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Abstract—In topic modeling, identifiability of the topics is an essential issue. Many topic modeling approaches have been developed
under the premise that each topic has a characteristic anchor word that only appears in that topic. The anchor-word assumption is
fragile in practice, because words and terms have multiple uses; yet it is commonly adopted because it enables identifiability
guarantees. Remedies in the literature include using three- or higher-order word co-occurence statistics to come up with tensor
factorization models, but such statistics need many more samples to obtain reliable estimates, and identifiability still hinges on
additional assumptions, such as consecutive words being persistently drawn from the same topic. In this work, we propose a new topic
identification criterion using second order statistics of the words. The criterion is theoretically guaranteed to identify the underlying
topics even when the anchor-word assumption is grossly violated. An algorithm based on alternating optimization, and an efficient
primal-dual algorithm are proposed to handle the resulting identification problem. The former exhibits high performance and is
completely parameter-free; the latter affords up to 200 times speedup relative to the former, but requires step-size tuning and a slight
sacrifice in accuracy. A variety of real text copora are employed to showcase the effectiveness of the approach, where the proposed
anchor-free method demonstrates substantial improvements compared to a number of anchor-word based approaches under various

evaluation metrics.

Index Terms—Topic modeling, identifiability, anchor free, sufficiently scattered, non-convex optimization, nonnegative matrix factorization

1 INTRODUCTION

OPIC modeling aims at discovering prominent topics

([distributions over] sets of words) from a collection of
documents. Considerable effort has been expended in the
data mining and machine learning communities to come up
with effective and efficient topic models and algorithms,
since this basic text analytics task has a wide variety of
applications in search engines, document categorization,
and news recommendation, to name a few.

In 2003, Blei et al. proposed a Latent Dirichlet Allocation
(LDA) model for topic mining [1], where the topics are mod-
eled as probability mass functions (PMFs) over a vocabulary
and each document is a mixture of the PMFs. Therefore, a
word-document text data corpus can be viewed as a matrix
factorization model. Under this model, posterior inference-
based methods and approximations were proposed [1], [2],
but identifiability issues—i.e., whether the matrix factors
are unique—were not considered. However, identifiability
is an essential issue when considering an estimation problem
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like topic modeling, since it guarantees that there is no arbi-
trary mixing of the topics which confounds interpretation.

In recent years, identifiable models, topic identification
criteria, and polynomial time solvable topic modeling
algorithms have drawn considerable attention [3], [4], [5],
[6], 171, [8], [9], [10]. Most of these approaches are essen-
tially based on the so-called separable nonnegative matrix
factorization (NMF) model [11]. The key assumption that is
relied upon is that every topic has a characteristic anchor
word that does not appear in the other topics. The anchor
word assumption is tantamount to the separability assump-
tion that is common in the context of NMF. Under the
anchor word assumption, the topic mining problem boils
down to a much more tractable problem—- i.e., anchor
word search. Two major classes of approaches have been
proposed. The first class finds the anchor words via linear
programing [4], [6]; some sparse optimization-based
variants were also proposed [12]. Another class is based
on greedy pursuit [5], [7], [9], [10], [13], where the algo-
rithms pick out one anchor word at a time and use a defla-
tion procedure to avoid finding repeated anchor words.
The former class has serious scalability issues, as it lifts the
number of variables to the square of the size of vocabulary
(or documents). The latter, although computationally very
efficient, usually suffers from error propagation, if at some
point one anchor word is incorrectly identified. Further-
more, since all the anchor word-based approaches essen-
tially convert topic identification to the problem of seeking
the vertices of a simplex, most of the above algorithms
require normalizing each data column (or row) by its /;
norm. However, applying normalization at the topic iden-
tification stage may destroy the good conditioning of the
data matrix and also has the risk of amplifying noise in
practice, so it is better to avoid it [7].
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Unlike many NMF-based methods that work directly
with the word-document data, the approach proposed by
Arora et al. works on the word-word correlation matrix [8],
[9]. This way, the topic information is kept in a relatively
small matrix, which offers good scalability when dealing
with a large corpus—the size of the correlation matrix
remains the same (if the vocabulary size does not change)
even when the number of documents grows large. In addi-
tion, using the correlation matrix is more noise-robust since
it automatically averages out zero-mean noise. On the other
hand, [8], [9] did not relax the anchor-word assumption
or the need for normalization, and did not explore the
symmetric structure of the correlation matrix—i.e., the algo-
rithms in [8], [9] are essentially the same asymmetric separa-
ble NMF algorithms as in [3], [5], [7].

The anchor-word assumption is reasonable in some
cases, but it can be violated in practice—e.g., when two co-
existing topics are closely related and many key words
overlap. Identifiable models without anchor words have
been considered in the literature, e.g., [14], [15], [16], [17]
make use of third or higher-order statistics of the data cor-
pus to formulate the topic modeling problem as a tensor fac-
torization problem. There are two major drawbacks with
this approach: i) third- or higher-order statistics require a
lot more samples for reliable estimation relative to their
lower-order counterparts (second-order word co-occur-
rence statistics); and ii) identifiability is guaranteed only
when the topics are uncorrelated—where a super-symmet-
ric parallel factor analysis (PARAFAC) model can be
obtained [14], [15]. Uncorrelatedness is a restrictive assump-
tion in practice [9]—e.g., ‘politics” and ‘economy’ are clearly
correlated. When the topics are correlated, the higher-order
model amounts to a Tucker model which requires further
assumptions for identifiability [16], [17].

Contributions. In this work, our interest lies in topic iden-
tification using second order statistics of words, i.e., the
word-word correlation matrix like in [8], [9], because of its
noise robustness. We propose an anchor-free identifiable
model and a practically implementable companion algo-
rithm. Our contributions are as follows:

First, we propose an anchor-free topic identification crite-
rion. The criterion aims at factoring the word-word correla-
tion matrix using a word-topic PMF matrix and a topic-
topic correlation matrix via minimizing the determinant of
the topic-topic correlation matrix. We show that under a so-
called sufficiently scattered condition, which is much milder
than the anchor-word assumption, the two matrices can be
uniquely identified by the proposed criterion. We empha-
size that the proposed approach does not need to resort to
higher-order statistics tensors to ensure topic identifiability.

Second, we propose a simple procedure for handling the
proposed criterion that only involves eigen-decomposition
of a large but sparse matrix and solving a determinant maxi-
mization problem that has only a small number of varia-
bles—therefore highly scalable and well-suited for topic
mining of very large corpora. We provide two different
approaches for dealing with the determinant maximization
problem: The first one is based on alternating optimiza-
tion—we ‘break down’ the optimization objective to subpro-
blems which are linear programs and solve them cyclically.
This way, there is no tuning parameter such as step size.
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We also propose another novel algorithm for expediting the
anchor-free topic mining procedure. The algorithm is based
on a penalty-dual splitting (PDS) procedure. Compared to
the simple alternating linear program approach, the PDS
algorithm needs more careful parameter (e.g., step size)
design and requires a more delicate variable update strat-
egy. On the other hand, PDS offers a 20~200 times speed-up
of the linear program-based algorithm with a slight sacrifice
in performance. We also show that the PDS algorithm is
guaranteed to converge to a stationary point of the corre-
sponding optimization problem. We carefully design a set
of experiments using three different text copora, namely,
the Reuters-21578, TDT2, and RCV1, to showcase the effec-
tiveness of the proposed approach.

A sneak peak of the performance of the proposed
approach (AnchorFree) is shown in Table 1, where we com-
pare the topics discovered by our algorithm with those dis-
covered by another anchor word based algorithm
(FastAnchor) [9] from a set of documents that consists of
five categories of articles in the TDT2 corpus; detailed
experiment settings can be found in Section 6. We see that
the topics given by AnchorFree show clear diversity: Lewin-
sky scandal, General Motors strike, Space Shuttle Columbia,
1997 NBA finals, and a school shooting in Jonesboro, Arkan-
sas. On the other hand, FastAnchor yields topics with signif-
icant overlap—see the first two topics. Lewinsky also shows
up in the fifth topic mined by FastAnchor, which is mainly
about the 1997 NBA finals. This showcases the clear advan-
tage of our proposed criterion in terms of giving more
meaningful and interpretable results, compared to anchor-
word based approaches.

Part of this work appears in NIPS 2016 [18]. This journal
version includes an additional algorithm that is based on
penalty-dual splitting, the convergence proof, detailed
proofs of identifiability results, and more experiments—
including more baselines for comparison.

