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Abstract—The demand forecasting plays a crucial role in the
predictive physical and virtualized network management in cel-
lular networks, which can effectively reduce both the capital
and operational expenditures by fully exploiting the network
infrastructure. In this paper, we study the per-cell demand fore-
casting in cellular networks. The success of demand forecasting
relies on the effective modeling of both the spatial and tem-
poral aspects of the per-cell demand time series. However, the
main challenge of the spatial relevancy modeling in the per-cell
demand forecasting is the irregular spatial distribution of cells in
a network, where applying grid-based models (e.g., convolutional
neural networks) would lead to degradation of spatial granular-
ity. In this paper, we propose to model the spatial relevancy
among cells by a dependency graph based on spatial distances
among cells without the loss of spatial granularity. Such spatial
distance-based graph modeling is confirmed by the spatiotempo-
ral analysis via semivariogram, which suggests that the relevancy
between any two cells declines as their spatial distance increases.
Hence, the graph convolutional networks and long short-term
memory (LSTM) from deep learning are employed to model
the spatial and temporal aspects, respectively. In addition, the
deep graph-sequence model, graph convolutional LSTM, is fur-
ther employed to simultaneously characterize both the spatial
and temporal aspects of mobile demand forecasting. Experiments
demonstrate that our proposed graph-sequence demand fore-
casting model could achieve a superior forecasting performance
compared with the other two proposed models as well as the tra-
ditional auto regression integrated moving average time series
model.

Index Terms—Communication system traffic, mobile learning,
statistical learning.

Manuscript received February 10, 2018; revised April 3, 2018; accepted
April 19, 2018. Date of publication May 1, 2018; date of current version
August 9, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61622101 and Grant 61571020,
in part by the National Science and Technology Major Project under Grant
2018ZX03001031, and in part by the National Science Foundation under
Grant DMS-1521746 and Grant DMS-1737795. (Corresponding author:
Xiang Cheng.)

L. Fang and L. Yang are with the Department of Electrical and Computer
Engineering, Colorado State University, Fort Collins, CO 80523 USA (e-mail:
luoyang.fang@colostate.edu; lqyang@engr.colostate.edu).

X. Cheng is with the State Key Laboratory of Advanced Optical
Communication Systems and Networks, School of Electronics Engineering
and Computer Science, Peking University, Beijing 100871, China (e-mail:
xiangcheng@pku.edu.cn).

H. Wang is with the Department of Statistics, Colorado State University,
Fort Collins, CO 80523 USA (e-mail: wanghn@stat.colostate.edu).

Digital Object Identifier 10.1109/JIOT.2018.2832071

I. INTRODUCTION

W ITH the explosive growth of wireless data traffic
and large-scale penetration of mobile devices into

our everyday life, the massive data generated from mobile
devices and mobile networks, termed as mobile big data [1],
could significantly reveal the human activity patterns, which
is valuable in both data-driven personalized applications and
data-driven public services. In [2], one of the highlighted char-
acteristics of mobile big data is its spatiotemporal feature.
In fact, the cell towers or base stations of a mobile network
spatially distributed in an area could be regarded as sensors,
recording the location of the network subscribers without the
proactive location update via GPS by subscribers.

The mobile big data collected by mobile network opera-
tors can also benefit the management of mobile networks.
In fact, mobile big data could help uncover and understand
user’ behavior patterns [3] via effective data mining tech-
niques, which could benefit to the resource-constraint network
optimization, from network planning, network traffic monitor-
ing to network management. In recent years, self-organizing
networks (SONs) is widely studied to automatically manage
and organize networks without manual intervention [4], [5].
One motivation to employ SONs in cellular networks is the
reduction of network operational expenditures and capital
expenditures, which requires full exploitation of the capability
of network infrastructure. The demand forecasting will play an
important role of providing predictive knowledge [6] in vari-
ous cellular SON functions, especially for the future cellular
networks with the virtualization and cloudization of network
functions [7], [8].

In addition, the studied mobile demand forecasting is not
only a critical problem in cellular networks, but also closely
related to the domain of Internet of Things (IoT). First, each
base station of cellular networks can be regarded as an IoT
device to track and monitor network subscribers’ behavior
in terms of the aggregated traffic demands. This makes the
studied demand forecasting a widely useful IoT application.
Second, the interconnection between IoT devices and control
centers will be realized by the machine-type communications
in cellular networks via various low power wide area network
technologies [9], where the IoT-type traffic demand forecast-
ing in cellular networks will be critical to facilitate an efficient
network resource schedule and management for IoT services,
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especially in the context of service-oriented network operation
in 5G networks [10]. Third, the proposed graph-sequence
models of mobile demand forecasting may be extended to
other forecasting problems in the domain of IoT, e.g., IoT-
enabled load forecasting in smart grid [11], [12] and air quality
forecasting [13].

