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We compare the performance of well-known numerical time-stepping methods that 
are widely used to compute solutions of the doubly-infinite Fermi–Pasta–Ulam–Tsingou 
(FPUT) lattice equations. The methods are benchmarked according to (1) their accuracy in 
capturing the soliton peaks and (2) in capturing highly-oscillatory parts of the solutions 
of the Toda lattice resulting from a variety of initial data. The numerical inverse scattering 
transform method is used to compute a reference solution with high accuracy. We find that 
benchmarking a numerical method on pure-soliton initial data can lead one to overestimate 
the accuracy of the method.

 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Consider the classical problem of one-dimensional infinite chain of particles on a line with nearest-neighbor interactions 
as depicted in Fig. 1. Assume that each particle has unit mass, and that there are no impurities, i.e. the potential energies of 
the springs between the particles are identical. We let V : R →R denote the interaction potential between the neighboring 
particles. With these assumptions, the equations of motion that govern this particle system are given by Newton’s Second 
Law of Motion:

d2

dt2
qn = V ′(qn+1 − qn) − V ′(qn − qn−1), n ∈ Z , (1)

where qn stands for the displacement of the nth particle from its equilibrium position. Denoting by pn the momentum of 
the nth particle, (1) is equivalent to the system of first-order differential equations:

dpn

dt
= V (qn+1 − qn)) − V (qn − qn−1),

dqn

dt
= pn, n ∈ Z . (2)

With the assumptions that qn+1 − qn → 0 and pn → 0 sufficiently fast as |n| → ∞ (i.e. no motion at infinity), (2) is a 
Hamiltonian system of equations

dpn

dt
= −

∂H(p,q)

∂qn
,

dqn

dt
=

∂H(p,q)

∂pn
, n ∈ Z , (3)
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Fig. 1. One-dimensional chain of particles with nearest neighbor interactions.

with the Hamiltonian functional H(p, q):

H(p,q) =
∑

n∈Z

1
2 p

2
n + V (qn+1 − qn) . (4)

Such nearest-neighbor interacting particle systems with nonlinear interaction forces (anharmonic potentials) include the 
systems studied in the famous experiment at Los Alamos by Fermi, Pasta, Ulam, and Tsingou [9] in 1953, which a decade 
later led to discovery of solitons by Zabusky and Kruskal [34]. Such lattice equations model various physical phenomena 
with a multitude of applications [25]. From a purely mathematical perspective these lattices are used to investigate Poincaré 
recurrence, chaos, and nonlinear wave phenomena (interaction of solitary waves, solitary wave resolution, see [3] and the 
references therein). The FPUT-type systems (2) are still an active area of mathematical research [11,13,33].

The particular choice V (r) = VToda(r) := e−r + r − 1 in (2) results in an infinite dimensional, continuous time, discrete 
space, completely integrable system: the celebrated Toda lattice [28]. The main purpose of this work is to compare the 
performance of various well known numerical time-stepping methods that are widely used to compute the solution of the 
Cauchy initial value problem for (1). The accuracy of a time-stepping method is most easily inspected when there are exact 
solutions available at hand, which is of course, rarely the case. Often, numerical analysts make use of nonlinear integrable 
wave models that possess classes of explicit solutions (e.g. the Toda lattice, the Korteweg–de Vries (KdV) equation or the 
nonlinear Schrödinger (NLS) equation). Then one has the luxury of being able to test their numerical scheme against exact 
formulae. Many of these infinite-dimensional integrable systems feature dispersive radiation and/or oscillatory tails. This 
is a critically important1 oscillatory component of the solution that decays slowly to the background as t → ∞. These 
exact solution formulae often give solitary waves such as breathers or solitons — coherent structures that are localized in 
space without oscillatory tails or dispersive radiation. In this paper, we set out to investigate questions such as: Which 
time-stepping methods capture the solitons with more accuracy? How do they perform when computing highly-oscillatory 
solutions? How does their performance depend on the solution itself? Our strategy is as follows. Using a numerical inverse 
scattering transform (IST) method [5], we can accurately construct solutions of the Toda lattice for each (n, t) without any 
time stepping for arbitrarily large values of t with high accuracy. Indeed, one can expect to maintain relative accuracy for 
large t [23]. This opens the door to benchmarking time-stepping methods on solutions with different characters (oscillatory, 
has solitons, no solitons, etc.), without restricting oneself to those with exact formulae. Furthermore, it is reasonable to 
expect behavior of a numerical method for the Toda lattice to extend to other FPUT-type systems.

From a convergence (as time-step size tends to 0) and computational complexity points of view, comparison of numerical 
time-stepping methods is a well-trodden path, see for example, [14] for a detailed study in this direction, or the more recent 
survey article [7] by Butcher and the references therein. Using the numerical IST method, in this work we aim to add a new 
dimension to such studies.

The list of applicable time-stepping methods is long. For example, there are modern lattice methods such as the Lattice-
Boltzmann method that are used in computational fluid mechanics, specifically with applications to nanofluids. See, for 
example, [26,27]. Our focus is not to determine which modern method is best but rather to first benchmark classical 
higher-order methods and classical symplectic methods to demonstrate the utility and nuance of the solution captured by 
the numerical IST method.

The paper is organized as follows. In the remainder of this section we discuss specifics of the Toda lattice. In Section 2
we summarize the numerical IST procedure, give an overview of the numerical time-stepping methods used in this work 
and present the explicit formulae for the initial data used in the numerical experiments. In Section 4, we compare the 
performance of second order methods. In Section 5, we compare the performance of higher order methods. We then draw 
some conclusions.

1.1. Properties of the Toda lattice

Complete integrability of the Toda lattice was proved by H. Flaschka [10] and S. V. Manakov [20] in 1974, indepen-
dently and simultaneously, by realizing that the system possesses a Lax pair and (2) with V (r) = VToda(r) is in one-to-one 
correspondence with isospectral deformations of Jacobi matrices. Jacobi matrices are symmetric, tridiagonal matrices with 
positive off-diagonal elements. Indeed, through the bijection

1 Generic initial data for the Toda lattice gives rise to dispersive radiation.
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an :=
1

2
e−(qn+1−qn)/2, bn := −

1

2
pn , (5)

the equations of motion (1) Toda lattice take the form (see [10,20]):

d

dt
an = an (bn+1 − bn) ,

d

dt
bn = 2

(

a2n − a2n−1

)

, n ∈ Z . (6)

Defining the following second-order linear difference operators L and P on the Hilbert space ℓ2(Z) of square-summable 
sequences:

(Lφ)n := an−1φn−1 + bnφn + anφn+1 ,

(Pφ)n := −an−1φn−1 + anφn+1 ,
(7)

it can be verified that (1) is equivalent to the Lax equation [18]

d

dt
L = [P,L] := PL− LP . (8)

The operators (P, L) are called a Lax pair and in the standard basis, L is a doubly-infinite Jacobi matrix. The Lax pair (8)
constitutes the foundation of to the IST method to solve the Cauchy initial value problem for (6) for sufficiently decaying 
initial data (see, for example, [2] for a recent survey of the IST for the Toda lattice).

