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Summary. We develop a new parameter-driven model for multivariate time series of counts.
The time series is not necessarily stationary. We model the mean process as the product of
modulating factors and unobserved stationary processes. The former characterizes the long-
run movement in the data, whereas the latter is responsible for rapid fluctuations and other un-
known or unavailable covariates. The unobserved stationary processes evolve independently
of the past observed counts and might interact with each other. We express the multivariate
unobserved stationary processes as a linear combination of possibly low dimensional factors
that govern the contemporaneous and serial correlation within and across the observed counts.
Regression coefficients in the modulating factors are estimated via pseudo-maximum-likelihood
estimation, and identification of common factor(s) is carried out through eigenanalysis on a pos-
itive definite matrix that pertains to the autocovariance of the observed counts at non-zero lags.
Theoretical validity of the two-step estimation procedure is documented. In particular, we estab-
lish consistency and asymptotic normality of the pseudo-maximum-likelihood estimator in the
first step and the convergence rate of the second-step estimator. We also present an exhaus-
tive simulation study to examine the finite sample performance of the estimators, and numerical
results corroborate our theoretical findings. Finally, we illustrate the use of the proposed model
through an application to the numbers of National Science Foundation fundings awarded to
seven research universities from January 2001 to December 2012.

Keywords: Count time series; Eigendecomposition; Factor model; Generalized auto-regressive
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1. Introduction

Modelling time series of counts has always been challenging, as these data are discrete, non-
negative and often overdispersed, in addition to being correlated in the time dimension and the
cross-section dimension. In this paper, we propose a new parameter-driven model for multi-
variate time series of counts, with the aim of dimension reduction. The correlation is assumed
to arise from latent factors of possibly low dimension. The approach that is pursued here is
rooted in the idea of Zeger (1988) and Lam et al. (2011). Zeger (1988) developed an extension
of log-linear models for univariate count time series. By conditioning on a stationary latent
process, the observed counts are independent of each other and follow a Poisson log-linear
regression model. Such models have also been considered by Brännäs and Johansson (1994),
Campbell (1994), Chan and Ledolter (1995) and Davis et al. (2000), among others. In particular,
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Davis et al. (2000) proposed a practical approach to diagnosing the existence of a latent process.
The present work considers a multivariate extension of the parameter-driven models that were
discussed in Zeger (1988) and Davis et al. (2000), which meanwhile adapts the common factor
identification procedure for linear models that was proposed by Lam et al. (2011) and Chang
et al. (2015) to non-linear models with count responses. Because we break the linkage between
the conditional mean and conditional probability distribution, this paper offers a unified frame-
work for count time series, which could be adapted to different parametric models, for instance,
the negative binomial regression model.

The literature on factor analysis of multivariate count time series is relatively sparse. Jørgensen
et al. (1999) proposed a multivariate Poisson state space model with one latent factor specified as
a gamma Markov process to model daily emergency room visits. Wedel et al. (2003) considered a
static multivariate Poisson factor model for cross-sectional analysis. Jung et al. (2011) proposed
a dynamic factor model for analysing transaction volumes over a 5-min interval from multiple
US stocks. The conditional mean is determined by three latent factors: the common market
factor, industry-specific factor and stock-specific factor, and the factors are assumed to follow
independent Gaussian auto-regressive AR(1) processes.

The motivation for this study comes from the data set that contains the numbers of US Na-
tional Science Foundation (NSF) fundings awarded to seven research universities from January
2001 to December 2012. The time series are depicted in Fig. 1 in Section 5, and a strong and
stable month of the year effect is revealed. To understand the underlying driving forces that
are common to all the institutions, we consider a doubly stochastic model, where the observed
counts are Poisson distributed conditionally on the means. The mean process is further modelled
as the product of modulating factors and unobserved stationary processes. The former picks
up the long-run movement in the data, whereas the latter is responsible for rapid fluctuations
and other unknown or unavailable covariates. Exogenous variables enter the mean processes
through a multiplicative structure, which allows the observed counts to be non-stationary. The
advantage of adopting a multiplicative structure is its ease of interpretation when we need to
account for non-stationarity and/or explanatory ability of other variables. Multiplicative mod-
els are commonly used for non-negative time series. A notable example is the spline generalized
auto-regressive conditional heteroscedasticity (GARCH) model of Engle and Rangel (2008)
which modelled high frequency return volatility as a product of a slowly moving component
and a stationary unit GARCH process, and the slowly moving component is non-stationary
and is a function of macroeconomic and financial variables. The unobserved stationary pro-
cesses evolve independently of the past observed counts. Distinct from Jørgensen et al. (1999)
and Jung et al. (2011), the unobserved processes in this paper are allowed to interact with each
other. Yet, we do not specify a dynamic (state space) model for the unobserved counts. We at-
tempt to extract common factors out of them. The multivariate unobserved stationary processes
are therefore expressed as a linear combination of possibly low dimensional factors that govern
the contemporaneous and serial correlation within and between the observed counts.

The marginal distribution of observed counts is not specified, however, in that we would like
to explore the intertemporal and intratemporal dependence of count time series with little inter-
ference. The likelihood function per se is not readily available. We therefore consider a two-step
procedure to estimate the model parameters. In the first step, a pseudo-maximum-likelihood
approach is adopted to estimate the regression coefficients in the modulating factors. Gourier-
oux et al. (1984a) discussed pseudo-maximum-likelihood (PML) based on linear exponential
families, quasi-generalized PML and PML based on quadratic exponential families, where the
last two cases have the first and second moments involved. Gourieroux et al. (1984b) pointed
out that, among the normal, Poisson, negative binomial and gamma families, none of them
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outperforms the others. In this paper, we estimate the parameters by maximizing a Poisson like-
lihood function in that it requires only the first moment. After obtaining consistent estimators of
the regression coefficients, we then calibrate the factor loading matrix through eigenanalysis in
the second step. Precisely speaking, we conduct eigendecomposition of the covariance matrices
of the count responses that are discounted by the estimated modulating factors. Our analysis
relies on the fact that the latent factors preserve the cross-covariance of the observed counts
at non-zero lags. We adapt the common factor identification procedure for linear models that
was proposed by Lam et al. (2011) and Chang et al. (2015) to non-linear models with count
responses. Our proposed two-step procedure is fast to compute and easy to implement. The
optimization in the first step is a convex problem, and its numerical calculation can be carried
out by most standard algorithms or packages. In the second step, we formulate the estima-
tion problem of a loading matrix as an eigenproblem, which can be readily solved by existing
packages for eigendecomposition.

The rest of the paper is organized as follows. Section 2 introduces a new doubly stochas-
tic model for multivariate time series of counts. The estimation procedure and asymptotic
properties are provided in Section 3. We assess the proposed estimation procedure in finite
samples in Section 4. Real data analysis is illustrated in Section 5. Discussion regarding the
calibration of the asymptotic covariance matrix is included in Appendix A. Notation, proofs
and additional discussion and simulation results are given in the on-line supplemental ma-
terial. The MATLAB code for carrying out our proposed method can be downloaded from
https://github.com/fangfanw/Multi-Count-Time-Series.

