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Abstract

We prove universality for the fluctuations of the halting time for the Toda algo-

rithm to compute the largest eigenvalue of real symmetric and complex Hermit-

ian matrices. The proof relies on recent results on the statistics of the eigenvalues

and eigenvectors of random matrices (such as delocalization, rigidity, and edge

universality) in a crucial way. © 2017 Wiley Periodicals, Inc.

1 Introduction

In [22] the authors initiated a statistical study of the performance of various

standard algorithms A to compute the eigenvalues of random real symmetric ma-

trices H . Let †N denote the set of real N � N symmetric matrices. Associ-

ated with each algorithm A , there is, in the discrete case such as QR, a map

' D 'A W †N ! †N with the properties

� isospectrality: spec.'A .H// D spec.H/,

� convergence: the iterates XkC1 D 'A .Xk/, k � 0, X0 D H given,

converge to a diagonal matrix X1, Xk ! X1 as k ! 1,

and in the continuum case, such as Toda, there is a flow t 7! X.t/ 2 †N with the

properties

� isospectrality: spec.X.t// is constant,

� convergence: the flow X.t/, t � 0, X.0/ D H given, converges to a

diagonal matrix X1, X.t/ ! X1 as t ! 1.

In both cases, necessarily, the (diagonal) entries of X1 are the eigenvalues of the

given matrix H .

Given � > 0, it follows, in the discrete case, that for some m the off-diagonal

entries of Xm are O.�/ and hence the diagonal entries of Xm give the eigenvalues

of X0 D H to O.�/. The situation is similar for continuous algorithms t 7! X.t/.

Rather than running the algorithm until all the off-diagonal entries are O.�/, it is

customary to run the algorithm with deflations as follows. For an N � N matrix Y

Communications on Pure and Applied Mathematics, Vol. LXXI, 0505–0536 (2018)

© 2017 Wiley Periodicals, Inc.



506 P. DEIFT AND T. TROGDON

in block form

Y D
�
Y11 Y12

Y21 Y22

�
;

with Y11 of size k�k and Y22 of size N �k�N �k for some k 2 f1; : : : ; N �1g, the

process of projecting Y 7! diag.Y11; Y22/ is called deflation. For a given �, algo-

rithm A , and matrix H 2 †N , define the k-deflation time T .k/.H/ D T
.k/
�;A .H/,

1 � k � N � 1, to be the smallest value of m such that Xm, the mth iterate of

algorithm A with X0 D H , has block form

Xm D
"

X
.k/
11 X

.k/
12

X
.k/
21 X

.k/
22

#
;

with X
.k/
11 of size k�k and X

.k/
22 of size N �k�N �k and kX

.k/
12 k D kX

.k/
21 k � �.1

The deflation time T .H/ is then defined as

T .H/ D T�;A .H/ D min
1�k�N �1

T
.k/
�;A .H/:

If yk 2 f1; : : : ; N � 1g is such that T .H/ D T
.yk/
�;A .H/, it follows that the eigen-

values of H D X0 are given by the eigenvalues of the block-diagonal matrix

diag.X
.yk/
11 ; X

.yk/
22 / to O.�/. After running the algorithm to time T�;A.H/, the algo-

rithm restarts by applying the basic algorithm A separately to the smaller matrices

X
.yk/
11 and X

.yk/
22 until the next deflation time, and so on. There are again similar

considerations for continuous algorithms.

As the algorithm proceeds, the number of matrices after each deflation doubles.

This is counterbalanced by the fact that the matrices are smaller and smaller in size,

and the calculations are clearly parallelizable. Allowing for parallel computation,

the number of deflations to compute all the eigenvalues of a given matrix H to a

given accuracy � will vary from O.log N / to O.N /.

In [22] the authors considered the deflation time T D T�;A for N � N matri-

ces chosen from a given ensemble E . Henceforth in this paper we suppress the

dependence on �, N , A , and E , and simply write T with these variables under-

stood. For a given algorithm A and ensemble E the authors computed T .H/ for

5 000–15 000 samples of matrices H chosen from E and recorded the normalized
deflation time

�T .H/ WD T .H/ � hT i
�

;(1.1)

where hT i and �2 D h.T � hT i/2i are the sample average and sample variance of

T .H/, respectively. Surprisingly, the authors found that for the given algorithm A ,

and � and N in a suitable scaling range with N ! 1, the histogram of �T was

1 Here we use k � k to denote the Frobenius norm kXk2 D
P

i;j jXij j2 for X D .Xij /.
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from invariant ensembles. See the Appendix (p. 534) for a full description of these

random matrix ensembles. The techniques in this paper can also be used to prove

universality for the fluctuations in the halting times for other eigenvalue algorithms,

in particular, QR (without shifts)—see Remark 1.5 below.

1.1 Main Result

The Toda algorithm is an example of the generalized continuous eigenvalue al-

gorithms described above. For an N � N real symmetric or Hermitian matrix

X.t/ D .Xij .t//N
i;j D1, the Toda equations are given by3

PX D ŒX; B.X/�; B.X/ D X� � .X�/�; X.0/ D H D H �;(1.2)

where X� is the strictly lower-triangular part of X and ŒA; B� is the standard matrix

commutator. It is well-known that this flow is isospectral and converges as t ! 1
to a diagonal matrix X1 D diag.�N ; : : : ; �1/; see, for example, [8]. As noted

above, necessarily, the diagonal elements of X1 are the eigenvalues of H . By

the Toda algorithm to compute the eigenvalues of a Hermitian matrix H we mean

solving (1.2) with X.0/ D H until such time t 0 that the off-diagonal elements in

the matrix X.t/ are of order �. The eigenvalues of X.t 0/ then give the eigenvalues

of H to O.�/.

The history of the Toda algorithm is as follows. The Toda lattice was introduced

by M. Toda in 1967 [28] and describes the motion of N particles xi , i D 1; : : : ; N ,

on the line under the Hamiltonian

HToda.x; y/ D 1

2

NX

iD1

y2
i C

NX

iD1

exi �xiC1 :

In 1974, Flaschka [15] (see also [18]) showed that Hamilton’s equations

Px D @HToda

@y
; Py D �@HToda

@x
;

can be written in the Lax pair form (1.2) where X is tridiagonal

Xi i D �yi=2; 1 � i � N;

Xi;iC1 D XiC1;i D 1

2
e

1
2

.xi �xiC1/; 1 � i � N � 1;

and B.X/ is the tridiagonal skew-symmetric matrix B.X/ D X� � .X�/T as in

(1.2). As noted above, the flow t 7! X.t/ is isospectral. But more is true: The flow

is completely integrable in the sense of Liouville with the eigenvalues of X.0/ D
H providing N Poisson commuting integrals for the flow. In 1975, Moser showed

that the off-diagonal elements Xi;iC1.t/ converge to 0 as t ! 1 [20]. Inspired by

this result, and also related work of Symes [26] on the QR algorithm, the authors

in [10] suggested that the Toda lattice be viewed as an eigenvalue algorithm, the

Toda algorithm. The Lax equations (1.2) clearly give rise to a global flow not only

3 In the real symmetric case � should be replaced with T.
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(ˇ D 1) or complex (ˇ D 2) invariant or Wigner ensemble, we have

lim
N !1

P

 
T .1/

c
2=3
V 2�2=3N 2=3.log ��1 � 2=3 log N /

� t

!
D F

gap

ˇ
.t/:(1.6)

Here cV is the same constant as in (1.5).

Example 1.1. Consider the case of real symmetric 2�2 matrices. For X.0/ D H , it

follows that as t ! 1, X11.t/ ! �2, the largest eigenvalue, while X22.t/ ! �1,

the second-largest eigenvalue. And so, one should expect T .1/ to be larger for

X.0/ D HC WD
�
�1 ı

ı 1

�
than for X.0/ D H� WD

�
1 ı

ı �1

�
;

despite the fact that these matrices have the same eigenvalues. Said differently,

it is surprising that the fluctuations of T .1/ in Theorem 1.2 depend only on the

eigenvalues and are independent of the eigenvectors of H .