A numerical IST method was recently developed by the authors [5] for the doubly-infinite Toda lattice. Implementations 
for other integrable systems can be found in [23,29,30,32] and these are summarized in [31]. An implementation for the 
numerical IST method can be found at [4]. The method works, loosely speaking, by performing the following steps:

(1) Compute the spectral data: This involves solving the eigenvalue problem Lϕ = λϕ for bounded eigenfunctions ϕ . As-
suming (an, bn) → (1/2, 0) at an appropriately rapid rate as |n| → ∞, the spectrum consists of the interval [−1, 1] and 
a finite number of simple eigenvalues in R \ [−1, 1]. One also computes, a function R(z), defined on the spectrum, 
which is directly related to the spectral measure for L.

(2) Solve the inverse problem: Once R(z) is known, for each (n, t) there exists a contour Ŵ = Ŵ(n, t) ⊂ C, a function 
G(z; n, t), G : Ŵ →C

2×2 and an integral equation

(

I −
G

2

)

U +HŴ(U )G = G − I, U : Ŵ →C
2×2.

Here HŴ is the Hilbert transform over Ŵ and I is the identity matrix. This integral equation is solved for U : Ŵ →C
2×2

using the framework of S. Olver [22] (see [21] for an implementation) and the solution of the Toda lattice can be 
obtained in terms of integrals of U . So, one can compute the map (n, t) �→ U and hence (n, t) → (an(t), bn(t)) without 
time stepping.

2. Time-stepping methods

In this section we describe the time-stepping methods used to produce the results shown in this paper. The first three 
methods described below are classical second-order methods and the following methods are higher-order methods. All of 
the methods are used to numerically compute the solution y(T ) ∈ R

N of the Cauchy initial value problem for an autonomous 
differential equation

dy

dt
= f (y(t)) , (9)

with initial condition y(0) = y0 ∈R
N at a final time t = T . We focus on classical methods to illustrate how one can use the 

numerical IST method to benchmark them.

A time stepping method is given by an explicit function F , depending on the time step h, the function f and y j for 
k − ℓ ≤ j < k + 1, ℓ ≥ 0, mapping into RN . The definition of F differs among different methods. The iteration is then given 
by

yk+1 = F ( f ,h, yk, . . . , yk−ℓ),

and F is chosen so that yk gives an approximation to y(t) at time t = kh. We truncate the spatial domain (the lattice Z) to 
S = {−K , . . . , 0, . . . , K }, with the appropriate boundary conditions for the variables (a, b) in (6) or (p, q) in (2). Then K > 0
is chosen sufficiently large so that the y(T ) does not feel the effect of the boundary. Thus, N = 2K + 1.
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2.1. Nomenclature and abbreviations

In the material that follows, h > 0 and dT > 0 both to denote the time-step size used in a numerical scheme. We use 
superscripts to denote the numerical iterates to avoid confusion with the indices of sequences, e.g., yk denotes a numerically 
computed solution at the k-th time-step. Given a computed solution yk at a time t , we denote the computed solution 
at time t + h by yk+1 . Such superscript indices k are therefore nonnegative integers, except for when auxiliary half-step 
computations are involved in algorithms, in which case yk+1/2 is used. Since we treat lattice equations, yk will denote a 
finite sequence of real numbers. ykn is a scalar, the n-th element of the sequence yk ∈ R

N . We reserve the variables an , bn
and pn , qn to refer to the solution of the Toda lattice equations given in (2) and (6), respectively. We have the following 
abbreviations for the numerical methods used

• Midpoint method: midpoint.
Unless otherwise stated for this method, we integrate (6). When we integrate (2) instead we use the label 
midpointqp.

• Second-order Störmer–Verlet method: sv2symp.
• Fourth-order Adams–Bashforth method: ab4.
• Fourth-order Runge–Kutta method: rk4.

Unless otherwise stated for this method, we integrate (6). When we integrate (2) we use the label rk4qp.
• Four–Five-order Runge–Kutta–Fehlberg method: rkf45.

We remind the reader of these abbreviations when the corresponding methods are described below. The abbreviations NoS,
PureS, double, quad, dirac, which we use for the initial data considered in this work are given in parentheses next to 
the corresponding titles in Section 3. The acronym “ID” is used to abbreviate “initial data”.

We proceed with brief descriptions of the numerical algorithms considered in this work.

2.2. Second-order methods

2.2.1. Midpoint (midpoint and midpointqp)

Given yk , k ∈N, the algorithm to compute yk+1 is as follows:

yk+1 = yk + hf
(

yk + 1
2hf (y

k)

)

.

2.2.2. Second-order Störmer–Verlet (sv2symp)
The Störmer–Verlet method is symplectic: It preserves the Hamiltonian (4) under exact arithmetic. We use the equations 

of motions (1) and set

f p(q) :=
(

e−(qn−qn−1) − e−(qn+1−qn)
)

n∈Z
, fq(p) := (pn)n∈Z ,

to denote the right hand sides. Since the Hamiltonian for the Toda lattice is separable, the method becomes explicit. Given 
(pk, qk), the algorithm to compute (pk+1, qk+1) is as follows:

pk+1/2 = pk + 1
2hf p(q

k) ,

qk+1 = qk + hfq(p
k+1) ,

pk+1 = pk+1 + 1
2hf p(q

k+1) .

2.3. Fourth-order methods

2.3.1. Fourth-order Adams–Bashforth (ab4)
The Adams–Bashforth method is a linear explicit multi-step method. To compute the first three iterates we perform 

lower-step Adams–Bashforth methods successively:

y0 = y0 ,

y1 = y0 + hf (y0) ,

y2 = y1 + 1
2h(− f (y0) + 3 f (y1) ,

y3 = y2 + 1
12h(5 f (y0) − 16 f (y1) + 23 f (y2)) .