2. A doubly stochastic model with latent factors

Consider a p×1 vector of time series of counts, Yt = .y1t , : : : , ypt/
T. Our objective is to study the

dependence, over time, of each component of Yt and across components. Each univariate time
series yjt is modelled as a doubly stochastic process. For this, we introduce an auxiliary vector
process Nt.·/= .N1t.·/, : : : , Npt.·//T, where {Njt.·/, j = 1, : : : , p, t = 1, 2, : : : , n} is a sequence of
independent Poisson processes of unit intensity. For each j and t, there is a positive (not necessar-
ily stationary) process λjt , with finite variance and independent of Nt , such that yjt =Njt.λjt/,
which counts the number of events of Njt.·/ in the time interval [0, λjt ]; see Fokianos et al. (2009)
for more details. In other words, yjt is conditionally Poisson distributed given λjt , i.e.

yjt|λjt ∼Poisson.λjt/, .1/

and yjt is conditionally independent of each other given Λt = .λ1t , : : : , λpt/
T. The process yjt is

reminiscent of deformation of a Poisson process; see, for instance, Rydberg and Shephard (2000).
The difference is that λjt is not necessarily non-decreasing. The unobserved p-dimensional
process Λt preserves the cross-covariance of the observed count Yt , i.e., for j �= j′,

cov.yjt , yj′t′/= cov.λjt , λj′t′/, for any t, t′: .2/

Yet, the correlation of the observed counts is smaller in magnitude than that of λt because
var.yjt/=E.λjt/+var.λjt/:

Enlightened by this discussion, we propose to model the dependence structure through latent
factors. In particular, we assume that, conditioning on a latent positive stationary process εt =
.ε1t , : : : , εpt/

T, λjt , j =1, : : : , p, are independent of each other over time and across components,
and

μjt ≡E.λjt|εt/=αjtεjt , .3/
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where αjt =E.λjt/. Evidently, E.εjt/=1. Processes satisfying these conditions are given in Sec-
tion 4. One appealing feature of the multiplicative decomposition (3) is that

cov.yjt , yj′t′/=αjtαj′t′cov.εjt , εj′t′/, .4/

for either

(a) any t, t′ and j �= j′, or
(b) t �= t′ and any j and j′.

In other words, the cross-covariance function of two distinct latent time series {εjt} and {εj′t}
can be fully recovered from that of {α−1

jt yjt} and {α−1
j′t yj′t}, two trend-adjusted series; the auto-

covariance matrices of the latent vector process εt at non-zero lags are equivalent to those of
the vector process .α−1

1t y1t , : : : , α−1
pt ypt/

T. The implication of result (4) will be discussed further
in Section 3.2.

The deterministic processes αjt , j = 1, : : : , p, are modulating factors that describe the long-
run movement in the count time series. They can be designed to pick up time trends, seasonal
effects, business cycles, calendar effect, day of the week effects, diurnal pattern and so forth. In
this paper, we link αjt with q-dimensional covariates xn,t in a way that

log.αjt/=βT
j xn,t , j =1, 2, : : : , p, t =1, : : : , n, .5/

where βj is a q × 1 vector. The subscript n in xn,t indicates that the covariate may depend on
the length of the time series. From here onwards we shall suppress this dependence for our
convenience of notation.

The latent vector process εt is introduced to account for possible overdispersion and corre-
lation in the time dimension as well as in the cross-sectional dimension, apart from capturing
rapid fluctuations and other unknown or unavailable covariates. A natural step forward is to
consider a dynamic model for εt . This practice, however, would be numerically inefficient or
even infeasible if the dimension p is large. This work stands in the middle ground. Instead of
modelling the process εt , we attempt to bring down its dimensionality by assuming that the in-
formation that is contained in εt can be summarized by a few possibly low dimensional factors,
i.e.

εt =Aft , .6/

where ft = .f1t , : : : , frt/
T is an r ×1 vector of latent factors, and A= .a1, : : : , ar/ is a p× r time

invariant factor loading matrix of rank r (r �p). In view of results (4) and (6), the dependence
between yjt and yj′t (j �= j′) emerges from the common underlying factors ft , and innovations
driving yjt may have an effect on yj′t and vice versa, which is measured by the matrix A. The
specification (6) has been considered in Jørgensen et al. (1999) and Jung et al. (2011). In partic-
ular, Jørgensen et al. (1999) assumed that the conditional means of multivariate Poisson counts
are driven by one common gamma Markov process, i.e. r = 1, A is a column vector of 1s and
ft is a gamma Markov process. Jung et al. (2011) modelled the log-conditional-mean of stock
transaction volumes as a linear combination of three factors—the sector factor, market factor
and idiosyncratic factor—and each factor evolves independently of each other in a fashion of
stationary Gaussian auto-regression of order 1. In this paper, r is unknown, and it needs to be
estimated from the data. Moreover, we would not impose any structural assumption on ft , in
that we aim to reduce the dimension of the factors instead of modelling the dynamics of the
data.

This work reaches beyond the existing literature in two ways. While we extend the parameter-
driven models of Zeger (1988) and Davis and Wu (2009) for univariate count time series to
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multivariate cases, we break the linkage between the conditional mean and conditional proba-
bility distribution of λjt . We do not propose a new data-generating process, but rather we offer
a unified framework that could be embedded into different parametric models. Note that, with
p= 1 and λjt =αjtεjt , expression (1) together with expression (5) are the well-studied Poisson
regression model for univariate Poisson counts; see, for instance, Brännäs and Johansson (1994),
Campbell (1994), Chan and Ledolter (1995), Davis et al. (2000) and Zeger (1988). Moreover, ifλjt

is gamma distributed conditioning on εt , λjt|εt ∼gamma.κj, κ−1
j μjt/ with μjt =αjtεjt and κj is a

positive number, then yjt is conditional negative binomial given εt , i.e. NB{κj, .μjt +κj/−1μjt};
this is analogous to the negative binomial regression model of Davis and Wu (2009) if p = 1.
More details will be offered in the next section. Definitions of the aforementioned distributions
are provided in the on-line supplemental material.

As opposed to many observation-driven models, {Yt} does not have to be stationary. The
framework proposed is applicable to both stationary and non-stationary count responses. The
vector time series {Yt} is stationary if and only if {Λt} is, for the reason that E.yjt/ = E.λjt/,
var.yjt/=E.λjt/+var.λjt/ and cov.yjt , yjt′/=cov.λjt , λjt′/ for t �= t′, together with equation (2).

In the present work, we would like to explore the intertemporal and intratemporal dependence
of count time series with little interference. The conditional distribution of λjt is left unspec-
ified. This is in clear contrast with the work of Jørgensen et al. (1999) and Jung et al. (2011).
Considering that the conditional distribution of yjt is unknown, we shall use a PML approach
to estimate the regression coefficients and then calibrate the factor loading matrix by means of
eigenanalysis.

3. Latent factors recovery

In this section, we study a two-step procedure for estimating the model parameters. In par-
ticular, we first estimate the coefficient vectors βj, j = 1, : : : , p, as described in expression (5),
by maximizing a possibly misspecified likelihood function. Next, we formulate the estimation
of the loading matrix A in equation (6) as an eigenproblem, which can be easily solved by
eigendecomposition.

3.1. Pseudo-maximum-likelihood estimation of βj
Let B= .β1, : : : , βp/ be a q×p matrix of coefficients, and b be its vectorization, i.e. b= .βT

1 , : : : ,
βT

p /T ∈Rpq. Further denote by B0 = .β01, : : : , β0p/ the true value of B with corresponding vec-
torization b0. Recall that, in our proposed doubly stochastic model, the conditional distribution
of yjt , j =1, : : : , p, t =1, : : : , n, given εt , t =1, : : : , n, is

E

{
p∏

j=1

n∏
t=1

exp.−λjt/.λjt/
yjt

yjt !

∣∣∣∣εt

}
:

To estimate the regression coefficients, a standard approach is to integrate out the latent vectors
εt , t = 1, : : : , n, further to obtain the distribution of yjt , j = 1, : : : , p, t = 1, : : : , n. This would
inevitably require knowledge of the conditional distribution of λjt given εt and the joint distri-
bution of .ε1, : : : , εn/, which, as a result, not only makes the model less parsimonious but also
increases computational complexity.