In this paper, we study the mobile demand forecasting, the
foundation of predictive mobile network management. In the
literature, the mobile traffic/demand forecasting schemes have
been studied for traffic apprehension and prediction via the
Holt–Winter’s exponential smoothing technique [14], informa-
tion theory [15], and the seasonal auto regression integrated
moving average (ARIMA) model [16]. However, all these
demand forecasting models only consider the temporal aspect
via various time series models without taking into account
the spatial relevancy of cells. Models of mobile demand fore-
casting accounting for the spatial relevancy have been recently
studied based on deep learning [17], [18]. In these models, the
temporal aspect of demand time series is commonly studied
via the recurrent neural networks (RNNs), while the spatial
relevancy is captured by various grid-based spatial models.

However, the main challenge of applying grid-based spatial
models to per-cell demand forecasting is the irregular spatial
distribution of cells in the real-world setting. Generally, the
cell towers are distributed in a network covered area accord-
ing to the population density. That is, the distance between two
cell towers is about 500 m. in the urban area, but can reach
2000 m in the rural area. Hence, grid-based models [17], [18]
do note directly apply. To utilize the grid-based models, one
first needs to redivide the network covered area into a uni-
form square grid, and then predict the aggregated demands of
multiple cell towers residing in each lattice. Such spatial area
redivision and demand aggregation will lead to the loss of the
spatial granularity and will significantly limit the applications
to future cellular network management that requires variable
spatial granularity.

To this end, we propose a flexible graph-based spatial
model for the per-cell demand forecasting without any spatial
resolution degradation and data aggregation. First, we realize
that the spatiotemporal analysis of the per-cell demand time
series via the semivariogram [19] reveals that the relevancy
between the demands of two cells relies on the spatial dis-
tance of the two cells. That is, the dependency level of two
cells would decrease when their spatial distance increases.
Hence, we can build a dependency graph characterizing the
relevancy of cells based on their spatial distances. In others
words, the per-cell demands generated at each cell tower could
be regarded as signals generated at the vertices of a graph.
In addition, not only the recent demand history is applied to
forecast the future demands, but also the periodic history [e.g.,
day(s) ahead demands] are considered in order to obtain an
accurate demand predictor.

With the dependency graph formulation, the recently devel-
oped graph convolutional networks (GCNs) [20], [21] and the
long short-term memory (LSTM) neural networks [22] are
employed to characterize the spatial aspect and the temporal
aspect for demand forecasting, respectively. The LSTM is a
gated version of RNNs in deep learning, which is well known

for its good performance on sequence modeling. In GCNs, the
graph convolution operation, originated from signal process-
ing theory on graphs [23]–[25], is employed to replace the
matrix multiplication in the feedforward neural networks. The
power of graph convolution results from the ideas of parameter
sharing and sparse interaction as in the traditional convolu-
tional neural networks [26]. The sparse interaction in per-cell
demand prediction means that the demand prediction of one
cell is only related to itself and its nearest neighbors in the
dependency graph. The parameter sharing assumes that the
model parameters are shared across all cells of the network.

In this paper, we first formulate the demand forecasting
problem as a one-step ahead demand prediction problem. The
demand forecasts after one step in the future are dynam-
ically generated by the one-step ahead predictor. Three
models, namely the spatial-only (GCNs), the temporal-only
(LSTM), and the spatiotemporal [graph convolutional LSTM
(GCLSTM)], are studied. The GCLSTM [27] is the model
replacing the matrix multiplication operation with the graph
convolution operation in LSTM, inspired by the convolutional
LSTM [28]. Compared with GCLSTM, LSTM without the
embedded spatial information will predict the demand of one
cell based on all other cells in the network, which would
lead to an inferior generalization performance. Experiments
show that the temporal-only LSTM could achieve a supe-
rior performance for the very-short-term demand forecasting
for its much larger model capacity, but rapidly deteriorates
when the forecast horizon increases. This results from the
inferior generalization performance of LSTM and the accu-
mulated errors in the generated predicts. The GCLSTM with
the spatial and the temporal aspects modeled will generally
have a superior forecast performance except for the very-short-
term one. Main contributions of this paper are summarized as
follows.

1) To the best of the authors’ knowledge, this is the first
work modeling the spatial relevancy among cells by a
dependency graph. The graph-based spatial modeling
could completely retain the spatial granularity without
any data aggregation.

2) The periodicity of the per-cell demand time series is
explicitly taken into account by adding past periodic
observations as input features in our studied models
so that the accuracy of demand forecasting could be
enhanced without significantly increasing model size.

3) The graph convolutional and RNNs are proposed to
simultaneously characterize both the spatial and tem-
poral attributes with parameter sharing, which could
lead to a superior generalization performance of demand
forecasting.

The rest of this paper is organized as follows. In Section II, the
studied dataset is described and the per-cell demand is defined.
The per-cell demand forecasting problem in Section III is
identified with the spatial and temporal aspects modeled.
In Section IV, three demand prediction models based on
GCN, LSTM, and GCLSTM are proposed. In Section V,
experiment results are compared to demonstrate the superior
performance of GCLSTM. Finally, concluding remarks are
made in Section VI.
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Fig. 1. Cell distribution heatmap.