Then, given computed solutions yk, yk−1, yk−2, yk−3 , k ≥ 3 the algorithm to compute yk+1 is as follows:

yk+1 = yk + 1
24h

(

−9 f (yk−3) + 37 f (yk−2) − 59 f (yk−1) + 55 f (yk)
)

.
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2.3.2. Fourth-order Runge–Kutta (rk4 and rk4qp)

We denote this method by rk4. The Runge–Kutta method is an explicit single-step method. Given the computed solu-
tion yk , the algorithm [17,24] to compute yk+1 is as follows:

s1 = hf (yk) ,

s2 = hf
(

y0 + 1
2 s1

)

,

s3 = hf
(

y0 + 1
2 s2

)

,

s4 = hf
(

y0 + s3

)

,

yk+1 = yk + 1
6h (s1 + 2s2 + 2s3 + s4) .

2.3.3. Four–five-order Runge–Kutta–Fehlberg (rkf45)
This method is fourth order method but with only a single extra computation at each step the local error can be 

controlled by a fifth order method. This feature [8] is very practical for implementing adaptive-step-size methods. We 
do not implement any adaptive methods. Given the computed solution yk , the algorithm [8,12] to compute yk+1 is as 
follows:

s1 = hf (y) ,

s2 = f (y + hα21s1) ,

s3 = f (y + h (α31s1 + α32s2)) ,

s4 = f (y + h (α41s1 + α42s2 + α43s3)) ,

s5 = f (y + h (α51s1 + α52s2 + α53s3 + α54s4)) ,

s6 = f (y + h (α61s1 + α62s2 + α63s3 + α64s4 + α65s5)) ,

yk+1 = yk + h (β1s1 + β2s2 + β3s3 + β4s4 + β5s5 + β6s6) .

For the constants αi j and β j , see the Butcher tableau provided in the Appendix A. See [6] for a survey article by Butcher on 
Runge–Kutta methods.

Remark 2.1. For a detailed study of these methods and more, the reader may consult to textbooks [12] or [19], for example.

3. Initial data considered in numerical experiments

We now present the types of initial data (ID) used in the numerical experiments underlying the results presented in this 
paper.

3.1. Purely dispersive (NoS)

We chose ID that gives rise to pure radiation, that is, the discrete spectrum of L is empty and consequently there are no 
solitons. The ID used is given by

an =
1

2
−

1

4
e−n2 , bn =

1

10
sech(n), n ∈ Z . (10)

The solution at t = 1000 is shown in Fig. 2.

3.2. Pure 1-soliton (PureS)

We chose a pure 1-soliton solution of the Toda lattice at time t = 0. This ID is given by

an = 1−
1

2

√

(

1+ e−2κ(n−1)
) (

1+ e−2κ(n+1)
)

1+ e−2κn
,

bn =
e−κ − eκ

2

(

e−2κn

1+ e−2κn
−

e−2κ(n−1)

1+ e−2κ(n−1)

)

, κ = 0.4, n ∈ Z .

(11)
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Fig. 2. The solution of the Toda lattice with NoS ID at t = 1000.

Fig. 3. The solution of the Toda lattice with PureS ID at t = 1000.

Fig. 4. The solution of the Toda lattice with double ID at t = 1000.

The solution at t = 1000 is shown in Fig. 3. Notice that this is the only solution we consider without dispersive radia-
tion.

3.3. 2 solitons (double)

A choice of ID that gives rise to 2 solitons and radiation is

an =
1

2
+

4

5
ne−n2 , bn =

1

10
sech(n), n ∈ Z . (12)

The solution at t = 1000 is shown in Fig. 4.
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Fig. 5. The solution of the Toda lattice with quad ID at t = 1000.

Fig. 6. The solution of the Toda lattice with dirac ID at t = 1000.

3.4. 4 solitons (quad)

ID that gives rise to 4 solitons and radiation is given by

an =

∣

∣

∣

1
2 − ne−n2+n

∣

∣

∣
, bn = n sech(n), n ∈ Z . (13)

The solution at t = 1000 is shown in Fig. 5.

3.5. Dirac δ-type (dirac)

Dirac-δ-type ID that leads to 1 soliton and a radiating tail that is highly oscillatory is simply given by

an =
1

2
, bn =

{

4, n = 0

0, otherwise
, n ∈ Z . (14)

The solution at t = 1000 is shown in Fig. 6.

4. Comparison of second-order methods

In order to compare our methods we take the following approach. We choose three time steps dT = 0.01, 0.001, 0.0001, 
three final times T = 1000, 2000, 5000, and two regions (dispersive and soliton regions, for only n < 0) and examine the 
relative errors made in approximating the solution of the Toda lattice at the final times for every choice of ID and ev-
ery choice of time-stepping method. In accordance with the asymptotic analysis [5,15,16], the soliton region is effectively 
Z \ [−T , T ]. And so, the soliton region for this work is [−(s + 100)T , −T ] where s is the speed of the fastest moving 
soliton. This can be computed from the spectrum of L [5]. The dispersive region is [−cT , cT ] for 0 < c < 1. So, we fix 
our dispersive region as [−T /2 − 50, −T /2 + 50]. We always take the solution computed with the numerical IST method 
to be our “true” solution. A significant benefit of the numerical IST method is that the solution at each (n, t) can be
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Fig. 7. Absolute errors in the soliton region, for quad ID, dT = 0.0001 with the ab4 (top) and sv2symp (bottom) methods. The × symbols represent the 
actual absolute errors as a function of n and the � symbols are the errors sorted in increasing order.

computed independently of all others. Thus to compute the “true” solution we only need to compute on the intervals 
[−(s + 100)T , −T ] and [−T /2 − 50, −T /2 + 50] and we can refrain from computing the entire solution profile.

To define the relative error measure we use, consider the plot of errors in the soliton region, for quad ID, dT = 0.0001

with the ab4 and sv2symp methods as shown in Fig. 7. If one uses an ∞-norm (or max norm) measurement (see the ×
symbols in Fig. 7), one might conclude that the errors are comparable. What this fails to account for is that the sv2symp
method has fewer errors that are near the maximum error when compared with the ab4 method. To account for this we 
define the sorted norm on Rn for 0 < d < 1 by

‖x‖sort,d = ‖(y1, y2, . . . , y⌈dn⌉)
T ‖2, y = sort(|x|) .

Here the function sort(·) sorts the positive vector |x| in decreasing order, and the sorted norm takes the ℓ2 norm of the 
largest ∼ dn entries of the vector |x|. In all our computation we take d = 0.1, taking 10% of the entries. This is a hybrid of 
the ℓ2-norm and the ∞-norm Then the error of a vector x relative to a vector y with background c is given by

rely,c(x) =
‖x− y‖sort,d

‖c − y‖sort,d
. (15)

We introduce the background c because for fixed n, an(t) → 1/2 as t → ∞ while bn(t) → 0 as t → ∞. We want to approxi-
mate an(t) − 1/2 and bn(t).