Let U D .Uij /1�i;j �2 be the matrix of normalized eigenvectors of X.0/. It then

follows from the calculations in Section 2 that

jX12.t/j2 D .�2 � �1/2 jU11.0/j2e2�1t

jU11.0/j2e2�1t C jU12.0/j2e2�2t
:

It is then clear that

jX12.t/j2 � .�2 � �1/2 jU11.0/j2
jU12.0/j2 e�2.�2��1/t as t ! 1:

First, note that this, roughly speaking, explains the appearance of �N � �N �1 in

the definition of the universal limit F
gap

ˇ
.t/. Second, a simple calculation shows

that as ı # 0, jU12.0/j � ı for HC while jU12.0/j � 1 for H�, explaining why

T .1/.HC/ � T .1/.H�/. However, the matrices HC and H� are not “typical.”

With high probability, the eigenvectors of random matrices in the ensembles under

consideration are delocalized, so that U1j , j D 1; : : : ; N , are all of the same order.

For general N , we then have
PN

kD2 jX1kj2 � .�N � �N �1/2e�2.�N �1��N /t and

the dependence on the eigenvectors is effectively removed as � # 0.

To see that the algorithm computes the top eigenvalue to an accuracy beyond its

fluctuations, we have the following proposition, which is a restatement of Proposi-

tion 3.7 that shows our error is O.�/ with high probability.

PROPOSITION 1.3 (Computing the largest eigenvalue). Let .�; N / be in the scaling
region. Then if H is distributed according to any real or complex invariant or
Wigner ensemble,

��1
ˇ̌
�N � X11.T .1//

ˇ̌

converges to 0 in probability as N ! 1. Furthermore, both

��1
ˇ̌
bV � X11.T .1//

ˇ̌
; ��1

ˇ̌
�j � X11.T .1//

ˇ̌
;
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converge to 1 in probability for any j D j.N / < N as N ! 1, where bV is the
supremum of the support of the equilibrium measure for the ensemble.

The relation of this theorem to two-component universality as discussed in [9] is

the following. Let � D �ˇ be the random variable with distribution F
gap

ˇ
.t/, ˇ D 1

or 2. For ˇ D 2 IEs one can prove that6

EŒT .1/� D c
2=3
V 2� 2

3 N
2
3

�
log ��1 � 2

3
log N

�
EŒ��.1 C o.1//;(1.7)

q
Var.T .1// D �c

2=3
V 2� 2

3 N
2
3

�
log ��1 � 2

3
log N

�
.1 C o.1//; � > 0:(1.8)

By the Law of Large Numbers, if the number of samples is sufficiently large for

any fixed but sufficiently large N , we can restate the result as

P

�
T .1/ � hT .1/i

�T .1/

� t

�
� F

gap

ˇ
.�t C EŒ��/:

This is a universality theorem for the halting time T .1/ as the limiting distribution

does not depend on the distribution of the individual entries of the matrix ensemble,

just whether it is real or complex.

Remark 1.4. If one constructs matrices H D UƒU �, ƒ D diag.�N ; �N �1;

: : : ; �1/ where the joint distribution of �1 � �2 � � � � � �N is given by

/
NY

j D1

e�N ˇ
2

V.�j /
Y

j <n

j�j � �njˇ ;

and U is distributed (independently) according to Haar measure on either the or-

thogonal or unitary group, then Theorem 1.2 holds for any ˇ � 1. Here V should

satisfy the hypotheses in Definition A.2.

Remark 1.5. To compute the largest eigenvalue of H , one can alternatively con-

sider the flow

PX.t/ D HX.t/; X.0/ D Œ1; 0; : : : ; 0�T:

It follows that

log
kX.t C 1/k

kX.t/k ! �N ; t ! 1:

6 We can also prove (1.7) for ˇ D 1 IEs. The proofs of these facts require an extension of the level

repulsion estimates in [3, theorem 3.2] to the case K D 1. When ˇ D 2, again with this extension

of [3, theorem 3.2] to the case K D 1, we can prove that � D Var.�/. This extension is known to

be true [2]. The calculations in Table 1.1 below are consistent with (1.7) and (1.8) (even for WEs)

and lead us to believe that (1.8) also holds for ˇ D 1. Note that for ˇ D 2, EŒ�2� < 1, but it is

believed that EŒ�2� D 1 for ˇ D 1; see [21]. In other words, we face the unusual situation where

the variance seems to converge, but not to the variance of the limiting distribution.
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So, define

TODE.H/ D inf

�
t W
ˇ̌
ˇ̌log

kX.t C 1/k
kX.t/k � �N

ˇ̌
ˇ̌ � �

�
:

Using the proof technique we present here, one can show that Theorem 1.2 also

holds with T .1/ replaced with TODE. The same is true for the power method, the

inverse power method, and the QR algorithm without shifts on positive-definite

random matrices (see [11]).

1.2 A Numerical Demonstration

We can demonstrate Theorem 1.2 numerically using the following WEs defined

by letting Xij for i � j be i.i.d. with distributions:

GUE: Mean zero standard complex normal.

BUE: � C i� where � and � are each the sum of independent mean zero Bernoulli

random variables, i.e., binomial random variables.

GOE: Mean zero standard (real) normal.

BOE: Mean zero Bernoulli random variable.

In Figure 1.3, for ˇ D 2, we show how the histogram of T .1/ (more precisely,
�T .1/; see (1.9) below), after rescaling, matches the density d=dtF

gap

2 .t/, which was

computed numerically in [31].7 In Figure 1.4, for ˇ D 1, we show the histogram

for T .1/ (again, �T .1/), after rescaling, matches the density d=dtF
gap

1 .t/. To the best

of our knowledge, a computationally viable formula for d=dtF
gap

1 .t/, analogous to

d=dtF
gap

2 .t/ in [31], is not yet known, and so we estimate the density d=dtF
gap

1 .t/

using Monte Carlo simulations with N large. For convenience, we choose the

variance for the above ensembles so that ŒaV ; bV � D Œ�2
p

2; 2
p

2�, which, in turn,

implies cV D 2�3=2.

It is clear from the proof of Theorem 1.2 that the convergence of the left-hand

side in (1.6) to F
gap

ˇ
is slow. In fact, we expect a rate proportional to 1= log N . This

means that in order to demonstrate (1.6) numerically with convincing accuracy one

would have to consider very large values of N . In order to display the convergence

in (1.6) for more reasonable values of N , we observe, using a simple calculation,

that for any fixed 
 ¤ 0 the limiting distribution of

�T .1/ D �T .1/

 WD T .1/

c
2=3
V 2�2=3N 2=3.log ��1 � 2

3
log N C 
/

(1.9)

as N ! 1 is the same as for 
 D 0. A “good” choice for 
 is obtained in

the following way. To analyze the T .1/ in Sections 2 and 3 below we utilize two

approximations to T .1/, viz. T � in (2.9) and �T in (3.1):

T .1/ D �T C .T .1/ � T �/ C .T � � �T /:

7 Technically, the distribution of the first gap was computed, and then F
gap
2 can be computed by

a change of variables. We thank Folkmar Bornemann for the data to plot F
gap
2 .
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N

50 100 150 200 250 300

log ��1= log N � 5=3 1.28 0.833 0.631 0.506 0.418 0.352

hT .1/i��1
T .1/ for GUE 1.58 1.62 1.59 1.63 1.6 1.58

hT .1/i��1
T .1/ for BUE 1.6 1.57 1.6 1.62 1.62 1.58

hT .1/i��1
T .1/ for GOE 0.506 0.701 0.612 0.475 0.705 0.619

hT .1/i��1
T .1/ for BOE 0.717 0.649 0.663 0.747 0.63 0.708

TABLE 1.1. A numerical demonstration of (1.11). The third row of

the table confirms that .�; N / is in the scaling region for, say, � D 1
2

.

The last four rows demonstrate that the ratio of the sample mean to the

sample standard deviation is order 1.

The parameter 
 can be inserted into the calculation by replacing �T with �T
 :

�T ! �T
 WD
.˛ � 4

3
/ log N C 2


ıN �1

where 
 is chosen to make

T � � �T
 D
log N 2=3.�N � �N �1/ C 1

2
log �N �1 � 


�N � �N �1
(1.10)

as small as possible. Here �N �1 and ıN �1 are defined at the beginning of Sec-

tion 1.4. Replacing log N 2=3.�N � �N �1/ and log �N in (1.10) with the expecta-

tion of their respective limiting distributions as N ! 1 (see Theorem 1.9: note

that �N �1 is asymptotically distributed as �2 where � is Cauchy distributed), we

choose 
2 D �E.log.c
2=3
V 2�5=3�2// C 1

2
EŒlog j�j� � 0:883 when ˇ D 2 and


1 D �E.log.c
2=3
V 2�5=3�1// C 1

2
EŒlog j�j� � 0:89 when ˇ D 1. Figures 1.3 and

1.4 are plotted using 
1 and 
2, respectively.

