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Spectral Efficiency Optimization For Millimeter
Wave Multiuser MIMO Systems

Qingjiang Shi

Abstract—As a Kkey enabling technology for 5G wireless,
millimeter wave (mmWave) communication motivates the utiliza-
tion of large-scale antenna arrays for achieving highly directional
beamforming. However, the high cost and power consumption of
RF chains stand in the way of adoption of the optimal fully dig-
ital precoding in large-array systems. To reduce the number of
RF chains while still maintaining the spatial multiplexing gain of
large array, a hybrid precoding architecture has been proposed
for mmWave systems and received considerable interest in both
industry and academia. However, the optimal hybrid precoding
design has not been fully understood, especially for the multiuser
MIMO case. This paper is the first work that directly addresses
the nonconvex hybrid precoding problem of mmWave multi-user
MIMO systems (without any approximation) by using penalty dual
decomposition (PDD) method. The proposed PDD method have a
guaranteed convergence to KKT solutions of the hybrid precoding
problem under a mild assumption. Simulation results show that,
even when both the transmitter and the receivers are equipped
with the fewest RF chains that are required to support multistream
transmission, hybrid precoding can still approach the performance
of fully digital precoding in both the infinite resolution phase shifter
case and the finite resolution phase shifter case with several bits
quantization.

Index Terms—MU-MIMO, mmWave, hybrid precoding, penalty
dual decomposition method, BSUM.

I. INTRODUCTION

HE frequency bandwidth scarcity has motivated the ex-
ploration of the underutilized millimeter wave (mmWave)
frequency spectrum for future broadband cellular communica-
tion networks [1]-[5]. The shorter wavelength of the mmWave
frequencies enables more antenna components to be packed in
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the same physical dimension, which allows for large-scale spa-
tial multiplexing and highly directional beamforming. For mas-
sive multiple-input-multiple-output (MIMO) mmWave systems,
the conventional fully-digital (FD) precoding scheme, which re-
quires one radio frequency (RF) chain per antenna element, is
not viable due to the high cost and the high power consumption
of RF chain components in high frequencies. To address the
challenge of this hardware limitation while exploiting the mul-
tiplexing gain of MIMO, hybrid precoding architectures have
been proposed for mmWave systems and widely investigated in
the literature [6]-[19].

The key idea of hybrid precoding is using a linear network of
variable phase shifters in the RF domain in addition to the base-
band digital precoding. Such a scheme was firstly known as soft
antenna selection (SAS) which was proposed in [20] to improve
the performance of the traditional antenna selection scheme. It
was shown in [20] that the SAS method can even achieve the
optimal performance of a fully-digitally precoded single-stream
MIMO system when each end is equipped with two or more
RF chains. Recently, SAS is re-introduced to mmWave system
design under the name of hybrid precoding/beamforming [2],
[6], which has received significant interest in recent literature
on large-scale antenna array systems.

The pioneering work on hybrid precoding for mmWave sys-
tems [6] investigated hybrid precoding methods for a point-to-
point mmWave MIMO system. It was shown in [6] that the
spectral efficiency maximization problem for mmWave MIMO
systems can be approximately solved by addressing a matrix
approximation or reconstruction problem, i.e., minimizing the
Frobenius norm of the difference between the optimal FD pre-
coder and the hybrid precoder. By exploiting the sparse na-
ture of mmWave channels, the matrix approximation problem
is reformulated as a compressive-sensing-like problem which
is addressed by using a modified orthogonal matching pursuit
(OMP) algorithm. The OMP method in [6] can achieve good
performance when hundreds of antennas are used at both ends
of transceiver and/or the number of RF chains is strictly greater
than the number of data streams. But there is still a significant
performance gap between the hybrid precoding method pro-
posed in [6] and the optimal FD precoding method especially
when the number of RF chains is equal to the number of data
streams. Hence, several works have devoted to reducing this
performance gap. The authors of [7] proposed using alternating
optimization to approximate the solution of the matrix approxi-
mation problem. To deal with the difficulty arising from the unit-
modulus constraints, Yu et al. [7] used manifold optimization
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to solve the analog (or RF) precoder design problem with fixed
digital precoder. Other works that are based on matrix approx-
imation can be found in [8]-[10]. Together with [6] and [7],
all the above methods don’t directly take into consideration
the power constraint in the optimization, they inevitably in-
cur some performance loss as compared to the optimal hybrid
precoding performance. Differently from the matrix approxima-
tion methods [6]-[10], the work [15] proposed another hybrid
precoding algorithm that can approximately solve the spectral
efficiency maximization problem of mmWave MIMO systems.
First, by removing the coupling among the hybrid precoder
and decoders (or combiners) using some approximations under
large-antenna array, the analog precoder is designed indepen-
dently. Then, given the analog precoder, the digital precoder, the
analog combiner, and the digital combiner are sequentially de-
signed. Simulations confirm that the hybrid precoding method
in [15] can achieve a performance that is very close to the FD
precoding performance, though it is still a heuristic algorithm.
While the above works considered hybrid precoding for
single-user MIMO systems, there are a few works on hybrid
precoding for spectral efficiency optimization of multi-user
MIMO/MISO systems [11], [12], [15]-[18]. In [11], the authors
developed a low-complexity two-stage hybrid precoding algo-
rithm for downlink mmWave single-stream multi-user MIMO
systems with limited feedback channel. In the first stage, the
analog precoder at the base station (BS) and the analog com-
biners at the users are jointly designed to maximize the desired
signal power of each user while neglecting the resulting inter-
ference among users. In the second stage, the BS digital pre-
coder is designed to manage the multi-user interference. The
authors of [12] proposed equal-gain-transmission-based analog
beamforming combined with block diagonalization (BD) based
digital precoding for generic channel setup. By exploiting the
knowledge of angle of departure, the work [13] proposed iter-
ative matrix decomposition based BD for mmWave multiuser
MIMO systems. In [14], the authors first proposed a low com-
plexity mmWave channel estimation algorithm for multiuser
mmWave systems with single RF chain at each user and then
designed a hybrid analog precoding and digital zero-forcing
precoding scheme based on the channel estimations. In [15], as-
suming perfect channel state information, the authors proposed
an iterative hybrid precoding algorithm for multi-user MISO
systems, which iterates between the design of zero-forcing (ZF)
precoder and the analog precoder. The works [16], [17] pro-
posed low complexity hybrid precoding schemes for multi-user
MISO systems by performing phase-only maximum ratio com-
bining (MRC) or channel matched filter in the analog domain
and ZF beamforming in the digital domain based on the effective
channel. Extending the hybrid precoding methods in [16] and
[17], the work [18] proposed similar low complexity hybrid pre-
coding algorithms for multi-user MIMO systems by designing
the analog and digital precoders sequentially, where digital pre-
coders are separated to pre-filters and post-filters. First, analog
precoders and decoders are designed based on a per-user channel
matching criterion. Then digital pre-filters are applied at both
the transmitter side and the receiver side. Finally, optimal digital
post-filters are derived based on four linear transmit strategies,
including ZF [21], MMSE [22], block diagonalization (BD)

[23], regularized BD (RBD) [24], followed by optimal power
allocation via the water-filling algorithm. The simulation results
in [18] show that the RBD method performs the best among
various transmit strategies. Differently from the above works
focusing on the downlink systems, the authors of [19] investi-
gated the hybrid beamforming design problems for a mmWave
massive multicell MIMO uplink transmission system, tackling
both the intracell and inter-cell interference under the hardware
constraints.

