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Abstract

We prove universality for the fluctuations of the halting time for the Toda algo-
rithm to compute the largest eigenvalue of real symmetric and complex Hermit-
ian matrices. The proof relies on recent results on the statistics of the eigenvalues
and eigenvectors of random matrices (such as delocalization, rigidity, and edge
universality) in a crucial way. © 2017 Wiley Periodicals, Inc.

1 Introduction

In [22] the authors initiated a statistical study of the performance of various
standard algorithms .27 to compute the eigenvalues of random real symmetric ma-
trices H. Let X denote the set of real N x N symmetric matrices. ASsoci-
ated with each algorithm o7, there is, in the discrete case such as QR, a map
¢ = @ : XN — 2 with the properties

e isospectrality: spec(p (H)) = spec(H),
e convergence: the iterates Xy, = ¢z (Xg), K > 0, Xo = H given,
converge to a diagonal matrix Xeo, Xz — Xoo as k — 00,

and in the continuum case, such as Toda, there is a flow ¢ > X (¢) € Xy with the
properties

e isospectrality: spec(X(¢)) is constant,
e convergence: the flow X(¢), t > 0, X(0) = H given, converges to a
diagonal matrix X, X(f) & Xoo ast — o0.

In both cases, necessarily, the (diagonal) entries of X, are the eigenvalues of the
given matrix H.

Given € > 0, it follows, in the discrete case, that for some m the off-diagonal
entries of X,, are 0(¢) and hence the diagonal entries of X, give the eigenvalues
of Xo = H to O(¢). The situation is similar for continuous algorithms ¢ — X(¢).
Rather than running the algorithm until all the off-diagonal entries are &'(¢), it is
customary to run the algorithm with deflations as follows. For an N x N matrix ¥
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Yiin Yiz
Y = ,
|:Y21 Yzz]
with Y11 of size k xk and Y5, of size N—kxN —k forsome k € {1,..., N—1}, the
process of projecting Y +— diag(Y11, Y22) is called deflation. For a given ¢, algo-

rithm <7, and matrix H € Sy, define the k-deflation time T® (H) = T*) (i),
1 <k < N — 1, to be the smallest value of m such that X,,, the m™" iterate of
algorithm & with Xo = H, has block form

(k) (k)
X, = |:X11 X3 :|
" k) k) |’
Xor Xp;
with X of size k xk and XX of size N —k x N —k and | X&) || =[x < !
The deflation time 7' (H ) is then defined as

_ —  mi )
T(H) =Tew(H) = min T yH).

in block form

Itk € {l,....,N — 1} is such that T(H) = T*)(H), it follows that the eigen-
values of H = Xg are given by the eigenvalues of the block-diagonal matrix
diag(X 1(];) , X (k)) to O'(€). After running the algorithm to time T, 4 (H ), the algo-
rithm restarts by applying the basic algorithm o/ separately to the smaller matrices
X 1(];) and X (g) until the next deflation time, and so on. There are again similar
considerations for continuous algorithms.

As the algorithm proceeds, the number of matrices after each deflation doubles.
This is counterbalanced by the fact that the matrices are smaller and smaller in size,
and the calculations are clearly parallelizable. Allowing for parallel computation,
the number of deflations to compute all the eigenvalues of a given matrix H to a
given accuracy € will vary from &'(log N) to O(N).

In [22] the authors considered the deflation time 7" = T¢ o for N x N matri-
ces chosen from a given ensemble &. Henceforth in this paper we suppress the
dependence on €, N, o/, and &, and simply write 7" with these variables under-
stood. For a given algorithm < and ensemble & the authors computed 7'(H ) for

5000-15 000 samples of matrices H chosen from & and recorded the normalized
deflation time

~ T(H)— (T
(1.1) T(H):= LH,
o

where (T) and 62 = ((T — (T))?) are the sample average and sample variance of
T (H), respectively. Surprisingly, the authors found that for the given algorithm .7,
and € and N in a suitable scaling range with N — oo, the histogram of T" was

! Here we use | - || to denote the Frobenius norm || X |2 = Zi,j | X;j |2 for X = (Xij).
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FIGURE 1.1. Universality for T when (a) o is the QR eigenvalue al-
gorithm and when (b) < is the Toda algorithm. Panel (a) displays the
overlay of two histograms for T in the case of QR, one for each of the
two ensembles & = BE, consisting of i.i.d. mean-zero Bernoulli random
variables (cf. Definition A.1) and & = GOE, consisting of i.i.d. mean-
zero normal random variables. Here € = 1071% and N = 100. Panel
(b) displays the overlay of two histograms for T in the case of the Toda
algorithm, and again & = BE or GOE. Here ¢ = 1078 and N = 100.

universal, independent of the ensemble &. In other words, the fluctuations in the
deflation time 7: suitably scaled, were universal, independent of &. Figure 1.1
displays some of the numerical results from [22]. Figure 1.1(a) displays data for
the QR algorithm, which is discrete, and Figure 1.1(b) displays data for the Toda
algorithm, which is continuous.

Subsequently, in [9], the authors raised the question of whether the universality
results in [22] were limited to eigenvalue algorithms for real symmetric matrices or
whether they were present more generally in numerical computation. And indeed
the authors in [9] found similar universality results for a wide variety of numerical
algorithms, including

e other algorithms such as the QR algorithm with shifts, the Jacobi eigen-
value algorithm, and also algorithms applied to complex Hermitian en-
sembles with H and b random,

e the conjugate gradient and GMRES algorithms to solve linear N x N sys-
tems Hx = b,

e an iterative algorithm to solve the Dirichlet problem Au = 0 on a random
star-shaped region 2 C R? with random boundary data f on 92, and

e a genetic algorithm to compute the equilibrium measure for orthogonal
polynomials on the line.

All of the above results are numerical. The goal of this paper is to establish uni-
versality as a bona fide phenomenon in numerical analysis and not just an artifact
suggested, however strongly, by certain computations as above. To this end we



508 P. DEIFT AND T. TROGDON

Frequency
© © o o
_ _ N N
o o o (2
]

©
=}
o

°
=}
S

5 10 15 20 25 30
k
FIGURE 1.2. The distribution of k for GOE when N = 30, ¢ = 1078
for the Toda algorithm: k = 1, N — 1 are equally likely.

seek out and prove universality for an algorithm of interest. We focus, in partic-
ular, on eigenvalue algorithms. To analyze eigenvalue algorithms with deflation,
one must first analyze T® for 1 <k < N —1, and then compute the minimum of
these N — 1 dependent variables. The analysis of T®) for 1 < k < N — 1 requires
very detailed information on the eigenvalues and eigenvectors of random matrices
that, at this time, has only been established for 7" (see below). Computing the
minimum requires knowledge of the distribution of k such that T(H)=T®H),
which is an analytical problem that is still untouched. In Figure 1.2 we show the
statistics of k obtained numerically for the Toda algorithm.? In view of the above
issues, a comprehensive analysis of the algorithms with deflation currently seems
to be out of reach. In this paper we restrict our attention to the Toda algorithm, and
as a first step towards understanding 7'(H) we prove universality for the fluctua-
tions of T(1(H), the 1-deflation time for Toda; see Theorem 1.2. As we see from
Proposition 1.3, with high probability X11(7 () ~ Ay, the largest eigenvalue of
X(0) = H. In other words, TV (H) controls the computation of the largest eigen-
value of H via the Toda algorithm. Theorem 1.2 and Proposition 1.3 are the main
results in this paper. Much of the detailed statistical information on the eigenvalues
and eigenvectors of H needed to analyze T (H) was only established in the last
three or four years.