II. DATASET

A. Signaling Dataset

The signaling data is collected near the radio access
networks in a cellular network, which records communication
events as well as location update events on all active sub-
scribers in mobile networks. Data fields of the signaling data
include: 1) subscriber’s anonymized identifier; 2) time stamp
(e.g., 20160101184312); 3) location coordinates (i.e., the lon-
gitude and latitude of cell towers); 4) event type; and 5) cell
type (i.e., small cell or macro cell). The longitude and lati-
tude coordinates where the cell tower is located are accurate
to 6 decimal places and time stamps are accurate to seconds.
The signaling data logs event type as well as the direction
of the event (e.g., initiating a call or being called). In the
studied dataset, more than 6000 cells in total including small
and macro cells with millions of subscribers are recorded in
the studied dataset, as shown in Fig. 1. In the studied dataset,
the average daily active subscribers is about three million. The
time period of the studied signaling data is 104 days, from
August 22, 2016 to December 3, 2016.

B. Per-Cell Demands

Based on the studied signaling dataset, two categories of
service demands could be extracted, namely communication
demands and tracking demands. The communication demands
including the first 4 events on calls and texts recorded in
the signaling dataset, to forecast which is the very task of
this paper. The tracking demands could be obtained based
on the location update events, which is closely related to
crowd mobility. The location update frequency is once per
hour, which may be too coarse to exactly describe the crowd
flow, especially in the urban area (where cells are densely
distributed). Hence, we focus on the communication demand
forecasting in this paper.

With the spatiotemporal information of each event
recorded, we define the per-cell demand as the number of
communication events occurring within a cell during an event
counting time window �T. Hence, a per-cell demand time
series could be generated as follows:

[
xn

t , xn
t−1, xn

t−2, . . . , xn
t−l+1, . . .

]
(1)

where xn
t = ln(1+cn

t ) denotes the per-cell demand within time
window [t−�T, t), where cn

t is the number of communication

events of the nth cell. Here, we utilize the commonly used
logarithm function ln(1+x) to convent the integer event num-
ber domain to the real number domain of demands. In this
paper, we mainly study the demand forecasting in terms of
the 10-min counting time windows, i.e., �T = 10.

It can be clearly observed that small cells are densely
deployed in the studied urban area (green areas as shown in
Fig. 1). In a heterogeneous cellular networks, small cells are
designed to assist their corresponding macro cell by offloading
data traffic, whose coverage is also relatively much smaller
than that of macro cells. As a result, the communication
demands of small cells is sparse, which is not of interest in
this paper. Hence, we aggregate the demand of small cells
to its corresponding macro cell, which is determined by their
spatially closest macro cell based on the location information
(i.e., the longitude and latitude of cell towers). In other words,
we study the per-cell aggregated demands within a spatial area
covered by a macro cell.

In Fig. 2, the per-cell demands with different cell types are
illustrated, namely business, entertainment, and residence. In
each subfigure, three demand time series with different count-
ing time window are plotted, �T = 5 min, �T = 10 min,
and �T = 20 min. One can easily observe that the large
counting time window could significantly reduce the noise of
the per-cell demand time series, as the larger counting time
window acts like a smoothing filter applied on the one gener-
ated by the small counting time window. However, such noise
reduction is at the cost of lowering the temporal resolution of
demand time series. In addition, it can be easily observed that
per-cell demands are strongly periodic in terms of calendar
days, regardless of cell types. Another periodic effect, that the
demands during weekends is obviously less than those during
weekdays, could be observed from the demand time series
of the business type [Fig. 2(a)]. Such effects would inspire
the feature engineering for demand forecasting, which will be
discussed in detail later.

III. DEMAND PREDICTION PROBLEM FORMULATION

With the definition of per-cell demands, the demand fore-
casting is aimed to predict the per-cell demands of all cells in
a mobile network based on its history. In this paper, demand
forecasting is studied as the one-step ahead prediction problem
as follows:

x̂t+1 = f (xt, xt−1, . . . , xt−l+1, . . .) (2)

where xt = [x1
t , x2

t , . . . , xN
t ]T denotes the per-cell demands of

cells across the covered area at time t and N is the total number
of macro cells in the network. Hence, the prediction problem
essentially amounts to the estimation of a function or predictor
f based on the collected history data and the knowledge of
cell locations. In this section, we will discuss the one-step
ahead demand prediction with the innovative spatiotemporal
modeling.

