lancaster, New York City, Philadelphia, Pittsburgh, and Washington D.C. We use
the data for the years 2000-2012. Each functional observation X, (¢) consists of the daily maximum 1-h nitrogen
dioxide concentration measured in ppb (parts per billion) for day ¢, month n (N = 156), and location s. We thus
have a panel of S = 9 functional time series (one at every location), X, (¢),s = 1,2,...,9,n = 1,2,...,156.
Figure 1 shows the data for the nine locations for December 2012. Before the application of the test, the curves
were deseasonalized by removing the monthly mean from each curve.

We applied both versions of Procedure 4.1 (dimension in time only and double dimension reduction). Requir-
ing 85-95% of explained variance yielded the values J, K = 2, 3,4, similar as in our simulated data example. For
all possible combinations, we obtained p-values smaller than 10E——4. This indicates a nonseparable covariance
function and confirms the conclusion obtained by Constantinou et al. (2017); nonseparability is an intrinsic fea-
ture of pollution data, and simplifying the covariance structure by assuming separability may lead to incorrect
conclusions.
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Figure 2. Cumulative intraday return curves for the 10 companies for April 2, 2007 [Color figure can be viewed at
wileyonlinelibrary.com]

We now turn to an application to a stock portfolio. Cumulative intraday returns have recently been studied in
several papers, including Kokoszka and Reimherr (2013b), Kokoszka et al. (2015), and Lucca and Moench (2015).
If P,(2) is the price of a stock at minute ¢ of the trading day », then the cumulative intraday return curve on day n
is defined by

R, (1) = log(P,(1)) — log(P,(0)),

where time O corresponds to the opening of the market (9:30 EST for the NYSE). Horvéth er al. (2014) did not
find evidence against temporal stationarity of such time series. The work of Kokoszka and Reimherr (2013b)
shows that cumulative intradaily returns do not form an i.i.d. sequence. (This can be readily verified by computing
the autocorrelation function (ACF) of squared scores.) Figure 2 shows the curves R, for 10 companies on April
2, 2007. This portfolio of S = 10 stocks produces a panel of functional time series studied in this paper. We
selected ten U.S. blue chip companies, and want to determine whether the resulting panel can be assumed to have
a separable covariance function. The answer is yes, as we now explain.

We consider stock values, recorded every minute, from October 10, 2001 to April 2, 2007 (1378 trading days) for
the following 10 companies: Bank of America (BOA), Citi Bank, Coca Cola, Chevron Corporation (CVX), Walt
Disney Company (DIS), International Business Machines (IBM), McDonald’s Corporation (MCD), Microsoft
Corporation (MSFT), Walmart Stores (WMT) and Exxon Mobil Corporation Common (XOM). On each trading
day, there are 390 discrete observations. There is an outlier on August 26, 2004 for Bank of America, which is
due to a stock split. That day is discarded from further analysis, so the sample size is N = 1377.

We now discuss the results of applying Procedure 4.1. Using dimension reduction in time only, we obtained
p-values 0.234 for J = 2 (CPV =92%) and 0.220 for J = 3 (CPV=95%). Using the double dimension reduction,
we obtained the following values:

p-Value CPV

K=2,J=2 0.272 45%

K=3J=3 0.217 62%

K=4,J=4 0.224 67%

K=6J=4 0.223 80%

K=17,J=4 0.221 85%
J. Time Ser. Anal. 39: 731-747 (2018) Copyright © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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These remarkably similar p-values indicate that panels of cuamulative intraday return curves can in some cases be
assumed to have a separable covariance function. This could be useful for portfolio managers, as it indicates that
they can exploit separability of the data for more efficient modeling.

7. CONCLUSION

We conclude by noting that, in practice, it is important to ensure that the time series forming the panel are at
comparable scales. This has been the case in our data examples, and will be the case if the series are measurements
of the same quantity and are generated as a single group. If some of the series are much more variable than the
others, they may bias the test, and should perhaps be considered separately.
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