In this paper we always order the eigenvalues A, < A,4+1,n = 1,...,N. In
Sections 1.1 and 1.3 we will describe some of the properties of the Toda algorithm
and some results from random matrix theory. In Section 1.2 we describe some
numerical results demonstrating Theorem 1.2. Note that Figure 1.3 for TW(H)
is very different from Figure 1.1(b) for 7 (H). In Sections 2 and 3 we will prove
universality for T for matrices from generalized Wigner ensembles and also

2 A similar histogram for the QR algorithm has an asymmetry that reflects the fact that typically H
has an eigenvalue near 0: For QR, a simple argument shows that eigenvalues near 0 favork = N —1.
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from invariant ensembles. See the Appendix (p. 534) for a full description of these
random matrix ensembles. The techniques in this paper can also be used to prove
universality for the fluctuations in the halting times for other eigenvalue algorithms,
in particular, QR (without shifts)—see Remark 1.5 below.

1.1 Main Result

The Toda algorithm is an example of the generalized continuous eigenvalue al-
gorithms described above. For an N x N real symmetric or Hermitian matrix

X(1) = (Xij (t)){:’ =1 the Toda equations are given by?

(1.2) X =[X,B(X)], B(X)=X_—(X_)*, X(0)=H=H",

where X_ is the strictly lower-triangular part of X and [A4, B] is the standard matrix
commutator. It is well-known that this flow is isospectral and converges as t — 0o
to a diagonal matrix Xoo = diag(Ay,...,A1); see, for example, [8]. As noted
above, necessarily, the diagonal elements of X, are the eigenvalues of H. By
the Toda algorithm to compute the eigenvalues of a Hermitian matrix /' we mean
solving (1.2) with X(0) = H until such time ¢’ that the off-diagonal elements in
the matrix X (¢) are of order €. The eigenvalues of X(z’) then give the eigenvalues
of H to O(e).

The history of the Toda algorithm is as follows. The Toda lattice was introduced
by M. Toda in 1967 [28] and describes the motion of N particles x;,i = 1,..., N,
on the line under the Hamiltonian

1 ¥ N
Hrodqa(x, y) = 2 Z)ﬁz + Zexi—xiﬂ_

i=1 i=1
In 1974, Flaschka [15] (see also [18]) showed that Hamilton’s equations
. OHpda dHToda
- ay YE T
can be written in the Lax pair form (1.2) where X is tridiagonal
Xii=-yi/2, 1=<i=<N,

1
Xii+1 = Xiy1,i = 56%(’”_)”*‘), l<i=<N-1,

and B(X) is the tridiagonal skew-symmetric matrix B(X) = X_ — (X_)" as in
(1.2). As noted above, the flow ¢ — X (¢) is isospectral. But more is true: The flow
is completely integrable in the sense of Liouville with the eigenvalues of X(0) =
H providing N Poisson commuting integrals for the flow. In 1975, Moser showed
that the off-diagonal elements X; ; +1(¢) converge to 0 as ¢t — oo [20]. Inspired by
this result, and also related work of Symes [26] on the QR algorithm, the authors
in [10] suggested that the Toda lattice be viewed as an eigenvalue algorithm, the
Toda algorithm. The Lax equations (1.2) clearly give rise to a global flow not only

3 In the real symmetric case * should be replaced with T.
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FIGURE 1.3. The simulated rescaled histogram for T for both BUE
and GUE. Here € = 107 and N = 500 with 250 000 samples. The
solid curve is the rescaled density f5**(r) = d/dtF5* (). The density
500 = #A“’f‘(é), where A%f(s) is shown in [31, fig. 1]: In order
to match the scale in [31], our choice of distributions (BUE and GUE) we
must take 0 = 277/, This is a numerical demonstration of Theorem 1.2.
See also Section 1.2, “Numerical Demonstration,” for further discussion

of this figure and also Figure 1.4.

on tridiagonal matrices but also on general real symmetric matrices. It turns out
that in this generality (1.2) is also Hamiltonian [1, 17] and, in fact, integrable [7].
From that point on, by the Toda algorithm one means the action of (1.2) on full real
symmetric matrices, or by extension, on complex Hermitian matrices.*

As noted in the Introduction, in this paper we consider running the Toda algo-
rithm only until time T, the deflation time with block decomposition £k = 1
fixed, when the norm of the off-diagonal elements in the first row, and hence the
first column, is &'(¢). Define

N
(1.3) E@) =Y X))
n=2
so thatif E(¢) = 0, then X1;(¢) is an eigenvalue of H. Thus, with E(¢) asin (1.3),
the halting time (or 1-deflation time) for the Toda algorithm is given by
(1.4) TW(H) = inf{s : E@t) < €2}.
Note that by the min-max principle if £(7) < €2, then | X11(¢) — A;| < € for some

eigenvalue A; of X(0).

4The Toda flow (1.2) also generates a completely integrable Hamiltonian system on real (not
necessarily symmetric) N X N matrices; see [8]. The Toda flow (1.2) on Hermitian matrices was
first investigated by Watkins [30].
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FIGURE 1.4. The simulated rescaled histogram for T for both BOE
and GOE demonstrating Theorem 1.2. Here ¢ = 107'* and N = 500
with 250000 samples. The solid curve is an approximation to the den-
sity £5P(t) = d/dt F™(t). We compute f5*(¢) by smoothing the his-
togram for ¢;,/*2"2/3N=2/3(A y — Ay _1) when N = 800 with 500 000
samples.

For invariant ensembles and generalized Wigner random matrix ensembles (IEs
and WEs; see the Appendix) there is a constant ¢y, which depends on the ensem-
ble, such that the following limit exists (8 = 1 for the real symmetric case, f = 2
for the complex Hermitian case):

Fﬁgap(t) = lim P( 373 ! st), t>0.
N—>oo cy/ 2—2/3N2/3(AN_AN_1)

The precise value of cy is described in Theorem 1.7, and this limit is discussed
further in Definition 1.10. For fixed B, the limit is independent of the choice of
ensemble. This is the rescaled distribution of the inverse of the top gap in the
spectrum of the random matrix. This distribution is the universal limit of 71,
capturing the fact that the rate of convergence is asymptotically governed by the
gap AN —AN-—1.

DEFINITION 1.1 (Scaling region). Fix 0 < o < 1. The scaling region for (¢, N)

—1
is given by % >2420

(1.5)

Note that for e = 10~!°, a relevant value for double-precision arithmetic, (¢, N)
is in the scaling region for all values of N less than 10°.

THEOREM 1.2 (Universality for TW). Let 0 < o < 1 be fixed and let (€, N) be in

—1
the scaling region l?fge ~ = % + 5. Then if H is distributed according to any real

3 From the statement of the theorem, it is reasonable to ask if % can be replaced with % in the
definition of the scaling region. Also, one should expect different limits for larger values of € as other
eigenvalues will contribute. These questions have yet to be explored.
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(B = 1) or complex (B = 2) invariant or Wigner ensemble, we have

7 .
(1.6) lim P|— <t =F§P(r).
N—oo  \ ¢3/7272/3N2/3(loge™! —2/3log N)

Here cy is the same constant as in (1.5).

Example 1.1. Consider the case of real symmetric 2 x2 matrices. For X(0) = H,, it
follows that as t — o0, X11(¢f) — Aj, the largest eigenvalue, while X5 (¢) — A1,
the second-largest eigenvalue. And so, one should expect 7! to be larger for

X(O) = Hy = [_é ﬂ than for - X(0) = H—:= B —ﬂ

despite the fact that these matrices have the same eigenvalues. Said differently,
it is surprising that the fluctuations of 7(!) in Theorem 1.2 depend only on the
eigenvalues and are independent of the eigenvectors of H.