For tractability, most of the above works typically assume
infinite resolution phase shifters used for analog precoders, al-
though itis very expensive to realize accurate phase shifters [25],
[26]. Usually, low resolution but less expensive phase shifters
are used in practice, resulting in spectral efficiency optimization
problems with discrete unit modulus constraints [6], [15], [17].
Since it is impossible to directly solve the discrete optimiza-
tion problem, the most straightforward way to design analog
precoder with finite resolution phase shifters is to address the
spectral efficiency problem assuming infinite resolution first and
then to quantize analog precoder using a finite set of available
phases [17]. However, this approach could be ineffective for the
case of very low resolution phase shifters. An alternative way to
approximately addressing the discrete spectral efficiency prob-
lem was proposed in [15], where the discrete unit modulus con-
straints are directly taken into consideration in the optimization
of analog precoder.

To the best of our knowledge, all the existing hybrid pre-
coding methods are heuristic and there is no work that tries to
directly solve the spectral efficiency optimization problems of
various MIMO systems under hybrid precoding setups from the
perspective of mathematical optimization. While some of the
existing hybrid precoding methods can achieve very high spec-
tral efficiency when the number of RF chains is strictly greater
than the number of symbols and even the same performance
as the fully-digital precoding method when the number of RF
chains is no less than twice the number of streams, there is in
some cases a significant gap between the achievable rate of the
existing methods and the theoretical maximum rate. Hence, an
interesting and fundamental question is: if the spectral efficiency
optimization problem is directly addressed from a perspective
of mathematical optimization, is it possible for the hybrid pre-
coding method to obtain a better system spectral efficiency and
how close it is to the fully-digital precoding performance when
the minimum number of RF chains are used. To answer this
fundamental question, we propose an iterative hybrid precoding
algorithm for multi-stream multi-user MIMO systems, aiming
to directly solve the spectral efficiency optimization problem.
Apparently, the main difficulty of the spectral efficiency op-
timization problem arises from the unit modulus constraints
and the coupling among the analog precoder and the digital
precoders. To address these difficulties, we apply penalty dual
decomposition (PDD) method [27], [28] to the spectral effi-
ciency optimization problem by first penalizing and dualizing
the coupling constraint into the objective, and then iteratively
solving the augmented Lagrangian problem using block suc-
cessive upper-bound minimization (BSUM) method [29] which
can naturally exploit the special structure of the unit modulus
constraints. The PDD method has guaranteed convergence to
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Fig. 1. The average convergence behavior of PDD with b = oc.

KKT solutions of the spectral efficiency optimization problem.
Moreover, it can be straightforwardly extended to the finite reso-
lution phase shifter case. Our simulation results show that, even
when both the transmitter and the receivers are equipped with
the fewest RF chains that are required to support multi-stream
transmission, hybrid precoding can still approach the perfor-
mance of fully-digital precoding in both the infinite resolution
phase shifter case and the finite resolution phase shifter case
with several bits quantization.

Notations: scalars are denoted by lower-case letters, bold-face
lower-case letters are used for vectors, and bold-face upper-
case letters for matrices. For a matrix A, AT, A7 AT, Tr(A)
and det(A) denote its transpose, conjugate transpose, pseudo-
inverse, trace, and determinant, respectively. I denotes an iden-
tity matrix whose dimension will be clear from the context. |z,
Re {x} and x* are the absolute value, real part and conjugate of
a complex scalar x, respectively, while ||«|| and || X|| denote the
Euclidean norm and the Frobenius norm of a complex vector @
and a complex matrix X, respectively. ||z || denotes the infinity
norm. For a matrix X, we use [X];; or X(4, j) to denoteiits (7, j)-
th entry. Particularly, we use X € M to denote that each entry
of X has a unit modulus constraint, i.e., |X;;| = 1. The dis-
tribution of a circularly symmetric complex Gaussian (CSCG)
random vector variable with mean p and covariance matrix C
is denoted by CN(u, C), and ‘~’ stands for ‘distributed as’.
C™>™ denotes the space of m x n complex matrices and R"
denotes the n-dimensional real vector space.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a narrow band single-cell mmWave downlink multi-
user multi-stream MIMO system, where a base station (BS)
equipped with NV antennas and Npp (< N) transmit RF chains
sends signals to K > 1 users, each equipped with M > 1 an-
tennas and Mpgrpr (< M) receive RF chains. Let d > 1 de-
note the number of streams intended for each receiver. For
successful symbol detection at each user, it is assumed that
d <min(Npp /K, Mpp). Furthermore, to reduce hardware
complexity, we consider a hybrid digital and analog precod-
ing architecture for both BS and users (see Fig. 1 of [15] for an
illustration of the hybrid precoding architecture).

In the multi-user hybrid precoding scheme, the BS first pro-
cesses the data streams digitally at the baseband using dig-
ital precoders, and then up-converts the digitally processed
signals to the carrier frequency through RF chains, followed
by an analog precoder which is implemented by analog phase
shifters. Let Vpr € CV*Ner denote the BS analog precoder,
and Vpp, € CV#r>d denote the digital precoder for user k’s
data stream s, € C%*!. Mathematically, the BS transmit signal
after hybrid precoding is expressed as

K
= Vgrr ZVBBkSk (1
k=1

and the received signal at user k£ is given by
yr = Hyx +ny (2)

where H;, denotes the channel between the BS and user £, and
n;. denotes the additive white Gaussian noise (AWGN) with
zero mean and variance o2,

At the receiver side, user k first processes the received sig-
nal by using an analog combiner Ugpp, € CM>*Mrr and then
down-converts the signals to the baseband through RF chains,
followed by a digital combiner Upp, € CM#r > to obtain the
final processed signal, given by

- H H
8, =Upp, Ugp, Y

H  11H
=Ugp, Urp, Hi VRr VBB, Sk

K
+Y UL, Ul Hi Ve Vg, s; + Ul g Ully ny.
J#k
3)
Assuming Gaussian signaling for the data streams each with
zero mean and unit variance, and that the noises n;,’s and the data
streams s;’s are independent of each other, the overall system
spectrum efficiency maximization problem can be formulated
as!
K
max k; log det (I +UR, HyVrr Vs,

-1
X V]{?IBk VIE’I,FHgIURFk T, >

K
s.t. Z IVrRrVga, H2 <P
k=1

[Ver(i,j)|=1,Vi=1,2,...,N,j=1,2,...  Ngrp,

[Upp, (i, 4)| =1,Vi=1,2,...,M,j =1,2,..., Mpp,Vk.
4)

I'The system rate expression does not include the digital combiners explicitly
since it is well-known [30] that the optimal digital combiners (i.e., MMSE
receivers) can achieve the maximum system rate. Moreover, for convenience,
we use V to denote the set of variables Vg, ’s and Vg p; similarly for U
and other variables later. In addition, it is worth mentioning that, although rank
constraints on precoders are meaningful, as in most previous works (e.g. [2],
[6]-[9], [15], [30], [37], and [38]) we don’t take them into consideration in
our current formulation for simplicity and the complicated hybrid precoding
problem with rank constraints on precoders is left open.
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where the first constraint is the BS power constraint with power
budget P; the last two sets of unit modulus constraints are due to
the fact that both the analog precoder and the analog combiners
are implemented using low-cost phase shifters; and the matrix

Tk £ UII_?IFL <O'QI + ZH]CVRFVBB‘/
ik

< Vi, Vi, Hf) Unr, )

is the so-called interference-plus-noise covariance matrix asso-
ciated with user k.