We can also examine the growth of the mean and standard deviation. We see

from Table 1.1 using a million samples and � D 10�5 that the sample standard

deviation is on the same order as the sample mean:

�T .1/ � hT .1/i � N 2=3

�
log ��1 � 2

3
log N

�
:(1.11)

Remark 1.6. The ideas that allow us to establish (1.7) for IEs requires the conver-

gence of

E

�
1

N 2=3.�N � �N �1/

�
:(1.12)
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For BUE, (1.12) must be infinite for all N as there is a nonzero probability that the

top two eigenvalues coincide owing to the fact that the matrix entries are discrete

random variables. Nevertheless, the sample mean and sample standard deviation

of T .1/ are observed to converge after rescaling. It is an interesting open prob-

lem to show that convergence in (1.7) still holds in this case of discrete WEs even

though (1.12) is infinite. Specifically, the convergence in the definition of � (Defi-

nition 1.10) for discrete WEs cannot take place in expectation. Hence T .1/ acts as

a mollified version of the inverse of the top gap—it is always finite.

1.3 Estimates from Random Matrix Theory

We now introduce the results from random matrix theory that are needed to

prove Theorem 1.2 and Proposition 1.3. Let H be an N �N Hermitian (or just real

symmetric) matrix with eigenvalues �1 � �2 � � � � � �N , and let ˇ1; ˇ2; : : : ; ˇN

denote the absolute value of the first components of the normalized eigenvectors.

We assume the entries of H are distributed according to an invariant or general-

ized Wigner ensemble (see the Appendix). Define the averaged empirical spectral

measure

�N .´/ D E
1

N

NX

iD1

ı.�i � ´/;

where the expectation is taken with respect to the given ensemble.

THEOREM 1.7 (Equilibrium measure [3]). For any WE or IE the measure �N con-
verges weakly to a measure �, called the equilibrium measure, which has support
on a single interval ŒaV ; bV � and, for suitable constants C� and cV , has a density �

that satisfies �.x/ � C�

p
bV � x�.�1;bV �.x/ and �.x/ D 23=4cV

�

p
bV � x.1 C

O.bV � x// as x ! bV .

With the chosen normalization for WEs,
PN

iD1 �2
ij D 1, ŒaV ; bV � D Œ�2; 2�,

and cV D 1 [3]. One can vary the support as desired by shifting and scaling, H !
aH C bI : the constant cV then changes accordingly. When the entries of H are

distributed according to a WE or an IE with high probability (see Theorem 1.11),

the top three eigenvalues are distinct and ǰ ¤ 0 for j D N; N � 1; N � 2. Next,

let d� denote the limiting spectral density or equilibrium measure for the ensemble

as N ! 1. Then define 
n to be the smallest value of t such that

n

N
D
Z t

�1
d�:

Thus f
ng represent the quantiles of the equilibrium measure.

There are four fundamental parameters involved in our calculations. First we

fix 0 < � < 1 once and for all, then we fix 0 < p < 1
3

, then we choose

s < minf �
44

; p
8

g, and then finally 0 < c � 10
�

will be a constant that will al-

low us to estimate the size of various sums. The specific meanings of the first three
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parameters are given below. Also, C denotes a generic constant that can depend on

� or p but not on s or N . We also make statements that will be “true for N suffi-

ciently large.” This should be taken to mean that there exists N � D N �.�; �; s; p/

such that the statement is true for N > N �. For convenience in what follows, we

use the notation � D N �˛=2, so

.�; N / are in the scaling region if and only if ˛ � 10
3

� � > 0

and ˛ D ˛N is allowed to vary with N . Our calculations that follow involve first

deterministic estimates and then probabilistic estimates. The following conditions

provide the setting for the deterministic estimates.

Condition 1. For 0 < p < �
4

,

� �N �1 � �N �2 � p.�N � �N �1/.

Let GN;p denote the set of matrices that satisfy this condition.

Condition 2. For any fixed 0 < s < minf �
44

; p
8

g
(1) ˇn � N �1=2Cs=2 for all n,

(2) N �1=2�s=2 � ˇn for n D N; N � 1,

(3) N �2=3�s � �N � �n�1 � N �2=3Cs for n D N; N � 1, and

(4) j�n � 
nj � N �2=3Cs.minfn; N � n C 1g/�1=3 for all n.

Let RN;s denote the set of matrices that satisfy these conditions.

Remark 1.8. It is known that the distribution (Haar measure on the unitary or or-

thogonal group) on the eigenvectors for IEs depends only on ˇ D 1; 2. And, if

V.x/ D x2 the IE is also a WE. Therefore, if one can prove a general statement

about the eigenvectors for WEs then it must also hold for IEs. But, it should be

noted that stronger results can be proved for the eigenvectors for IEs; see [16, 25],

for example.

The following theorem has its roots in the pursuit of proving universality in

random matrix theory. See [29] for the seminal result when V.x/ D x2 and ˇ D 2.

Further extensions include the works of Soshnikov [24] and Tao and Vu [27] for

Wigner ensembles and [6] for invariant ensembles.

THEOREM 1.9. For both IEs and WEs

N 1=2.jˇN j; jˇN �1j; jˇN �2j/
converges jointly in distribution to .jX1j; jX2j; jX3j/ where fX1; X2; X3g are i.i.d.
real (ˇ D 1) or complex (ˇ D 2) standard normal random variables. Additionally,
for IEs and WEs

2�2=3N 2=3.bV � �N ; bV � �N �1; bV � �N �2/

converges jointly in distribution to random variables .ƒ1;ˇ ; ƒ2;ˇ ; ƒ3;ˇ /, which
are the smallest three eigenvalues of the so-called stochastic Airy operator. Fur-
thermore, .ƒ1;ˇ ; ƒ2;ˇ ; ƒ3;ˇ / are distinct with probability 1.
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PROOF. The first claim follows from [4, theorem 1.2]. The second claim follows

from [3, cor. 2.2, theorem 2.7]. The last claim follows from [23, theorem 1.1]. �

DEFINITION 1.10. The distribution function F
gap

ˇ
.t/ for ˇ D 1; 2 is given by

F
gap

ˇ
.t/ D P

�
1

ƒ2;ˇ � ƒ1;ˇ

� t

�

D lim
N !1

P

�
1

c
2=3
V 2�2=3N 2=3.�N � �N �1/

� t

�
; t � 0:

Properties of Gˇ .t/ WD 1 � F
gap

ˇ
.1=t/, the distribution function for the first gap,

are examined in [19, 21, 31], including the behavior of Gˇ .t/ near t D 0, which is

critical for understanding which moments of F 0
ˇ

.t/ exist.

The remaining theorems in this section are compiled from results that have been

obtained recently in the literature. These results show that the conditions described

above hold with arbitrarily high probability.

THEOREM 1.11. For WEs or IEs Condition 2 holds with high probability as N !
1; that is, for any s > 0

P .RN;s/ D 1 C o.1/ as N ! 1.

PROOF. We first consider WEs. The fact that the probability of Condition 2(1)

tends to unity follows from [14, theorem 2.1] using estimates on the (1,1)-entry of

the Green’s function. See [12, sec. 2.1] for a discussion of using these estimates.

The fact that the probability of each of Condition 2(2)–(3) tends to unity follows

from Theorem 1.9 using Corollary 3.3. Finally, the statement that the probabil-

ity Condition 2(4) tends to unity as N ! 1 is the statement of the rigidity of

eigenvalues, the main result of [14]. Following Remark 1.8, we then have that the

probability of Condition 2(1)-(2) tends to unity for IEs.