Let U = (Ujj)1<i,j<2 be the matrix of normalized eigenvectors of X(0). It then
follows from the calculations in Section 2 that

|U11(0)] %M1

X120 = (A —11)? .
| 12( )l ( 2 1) |U11(O)|262A1t+|U12(0)|262A21

It is then clear that
2 20O 56,20y
| X12(6)]7 ~ (A2 — A1) me ast — oo.
First, note that this, roughly speaking, explains the appearance of Ay — Ay_1 in
the definition of the universal limit F gap (z). Second, a simple calculation shows
that as § | 0, |U12(0)| ~ & for H+ while |U12(0)] ~ 1 for H_, explaining why
TW(Hy) > TW(H_). However, the matrices H, and H_ are not “typical.”’

With high probability, the eigenvectors of random matrices in the ensembles under
consideration are delocalized, so that Uy;, j = 1,..., N, are all of the same order.

For general N, we then have Y N, | X1x|? < (A — Ay _1)2e 2GN—1=AN)t ang
the dependence on the eigenvectors is effectively removed as € | 0.

To see that the algorithm computes the top eigenvalue to an accuracy beyond its
fluctuations, we have the following proposition, which is a restatement of Proposi-
tion 3.7 that shows our error is &'(¢) with high probability.

PROPOSITION 1.3 (Computing the largest eigenvalue). Let (¢, N) be in the scaling
region. Then if H is distributed according to any real or complex invariant or
Wigner ensemble,

iy — X1(TD)|
converges to 0 in probability as N — oo. Furthermore, both

e oy — X1 (TW)]. Ay — X1 (T D)),
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converge to oo in probability for any j = j(N) < N as N — 00, where by is the
supremum of the support of the equilibrium measure for the ensemble.

The relation of this theorem to two-component universality as discussed in [9] is
the following. Let § = &g be the random variable with distribution F gap (0),p =1
or 2. For B = 2 IEs one can prove that®

(1.7) E[TM] = ¢¥/?273N3 (log el % log N)IE[E](I +o(1)),

2
1.8) /Var(TM) = kc??273N3 (loge™ — Z1og N | (1 + o(1)), & > 0.
(1.8) ar( ) = Kkcy oge 3 og (1+o0(1), «

By the Law of Large Numbers, if the number of samples is sufficiently large for
any fixed but sufficiently large N, we can restate the result as

7@ _ 7@
(T2

< t) A Fgap(/ct + E[£]).
or)

This is a universality theorem for the halting time T a5 the limiting distribution
does not depend on the distribution of the individual entries of the matrix ensemble,
just whether it is real or complex.

Remark 1.4. If one constructs matrices H = UAU*, A = diag(An,AN-1,
..., A1) where the joint distribution of A1 < A, <--- < Ay is given by

N
By
x 1_[ e NZVA)) l_[ A —ln|B,
=1 j<n
and U is distributed (independently) according to Haar measure on either the or-

thogonal or unitary group, then Theorem 1.2 holds for any 8 > 1. Here V' should
satisfy the hypotheses in Definition A.2.

Remark 1.5. To compute the largest eigenvalue of H, one can alternatively con-
sider the flow

X(1) = HX(1), X(0)=1[1,0,...,0]".

It follows that
X + D
X

— A N, I — o0.

6 We can also prove (1.7) for B = 1IEs. The proofs of these facts require an extension of the level
repulsion estimates in [3, theorem 3.2] to the case K = 1. When 8 = 2, again with this extension
of [3, theorem 3.2] to the case K = 1, we can prove that k = Var(§¢). This extension is known to
be true [2]. The calculations in Table 1.1 below are consistent with (1.7) and (1.8) (even for WEs)
and lead us to believe that (1.8) also holds for § = 1. Note that for § = 2, E[£?] < oo, but it is
believed that E[£2] = oo for B = 1; see [21]. In other words, we face the unusual situation where
the variance seems to converge, but not to the variance of the limiting distribution.
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So, define

TODE(H) = inf{l : |log

X
Using the proof technique we present here, one can show that Theorem 1.2 also
holds with 71 replaced with Topg. The same is true for the power method, the
inverse power method, and the QR algorithm without shifts on positive-definite
random matrices (see [11]).

IXG+ D] ‘<}

1.2 A Numerical Demonstration

We can demonstrate Theorem 1.2 numerically using the following WEs defined
by letting X;; fori < j be i.i.d. with distributions:
GUE: Mean zero standard complex normal.
BUE: £+ in where £ and 7 are each the sum of independent mean zero Bernoulli
random variables, i.e., binomial random variables.
GOE: Mean zero standard (real) normal.
BOE: Mean zero Bernoulli random variable.

In Figure 1.3, for B = 2, we show how the histogram of 7 (more precisely,
TM: see (1.9) below), after rescaling, matches the density d/ thzgap (t), which was
computed numerically in [31].7 In Figure 1.4, for 8 = 1, we show the histogram
for 7 (again, T(l)), after rescaling, matches the density d/d¢ F’ {gap (¢). To the best
of our knowledge, a computationally viable formula for d/d¢ F 1gap (), analogous to
d/ th2gap (z) in [31], is not yet known, and so we estimate the density d/d¢ F lgap ()
using Monte Carlo simulations with N large. For convenience, we choose the
variance for the above ensembles so that [ay, by] = [-2+/2, 2+4/2], which, in turn,
implies cy = 273/2,

It is clear from the proof of Theorem 1.2 that the convergence of the left-hand
sidein (1.6) to F' ﬂgap is slow. In fact, we expect a rate proportional to 1/ log N. This
means that in order to demonstrate (1.6) numerically with convincing accuracy one
would have to consider very large values of N. In order to display the convergence
in (1.6) for more reasonable values of N, we observe, using a simple calculation,
that for any fixed y # 0 the limiting distribution of

7@

(1.9) T =T =
4 6‘2//32—2/3N2/3(10g e 11— %10gN +7)

as N — oo is the same as for y = 0. A “good” choice for y is obtained in
the following way. To analyze the 7™ in Sections 2 and 3 below we utilize two
approximations to T, viz. T* in 2.9)and T in (3.1):

TD =T + (WD —T*) +(T* -T).

7 Technically, the distribution of the first gap was computed, and then F2gap can be computed by
a change of variables. We thank Folkmar Bornemann for the data to plot Fzgap.
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N

50 100 150 200 250 300

loge™!/logN —5/3 1.28 0.833 0.631 0.506 0.418 0.352

(TM)or 4, for GUE 158 162 159 1.63 16 158

TM)o l, forBUE 16 157 1.6 162 162 158
)
)

(
(TMYo~L for GOE 0.506 0.701 0.612 0475 0.705 0.619
(

-1
T

TM)o~l, for BOE 0717 0.649 0.663 0747 0.63 0.708

TABLE 1.1. A numerical demonstration of (1.11). The third row of
the table confirms that (¢, N) is in the scaling region for, say, 0 = %

The last four rows demonstrate that the ratio of the sample mean to the
sample standard deviation is order 1.

The parameter y can be inserted into the calculation by replacing T with ﬁ,:

4
~ a—3)logN +2
T—>Ty:=( ) log 4

SN—1

where y is chosen to make

(1.10) T* _ T — log N23(Ay —An—1) + 3 logvy_1 — ¥
: -7, =

AN —AN-1
as small as possible. Here vy —_; and §y—; are defined at the beginning of Sec-
tion 1.4. Replacing log N2/3(Ay — Ax_1) and log vy in (1.10) with the expecta-
tion of their respective limiting distributions as N — oo (see Theorem 1.9: note
that vy _; is asymptotically distributed as {? where ¢ is Cauchy distributed), we
choose y, = —E(log(clz,/32_5/3$2)) + %E[log|§|] ~ 0.883 when 8 = 2 and
y1 = —E(log(clz,/32_5/3f1)) + %]E[log |¢]] &~ 0.89 when B = 1. Figures 1.3 and
1.4 are plotted using y; and y,, respectively.