It was shown in [15] and [18] that, when the number of
transmit RF chains Ny are greater than or equal to twice the
total number of streams, i.e., Nrr > 2Kd, the performance of
the fully-digital precoding scheme can be perfectly achieved
by the hybrid precoding scheme. This implies that problem
(4) can be addressed by first solving the fully-digital precod-
ing problem and then constructing the hybrid precoders Vpp,
and Vi based on the fully-digital precoder. It is noted that,
the fully-digital precoding problem can be addressed using the
well-known WMMSE algorithm [30], [31] and the correspond-
ing hybrid precoders can be found in closed-form; see [15,
Prop. 2]. However, for the general case, the hybrid precoding
problem (4) is extremely hard to solve due to not only the cou-
pling of the digital/analog precoders but also the unit modulus
constraints. To the best of our knowledge, all the existing works
that deal with these difficulties are heuristic algorithms and thus
inevitably incurs performance loss. Although most of heuristic
algorithms for single-user MIMO scenarios perform well, it is
still not known how close their performance is to the optimal
one. Hence, it is important to devise an algorithm that can solve
problem (4) with some theoretical guarantees (e.g., achieve at
least stationary solutions to problem (4)). In this paper, we pro-
pose using penalty dual decomposition method [28] to address
problem (4). Before proceeding to solving problem (4), let us
first give a brief introduction to the PDD method in what follows.

III. A BRIEF INTRODUCTION TO PDD METHOD

The PDD method is a general algorithmic framework that
can be applied to the minimization of a nonconvex nonsmooth
function subject to nonconvex coupling constraints. Consider-
ing that problem (4) has a differentiable objective function, we
are here only concern about the differentiable case for ease of
understanding of the PDD framework.

Consider the following problem

(P)  min f(x)

s.t.h(z) =0,
zeX. (6)
where f(x) is a scalar continuously differentiable function and
h(zx) € RP*! is a vector of p continuously differentiable func-
tions; the feasible set X is the Cartesian product of n closed

sets: X 2 X x Xy x ... x X, withX; 2 {z; | gi(z;) <0} C
R™i and )", m; = m, and accordingly the optimization vari-

TABLE I
ALGORITHM 1: PDD METHOD FOR PROBLEM (6)

0. initialize °, oo > 0, Ag, andset 0 < c < 1, k=1
1. repeat

2 x# = BSUM(P,, A, L, 2", er,)
3 if [[h(2)[lco <

4 Apt1 = Ap + ih(mk’)

5. Ok+1 = Qk

6 else

7 Akl = A

8 Ok+1 = COK

9. end
10. k=k+1
11. until some termination criterion is met

able x € R™ can be decomposed as ¢ = (x1, T2, ..
T, ek, i=1,2,..
tiable functions.

If no coupling constraints h(x) = 0 exist, the classical block
coordination descent (BCD)-type algorithms [32] can be ap-
plied to decompose problem (P) into a sequence of small-
scale problems. This observation motivates us to dualize the
difficult coupling constraints with appropriate penalty, and use
coordinate-decomposition to perform fast computation, hence
the name penalty dual decomposition method. Specifically,
the PDD method applied to problem (P) is a double-loop it-
erative algorithm. It employs inner iterations to solve to some
accuracy anonconvex augmented Lagrangian problem via an in-
exact or exact block coordinate descent method, while updating
dual variables and a penalty parameter in outer iterations.

The PDD method is summarized in Table I, where the oracle
‘BSUM(P,, 4, , L1, 2", )’ means that, starting from z¥ !,
the BSUM algorithm [29] or its variant randomized BSUM
proposed in [28] for nonconvex constraint cases is invoked to
iteratively solve problem (P,, , ), given below

., &y, ) with
.,m; gi(x;) € RY is a vector of differen-

(Pyy 2,) min {ck (@) 2 f(a)

x; €X;
1
“AhG@)+ @I} o
Ok

where Ly (x) is the augmented Lagrange function with dual
variable A;, and penalty parameter g;,. Further, the BSUM al-
gorithm utilizes a locally tight upper bound of £ (x), denoted
as ﬁk, and it terminates when certain solution accuracy e is
reached. A basic implementation of the BSUM oracle is pre-
sented in Appendix A. Note that the detailed implementation
and the convergence theory of the BSUM algorithm have been
elaborated in [29]. Hence, although the BSUM oracle is the
heart of the PDD method, we here omit its details for brevity
but we will elaborate the BSUM algorithm when it is applied to
the hybrid precoding subproblems later.

It is worth noting that, when the penalty parameter g; in
(7) is sufficiently small, the term ||k (z)||*> or ||h(x)||~ will be
driven to zero after solving problem (7). That is, in this case,
solving problem (7) yields a solution to problem (P) satisfy-
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ing the constraint ||h(x)|~ = 0. However, we have generally
[[h(x)|lc # O during iterations. To measure the violation of
the constraint h(z) = 0, we refer to the value of ||h(x)|/~ as
constraint violation.

Define g(xz) £ (gi(x;));. Then we have the following theory
regarding the convergence the PDD method, which is a direct
result of [28, Th. 3.1].

Corollary 3.1: Let {z" "} be the sequence generated
by Algorithm 1 for problem (P), where v* = (vF); de-
notes the Lagrange multipliers associated with the constraints
gi(x;) <0,Vi. The stop criterion for the BSUM algorithm in-
volved in Algorithm 1 is

”vmﬁk(mk) + Vg(mk)TVkHoo S €k, vk (8)

with €, — 0 as k — oo. Suppose that * is a limit point of
the sequence {x"} and Robinson’s condition holds for problem
(P) at *. Then x* is a KKT point of problem (P), i.e., it
satisfies the KKT condition of problem (P).