For IEs, the fact that the probability of Condition 2(4) tends to unity follows

from [4, theorem 2.4]. Again, the fact that the probability of Condition 2(3) tends

to unity follows from Theorem 1.9 using Corollary 3.2. �

THEOREM 1.12. For both WEs and IEs

lim
p#0

lim sup
N !1

P .Gc

N;p/ D 0:

PROOF. It follows from Theorem 1.9 that

lim sup
N !1

P .Gc

N;p/ D lim
N !1

P .�N �1 � �N �2 < p.�N � �N �1//

D P .ƒ3;ˇ � ƒ2;ˇ < p.ƒ2;ˇ � ƒ1;ˇ //:
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Then

lim
p#0

P .ƒ3;ˇ � ƒ2;ˇ < p.ƒ2;ˇ � ƒ1;ˇ //

D P

�\

p>0

fƒ3;ˇ � ƒ2;ˇ < p.ƒ2;ˇ � ƒ1;ˇ /g
�

D P .ƒ3;ˇ D ƒ2;ˇ /:

But from [23, theorem 1.1] P .ƒ3;ˇ D ƒ2;ˇ / D 0. �

Throughout what follows we assume we are given a WE or an IE.

1.4 Technical Lemmas

Define ıj D 2.�N � �j / and Ic D f1 � n � N � 1 W ın=ıN �1 � 1 C cg for

c > 0.

LEMMA 1.13. Let 0 < c < 10=� . Given Condition 2

jI c

c j � N 2s for N sufficiently large,

where c denotes the complement relative to f1; 2; : : : ; N � 1g.

PROOF. We use rigidity of the eigenvalues, Condition 2(4). So, j�n � 
nj �
N �2=3Cs.yn/�1=3 where yn D minfn; N � n C 1g. Recall

I c

c � f1 � n � N � 1 W �N � �n < .1 C c/.�N � �N �1/g:
Define

Jc D f1 � n � N � 1 W 
N � 
n � .2 C c C .yn/�1=3/N �2=3Csg:
If n 2 Ic , then

�N � �n � .1 C c/N �2=3Cs;


N � N �2=3Cs � .
 C .yn/�1=3N �2=3Cs/ � �N � �n � .1 C c/N �2=3Cs;


N � 
n � .2 C c C .yn/�1=3/N �2=3Cs;

and hence n 2 Jc . Then compute the asymptotic size of the set Jc and let n� be

the smallest element of Jc . Then jJ �j D N � n� so that

n�

N
D
Z 
n�

�1
d�; jI c

c j � jJcj D N � n� D N

Z 1

n�

d�:

Then using Definition 1.7, 
N D bV , and

n� � bV � .2 C c C .yn/�1=3/N �2=3Cs � bV � .3 C c/N �2=3Cs;

we see that

jI c

c j � N

Z 1

n�

d� � C�N

Z bV

bV �.3Cc/N �2=3Cs

p
bV � x dx

D 2C�

3
.3 C c/3=2N 3s=2;
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and then because � is fixed, c has an upper bound and s > 0, jI c

c j � N 2s for

sufficiently large N . �

We use the notation �n D ˇ2
n=ˇ2

N and note that for a matrix in RN;s we have

�n � N 2s and
P

n �n D ˇ�2
N � N 1Cs . One of the main tasks that will follow is

estimating the following sums.

LEMMA 1.14. Given Condition 2, 0 < c � 10=� , and j � 3, there exists an
absolute constant C such that

N �2sı
j
N �1e�ıN �1t �

N �1X

nD1

�nıj
ne�ınt

� C e�ıN �1t
�
N 4sı

j
N �1 C N 1Cse�cıN �1t

�

for N sufficiently large.

PROOF. For j � 3

N �1X

nD1

�nıj
ne�ınt D

�X

n2Ic

C
X

n2I c
c

�
�nıj

ne�ınt

�
X

n2I c
c

�n.1 C c/j ı
j
N �1e�ıN �1t

C 2j
X

n2Ic

�nj�1 � �N jj e�.1Cc/ıN �1t :

It also follows that �N � �1 � bV � aV C 1 so that by Lemma 1.13 for sufficiently

large N

N �1X

nD1

�nıj
ne�ınt � C e�ıN �1t

�
N 4sı

j
N �1 C N 1Cse�cıN �1t

�
:

To find a lower bound, we just keep the first term, as that should be the largest:

N �1X

nD1

�nıj
ne�ınt � �N �1ı

j
N �1e�ıN �1t � N �2sı

j
N �1e�ıN �1t : �

2 Estimates for the Toda Algorithm

Remarkably, (1.2) can be solved explicitly by a QR factorization procedure; see,

for example, [26]. For X.0/ D H we have for t � 0

etH D Q.t/R.t/;

where Q is orthogonal (ˇ D 1) or unitary (ˇ D 2) and R has positive diagonal

entries. This QR factorization for etH is unique: Note that Q.t/ is obtained by ap-

plying Gram-Schmidt to the columns of etH . We claim that X.t/ D Q�.t/HQ.t/
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is the solution of (1.2). Indeed, by differentiating, we obtain

HetH D HQ.t/R.t/ D PQ.t/R.t/ C Q.t/ PR.t/;

X.t/ D Q�.t/ PQ.t/ C PR.t/R�1.t/:(2.1)

Then because PR.t/R�1.t/ is upper-triangular,

.X.t//� D .Q�.t/ PQ.t//�:

Furthermore, from Q�.t/Q.t/ D I we have Q�.t/ PQ.t/ D � PQ�.t/Q.t/ so that

Q�.t/ PQ.t/ is skew-Hermitian. Thus, B.X.t// D Q�.t/ PQ.t/ � ŒQ�.t/ PQ.t/�D ,

where Œ��D gives the diagonal part of the matrix. However, as Q�.t/ PQ.t/ is skew-

Hermitian, ŒQ�.t/ PQ.t/�D is purely imaginary. On the other hand, we see from

(2.1) that the diagonal is real. It follows that ŒQ�.t/ PQ.t/�D D 0 and B.X.t// D
Q�.t/ PQ.t/. Using (1.2) we have

PX.t/ D PQ�.t/HQ.t/ C Q�.t/H PQ.t/;

and so

PX.t/ D X.t/B.X.t// � B.X.t//X.t/:

When t D 0, Q.0/ D I so that X.0/ D H , and by uniqueness for ODEs this

shows X.t/ is indeed the solution of (1.2).

As the eigenvalues of X.0/ D H are not necessarily simple (indeed for BOE

there is a nonzero probability for a matrix to have repeated eigenvalues), it is not

clear a priori that the eigenvectors of X.t/ can be chosen to be smooth functions

of t . However, for the case at hand we can proceed in the following way. For

X.0/ D H there exists a (not necessarily unique) unitary matrix U0 such that

X.0/ D U0ƒU �
0 where ƒ D diag.�1; : : : ; �N /. Then X.t/ D Q�.t/HQ.t/ D

U.t/ƒU �.t/ where U.t/ D Q�.t/U0. Then the j th column uj .t/ of U.t/ is a

smooth eigenvector of X.t/ corresponding to eigenvalue �j . From the eigenvalue

equation

.X.t/ � �j /uj .t/ D 0;

we obtain (following Moser [20])

PX.t/uj .t/ C .X.t/ � �j / Puj .t/ D 0;

.X.t/B.X.t// � B.X.t//X.t//uj .t/ C .X.t/ � �j / Puj .t/ D 0;

.X.t/ � �j /Œ Puj .t/ C B.X.t//uj .t/� D 0:

This last equation implies Puj .t/ C B.X.t//uj must be a (possibly time-dependent)

linear combination of the eigenvectors corresponding to �j . Let Uj .t/ D Œuj1
.t/;

: : : ; ujm
.t/� be eigenvectors corresponding to a repeated eigenvalue �j so that for

i D 1; 2; : : : ; m,

Puji
.t/ C B.X.t//uji

.t/ D
mX

kD1

dki .t/ujk
.t/;
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and so �
d

dt
C B.X.t//

�
Uj .t/ D Uj .t/D.t/; D.t/ D .dki .t//

m
k;iD1:(2.2)

Note that U �
j .t/Uj .t/ D Im, the m � m identity matrix. Then multiplying (2.2) on

the left by U �
j .t/ and then multiplying the conjugate transpose of (2.2) on the right

by Uj .t/, we obtain

U �
j .t/ PUj .t/ C U �

j .t/B.X.t//Uj .t/ D D.t/;

PU �
j .t/Uj .t/ C U �

j .t/ŒB.X.t//��Uj .t/ D D�.t/:

Because d=dt ŒU �
j .t/Uj .t/� D 0 and B.X.t// is skew-Hermitian, the addition of

these two equations gives D.t/ D �D�.t/. Let S.t/ be the solution of PS.t/ D
�D.t/S.t/ with S.0/ D Im. Then

d

dt
ŒS�.t/S.t/� D �S�.t/D.t/S.t/ C S�.t/D.t/S.t/ D 0

and hence S�.t/S.t/ D C D Im; i.e., S.t/ is unitary. In particular, �Uj .t/ WD
Uj .t/S.t/ has orthonormal columns and we find

�
d

dt
C B.X.t//

�
�Uj .t/ D Uj .t/D.t/S.t/ � Uj .t/D.t/S.s/ D 0:

We see that a smooth normalization for the eigenvectors of X.t/ can always be

chosen so that D.t/ D 0. Without loss of generality, we can assume that U.t/

solves (2.2) with D.t/ D 0. Then for U.t/ D .Uij .t//N
i;j D1

PU1j .t/ D �e�
1 B.X.t//uj .t/ D .B.X.T //e1/�uj .t/

D .X.t/e1 � X�
11.t/e1/�uj .t/ D e�

1 .X.t/ � X11.t//uj .t/

D .�j � X11.t//U1j .t/:

A direct calculation using

X11.t/ D e�
1 X.t/e1 D

NX

j D1

�j jU1j .t/j2

shows that

U1j .t/ D U1j .0/e�j t

�PN
j D1 jU1j .0/j2e2�j t

�1=2
; 1 � j � N:

Also

X1k.t/ D
NX

j D1

�j U �
1j .t/Ukj .t/;
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and hence

NX

kD2

jX1k.t/j2 D
NX

kD2

X1k.t/Xk1.t/ D ŒX2.t/�11 � X2
11.t/

D
NX

kD1

�2
kjU1k.t/j2 �

� NX

kD1

�kjU1k.t/j2
�2

D
NX

kD1

.�k � X11.t//2jU1k.t/j2:

Thus

E.t/ WD
NX

kD2

jX1k.t/j2 D
NX

j D1

.�j � X11.t//2jU1j .t/j2:

We also note that

�N � X11.t/ D
NX

j D1

.�N � �j /jU1j .t/j2:

From these calculations, if U11.0/ ¤ 0, it follows that

X11.t/ � �N

E.t/
! 0; N ! 1:

While X11.t/ � �N is of course the true error in computing �N , we use E.t/ to

determine a convergence criterion as it is easily observable: Indeed, as noted above,

if E.t/ < � then jX11.t/ � �j j < � for some j . With high probability, �j D �N .

Note that, in particular, from the above formulae, E.t/ and �N �X11.t/ depend

only on the eigenvalues and the moduli of the first components of the eigenvectors

of X.0/ D H . This fact is critical to our analysis. With the notation ǰ D jU1j .0/j
we have that

jU1j .t/j D ǰ e�j t

�PN
nD1 ˇ2

ne2�nt
�1=2

:

A direct calculation shows that

E.t/ D E0.t/ C E1.t/;

where

E0.t/ D 1

4

PN �1
nD1 ı2

n�ne�ınt

s
�
1 C

PN �1
nD1 �ne�ınt

�2 ;

E1.t/ D
�PN �1

nD1 �2
n�ne�ınt

��PN �1
nD1 �ne�ınt

�
�
�PN �1

nD1 �n�ne�ınt
�2

�
1 C

PN �1
nD1 �ne�ınt

�2 :
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Note that E1.t/ � 0 by the Cauchy-Schwarz inequality; of course, E0.t/ is triv-

ially positive. It follows that E.t/ is small if and only if both E0.t/ and E1.t/ are

small, a fact that is extremely useful in our analysis.

In terms of the probability �N measure on f1; 2; : : : ; N g defined by

�N .E/ D
� NX

nD1

�ne�ınt

��1 X

n2E

�ne�ınt

and a function �.j / D �j ,

E.t/ D Var�N
.�/:

We will also use the alternate expression

E1.t/ D
� PN �1

nD1 �ne�ınt

1 C
PN �1

nD1 �ne�ınt

�2

Var�N �1
.�/:(2.3)

Additionally,

�N � X11.t/ D 1

2

PN
nD1 ınˇ2

ne2�nt

1 C
PN �1

nD1 ˇ2
ne2�nt

:(2.4)

2.1 The Halting Time and Its Approximation

To aid the reader we provide a glossary to summarize inequalities for parameters

and quantities that have previously appeared:

(1) 0 < � < 1 is fixed,

(2) 0 < p < 1
3

,

(3) ˛ � 10
3

C � ,

(4) s � minf �
44

; p
8

g,

(5) ˛ � 4
3

� 44s � 2,

(6) c � 10
�

can be chosen for convenience line by line when estimating sums

with Lemma 1.14,

(7) ın D 2.�N � �n/,

(8) �n D ˇ2
n=ˇ2

N ,

(9) given Condition 2

� 2N �2=3�s � ıN �1 � 2N �2=3Cs ,

� N �2s � �n � N 2s ,

�
Pj

nD1 �n �
PN

nD1 �n D ˇ�2
N � N 1Cs for 1 � j � N , and

(10) C > 0 is a generic constant.

DEFINITION 2.1. The halting time (or the 1-deflation time) for the Toda lattice

(compare with (1.4)) is defined to be

T .1/ D infft W E.t/ � �2g:

We find bounds on the halting time.
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LEMMA 2.2. Given Condition 2, the halting time T for the Toda lattice satisfies

.˛ � 4=3 � 5s/ log N=ıN �1 � T .1/ � .˛ � 4=3 C 7s/ log N=ıN �1

for sufficiently large N .

PROOF. We use that E.t/ � E0.t/ so if E0.t/ > N �˛ then T .1/ � t . First, we

show that E0.t/ > �2, for 0 � t � �
2

log N=ıN �1 and sufficiently large N , and

then we use this to show that E0.t/ > �2, t � .˛ � 4=3 � 5s/ log N=ıN �1 and

sufficiently large N .

Indeed, assume t D a log N=ıN �1 for 0 � a � �=2. Using Lemma 1.14

1 C
N �1X

nD1

�ne�ınt � 1 C C e�ıN �1t .N 4s C N 1Cse�cıN �1t /:(2.5)

Then using Lemma 1.14 we have

E0.t/ � N �2sı2
N �1e�ıN �1t .1 C C e�ıN �1t .N 4s C N 1Cse�cıN �1t //�2:

Since a � �=2. we find

E0.t/ � N �4s�4=3��=2.1 C C.N 4s C N 1Cs//�2 � CN �8s�10=3��=2

for some new constant C > 0. This last inequality follows because N 4s � N 1Cs

as s � 1=44 (see Condition 2). But then from Definition 1.1 this right-hand side is

larger than �2 D N �˛ for sufficiently large N . Now, assume t D a log N=ıN �1

for �=2 � a � .˛ � 4=3 � 5s/ log N=ıN � 1. We choose c D 2.2 C s/=� � 10=�

E0.t/ � 1

4
N �4s�4=3�a.1 C C.N 4s�a C N 1Cs�ca//�2

� N �˛Cs.1 C C.N 4s��=2 C N �1// > N �˛

for sufficiently large N . Here we used that s � �=44. This shows that

.˛ � 4=3 � 5s/ log N=ıN �1 � T .1/ for N sufficiently large:

Now, we work on the upper bound. Letting t D a log N=ıN �1 for a � .˛ �
4=3 C 7s/, we find using Lemma 1.14 that

E0.t/ � CN �a.N �4=3C6s C N 1Cs�ca/:

Then using the minimum value for a, we obtain

E0.t/ � N �˛.C.N �s C CN 1C7s�caC4=3//:

It follows from Definition 1.1 that a � 10=3 C � � 4=3 C 7s > 2. If we set c D 2

and use s � 1=44, then 1 C 7s � ca C 4=3 � �3 C 4=3 C 7s � �2 and

E0.t/ � N �˛.C.N �s C CN �2// < CN �˛�s

for sufficiently large N .
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Next, we must estimate E1.t/ when a � .˛ � 4=3 C 7s/. We use (2.3) and