We can also examine the growth of the mean and standard deviation. We see

from Table 1.1 using a million samples and € = 107> that the sample standard
deviation is on the same order as the sample mean:

2
(1.11) orm ~ (TW) ~ N2/3(loge_1 — 3 log N).

Remark 1.6. The ideas that allow us to establish (1.7) for IEs requires the conver-
gence of

1
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For BUE, (1.12) must be infinite for all V as there is a nonzero probability that the
top two eigenvalues coincide owing to the fact that the matrix entries are discrete
random variables. Nevertheless, the sample mean and sample standard deviation
of T(M are observed to converge after rescaling. It is an interesting open prob-
lem to show that convergence in (1.7) still holds in this case of discrete WEs even
though (1.12) is infinite. Specifically, the convergence in the definition of & (Defi-
nition 1.10) for discrete WEs cannot take place in expectation. Hence 71 acts as
a mollified version of the inverse of the top gap—it is always finite.

1.3 Estimates from Random Matrix Theory

We now introduce the results from random matrix theory that are needed to
prove Theorem 1.2 and Proposition 1.3. Let H be an N x N Hermitian (or just real
symmetric) matrix with eigenvalues A1 < Ay <--- < An, and let 81, B2, ..., BN
denote the absolute value of the first components of the normalized eigenvectors.
We assume the entries of H are distributed according to an invariant or general-
ized Wigner ensemble (see the Appendix). Define the averaged empirical spectral
measure

1 N
pv(2) =E— ) 8k —2),
i=1

where the expectation is taken with respect to the given ensemble.

THEOREM 1.7 (Equilibrium measure [3]). For any WE or IE the measure (L con-
verges weakly to a measure [, called the equilibrium measure, which has support
on a single interval [ay , by and, for suitable constants C, and cy, has a density p
that satisfies p(x) < Cpv/by — X ) (—o0,py1(X) and p(x) = 23/;“/ Vbhy —x(1 +

O(by — x)) as x — by.

With the chosen normalization for WEs, ZlN:l aizj =1, [ay,by] = [-2,2],

and cy = 1 [3]. One can vary the support as desired by shifting and scaling, H —
aH + bI: the constant cy then changes accordingly. When the entries of H are
distributed according to a WE or an IE with high probability (see Theorem 1.11),
the top three eigenvalues are distinct and B; # 0 for j = N,N — 1, N — 2. Next,
let du denote the limiting spectral density or equilibrium measure for the ensemble
as N — oo. Then define y; to be the smallest value of # such that

t
n
L
N f_oo“

Thus {y,} represent the quantiles of the equilibrium measure.

There are four fundamental parameters involved in our calculations. First we
fix 0 < 0 < 1 once and for all, then we fix 0 < p < %, then we choose
s < min{, %}, and then finally 0 < ¢ < % will be a constant that will al-
low us to estimate the size of various sums. The specific meanings of the first three
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parameters are given below. Also, C denotes a generic constant that can depend on
o or p but not on s or N. We also make statements that will be “true for N suffi-
ciently large.” This should be taken to mean that there exists N* = N*(u, 0, s, p)
such that the statement is true for N > N *. For convenience in what follows, we
use the notation € = N~%/2, 5o

(e, N) are in the scaling region if and only if o — 1—30 >0>0

and ¢ = oy is allowed to vary with N. Our calculations that follow involve first
deterministic estimates and then probabilistic estimates. The following conditions
provide the setting for the deterministic estimates.

Condition 1. For0 < p < ¢,

® AN—1—AN—2 = p(AN —AN-1).
Let G n,p denote the set of matrices that satisfy this condition.

Condition 2. For any fixed 0 < s < min{Z, £}

(1) B, < N~V2+5/2 for all n,

(2) N~1/2=s/2 < B, forn = N,N —1,

(3) N72/3=S < Ay —Ay_1 < N"2/3*Sforn = N,N — 1, and
4) |An — ¥Yu| < N72/3FS(min{n, N —n + 1})~1/3 for all n.

Let Ry s denote the set of matrices that satisfy these conditions.

Remark 1.8. It is known that the distribution (Haar measure on the unitary or or-
thogonal group) on the eigenvectors for IEs depends only on 8 = 1,2. And, if
V(x) = x? the IE is also a WE. Therefore, if one can prove a general statement
about the eigenvectors for WEs then it must also hold for IEs. But, it should be
noted that stronger results can be proved for the eigenvectors for IEs; see [16,25],
for example.

The following theorem has its roots in the pursuit of proving universality in
random matrix theory. See [29] for the seminal result when V(x) = x? and 8 = 2.
Further extensions include the works of Soshnikov [24] and Tao and Vu [27] for
Wigner ensembles and [6] for invariant ensembles.

THEOREM 1.9. For both IEs and WEs

NY2(1Bx 1, |Bn-1],1BN—-2])

converges jointly in distribution to (| X1], | X2|, | X3|) where {X1, X2, X3} are i.i.d.
real (B = 1) or complex (B = 2) standard normal random variables. Additionally,
for IEs and WEs

2723N2B(by — An.by —AN_1.by —AN_2)

converges jointly in distribution to random variables (Ay g, Ay g, A3 g), which
are the smallest three eigenvalues of the so-called stochastic Airy operator. Fur-
thermore, (A1,8. A2 g, A3 g) are distinct with probability 1.
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PROOF. The first claim follows from [4, theorem 1.2]. The second claim follows
from [3, cor. 2.2, theorem 2.7]. The last claim follows from [23, theorem 1.1]. [

DEFINITION 1.10. The distribution function Fga"(t) for B = 1,2 s given by

1
FE%(1) = P(— < z)
p Az p—Arp

1
= lim IP’( 273 51‘), t > 0.
N—oo cy/ 2_2/3N2/3(XN —AN=1)

Properties of Gg(t) := 1—F gap(l /1), the distribution function for the first gap,
are examined in [19,21,31], including the behavior of Gg(¢) near ¢ = 0, which is
critical for understanding which moments of F ;‘/3 () exist.

The remaining theorems in this section are compiled from results that have been
obtained recently in the literature. These results show that the conditions described
above hold with arbitrarily high probability.

THEOREM 1.11. For WEs or IEs Condition 2 holds with high probability as N —
oo, that is, for any s > 0

P(Rns) =14+0(1) as N — oo.

PROOF. We first consider WEs. The fact that the probability of Condition 2(1)
tends to unity follows from [14, theorem 2.1] using estimates on the (1,1)-entry of
the Green’s function. See [12, sec. 2.1] for a discussion of using these estimates.
The fact that the probability of each of Condition 2(2)—(3) tends to unity follows
from Theorem 1.9 using Corollary 3.3. Finally, the statement that the probabil-
ity Condition 2(4) tends to unity as N — oo is the statement of the rigidity of
eigenvalues, the main result of [14]. Following Remark 1.8, we then have that the
probability of Condition 2(1)-(2) tends to unity for IEs.

For IEs, the fact that the probability of Condition 2(4) tends to unity follows
from [4, theorem 2.4]. Again, the fact that the probability of Condition 2(3) tends
to unity follows from Theorem 1.9 using Corollary 3.2. g

THEOREM 1.12. For both WEs and IEs

lim limsup P(G%, ) = 0.
P30 N—oo N.p

PrROOF. It follows from Theorem 1.9 that
limsupP(GY ,) = lim P(An—1 —An—2 < p(AN —AN-1))
N—o0 ’ N—o00
=P(Azp— Az < p(Arpg—A1p)).
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Then
Lii% P(Aszp—Aap < p(Azp—A1p))
=P(({Asp—Asp < p(Asp — A1 p)})
p>0
=P(A3zp = Ay p).
But from [23, theorem 1.1] P(A3 g = A, g) = 0. U

Throughout what follows we assume we are given a WE or an IE.