In this paper, we are seeking a simple estimation approach that produces consistent estimators
regardless of the probability distributions of λjt and εt , j =1, : : : , p, t =1, : : : , n. A PML method
is adopted. PML estimators are obtained by maximizing a likelihood function that is associated
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with a family of probability distributions that does not necessarily contain the true distribution.
Here, we construct the PML on the basis of the Poisson family in that only the first moment
is required. See Gourieroux et al. (1984a, b) for further discussion. Essentially, an estimator of
b0, denoted by b̂, is a maximizer of the objective function

ln.b/= .pn/−1
p∑

j=1

n∑
t=1

{yjtβ
T
j xt − exp.βT

j xt/}, .7/

for b=.βT
1 , : : : , βT

p /T within a compact setΘ⊂Rpq that contains b0 as an interior point. Note that
ln.b/ is the true rescaled log-likelihood function (up to an additive constant) if yjt , j =1, : : : , p,
follow a Poisson distribution with mean exp.βT

j xt/ and are independent within each time series
and across different time series. Though a similar practice appeared in Gourieroux et al. (1984b),
a remarkable difference is that Gourieroux et al. (1984b) applied PML methods to Poisson
models with independent observations.

To establish consistency and asymptotic normality of the resulting estimator, we assume that
the latent factor ft and the regressor xt satisfy the following assumptions.

Assumption 1. The latent factor ft is stationary and strongly mixing with mixing coefficient
α.m/ satisfying Σ∞

m=1α.m/λ=.λ+2/ < ∞ for some λ> 0, and E|fjt|2.λ+2/ <∞ for all j.

Assumption 2. For each j =1, : : : , p,

(a) the limit of n−1Σn
t=1xtx

T
t exp.βT

0jxt/ exists, and it is invertible, denoted by Ω.j/
1 ,

(b) the limit of n−1Σn
t=1xtx

T
t E{var.λjt|εt/} exists and is denoted by Ω.j/

2 ,
(c) n−1Σn

t=1xt+kxT
t exp.βT

0jxt+k +βT
0j′xt/ converges to W

.j,j′/
k uniformly in |k|< n as n→∞,

and the limit W
.j,j′/
k fulfils the property that Ω.j,j′/

3
:=Σ∞

k=−∞W
.j,j′/
k Σ.j, j′/

ε .k/<∞ (compo-
nentwise) (moreover, both n−1Σk

t=1xt−kxT
t exp.βT

0jxt−k +βT
0j′xt/ and n−1Σn

t=n−k+1{xt+kxT
t

×exp.βT
0jxt+k +βT

0j′xt/} are uniformly bounded in k ∈ .0, n/ and converge to 0 as n→∞)
and

(d) supn�1 n−1Σn
t=1|xtixtjxtk| exp.βT

j xt/ <∞ for any i, j, k ∈{1, : : : , q} and b∈Θ, where xti is
the ith element of xt .

Assumption 1 ensures that the process εt =Aft is stationary and strongly mixing; see Lahiri
(2013) for the definition of strong mixing for a multivariate process. Assumption 2 is introduced
to regulate the limiting behaviour of the Hessian matrix (i.e. assumption 2, part (a)) and the
gradient of ln.b/ (i.e. assumption 2, parts (b) and (c)), and to bound the third derivative of
ln.b/ (i.e. assumption 2, part (d)). These assumptions are similar to conditions (3)–(5) in Davis
et al. (2000), except for assumption 2, part (b), that pertains to the conditional distribution
of λjt given εt . For instance, if λjt|εt ∼gamma.κj, κ−1

j αjtεjt/ and κj is a positive number, then
Ω.j/

2 =κ−1
j E.ε2

j0/W
.j,j/
0 . If λjt is simply αjtεjt , we have that var.λjt|εt/=0 and thus Ω.j/

2 is 0. Thus
the matrixΩ.j/

2 could be degenerate. Moreover, note that var.yjt/=exp.βT
0jxt/+E{var.λjt|εt/}+

exp.2βT
0jxt/Σ

.j,j/
ε .0/. As a direct consequence of assumption 2, parts (a)–(c),

lim
n→∞ n−1

n∑
t,t′=1

cov.yjt , yjt′/xtx
′
t
T =Ω.j/

1 +Ω.j/
2 +Ω.j,j/

3

and

lim
n→∞ n−1

n∑
t,t′=1

cov.yjt , yj′t′/xtx
′
t
T =Ω.j,j′/

3

for j �= j′ (see the proof of corollary 1).
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Let Ωl =diag.Ω.1/
l , Ω.2/

l , : : : , Ω.p/
l / for l=1, 2, and Ω3 = .Ω.j,j′/

3 /p×p, which are positive definite
matrices. We further introduce notation for the matrix norm. Denote by ‖M‖F the Frobenius
norm of a matrix M, and by ‖M‖ the square root of the maximum eigenvalue of MTM. Note
that ‖m‖ is simply the Euclidean norm if m is a vector. A detailed account of the notation
appears in section A.1 of the on-line supplementary material. The asymptotic properties of b̂

are summarized in the following theorem.

Theorem 1. Suppose that assumptions 1 and 2 hold. Then b̂ is consistent for b0. Further
assume that max1�t�n n−1=6‖xt‖=o.1/ and max1�j�p,1�t�n E.λ3

jt|εt/=Op.1/. Then we have
n1=2.b̂−b0/ converges to N{0, Ω−1

1 +Ω−1
1 .Ω2 +Ω3/Ω−1

1 } in distribution.

In section A.2 of the on-line supplemental material, we compare theorem 1 with the results of
asymptotic normality that were established in Davis et al. (2000) and Davis and Wu (2009), and
provide further discussion regarding the connection of our proposed method and the existing
literature.

Last but not least, we quantify the mean-squared error of b̂ as follows.

Corollary 1. Under the assumptions in theorem 1, the mean-squared-error matrix E.b̂ −
b0/.b̂−b0/T to order n−1 is given by

E{.b̂−b0/.b̂−b0/T}=n−2H−1
1

{
n∑

t,t′=1
cov.Yt , Yt′/⊗xtx

T
t′

}
H−1

1 ,

where H1 = −n−1Σn
t=1diag{exp.βT

01xt/, : : : , exp.βT
0pxt/} ⊗ xtx

T
t and limn→∞ nE{.b̂ − b0/.b̂ −

b0/T}=Ω−1
1 .Ω1 +Ω2 +Ω3/Ω−1

1 :

3.2. Estimation of A
The contemporaneous dependence and cross-correlation of the counts Yt are driven by possibly
low dimensional latent factors ft with the magnitude determined by the modulating factor
exp.βT

0jxt/, j =1, : : : , p, and the factor loading matrix A. In this subsection, we shall discuss the
estimation of A given a consistent estimator of b0 or B0.