2 BACKGROUND

In topic modeling, one of the most popular models is to treat
the documents as weighted combinations of a set of topics.
In other words, a document corpus can be approximately
represented as follows:

D~ CW, @)

where D(:,d) is a column vector representation of the dth
document over a set of words with size V, C(:, f) denotes
the fth topic defined as a probability mass function (PMF)
over the vocabulary, and W(f,d) denotes the “weight” of
topic f in document d. Here D(v,d) denotes a certain mea-
sure of word v in document d, e.g., the term-frequency (tf)
or term-frequency-inverse-document-frequency (tf-idf). The
well-known latent Dirichlet allocation (LDA) [1] adopts the
tf measure for D and interprets each document as a realiza-
tion of a multinomial distribution whose parameters are
generated from CW (:, d). Each column of C and W also rep-
resent multinomial distributions, but independently drawn
from Dirichlet distributions (with appropriate dimensions).
The tf-idf representation has also been popular in the litera-
ture, since it usually provides a D matrix with better condi-
tioning and more robustness to “stop words” (words that
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TABLE 1
Topics Discovered by FastAnchor (Left) and by the Proposed Algorithm (AnchorFree-Right)
FastAnchor AnchorFree
anchor
predicts slipping cleansing  strangled tenday
allegations poll columbia gm bulls lewinsky gm shuttle bulls jonesboro
lewinsky cnnusa shuttle motors jazz monica motors space jazz arkansas
clinton gallup space plants nba starr plants columbia nba school
lady allegations crew workers utah grand flint astronauts chicago shooting
white clinton astronauts ~ michigan finals white workers nasa game boys
hillary presidents nasa flint game jury michigan crew utah teacher
monica rating experiments  strikes chicago house auto experiments finals students
starr lewinsky mission auto jordan clinton plant rats jordan westside
house president stories plant series counsel strikes mission malone middle
husband approval fix strike malone intern gms nervous michael 1lyear
dissipate starr repair gms michael independent strike brain series fire
president white rats idled championship  president union aboard championship girls
intern monica unit production tonight investigation idled system karl mitchell
affair house aboard walkouts lakers affair assembly  weightlessness pippen shootings
infidelity hurting brain north win lewinskys  production earth basketball suspects
grand slipping system union karl relationship north mice win funerals
jury americans broken assembly lewinsky sexual shut animals night children
sexual public nervous talks games ken talks fish sixth killed
justice sexual cleansing shut basketball former autoworkers  neurological games 13year
obstruction affair dioxide striking night starrs walkouts seven title johnson

appear frequently in all documents, thus not very informa-
tive) [7], [19].

In topic mining, matrices C'and W are naturally nonneg-
ative, since they represent topic PMFs and topic weights
respectively. Therefore, (1) can be viewed as nonnegative
matrix factorization (NMF). References [19], [20], [21], [22],
[23] employ the following formulation

W) = i D - CwW|J?
(Cc,w) arg min o | CW|5,

and its regularized versions to handle the topic mining
problem. However, there are some drawbacks associated
with this formulation. An important one is that identifiabil-
ity of the topics cannot be guaranteed in general [11], [24].
In recent years, several approaches have been proposed to
provably identify the topic matrix C. One important class of
methods relies on the following so-called separability or
anchor-word assumption for identifiability of the topics:

Assumption 1 (Separability/Anchor-Word). There exists a
set of indices A = {v1,...,vp} such that C(A,:) is a diagonal
matrix.

In the context of topic modeling, separability means that
the probability of word v; appearing in topic f is positive
while the probabilities of appearing in other topics are zero.
The word vy is therefore called an anchor word for topic f.
Under the anchor-word assumption, the task of matrix fac-
torization boils down to finding the indices vy, ..., vp since
D(A,:) is a scaled version of W, then C can be estimated via
(constrained) least squares. Many algorithms have been
proposed to solve this index-picking problem. The arguably
simplest algorithm is the so-called successive projection
algorithm (SPA) [5]. The algorithm first normalizes the
rows of D using ||D(v,:)||; so that the normalized rows all
live on a simplex. Then, SPA picks out vy,...,vp using an
algebraically very simple algorithm. Combining with a

deflation process (projection), the algorithm picks out the F
indices using [’ steps. Unlike the plain NMF problem in (1)
that is NP-hard, separable NMF is provably solvable in
polynomial time and robust to noise [5]. Many variants of
SPA have been considered with differences in the deflation
process, pre-processing, post-processing, or stopping crite-
ria; see [7], [9], [10], [13]. In particular, the algorithm in [7]
avoids row-normalization using || D(v,:)||,. In practice, nor-
malization at the matrix factorization stage is usually unde-
sired, since it destroys the good conditioning obtained by
pre-processing (e.g., the tf-idf procedure) and has the risk of
amplifying noise. In addition, such deflation-based greedy
approaches suffer from error propagation, and their perfor-
mance is generally limited. Another line of work formulates
the vertex-picking problem using linear programming or
sparse optimization, including [4], [6], [12], [25], [26], [27].
However, these approaches have serious complexity issues:
For a data matrix having V' words, the number of optimiza-
tion variables is V2. For a modest vocabulary size ~10, 000,
the resulting number of variables is at least 10°.

In practice, the word-document matrix D may be very
noisy due to various reasons, e.g., modeling errors and
insufficient samples of words in each document in the LDA
model. To circumvent this, word-word correlation based
approaches have been considered [8], [9], [28]. Instead of
working with D, the correlation based approaches work
with P € RV*Y where P is defined as

P=E{DD"} =CEC", ()

and E=E{WW'} denotes the topic correlation matrix.
When D(v,i) is the term-frequency of word v in
document i, P(u,v) represents the probability of words v
and u co-occurring in a document. Therefore, P is some-
times referred to as the word-word co-occurrence matrix as
well. Note that the co-occurrence matrix can be estimated
by various methods, e.g., as in [8] or using the unbiased
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estimator in [9]. More sophisticated estimators have also
been proposed in the literature—see, e.g., [28], for an alter-
nating projection-based algorithm for estimating a positive
semi-definite and element-wise nonnegative P. In this
work, we assume the word correlation matrix P has already
been constructed, and we try to identify topics based on the
given P.

Since the anchor-word assumption can be fragile in prac-
tice, some effort has been put towards relaxing it. Notably,
the work in [14], [15], [16], [17] proposed to use a three-way
word-word-word correlation tensor P instead of word-word
correlations, where the (i, j, k)th entry of P represents the
correlation of words 4, j, and k. Assuming the topics are
uncorrelated (which can be restrictive in practice), the three-
way correlation tensor can be modeled using canonical pol-
yadic decomposition (CPD)—which is identifiable, thereby
enabling topic identification [14], [15]. When the topics are
correlated, the co-occurrence tensor follows a Tucker model,
which is not identifiable in general—unless we resort to
some other assumptions, such as that every t > 2 consecutive
words are persistently drawn from the same topic [16], [17].
Furthermore, reliably estimating third-order statistics
requires more samples and factoring a tensor is usually
much more cumbersome compared to factoring a matrix.

3 ANCHOR-FREE ToPiC MODELING

In this work, we are primarily interested in mining topics
from the matrix P because of its noise robustness and scal-
ability. We will formulate topic modeling as an optimization
problem, and show that the word-topic matrix C' can be
identified under a much more relaxed condition compared
to the anchor-word assumption. In fact, the condition under
which the proposed criterion works includes the anchor-
word assumption as a special case.

3.1 Problem Formulation

Recall that our objective is to estimate C' from the word-
word correlation matrix P = CEC" under the constraints
that C(:, f) for f = 1,..., F are PMFs over the word vocabu-
lary. To this end, it seems natural to consider the following
criterion:

find E € R™*F . C e RV*F (3a)
st. P=CECT, (3b)
c'1=1,Cc>o0. (3¢)

In (3), the constraint (3b) enforces the data fidelity, and (3c)
is added because the columns of C are PMFs. However, the
above criterion is problematic in terms of identifiability
of C. In other words, many feasible solutions of (3) exist,
and these feasible solutions can be far from the ground-
truth £ and C. To see this, consider any nonsingular and
element-wise non-negative A € R"*" such that AT1=1,
and define C = CA,E = A"'EA™". Then P = CEC" with
C'1=1, C>0.Hence, (C=CAE=A"'EA")is a fea-
sible solution of (3)—which is undesired due to the presence
of the unknown matrix A.
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We wish to find an identification criterion that can
remove such ambiguity brought by a non-trivial matrix A,
and produce a solution which recovers the ground-truth £
and C. To achieve this goal, we propose the following iden-
tification criterion:

EcRY erggleRWF | det E], (4a)
st. P=CEC’, (4b)
c'1=1,C>0. (4¢)

Intuitively, we wish to avoid undesired feasible solutions
of (3) via enforcing the solution to have the minimum-
determinant E. As we will show, combined with a realis-
tic assumption on C, the criterion in (4) can identify the
ground-truth C up to a trivial ambiguity (namely, column
permutation).