1.4 Technical Lemmas

Define §; = 2(Ay —Aj)and I = {1 <n <N —1:68,/ny—1 = 1+ ¢} for
c > 0.

LEMMA 1.13. Let 0 < ¢ < 10/0. Given Condition 2
[IS| < N> for N sufficiently large,
where © denotes the complement relative to {1,2,...,N — 1}.

PROOF. We use rigidity of the eigenvalues, Condition 2(4). So, |A;, — yn| <
N72/3%+s(7)~1/3 where i = min{n, N —n + 1}. Recall

ISC{l<n<N-1:Ay =2y <(1+)An —An-1)}
Define
Je={1<n<N—1liyy—yn < Q+c+@NTH,
If n € I, then
AN —An < (14 c)N72/3+s
v — N7213%Fs (4 ) V3NT2345) < Ay — Ay < (1 4 ¢)N72/3Fs,
YN —Vn < 24+ @)TVHNTEES,

and hence n € J.. Then compute the asymptotic size of the set J. and let n* be
the smallest element of J.. Then |J*| = N — n™* so that

n* VYn* o0
—:/ du, |Icc|§|JC|:N—n*:N/ du.
N —00 n*
Then using Definition 1.7, yny = by, and
n*>by —Q2+c+@)VHNTBPE > by — (34 )N 23S,

we see that
by

o0
|If|§N/ du < CyN Vby —xdx
n*

by —(3+c)N—2/3+s

— 2C/L (3 T C)3/2N3S/2
3 9
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and then because o is fixed, ¢ has an upper bound and s > 0, [I¢| < N?S for
sufficiently large N. (]

We use the notation v, = B2/ ,3]2\] and note that for a matrix in Ry ¢ we have
v, < N25 and Doabn = ,3;,2 < NS, One of the main tasks that will follow is
estimating the following sums.

LEMMA 1.14. Given Condition 2, 0 < ¢ < 10/0, and j < 3, there exists an
absolute constant C such that

N-1
—2s5¢J —8§N—1t j —8nt
N™26y_e N1t < Zvn%e n
=1

< Ce—(ng]t(N4s81J;]_1 + N1+SC_68N7”‘)
for N sufficiently large.

PROOF. For j <3

N-1
> sl = (T + X Yt
n=1 nel. nelf
< Z Ve (1 + c)j(?;;,_le_‘g”*‘t
nelg
+27 3 vy — Ayl e Ot
nel.

It also follows that A;y — A1 < by —ay + 1 so that by Lemma 1.13 for sufficiently
large N
N-1 . .
Z vm?;ie_‘g”t < Ce:_‘g’\’—lt(N“SS]j\,_1 + N1+Se_"’8’v—‘t).
n=1
To find a lower bound, we just keep the first term, as that should be the largest:
N-1 . . ‘
Z vnS,{e_‘g”t > vN_18{v_le_8N*‘t > N_ZSSJJ\,_le_SN*”. O

n=1

2 Estimates for the Toda Algorithm

Remarkably, (1.2) can be solved explicitly by a QR factorization procedure; see,
for example, [26]. For X(0) = H we have fort > 0

e = Q(R@),

where Q is orthogonal (8 = 1) or unitary (8 = 2) and R has positive diagonal
entries. This QR factorization for e’ is unique: Note that Q(¢) is obtained by ap-
plying Gram-Schmidt to the columns of e/ . We claim that X (1) = Q*(t)HQ ()
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is the solution of (1.2). Indeed, by differentiating, we obtain
He'™ = HO(MR(1) = Q(OR() + Q(OR().

(2.1) X(t) = Q*()0) + ROR ().

Then because R(f)R™1(¢) is upper-triangular,

(X(1)- = (2" Q))-.
Furthermore, from Q*(1)Q(t) = I we have Q*(1)Q(t) = —0*(t)Q(¢) so that
O*(1)O(t) is skew-Hermitian. Thus, B(X(1)) = Q*(1)0(t) — [0*(1) O (®)]p,
where [-]p gives the diagonal part of the matrix. However, as Q* (1) O (¢) is skew-
Hermitian, [Q*(t) O (¢)]p is purely imaginary. On the other hand, we see from
(2.1) that the diagonal is real. It follows that [Q*(t)O(f)]p = 0 and B(X(¢)) =
Q*(1)O(t). Using (1.2) we have

X(@)=Q0"HQ() + Q" ()HQ(t).
and so

X(t) = X(1)B(X(1)) — B(X(1))X(1).
When t = 0, Q(0) = [ so that X(0) = H, and by uniqueness for ODEs this
shows X(¢) is indeed the solution of (1.2).

As the eigenvalues of X(0) = H are not necessarily simple (indeed for BOE
there is a nonzero probability for a matrix to have repeated eigenvalues), it is not
clear a priori that the eigenvectors of X(¢) can be chosen to be smooth functions
of . However, for the case at hand we can proceed in the following way. For
X(0) = H there exists a (not necessarily unique) unitary matrix Uy such that
X(0) = UpAU; where A = diag(Aq,...,An). Then X(t) = Q*(t1)HQ(t) =
U(t)AU*(t) where U() = Q*(t)Uy. Then the j column u;(z) of U(z) is a
smooth eigenvector of X(¢) corresponding to eigenvalue A;. From the eigenvalue
equation

(X(t) = Aj)u;(t) =0,
we obtain (following Moser [20])
X (u;(t) + (X(2) — A (t) =0,
(X(@)B(X(1)) — B(X(@) X(1))u; (1) + (X (1) — Aj)u; (1) = 0,
(X (1) = Aj)[j (1) + B(X(1))uj(1)] = 0.

This last equation implies 1 () + B(X(f))u; must be a (possibly time-dependent)
linear combination of the eigenvectors corresponding to A;. Let U; (1) = [uj, (1),
..., uj,, ()] be eigenvectors corresponding to a repeated eigenvalue A; so that for
i=12,...,m,

1, (1) + BOXO)uj (1) = Y dii (Duj, (1),

k=1
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and so
d
(2.2) [E + B(X(t))] Ui(t) = Uj()D@), D(t) = (dki ()} i=1-

Note that U j* (t)U;(t) = I, the m x m identity matrix. Then multiplying (2.2) on
the left by U j* (¢) and then multiplying the conjugate transpose of (2.2) on the right
by Uj (), we obtain
UF0)U;(t) + U (0) B(X())Uj (1) = D),
U (0)U;j () + U (O)[BX(0)]*Uj (t) = D*(1).

Because d/dt[U j* (t)Uj(t)] = 0 and B(X(¢)) is skew-Hermitian, the addition of
these two equations gives D(r) = —D*(r). Let S(¢) be the solution of S(r) =
—D(t)S(t) with S(0) = I,. Then

%[S*(I)S(t)] = =S*(D®)S(1) + S*(1)D(1)S(t) =0

and hence S*(¢)S(t) = C = I,; ie., S(¢) is unitary. In particular, (7j(t) =
U (t)S(t) has orthonormal columns and we find

d ~
[E + B(X(t)):|Uj (t) = U; () D(t)S(t) — U; (1) D(t)S(s) = 0.

We see that a smooth normalization for the eigenvectors of X(¢) can always be
chosen so that D(r) = 0. Without loss of generality, we can assume that U(t)
solves (2.2) with D(r) = 0. Then for U(1) = (Uyj (1))},
Unj(1) = —ef B(X(0)u; (1) = (B(X(T))er)* u;(t)
= (X(D)e1 — X} (Den) uj (1) = e} (X (1) = X11(0)u; (1)
= (A — X11())Uy; (1).