Let Σε.k/= cov.εt+k, εt/ and Σf .k/= cov.ft+k, ft/. We immediately have

Σε.k/=AΣf .k/AT, k =0, ±1, ±2, : : : : .8/

A major challenge in this paper is that εt cannot be calibrated from data. To circumvent this
problem, we work with ηt = .η1t , : : : , ηpt/

T, where ηjt = yjt=E.yjt/= exp.−βT
0jxt/yjt . This is in-

spired by equation (4) and the fact that the autocovariance matrix is of primary interest. The
appeal of the detrended time series ηt is that it preserves the covariance structure of εt at non-zero
lags, albeit ηjt �= εjt . To be precise, the following results hold true:

Σε.k/= cov.ηt+k, ηt/, for k �=0, .9/

cov.εjt , εj′t/= cov.ηjt , ηj′t/, for j �= j′, .10/

which follow from equation (4). Here, result (9) suggests that we can estimate the covariance
structure of the latent process εt through ηt . For univariate count time series, i.e. p = 1, Zeger
(1988) and Davis et al. (2000) used a similar, but different, idea to model the autocovariance func-
tion, which may not be readily generalized for multivariate count time series. Moreover, Davis
et al. (2000) and Davis and Wu (2009) adopted Pearson residuals to model the auto-correlation
of the latent process εt for univariate count time series. However, Pearson residuals may not be a
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suitable choice for estimating the auto-covariance function; in fact, the cross-covariance matri-
ces of the Pearson residuals hjt =exp.−βT

0jxt=2/{yjt −exp.βT
0jxt/} are not identical to Σε.k/. For

instance, the covariance between hjt and hj′t for j �= j′ is exp.βT
0jxt=2/ exp.βT

0j′xt=2/cov.εjt , εj′t/.
In this paper, we take a different approach which is based on the following relationship, as a
consequence of results (8) and (9):

cov.ηt+k, ηt/=AΣf .k/AT, k �=0: .11/

Note that cov.ηt , ηt/ is time dependent, and thus expression (11) does not hold for k =0. Hence,
ηjt is not necessarily stationary, which is a remarkable distinction compared with εjt . As the
right-hand side of expression (11) is invariant of t, we write Ση.k/ for cov.ηt+k, ηt/ at k �=0.

Since εt =Aft =AH.H−1ft/ for any invertible matrix H , the loading matrix A is not uniquely
determined; however, the linear space that is spanned by the columns of A, denoted by M.A/,
is unique. If Σf .k/ is invertible, M.A/ is the orthogonal complement of the linear space that is
spanned by the eigenvectors of Ση.k/T corresponding to the zero eigenvalues. Lam et al. (2011)
suggested estimating the matrix A by performing eigenanalysis for a non-negative definite matrix
that sums Ση.k/Ση.k/T over different lags k. Define

L=
k0∑

k=1
Ση.k/Ση.k/T, .12/

where k0 is a prescribed fixed positive integer. Then M.A/ is also the orthogonal complement of
the linear space that is spanned by the eigenvectors of L corresponding to the zero eigenvalues
under the following assumption.

Assumption 3. The r × r matrix Σf .k/ is invertible, for k =1, : : : , k0:

The loading matrix A= .a1, : : : , ar/ is made up of the orthonormal eigenvectors corresponding
to the positive eigenvalues of L. Lam et al. (2011) and Chang et al. (2015) proposed to extract the
factor loading matrix A by plugging-in estimates of Ση.k/ in equation (12). In their theoretical
development, the following assumption is required to ensure the uniqueness of the loading
matrix up to sign changes.

Assumption 4. The eigenvalues of the p×p matrix L, λ1, : : : , λp, satisfy λ1 >: : :>λr >λr+1 =
: : :=λp =0.

The columns of A are arranged such that the associated eigenvalues are in descending order,
i.e. aj is an orthonormal eigenvector associated with λj, j = 1, : : : , r. We further propose to
use η̂t = .η̂1t , : : : , η̂pt/

T with η̂jt = exp.−β̂
T
j xt/yjt to derive the sample counterpart of Ση.k/,

Σ̂η.k/=n−1Σn−k
t=1 .η̂t+k − η̄/.η̂t − η̄/T for k > 0, where η̄ =n−1Σn

t=1η̂t . A sample version of L can
be obtained by substituting Σ̂η.k/ for Ση.k/:

L̂=
k0∑

k=1
Σ̂η.k/Σ̂η.k/T: .13/

We shall show next that the relationships (9) and (10) hold asymptotically after we substitute
the PML estimators from the first step for the unknown parameters. Moreover, the validity of
the estimator L̂ is justified. Some further assumptions are introduced first.

Assumption 5.

(a) supt�1 ‖xt‖ is finite;
(b) supj=1,:::,p,t�1 E.λ4

jt/ is finite.
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Lemma 1. Suppose that assumptions 1, 2 and 5 hold. Then we have

cov.ηt+k, ηt/= cov.η̂t+k, η̂t/+O.n−1=2/, for k �=0, .14/

cov.ηjt , ηj′t/= cov.η̂jt , η̂j′t/+O.n−1=2/, for j �= j′: .15/

Lemma 2. Suppose that assumptions 1, 2 and 5 hold. For k =1, 2, : : : , k0, we have

‖Σ̂η.k/−Σε.k/‖F =Op.n−1=2/: .16/

As an application of lemma 2, we have ‖L̂−L‖=Op.n−1=2/. Let λ̂1, : : : , λ̂p be the eigenvalues
of L̂ in descending order, and â1, : : : , âp be the corresponding orthonormal eigenvectors. An
estimator of the loading matrix A is given by Â= .â1, : : : , âr/. As suggested in Lam et al. (2011),
we replace some âj with −âj so that the direction matches aj. The consistency of Â is established
in the following theorem.

Theorem 2. Suppose that r is known and fixed, and assumptions 1–5 hold. Then we have

‖Â−A‖=Op.n−1=2/: .17/

Moreover, |λ̂j −λj|=Op.n−1=2/ for j =1, 2, : : : , r, and |λ̂j|=Op.n−1/ for j = r +1, : : : , p.

Note that E.ATηt|ft/ = ft . We shall use f̂ t = Â
T
η̂t as a proxy for the latent factors ft . We

further have the following result.

Theorem 3. Under the assumptions of theorem 2, we have ‖Âf̂ t − εt‖=Op.1/.

This result coincides with theorem 2.2 of Chang et al. (2015) when p is fixed. Although ft is
not fully recovered, f̂ t tracks the serial correlation and cross-correlation of ft at non-zero lags.
This is made precise in the following theorem.

Theorem 4. Under the assumptions of theorem 2, we have ‖Σ̂f .k/−Σf .k/‖=Op.n−1=2/ for
k =1, 2, : : : , k0, where Σ̂f .k/=n−1Σn−k

t=1 .f̂ t+k − f̄ /.f̂ t − f̄ /T and f̄ =n−1Σn
t=1f̂ t .

The discussion so far assumes that r is known, but that is not so in practice. To obtain a
consistent estimator of r, we adopt the ridge-type ratio estimator (Chang et al., 2015; Xia et al.,
2015). In particular, an estimator of r can be obtained through an optimization problem, i.e.

r̂ =arg min
j=1,:::,p−1

λ̂j+1 +Cn

λ̂j +Cn

, .18/

where Cn is a positive constant. As will be shown in the following theorem, r̂ is a consistent
estimator of r.

Theorem 5. Suppose that assumptions 1–5 hold. For r̂ defined in equation (18), P.r̂ �= r/→0
as n→∞, provided that Cn =o.1/ and C−1

n =o.n/.

In practice, there are several choices, up to a constant scale, for Cn including n−1 log.n/,
n−1 log{log.n/}, and n−ρ where 0 < ρ < 1. Xia et al. (2015) suggested Cn = .10n/−1 log.n/ for
selecting the number of factors when modelling the volatility of multivariate time series. As
will be seen later, we use a simulation study to assess the performance of Cn = n−1 log.n/ and
Cn =n−1 log{log.n/} in finite sample.