To see this, our first observation is that if the anchor-
word assumption is satisfied, the optimal solutions of the
above identification criterion are the ground-truth C and E
and their column-permuted versions.

Proposition 1. Let (C., E.) be an optimal solution of (4). If the
separability/anchor-word assumption (cf. Assumption 1) is
satisfied and rank(P) = F, then C. = Cll and E. = 11" ETI,
where 11 is a permutation matrix.

Proof. Let us denote a feasible solution of Problem (3) in the
manuscript as (C, E), and let C; and F; stand for the
ground-truth word-topic PMF matrix and the topic corre-
lation matrix, respectively. Note that we can represent
any feasible solution as C = C,A,E = A"'E,A”" where
A e RF*F is an invertible matrix. Given rank( ) =F
and hat Assumption 1 holds, we must have rank(C)
rank(E) = F, for any solution pair (C E). In fact, if the
anchor-word assumption holds, then there is a nonsingu-
lar diagonal submatrix in Chr S0 rank(Ch) F, and the
same holds for C = CyA since A is invertible. By the
assumption rank(P) = I' and the equality P = C, E; C
CECT, one can see that all _the factors must have_ full
column rank. Therefore, | det E| > 0 for any feasible E—a
trivial solution cannot arise under the model considered.

Furthermore, C satisfies C'1 =1and C > 0 since Cis
a solution to Problem (3). Because the rows of Diag(c) all
appear in the rows of C under Assumption 1, a matrix A
satisfies C(A ) =C(A,:)A > 0if and only if A > 0. Also

note that ATCT1 =1 = A"1 = 1. Then, we have that
F
|det A| < [T IIAG, P, < HIIA Hlh

F=1
» ()
=][46n"1=1

7=1
where the first bounding step is the Hadamard inequal-
ity, the second comes from elementary properties of
vector norms, and for non-negative vectors the ¢; norm is
simply the sum of all elements. The first inequality
becomes equality if and only if A is a column-orthogonal

matrix, and the second holds with equality if and only if
A(:, f) for f=1,...,F are unit vectors. Therefore, for
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non-negative matrices the equalities in (5) hold if and
only if A is a permutation matrix. As a result, any alter-
native solution E has the form E = A"'E,A™!, and

|det E| = | det A" det E, det A"
= | det E,|| det A|
> |det By,

where equality holds if and only if A is a permutation
matrix. This means that for optimal solutions that satisfy
P=C.E.C],wehave C. = C.Il and E. = II1" E.II, and
achieve minimal value |det E. |, where II is a permuta-
tion matrix. O

Proposition 1 is a good ‘sanity check’ of the soundness of
the proposed criterion—it keeps identifiability when the
anchor-word assumption holds. On the other hand, the
result in Proposition 1 is not so useful since any anchor-
based algorithm can identify C and E up to column permu-
tations. Since the criterion in (4) is non-convex and no
known tractable algorithm is theoretically ensured to solve
it to optimality, one natural question is what is the merit of
considering it?

3.2 The Sufficiently Scattered Condition

The answer lies in the fact that the proposed determinant opti-
mization criterion is able to identify topics under a much more
relaxed condition. Intuitively, we seek a condition under
which the topics are not exactly but rather “approximately”
separable—they are “sufficiently scattered”. The new identifi-
ability condition is formally defined as follows.

Assumption 2 (sufficiently scattered). Let cone(C')*
denote the polyhedral cone {x : Cx > 0}, and K denote the
second-order cone {z : ||z||, < 1"x}. Matrix C is called suffi-
ciently scattered if it satisfies that:

(i) cone(C")" C K,and
(i) cone(CT) NbdK ={\e;: A>0,f=1,...,F},
where bd/C denotes the boundary of IC, i.e.,

bdK = {z : ||z|, = 1"z}.

Under the sufficiently scattered condition, a similar iden-
tifiability result can be shown.

Theorem 1. Let (C., E.) be an optimal solution of (4). If the
ground truth C is sufficiently scattered (cf. Assumption 2) and
rank(P) = F, then C. = Cll and E. = 11" EIL, where W is a
permutation matrix.

In words, Theorem 1 shows that for a sufficiently scat-
tered C and an arbitrary square matrix FE, given
P =CEC', C and E can be identified up to permutation
via solving (4).

Before proving Theorem 1, we first show the following
lemma, which ensures that we do not obtain degenerate
results.

Lemma 1. If C € RY*F is sufficiently scattered, then rank(C) =
F. In addition, given rank(P)=F, any feasible solution
E € R"F of Problem (4) has full rank and thus |det E| > 0.
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Proof. If C is sufficiently scattered, it satisfies
cone(C')" C K. (6)

Suppose that C is rank-deficient. Then, all the vectors
that lie in the null space of C satisfy Cz =0, which
implies that for z € A'(C) we have

Cz > 0. (7)

Egs. (7) and (6) together imply that
N(C)C K.

However, a null space cannot be contained in a second-
order cone, so this is a contradiction. o
We now show that any feasible solution pair (E,C)
has full rank. Denote the ground-truth word-topic
PMF matrix as Cy, and the correlation matrix between
topics as E;. Under Assumption 2, the ground-truth
C; has full column rank, and thus E; € R has full
rank when rank(P) = F. Now, since any other feasible
solution can be written as C'=C\A, E= A‘lEhA_l,
where A is invertible, we have that any feasible solu-
tion pair (E,C) has full rank and det E is bounded
away from zero. O

Lemma 1 ensures that any feasible solution pair (C, E) of
Problem (4) has full rank ' when the ground-truth C is suf-
ficiently scattered, which is important from the optimization
perspective—otherwise | det E| can always be zero which is
a trivial optimal solution of (4).

Proof of Theorem 1. Denote the ground truth word-topic
PMF matrix as Cj, and the correlation matrix between
topics as E,. What we observe is their product

.
P=C,EC],

and we want to infer, from the observation P, what the
matrices C}; and FE; are. The method proposed in this
paper is via solving (3), repeated here

min | det E|
EC
st. P=CEC",C"1=1,C>0

Now, denote one optimal solution of the above as C.
and E., and Theorem 1 claims that if C} is sufficiently
scattered (cf. Assumption 2), then there exists a permuta-
tion matrix I such that C.=C, E. =1"E/]L
Because rank(P) = F, and both C; and C. have F' col-
umns, this means C; and C. span the same column
space, therefore there exists a non-singular matrix A
suchthatC. = C;A, E. = A"'E,A™".

In terms of problem (3), C; and E; are clearly feasible,
which yields an objective value det E}. Since we assume
(C., E.) is an optimal solution of (3), we have that

|det E.| = |det A" det E,det A" | < | det By,

implying | det A| > 1. ®)

On the other hand, since C. is feasible for (3), we also
have that
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(a) separable / anchor word

(b) sufficiently scattered
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(c) not identifiable

Fig. 1. A graphical view of rows of C (blue dots) and various cones in R?, sliced at the plane 1"z = 1. The triangle indicates the non-negative orthant,
the enclosing circle is K, and the smaller circle is K. The shaded region is cone(C"), and the polygon with dashed sides is cone(C")*. The matrix C
can be identified up to column permutation in the left two cases, and clearly separability is a special case of sufficiently scattered.

C,A>0,A'C[1=AT1=1

Geometrically, the inequality constraint C;A > 0 means
that columns of A are contained in cone(CtT)*. We
assume C}, is sufficiently scattered, therefore

A(:, f) € cone(C) )" C K,

or equivalently [|A(:, f)[l, < 1T A(:, f).
Then for matrix A, we have that

F r

[det Al < JTIAG, Nl < [[17AGH =1 ©)
f=1 =1

Combining (8) and (9), we conclude that

|det A = 1.