A general proof of this theorem can be found in [28]. Note
that Robinson’s condition is a constraint qualification condition
which is often used to characterize the first order optimality
condition of nonconvex problems [33]-[37]. For the problem
at hand, it is equivalent to the commonly used Mangasarian-
Fromovitz constraint qualification (MFCQ) condition. Further,
a simple way to set 7, is to make it explicitly related to the
constraint violation of the last iteration or the current minimum
constraint violation. For example, we set 7, = 0.9]|h(z*71)|
in our simulations later. Furthermore, it is reasonable to termi-
nate the BSUM algorithm based on the progress of the objective
value Ly, (z"), i.e., % < €. Here, the superscript
‘r’ denotes the BSUM iterations. In addition, since the penalty
term ||h(x)||~ vanishes eventually, a practical choice of the
termination condition for the PDD method is || h(z")||. < €o.
Here, €¢p is some prescribed small constant, e.g., g = le — 6.
See more details in [28].

IV. PDD METHOD FOR HYBRID PRECODING

This section proposes a PDD-based hybrid precoding method
for spectral efficiency optimization. To tackle the difficulty aris-
ing from the rate function, i.e., the log det(-) function, we apply
the PDD method to an equivalent problem of (4) instead of
directly to (4).

A. Equivalent Formulations of (4)

Let us first rewrite problem (4) in the form of (P). To make
the power constraint easy to handle and remove the coupling
of Vrr and Vpp, later through penalty [cf. eq. (13)], we
introduce an auxiliary variable X, such X, = VppVpp, with
the definition of

TkéUng J2I+ZHkaXjHHf Ugp,. 9
ik

Then we can recast problem (4) as

K
g ;1 logdet (I+ Uf, X, X HyUpp, ;1)

K
sty IXkl? < P,
k=1

X, =VprVpp, Vk=12 ... K,
[Vep(i,j)|=1,Vi=1,2,...,N,j =1,2,..
|Ugp, (i,§) = 1,Vi=1,2,... . M,j =1,2,..

. 7NRFa
s Mpp,VEk.
(10)

Furthermore, to address the difficulty arising from the log det(-)
function, based on the theory of the well-known WMMSE
method [30], we write (10) in an equivalent WMMSE form,
which is shown in Proposition 4.1 with the definition of mean-
square-error (MSE) matrix

Er(U,X) £ (I-Ujp Ujfp, Hy X)) (I - Uz Ui pH X
+ UgBk Y, Upp, . (11)

Proposition 4.1: Problem (10) is equivalent to

Z (log det(W},) — Tr(WLE, (U, X)) + d)

max
U, V,W X

K
sty |Xi? <P,
k=1

Xy =VrrVpp,, Yk,
|Vrr(i,j)] = 1,Vi,j,

|Urr, (i,5)| = 1,4, j, k. (12)

Moreover, if {U,V, W, X} is a KKT point of problem (12),
{U,V, X} is a KKT point of problem (10), and further {U, V'}
is a KKT point of problem (4).

Proof: The proposition can be proven by following [30,
Th. 3] and [38, Lemma 4.1]. We omit the proof for brevity. W

Problem (12) is now in the form of problem (P) is more
tractable than problem (10) because the optimization with re-
spect to Wy, ’s is easy (see (17) below). Moreover, according to
the result of Proposition 4.1, it is known that, the KKT solu-
tions of problem (10) can be obtained by solving problem (12).
Hence, in the following we solve problem (12) by using the
PDD method [27].

B. PDD Method for (12)

Now we turn our attention to solving problem (12). It is
readily known that the key to the PDD method is the inner iter-
ations for solving augmented Lagrangian problems. Hence, our
main efforts are devoted to developing BSUM/BCD algorithm
for the augmented Lagrangian problem associated with (12).
Specifically, by introducing dual variables Y, s for the coupling
constraints X, = VppVpp, ., k=1,2,..., K, we define the



460 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 3, JUNE 2018

augmented Lagrangian problem of (12) as follows

K
max

UV WX (log det(Wk) — TI‘(WkEk (U, X)) + d)

k=1

K
1
- % Xy = Ve Vs, + oYl
k=1

K
st Xkl < P,
k=1

\Vrr(i,j)| = 1,4, j,

|URFA' (Zvj)‘ = LVivjak' (13)

It is seen that the constraints of the above problem are separable.
Hence, we use BCD-type algorithm to address (13) with the
block variables {Upp, W}, Vg, Ugrpr, Vip, and X, ie.,
each time we optimize one block among them while fixing the
others. This leads to the following six kinds of subproblems in
each BCD iteration.

1) The Subproblem w.rt. Upp, : The variable Ugp, is up-
dated by minimizing the term Tr(WE; (U, X)), i.e., solving

min Tr(W;,Uj, Ulip, Ay Ugr, Ugs, )

BB,

—2Re {Tx(W, U5, Ul , Hy X))} (14)

where
K
A 20T+ Z H, X, X H].

i=1

s)

Since each matrix Wy, is positive definite, the optimal solution
Upp, to problem (14) takes the form

Upp, = (Ul AyUgp ) (U, H,X,).  (16)

The reason why we use pseudo-inverse here is that the matrix
Ug £, Ak Urp, may be rank-deficient during iterations.

2) The Subproblem w.r.t. Wy.: Consequently, given the op-
timal Upp, in (16), the optimal W), can be expressed as

W, = arg min log det(W}) — Tr(WE; (U, X))
W
=Ey (Ua X)71

— (1-Ul, (Uf, Hy X)) . (17)

where the last equality is obtained by plugging (16) into
E. (U, X). Moreover, it can be verified that the bracketed
matrix in the last equality is positive definite and so is the
matrix Wy.

3) The Subproblem w.rt. Vpp,: The variable Vpp, ap-
pears only in the summand of the second term of the objective
of (13), i.e, || Xy — VrrVpp, +pYi H2 Thus, the subprob-
lem with respect to Vg, is given by

miny,, [|[VrrVes, — Z|

(18)

where Zj £ X, + pYr. Solving the above unconstrained
quadratic optimization problem, we obtain the optimal Vg,

as follows

Vg, = (Vrr)'Z. (19)

4) The Subproblem w.rt. X: The variables X;,’s appear in
both the first and the second terms of the objective of (13). Thus,
the subproblem with respect to X is given by

K
min ]; Tr (WE, (U, X))

K
1 2
+ ]; % X + pYr — VerrVeg,|

K
st ) IXel* < P, 0)
k=1
For notational convenience, we define
3 1
A, 2 7; (HyH Urr, Ups, W;Ug Uy, Hj) gl
& prH 1/1
B, = Hy; Urp, Upp, Wi + B ;VRF;. Vg, — Y, ).

Then, with some appropriate rearrange, problem (20) can be
equivalently written as

K
rrgn]; (Tr(XkHApXk) — 2%e {Tr(XkHBp,k)})

K
sty Xp? <P
k=1

21

Further, by introducing a Lagrange multiplier z > 0 to the power
constraint, we can express the optimal X}, as

X = (Ap 4+ /LI)71 BI’-,k 22)

where the optimal multiplier x4 can be easily found by using
Bisection method such that

K
ST (BE, (A, + 1) P By ) = P,
k=1

equivalently,

where by, ; = [Upo‘kBg{k Uff]77 U, is a unitary matrix con-
sisting of the eigenvectors of A, and a;’s are the correspond-
ing eigenvalues, i.e., U,diag {a1,as,...,an} Uf is the eigen-
value decomposition of A ,.