Denote by Ã the estimator of A with r estimated from the data, i.e. Ã= .â1, : : : , âr̂/, and write
f̃ t for Ã

T
η̂t . Further define Σ̃f .k/ = n−1Σn−k

t=1 .f̃ t+k − f̄ /.f̃ t − f̄ /T, where f̄ = n−1Σn
t=1f̃ t . If r̃
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and r disagree, .Ã, Σ̃f .k// have different dimensions compared with .A, Σf .k//. To gauge the
accuracy of our estimators, we use a variant of discrepancy measure of Pan and Yao (2008) that
metricizes the distance between the two-factor loading spaces, M.Ã/ and M.A/:

D{M.Ã/, M.A/}=
√{

1− 1
max.r̂, r/

tr.ÃÃ
T

AAT/

}
, .19/

which was introduced by Chang et al. (2015). Here, D{M.Ã/, M.A/} ranges from 0 to 1, and
it is 0 if and only if r̂ = r and M.Ã/=M.A/. The following theorem can be shown.

Theorem 6. Suppose that assumptions 1–5 hold. For r̂ defined in equation (18) with Cn =o.1/

and C−1
n =o.n/, we have D{M.Ã/, M.A/}=Op.n−1=2/:

4. Simulation study

In this section, we conduct simulation studies to assess the finite sample performance of our
proposed two-step procedure as described in Section 3. We further investigate and compare
several choices of k0 and Cn in determining the number of factors.

4.1. Data-generating process
We consider a 5 × 1 count time series Yt = .y1t , y2t , : : : , y5t/

T that are conditionally Poisson
distributed given a (multivariate) positive process Λt . The conditional mean of Λt given εt ,
denoted by μt = .μ1t , : : : , μ5t/

T, is determined by⎛
⎜⎜⎜⎝

log.μ1t/

log.μ2t/

log.μ3t/

log.μ4t/

log.μ5t/

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

1 0:3 −0:05
2 0:1 −0:03
3 0:5 −0:07
4 0:4 −0:01
5 0:6 −0:1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
BT

0

( 1
cos.2πt=5/

sin.2πt=5/

)
︸ ︷︷ ︸

xt

+

⎛
⎜⎜⎜⎝

log.ε1t/

log.ε2t/

log.ε3t/

log.ε4t/

log.ε5t/

⎞
⎟⎟⎟⎠: .20/

The latent process εt is driven by low dimensional common factors ft . Here, we generate ft

under two different scenarios.

4.1.1. Scenario 1
We first consider a situation in which only one latent factor presents, i.e. r=1. The factor loading
matrix A is A=1=

√
5.1, 1, 1, 1, 1/T. Let ht = log.ft=

√
5/. We set ht as a Gaussian auto-regression

model of order 1 as in Davis et al. (2000) and Davis and Wu (2009), i.e.

ht =φ0 +φ1ht−1 + zt , .21/

where zt has a normal distribution with mean 0 and variance σ2
z , φ0 = −0:285.1 − φ1/ and

σ2
z =0:57.1−φ2

1/. The magnitude of φ1 reflects the strength of intertemporal dependence of the
latent process, in that

Σf .k/=5{exp.0:57φk
1/−1}, for k �0, .22/

and Σf .k/=Σf .−k/ for k< 0. In the simulation study, φ1 takes values of 0:3 and 0:9 to achieve
low and strong serial correlation respectively.
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4.1.2. Scenario 2
We consider a model with two common latent factors, i.e. r=2, and εt takes the form of equation
(6) with A = .a1, a2/ where a1 = .

√ 1
2 ,

√ 1
2 , 0, 0, 0/T and a2 = .0, 0,

√ 1
3 ,

√ 1
3 ,

√ 1
3 /T: The process

ft = .f1,t , f2,t/
T is a (positive) bivariate GARCH process: fj,t =Vj,t."j,t/

2, "j,t ∼IID N.0, 1/ for
j =1, 2 with corr."1,t , "2,t/=ρ and corr."1,t , "2,t′/=0 for t �= t′, and(

V1,t
V2,t

)
=
(

ω1
ω2

)
+
(

α1 0
0 α2

)(
f1,t−1
f2,t−1

)
+
(

β1 0
0 β2

)(
V1,t−1
V2,t−1

)
, .23/

where .ω1, ω2/=.0:0580, 0:3031/, .α1, α2/=.0:009, 0:025/ and .β1, β2/=.0:95, 0:80/: The values
of the parameters are chosen in such a way that ATA=I2, E.εt/=1 and assumption 1 is fulfilled.
With the parameters in equation (23) fixed, the intradependence and interdependence between
f1,t and f2,t are fully determined by ρ, the contemporaneous correlation between the Gaussian
innovations. This is because

Σf .k/=
(

cov.f1,k, f1,0/ cov.f1,k, f2,0/

cov.f2,k, f1,0/ cov.f2,k, f2,0/

)
, .24/

where, letting σ2
j = .1−αj −βj/−1ωj,

var.fj,0/=2σ4
j

1− .αj +βj/2 +α2
j

1− .αj +βj/2 −2α2
j

, j =1, 2,

cov.fj,0, fj′,0/=2ρ2σ2
j σ

2
j′

1− .αj +βj/.αj′ +βj′/+αjαj′

1− .αj +βj/.αj′ +βj′/−2αjαj′ρ2 , j �= j′, .25/

cov.fj,k, fj,0/=2αjσ
4
j .αj +βj/k−1 1− .αj +βj/βj

1− .αj +βj/2 −2α2
j

, k> 0, j =1, 2,

cov.fj,k, fj′,0/=2αjρ
2.αj +βj/k−1σ2

j σ
2
j′

1− .αj +βj/βj′

1− .αj +βj/.αj′ +βj′/−2αjαj′ρ2 , k>0, j �=j′,

.26/

and Σf .k/ = Σf .−k/T for k < 0: Derivation is available in the on-line supplemental material.
We consider ρ at two levels: ρ= 0 and ρ= 0:8. The former indicates that the two components
fj,t are uncorrelated with each other at all leads and lags, whereas the latter reflects a strong
cross-correlation between the two processes.

Last, but not least, for each scenario, λjt is drawn from one of the following two cases:

(a) λjt =μjt and
(b) λjt|εt ∼gamma.κj, κ−1

j μjt/.

As a consequence, the conditional distribution of Yt given εt is respectively Poisson and negative
binomial. In case (b), the parameters κj, j = 1, 2, : : : , 5, that control the degree of dispersion,
are chosen as 39.06, 7.30, 11.57, 20.85 and 19.58.

For each scenario and each choice of λjt , we simulate 1000 data sets. To ensure the stationarity
of ft in each iteration, we drop the first 100 observations and keep the remaining n observations.
Here, we consider two different sample sizes: n = 150 and n = 1500. The first choice is in line
with the data size in our empirical analysis in Section 5.