Remark 4.1. For PureS ID in the dispersive region, the solution is, to machine precision, zero. A relative error metric here 
does not make sense and we use absolute error ‖x − y‖sort,s .

4.1. Soliton region

We first consider the errors rely,1/2(x) made in the approximation of the solution an(T ) of the Toda lattice in the soliton 
region [−(s + 100)T , −T ] at time T . Here y is chosen to be the reference solution obtained by the numerical IST method. 
In each panel of Fig. 8 and Fig. 9 we plot the relative error of the computed solution plotted versus dT , at T = 1000 and at 
T = 5000, respectively. In all panels sv2symp out performs the other methods.

4.2. Dispersive region

We now consider the errors made in the approximation of the solution an(T ) of the Toda lattice in the dispersive region 
[−T /2 − 50, −T /2 + 50] at time T . We can make an important point with Figs. 10 and 11. If one could only work with 
the pure soliton solution (right panel in the figures), that person might conclude that the midpointqp for small enough 
time step performs as well as sv2symp away from the soliton. This is true for the PureS ID, but not for the other ID. This 
illustrates why having accurate solutions with dispersive tails to compare against is important.



D. Bilman, T. Trogdon / Applied Numerical Mathematics 141 (2019) 19–35 27

Fig. 8. Relative errors in the soliton region for the second-order time-stepping methods (midpoint (×), midpointqp (�), sv2symp (�)) at 
T = 1000 plotted versus dT for three choices of time step for three different choices of ID.

Fig. 9. Relative errors in the soliton region for the second-order time-stepping methods (midpoint (×), midpointqp (�), sv2symp (�)) at 
T = 5000 plotted versus dT for three choices of time step for three different choices of ID.

Fig. 10. Relative errors in the dispersive region for the second-order time-stepping methods (midpoint (×), midpointqp (�), sv2symp (�)) 
at T = 1000 plotted versus dT for three choices of time step for three different choices of ID.

5. Comparison of fourth-order methods

We now move to the comparison of the fourth-order methods listed above. We use the same relative error metric 
rely,1/2(x) as described in (15), where the reference solution y is computed with the numerical IST method.

5.1. Soliton region

In each of the panels of Figs. 12 and 13 we plot the relative error of the computed approximation of an(T ) plotted versus 
dT for fourth-order methods in the soliton region. We can see that we are operating near the maximum accuracy of these 
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Fig. 11. Relative errors in the dispersive region for the second-order time-stepping methods (midpoint (×), midpointqp (�), sv2symp (�)) 
at T = 5000 plotted versus dT for three choices of time step for three different choices of ID.

Fig. 12. Relative errors in the soliton region for the fourth-order time-stepping methods (rk4 (�), rk4qp (×), rkf45 (�), ab4 (★)) at T =

2000 plotted versus dT for three choices of time step for three different choices of ID.

Fig. 13. Relative errors in the soliton region for the fourth-order time-stepping methods (rk4 (�), rk4qp (×), rkf45 (�), ab4 (★)) at T =

5000 plotted versus dT for three choices of time step for three different choices of ID.

methods as the relative error can increase as dT decreases. We see that ab4 under-performs and rk4qp is almost always 
the method of choice in this region. But it is important to note that the relative error encountered for the PureS ID is less 
than that encountered for the other ID. This points again to the need for a wide class of test solutions.

5.2. Dispersive region

In each of the panels of Figs. 14 and 15 we plot the relative error of the computed approximation of an(T ) plotted versus 
dT for fourth-order method in the dispersive region. We can again see that we are operating near the maximum accuracy. 
We see that ab4 under-performs but not as severely as in the soliton region and rk4qp is still almost always the method 
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Fig. 14. Relative errors in the dispersive region for the fourth-order time-stepping methods (rk4 (�), rk4qp (×), rkf45 (�), ab4 (★)) at 
T = 2000 plotted versus dT for three choices of time step for three different choices of ID.

Fig. 15. Relative errors in the dispersive region for the fourth-order time-stepping methods (rk4 (�), rk4qp (×), rkf45 (�), ab4 (★)) at 
T = 5000 plotted versus dT for three choices of time step for three different choices of ID.

of choice in this region, at least for small time steps. Again, the PureS ID gives smaller errors (recall we can only measure 
the absolute error for PureS ID in the dispersive region) than the other choices of ID, illustrating the importance of being 
able to compute these solutions accurately with the numerical IST method.

6. Conclusions

We have used the numerical IST method outlined in [5] to benchmark classical time-stepping routines on the Toda 
lattice. It is reasonable, especially following the perturbation work in [3], that such benchmarks will hold for other lattice 
equations — not just the Toda lattice and not just integrable lattices. The method rk4qp appears to be the method of choice 
while the symplectic method sv2symp performs surprisingly well given that it is only second-order accurate. We see that 
the preservation of the Hamiltonian is physically and numerically a good idea.

We have illustrated that having a wider class of methods allows one to detect deeper differences in methods, and an-
alyze the accumulation of round-off error while getting a handle on the maximum accuracy of a method. We have also 
shown that benchmarking a method on a pure soliton initial condition can lead one to overestimate the maximum accuracy 
of the method. As we consider nonlinear lattices, both the lattice equation and the choice of ID matter in the performance 
of a given method. But this is not unexpected. Generic solutions have dispersive radiation with energy propagating rapidly 
in both directions, giving much more complicated dynamics, something the resolution of the method must take into ac-
count.

In Appendix B we give a complete listing of relative errors for both an and bn . In [1] we have made available our 
data for the reference solutions computed with the numerical IST to allow others to benchmark their time-stepping rou-
tines.
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Appendix A. Butcher tableau for Fehlberg’s RKF45

We provide the Butcher tableau for the constants used in the rkf45 method in this paper [8].

j 1 2 3 4 5 6

α2 j
1
4

α3 j
3
32

9
32

α4 j
1932
2197

−7200
2197

7296
2197

α5 j
439
216 −8 3680

513
−845
4104

α6 j
−8
27 2 −3544

2565
1859
4104

−11
40

β j
25
216 0 1408

2565
2197
4104

−1
5 0

Appendix B. Data for the methods

In the tables below, we display the data for the methods discussed in the body of the paper. In each table we display the 
performance of 3–4 methods, run until T = 1000, 2000, 3000 each with three different time steps. Each table is associated 
to a choice of initial data (dirac, double, NoS, PureS, quad) and a region (soliton region = Sol., dispersive region =
Disp.).