VarN �1.�/ � C . Then by (2.5)

E1.t/ � CN �2a.N 4s C N 1Cs�ca/2:

Again, using c D 1 and the fact that a > 2, we have

E1.t/ � CN �˛N 8s�˛C8=3�14s � CN �˛N �˛C8=3 � N �˛(2.6)

for N sufficiently large. This shows T .1/ � .˛ � 4=3 C 7s/ log N=ıN �1 for suffi-

ciently large N as E.t/ D E0.t/ C E1.t/ � �2 if t < .˛ � 4=3 C 7s/ log N=ıN �1

and N is sufficiently large. �

In light of this lemma we define

I˛ D Œ.˛ � 4=3 � 5s/ log N=ıN �1; .˛ � 4=3 C 7s/ log N=ıN �1�:

Next, we estimate the derivative of E0.t/. We find

(2.7) E 0
0.t/ D

�
�PN �1

nD1 ı3
n�ne�ınt

��
1 C

PN �1
nD1 �ne�ınt

�
C 2

�PN �1
nD1 ı2

n�ne�ınt
��PN �1

nD1 ın�ne�ınt
�

�
1 C

PN �1
nD1 �ne�ınt

�3 :

LEMMA 2.3. Given Condition 2 and t 2 I˛,

�E 0
0.t/ � CN �12s�˛�2=3

for sufficiently large N .

PROOF. We use (2.7). The denominator is bounded below by unity so we esti-

mate the numerator. By Lemma 1.14

�N �1X

nD1

ı3
n�ne�ınt

��
1 C

N �1X

nD1

�ne�ınt

�
�

N �1X

nD1

ı3
n�ne�ınt � N �2sı3

N �1e�ıN �1t :

For t 2 I˛,

N �2sı3
N �1e�ıN �1t � N �12s�2=3�˛:

Next, again by Lemma 1.14

�N �1X

nD1

ın�ne�ınt

��N �1X

nD1

ı2
n�ne�ınt

�
�

C e�2ıN �1t
�
N 4sı2

N �1 C N se�cıN �1t
��

N 4sıN �1 C N 1Cse�cıN �1t
�
:

Then estimate with c D 2,

N 4sı2
N �1 C N se�cıN �1t � 4N 6s�4=3 C N s�4 � CN 6s�4=3;

N 4sıN �1 C N se�cıN �1t � 2N 4s�2=3 C N s�4 � CN 4s�2=3;

where we used t � 2 log N=ıN �1 and s � 1=44. Furthermore,

e�2ıN �1t � N �˛N 8=3�˛C10s � N �˛�2=3��C10s as s � �=44.
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Then

�E0.t/ � N �12s�2=3�˛ � CN �˛�2=3��C10s;

provided that this is positive. Indeed,

�E0.t/ � N �12s�2=3�˛.1 � CN ��C22s/ � 0

for N sufficiently large as s � �=44. �

Now we look at the leading-order behavior of E0.t/:

E0.t/ D 1

4
ı2

N �1�N �1e�ıN �1t
1 C

PN �2
nD1

ı2
n

ı2
N �1

�n

�N �1
e�.ın�ıN �1/t

�
1 C

PN �1
nD1 �ne�ınt

�2 :(2.8)

Define T � by

(2.9)

1

4
ı2

N �1�N �1e�ıN �1T � D N �˛;

T � D ˛ log N C 2 log ıN �1 C log �N �1 � 2 log 2

ıN �1
:

LEMMA 2.4. Given Condition 2

.˛ � 4=3 � 4s/ log N=ıN �1 � T � � .˛ � 4=3 C 4s/ log N=ıN �1:

PROOF. This follows immediately from the statements

N �2s � �N �1 � N 2s;

2N �2=3�s � ıN �1 � 2N �2=3Cs: �

Thus, given Condition 2, T � 2 I˛. The quantity that we want to estimate is

N �2=3jT � T �j. We do this by considering the formula

E0.T .1// � E0.T �/ D E 0
0.�/.T .1/ � T �/ for some � 2 I˛:

Because E0 is monotone in I˛, E0.T .1// D E.T .1// � E1.T .1// D N �˛ �
E1.T .1// we have

(2.10)

jT .1/ � T �j � jN �˛ � E0.T �/ � E1.T .1//j
min
�2I˛

jE 0
0.�/j

� jN �˛ � E0.T �/j C max�2I˛
jE1.�/j

min
�2I˛

jE 0
0.�/j :

See Figure 2.1 for a schematic of E0, E, T .1/, and T �.

Since we already have an adequate estimate on E1.T / in (2.6), it remains to

estimate jN �˛ � E0.T �/j.
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t
t0 t1

ε

E(t)

E0(t)

T
(1)

≈ T
∗

FIGURE 2.1. A schematic for the relationship between the functions

E0.t/ and E.t/ and the times T .1/ and T �. Here t0 D .˛ � 4=3 �
5s/ log N=ıN �1 and t1 D .˛ � 4=3 C 7s/ log N=ıN �1. Note that E0 is

monotone on Œt0; t1�.

LEMMA 2.5. Given Conditions 1 and 2

jE0.T �/ � N �˛j � CN �˛�2pC4s:

PROOF. From (2.8) and (2.9) we obtain

jE0.T �/ � N �˛j D

N �˛

ˇ̌PN �2
nD1

ı2
n

ı2
N �1

�n
�N �1

e�.ın�ıN �1/T �
�2

PN �1
nD1 �ne�ınT �

�
�PN �1

nD1 �ne�ınT �
�2ˇ̌

�
1C

PN �1
nD1 �ne�ınT �

�2 :

We estimate the terms in the numerator individually using the bounds on T �. For

c D 1, we use that ˛ � 4=3 � 4s > 2 and Lemma 1.14 to find

N �1X

nD1

�ne�ınT � � CN �˛C4=3C4s.N 4s C N 1Cs�2c/ � CN �2��C8s � N �2

for sufficiently large N . Then we consider the first term in the numerator using the

index set Ic and Condition 1. Since our sum is now up to N � 2 we define yIc D
Ic\f1; 2; : : : ; N �2g and yI c

c to denote the complement relative to f1; 2; : : : ; N �2g.

Continuing,

`.T �/ WD
N �2X

nD1

ı2
n

ı2
N �1

�n

�N �1
e�.ın�ıN �1/T �

D
�X

n2 yI c
c

C
X

n2 yIc

� ı2
n

ı2
N �1

�n

�N �1
e�.ın�ıN �1/T �

:
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For n 2 yI c

c , ı2
n=ı2

N �1 � .1 C c/2 and

ın � ıN �1 D 2.�N �1 � �n/ � 2.�N �1 � �N �2/ � pıN �1;

from Condition 1. On the other hand, for n 2 yIc , ın > .1 C c/ıN �1, and if c D 3,

ın � ıN �1 > cıN �1 D pıN �1 C .c � p/ıN �1 � pıN �1 C 2ıN �1;

as p < 1=3 and hence c > 2 C p. Using Lemma 1.13 to estimate j yI c

c j
X

n2 yI c
c

ı2
n

ı2
N �1

�n

�N �1
e�.ın�ıN �1/T � � .1 C c/2N 4se�pıN �1T �

;

X

n2 yIc

ı2
n

ı2
N �1

�n

�N �1
e�.ın�ıN �1/T � �

�
max

n
ı2

n

�
N 7=3C3se�.pC2/ıN �1T �

:

Given Condition 2 Œmaxn ı2
n� � 4.bV �aV C1/2 and hence for some C > 0, using

that ˛ � 4=3 � 4s > 2, we obtain

`.T �/ � C e�pıN �1T �

.N 4s C N 7=3C3se�2ıN �1T �

/

� CN �p.˛�4=3�4s/.N 4s C N 7=3C3s�2.˛�4=3�4s//

� CN �p.˛�4=3�4s/.N 4s C N �5=3C3s/

� CN �2pC4s.1 C N �5=3�s/:

Thus

`.T �/ � CN �2pC4s:

From this it follows that

jE0.T �/ � N �˛j � CN �˛�2pC4s: �

LEMMA 2.6. Given Conditions 1 and 2, s < minf�=44; p=8g, and � and p fixed,

N �2=3jT .1/ � T �j � CN �2pC16s ! 0 as N ! 1:

PROOF. Combining Lemmas 2.3 and 2.5 with (2.6), which can be extended to

give E1.t/ � N �˛�2=3��=2, and (2.10), we have for sufficiently large N

N �2=3jT .1/ � T �j � CN �2=3N ˛C12sC2=3.N �˛�2pC4s C N �˛N �2=3��=2/

� C.N �2pC16s C N ��=2C12s/;

where we used ˛ � 8
3

> 2
3

. Since p < 1
3

the right-hand side is bounded by

CN �2pC16s , which goes to 0 as N ! 1 provided that s < p
8

, p < �
4

. �

From (2.4), we have

j�N � X11.t/j D 1

2

PN �1
nD1 ın�ne�ınt

s1 C
PN �1

nD1 �ne�ınt
� 1

2

N �1X

nD1

ın�ne�ınt :



530 P. DEIFT AND T. TROGDON

LEMMA 2.7. Given Condition 2, � and p fixed, and s < minf�=44; p=8g,

��1j�N � X11.T .1//j D N ˛=2j�N � X11.T .1//j � CN �1

for sufficiently large N .