4.2. Simulation results
Simulation results pertaining to scenario 1 are summarized in Table 1 (φ1 = 0:3) and Table 2
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Table 1. Bias, Bias, sample standard deviation, Std, standard error, SE, and asymptotic
standard deviation, Astd, for our proposed estimator of the matrix B0 D .B.kj/

0 / in scenario
1 with φ1 D0:3

k,j Results for Poisson model Results for negative binomial model

Bias Std SE Astd Bias Std SE Astd

n=150
k =1, j =1 −0:0148 0.1030 0.0806 0.1054 −0:0132 0.1078 0.0819 0.1068
k =2, j =1 0.0071 0.1220 0.1085 0.1246 0.0058 0.1266 0.1124 0.1270
k =3, j =1 −0:0060 0.1295 0.1079 0.1240 −0:0059 0.1273 0.1119 0.1265
k =1, j =2 −0:0142 0.0949 0.0683 0.0975 −0:0132 0.1044 0.0717 0.1055
k =2, j =2 0.0082 0.1103 0.0882 0.1105 0.0077 0.1289 0.0960 0.1243
k =3, j =2 −0:0049 0.1104 0.0885 0.1105 −0:0046 0.1239 0.0968 0.1243
k =1, j =3 −0:0116 0.0931 0.0640 0.0947 −0:0145 0.0975 0.0651 0.0999
k =2, j =3 0.0068 0.1073 0.0894 0.1077 0.0067 0.1178 0.0938 0.1175
k =3, j =3 −0:0039 0.1065 0.0874 0.1066 −0:0052 0.1157 0.0916 0.1162
k =1, j =4 −0:0115 0.0915 0.0593 0.0935 −0:0111 0.0940 0.0602 0.0964
k =2, j =4 0.0057 0.1045 0.0778 0.1047 0.0048 0.1083 0.0809 0.1102
k =3, j =4 −0:0060 0.1032 0.0766 0.1041 −0:0046 0.1089 0.0797 0.1096
k =1, j =5 −0:0107 0.0911 0.0539 0.0931 −0:0114 0.0960 0.0557 0.0963
k =2, j =5 0.0048 0.1050 0.0713 0.1063 0.0033 0.1092 0.0761 0.1125
k =3, j =5 −0:0054 0.1048 0.0684 0.1046 −0:0042 0.1116 0.0727 0.1105

n=1500
k =1, j =1 −0:0027 0.0340 0.0246 0.0333 −0:0017 0.0350 0.0250 0.0338
k =2, j =1 −0:0010 0.0394 0.0313 0.0394 −0:0004 0.0404 0.0324 0.0402
k =3, j =1 0.0006 0.0391 0.0310 0.0392 −0:0009 0.0400 0.0321 0.0400
k =1, j =2 −0:0013 0.0319 0.0207 0.0308 −0:0025 0.0344 0.0221 0.0334
k =2, j =2 −0:0002 0.0345 0.0244 0.0349 −0:0003 0.0394 0.0269 0.0393
k =3, j =2 −0:0002 0.0348 0.0245 0.0349 −0:0009 0.0412 0.0270 0.0393
k =1, j =3 −0:0017 0.0307 0.0194 0.0299 −0:0012 0.0321 0.0203 0.0316
k =2, j =3 −0:0012 0.0334 0.0252 0.0341 −0:0017 0.0359 0.0265 0.0372
k =3, j =3 −0:0004 0.0337 0.0245 0.0337 −0:0007 0.0363 0.0260 0.0367
k =1, j =4 −0:0017 0.0306 0.0186 0.0296 −0:0017 0.0318 0.0190 0.0305
k =2, j =4 −0:0013 0.0320 0.0227 0.0331 −0:0012 0.0336 0.0234 0.0349
k =3, j =4 −0:0000 0.0333 0.0224 0.0329 −0:0002 0.0347 0.0231 0.0347
k =1, j =5 −0:0014 0.0306 0.0175 0.0294 −0:0020 0.0318 0.0181 0.0305
k =2, j =5 −0:0015 0.0328 0.0218 0.0336 −0:0015 0.0343 0.0230 0.0356
k =3, j =5 −0:0002 0.0335 0.0209 0.0331 −0:0002 0.0357 0.0222 0.0350

(φ1 =0:9). To evaluate the performance of parameter estimation of B0 (or its vectorization b0),
we compute the bias, Bias, and standard deviation, Std, for each component of b̂ based on 1000
parameter estimates. As a comparison, we report the true asymptotic standard deviations, Astd,
based on theorem 1 with Σf .k/ given in expression (22) and its estimates SE as discussed in Ap-
pendix A. Normality is further checked in Figs S.1 and S.2 of the on-line supplemental material.
For brevity, we show only the normal quantile plots for φ1 =0:9 and n=1500. The sample-based
standard deviations Std are very close to the Astds for both Poisson and negative binomial distri-
butions. Considering also the normal quantile plots, the simulation results justify theorem 1. The
reported SE slightly underestimates Astd in some circumstances in scenario 1. This is expected
as discussed in Appendix A. The interdependence level affects the estimation in finite samples,
especially in small samples. But the effect becomes less pronounced when the sample size grows
bigger. Further note that the complexity of data introduces an extra layer of uncertainty. The
negative binomial distribution yields larger Astd and SE than the Poisson case does.
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Table 2. Bias, Bias, sample standard deviation, Std, standard error, SE, and asymptotic
standard deviation, Astd, for our proposed estimator of the matrix B0 D .B.kj/

0 / in scenario
1 with φ1 D0:9

k,j Results for Poisson model Results for negative binomial model

Bias Std SE Astd Bias Std SE Astd

n=150
k =1, j =1 −0:0521 0.2706 0.1429 0.2940 −0:0509 0.2695 0.1456 0.2945
k =2, j =1 0.0008 0.0856 0.0876 0.0836 0.0023 0.0866 0.0908 0.0872
k =3, j =1 −0:0038 0.0863 0.0877 0.0830 0.0015 0.0882 0.0908 0.0866
k =1, j =2 −0:0498 0.2647 0.1371 0.2912 −0:0497 0.2673 0.1391 0.2940
k =2, j =2 0.0011 0.0632 0.0593 0.0618 0.0018 0.0819 0.0716 0.0840
k =3, j =2 −0:0003 0.0640 0.0607 0.0618 −0:0009 0.0846 0.0713 0.0840
k =1, j =3 −0:0470 0.2634 0.1341 0.2903 −0:0491 0.2650 0.1355 0.2920
k =2, j =3 0.0008 0.0505 0.0486 0.0525 0.0015 0.0692 0.0576 0.0704
k =3, j =3 −0:0003 0.0524 0.0485 0.0519 −0:0012 0.0697 0.0564 0.0695
k =1, j =4 −0:0473 0.2640 0.1325 0.2899 −0:0498 0.2643 0.1327 0.2909
k =2, j =4 −0:0010 0.0459 0.0395 0.0480 0.0001 0.0581 0.0456 0.0590
k =3, j =4 −0:0020 0.0486 0.0399 0.0477 −0:0028 0.0581 0.0462 0.0587
k =1, j =5 −0:0473 0.2640 0.1303 0.2898 −0:0488 0.2653 0.1306 0.2908
k =2, j =5 −0:0009 0.0451 0.0345 0.0469 −0:0010 0.0561 0.0429 0.0596
k =3, j =5 −0:0011 0.0470 0.0337 0.0464 −0:0027 0.0573 0.0406 0.0587

n=1500
k =1, j =1 −0:0021 0.0927 0.0535 0.0930 −0:0043 0.0922 0.0541 0.0931
k =2, j =1 0.0010 0.0257 0.0263 0.0264 −0:0010 0.0287 0.0270 0.0276
k =3, j =1 0.0009 0.0271 0.0261 0.0262 0.0003 0.0269 0.0269 0.0274
k =1, j =2 −0:0035 0.0911 0.0518 0.0921 −0:0038 0.0921 0.0522 0.0930
k =2, j =2 −0:0011 0.0194 0.0172 0.0196 0.0005 0.0263 0.0205 0.0266
k =3, j =2 0.0006 0.0193 0.0173 0.0195 0.0024 0.0267 0.0204 0.0266
k =1, j =3 −0:0035 0.0909 0.0513 0.0918 −0:0035 0.0916 0.0514 0.0924
k =2, j =3 −0:0008 0.0165 0.0139 0.0166 −0:0013 0.0215 0.0166 0.0223
k =3, j =3 0.0009 0.0163 0.0138 0.0164 0.0016 0.0218 0.0165 0.0220
k =1, j =4 −0:0036 0.0911 0.0510 0.0917 −0:0037 0.0914 0.0511 0.0920
k =2, j =4 −0:0005 0.0142 0.0114 0.0152 −0:0007 0.0189 0.0129 0.0187
k =3, j =4 0.0011 0.0152 0.0113 0.0151 0.0013 0.0182 0.0131 0.0186
k =1, j =5 −0:0036 0.0908 0.0506 0.0916 −0:0034 0.0914 0.0507 0.0920
k =2, j =5 −0:0011 0.0143 0.0099 0.0148 −0:0016 0.0182 0.0126 0.0189
k =3, j =5 0.0011 0.0147 0.0095 0.0147 0.0007 0.0184 0.0122 0.0185