A direct calculation using
N
X11(1) = ef X(D)er = Y _ A;|Un (1)
Jj=1

shows that
Uy (0)ets?
(N Uy (0)[2e2h7) 2

Uyj(t) = l<j=<N

Also

N
X1i(t) = Y U5 (0OUx; (1),
j=1
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and hence

N N
DX P =) XieO)Xpa (1) = [X2 (O — X,(0)
k=2

k=2

=z

2
= YR - (mek(zn)

(A = X1 (1)U (1)

I
Mz I

w
Il

1
Thus

N N
E@):=) X =Y () = X1u()*|U; (1),
k=2 j=1
We also note that

N
AN = X11(1) =) _(An = AU, 0]
ji=1
From these calculations, if U;11(0) # 0, it follows that
X11() —An

E() —0, N — o0
While X11(¢) — Ay is of course the true error in computing Ay, we use E(?) to
determine a convergence criterion as it is easily observable: Indeed, as noted above,
if E(t) < ethen |X11(¢) —Aj| < € for some j. With high probability, A; = Ay.

Note that, in particular, from the above formulae, E(¢) and Ay — X11(¢) depend
only on the eigenvalues and the moduli of the first components of the eigenvectors
of X(0) = H. This fact is critical to our analysis. With the notation 8; = |Uj;(0)|
we have that

Bieh!

(ZN . ,3,2162'1”"‘)1/2 .

n—=

U1 ()] =

A direct calculation shows that
E(t) = Eo(t) + E1(2),

where
En(r) — 1 ZN_ISZv e ont
O T S e )
(S ) (S ) — (2! Ay’
Ei(t) = )

(1+Z e ‘8'1)
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Note that £1(¢) > 0 by the Cauchy-Schwarz inequality; of course, Eo(t) is triv-
ially positive. It follows that E(¢) is small if and only if both E(¢) and E{(¢) are
small, a fact that is extremely useful in our analysis.

In terms of the probability py measure on {1, 2, ..., N} defined by

N -1
pN(E) = (Z vne_‘s”’) > vpeT
n=1

nekE

and a function A(j) = A;,
E(t) = Vary, (1).

We will also use the alternate expression

N-1 8.t 2
—q bpe on
(2.3) Ei(t) = ( Z”—];_{’ ; ) Varpy_ (4).
L+ S0 vpeont
Additionally,
N 2.2t
1 —1 0 PBre’n
2.4) AN — X11(1) = 3 Zn_}v_nlﬁn [l
1+ n=1 ﬂ%ez nt

2.1 The Halting Time and Its Approximation

To aid the reader we provide a glossary to summarize inequalities for parameters
and quantities that have previously appeared:
(1) 0 <o < 1isfixed,
2)0<p<i,
3) o> +o0,
(4) s < min{zz, £},
(5) a— % — 445 > 2,
6) ¢ < % can be chosen for convenience line by line when estimating sums
with Lemma 1.14,
(7) 6n = 2(AN — An),
®) vn = B2/BY-
(9) given Condition 2
° 2N—2/3—s <8n_p < ZN_2/3+S,
° N—2s <y, < st,
° Zi:l”n < 2111\]=an = ,3;,2 < N5 for 1 <j <N,and
(10) C > 0is a generic constant.

DEFINITION 2.1. The halting time (or the 1-deflation time) for the Toda lattice
(compare with (1.4)) is defined to be

TW = inf{s : E(1) < €2}

We find bounds on the halting time.
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LEMMA 2.2. Given Condition 2, the halting time T for the Toda lattice satisfies
(@ —4/3—55)10gN/Sy_1 <TWM < (@ —4/3+7s)log N/Sn_1
for sufficiently large N.

PROOF. We use that E(t) > Eo(t) soif Eo(f) > N~ then T™ > 7. First, we
show that Eq(t) > €2, for0 <t < % log N/6n—1 and sufficiently large N, and
then we use this to show that Eo(t) > €2, ¢ < (¢ — 4/3 — 5s)log N/§y_1 and
sufficiently large N.

Indeed, assume t = alog N/éy—_1 for 0 < a < /2. Using Lemma 1.14

N—-1
2.5 14+ Z vne_snt <1+ Ce—3N—1t(N4s + N1+se_cgN_1t).

n=1

Then using Lemma 1.14 we have

Eo(t) > N72583%_ e V=11 (1 4 Ce SN-1(N*S 4 N1TSemedn-1))=2,
Since a < 0/2. we find

Eo(t) > N—4s—4/3—0/2(1 + C(N* + Nt5))=2 > C N —85—10/3—0/2

for some new constant C > 0. This last inequality follows because N4 < N 115
as s < 1/44 (see Condition 2). But then from Definition 1.1 this right-hand side is
larger than €2 = N~ for sufficiently large N. Now, assume ¢ = alog N/Sy_;
foro/2 <a <(x—4/3—5s)logN/§N — 1. We choose c = 2(2+5s)/0 < 10/0

Eo(t) > %N—4S—4/3—a(1 + C(N4S—a + N1+S—Ca))—2

> N—Ot-l—S(l 4+ C(N4S—O’/2 + N—l)) > N°¢
for sufficiently large N. Here we used that s < o/44. This shows that
(¢ —4/3—5s)logN/dny—1 < TW  for N sufficiently large.

Now, we work on the upper bound. Letting t = alog N/éy—1 fora > (o —
4/3 + 7s), we find using Lemma 1.14 that

Eo(t) < CN™O(N~4/3+6s | yl+s—ca)
Then using the minimum value for a, we obtain
Eo(t) < N"*(C(N° + CN1+7S—ca+4/3)).

It follows from Definition 1.1 thata > 10/3 +0 —4/3 +7s > 2. If we set¢c = 2
anduses < 1/44,then 1 +7s —ca+4/3<-3+4/3+7s <—2and

Eo(t) < N*(C(NS+CN7?) <CN*
for sufficiently large N.
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Next, we must estimate £1(¢) when a > (¢ —4/3 + 7s). We use (2.3) and
Vary_1(A) < C. Then by (2.5)
El (t) < CN—Z(I(N4S + N1+s—ca)2'
Again, using ¢ = 1 and the fact that a > 2, we have
(26) El (t) < CN—OZNSS—OC+8/3—14S < CN—(XN—&+8/3 < N—Ot
for N sufficiently large. This shows T < (o — 4/3 + 7s) log N/8n—1 for suffi-

ciently large N as E(t) = Eo(t) + E1(t) < €?ift < (@ —4/34+7s)log N/Sn_1
and N is sufficiently large. U

In light of this lemma we define
Iy = [(¢—4/3—55)log N/Sn—1, (@ —4/3 4+ Ts)log N/Sn—1].
Next, we estimate the derivative of E¢(z). We find

- (Zr]tv;ll 53‘%678"[)(1 + Zr]tv=_ll Vnefs"t) + 2(Zr]tv=_11 53""678"[)(25;11 5n"n678"t)
(1+ X0 vednr)?

LEMMA 2.3. Given Condition 2 and t € I,
—E(/)(t) 2 CN—lZs—a—2/3

2.7) Eq() =

for sufficiently large N.

PROOF. We use (2.7). The denominator is bounded below by unity so we esti-
mate the numerator. By Lemma 1.14

N-1 N-1 N-1
(Z Ssvne—(snt) (1 + Z vne—(snt) > Z ngne—(gnt > N_2s8]3v_le_8”_1’.
n=1 n=1 n=1

Fort € I,
N—2s813v_le—5N,1t > N—12s—2/3—a.