5) The Subproblem w.r.t. Vpp: The variable Vpp only ap-
pears in the summand of the second term of the objective of
(13). Thus, the subproblem with respect to V is given by

K
min Z IXi = VrrVEp, +pYi|
k=1

2
ViepeM ( 3)
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TABLE II
ALGORITHM 2: BCD-TYPE ALGORITHM FOR PROBLEM (13)

o

initialize Vrr, VBB, , UrF,, Upp, , Yk, such the constraints
and set X = VRFVBBk, Vk

repeat
update Upp, ’s according to (16)
update W’s according to (17)
update V pr by solving (24) using Algorithm 4
update URrp, ’s by solving (26) using Algorithm 4
update Vg, ’s according to (19)
update X ’s according to (22) using Bisection method

® NN kR L=

until some termination criterion is met

By appropriate rearrange, the above problem can be equivalently
formulated as follows

min Tr(V{VrrCy,,) — 2Re {Tr(Vi By, )} (24)

VierpeM

where CVRF £ ZS’:IVBBngBk s BVRF = Zf:l (Xk + ka)
v p, - Since the unit modulus constraints are separable, we
can use one-iteration BCD-type algorithm to recursively solve
problem (24). See the details in Appendix B.

6) The Subproblemw.r.t. Ugp, : The variable Uy, appears
only in the term E; (U, X). Thus, the subproblem with respect
to Ugp, is given by

min  Tr(W;E; (U, X))

URFk em

(25)

By appropriate rearrange, the above problem can be equivalently
formulated as follows
min Tr (Ung_ A, Ugrp, Cy, v )

URF}; em

— 2Re {Te(Ufls, B, )} (26)

where A}, is defined in (15), Cyy,, v £ Upp Wi UgBk s BURFk
£ HkaWkUg B, - Again, we can use one-iteration BCD-
type algorithm to address problem (26). See the details in
Appendix B.

The BCD-type algorithm for (13) is summarized in Table II.
Note that, all updates can be implemented in parallel for dif-
ferent users. For instance, once Upgp, ’s and X;’s are given,
each Upp, can be updated independently. By using parallel
implementation, the proposed BCD-type algorithm is scalable
to the number of users. In particular, when N >> M, it can
be shown that the complexity of Algorithm 2 is dominated by
Step 7, which is O(N?KI,). Here, I, denotes the maximum
number of iterations required by Algorithm 2.

In each iteration of the PDD method, after running
Algorithm 2, we update the dual variable Y} or the penalty
parameter p according to the constraint violation condition
maxy, || Xy — Vrr Vs, |l < mi (see Step 3 in Table I). That
is, if the constraint violation condition is satisfied, we update
the dual variables Y}’s according to Y «— Y + %(Xk —
VirVgs, ), Vk; otherwise, we increase the penalty parame-
ter by updating p = cp where 0 < ¢ < 1. The PDD method is
terminated when the feasibility of the penalized constraints (i.e.,

X% = Vrr Vg, ,VEk) is approximately achieved; see the dis-
cussion in the end of Section III. In addition, it can be shown?
that the MFCQ condition is satisfied for problem (12) at any
feasible solution ({Dx, },Dv,,,Du,, ). Hence, we can con-
clude that the PDD method converges to the set of KKT solutions
of problem (4) according to the results of Proposition 4.1 and
Corollary 3.1.

V. MATRIX-APPROXIMATION-BASED HYBRID
PRECODING METHOD

The PDD method requires running Algorithm 2 repeatedly. In
this section, we provide a lightweight solution based on matrix
approximation (MAP).

The intuition behind MAP is that [6], the performance
achieved by hybrid precoding is upper bounded by the one
achieved by the fully-digital precoding. Hence, if the optimal
fully-digital precoder/decoder can be approximated well using
hybrid precoder/decoder, we can obtain a good spectral effi-
ciency performance that is close to that of the fully-digital pre-
coding. Mathematically, given the optimal fully-digital precoder
Vopt, » Vk, MAP for precoder design 3 is to find a structured ma-
trix Vi, = VR Vpp, to approximate V1, Vk, i.e., solving
the following matrix approximation problem

min  ||Vopr — VerVes|?
v min [ Vopr = VarVas|
s.t.Vgpp € M (27)

where Vapt £ Woptl Vopt2 cee VoptK]’ VBB £ [VBBlvBBZ
... Vpp,]and Vip € M means that each entry of Vz has
unit modulus. Note that, for tractability, we here have neglected
the coupling power constraint which will be taken into consid-
eration in the end by scaling Vg, ’s to satisfy the power con-
straint. However, even after removing this difficulty, the problem
is still difficult to solve due to the unit modulus constraint.

The quadratic nature of the objective function motivates us to
use BCD-type algorithm to address problem (27). Specifically,
we divide the variable (Vrp, Vpp) into Ngpd+ 1 blocks,
ie,Vpp, Vip(i,j),i1=1,2,...,Npp,j=1,2,...,d, and
successively update each block by solving (27) for the selected
block while fixing the others. Clearly, given Vyr, Vpp can be
updated in closed-form: Vpp = VE r Vopt . Further, according
to Appendix B, each entry of Vg, Vr (4, j), can be also up-
dated in closed-form with the other variables fixed. Note that the
proposed algorithm for problem (27) differs significantly from
the alternating optimization method proposed in [7], where the
analog precoder Vyr is updated as a whole by using mani-
fold optimization (MO) method [39]. Since the MO method is a
gradient-descent-like iterative algorithm, our algorithm is more
efficient than the alternating optimization method in [7] by us-
ing closed-form update of V . This will be verified later using
numerical examples (see Fig. 3).

2The MFCQ for this problem is equivalent to verify that 1) the
equality constraint gradients are linearly independent, and 2) there exists
({ka }7DV[?F 7DURF ) suchthathk — VRFDURF —DgrpUgp =
0, Vk and Zle Tr(X7Dx, ) < 0. Note that both are easy to be verified.
3The decoder can be designed in a similar way.
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To summarize, the MAP method is a two-phase hybrid pre-
coding method. In the first phase, we obtain the fully-digital
precoder/decoder using the well-known WMMSE algorithm.
In the second phase, we run BCD method to find the hybrid
precoders/decoders. Assuming the number of transmit anten-
nas N is much larger than the number of user receive antennas
M, it can be shown that the complexity of the first phase is
O(N3KLymmse) where Iy mse denotes the number of itera-
tions required by the WMMSE method. Furthermore, as shown
in Appendix B, updating all the entries of Vyp once requires
complexity of O(N?N3 ;). Similarly, updating Upp,’s re-
quires complexity of O(KM?M}?,.). Hence, the complexity
of the second phase is O(Ip.q(N*N3 + KM?M} ) where
Iy.q denotes the maximum number of iterations required for
updating precoders/decoders. Therefore, the total complexity of
the MAP method is cubic in the number of BS antennas. It is
lower than that of the PDD method because the latter requires re-
peatedly running Algorithm 2 which also has cubic complexity
in the number of BS antennas.