Simulation results for scenario 2 are presented in Tables A and B and Figs S.8 and S.9 of
the on-line supplemental material. In contrast, the SE and Astd that are associated with the
two-factor cases are in general relatively big and converge slowly. It is largely due to the complex
structure of the bivariate GARCH specification, which results in cross-temporal dependence,
as revealed by equations (25) and (26). Overall, similar patterns emerge. The numerical results
are in accordance with theorem 1. It is worth noting that the SE and Astd that are reported
in Table A, where the two latent factors are uncorrelated at all leads and lags, are close to the
results in Table B that deals with correlated latent factors, regardless of the distribution of λjt .
This holds true for both n=150 and n=1500.

After obtaining the estimator of B0, we then proceed to estimate the number of factors, r,
by using the estimator that is defined in equation (18). According to theorem 5, we consider
two choices of Cn, Cn =n−1 log.n/ and Cn =n−1 log{log.n/}. The simulation results are bench-
marked with those obtained by using Cn =0, as it yields the estimator of Lam and Yao (2012).
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Fig. 2. Time series plot of the estimated modulating factors exp.β̂T
j xt/ for each institution over 1 year, i.e.

t D 1, 2,. . . , 12: (a) institution 1; (b) institution 2; (c) institution 3; (d) institution 4; (e) institution 5; (f) institution
6; (g) institution 7

The eigenvalues λ̂j are extracted from L̂ defined in equation (13). We first examine L̂ as an
estimator of L for some different values of k0. Figs S.3 and S.10 in the on-line supplemental
material depict the relationship between the scaled norm k−1

0 ‖L − L̂‖ and k0 for two levels of
interdependence (i.e. φ1 = 0:3 and φ1 = 0:9 in scenario 1) and two levels of cross-dependence
(i.e. ρ=0 and ρ=0:8 in scenario 2) respectively. The broken curve corresponds to a sample size
of n = 150, and the full curve is for n = 1500. The norm ‖L − L̂‖ drops rapidly as n increases,
which is consistent with lemma 2 and equation (S.25) in the on-line supplemental material.

The relative frequencies for r̂, 1 in scenario 1 and 2 in scenario 2, are calculated for each choice
of k0, and they are illustrated in Figs S.4, S.6, S.11 and S.13 of the supplemental material. Among
the three choices of Cn, Cn =n−1 log.n/ unanimously outperforms the others. But a large value
of k0 is required in scenario 2 to raise the chance of favouring 2. Moreover, increasing sample
size would also reduce selection bias, as shown in Figs S.11 and S.13. On account of the increas-
ing temporal and/or cross-sectional correlations in ft , the relationships between the series η̂jt ,
j =1, : : : , 5, become more difficult to pin down numerically. It should be noted that the less satis-
factory performance that is observed in Fig. S.13 is not due to the misspecification in the first step.
We plot in Figs S.5, S.7, S.12 and S.14 the corresponding relative frequencies with the true B0 in-
serted, to assess the sensitivity of the estimator in the second step to the first-step estimation. By
carefully examining the graphs, we reach the same conclusion that Cn =n−1 log.n/ is preferred
over the others, and a larger k0 is required for more complex data. It appears that the PML estima-
tor in the first step has little effect on the subsequent analysis. This observation also corroborates
the theoretical finding in lemma 1 that the vector time series η̂t preserves the temporal and cross-
sectional dependence of ηt asymptotically. Because the choice of k0 relies on the nature of data
under consideration, we suggest examining also the eigenvalues λ̂j in practical implementation.

5. Data example

In this section, we implement our proposed method to analyse the numbers of NSF fundings
awarded to seven research universities from January 2001 to December 2012. The data were ex-
tracted from www.nsf.gov. Fig. 1 depicts the numbers of NSF awards that those institutions
received every month over the entire time period. Institutions 1–4 are private research universi-



784 F. Wang and H. Wang

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
1

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
2

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
3

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
4

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
5

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
6

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

In
st

itu
tio

n 
7

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

5

f t

Fig. 3. Time plots of η̂j,t and Qf t: the figure shows the time plots of the seasonally adjusted series
η̂j,t Dexp.�β̂

T
j xt/yjt for each institution and the estimated latent factor Qf t in the bottom panel

ties, whereas the others are public. Table C in the on-line supplemental material reports the mean,
the standard deviation and the five-number summary for each of the seven institutions. The data
exhibit a strong month of the year effect. More grants were awarded by the NSF in September
than at any other time of the year, and there are troughs in January, November and December.
In particular, institutions 1, 3, 6 and 7 reached their maximums in September 2009, whereas the
peak occurred in September 2010 for institutions 2 and 4. Institution 5 received the most awards
in both September 2009 and September 2010. The increase in the number of research grants
around 2009 could be attributed to the stimulus package which was effective from February 2009.
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Fig. 6. Estimation of r , the number of the latent factors: here, the estimation of r (vertical axis) is obtained
by using equation (18) with the two choices of Cn (a) Cn D n�1 log.n/ and (b) Cn D n�1 log{log.n/}; the
eigenvalues λ̂js are from the matrix L̂ defined in equation (13) for k0 ranging from 1 to 25 (horizontal axis)

We first use dummy variables to model the seasonal variation. We start with 11 dummy
variables and the covariate xt in equation (5) is 12 dimensional including an intercept. The
coefficients βj (j =1, 2, : : : , 7) are estimated via the PML approach as described in Section 3.1
and standard errors are calculated by using the approaches that are outlined in Appendix A. It
turns out that the amounts of grants received in February, April and October are not significantly
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Fig. 7. Eigenvalues of L̂: each subplot depicts the seven eigenvalues (in descending order) of the matrix
L̂ defined in equation (13) for k0 D .a/ 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9, (j) 10, (k) 11, (l) 12,
(m) 13, (n) 14, (o) 15, (p) 16, (q) 17, (r) 18, (s) 19, (t) 20, (u) 21, (v) 22, (w) 23, (x) 24, (y) 25

different from those in January by examining their t-values at a 5% level. Hence, we end up with
eight dummy variables, and this yields q=9 covariates in the modulating factors. Fig. 2 depicts
the estimated modulating factors, exp.β̂

T
j xt/, which are also known as seasonality factors, for

each institution over 1 year. The seasonally adjusted series η̂jt = exp.−β̂
T
j xt/yjt , j = 1, 2, : : : , 7,

for the full sample are displayed in Fig. 3. After the regular calendar effect has been removed,
other interesting patterns emerge. Many institutions exhibit a peak in 2006 and late 2010.

The auto-correlations for each series are shown in Fig. 4. Among the private universities,
apart from institution 1 that has a marginally significant spike at lag 1, the others behave like
white noise. The public institutions, however, show moderately significant serial correlation
more than 6 months apart: institutions 5 and 7 have a spike at lag 11 whereas institution 6 has
significant spikes at lags 8, 26 and 27.