B.1. Second order — errors for an(t)

quad/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 4.499× 10−3 4.499× 10−5 4.499× 10−7 8.914× 10−3 8.912× 10−5 8.912× 10−7 2.195× 10−2 2.196× 10−4 2.197× 10−6

midpoint 1.834× 10−2 1.441× 10−4 1.402× 10−6 4.222× 10−2 2.913× 10−4 2.782× 10−6 1.463× 10−1 7.608× 10−4 6.898× 10−6

midpointqp 2.004× 10−2 1.561× 10−4 1.516× 10−6 4.608× 10−2 3.153× 10−4 3.008× 10−6 1.593× 10−1 8.234× 10−4 7.456× 10−6

quad/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.218× 10−2 2.217× 10−4 2.218× 10−6 4.43× 10−2 4.429× 10−4 4.428× 10−6 1.084× 10−1 1.084× 10−3 1.084× 10−5

midpoint 8.916× 10−2 8.891× 10−4 8.891× 10−6 1.781× 10−1 1.776× 10−3 1.775× 10−5 4.347× 10−1 4.341× 10−3 4.333× 10−5

midpointqp 8.954× 10−2 8.896× 10−4 8.892× 10−6 1.788× 10−1 1.777× 10−3 1.776× 10−5 4.364× 10−1 4.343× 10−3 4.34× 10−5

dirac/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.805× 10−1 2.937 × 10−3 2.938× 10−5 3.859× 10−1 2.729× 10−3 2.715× 10−5 6.994× 10−1 7.258× 10−3 7.347× 10−5

midpoint 1.622 2.808× 10−2 9.098× 10−5 1.451 4.956× 10−2 1.036× 10−4 1.428 1.734× 10−1 4.393× 10−4

midpointqp 1.634 3.753 × 10−2 1.285× 10−4 1.322 6.718× 10−2 1.443× 10−4 1.43 2.261× 10−1 5.969× 10−4

dirac/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.229 × 10−2 2.23× 10−4 2.23× 10−6 4.381× 10−2 4.383× 10−4 4.383× 10−6 1.091× 10−1 1.089× 10−3 1.089× 10−5

midpoint 1.044× 10−1 9.254× 10−4 9.138× 10−6 2.04× 10−1 1.801× 10−3 1.778× 10−5 5.126× 10−1 4.444× 10−3 4.386× 10−5

midpointqp 1.137 × 10−1 9.241× 10−4 9.033× 10−6 2.242× 10−1 1.809× 10−3 1.768× 10−5 5.709× 10−1 4.481× 10−3 4.378× 10−5

double/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.724× 10−3 1.723 × 10−5 1.723× 10−7 3.388× 10−3 3.387× 10−5 3.387× 10−7 8.378× 10−3 8.377× 10−5 8.378× 10−7

midpoint 7.759× 10−3 7.098× 10−5 7.03× 10−7 1.588× 10−2 1.404× 10−4 1.385× 10−6 4.366× 10−2 3.52× 10−4 3.434× 10−6

midpointqp 8.85× 10−3 8.088× 10−5 8.013× 10−7 1.804× 10−2 1.598× 10−4 1.577× 10−6 4.919× 10−2 3.999× 10−4 3.907× 10−6

double/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.193× 10−2 2.193× 10−4 2.193× 10−6 4.328× 10−2 4.329× 10−4 4.329× 10−6 1.099× 10−1 1.099× 10−3 1.099× 10−5

midpoint 8.748× 10−2 8.763× 10−4 8.765× 10−6 1.725× 10−1 1.73× 10−3 1.731× 10−5 4.369× 10−1 4.393× 10−3 4.392× 10−5

midpointqp 8.768× 10−2 8.765× 10−4 8.765× 10−6 1.729× 10−1 1.731× 10−3 1.731× 10−5 4.378× 10−1 4.394× 10−3 4.394× 10−5
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NoS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.762× 10−5 1.762× 10−7 1.762× 10−9 2.428× 10−5 2.427× 10−7 2.427× 10−9 3.18× 10−5 3.18× 10−7 3.18× 10−9

midpoint 7.551× 10−5 7.512× 10−7 7.549× 10−9 1.031× 10−4 1.026× 10−6 1.034× 10−8 1.332× 10−4 1.327× 10−6 1.418× 10−8

midpointqp 7.82× 10−5 7.767× 10−7 7.762× 10−9 1.06× 10−4 1.054× 10−6 1.053× 10−8 1.358× 10−4 1.352× 10−6 1.352× 10−8

NoS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.167× 10−2 2.167× 10−4 2.167× 10−6 4.304× 10−2 4.303× 10−4 4.303× 10−6 1.077× 10−1 1.077× 10−3 1.077× 10−5

midpoint 8.663× 10−2 8.666× 10−4 8.667× 10−6 1.722× 10−1 1.721× 10−3 1.721× 10−5 4.285× 10−1 4.306× 10−3 4.307× 10−5

midpointqp 8.673× 10−2 8.669× 10−4 8.669× 10−6 1.723× 10−1 1.721× 10−3 1.721× 10−5 4.289× 10−1 4.307× 10−3 4.307× 10−5

PureS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 3.707× 10−4 3.706× 10−6 3.706× 10−8 7.05× 10−4 7.05× 10−6 7.05× 10−8 1.712× 10−3 1.712× 10−5 1.712× 10−7

midpoint 1.485× 10−3 1.447× 10−5 1.442× 10−7 2.917× 10−3 2.756× 10−5 2.742× 10−7 7.791× 10−3 6.756× 10−5 6.64× 10−7

midpointqp 1.507× 10−3 1.467× 10−5 1.463× 10−7 2.964× 10−3 2.798× 10−5 2.781× 10−7 7.932× 10−3 6.865× 10−5 6.758× 10−7

PureS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.467× 10−6 6.467× 10−6 6.467× 10−6 2.586× 10−6 2.586× 10−6 2.586× 10−6

midpoint 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.469× 10−6 6.467× 10−6 6.467× 10−6 2.588× 10−6 2.586× 10−6 2.586× 10−6

midpointqp 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.469× 10−6 6.467× 10−6 6.467× 10−6 2.588× 10−6 2.586× 10−6 2.586× 10−6