A. Graph-Based Spatial Formulation

By the spatiotemporal analysis of multiple per-cell demand
time series (see Section V-B, Appendix B), it can be concluded
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(a) (b) (c)

Fig. 2. Demand time series of various cell type, where the 7-day demands are recorded from November 27, 2016 to December 3, 2016 and 24-h demands
are recorded on November 27, 2016. (a) Business cell is located in the central business district (CBD), (b) entertainment-type cell is located in a public park,
and (c) residence area is located in a large residential area.

that the demand relevancy between two cells declines when
their spatial distance increases. Hence, we first propose to
model the spatial relevancy between cells in the network by a
dependency graph. The adjacency matrix A of the dependency
graph can be obtained based on the spatial distance between
cells as follows:

Aij =
{

1, dist
(
si, sj

) ≤ ζ

0, otherwise
(3)

where si denotes the location of cell i and ζ is the threshold, a
hyperparameter that could be tuned. We set ζ = 2 km in this
paper. In fact, the threshold suggests that any two cells whose
distance is beyond the threshold will be considered irrelevant.
Such graph modeling could successfully make the cell rele-
vancy sparse (from N2 to

∑
i,j Ai,j), which can lead to a good

demand forecasting generalization performance with the graph
modeled in the predictor as detailed in Sections IV and V. As
a result, each cell could be regarded as a vertex in the spatial
dependency graph and the per-cell demand xt is viewed as the
signal observed at each vertex of the graph at time t.

B. Periodicity-Based Temporal Features

As shown in Fig. 2, it is obvious that the per-cell demand
time series is periodic with respect to calendar days or weeks.
In fact, such periodicity could provide valuable informa-
tion for one-step ahead per-cell demand prediction at time t.
Accordingly, we could reformulate the per-cell demand time
series in terms of calendar days at time t as follows:

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

xi
t xi

t−1 · · · xt−L+1 · · ·
xi

t−nd
xi

t−1−nd
· · · xt−L+1−nd · · ·

xi
t−2nd

xi
t−1−2nd

· · · xt−L+1−2nd · · ·
. . .

. . .
. . .

. . .
. . .

xi
t−7nd

xi
t−1−7nd

· · · xt−L+1−7nd · · ·
. . .

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

where nd denotes the number of per-cell demand observa-
tions in one calendar day. To predict xi

t+1, not only the recent
demand history [xi

t, xi
t−1, . . . , xi

t−L+1] of cell i is taken into
accounts, but also their corresponding days ahead demand
observations will be regarded as input features for a predic-
tor. Here, we only take the one-day ahead and 6-day ahead

observations as the extra features in order to make the pre-
dictor more dependent on the current trend. Hence, the input
features of all cells in the network at time t take the form

Zt =
[
z1

t , z2
t , . . . , zN

t

]T
(4)

where zi
t denotes the input features of cell i at time t, i.e.,

zi
t = [xi

t, xi
t−nd

, xi
t−7nd

].

C. Graph-Sequence Demand Prediction Formulation

Based on the spatial and temporal modeling discussed
above, the one-step ahead demand prediction problem could
be further expressed as

x̂t+1 = f (Zt, Zt−1, . . . , Zt−L+1; A) (5)

where L is the length of recent history used for demand
prediction. We will discuss the selection of L in Section V.
In this paper, we employ the commonly used mean abso-
lute predicted error (MAE) as the evaluation criterion and
cost function. Hence, the demand prediction problem could
be expressed as follows:

min
f

�
T E

[∣∣xt+1 − x̂t+1
∣
∣]

N
. (6)

Next, we will discuss the proposed per-cell demand predic-
tor with effective graph and sequence information embedded
based on deep learning.

IV. DEEP GRAPH-SEQUENCE SPATIOTEMPORAL

MODELING

In this paper, the graph-based (GCN) model and the
sequence-based model (LSTM) are first proposed to individu-
ally capture the spatial and temporal aspects, respectively. In
addition, we study their integrated version (GCLSTM), which
embeds the graph information in the sequence model.

A. Spatial Modeling—GCNs

The graph convolution is the convolution operation in graph
signal processing (GSP) domain, defined as gθ (L) � xt, where
L = D − A denotes the graph Laplacian and gθ (L) denotes
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Fig. 3. Spatial modeling: GCNs.

a filter with respect to the graph L. The graph convolu-
tion would relate the signal of one vertex to others in terms
of the graph topology, where the corresponding graph fil-
ter coefficients could be trainable based on data. Details of
the graph convolution and graph filter description refer to
Appendix A.

As only the nearest neighbors are considered in this paper,
the first-order graph filter based on (19), g(1)

θ (�) = θ0 + θ1�,
is considered. Kipf and Welling [20] proposed a simple
first-order graph filer approximation based on Chebyshev poly-
nomials of first kind [21] by forcing θ = θ0 = −θ1 as
follows:

g(1)
θ (̃L) � xt = D̃

− 1
2 ÃD̃

− 1
2 xtθ (7)

where Ã = I + A and D̃ is a diagonal matrix, D̃ii = ∑
j Aij.

Therefore, a GCN could be built based on the approxi-
mated first-order graph convolution operation to replace the
matrix multiplication in the feedforward neural networks,
which embeds the prior knowledge of graph topology into the
learning model. As a result, each layer of GCNs is defined as1

Hl+1 = σ

(
D̃

− 1
2 ÃD̃

− 1
2 Hl�l

)
(8)

where σ(·) denotes the activation function for nonlinearity
modeling. Hl ∈ RN×nl denotes the inputs of the lth layer
and �l ∈ Rnl×nl+1 is the trainable parameters in the model.
Again, N denotes the number of vertices of the graph. In each
graph convolution operation, the Hl�l in (8) is first to learn the
pattern in a cell-wise manner with shared parameters �l. The
product of Hl�l and D̃

−(1/2)
ÃD̃

−(1/2)
is essentially equivalent

to the weighted sum over the cell and its first-order neighbors.
In the context of the per-cell demand prediction problem,

we propose a three-layer GCN as the demand predictor f as
detailed in Model 1 and Fig. 3.