To understand the interinstitution dependence better, we first prewhiten η̂1,t , η̂5,t , η̂6,t and η̂7,t
that correspond to institutions 1, 5, 6 and 7, and then compute the cross-correlation along with
other series. The cross-correlograms are displayed in Fig. 5, where the plot at row j and column k
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graphs the cross-correlation between institution j +1 and institution k; more precisely, it reports
the correlation between (prewhitened) η̂j+1,t and (prewhitened) η̂k,t+h. Fig. 5 reveals significant
interactions between the private institutions, and between the private and public institutions.
For instance, institution 1 leads institution 2 by 12 months, but it lags institution 4 by 23 months;
institution 2 lags institution 6 by 12 months; institution 3 leads institutions 6 and 7 by 16 and
24 months respectively; it has strong concurrent correlation with institution 5; moreover, there
are significant lead-and-lag effects between institutions 2 and 5 and institutions 3 and 4 beyond
10 months. Nonetheless, only weak interactions are observed between the public universities.

Because the matrix L̂ that is defined in equation (13) accumulates the interdependence and
cross-dependence among the data, we compute L̂ with k0 ranging from 1 to 25 by virtue of Fig.
5. The estimated r, r̂, with both Cn =n−1 log.n/ and Cn =n−1 log{log.n/}, are summarized in
Fig. 6. Cn =n−1 log.n/ consistently yields r̂ =1. We also graph the eigenvalues of the matrix L̂

in Fig. 7. In view of both Figs 6 and 7, we choose Cn =n−1 log.n/ and k0 =15. So one common
factor is identified, i.e. r̂ =1. The estimated latent factor f̃ t is plotted in the bottom panel of Fig.
3. It shows peaks in late 2006 and 2010, which are in accordance with the incidences of the NSF
FY2006-2011 strategic plan and the stimulus package that was effective from February 2009. The
estimated factor loadings across institutions 1–7 are respectively 0:41, 0:32, 0:33, 0:21, 0:65, 0:25
and 0:30. Institution 5 loads heavily on the factor, whereas institutions 2, 3 and 7 load roughly
equally on the common factor. In the left-hand panel of Fig. S.15 in the on-line supplemental
material, we also plot the serial correlation of f̃ t up to lag 40. There are two significant spikes at
lags 11 and 12, and a marginally significant spike at lag 4. To gain a better insight into the factor,
we fit an auto-regressive model of order 13 to the logarithmically transformed series log.f̃ t/ after
examining their auto-correlation, partial auto-correlation and extended auto-correlation. The
fitted model is

.1−0:2314B11 −0:2215B13/{log.f̃ t/−0:847}=at , .27/

where at is white noise with variance 0.08961. All the parameter estimates are significant at the
5% level. The residuals’ auto-correlation plot is depicted in the right-hand panel of Fig. S.15
in the supplemental material. The Box–Ljung statistic for assessing the white noise assumption
of residual auto-correlation up to lag 15 is 14.787 with 13 degrees of freedom and a p-value of
0.3208. The auto-regressive polynomial that was obtained from equation (27) has six pairs of
complex roots, which indicate cycles of roughly 3 months, 6 months and 2 years.
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Appendix A: Asymptotic variance calibration

When applying the proposed framework to real data, a practical issue arises—how to compute the standard
error of b̂. This appendix discusses the calibration of the asymptotic covariance matrix in theorem 1.

Because the conditional distribution of λjt given εt is left unspecified, it is, in general, impossible to find a
tractable analytic expression for the asymptotic covariance matrix in theorem 1. Now that E{var.λjt |εt /}=
var.yjt/− exp.βT

0jxt/− exp.2βT
0jxt/Σ.j,j/

ε .0/, we have

Ω.j/
2 = lim

n→∞
n−1

n∑

t=1
xtx

T
t var.yjt/−Ω.j/

1 −W
.j,j/
0 Σ.j,j/

ε .0/: .28/
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Then the diagonal block .j, j/ of Ω1 +Ω2 +Ω3 is

Ω.j/
1 +Ω.j/

2 +Ω.j,j/
3 = lim

n→∞
n−1

n∑

t=1
xtx

T
t var.yjt/+ ∑

k �=0
W

.j,j/
k Σ.j,j/

ε .k/, .29/

and its off-diagonal block is

Ω.j,j′/
3 =

∞∑

k=−∞
W

.j,j′/
k Σ.j,j′/

ε .k/, j �= j′: .30/

Both equation (29) and expression (30) provide a theoretical basis for estimating the asymptotic covariance.
Define Ω̂

.j/

1 =n−1Σn
t=1xtx

T
t exp.β̂

T
j xt/ and

Ŵ
.j,j′/
k =n−1

min.n−k,n/∑

t=max.1,1−k/

xt+kx
T
t exp.β̂

T
j xt+k + β̂

T
j′xt/, k =0, ±1, ±2, : : : ,

for j, j′ =1, : : : , p. Because yjt is not stationary, its variance is time dependent. As in Zeger (1988), we use
{yjt − exp.β̂

T
j xt/}2 as a proxy for var.yjt/. In view of equations (29) and (9), Ω.j/

2 +Ω.j,j/
3 is estimated by

Σ̂
.j,j/ =− Ω̂

.j/

1 +n−1
n∑

t=1
xtx

T
t {yjt − exp.β̂

T
j xt/}2 + ∑

k �=0
Ŵ

.j,j/

k Σ̂
.j,j/

η .k/, .31/

and Ω.j,j′/
3 by Σ̂

.j,j′/ = Σ|k|<nŴ
.j,j′/
k Σ̂

.j,j′/
η .k/ for j �= j, where Σ̂

.j,j′/
η .k/ refers to the .j, j′/ element of the

matrix Σ̂η.k/. More precisely,

Σ̂η.k/= 1
n

min.n−k,n/∑

t=max.1,1−k/

.η̂t+k − η̄/.η̂t − η̄/T, k =0, ±1, ±2, : : : :

Let Σ̂= .Σ̂
.j,j′/

/. The matrix Σ̂ may not be a valid estimator in that Ω2 +Ω3 is positive definite but Σ̂
may not be. To produce a non-negative definite estimator, we write Σ̂=ΓΛΓT, where Γ is an orthogonal
matrix and Λ is diagonal, and replace the negative entries in Λ with 0. The resulting matrix is denoted by
Λ+. A non-negative definite estimator of Ω2 +Ω3 is given by ΓΛ+ΓT. This practice has been adopted by
Fan et al. (2012). Thus, Ω−1

1 +Ω−1
1 .Ω2 +Ω3/Ω−1

1 can be estimated by using the formula

Ω̂
−1
1 + Ω̂

−1
1 ΓΛ+ΓTΩ̂

−1
1 , .32/

where Ω̂1 =diag.Ω̂
.1/

1 , Ω̂
.2/

1 , : : : , Ω̂
.p/

1 /.
Note thatΩ−1

1 + Ω−1
1 .Ω2 +Ω3/Ω−1

1 =Ω−1
1 .Ω1 +Ω2 +Ω3/Ω−1

1 . An alternative approach is to estimateΩ.j/
1 +

Ω.j/
2 +Ω.j,j/

3 as an entity (considering equation (29)) and then to construct a non-negative definite matrix
estimator of Ω1 +Ω2 +Ω3 by using the aforementioned decomposition. This approach is not recommended,
however, because it seriously underestimates the standard deviations of b̂. It does not take into account the
positive definiteness of the matrices Ω1, Ω2 and Ω3. By the same token, the estimator (32) also potentially
underperformed. Ideally, one should construct non-negative definite estimators of Ω2 and Ω3. Nevertheless,
this is not feasible because of Σ.j,j/

ε .0/—see equation (28). Recall that estimation for the variance of εt

that was presented in Zeger (1988), Davis et al. (2000) and Davis and Wu (2009) relies on distributional
assumptions on εt , which are not specified in the present context.
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