VI. HYBRID PRECODING WITH FINITE
RESOLUTION PHASE SHIFTERS

So far, we have assumed that arbitrary resolution phase
shifters are available for realizing analog precoders. However,
the hardware for accurate phase control could be very expen-
sive. Furthermore, infinite resolution phase shifter is not always
practical for large-array systems. Hence, we need to consider
hybrid precoding with finite resolution phase shifters, i.e., the
candidate phases for each phase shifter is finite.

Let F denote the set of finite phases, with | F| = 2°, where
b is the number of bits used to quantize the phases. The cor-
responding spectral efficiency optimization problem turns out
to be

K
I\T}%(kz;logdet (I + UgBk_ Ung_ H,Vir Vs,

X Vg, VipH{ Ugp, Upp, T/?1>

K

s.t. Z HVRFVBBA. ||2 S P,
k=1

VRF(ivj) € f,v@,j

URF(i,j)GF,V’I:,j,k (28)

Due to the combinatorial nature of the phases available for
the phase shifters, problem (28) generally requires exhaustive
search which however is computationally prohibitive in practice.
A heuristic way to deal with the constraints of finite phases is to
first addressing the spectral efficiency optimization problem un-
der the assumption of infinite resolution phase and then quantize
each component of the analog precoders to the nearest point in
the set F. This heuristic method could work effectively when the
number of available phases is large (i.e., relatively high resolu-
tion phase). However, for the low resolution case (e.g., b < 4),
the effect of phase quantization could be significant. Hence,
it is important to devise algorithms that can incorporate the

constraints of finite resolution phases directly into the optimiza-
tion procedure.

Fortunately, our PDD algorithm* proposed above can be eas-
ily adapted to the finite resolution phase case. The modification
lies only in Step 4 of Algorithm 4, i.e., modify Step 4 as follows
Re {0"X(i,7)}

T =arg min
ij)€

X(i.j)eF
The above problem can be globally solved via one-dimensional
exhaustive search. As aresult, the modified Algorithm 4 requires
complexity of O(Izmn(mn + 2°)).

Finally, we make a remark on iterations of our algorithms. All
the algorithms proposed for both the infinite resolution phase
case and the finite resolution phase case are iterative algorithms.
While the algorithms requires a number of iterations for achiev-
ing convergence, we can terminate them early at the price of
system spectral efficiency performance. It is worth mentioning
that, when the algorithms are terminated early, we need to scale
Vi, ’s such the BS power constraint and eventually obtain a
feasible solution to the spectral efficiency optimization problem.

VII. SIMULATION RESULTS

This section presents simulation results to illustrate the per-
formance of the proposed hybrid precoding algorithms. Since
we focus on hybrid precoding for multi-stream multi-user
MIMO cases without exploiting the angle information of chan-
nel knowledge, the simulation results for SU-MIMO, multi-user
MISO, and single-stream multi-user MIMO cases are omitted in
this paper and reported in [41]. The recent work [18] has shown
that the regularized block diagonalization (RBD)-based hybrid
precoding method performs better than ZF-based, BD-based,
and MMSE-based hybrid precoding methods for multi-user
MIMO cases. Hence, in the simulations, we compare our hy-
brid precoding methods with the RBD method in addition to the
benchmark performance—the fully digital precoding schemes
in terms of the achieved spectral efficiency.’

Asin[15], we use a geometric channel model of L = 15 paths
with uniform linear array antenna configurations and isotropic
scattering.® Specifically, the channel matrix between the BS and
each user is expressed as

[NM & ‘
H, = Tzaﬁar@i)at(@i)’fﬁk. (29)
(=1

“It is worthy mentioning that, as  is a discrete set, the convergence result
in Corollary 3.1 does not apply to the finite resolution case. While numerical
results still show good convergence performance for the PDD method in the finite
resolution case, the convergence issue remains open. However, our method can
serve as a reference point for studying the performance of hybrid precoding
architecture with finite resolution phase shifters in comparison with fully digital
precoding.

SThe most costly step of the RBD method is the SVD operations performed
on the user channels (each with size of N' x M) and the analog precoder (with
size of N x Npp). Hence, the RBD method has quadratic complexity in the
number of BS antennas, which is lower than the cubic complexity of the PDD
method.

%In our simulations, we consider only the isotropic scattering case, i.e., the
azimuth angles follow uniform distribution over the interval [0, 27 ). However, it
is worth mentioning that our main observations and conclusions on the proposed
methods hold also for the non-isotropic scattering case.
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where o} ~ CN(0,1) is the complex gain of the (-th path,
a, (¢,) and a; (i}, are respectively the normalized receive and
transmit array response vector at the azimuth angle of (;Si €
[0,27) and ¢}, € [0, 27), which are given by

CL(G) = — |1, ejﬂsin(&)’ e ej(N71)71'si'r1(t9):|T (30)

In our simulations, it is assumed that the base station is
equipped with N = 64 antennas and each user with M = 16
antennas. Unless otherwise specified, we set Npr = 8 and
Mpr = 4. For the PDD method, the initial penalty parame-
ter p is set to 100/N and the control parameter ¢ is set to 0.8.
Furthermore, we set 79 = ¢y = le — 3 and ¢; = ce_1. More-
over, in practical implementation, we set the maximum number
of inner BSUM/BCD iterations of the PDD method’ to 30. The
simulation results versus SNR are averaged over 100 channel
realizations, where SNR is defined by SN R = 101log; ().

A. Convergence Performance of the PDD Method

In the first set of simulations, we examine the convergence
performance of the proposed methods. To obtain a benchmark
performance, we set K = d = 2 so that we have Npp = 2Kd
and Mpr = 2d. For this setup, it is known that the fully-digital
precoding performance can be perfectly achieved by the hybrid
precoding in the infinite resolution phase shifter case [15].

First, we examine the convergence performance of the PDD
method. For 100 randomly generated multi-user channels, we
run the PDD method for each channel with different random ini-
tialization. Note that, different problem instances yield different
spectral efficiency value. To remove this effect and also clearly
demonstrate how much percentage of fully-digital precoding
performance the hybrid precoding can achieve, we normalize
the objective value of problem (12) by the spectral efficiency
value of the fully-digital precoding, and plot them in the left sub-
figure of Figs. 1 and 2, where the average convergence behavior
of the PDD method is shown for the case of infinite resolution
phase shifters (denoted by b = oo for short) and finite resolution
phase shifters with b = 1, respectively. In terms of the objective
value and the constraint violation, it is observed from the plots
that the PDD method can converge well within 50 iterations for
both cases. Furthermore, it is seen that the hybrid precoding can
achieve the same performance as the fully-digital precoding in
the example of infinite resolution phase shifter case, implying
its excellent convergence performance in achieving possibly op-
timal solutions. While for the finite resolution phase shifter case
with b = 1, the hybrid precoding can achieve about 73.7 percent
of the fully-digital precoding performance in this example.