Model 1 (GCN): A per-cell demand predictor is approxi-
mated by a three-layer GCN, x̂t+1 = f̂ (Z(GCN)

t , A), i.e.,

Layer 1: H(1) = σ
(

ÂZ(GCN)
t �(1)

)
, �(1) ∈ R(L×F)×n1

Layer 2: H(2) = σ
(

ÂH(1)�(2)
)
, �(2) ∈ Rn1×n2

Layer 3: x̂t+1 = ÂH(2)�(3), �(3) ∈ Rn2 × 1 (9)

where Â = D̃
−(1/2)

ÃD̃
−(1/2)

and Z(GCN)
t denotes the input of

the GCN with L-length window.

1For simplicity, we ignore the bias terms in the presentation of each studied
model.

Here, Z(GCN)
t is the L-length demand history with days

ahead features as the input, i.e.,

Z(GCN)
t = [

Zt, . . . , Zt−L+1
]
.

In other words, the L-length demand history and extra days
ahead features of each cell are regarded as its input features
of GCNs without the explicit sequence modeling. As a result,
the total number of free trainable parameters in the proposed
three-layer GCN is nh1(L × F) + nh1nh2 + nh2 .

B. Temporal Modeling—LSTM

In the literature, the RNNs is proved to be an effective
sequence model [29], which is designed to capture the sequen-
tial information inherited in data, e.g., audio, nature language,
etc. Essentially, RNNs adds a feedback path in the feedfor-
ward neural networks, which could provide the information
of the previous inputs so that the current output is not only
dependent on the current inputs but also relies on the hidden
state learned from previous inputs as follows:

ht = σ(Wzt + Vht−1) (10)

where ht−1 denotes the hidden states updated previously.
The LSTM networks is one of special designed RNNs,

which has a capability of controlling the updating process by
adding three gates, namely input gate gi, forget gate gf , and
output gate go in a LSTM cell

gi = σ(Wizt + Viht−1)

gf = σ
(
Wf zt + Vf ht−1

)

go = σ(Wozt + Voht−1) (11)

where σ(·) denotes the sigmoid function. These gates control
how much information should be passed through in different
places of LSTM cells as follows:

ct = gf ◦ ct−1 + gi ◦ tanh(Wcxt + Vcht−1)

ht = go ◦ tanh(ct) (12)

where ct and ht denote the cell state and the hidden
state at time t, respectively. Here, the operator “◦” denotes
the element-wise multiplication. In LSTM, the cell state is
employed to remember the current state of the cell and the
hidden state records the output of the LSTM cell, which could
be further inputted to next layer of the network.

In this paper, we propose a three-layer LSTM network as
a per-cell demand predictor as described in Model 2, which
regards the per-cell demand of all cells at each time stamp as
inputs.

Model 2 (LSTM): A per-cell demand predictor is approxi-
mated by a three-layer LSTM network with two LSTM layers
and one full-connection layer. The LSTM sequence model
is demonstrated in Fig. 4 and illustrated mathematically as
follows:

Layer 1:
(

h(1)
t , c(1)

t

)
= η

(1)
lstm

(
z(LSTM)

t , h(1)
t−1, c(1)

t−1

)

Layer 2:
(

h(2)
t , c(2)

t

)
= η

(2)
lstm

(
h(1)

t , h(2)
t−1, c(2)

t−1

)

Layer 3: x̂t+1 = W(3)h(2)
t (13)
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Fig. 4. Temporal modeling: LSTM.

where η
(i)
lstm(·, ·, ·) denotes the updating function of the layer i

LSTM cell as described in (11) and (12), in which the trainable
parameters are listed as follows:

Layer 1: W(1)
i,o,f ,c ∈ R(N×F)×nh1 , V(1)

i,o,f ,c ∈ Rnh1×nh1

Layer 2: W(2)
i,o,f ,c ∈ Rnh1×nh2 , V(2)

i,o,f ,c ∈ Rnh2×nh2

Layer 3: W(3) ∈ Rnh1×nh2

where nh1 and nh2 denote the size of hidden states in layers 1
and 2, respectively.

Here, the input z(LSTM)
t is a vector that contains features

of all cells at time t, whose size is (N × F) × 1. As a
result, the number of trainable parameters in Model 2 is
4nh1(N × F + nh1) + 4nh2(nh1 + nh2) + nh2N. In LSTM, we
only model the temporal aspect of the per-cell demand data,
but omit the spatial information. In other words, the spatial
local dependence is not considered in the LSTM model, but
the full connection from one cell to all other cells are taken
into account, which may lead to overfitting issue in the LSTM
model.