Furthermore, if (9) holds as an equality, we must have

||A(:7f)||2:1TA(:7f)a szl,...,F,

which, geometrically, means that the columns of A all lie
on the boundary of K. However, since C} is sufficiently
scattered

cone(ChT)*ﬂbdlC:{)\ef:)\ZO,f:17...7F},

so A(:, f) being contained in cone(CuT)* then implies that
columns of A can only be selected from the columns of
the identity matrix I. Together with the fact that A
should be non-singular, we have that A can only be a
permutation matrix. O

To understand the sufficiently scattered condition and
Theorem 1, it is better to look at the dual cones. The notation
cone(C")" = {z:Cz >0} comes from the fact that it is the
dual cone of the conic hull of the row vectors of C, ie.,
cone(C") = {C"0:0>0}. A useful property of dual cone is
that for two convex cones K; and K, if K; C Ky, then
K5 C K7, which means the first requirement of Assump-
tion 2 is equivalent to

K* C cone(CT). (10)
Note that the dual cone of K is another second-order cone [11]
K*={z:2"1>+F —1|z|,}, which is tangent to and
contained in the nonnegative orthant. Eq. (10) and the defini-
tion of K* in fact give a straightforward comparison between
the sufficiently scattered condition in Assumption 2 and the
anchor-word assumption. An illustration of Assumptions 1

and 2 is shown in Figs. 1a) and 1b using an F' = 3 case, where
one can see that sufficiently scattered is much more relaxed
compared to the anchor-word assumption: if the rows of the
word-topic matrix C are geometrically scattered enough so
that cone(C") contains the inner circle (i.e., the second-order
cone K7), then the identifiability of the criterion in (4) is
guaranteed. However, the anchor-word assumption requires
that cone(C'") fills the entire triangle, i.e., the nonnegative
orthant, which is far more restrictive. Fig. 1c shows a case
where rows of C' are not “well scattered” in the non-negative
orthant, and indeed such a matrix C' cannot be identified via
solving (4). Fig. 1c shows a case where Assumption 2 is not
satisfied, which corresponds to the situation where most rows
of C are highly correlated.

As we can see from this simple example, the proposed
sufficiently scattered condition does require that a certain
number of rows of C lie on the boundary of the non-nega-
tive orthant, implying that C should contain a certain num-
ber of zeros. In the context of topic modeling, this means
that in each topic certain words should have zero probabil-
ity of appearing in it. This intuitively makes sense, and is
obviously much more relaxed than assuming that for each
topic there exists a characteristic word that only has non-
zero probability of appearing in it.

Remark. A salient feature of the criterion in (4) is that it does
not need to normalize the data columns to a simplex—all
the arguments in Theorem 1 are cone-based. The upshot is
clear: no normalization is involved in the procedure and
there is no risk of amplifying noise. Furthermore, matrix £
can be any symmetric matrix; it can contain negative val-
ues, meaning topics can be negatively correlated, and it
does not even need to be positive semi-definite, although
we always have that for a correlation matrix. In practice, we
can further impose any prior information available on E to
enhance estimation performance; but mathematically
speaking, any symmetric matrix E can be identified using
our model. This shows the surprising effectiveness of the
sufficiently scattered condition.

Remark. Problems with similar structure to that of P also
arise in the context of graph network clustering, where
communities of entities (e.g., persons and genes) and cor-
relations appear as the underlying factors [29], [30], [31].
Therefore, factoring the model P = CEC" with identifi-
ability guarantees is of broader interest, well beyond topic
modeling.
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4 ALGORITHMS

The identification criterion in (4) imposes an interesting yet
challenging optimization problem. One way to tackle it is to
consider the following approximation:

+ | det E|

. 2
min [P - CEC|[;

(11)
st. C>0,C"1=1,

where 1 > 0 balances the data fidelity and the minimal deter-
minant considerations. The difficulty is that the term CEC"
makes the problem tri-linear and not easily decoupled.
Plus, tuning a good p may also be difficult. In this work, we
propose an easier procedure of handling the determinant-
minimization problem in (4), referred to as AnchorFree.

4.1 AnchorFree: A Simple and Scalable Framework
To explain the procedure, first notice that P is symmetric
and positive semidefinite. Therefore, one can apply square
root decomposition to P = BB, where B € RV*¥. We can
take advantage of well-established tools for eigen-decompo-
sition of sparse matrices, and there is widely available soft-
ware that can compute this very efficiently. Now, we have

B=CE"Q, Q' Q=QQ =1, E=E"E",

i.e., the representing coefficients of CE'" in the range space
of B must be orthonormal because of the symmetry of P.
Therefore, we also notice that

min | det E|
EC

st. B=CE,C'1=1, C>0.

(12a)

(12b)

has the same optimal solutions as (4). The reason is that
there always exists an orthonormal @ such that E=E /2Q
and thus the objective of Problem (12) is proportional to
that of Problem (4). Since @ is umtary it does not affect the
determinant, so we further let M = Q' E~ "2 and obtain the
following optimization problem

max | det M|
M

(13a)

st. M"B"1=1,BM > 0. (13b)

In practice, we do not have that the rank of P is exactly
F, but it is straight forward to extend the idea to handle a P
with higher rank—we set columns of B as the F principal
eigenvectors of P, normalized by the square root of their
corresponding eigenvalues. As we will see in the experi-
ment section where none of the data matrices are exactly
low rank, this idea works very well in all cases.

4.2 Alternating Linear Program

By our reformulation, C has been marginalized and we have
only F? variables left, which is significantly smaller com-
pared to the variable size of the original problem, i.e.,
VF + F?, where V is the vocabulary size. Problem (13) is still
non-convex, but can be handled very efficiently. Here, we
propose to employ the solver proposed in [32], where the
same subproblem (13) was used to solve a dynamical system
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identification problem. The idea is to apply the co-factor
expansion to deal with the determinant objective function,
first proposed in the context of non-negative blind source sep-
aration [33]: If we fix all the columns of M except the fth one,
det M becomes a linear function with respect to M(:, f),i.e.,

det M = Z

where a = [CLI, . ,aF]T, ap = (—1)f+k detﬁk‘f, Vk=1,...,F,
and M, ; is a matrix obtained by removing the kth row
and fth column of M. Maximizing |a'z| subject to linear
constraints is still a non-convex problem, but we can solve it
via maximizing both a"z and —a'z, and then picking the
solution that gives larger absolute objective. Then, cyclically
updating the columns of M results in an alternating optimi-
zation (AO) algorithm.

The detailed steps of the proposed algorithm, which we
refer to as AnchorFree-LP, is presented in Algorithm 1.
The algorithm is computationally not heavy: each linear
program only involves F' variables, leading to a worst-case
complexity of O(F?9) flops even when the interior-point
method is employed, and empirically it takes 5 to 10 AO
iterations to converge. Another good feature of the AO
algorithm is that it is completely parameter-free: no stepsize
tuning or regularization trade-off terms to be pre-defined.

D M(k, f) det My ; = a” M(:, f),

Algorithm 1. AnchorFree-LP

Input: D, F.

1 P < Co-Occurrence(D); P = BB, M — I;
repeat

2 forf=1,...,Fdo

3 ar = (-1)"det My, VE=1,...,F;

m; =argmax a z s.t. Bzt >0, 1' Bz = 1;
T

my = argmin a' z s.t. B >0, 1" Bz =1;
T

4 M(?f) = argmaxml,mg(‘a—rml‘v|aTm2D;
5 end

6 until convergence;

7 C.=BM;E. =(C!c.)"'clpc.(c/c.)™;

Output: C., E.

4.3 All-At-Once Optimization: Penalty-Dual Splitting
The alternating optimization algorithm is effective and is
insensitive to initializations—in our experience, the algo-
rithm always finds the desired factors very accurately even
using an identity matrix as initialization. One shortcoming,
however, is that the algorithm needs to perform two linear
programs for updating one column of M, and this could
slow down the entire process when the number of topics is
large: Under such cases, completing one cycle of updating
all the columns of M requires performing 2F linear pro-
grams, which could be rather costly.

To circumvent this issue, we are motivated to find some
algorithm that can update all the columns of M simulta-
neously (even with some small sacrifices in performance).
One idea towards this end is as follows. Instead of directly
dealing with | det(M)]|, one can change the problem to
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nllén —log | det(M)] (14a)

st. M'B'1=1, BM > 0. (14b)
Note that such a modification does not change the problem
since the log -function is monotonic, but the merit is that now
the objective is continuously differentiable. One idea that
was used in [34] for optimizing a similar log-determinant
maximization problem is to do successive local approxi-
mation to Problem (14); i.e., in each iteration, one solves a
subproblem

(r)
MU = argmin<Vf(M("))7 M> + B | M — MO |5
M 2 (15)

st. M"B"1=1, BM >0,

where f(M) denotes the cost function of (14). Since each sub-
problem is a linearly constrained quadratic programming
with strongly convex objective, an ADMM algorithm with
lightweight updates can be easily derived. However, in our
extensive simulations, two major issues arise when applying
the idea to topic modeling: 1) the algorithm requires a fairly
good initialization to get to a solution that is as accurate as
that of AnchorFree-LP; 2) each subproblem in (15) requires
a large number of ADMM iterations to reach a certain accu-
racy level and to make the overall algorithm work—which,
in many cases, turns out to be even more computationally
expensive compared to AnchorFree-LP.