PROOF. We use Lemma 1.14 with c D 1. By 2.2 we have

j�N � X11.T .1//j � CN �˛C4=3C5s.N �2=3C5s C N �1Cs/ � CN �˛=2N �1

because ˛ � 4=3 � 5s � 2. �

3 Adding Probability

We now use the probabilistic facts about Conditions 2 and 1 as stated in Theo-

rems 1.11 and 1.12 to understand T .1/ and T � as random variables.

LEMMA 3.1. For ˛ � 10=3 C � and � > 0

jT .1/ � T �j
N 2=3

converges to 0 in probability as N ! 1.

PROOF. Let � > 0. Then

P

� jT .1/ � T �j
N 2=3

> �

�
´ D P

� jT .1/ � T �j
N 2=3

> �; GN;p \ RN;s

�

C P

� jT .1/ � T �j
N 2=3

> �; Gc

N;p [ Rc

N;s

�
:

If s satisfies the hypotheses in Lemma 2.6, s < minf�=44; p=8g, then on the set

GN;p \ RN;s , N �2=3jT � T �j < � for N sufficiently large, and hence

P

� jT .1/ � T �j
N 2=3

> �; GN;p \ RN;s

�
! 0

as N ! 1. We then estimate

P

� jT .1/ � T �j
N 2=3

> �; Gc

N;p [ Rc

N;s

�
� P .Gc

N;p/ C P .Rc

N;s/;

and by Theorem 1.11

lim sup
N !1

P

� jT .1/ � T �j
N 2=3

> �; Gc

N;p [ Rc

N;s

�
� lim sup

N !1

P .Gc

N;p/:

This is true for any 0 < p < 1
3

, and we use Theorem 1.12. So, as p # 0, we find

lim
N !1

P

� jT .1/ � T �j
N 2=3

> �

�
D 0: �
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Define

�T D .˛ � 4=3/ log N

ıN �1
:(3.1)

We need the following simple lemmas in what follows.

LEMMA 3.2. If XN !X in distribution as N ! 1,8 then

P .jXN =aN j < 1/ D 1 C o.1/

as N ! 1 provided that aN ! 1.

PROOF. For two points of continuity a; b of F.t/ D P .X � t /, we have

P .a < XN � b/ ! P .a < X � b/:

Let M > 0 such that ˙M is a point of continuity of F . Then for sufficiently

large N , aN > M and

lim inf
N !1

P .�aN < XN < aN / � lim inf
N !1

P .�M < XN � M/

D P .�M < X � M/:

Letting M ! 1 we see that P .�aN � XN � aN / D 1 C o.1/ as N !
1. �

Letting aN ! �aN , � > 0, we see that the following is true.

COROLLARY 3.3. If XN !X in distribution as N ! 1, then

jXN =aN j
converges to 0 in probability provided aN ! 1.

LEMMA 3.4. If as N ! 1, XN ! X in distribution and jXN � YN j ! 0 in
probability, then YN ! X in distribution.

PROOF. Let t be a point of continuity for P .X � t /; then for � > 0,

P .YN � t / D P .YN � t; XN � t C �/ C P .YN � t; XN > t C �/

� P .XN � t C �/ C P .YN � XN � t � XN ; t � XN < ��/

� P .XN � t C �/ C P .jYN � XN j > �/:

Interchanging the roles of XN and YN and replacing t with t � �, we find

P .XN � t � �/ � P .YN � t / C P .jYN � XN j > �/

� P .XN � t C �/ C 2P .jYN � XN j > �/:

From this we find that for any � such that t ˙ � are points of continuity,

P .X � t � �/ � lim inf
N !1

P .YN � t / � lim sup
N !1

P .YN � t / � P .X � t C �/:

By sending � # 0 the result follows. �

8 For convergence in distribution, the limiting random variable X must satisfy P .jX j < 1/ D 1.
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Now, we compare T � with �T .

LEMMA 3.5. For ˛ � 10=3 C �

jT � � �T j
N 2=3 log N

converges to 0 in probability as N ! 1.

PROOF. Consider

T � � �T
N 2=3 log N

D 1

log N

log �N �1 C 2 log N 2=3ıN �1

N 2=3ıN �1

D 1p
log N

�
1

.log N /1=4
jN 2=3ıN �1j�1

�

�
�

2

.log N /1=4
log �N �1 C 1

.log N /1=4
log N 2=3ıN �1

�
:

For

LN D
�

1

.log N /1=4
jN 2=3ıN �1j�1 � 1

�
; UN D

�
1

.log N /1=4
j log �N �1j � 1

�
;

PN D
�

1

.log N /1=4
j log N 2=3ıN �1j � 1

�
;

we have P .Lc

N / C P .U c

N / C P .P c

n/ ! 0 as N ! 1 by Lemma 3.2 and Theo-

rem 1.9. For these calculations it is important that the limiting distribution function

for N 2=3ıN �1 be continous at 0; see Theorem 1.9. Then for � > 0

P

�ˇ̌
ˇ̌ T � � �T
N 2=3 log N

ˇ̌
ˇ̌ > �

�
D P

�ˇ̌
ˇ̌ T � � �T
N 2=3 log N

ˇ̌
ˇ̌ > �; LN \ UN \ PN

�

C P

�ˇ̌
ˇ̌ T � � �T
N 2=3 log N

ˇ̌
ˇ̌ > �; Lc

N [ U c

N [ P c

N

�
:

(3.2)

On the set LN \ UN \ PN we estimate
ˇ̌
ˇ̌ T � � �T
N 2=3 log N

ˇ̌
ˇ̌ � 3p

log N
:

Hence the first term on the right-hand side of (3.2) is 0 for sufficiently large N and

the second term is bounded by P .U c

N / C P .Lc

N / C P .P c

N /, which tends to 0. This

shows convergence in probability. �

We now arrive at our main result.

THEOREM 3.6. If ˛ � 10
3

C � and � > 0, then

lim
N !1

P

�
22=3T .1/

c
2=3
V .˛ � 4=3/N 2=3 log N

� t

�
D F

gap

ˇ
.t/:
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PROOF. Combining Lemma 3.1 and Lemma 3.5, we have that
ˇ̌
ˇ̌22=3 T .1/ � �T

c
2=3
V .˛ � 4=3/N 2=3 log N

ˇ̌
ˇ̌

converges to 0 in probability. Then by Lemma 3.4 and Theorem 1.9 the result

follows as

lim
N !1

P

�
22=3�T

c
2=3
V .˛ � 4=3/N 2=3 log N

�
D

lim
N !1

P
�
c

�2=3
V 22=3N �2=3.�N � �N �1/�1 � t

�
D F

gap

ˇ
.t/: �

We also prove a result concerning the true error j�N � X11.T .1//j:
PROPOSITION 3.7. For ˛ � 10

3
C � , � > 0, and any q < 1,

N ˛=2Cq
ˇ̌
�N � X11.T .1//

ˇ̌

converges to 0 in probability as N ! 1. Furthermore, for any r > 0

N 2=3Cr
ˇ̌

N � X11.T .1//

ˇ̌
; N 2=3Cr

ˇ̌
�j � X11.T .1//

ˇ̌
;

converges to 1 in probability if j D j.N / < N .