B.2. Second order — errors for bn(t)

quad/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 4.471× 10−3 4.47× 10−5 4.47× 10−7 8.82× 10−3 8.819× 10−5 8.819× 10−7 2.197× 10−2 2.196× 10−4 2.196× 10−6

midpoint 1.823× 10−2 1.432× 10−4 1.393× 10−6 4.176× 10−2 2.882× 10−4 2.753× 10−6 1.471× 10−1 7.608× 10−4 6.898× 10−6

midpointqp 1.992× 10−2 1.551× 10−4 1.507× 10−6 4.558× 10−2 3.12× 10−4 2.976× 10−6 1.603× 10−1 8.234× 10−4 7.456× 10−6

quad/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.18× 10−2 2.18× 10−4 2.181× 10−6 4.394× 10−2 4.392× 10−4 4.392× 10−6 1.082× 10−1 1.082× 10−3 1.082× 10−5

midpoint 8.761× 10−2 8.745× 10−4 8.745× 10−6 1.768× 10−1 1.761× 10−3 1.761× 10−5 4.327× 10−1 4.337× 10−3 4.328× 10−5

midpointqp 8.798× 10−2 8.749× 10−4 8.746× 10−6 1.775× 10−1 1.762× 10−3 1.761× 10−5 4.345× 10−1 4.338× 10−3 4.335× 10−5

dirac/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.257× 10−1 1.046× 10−3 1.045× 10−5 3.659× 10−1 4.826× 10−3 4.835× 10−5 9.797× 10−1 1.175× 10−2 1.169× 10−4

midpoint 1.356 1.015× 10−2 3.231× 10−5 1.445 7.853× 10−2 1.846× 10−4 1.567 4.909× 10−1 6.994× 10−4

midpointqp 1.358 1.365× 10−2 4.567× 10−5 1.546 1.026× 10−1 2.569× 10−4 1.638 6.32× 10−1 9.508× 10−4

dirac/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.17× 10−2 2.17× 10−4 2.17× 10−6 4.377× 10−2 4.377× 10−4 4.377× 10−6 1.073× 10−1 1.074× 10−3 1.074× 10−5

midpoint 1.018× 10−1 9.005× 10−4 8.892× 10−6 2.041× 10−1 1.799× 10−3 1.776× 10−5 5.004× 10−1 4.383× 10−3 4.326× 10−5

midpointqp 1.109× 10−1 8.992× 10−4 8.79× 10−6 2.244× 10−1 1.806× 10−3 1.765× 10−5 5.568× 10−1 4.42× 10−3 4.318× 10−5

double/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.723× 10−3 1.723× 10−5 1.723× 10−7 3.387× 10−3 3.386× 10−5 3.386× 10−7 8.373× 10−3 8.372× 10−5 8.372× 10−7

midpoint 7.758× 10−3 7.096× 10−5 7.029× 10−7 1.588× 10−2 1.403× 10−4 1.385× 10−6 4.363× 10−2 3.518× 10−4 3.432× 10−6

midpointqp 8.848× 10−3 8.086× 10−5 8.011× 10−7 1.804× 10−2 1.597× 10−4 1.577× 10−6 4.916× 10−2 3.996× 10−4 3.905× 10−6
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double/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.125× 10−2 2.125× 10−4 2.125× 10−6 4.355× 10−2 4.355× 10−4 4.355× 10−6 1.074× 10−1 1.074× 10−3 1.074× 10−5

midpoint 8.478× 10−2 8.49× 10−4 8.492× 10−6 1.737× 10−1 1.741× 10−3 1.741× 10−5 4.267× 10−1 4.294× 10−3 4.293× 10−5

midpointqp 8.497× 10−2 8.492× 10−4 8.492× 10−6 1.741× 10−1 1.741× 10−3 1.741× 10−5 4.277× 10−1 4.295× 10−3 4.295× 10−5

NoS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 1.849× 10−5 1.849× 10−7 1.849× 10−9 2.528× 10−5 2.528× 10−7 2.529× 10−9 3.275× 10−5 3.275× 10−7 3.276× 10−9

midpoint 7.965× 10−5 7.925× 10−7 7.981× 10−9 1.076× 10−4 1.071× 10−6 1.079× 10−8 1.373× 10−4 1.369× 10−6 1.461× 10−8

midpointqp 8.245× 10−5 8.193× 10−7 8.188× 10−9 1.106× 10−4 1.1× 10−6 1.099× 10−8 1.4× 10−4 1.394× 10−6 1.394× 10−8

NoS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.143× 10−2 2.143× 10−4 2.143× 10−6 4.282× 10−2 4.282× 10−4 4.282× 10−6 1.089× 10−1 1.089× 10−3 1.089× 10−5

midpoint 8.568× 10−2 8.569× 10−4 8.57× 10−6 1.711× 10−1 1.713× 10−3 1.713× 10−5 4.328× 10−1 4.354× 10−3 4.354× 10−5

midpointqp 8.578× 10−2 8.572× 10−4 8.572× 10−6 1.712× 10−1 1.713× 10−3 1.713× 10−5 4.332× 10−1 4.354× 10−3 4.354× 10−5

PureS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 3.703× 10−4 3.703× 10−6 3.702× 10−8 7.047× 10−4 7.047× 10−6 7.047× 10−8 1.712× 10−3 1.712× 10−5 1.712× 10−7

midpoint 1.485× 10−3 1.447× 10−5 1.442× 10−7 2.916× 10−3 2.755× 10−5 2.742× 10−7 7.789× 10−3 6.755× 10−5 6.639× 10−7

midpointqp 1.506× 10−3 1.467× 10−5 1.463× 10−7 2.963× 10−3 2.797× 10−5 2.781× 10−7 7.93× 10−3 6.864× 10−5 6.757× 10−7

PureS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

sv2symp 2.589× 10−5 2.589× 10−5 2.589× 10−5 1.293 × 10−5 1.293× 10−5 1.293× 10−5 5.173× 10−6 5.172× 10−6 5.172× 10−6

midpoint 2.59× 10−5 2.589× 10−5 2.589× 10−5 1.294 × 10−5 1.293× 10−5 1.293× 10−5 5.175× 10−6 5.172× 10−6 5.172× 10−6

midpointqp 2.59× 10−5 2.589× 10−5 2.589× 10−5 1.294 × 10−5 1.293× 10−5 1.293× 10−5 5.175× 10−6 5.172× 10−6 5.172× 10−6