C. Spatiotemporal Modeling—GCLSTM

With the spatial and temporal information modeled,
the LSTM and GCN can be integrated to utilize both
the spatial and temporal information, which is termed
as GCLSTM. In GCLSTM, the global connection among
vertices (matrix multiplication in LSTMs) is replaced
by the local graph convolution (8) in each gates as
follows:

Gi = σ
(
Â(Zt�i + Ht−1� i)

)

Gf = σ
(
Â(Zt�f + Ht−1� f )

)

Go = σ
(
Â(Zt�o + Ht−1�o)

)
(14)

where Gi,f ,o ∈ RN×nh . Also, the hidden states are also updated
locally as follows:

Ct = Gf ◦ Ct−1 + Gi ◦ tanh
(
Â(Zt�c + Ht−1�c)

)

Ht = Go ◦ tanh(Ct). (15)

Accordingly, a per-cell demand predictor based on GCLSTM
is proposed to model both the spatial and temporal dimen-
sion of the per-cell demand time series as illustrated in
Model 3.

Fig. 5. Spatiotemporal modeling: GCLSTM.

Model 3 (GCLSTM): A per-cell demand predictor is
approximated by a three-layer GCLSTM with two layers
of GCLSTM cells and one graph convolutional layer (as
demonstrated in Fig. 5), i.e.,

Layer 1: (H(1)
t , C(1)

t ) = η
(1)
gclstm

(
Zt, H(1)

t−1, C(1)
t−1

)

Layer 2: (H(2)
t , C(2)

t ) = η
(2)
gclstm

(
H(1)

t , H(2)
t−1, C(2)

t−1

)

Layer 3: x̂t+1 = ÂH(2)
t �(3) (16)

where η
(i)
gclstm(·, ·, ·) denotes the layer i GCLSTM cell based

on (14) and (15), where the trainable parameters are illustrated
as follows:

Layer 1: �1
i,f ,o,c ∈ RF×nh1 ,�1

i,f ,o,c ∈ Rnh1×nh1

Layer 2: �2
i,f ,o,c ∈ Rnh1×nh2 ,�2

i,f ,o,c ∈ Rnh2×nh2

Layer 3: �3 ∈ Rnh2×1.

Again, nh1 and nh2 denote the size of hidden states in layers
1 and 2, respectively.

Here, the input Zt at time t is a matrix with the shape
N × F defined by (4). The number of trainable parameters is
4nh1(nh1 + F)+ 4nh2(nh2 + nh1)+ nh2. Compared with LSTM,
the number of trainable parameters could be largely reduced,
since the parameters are shared across the graph with local
dependence modeled. Such parameter sharing could mitigate
the overfitting problem by structurally shrinking the capacity
of the model. Details of model comparisons are summarized
in Table I.

V. EXPERIMENTS

In this section, we verify three proposed spatial, tempo-
ral, and spatiotemporal models based on the extracted per-cell
demand data of 718 cell towers in the mobile network. The
per-cell demands are first normalized by their mean and stan-
dard deviation in a cell-wise manner. The demand predictors
proposed in this paper are implemented by PyTorch [30],
which is a deep learning framework with automatic dif-
ferentiation and dynamic computational graph. The training
dataset is from August 22, 2016 to November 26, 2016
and the test dataset is from November 27, 2016 to
December 3, 2016.
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TABLE I
COMPARISONS OF THREE PER-CELL DEMAND PREDICTION MODELS

Fig. 6. ACF and partial ACF of demand time series with event counting
time windows �T = 10 min.

A. Per-Cell Demands Autocorrelation Analysis

We first investigate the autocorrelation analysis of the per-
cell demands in a cell-wise manner, in order to determine the
window length L should be taken into account for one-step
ahead prediction. In the literature, the autocorrelation analysis
and its partial derivative are commonly adopted to determine
the order of ARIMA model. Specially, the autocorrelation
function (ACF) would decide the order of the moving average,
while the partial ACF could shed lights on the order selection
for the autoregression. While the proposed time series model
is quite different from ARIMA, the autocorrelation analy-
sis could still be employed to suggest the window-length L
selection.

Fig. 6 shows the correlation analysis on the per-cell demand
time series with the counting time window, �T = 10. As the
per-cell demand is strongly periodic with respect to calendar
days as shown in Fig. 2, the per-cell demand of cell i can
be further decomposed into two parts, mean and its random
component

xi
d = x̄i

d + εi

where x̄i
d is the periodic component. Hence, Fig. 6 shows

two kinds of curves, namely the direct and the periodic (sea-
sonal) component reduced, which demonstrate the (partial)
autocorrelation analysis directly on the per-cell demand time
series and the random component, respectively. It could be
clearly observed that the PACF curves rapidly decrease to zero
with the time lag increased, while the ACF curves are slowly
decreasing, especially the direct one. One can conclude that
one hour history is sufficient for one-step ahead prediction,

Fig. 7. Spatiotemporal semivariogram.

Fig. 8. Semivariogram in terms of spatial distance.

but longer history could benefit to capture the random compo-
nent in the time series. As a result, we compare the different
history lengths (half-hour, 1-hour, 2-hour, and 3-hour) for all
three proposed models in various settings.