Second, we examine the convergence performance of the
MAP method as compared to the alternating optimization
method in [7]. Since the two methods have the same way in
the update of Vg but totally different ways in the update of
Vi r, we here focus on the comparison of the efficiency of the

7When the constraint violation is satisfactory, the maximum iteration strategy
can be used to avoid the possibly slow convergence of the BSUM/BCD algorithm
due to large penalty (i.e., 1/p is large). From our numerical experience, this
strategy works effectively without sacrificing any performance.
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update of Vi and thus first compare the convergence per-
formance of the BCD method and the MO method when they
are applied to problem (27) with fixed Vpp. Fig. 3 illustrates
an average convergence behavior of the two methods over ten
problem instances, where ‘Approximation error’ denotes the ob-
jective value of problem (27). It is seen that the BCD method
requires significantly less iterations (generally serveral itera-
tions) for convergence than the MO method, while both can
achieve the same convergence result. Furthermore, Fig. 4 shows
that, with different initializations, the MAP method can always
achieve global optimality of problem (27). This will be further
verified by the simulation results later.

B. Hybrid Precoding With Infinite Resolution Phase Shiters

In the second set of simulations, we demonstrate the spec-
tral efficiency performance of the proposed hybrid precoding
methods as compared to the benchmark fully-digital precod-
ing performance and the existing multi-user hybrid precoding
method—RBD [18] in the infinite resolution phase shifter case.
Fig. 5 shows the spectral efficiency performance of various
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Fig.4. Tenexamples of convergence behavior of BCD (for (27)) with random
initialization. Each curve corresponds to an example of convergence.
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Fig. 5. Spectral efficiency achieved by different methods versus SNR when
NRF = S,I\J’RF =4,and K = d=2.

precoding methods for the case of K = d = 2. In this case, it
is known that the fully-digital precoding performance is achiev-
able by the hybrid precoding. Fig. 5 shows that both the PDD
method and the MAP method can achieve the same performance
as the fully-digital precoding. This again verifies the excellent
convergence performance of the PDD method and the MAP
method (possibly achieve global optimality in this case). More-
over, it is observed from Fig. 5 that both the PDD method and
the MAP method has better performance than the RBD method
with about 1 dB gain.

Fig. 6 shows the spectral efficiency performance of various
hybrid precoding methods for the cases when Npp = Kd <
2K d. It is seen that, even for the case when Npp < 2Kd, the
PDD method can achieve a performance that is extremely close
to the FD precoding performance. Furthermore, one can see that,
unlike the case of Npp > 2K d (where the MAP method has
the same performance as the PDD method), the PDD method
has a better performance than the MAP method in the cases of
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Fig. 6. Spectral efficiency achieved by different methods versus SNR when
K =4andd = 2.

Ngrr < 2Kd. Moreover, it is observed again that both the PDD
method and the MAP method outperform the RBD method, and
the performance gaps increase with the SNR. The reason for this
observation is explained as follows. Recall that both the MAP
method and the RBD method first neglects the power constraint
and then scale the digital precoder V zp,’s to satisfy the power
constraint. Such a heuristic scaling approach inevitably incurs
performance degradation especially when P is large (i.e., the
SNR is large). Particularly, when SN R = 6, the PDD method
improves the spectral efficiency of the MAP method and the
RBD method by 5 bps/Hz and 8 bps/Hz, respectively.

C. Hybrid Precoding With Finite Resolution Phase Shiters

In the third set of simulations, we demonstrate the spectral
efficiency performance achieved by the PDD-based hybrid pre-
coding method in the finite resolution phase shifter case. Since
it is not possible to get good matrix approximations of the fully-
digital precoder/decoders in this case, the MAP method does
not work well and thus its simulation result is not shown here.
Furthermore, since the RBD method was proposed only for
the infinite resolution phase shifter case in [18], we adapt it to
the finite resolution phase shifter case by quantizing the analog
precoder/decoders® followed by the design of the digital pre-
coder/decorders. For convenience, we still refer to the modified
RBD method in the finite resolution phase shifter case as ‘RBD’
in the plot. In addition, since the hybrid precoding problem has
much more local maxima in the finite resolution phase shifter
case than in the infinite resolution phase shifter case, the PDD
method could get easily trapped in some bad point and thus may
result in bad performance. To deal with this issue, we run 20
iterations of the PDD method assuming infinite resolution phase
shifters to get a good initialization, followed by the PDD method
of the finite resolution phase shifter case.’ Such a strategy makes

8Specifically, we quantize each element of the analog precoder/decoder to
the nearest point in the set F.

9Note that the penalty parameter p needs not to be re-initialized. Thus, it is
in essence running PDD once.
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Fig. 8.  Spectral efficiency achieved by PDD versus SNR for different quanti-
zation levels when K = 4 and d = 2.

the PDD method work very well in the finite resolution phase
shifter case from our numerical experience.

Fig. 7 illustrates the spectral efficiency of the PDD method
and the modified RBD method when three bits quantization is
used, i.e., b = 3. It is observed that the PDD method can still
achieve most of the spectral efficiency of the FD precoding in
this example of finite resolution phase shifter case. Moreover,
one can see again that the PDD method outperforms the RBD
method and their gap increases with the SNR. For example, the
gap between the PDD method and the modified RBD method
is about 5 bps/Hz when SN R = 6 dB, while it is much smaller
(almost negligible) when SNR = —10 dB.

Fig. 8 illustrates the spectral efficiency of the PDD method
versus SNR when different quantization levels are used. It is
observed that, the spectral efficiency of the PDD method im-
proves when more bits are used in the phase quantization, and
the improvement shrinks as the quantization level increases. Par-
ticularly, one can see that three bits quantization is enough for

Average spectral efficiency (bps/Hz)

SNR (dB)

Fig. 9. Spectral efficiency achieved by PDD versus SNR for different Np
when Mpp =4, K =3,d=2and b = 1.

achieving about 95% of the fully-digital precoding performance
in this example.

Fig. 9 shows the spectral efficiency of the PDD method when
different number of RF chains are used with the lowest resolu-
tion phase shifters, i.e., b = 1. It is seen that the performance
gap between the PDD-based hybrid precoding and the FD pre-
coding can be reduced by increasing the number of RF chains.
Therefore, the number of RF chains can be used to trade off the
resolution of the phase shifters in hybrid precoding design.

Lastly, we consider the cases when the numbers of trans-
mit/receive RF chains fullfil the minimum requirement, i.e.,
Nip = Kd and Mppr = d, and examine how much percent-
age of the FD precoding performance the hybrid precoding can
achieve. In the simulations, we test five system setups with dif-
ferent combination of K and d which satisfies Ngpp = Kd and
Mprpr = d. For each setup, we run the PDD method for 100
randomly generated channels under three quantization levels
b= 00, b=4, and b = 2. The minimum, average, maximum
spectral efficiency of the PDD method relative to the spectral
efficiency of the FD precoding are respectively listed in Table I
for SN R = 0 dB. It can be observed that, in the infinite resolu-
tion phase shifter case, the hybrid precoding can achieve more
than 95 percentage of the FD precoding performance, implying
the excellent efficiency of the hybrid precoding while enjoying
the benefit of significantly reducing the number of RF chains in
Massive MIMO systems. Furthermore, even with low resolution
phase shifters, the hybrid precoding can still achieve most per-
centage of the FD precoding performance, e.g., it is on average
about 95% when b = 4 and about 80% when b = 2.