B.3. Fourth order — errors for an(t)

quad/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 2.865× 10−7 5.51× 10−10 5.898× 10−10 6.509× 10−7 1.476× 10−10 2.968× 10−9 2.228× 10−6 9.889× 10−10 2.031× 10−8

rk4qp 3.27× 10−7 5.507× 10−10 5.501× 10−10 7.39× 10−7 5.353× 10−11 2.099× 10−11 2.511× 10−6 1.453× 10−10 6.118× 10−11

rkf45 6.78× 10−8 5.502× 10−10 5.904× 10−10 1.685× 10−7 1.296× 10−10 2.972× 10−9 6.68× 10−7 9.647× 10−10 2.032× 10−8

ab4 3.533× 10−3 3.53× 10−5 3.527× 10−7 7.064× 10−3 7.063× 10−5 7.055× 10−7 1.745× 10−2 1.751 × 10−4 1.749× 10−6

quad/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.371× 10−6 3.443× 10−9 3.466× 10−9 2.732× 10−6 7.455× 10−9 8.864× 10−9 6.599× 10−6 1.172× 10−8 7.7× 10−8

rk4qp 1.381× 10−6 3.444× 10−9 3.468× 10−9 2.75× 10−6 7.424× 10−9 7.356× 10−9 6.638× 10−6 1.12× 10−8 1.13× 10−8

rkf45 2.129× 10−7 3.471× 10−9 3.466× 10−9 4.216× 10−7 7.379× 10−9 8.864× 10−9 1.023× 10−6 1.152× 10−8 7.685× 10−8

ab4 4.195× 10−4 3.768× 10−6 3.747× 10−8 5.5× 10−4 4.546× 10−6 4.976× 10−8 7.508× 10−4 4.96× 10−6 1.228× 10−7

dirac/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 3.284× 10−3 4.11× 10−8 3.874× 10−11 5.916× 10−3 6.747× 10−8 1.03× 10−10 4.282× 10−2 4.228× 10−7 6.462 × 10−10

rk4qp 4.241× 10−3 5.391× 10−8 2.022× 10−11 7.602× 10−3 8.783× 10−8 7.222× 10−11 5.61× 10−2 5.468× 10−7 6.104× 10−11

rkf45 1.621× 10−3 1.759× 10−8 7.666× 10−11 3. × 10−3 3.113× 10−8 6.779× 10−11 1.947× 10−2 2.051× 10−7 3.397 × 10−10

ab4 2.952× 10−1 1.09× 10−3 1.095× 10−5 6.553× 10−1 1.01× 10−3 1.016× 10−5 1.28 2.692× 10−3 2.755× 10−5

dirac/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 3.676× 10−6 1.685× 10−10 2.575× 10−10 7.051× 10−6 3.221× 10−10 8.182 × 10−10 1.722× 10−5 1.122× 10−9 6.378× 10−9

rk4qp 5.037× 10−6 1.86× 10−10 6.011× 10−11 9.665× 10−6 3.503× 10−10 8.565× 10−11 2.362× 10−5 8.024× 10−10 1.398× 10−10

rkf45 1.503× 10−6 3.749 × 10−11 2.449× 10−10 2.94× 10−6 3.258× 10−11 9.732 × 10−10 7.283× 10−6 3.389× 10−10 6.417× 10−9

ab4 5.565× 10−3 5.217× 10−5 5.223× 10−7 6.307× 10−3 5.578× 10−5 5.59× 10−7 8.02× 10−3 6.146× 10−5 6.204× 10−7
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double/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.001× 10−7 2.442× 10−11 1.786× 10−10 2.006× 10−7 6.527× 10−11 5.316× 10−10 5.291× 10−7 4.041× 10−10 1.666× 10−8

rk4qp 1.129× 10−7 9.596× 10−12 2.287× 10−12 2.256× 10−7 1.868× 10−11 6.062× 10−12 5.923× 10−7 4.655× 10−11 7.707× 10−11

rkf45 1.867× 10−8 1.009× 10−11 1.788× 10−10 3.843× 10−8 3.121× 10−11 5.324× 10−10 1.083× 10−7 3.049× 10−10 1.666× 10−8

ab4 4.271× 10−3 4.284× 10−5 4.284× 10−7 8.436× 10−3 8.463× 10−5 8.461× 10−7 2.093× 10−2 2.1× 10−4 2.099× 10−6

double/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.317× 10−6 1.381× 10−10 7.958× 10−11 2.595× 10−6 2.79× 10−10 2.274× 10−10 6.58× 10−6 1. × 10−9 1.58× 10−8

rk4qp 1.32× 10−6 1.312× 10−10 1.007× 10−11 2.602× 10−6 2.608× 10−10 1.522× 10−11 6.598× 10−6 6.569× 10−10 5.339× 10−11

rkf45 2.02× 10−7 1.81× 10−11 8.081× 10−11 3.981× 10−7 2.337× 10−11 2.324× 10−10 1.009× 10−6 2.204× 10−10 1.581× 10−8

ab4 3.715× 10−4 3.203× 10−6 3.206× 10−8 4.441× 10−4 3.416× 10−6 3.429× 10−8 6.49× 10−4 3.844× 10−6 5.351× 10−8

NoS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 2.405× 10−10 8.695× 10−11 8.286× 10−10 1.726× 10−10 1.418× 10−10 1.287× 10−9 1.282× 10−10 4.785× 10−10 4.865× 10−9

rk4qp 2.577× 10−10 3.684× 10−11 3.684× 10−11 1.815× 10−10 1.949× 10−11 1.949× 10−11 1.214× 10−10 9.323× 10−12 9.33× 10−12

rkf45 5.713× 10−11 8.667× 10−11 8.286× 10−10 4.106× 10−11 1.415× 10−10 1.287× 10−9 5.762× 10−11 4.79× 10−10 4.865× 10−9

ab4 1.217× 10−5 1.211× 10−7 1.46× 10−9 1.149× 10−5 1.143× 10−7 1.727× 10−9 1. × 10−5 9.939× 10−8 4.972× 10−9

NoS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.299× 10−6 1.335× 10−10 4.173× 10−11 2.578× 10−6 2.697× 10−10 5.083× 10−11 6.454× 10−6 6.209× 10−10 2.603× 10−10

rk4qp 1.3× 10−6 1.294× 10−10 1.311× 10−11 2.582× 10−6 2.607× 10−10 1.954× 10−11 6.462× 10−6 6.337× 10−10 4.847 × 10−11

rkf45 1.997× 10−7 2.053× 10−11 4.3× 10−11 3.963× 10−7 3.68× 10−11 5.154× 10−11 9.92× 10−7 1.46× 10−10 2.212× 10−10

ab4 9.795× 10−5 6.17× 10−7 6.166× 10−9 1.503× 10−4 6.476× 10−7 6.439× 10−9 3.12× 10−4 6.84× 10−7 6.546× 10−9

PureS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 4.753× 10−9 1.185× 10−10 2.224× 10−10 9.438× 10−9 2.965× 10−10 2.793× 10−10 2.631× 10−8 2.683× 10−10 1.294× 10−9

rk4qp 4.881× 10−9 2.739× 10−11 2.744× 10−11 9.722× 10−9 1.063× 10−11 1.104× 10−11 2.714× 10−8 1.619× 10−12 3.488× 10−12

rkf45 7.944× 10−10 3.156× 10−11 8.664× 10−10 1.693× 10−9 3.015× 10−11 2.611× 10−9 5.422× 10−9 1.172× 10−10 1.265× 10−9

ab4 7.725× 10−5 7.743× 10−7 7.677× 10−9 1.579× 10−4 1.583× 10−6 1.592× 10−8 4.003× 10−4 4.016× 10−6 3.879× 10−8