In this work, we propose an algorithm that avoids the
above issues of the “local approximation & ADMM” idea.
To be specific, we adopt the algorithmic framework that
was recently proposed in [35] for dealing with general non-
convex optimization problems. The idea bears some resem-
blance to that of directly applying ADMM to the non-
convex problem in (14). Therefore, most good features of
ADMM such as computationally light updates are kept in
the new algorithm. On the other hand, unlike non-convex
ADMM which in general does not have convergence guar-
antees, gradually changing a penalty parameter and the
dual variables according to a certain judiciously designed
strategy ensures that the algorithm converges to a KKT
point eventually. To begin with, let us rewrite Problem (14)
as follows:

min —log | det(M)]

T RT (16)
st. BM=Z, M B'1=1, Z>0.
The high-level algorithmic structure for handling Prob-
lem (16) is presented in Algorithm 2. In line 6, f,(M, Z) is
defined as

L 1 _ 2
min  —log| det(M)| + 50| BM = Z + 0,Usl|; (17)
st. M'B'1=1, Z>0.

The subproblem in (17) looks similar to the augmented
Lagrangian used in ADMM. However, the update strategy
here is sharply different from that of ADMM. As we show
in Algorithm 2, for a fixed U, and p;, we try to decrease the
cost value of f;(M,Z) using some algorithm to a certain
convergence measure ¢ (e.g., the one presented in line 9 in
Algorithm 3). Once (My,Z;) is obtained, the ‘size of
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violation” of the dualized constraint ||BMj. — Z|| is mea-
sured. If the violation is smaller than a threshold, we keep
the algorithm within the augmented Lagrangian routine,
keep p; unchanged, and update the dual variable; if not, we
shrink p,, so that we put more emphasis on enforcing the con-
straints in the next iteration. This way, the algorithm uses the
dual variable and the penalty parameter to help enforce the
constraint. The hope is that with the help of the dual variable,
p;. never needs to become very large and the ill-conditioning
problem of the penalty method can be avoided.

Algorithm 2. AnchorFree-PDS
Input: D, F,c < 1.
1 P « Co-Occurrence(D);
2 P=BB" k=0,M,=1,2,=BM;;
3 repeat

4  (My, Zy) = Decrease(fi,(M, Z), €);
5 ifHBMk—Zk” S N then
6 Ui :Uk"‘ka(BMk_Zk)vpkﬁ—l = Pis
7 else
8 U1 = U, Pry1 = cpis
9 end
10 My = oy er1 = ceys
11 k—k+1;

12 until convergence;
13 C. = BM; E. = (C!c.)'c!pc.(clc.)™;
Output: C., E.

Let e, 2Px(vec(My, Zi) — V (Mg, Z)) — vec(My,Zy),
where X denotes the constraint set of problem (17). Then,
regarding the convergence of the algorithm, we have the fol-
lowing result.

Proposition 2. Let {(My, Z;)} be the sequence generated by
Algorithm 2. Suppose that the algorithm used in
Decrease(fi,(M, Z),€;) satisfies ||e;|| < e with n;, — 0 and
ep — 0 as k— 0. Then, every limit point of the sequence
{(My, Zy)} is a KKT point of problem (14).

Proof. The basic idea of the proof follows that of [35, Theo-
rem 3.1]. For notational simplicity, let us define
z£2vec(M,Z) and denote the linear constraint BM = Z
by h(x) = 0. By the definition of e; and a well-known
property of the projection map Py, we have

(z — (zx+ex) ((zx — Viirlzi) — (@ +ex) <0,
Vi € X,V

It follows that

—(z—@r+e)) (VHilo) +e) <0, Vo e X, Yk (18)

Define w2 (1/p;)h(zi) + A where A, 2vec(Uy), and
fu(z) 2 —log|det(M)|. Thus, we have

V filzi) = Vfar(mi) + Vh(i) '
Plugging this into (18), we obtain

—(z — (zr + ) (Vur(zr) + Vh(zi) ' wy +ep) <0, (19)
Vi € X,VE.
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Next, we prove that pu, is bounded by contradiction
using Robinson’s condition [36]. Assume, to the contrary,
that w,, is unbounded. Define 1), £ /|| p1,||- Without loss
of generality, let 7t;, converge to & and x;, converge to z,
(if they do not converge, we can restrict them to a conver-
gent subsequence). Then, since all the constraints of
problem (16) are linear, we infer that Ronbinson’s condi-
tion [36] is satisfied for problem (16) at z, [35] , i.e., for
any z € R", there exists some z € X and ¢ > 0 such that
z = cVh(z.)(z — z.). By dividing both sides of (19) by
||| and taking limit, we obtain

—(z—=z.) " Vh(z,) m<0,Vz € X, (20)
where the term V fy/(zr)/| ||| disappears because we
assumed that u; goes unbounded in the limit. Since
Robinson’s condition holds for Problem (16), there exists
some z € X and ¢ > 0 such that

—ft = cVh(z,)(z — ).

This, together with (20), implies that 7* = 0, contradicting
the identity ||| = 1. Hence, {u, } is bounded.

Since {p;} is bounded, we let it converge to u, with-
out loss of generality. Furthermore, recall that e; — 0.
Hence, we have from (19)

(z —z.) (Vi u(z.) + Vh(z,) 'w) >0Vz e X. (1)

This completes the proof. ]

As for the oracle Decrease(f,(M, Z),¢;), we design a
very simple alternating optimization algorithm shown in
Algorithm 3. For the Z-subproblem, we can solve the sub-
problem exactly by

Z «— max(BM + p, Uy, 0). (22)
The M-subproblem is a bit more complicated, but can also
be handled using simple operations. Specifically, instead of
dealing with the M-subproblem directly, we deal with its
local approximation at the current solution M

. o M 2
min (VS(M), M) + 5| M - M}

1
5, IBM = Z 4 U3 @
P

st. BT M™1=1.

Problem (23) is a linearly constrained quadratic program and
thus has a closed-form solution. Denote a solution of (23) as
M. Note that such M does not necessarily decrease the the
cost valu/\e of Problem (17), but it can be easily shown that
(Mt — M) represents a decent direction. To ensure descent,
we can implement a simple line search step (e.g., Armijo rule)
searching for a step size ¢ such that M «— M +t(M* — M)
decreases the cost value of (17). Similar to Theorem 4 of [37],
it can be shown that the proposed alternating optimization
method has guaranteed convergence to stationary solutions
of problem (17), implying that the oracle can satisfy ||e*|| < ¢
forany ¢, > 0 with reasonably many iterations.

Remark. As will be demonstrated in the next section,
AnchorFree-PDS exhibits much higher efficiency rela-
tive to AnchorFree-LP. The reason is twofold: first,
AnchorFree-PDS is an all-at-once algorithm—it
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updates all optimization variables simultaneously, wher-
eas AnchorFree-LP updates them block by block;
second, AnchorFree-PDS has very lightweight updates
but the subproblems of AnchorFree-LP are linear pro-
grams, which need more effort to solve. On the other
hand, AnchorFree-PDS requires more care: several
parameters, such as u, ¢, and {e;, n;,} all need to be pre-
defined; AnchorFree-LP is parameter-free and can be
implemented very easily.

Algorithm 3. Decrease(f,(M, Z), ¢;)

Input: Z, M, €

1 repeat

M — M, 7 — Z;

Z — max(BM + p, Uy, 0);

M™" — solution of (23);

line seg{ch for ¢;

M — M +t(M* — M);

7 until max(|M — M||,||Z — Z|)) < e
Output: Z, M

N Ul W N

5 SYNTHETIC DATA SIMULATIONS

Before applying AnchorFree to real data, we present several
synthetic data simulations to demonstrate the identifiability
of the proposed model.