Next, again by Lemma 1.14

N-1 N-1
(Z 5nvne_8"t)(z S%Vne_snt) <
n=1 n=1
Ce—ZSN_1t(N4S8]2v_1 + NSC—CSN_lt)(N4S5N_1 +N1+SC_C8N_lt).
Then estimate with ¢ = 2,
N4S812V_1 un Nse—C(ng]t < 4N6S—4/3 + NS—4 < CN6S_4/3,
N4S8N—1 +Nse—c8N_1t < 2N4s—2/3 +Ns—4 < CN4S_2/3,
where we used t > 2log N/§y—1 and s < 1/44. Furthermore,

e -1t < NToN8/3mat10s o y—am2/3-0F10s 5 < /44,
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Then
—Eo(t) > N—12s—2/3—a _ CN—a—2/3—(I+10s
provided that this is positive. Indeed,
—EO([) > N—12S—2/3—a(1 _ CN—O"'FZZS) > 0
for N sufficiently large as s < o/44. 0
Now we look at the leading-order behavior of E¢(t):

N—2 82 —(8n—86n—1)t
1+Zn=1 ﬁﬁe Gn—8n-1)

1
(2.8)  Eo(t) = ~ 83 _vy_je N1t
4 (1+ X0 vpetnr)?

Define T* by
1 *
Z(SJZV_IVN_le_‘SN—IT =N"7,
(2.9)
T alogN +2logéy—1 +logvy—_1 —2log2

IN—1
LEMMA 2.4. Given Condition 2

(¢ —4/3—4s)logN/Sy_1 <T* < (a—4/3+4s)log N/Sn_1.
PROOF. This follows immediately from the statements
N7 <vy = N%,

2N—2/3—S < 8N—1 < 2N_2/3+S. 0O

Thus, given Condition 2, T* € I,. The quantity that we want to estimate is
N72/3|T — T*|. We do this by considering the formula

Eo(TW) — Eo(T*) = Ej(n)(TD —T*)  for some 5 € Iy,

Because E is monotone in Iy, Eo(TM) = E(TW) — E(TW) = N7« —
E1(TM) we have
IN™% — Eo(T*) — E1(TD)]
min |Eq(n)]
nely
- INT¥ — Eo(T*)| + maxyep, [E1(n)|

- min | Eq (1)
nely

70 -7 <

(2.10)

See Figure 2.1 for a schematic of Eg, E, T and T*.
Since we already have an adequate estimate on E(7) in (2.6), it remains to
estimate [N ~% — Eo(T™)].



528 P. DEIFT AND T. TROGDON

FIGURE 2.1. A schematic for the relationship between the functions
Eo(t) and E(r) and the times 7™ and T*. Here to = (o« — 4/3 —
55)log N/Sy—1 and t; = (¢ — 4/3 + 7s)log N/Sn—1. Note that Ey is
monotone on [fg, #1].

LEMMA 2.5. Given Conditions 1 and 2
|Eo(T*) — N™%| < CNTo72P%4,
PROOF. From (2.8) and (2.9) we obtain
|Eo(T*) = N7%| =
‘Zn—l 82n : ‘);7"_1@—(8»:—51\7—1”* 2y N vetn T (2 vne—snT*)z}
(1420 vne—t‘SnT*)2

We estimate the terms in the numerator individually using the bounds on 7*. For
¢ =1,weusethatoo —4/3 — 45 > 2 and Lemma 1.14 to find

N~¢

Z vne—énT* < CN—(x+4/3+4s(N4s +N1+S—ZC) < CN—2—0'+8S < N—2

for sufficiently large N. Then we consider the first term in the numerator using the
index set /. and Condition 1. Since our sum is now up to N — 2 we define I, =
I.N{1,2,..., N—2} and I to denote the complement relative to {1,2, ..., N —2}.
Continuing,
N=2 82w
UT*) = " o=@En=8N-DT*
(T*) Z Ao

= (Z 2)52 lv e~ Gn=8n-—1)T™

N-1
n€I° ne
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Forn € fc" 82/8%_, < (1 +¢)* and
bn —ON—1 = 2(AN—1 —An) = 2(AN—1 —AN-2) = PON-1,
from Condition 1. On the other hand, for n € fc Op > (1 +¢)dy—1,andif c = 3,
8p —8N—1 > céN—1 = pSn—1 + (¢ — p)SN—1 = péN—1 + 28N -1,
as p < 1/3 and hence ¢ > 2 4+ p. Using Lemma 1.13 to estimate |fC°|
Z iv_ne_(gn_lngl)T* < (1 + 2 N¥se PN T,

~ 8% UN_1
nelg N-1

82 V (8 _ * _ 5
E : 82_71_"6 Gn—8n-1)T < [max8§]N7/3+3se (P+2)8n 1T
— 1 VN—-1 n
nel, N-1

Given Condition 2 [max, §2] < 4(by —ay + 1)? and hence for some C > 0, using
that @ —4/3 — 4s > 2, we obtain

UT*) < CePIN-1T* (N4 4 NT/3+356=28N 1T

< CN~P@=4/3=48) (45 | N7/3+35-2(a—4/3-45))

< CN~P@—4/3=4s)(\4s 4 N—5/3+3s)

< CN72P+4s(1 4 N~5/379),
Thus

UT*) < CN2P+4s,
From this it follows that
|Eo(T*) — N~%| < CN—@=2p+4s, 0
LEMMA 2.6. Given Conditions 1 and 2, s < min{c /44, p/8}, and o and p fixed,
N72BITD _T*| < CN72PF165 0 g5 N — oo.

PROOF. Combining Lemmas 2.3 and 2.5 with (2.6), which can be extended to
give Eq (1) < N~%72/379/2 apd (2.10), we have for sufficiently large N

N—2/3|T(1) _ T*| < CN—2/3N05+12.S‘+2/3(N—Ot—2p+4s + N—OtN—Z/?)—O'/Z)
< C(N—2p+l6s + N—0/2+12S)

where we used o — % > % Since p < % the right-hand side is bounded by
CN—2P*165 wwhich goes to 0 as N — oo provided that s < £, p < T O

From (2.4), we have

_ _ N-1
1 ZN_II Spvpeont 1 P

AN —X11(0)| = - —="5— <- Spvpe ont,
2514+ YNy et T 2 ,; m
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LEMMA 2.7. Given Condition 2, o and p fixed, and s < min{c /44, p/8},
ey = Xu (@) = NPy - X (TW) < N
for sufficiently large N.
PROOF. We use Lemma 1.14 with ¢ = 1. By 2.2 we have
AN — X1 (TD)] < CN—a+4/3+5s(N—2/3+5s £ NI < CN—%/2N-1
because @ — 4/3 — 55 > 2. O

3 Adding Probability

We now use the probabilistic facts about Conditions 2 and 1 as stated in Theo-
rems 1.11 and 1.12 to understand 7 and T* as random variables.

LEMMA 3.1. Foraa > 10/3 4+ 0 ando > 0
7MW — 7%
N2/3
converges to 0 in probability as N — oo.

PROOF. Let n > 0. Then
|T(1)_T*| |T(1)_T*|
P(W>T] z=DP W>U’GN,PHRN,S
TW — T
( N2/ >U’G}:V,pUR(1:V,s )

If s satisfies the hypotheses in Lemma 2.6, s < min{o/44, p/8}, then on the set
GN,p N Ry, N72/3|T — T*| < nfor N sufficiently large, and hence

(|T<“—T*|

N2/3 >7’»GN,meN,s) —0

as N — oo. We then estimate

|T(1)_T*| c c c c

and by Theorem 1.11

(|T“>—T*|

lim sup P N2/

N—o0

>n,Gy U R‘]’V,s) <limsupP(Gy ).

N—o0
This is true for any 0 < p < %, and we use Theorem 1.12. So, as p | 0, we find

o (ITO T
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Define

7 (¢ —4/3)1og N
Sn-1 '

We need the following simple lemmas in what follows.

3.1

LEMMA 3.2. If Xy — X in distribution as N — 00,8 then
P(|Xn/an| < 1) =1+ o(1)
as N — oo provided that ay — .
PROOF. For two points of continuity a, b of F(t) = P(X <1t), we have
Pa <Xy <b) > Pa< X <bh).