B. Spatiotemporal Analysis

The objective of the spatiotemporal analysis on the multiple
per-cell demand signals is to evaluate how demand signals vary
in space and time. In other words, the correlation between two
signals in terms of both the time lags and the spatial distance
is of significant interest. Such spatiotemporal analysis would
lead to our critical spatial modeling of demands observed by
many cells irregularly spatially distributed.

In this paper, the semivariogram, originated from spatial
statistics, is employed to analyze the per-cell demands. Details
of semivariogram refer to Appendix B. Fig. 7 shows the
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Fig. 9. Example of dynamic per-cell demand forecasting.

Fig. 10. MAE performance of dynamic forecasting over all cells.

semivariogram of per-cell demand time series with different
counting time window lengths �T = 10. Based on the defini-
tion of semivariogram (22), the small value of semivariogram
indicates the high dependence between signals separated at
distance h and time lag τ . It could be observed that the
semivariogram slowly grows along the time lag axis when
h = 0, which suggests that the current per-cell demand is
high correlated with its own history.

As for the spatial dependence, it can be observed in Fig. 8
that the value of semivariogram will stay the same after the
spatial distance is 4 km. Such flat curve suggests that any
two cells with the distance larger than 4 km could be consid-
ered as irrelevant. In this paper, two-layer graph convolution
operations are employed in each graph-based model, to mimic
second order graph filter based on the simple first-order graph
filter approximation. Accordingly, we set the threshold ζ to
be 2 km to capture the neighbors within 4 km after two-layer
graph convolution operations.

C. Prediction Performance

In this paper, we employ the MAE as the criterion to
evaluate the predictors studied in this paper. Though the fore-
cast problem is formulated as a one-step ahead prediction
problem (2), the per-cell demand predictor should be capable
of forecasting the demands of a future time window. In fact,

Fig. 11. Compared with SARIMA (1, 0, 1) × (1, 1, 1).

the demand forecasting is fulfilled by the dynamic prediction
via the one-step ahead predictor, which would take predicted
demands as inputs to further forecast the future demands, e.g.,
x̂t+2 = f (x̂t+1, xt, . . .).

As a results, two parameters, forecast horizon and forecast
resolution, are important for a forecasting problem. The fore-
cast resolution relies on the length of event counting time
window, which is a predict per 10 min in this paper. In this
paper, we focus on the studied models with the forecasting
horizon of 24 h. In [16], a seasonal ARIMA model is proposed
to predict the per-cell demands of a single cell with seasonal
component modeled, SARIMA (1, 0, 3) × (1, 1, 1)

(
1 − ar1z−1

)(
1 − sar1z−nd

)(
1 − z−nd

)
xi

t

=
(

1 + ma1z−1 + ma2z−2 + ma3z−3
)(

1 + sma1z−nd
)
εt

where εt denotes the noise component and z−1 denotes
the operation of one time lag. Though SARIMA cannot
model the spatial correlation among cells nor simultaneously
predict the per-cell demands across the entire network, we
could still perform the comparisons in a cell-wise manner.
In Fig. 9, an example of 24-hour demand forecasting of
a cell is showed, including the proposed models and the
SARIMA. It could be clearly observed that the predicts by
the SARIMA is more fluctuate than that of our models, while
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(a) (b) (c)

Fig. 12. MAE comparison between different window length L, where the event count time window is 10 min. (a) GCN. (b) LSTM. (c) GCLSTM.

our proposed models smoothly trace the ground truth curve.
In Fig. 10, the average predicted MAE comparisons among
three proposed models over all cells in the network is demon-
strated. Overall, the spatiotemporal model (GCLSTM) is the
best except for the case that forecast horizons are less than
5 h. As the capacity of the LSTM model without param-
eter sharing and locality modeling is much larger than the
one of GCLSTM, demonstrated by their number of train-
able parameters (see Table I), the LSTM can well capture
the insight for one-step ahead prediction. However, the LSTM
also easily models the noise into the predictor during train-
ing, which could lead to the overfitting issue and worsen the
forecasting performance of the model. Fig. 11 also demon-
strates the our proposed GCLSTM model performs better than
the SARIMA.

Fig. 12 illustrates the differences of demand history length
for per-cell demand prediction. Overall, the longer demand
history could definitely improve the accuracy for large fore-
cast horizon, especially for the LSTM-based models, which
may result from the hidden states of LSTM-based models
could remember more information when their hidden states
are updated longer. On the other hand, the GCN model is not
sensitive to the demand history length when L ≥ 6 (longer than
or equal to 1 h) due to the lack of explicit temporal modeling,
as shown in Fig. 12(a).