In the synthetic data simulations, since the ground truth
Cy and E; are known, we simply use the following criterion
for evaluation. Denoting the output of any algorithm as C.
and E., before we compare them with the ground truth C
and E;, we need to fix the permutation ambiguity. This task
can be formulated as a linear assignment problem and solved
efficiently via the Humngarian algorithm. After optimally
matching the columns of C. and C}, we observe the estima-
tion errors ||C. — Cqur and ||E. — Eh”%

We generate data following the tri-factorization model
P=C\E, CUT, where the entries of C), are first drawn from an
iid. exponential distribution, and then approximately 50
percent of the entries are randomly set to zero, according to
an ii.d. Bernoulli distribution, and then the columns are
scaled to satisfy the sum-to-one constraint; the matrix E; is
generated as E, = UU'/F + I, where the entries of the
F x F matrix U are drawn from the uniform distribution
between zero and one, therefore E is element-wise non-neg-
ative, positive semidefinite, and relatively well conditioned.
With D = 1,000 and F increasing from 5 to 30, we applied
various topic modeling algorithms on the synthetically gen-
erated P and try to recover C, and Ej, including the pro-
posed AnchorFree-LP and AnchorFree-PDD. For each value
of F', we ran these algorithms on 100 Monte-Carlo trials, and
report the percentage of cases that both ||C. — Cy||7. and
|E. — E; |7 are less than 10~%, for which we consider them to
be correctly recovered, in Table 2. As we can see:

(1) The anchor-word-based algorithms are not able to
recover the ground-truth Cy; and E, when the num-
ber of topics F is relatively large, since the separabil-
ity / anchor-word assumption is grossly violated;

(2)  AnchorFree-based algorithms, on the other hand,
recovers Cy and E; almost perfectly in all the cases
under test, which supports our claim in Theorem 1;
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TABLE 2
Synthetic Test 1: Percentage That Both ||C. — C,||> and
| E. — E,||3 Are Less Than 10~%, without Guarantees on the
Existence of Anchor Words

F 5 10 15 20 25 30
FastAnchor 100 3 0 0 0 0
SPA 100 3 0 0 0 0
SNPA 100 3 0 0 0 0
XRAY 100 3 0 0 0 0
AnchorFree-LP 100 100 100 100 100 100
AnchorFree-PDS 100 100 100 100 100 100
TABLE 3

Synthetic Test 2: Percentage That Both ||C. — C,||% and
|E. — E||3 Are Less Than 10~%, with at Most 15 Topics
Guaranteed to Have Anchor Words

F 5 10 15 20 25 30
FastAnchor 100 100 100 0 0 0
SPA 100 100 100 0 0 0
SNPA 100 100 100 0 0 0
XRAY 100 100 100 0 0 0
AnchorFree-LP 100 100 100 100 100 100
AnchorFree-PDS 100 100 100 100 100 100

(3)  Even though the identification criterion (3) is a non-
convex optimization problem, the proposed proce-
dure empirically always works, which is obviously
encouraging and deserves future study.

We also tested the aforementioned algorithms on a
slightly more interesting scenario: with almost exactly the
same experimental settings, we further enforce at most 15
topics to have anchor words. If F'is less than or equal to 15,
we simply set the top square sub-matrix of C; to be an iden-
tity matrix, before normalizing the columns; if F' is greater
than 15, then only the first 15 rows of C; are taken to be
canonical vectors with ones on different positions. This
reflects an interesting scenario that when the corpus con-
tains only a few very distinctive topics of documents, it is
very easy to find anchor words for each of the topics to help
the modeling, but as the scope of the corpus becomes
broader, some of the less distinctive topics fails to satisfy
the stringent anchor-word assumption. As shown in Table 3,
the anchor-word-based methods are only able to recover the
full set of topics when all to topics are separable, even
though for larger /' the anchor-word assumption is still par-
tially satisfied. The proposed AnchorFree-LP and Anchor-
Free-PDD, on the other hand, can robustly recover all the
topics regardless of the existence of anchor word.

The runtime performance of these algorithms for both
test scenarios are shown in Fig. 2. The acceleration obtained
by using primal-dual splitting (PDS) is dramatic in these
synthetic tests, as it is much faster than the other methods,
including SPA, a very simple deflation method with closed-
form updates. As expected, AnchorFree-LP is the slowest
among all, but not much slower than the anchor-word-
based methods. It is also interesting to notice that anchor-
word-based methods all becomes slightly faster when data
loses identifiability (#'= 10 on the left and F =20 on
the right), although in these cases those algorithms fail to
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Fig. 2. Runtime performance on synthetic data.
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Fig. 3. Reconstruction error on synthetic data.

produce meaningful results; AnchorFree approaches, on
the other hand, increases the running time gradually as
expected, and consistently recovers the ground truth
regardless of the existence of anchor words.

Finally, the reconstruction error |C. —C, H% and
|1E. — Ethm given by AnchorFree-LP and AnchorFree-PDS
are shown in Fig. 3 for the both testing scenarios. As we can
see, even though AnchorFree-PDS is able to recover the
ground truth factors in a very short amount of time, the
numerical error is not as accurate as that given by Anchor-
Free-LP. This can partly be explained by the fact that Anchor-
Free-LP is parameter free, and relies on very reliable off-the-
shelf LP solvers, whereas AnchorFree-PDS is a brand new
non-convex algorithmic framework, and the overall numeri-
cal performance is limited by a number of tolerance parame-
ters that needs to be finely tuned to balance between
numerical accuracy and computational efficiency.

6 REAL DATA EXPERIMENTS

In this section, we apply the proposed algorithms and the
baselines to three popular text mining datasets, namely, the
NIST Topic Detection and Tracking (TDT2), the Reuters-
21578, and the Reuters Corpus Volume 1 (RCV1) corpora, to
demonstrate the effectiveness of the proposed Anchor-Free
framework and the algorithms. In all experiments, the
parameters used in AnchorFree-PDS are set as follows:
oo=1 ¢=05,n =107, u=10""%

6.1 Datasets

Some more information regarding the datasets considered is
useful at this point.

e TDT2: We use a subset of the TDT2 corpus consisting
of 9,394 documents which are single-category
articles belonging to the largest 30 categories. The
vocabulary size of the considered dataset is 36,771.
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e  Reuters-21578: The Reuters-21578 corpus is the Mod-
Apte version where 8,293 single-category documents
are kept. The vocabulary size of the considered data-
set is 18,933.

e RCVI: The RCV1 dataset contains 55 categories of
documents and the total number of documents is
804,414. We used the single-label documents in the
experiments, which is a subset of the RCV1 corpus
containing 550,410 documents. The vocabulary size
of RCV1 is 47,236.

In our experiments, we use the standard tf-idf data as the

D matrix, and estimate the co-occurrences following the
method that was suggested in [8]. For each trial of our
experiment, we randomly draw F' categories of documents,
form the co-occurrence matrix, and apply the proposed
algorithms and the baselines.

6.2 Evaluation Metrics
To evaluate the results, we employ a series of metrics.

o  Coherence. We use coherence (Coh) to measure the sin-
gle-topic quality. For a set of words V), the coherence
is defined as Coh = Z (M)

vy va€V freq(v9)
where v; and v, denote the indices of two words in
the vocabulary, freq(ve) and freq(vi,v2) denote the
numbers of documents in which v; appears and v;
and v, co-occur, respectively, and € = 0.01 is used to
prevent taking log of zero. Coherence is considered
well-aligned to human judgment when evaluating a
single topic—a higher coherence score means better
quality of a mined topic. However, coherence does
not evaluate the relationship between different
mined topics; e.g., if the mined F" topics are identical,
the coherence score can still be high but meaningless.

o  Similarity Count. To alleviate the shortcomes of Coh,
we also use the similarity count (SimCount) that was
adopted in [9]—for each topic, the similarity count is
obtained simply by adding up the overlapped words
of the topics within the leading N words, and a
smaller SimCount means the mined topics are more
distinguishable.

e  Clustering Accuracy. When the topics are very corre-
lated (but different), the leading words of the
topics may overlap with each other, and thus using
SimCount might still not be enough to evaluate
the results. We also include clustering accuracy
(ClustAcc), obtained by using the mined C.
matrix to estimate the weights W of the documents
via nonnegative least squares, and applying
k-means (with the correlation metric) to W. Since
the ground-truth labels of the data copora are
known, clustering accuracy can be calculated, and
it serves as a good indicator of the quality of the
mined topics.