Let M > 0 such that £M is a point of continuity of F'. Then for sufficiently
large N,ay > M and

limianP’(—aN < Xy < aN) >liminf P(—M < Xy < M)
N—o0 N—o0

=P(-M < X < M).

Letting M — oo we see that P(—ay < Xy < any) = 1+ o0(l)as N —
0. O

Letting ay — napy, n > 0, we see that the following is true.

COROLLARY 3.3. If Xy— X in distribution as N — o0, then
| Xn/an|

converges to 0 in probability provided ay — oc.

LEMMA 34. Ifas N — oo, Xy — X in distribution and | Xy — Yn| — 0 in
probability, then Yy — X in distribution.

PROOF. Let ¢ be a point of continuity for P(X < ¢); then for n > 0,

PYy <t)=P¥y <t,Xn<t+n)+PXy =<t Xny>t+0n)
<PXy <t+n+POXN—-—XNt—XN.,t —XN <-—D)
=PXy =t+n)+P(¥YNn—Xn|>n).

Interchanging the roles of X and Yx and replacing ¢ with ¢ — 5, we find
P(Xy <t—n) <Py <t) + P(|¥n — Xn|>1n)
<PXy =t+n)+2P(YN — Xn|>n).
From this we find that for any 7 such that ¢ & 7 are points of continuity,
PX =t—n <liminfP(Yy <) <limsupP(Yy =1) <P(X =1 +n).

N—o00

By sending 7 | 0 the result follows. U

8 For convergence in distribution, the limiting random variable X must satisfy P(|X| < co0) = 1.
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Now, we compare T* with 7.
LEMMA 3.5. Fora > 10/3 4+ 0o
7 - T|
N2/31log N
converges to 0 in probability as N — oc.
PROOF. Consider
T*~T 1 logvy—1+2logN?35y_4
N2/31ogN  logN N2/38n_4

1 1
_ N2/3§n —1)
«/logN((logN)1/4| Nl
2 1
| —1 1+ ————log N?/3§ _).
((10gN)1/4 PRIV T (log nyi7e BT OV
For

1
Ly = %—|N2/35N—1|_1 < 1}, Un = {

logvy_1| <1y,

1
(log N)1/4
1

Py =————|log N2/3§y_1| < 1},

N {(logN)l/“' g N-1l = }
we have P(LS) + P(Uy) + P(P;) — 0as N — oo by Lemma 3.2 and Theo-
rem 1.9. For these calculations it is important that the limiting distribution function
for N2/38N_1 be continous at 0; see Theorem 1.9. Then for n > 0

T* - T T* - T
Pll———————|>n)|=P(|————| > Ly NUy NPy

N2/3log N N2/3log N
(3.2) o8 8
p(|l- T =T L% UUS U PS
TN Begn | T IV IR SN )
Onthe set Ly N Uy N Py we estimate
T*-T _ 3
N2/3logN |~ /logN"

Hence the first term on the right-hand side of (3.2) is 0 for sufficiently large N and
the second term is bounded by P(Uy;) + P (L) + P(Pg;), which tends to 0. This
shows convergence in probability. U

We now arrive at our main result.
THEOREM 3.6. Ifa > 12 + 6 and 6 > 0, then
( 22/3T(1)
<
2 (@ —4/3)N2/3log N

lim P

N—o0

t) = Fg"(0).
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PROOF. Combining Lemma 3.1 and Lemma 3.5, we have that
TW T ‘
2 (@ —4/3)N2/3log N

converges to 0 in probability. Then by Lemma 3.4 and Theorem 1.9 the result
follows as

22/3

2237
lim P( 7 )
N—oo \¢/”(a—4/3)N?/3log N
lim P(c,**22AN"2P 0y —Ay-)7! <1) = F§P(). O

N—o00
We also prove a result concerning the true error Ay — X11(T(M)]:
10

PROPOSITION 3.7. Fora > 5 to,0> 0, and any q < 1,

Ne2Hhy — X1(TD))
converges to 0 in probability as N — oco. Furthermore, for any r > 0
N2y — X1 (TD)], N30 — X (T D)),
converges to oo in probability if j = j(N) < N.

PROOF. We recall that Ry is the set on which Condition 2 holds. Then for
any n >0

P(NY2+4 Ay — X, (TD)] > n)
= P(N“?* 0y — X11(TD)| > 0, Rys)
+ P(N“/z"'qlkzv — X11(TW)] > g, RS ,)
< PWN*? Ay — X101 (TD)| > 0, Rus) + P(RG).

Using Lemma 2.7, the first term on the right-hand side is O for sufficiently large N
and the second term vanishes from Theorem 1.11. This shows the first statement,
ie.,

lim P(NY?>T Ay — X11(TD)| > ) = 0.
N —o0
For the second statement, on the set Ry ¢ with s < min{r,o/44, p/8} we have
A7 = X1 (D) = [Aj = Ay | = Ay = X (TD)]
> [Av—1 = An| = 1An = X1 (TD)],
and for sufficiently large N (see Lemma 2.7)
NP2 = X (T D) = NT(N?P Ay -1 — An| = N7137402)
> Nr—S(l . CN_1/3_a/2+S).
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This tends to oo as s < 1/3 and s < r. Hence for any K > 0, again using the
arguments of Theorem 3.6,
P(N?3H713, = X10(TD)| > K)
=P(N?37 2 — X111 (TDW)| > K, Ry5)
+P(NZBPH 0 — X1 (TD)] > K, RS, ).

For sufficiently large N, the first term on the right-hand side is equal to P(Ry s)
and the second term is bounded by P (R, ;) and hence

lim P(N2347 3 — X1 (TW)| > K) = 1.
N—o0
Next, under the same assumption (Condition 2)
N2 by — X1 (TW)| = N'(N*Plby — Ay| = CNTV379/%),
From Corollary 3.3 and Theorem 1.9 by using yy = by
N_r(N2/3|bV _ AN| _ CN—1/3—(¥/2)—1

converges to 0 in probability (with no point mass at 0), implying its inverse con-
verges to oo in probability. This shows N%|by — X11(T ()| converges to oo in
probability. O

Appendix: Invariant and Wigner Ensembles

The following definitions are taken from [4,5, 13]. The first definition appeared
initially in [14] and was made more explicit in [13]. These are the two classes of
random matrices to which our results apply.

DEFINITION A.1 (Generalized Wigner Ensemble (WE)). A generalized Wigner
matrix (ensemble) is a real symmetric (8 = 1) or Hermitian (f = 2) matrix
H = (Hij)f}l =1 such that H;; are independent random variables for i < j given
by a probability measure v;; with

2. 2
Next, assume there is a fixed constant v (independent of N, i, j) such that
P(|H;j| > xoi;) < v 'exp(—xY), x > 0.
Finally, assume there exists C1, C > 0 such that for all i, j

N
G Cs
2 2
dog=1 S oj<
i=1

IA

and for B = 2 the matrix

5. = E(Re H;;)? E(Re H;;)(Im Hjj)
N E(Re H;;)(Im H;;) E(ImHij)z

has its smallest eigenvalue A, satisfy Apin > C;N ™1,
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DEFINITION A.2 (Invariant Ensemble (IE)). Let V : R — R satisfy V € C4(R),
infyeg V”(x) > 0, and V(x) > (2 + 8) log(1 + |x]|) for sufficiently large x and
some fixed § > 0. Then we define an invariant ensemble’ to be the set of all
N x N symmetric (8 = 1) or Hermitian (8 = 2) matrices H = (Hii)zg\,]j=1 with
probability density

1 NEuV) gy
ZN

Here dH = l_[ifj dH;; if B =l and dH = HlN=1 dH;; Hi<j dRe H;;dIm H;;
if B =2.
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