PROOF. We recall that RN;s is the set on which Condition 2 holds. Then for

any � > 0

P .N ˛=2Cqj�N � X11.T .1//j > �/

D P
�
N ˛=2Cqj�N � X11.T .1//j > �; RN;s

�

C P
�
N ˛=2Cqj�N � X11.T .1//j > �; Rc

N;s

�

� P .N ˛=2Cqj�N � X11.T .1//j > �; RN;s/ C P .Rc

N;s/:

Using Lemma 2.7, the first term on the right-hand side is 0 for sufficiently large N

and the second term vanishes from Theorem 1.11. This shows the first statement,

i.e.,

lim
N !1

P .N ˛=2Cqj�N � X11.T .1//j > �/ D 0:

For the second statement, on the set RN;s with s < minfr; �=44; p=8g we have

j�j � X11.T .1//j � j�j � �N j � j�N � X11.T .1//j
� j�N �1 � �N j � j�N � X11.T .1//j;

and for sufficiently large N (see Lemma 2.7)

N 2=3Cr j�j � X11.T .1//j � N r.N 2=3j�N �1 � �N j � N �1=3�˛=2/

� N r�s.1 � CN �1=3�˛=2Cs/:
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This tends to 1 as s < 1=3 and s < r . Hence for any K > 0, again using the

arguments of Theorem 3.6,

P .N 2=3Cr j�j � X11.T .1//j > K/

D P .N 2=3Cr j�j � X11.T .1//j > K; RN;s/

C P .N 2=3Cr j�j � X11.T .1//j > K; Rc

N;s/:

For sufficiently large N , the first term on the right-hand side is equal to P .RN;s/

and the second term is bounded by P .Rc

N;s/ and hence

lim
N !1

P .N 2=3Cr j�j � X11.T .1//j > K/ D 1:

Next, under the same assumption (Condition 2)

N 2=3Cr jbV � X11.T .1//j � N r.N 2=3jbV � �N j � CN �1=3�˛=2/:

From Corollary 3.3 and Theorem 1.9 by using 
N D bV

N �r.N 2=3jbV � �N j � CN �1=3�˛=2/�1

converges to 0 in probability (with no point mass at 0), implying its inverse con-

verges to 1 in probability. This shows N ˛jbV � X11.T .1//j converges to 1 in

probability. �

Appendix: Invariant and Wigner Ensembles

The following definitions are taken from [4, 5, 13]. The first definition appeared

initially in [14] and was made more explicit in [13]. These are the two classes of

random matrices to which our results apply.

DEFINITION A.1 (Generalized Wigner Ensemble (WE)). A generalized Wigner

matrix (ensemble) is a real symmetric (ˇ D 1) or Hermitian (ˇ D 2) matrix

H D .Hij /N
i;j D1 such that Hij are independent random variables for i � j given

by a probability measure �ij with

EHij D 0; �2
ij WD EH 2

ij :

Next, assume there is a fixed constant v (independent of N; i; j ) such that

P .jHij j > x�ij / � v�1 exp.�xv/; x > 0:

Finally, assume there exists C1; C2 > 0 such that for all i; j

NX

iD1

�2
ij D 1;

C1

N
� �2

ij � C2

N
;

and for ˇ D 2 the matrix

†ij D
�

E.Re Hij /2
E.Re Hij /.Im Hij /

E.Re Hij /.Im Hij / E.Im Hij /2

�

has its smallest eigenvalue �min satisfy �min � C1N �1.
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DEFINITION A.2 (Invariant Ensemble (IE)). Let V W R ! R satisfy V 2 C 4.R/,

infx2R V 00.x/ > 0, and V.x/ > .2 C ı/ log.1 C jxj/ for sufficiently large x and

some fixed ı > 0. Then we define an invariant ensemble9 to be the set of all

N � N symmetric (ˇ D 1) or Hermitian (ˇ D 2) matrices H D .Hij /N
i;j D1 with

probability density

1

ZN
e�N ˇ

2
tr V.H/dH:

Here dH D
Q

i�j dHij if ˇ D 1 and dH D
QN

iD1 dHi i

Q
i<j d Re Hij d Im Hij

if ˇ D 2.
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[14] Erdős, L.; Yau, H.-T.; Yin, J. Rigidity of eigenvalues of generalized Wigner matrices. Adv.
Math. 229 (2012), no. 3, 1435–1515. doi:10.1016/j.aim.2011.12.010

[15] Flaschka, H. The Toda lattice. I. Existence of integrals. Phys. Rev. B (3) 9 (1974), 1924–1925.

doi:10.1103/PhysRevB.9.1924

[16] Jiang, T. How many entries of a typical orthogonal matrix can be approximated by independent

normals? Ann. Probab. 34 (2006), no. 4, 1497–1529. doi:10.1214/009117906000000205

[17] Kostant, B. The solution to a generalized Toda lattice and representation theory. Adv. in Math.
34 (1979), no. 3, 195–338. doi:10.1016/0001-8708(79)90057-4

[18] Manakov, S. V. Complete integrability and stochastization of discrete dynamical systems. Soviet
Physics JETP 40 (1974), no. 2, 269–274 (1975); translated from Ž. Èksper. Teoret. Fiz. 67

(1974), no. 2, 543–555.

[19] Monthus, C.; Garel, T. Typical versus averaged overlap distribution in spin glasses:

Evidence for droplet scaling theory. Phys. Rev. B 88 (2013), no. 13, 134204.

doi:10.1103/PhysRevB.88.134204

[20] Moser, J. Three integrable Hamiltonian systems connected with isospectral deformations. Ad-
vances in Math. 16 (1975), 197–220. doi:10.1016/0001-8708(75)90151-6

[21] Perret, A.; Schehr, G. Near-extreme eigenvalues and the first gap of Hermitian random matrices.

J. Stat. Phys. 156 (2014), no. 5, 843–876. doi:10.1007/s10955-014-1044-5

[22] Pfrang, C. W.; Deift, P.; Menon, G. How long does it take to compute the eigenvalues of a

random symmetric matrix? Random matrix theory, interacting particle systems, and integrable
systems, 411–442. Mathematical Sciences Research Institute Publications, 65. Cambridge Uni-

versity Press, New York, 2014.

[23] Ramírez, J. A.; Rider, B.; Virág, B. Beta ensembles, stochastic Airy spectrum, and a diffusion.

J. Amer. Math. Soc. 24 (2011), no. 4, 919–944. doi:10.1090/S0894-0347-2011-00703-0

[24] Soshnikov, A. Universality at the edge of the spectrum in Wigner random matrices. Comm.
Math. Phys. 207 (1999), no. 3, 697–733. doi:10.1007/s002200050743

[25] Stam, A. J. Limit theorems for uniform distributions on spheres in high-dimensional Euclidean

spaces. J. Appl. Probab. 19 (1982), no. 1, 221–228.

[26] Symes, W. W. The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D
4 (1981/82), no. 2, 275–280. doi:10.1016/0167-2789(82)90069-0

[27] Tao, T.; Vu, V. Random matrices: universality of local eigenvalue statistics up to the edge.

Comm. Math. Phys. 298 (2010), no. 2, 549–572.

[28] Toda, M. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22 (1967), no. 2,

431–436. doi:10.1143/JPSJ.22.431

[29] Tracy, C. A.; Widom, H. Level-spacing distributions and the Airy kernel. Comm. Math. Phys.
159 (1994), no. 1, 151–174.

[30] Watkins, D. S. Isospectral flows. SIAM Rev. 26 (1984), no. 3, 379–391. doi:10.1137/1026075

[31] Witte, N. S.; Bornemann, F.; Forrester, P. J. Joint distribution of the first and second eigen-

values at the soft edge of unitary ensembles. Nonlinearity 26 (2013), no. 6, 1799–1822.

doi:10.1088/0951-7715/26/6/1799

PERCY DEIFT

Courant Institute

251 Mercer St.

New York, NY 10012

USA

E-mail: deift@cims.nyu.edu

THOMAS TROGDON

University of California, Irvine

Rowland Hall

Irvine, CA 92697-3875

USA

E-mail: ttrogdon@math.uci.edu

Received May 2016.


	1. Introduction
	2. Estimates for the Toda Algorithm
	3. Adding Probability
	Appendix: Invariant and Wigner Ensembles
	Bibliography