VIII. CONCLUSION

By applying penalty dual decomposition method, this pa-
per has proposed an iterative algorithm to address the difficult
hybrid precoding problem for mmWave multi-user MIMO sys-
tems. Different from the existing hybrid precoding algorithms
which are all heuristic, the proposed algorithm has guaran-
teed convergence to KKT solutions of the hybrid precoding
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TABLE III
THE ACHIEVABLE RELATIVE PERFORMANCE OF HYBRID PRECODING AS
COMPARED TO FULLY-DIGITAL PRECODING (Npp = Kd, Mpp = d)

790
_ (22) (42 24 (23 (3.2

min. 94.35% 94.74% 94.54% 95.00% 93.46%

b= 00 avg. 96.84% 96.86% 97.31% 97.12% 96.85%
max. 98.78% 98.10% 98.23% 99.19% 98.50%

min 92.10% 85.00% 91.20% 91.70% 92.67%

b=4 avg. 9521% 94.80% 94.57% 94.97% 95.10%
max. 97.30% 97.11% 96.64% 96.72% 97.02%

min 78.81% 74.19% 70.92% 71.63% 76.09%

b=2 avg. 84.11% 80.84% 77.83% 80.47% 82.06%
max. 88.73% 86.05% 82.76% 86.72% 87.24%

problem. Although the optimality of the proposed hybrid pre-
coding method is not proven, simulation results verify that the
proposed hybrid precoding method performs very well and its
achievable spectral efficiency is very close to the performance
of the fully-digital precoding, implying the capability of hybrid
precoding in achieving near-optimal spectral efficiency while
greatly reducing the number of RF chains. It is worth men-
tioning that, all the results are obtained under the assumption of
perfect channel state information. In the future, we will consider
hybrid precoding with imperfect channel state information.

APPENDIX A
A BASIC IMPLEMENTATION OF THE BSUM ORACLE

We outline the basic BSUM algorithm [29] in Table IV which
can be used to implement the oracle " = BSUM(P,, 4, , Ly,
x¥~1 ¢;.) in Step 2 of the PDD method. Here, Lr (yi; w) denotes
alocally tight upper bound of £ () w.r.t x; (i.e., the i-th block
of x) at the point w.

In the BSUM algorithm [29] applied to a minimization prob-
lem with multiple block variables, each time one block variable
is cyclicly picked to be optimized while fixing the others by
minimizing a locally tight upper bound of the objective. In
particular, when the upper bound is simply chosen as the objec-
tive function itself, the BSUM algorithm reduces to the BCD
method [32]. Hence, the former includes the latter as a special
case. On the other hand, note that the BSUM algorithm [29]
was proposed for convex constraint cases. When the problem
has separable nonconvex constraints, we need to resort to a ran-
domized BSUM algorithm proposed in [28] instead of BSUM
for theoretical convergence guarantee. For convenience, we sill
refer to it as BSUM algorithm, but keep in mind that the BCD
or BSUM algorithm used throughout this paper refers to ran-
domized BSUM algorithm in nonconvex constraint cases, where
each time one block variable is randomly picked to be optimized
while fixing the others.

APPENDIX B
QUADRATIC OPTIMIZATION WITH UNIT
MoODULUS CONSTRAINTS

This appendix provides an iterative algorithm to address the
following quadratic optimization problem with unit modulus

TABLE IV
ALGORITHM 3: BSUM ALGORITHM

o Input: xF—1

e output: zF

0. initialize y° = x*~1 and set j = 0

1. repeat

2 w =1y’

3 for each i € {1,...,n}

4 .Ag = argming, cx; Ek(yi;w)

5. set w; to be an arbitrary element in A{
6 end

7 Yyt =w

8 j=7+1

9. until some termination criterion is met with accuracy €y,
10. xk =yJ

TABLE V
ALGORITHM 4: BCD-TYPE ALGORITHM FOR PROBLEM (31)

0. set k=1and Q = AXC

1. repeat

2. for (i,7) € {1,2,...,m} x {1,2,...,n}

3. b= A(i,9)X(3,7)C(5, ) — Q(4,7) + B(3,7)
4, T = %

5. Q:Q-I—(x—x(l,]))A(,’L)C(],)

6. X(i,j) ==

7. end

8. k=k+1

9.

until some termination criterion is met

constraints:

min ¢(X) 2 Tr(X” AXC) — 2Re {Tr(X"B)}

€1V

where the matrices A € C™*™ and C € C"*" are positive
semidefinite and M denotes the set of unit modulus constraints,
ie., |X(4,5)| =1, Vi, j.

We use BCD-type algorithm to address problem (31) with
guaranteed convergence to stationary solutions [32], i.e., in each
step we update one entry of X while fixing the others. Without
loss of generality, let us consider the problem of minimizing
¢(X) with respect to X(4, ) subject to the unit modulus con-
straint | X (7, j)| = 1, i.e.,

min X 32

X (i.j)|=1 ) G2

It is easily known that, the function ¢(X) with respect to X (4, 5)

can be expressed as a quadratic function of X(i,j) in the

form of ¢(X(i, 7)) £ a|X(i,5)* — 2Re {b*X(i,5)} for some

real number a and some complex number b. Considering that
|X(%, )| = 1, problem (32) reduces to

max Re{b*X(:,5)}.

nax e {0X(i, )}

(33)

It follows that the optimal X(4, j) is equal to b/|b|. Hence, in
order to update X (i, j), we only need to know the value of b.
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In what follows, we show how the complex number b can be
easily obtained. First, we have [40]

03(X (i, 5)) (X,
00(X(:.1) = ~(aX(i,j) — b).
0X (27]) X (i,5)=X(i,j) ?

On the other hand, we have [40]

99(X)

1 -
—_— = -(AXC - B).
o0X* X—X 2( )

Combining the above equations, we obtain [AXC — BJ;; =
aX(i, j) — b. By expanding [AXC];; and checking the coeffi-

cient of X(i,7), we have aX (i, ) = A(i,i)X (i,

J)C(, ) 1t

follows that

b= A(i,i)X(i,5)C(j, j) — [AXC];; + B(i, ).

According to the above analysis, the entries of X can be
recursively updated. The corresponding algorithm for updating
X is summarized in Table V, where the recursion step 5 is due
to the fact that Q should be updated accordingly once X (%, j) is
updated (which is done in step 6). It is easily known that step 5
is the most costly step requiring complexity O(mn). Hence, it
can be shown that Algorithm 4 has complexity of O(I3m?n?)
where I3 denotes the total number of iterations required by
Algorithm 4.
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