6.3 Baselines
We use the following algorithms for benchmarking:

e SPA successive projection algorithm [5],
SNPA successive nonnegative projection algorithm
[1011
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TABLE 4
Coh Given by the Algorithms on TDT2

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 -619.32  -613.43 -613.43 -597.16 -427.36 -430.24 -417.48
4 -648.23  -648.04 -648.04 -657.51 -510.24 -429.67 -420.53
5 -643.51  -643.91 -643.91 -665.20 -509.76 -404.40 -398.95
6 -650.91  -645.68 -645.68 -674.30 -546.01 -430.35 -428.72
7 -674.35  -665.55 -665.55 -664.38 -543.54 -397.79 -395.00
8 -680.48  -674.45 -674.45 -657.78 -565.28 -452.53 -437.56
9 -684.96  -671.81 -671.81 -690.39 -570.67 -418.48 -413.49
10 -738.84  -724.64 -724.64 -698.59 -574.40 -420.79 -410.05
15  -731.89 -730.19 -730.19 -773.17 -617.87 -443.65 -413.15
20 -750.96  -747.99 -747.99 -819.36 -642.48 -455.64 -424.30
25 -788.48  -792.29 -792.29 -876.28 -666.07 -473.43 -450.74

TABLE 5
SimCount Given by the Algorithms on TDT2

F  FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 8.30 798 798 894 278 2.14 0.76
4 10.76 11.18 11.18 13.70 5.26 2.56 2.06
5 14.62 13.36 1336 2256 8.02 4.30 4.32
6 18.98 18.10 1810 31.56 11.90 6.56 6.60
7 19.38 18.84 18.84 39.06 16.06 4.48 5.16
8 25.18 25.14 25.14 4030 21.12 9.68 9.44
9 27.64 29.10 29.10 53.68 25.46 10.54 8.00
10 28.90 29.86 29.86 53.16 30.48 13.32 13.02
15 53.04 52.62 52.62 59.96 65.08 42.52 43.50
20 65.30 65.00 65.00 8292 104.82 78.14 84.44
25 67.34 66.00 66.00 101.52 147.22 133.76 116.66

TABLE 6
Clustacc Given by the Algorithms on TDT2

F  FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 0.71 0.75 0.75 0.73 079 0.98 0.98
4 0.71 0.68 0.69 0.69 074 0.95 0.94
5 0.65 0.63 0.62 0.65 0.70 0.92 0.92
6 0.66 0.60 0.59 0.61 0.68 0.91 0.90
7 0.64 059 0.59 0.58  0.66 0.90 0.91
8 0.56 055 057 057 062 0.88 0.88
9 0.61 057 0.56 0.54 0.65 0.86 0.88
10 0.60 054 0.55 049 0.64 0.84 0.86
15 0.50 049 049 042 059 0.80 0.82
20 0.48 046 0.46 039 0.61 0.77 0.78
25 0.45 046 0.46 0.37 0.61 0.74 0.74

e XRAY afast conical hull algorithm [7], and

e  FastAnchor the fast anchor words algorithm [9].
Since we are interested in co-occurrence based mining, all
the algorithms are combined with the framework provided
in [9], and the efficient RecoverL2 process is employed for
estimating the topics after the anchors are identified. We
mainly compare with the anchor-word based algorithms,
but also present results given by the most popular topic
modeling tool, namely,

e LDA latent Dirichlet allocation using Gibbs sam-
pling [38], as another baseline.

6.4 Experimental Results
Tables 4, 5, and 6 show the experimental results on the
TDT2 corpus, averaged over 50 Monte-Carlo draws of
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TABLE 7
Coh Given by the Algorithms on Reuters-21578
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TABLE 10
Coh Given by the Algorithms on RCV1

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS  F  FastAnchor  SPA SNPA  XRAY AnchorFree-LP AnchorFree-PDS
3 -646.63  -647.28 -647.28 -574.72 -674.14 -827.54 -813.51 3 -687.40 -691.36 -691.36 -488.46 -498.15 -500.26
4 -634.73  -637.89 -637.89 -586.41 -677.18 -739.54 -745.83 4 -683.15 -676.45 -676.45 -493.38 -502.37 -497.97
5 -655.13  -652.53 -652.53 -581.73 -686.31 -768.44 -738.76 5 -693.70 -690.41 -690.41 -498.83 -502.47 -516.96
6 -647.30  -644.34 -644.34 -586.00 -715.15 -698.76 -698.91 6 -721.94 -718.68 -718.68 -515.23 -510.36 -520.10
7 -742.40  -732.01 -732.01 -612.97 -705.90 -690.37 -685.84 7 -672.82 -676.64 -676.64 -498.69 -506.43 -508.39
8 -731.45  -738.54 -738.54 -616.32 -762.92 -724.37 -739.37 8 -685.24 -689.27 -689.27 -511.61 -509.63 -521.11
9 -761.76  -755.46 -755.46 -640.36 -776.83 -705.60 -742.05 9 -709.87 -714.10 -714.10 -518.20 -529.82 -535.34
10 -761.15  -759.40 -759.40 -656.71 -776.46 -700.14 -677.32 10 -714.59 -710.33 -710.33 -539.62 -531.20 -545.60
15 -799.17 -801.17 -801.17 -585.18 -847.72 -688.43 -668.87 15 -677.87 -678.97 -678.97 -545.63 -530.84 -550.42
20 -864.32 -860.70 -860.70 -615.62 -903.37 -678.95 -682.97 20 -696.66 -692.97 -692.97 -575.98 -554.17 -566.06
25 -891.66 -890.16 -890.16 -633.75 -902.68 -671.20 -675.08
TABLE 11

TABLE 8
SimCount Given by the Algorithms on Reuters-21578

F FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 10.16 11.02 11.02 3.86 3.20 7.26 6.24
4 16.98 1692 1692 9.92 6.46 12.80 11.10
5 23.22 21.66 21.66 13.06 9.32 16.40 12.48
6 40.32 39.54 39.54 2742 12.48 20.76 21.00
7 45.14 4524 4524 34.64 21.22 34.86 27.28
8 85.62 83.86 83.86 8252 24.60 61.52 55.36
9 115.58 118.98 118.98 119.28 33.56 71.90 76.70
10 117.88 121.74 121.74 130.82 39.68 85.52 89.52
15 30790  309.70 309.70 227.02 76.02 124.82 119.30
20  535.10  538.54 538.54 502.82 130.54 226.50 226.34
25 66842  673.00 673.00 650.96 194.98 335.14 320.44
TABLE 9

Clustacc Given by the Algorithms on Reuters-21578
F  FastAnchor SPA SNPA XRAY LDA AnchorFree-LP AnchorFree-PDS
3 0.66 0.69 0.69 0.66 0.63 0.79 0.80
4 0.52 0.62 0.61 0.60 057 0.72 0.73
5 0.49 055 0.54 0.53 053 0.64 0.66
6 0.46 050 0.50 0.46 051 0.64 0.66
7 0.42 057 057 054 046 0.65 0.65
8 0.40 053 0.54 047 044 0.61 0.62
9 0.37 055 0.55 047 041 0.59 0.62
10 0.36 048 0.49 042 042 0.57 0.59
15 0.34 041 041 042 035 0.53 0.55
20 0.30 035 0.35 0.38 033 0.51 0.54
25 0.26 031 0.32 037 034 0.47 0.44

the categories. The top two performance results in each
evaluation metrics are shown in boldface, and the others are
presented in plain text. From F' =3 to 25, the proposed
algorithms (AnchorFree-LP and AnchorFree-PDS) give very
promising results: for the three considered metrics, Anchor-
Free consistently gives better results compared to the base-
lines. Particularly, the ClustAcc’s obtained by AnchorFree
are at least 30 percent higher compared to the baselines for
all cases. In addition, the single-topic quality of the topics
mined by AnchorFree is the highest in terms of coherence
scores; the overlaps between topics are the smallest except
for F'=20 and 25. Furthermore, for a specific trial with
F' =5, the mined topics represented by the top 20 words
that have the highest weights in each topic are shown in
Table 1. As we have explained earlier, AnchorFree gives a

SimCount Given by the Algorithms on RCV1

F  FastAnchor  SPA SNPA XRAY AnchorFree-LP AnchorFree-PDS
3 22.52 23.24 23.24 25.72 10.12 7.34
4 45.24 44.24 4424 4996 22.72 16.44
5 79.60 80.42 80.42 76.28 34.92 25.00
6 118.84 118.48 11848 104.04 43.50 30.24
7 183.24 188.12  188.12 139.90 63.28 43.76
8 256.10 255.80 255.80 179.20 82.58 54.26
9 313.24 313.16 313.16 211.16 101.66 67.08
10 381.42 369.92  369.92 252.38 122.36 82.70
15 1043.98 1039.72  1039.72  508.80 282.28 183.02
20 1857.94 1984.46 1984.46 817.30 540.84 318.58
TABLE 12
ClustAcc Given by the Algorithms on RCV1

F  FastAnchor SPA SNPA XRAY AnchorFree-LP  AnchorFree-PDS
3 0.65 0.65 0.65 0.63 0.79 0.79
4 0.56 0.59 0.59 0.56 0.74 0.73
5 0.54 0.53 0.53 0.50 0.69 0.68
6 0.51 0.52 0.52 0.50 0.69 0.69
7 0.46 0.46 0.46 0.50 0.65 0.66
8 043 043 043 047 0.64 0.65
9 0.41 0.41 0.42 0.46 0.63 0.62
10 0.40 0.40 0.40 0.43 0.61 0.61
15 0.33 0.31 0.31 0.37 0.57 0.57
20 0.27 0.25 0.26 0.32 0.54 0.54

much cleaner topic model for this dataset, compared with
the best result given by anchor-word-based methods.
Under the same experimental settings, the results on
the Reuters-21578 and RCV1 are shown in Tables 7, 8, 9,
10, 11, and 12. As we can see, in terms of clustering accu-
racy, the topics obtained by AnchorFree again lead to
much higher clustering accuracies in all cases. For the
other evaluation metrics, AnchorFree-based methods also
perform well, especially when the number of topics F
becomes larger. XRAY is able to give the best result in
terms of single-topic quality Coh, but for cross-topic
quality SimCount, it does not perform as well as
AnchorFree, especially when the number of topics F
becomes larger, while AnchorFree consistently performs
at least second best in terms of both metrics. On the
opposite end, LDA performs well in terms of SimCount
on Reuters-21578, but not as well for Coh. LDA is not
tested on RCV1 because RCV1 comes directly in the form
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Fig. 4. Runtime performance of the algorithms.

of tf-idf, which cannot be handled by the LDA program
provided in [38].