D. Discussion

As demonstrated in the experiment results, the LSTM model
could always have the best performance for the very-short-
term demand forecasting, namely less than 3 h. However, due
to accumulated error during dynamic prediction and week gen-
eralization of the LSTM model, the GCLSTM model is more
capable for the short-term, mid-term, and day ahead demand
forecasting. The GCN is also stable for such forecast horizons
but is less accurate, while the number of trainable parame-
ters is much smaller as illustrated in Table I. The SARIMA
model performs well for the per-cell demands prediction task,
but it is modeled in a cell-wise manner. That is, the per-cell
demand needs to be predicted cell-by-cell. As a result, the
parameters of SARIMA is linearly scaling with the number
of cells in the network, while our proposed GCLSTM takes
both the spatial and temporal into accounts with fixed number

trainable parameters and could have a relative small trainable
parameters for a large mobile network.

VI. CONCLUSION

In this paper, we study the per-cell demand forecasting
in cellular networks. To deal with the irregular cell spa-
tial distribution for spatial relevancy modeling among cells,
we proposed to model the spatial relevancy among cells as
a dependency graph based on spatial distances among cells
without losing spatial granularity. Accordingly, we studied
three models for demand forecasting, the spatial only (graph),
the temporal only (sequence), and the spatiotemporal model
(graph-sequence) based on deep learning. The spatiotemporal
model simultaneously could capture both the spatial and tem-
poral aspects in demand forecasting, which could achieve a
superior forecasting performance demonstrated by experiment
results.

APPENDIX A

GRAPH FILTERS AND GRAPH CONVOLUTION

The GSP [23]–[25] is recently developed to deal with sig-
nals generated from a graph, such as social networks and
sensor networks, which is a general extension of the traditional
signal processing techniques from regular sampled data (e.g.,
audio or image) to the irregular data (social network data). The
GSP combines both the signal processing and graph spectral
theory, to fulfill the standard signal processing operations on
the graph, e.g., convolution, filtering, translation, etc.

The main motivation of building a spatial dependence graph
in this paper is to predict the demand of one cell not only
based on the its own demand history but also taking the
demand history of its neighbors into account. In the GSP the-
ory, such motivation could be captured by the graph Laplacian
operation

(L · xt)i =
∑

j∈Ni

[
xi

t − xj
t

]
(17)

where L = D−A is the graph Laplacian and D is the diagonal
matrix, i.e., Dii = ∑

j Aij, recording the connectivity of each
vertex in the graph. Intuitively, the graph Laplacian operation
is essentially to capture the information of one vertex and its
nearest neighbors.
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Analogous to the filter design in the traditional signal pro-
cessing, a graph filter could be expressed as polynomials in
terms of the graph Laplacian [23]

gθ

(̃
L
) = θ0I + θ1L̃ + θ2L̃

2 + · · · + θK L̃
K

(18)

where L̃ is the normalized graph Laplacian, i.e., L̃ = I −
D−(1/2)AD−(1/2). And θk is the filter coefficient of tap k. The
order of graph filters would determine the order of neighbors
of vertices in the graph affected by the filter.

By the eigendecomposition on the graph Laplacian, L̃ =
U
UT , any graph signal could be transformed to the cor-
responding graph spectral domain, X = Ux, analogous to
the discrete Fourier transform [23]–[25], where the eigen-
vectors U are viewed as a basis. As a result, the graph
filter could be further expressed in the graph spectral
domain

gθ (�) = θ0 + θ1� + θ2�
2 + · · · + θK�K . (19)

Hence, the graph convolution operation gθ (̃L) ∗ xt can be
calculated as multiplication operations in the graph spectral
domain

gθ

(̃
L
)
� xt = Ugθ (�)UTxt. (20)

APPENDIX B

SPATIOTEMPORAL SEMIVARIOGRAM

The per-cell demand time series (1) could be further
expressed in terms of both the spatial and temporal aspects as
follows:

z(sn, t) = xn
t (21)

where sn represents the detailed spatial information of the nth
cell (i.e., location coordinates). The semivariogram γ (h) is a
function to describe the spatial dependence of two stochastic
processes generated in two locations sn and sm separated at h
distance

γ (h) = E
[
(z(sn) − z(sm))2

∣
∣∣ dist (sn, sm) = h

]
.

With the temporal dependence considered, the time lag τ

should be further considered atop the spatial variogram
γ (h)

γ (h, τ ) = E
[
(z(s, t) − z(s + h, t + τ ))2

]
.

However, the cell towers are distributed irregularly in the
covered area according to the population density. Hence,
we analyze the multiple per-cell demand processes in terms
of the empirical spatiotemporal semivariogram [19], [31] as
follows:

γ (h(l), τ ) = 1

|N (h(l), τ )|
×

∑

(n,m,t,t′)∈N (h(l),τ )

[
z(sn, t) − z

(
sm, t′

)]2
(22)

where

N (h(l), τ ) = {(
n, m, t, t′

)|dist (sn, sm) ∈ h(l),
∣∣t − t′

∣∣ = τ
}
.

The N (h(l), τ ) is a set to collect any signal pairs spatially
separated at distance within the distance tolerance h(l) and
temporally separated at τ . The distance tolerance h(l) is
employed to discretize the continuous spatial distance. In this
paper, we utilize a linear uniform discretization with the spa-
tial resolution 0.5 km. As a result, h(l) = [(l − 1) × 0.5,

l × 0.5).
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