The runtime performance of the two proposed Anchor-
Free variants along with the other anchor-word-based
methods on the three datasets is summarized in Fig. 4.
Among the anchor-word-based methods, SPA is the fastest
since it has an efficient recursive update. The other variants
all perform nonnegative least squares-based deflation,
which is computationally heavy when the vocabulary size
is large. As expected, AnchorFree-LP is the slowest, since it
consists of AO and small-scale linear programming; inter-
estingly, when the vocabulary size is about the same as the
document size (e.g.,, TDT2), AnchorFree-LP is not that
slower than the other baselines, especially considering that
we are simply using a general-purpose convex optimization
solver CVX [39] as a sub-routine. The more striking result is
that AnchorFree-PDS is the second fastest algorithm in
almost all cases, and on TDT2 and RCV1 it is an order faster
than the three slower anchor-word-based methods. Recall
that, unlike anchor-word based methods, AnchorFree does
not have global optimality guarantees, but AnchorFree-PDS
still manages to obtain very good performances (as shown
in Tables 4,5, 6,7,8,9,10, 11, and 12) in a very short amount
of time. This also hinges the potential effectiveness of pri-
mal-dual splitting (PDS) as a general non-convex algorith-
mic framework.

TABLE 13
Coh on TDT2 (Whole Data)

(b) Reuters-21578

(c) RCV1

6.5 Additional Experiments

In the previous example, we make use of the true labels of
the documents provided with the datasets to evaluate the
topic models learned using different methods. There are
30~55 different labels in the datasets we used, but the total
number of topics could be much larger due to unavoidable
aggregation in the human-labeling process. Here, we pro-
vide another set of experiments, where we ignore the pro-
vided document labels and simply apply various topic
modeling methods to the entire TDT2 or Reuters-21578
dataset with number of topics up to 200. For evaluation, we
only provide the metrics of coherence and similarity count,
since the clustering accuracy cannot be evaluated without
the true labels. The results of this experiment on TDT2
are given in Tables 13 and 14, and those on Reuters-21578
are shown in Tables 15 and 16. Once again, we see that
AnchorFree gives the best results, providing a good balance
between intra-topic quality (coherence) and inter-topic
quality (similarity count).

In our work, the definition of the correlation between
words P and between topics E may appear a bit vague. We
only assume that some measure of correlation between
words can be explained by a topic-word PMF matrix and
a similar measure of correlation between topics. In some
other approaches, this kind of flexibility is not supported.
For example, the argument made by Arora et al. [8], [9] was

TABLE 15
Coh on Reuters-21578 (Whole Data)

F FastAnchor SPA SNPA  XRAY LDA AnchorFree-PDS  F FastAnchor SPA SNPA  XRAY LDA AnchorFree-PDS
10 -601.90 -601.90 -601.90 -486.89 -2337.23 -205.68 10 -773.51 -808.37 -808.37 -708.13 -2578.83 -291.88
30 -738.04 -738.04 -738.04 -465.98 -2453.75 -143.87 30 -828.45 -810.80 -810.80 -717.65 -2554.47 -404.75
50 -718.99 -714.52  -71452 -467.56  -2426.50 -133.60 50 -816.33 -808.76  -808.76  -821.18  -2529.43 -447.74
100 -699.36 -694.41  -694.41  -409.10 -2363.39 -167.56 100 -831.04 -844.00 -844.00 -838.26 -2548.76 -407.12
200 -703.05 -703.39  -703.39 -363.79 -2363.94 -189.01 200 -909.66 91124 91124 -833.51 -2555.10 -438.48
TABLE 14 TABLE 16

SimCount on TDT2 (Whole Data)

SimCount on Reuters-21578 (Whole Data)

F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS F FastAnchor SPA SNPA XRAY LDA AnchorFree-PDS
10 13 13 13 65 1 20 10 234 234 234 121 1 71

30 168 168 168 209 1 48 30 2117 2068 2068 778 6 253

50 340 330 330 336 15 19 50 4760 4623 4623 1566 35 462

100 1375 1463 1463 348 119 166 100 15673 15840 15840 2599 144 523

200 3866 3845 3845 471 907 225 200 36548 36812 36812 4358 789 478
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TABLE 17
Study of the Impact of Preprocessing on TDT2

r Coh SimCount ClustAcc

FastAchor  SPA SNPA  XRAY AnchorFree FastAchor SPA SNPA  XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree
3 -592.86 -598.23 -598.23 -402.75 -423.20 19.98 19.28 19.28 34.10 16.60 0.72 054 054 0.53 0.86
4 -571.27  -582.19 -582.19 -414.37 -486.92 35.62 34.92 34.92 61.72 28.54 0.70 0.50  0.50 0.48 0.80
5 -638.89 -639.02  -639.02 -404.47 -505.67 46.08 46.16 46.16 103.86 52.76 0.67 047 046 0.43 0.76
6 -630.44  -633.55 -633.55 -425.87 -522.24 78.80 79.20 79.20 141.38 77.98 0.63 042 043 0.41 0.73
7 -626.67  -632.45 -632.45 -428.69 -542.49 108.74 108.00 108.00 211.38 117.40 0.60 039 039 0.37 0.70
8 -645.27  -646.20 -646.20 -444.80 -560.88 136.62 135.08 135.08  265.46 162.46 0.56 0.38 038 0.36 0.65
9 -649.66 -653.26 -653.26 -431.75 -567.65 162.42 15752  157.52 34896 203.00 0.59 038 038 0.35 0.64
10 -673.52  -671.08 -671.08 -470.14 -577.37 176.62 17542 17542  408.64 242.22 0.56 035 035 0.33 0.64
15 -648.94 -653.55 -653.60 -469.93 -624.34 410.58 417.88 41750  887.60 715.08 0.48 033 033 0.31 0.60
20 -648.83 -649.62 -649.40 -483.11 -644.91 687.74 682.70 68442 1403.94 1377.90 0.45 031 031 0.30 0.61
25 -644.38 -649.65 -649.65 -507.70 -648.99 1106.58  1112.92 1112.92 1962.22 2256.34 0.43 028 028 0.29 0.61

specifically based on co-occurrence—number of times two
words both appear in a document—rather than a general
correlation measure. This kind of interpretation cannot
accommodate the popular tf-idf preprocessing of the docu-
ment data, even though researchers have consistently
reported better results using tf-idf compared to directly
using term frequency. Nevertheless, in Table 17 we show
the experimental results using the co-occurrence matrix P
constructed as in [9] on TDT2. We can see that: 1) Focusing
on Table 17, AnchorFree still works consistently among the
best, especially in terms of clustering accuracy; 2) Com-
pared to the results given in Tables 4, 5, and 6, the perfor-
mance of all methods degrades. We should mention that
there are sophisticated methods for constructing the P
matrix, e.g., Lee et al. [28]. Our experiments show that the
method proposed by Lee et al. can improve the performance
of all algorithms—and among which AnchorFree still works
the best. The implication is that with a better estimated P,
the performance of topic mining algorithms can be further
improved. However, we did not include Lee’s method here
for more comparison because the P-construction algorithm
is very costly and hard to implement for Monte-Carlo simu-
lations at the scale of our experiments.

7 CONCLUSION

In this paper, we considered identifiable anchor-free cor-
related topic modeling. A topic estimation criterion based
on word-word correlation was proposed and its identifi-
ability conditions were proven. The proposed approach
features topic identifiability guarantees under a much
milder condition compared to the anchor-word assump-
tion, and thus exhibits better robustness to model mis-
match. Two algorithms based on alternating (small-scale)
linear programming and primal-dual splitting were pro-
posed to deal with the formulated criterion. Experiments
on real text corpora showcased the effectiveness of the
proposed approach.
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