PureS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.467× 10−6 6.467× 10−6 6.467× 10−6 2.586× 10−6 2.586× 10−6 2.586× 10−6

rk4qp 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.467× 10−6 6.467× 10−6 6.467× 10−6 2.586× 10−6 2.586× 10−6 2.586× 10−6

rkf45 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.467× 10−6 6.467× 10−6 6.467× 10−6 2.586× 10−6 2.586× 10−6 2.586× 10−6

ab4 1.295× 10−5 1.295× 10−5 1.295× 10−5 6.467× 10−6 6.467× 10−6 6.467× 10−6 2.586× 10−6 2.586× 10−6 2.586× 10−6

B.4. Fourth order — errors for bn(t)

quad/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 2.847× 10−7 1.003× 10−9 1.022× 10−9 6.441× 10−7 1.373× 10−10 2.712× 10−9 2.228× 10−6 9.067× 10−10 1.857× 10−8

rk4qp 3.25× 10−7 1.003× 10−9 1.002× 10−9 7.313× 10−7 5.296× 10−11 2.053× 10−11 2.511× 10−6 1.454× 10−10 6.31× 10−11

rkf45 6.737× 10−8 1.002× 10−9 1.023× 10−9 1.667× 10−7 1.186× 10−10 2.718× 10−9 6.679× 10−7 8.814× 10−10 1.86× 10−8

ab4 3.512× 10−3 3.508× 10−5 3.505× 10−7 6.989× 10−3 6.989× 10−5 6.981× 10−7 1.747× 10−2 1.751× 10−4 1.749× 10−6

quad/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.348× 10−6 3.368× 10−9 3.399× 10−9 2.706× 10−6 7.313× 10−9 8.297× 10−9 6.593× 10−6 1.201× 10−8 7.663× 10−8

rk4qp 1.358× 10−6 3.369× 10−9 3.406× 10−9 2.724× 10−6 7.302× 10−9 7.283× 10−9 6.632× 10−6 1.119× 10−8 1.117× 10−8

rkf45 2.101× 10−7 3.413× 10−9 3.399× 10−9 4.185× 10−7 7.276× 10−9 8.305× 10−9 1.022× 10−6 1.175× 10−8 7.646× 10−8

ab4 4.187× 10−4 3.77× 10−6 3.745× 10−8 5.455× 10−4 4.51× 10−6 4.83× 10−8 7.542× 10−4 4.992× 10−6 1.231× 10−7
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dirac/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.164× 10−3 1.46× 10−8 1.849× 10−11 1.071× 10−2 1.202× 10−7 1.683× 10−10 6.202× 10−2 6.725× 10−7 9.511× 10−10

rk4qp 1.503× 10−3 1.915 × 10−8 1.413× 10−11 1.382 × 10−2 1.565× 10−7 1.287× 10−10 7.915× 10−2 8.697× 10−7 9.272× 10−11

rkf45 5.764× 10−4 6.248 × 10−9 3.149× 10−11 5.305× 10−3 5.547× 10−8 8.918× 10−11 3.248× 10−2 3.262× 10−7 3.574× 10−10

ab4 9.661× 10−2 3.876 × 10−4 3.889× 10−6 9.443 × 10−1 1.794× 10−3 1.809× 10−5 1.495 4.31× 10−3 4.382× 10−5

dirac/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 3.579× 10−6 1.693× 10−10 2.559× 10−10 7.044× 10−6 3.165× 10−10 8.138× 10−10 1.699× 10−5 1.126× 10−9 6.312× 10−9

rk4qp 4.905× 10−6 1.876× 10−10 6.095× 10−11 9.656× 10−6 3.43× 10−10 8.417× 10−11 2.33× 10−5 8.094× 10−10 1.479× 10−10

rkf45 1.464× 10−6 3.167× 10−11 2.43× 10−10 2.938× 10−6 3.728× 10−11 9.681× 10−10 7.185× 10−6 3.512× 10−10 6.348× 10−9

ab4 5.444× 10−3 5.106× 10−5 5.111× 10−7 6.308× 10−3 5.581× 10−5 5.592× 10−7 7.896× 10−3 6.046× 10−5 6.104× 10−7

double/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.001× 10−7 2.425× 10−11 1.776× 10−10 2.006× 10−7 6.516× 10−11 5.24× 10−10 5.287× 10−7 3.88× 10−10 1.59× 10−8

rk4qp 1.128× 10−7 9.553× 10−12 2.335× 10−12 2.255× 10−7 1.866× 10−11 6.009× 10−12 5.919× 10−7 4.644 × 10−11 7.897× 10−11

rkf45 1.867× 10−8 9.875× 10−12 1.779× 10−10 3.842× 10−8 3.104× 10−11 5.248× 10−10 1.083× 10−7 2.96× 10−10 1.589× 10−8

ab4 4.27× 10−3 4.283× 10−5 4.283 × 10−7 8.434× 10−3 8.461× 10−5 8.459× 10−7 2.091× 10−2 2.098× 10−4 2.098× 10−6

double/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.275× 10−6 1.357× 10−10 7.93× 10−11 2.61× 10−6 2.795× 10−10 2.291× 10−10 6.431× 10−6 9.859× 10−10 1.544× 10−8

rk4qp 1.278× 10−6 1.287× 10−10 8.07× 10−12 2.617× 10−6 2.611× 10−10 1.358× 10−11 6.448× 10−6 6.493× 10−10 4.824 × 10−11

rkf45 1.956× 10−7 1.569× 10−11 8.033× 10−11 4.003× 10−7 2.324× 10−11 2.334× 10−10 9.861× 10−7 2.212× 10−10 1.546× 10−8

ab4 3.616× 10−4 3.123× 10−6 3.126× 10−8 4.477× 10−4 3.446× 10−6 3.459 × 10−8 6.343× 10−4 3.762× 10−6 5.233× 10−8

NoS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 2.315× 10−10 8.416× 10−11 8.496× 10−10 1.709× 10−10 1.501× 10−10 1.363× 10−9 1.287× 10−10 4.976× 10−10 5.047× 10−9

rk4qp 2.47× 10−10 2.2× 10−11 2.201× 10−11 1.786× 10−10 1.828× 10−11 1.828 × 10−11 1.21× 10−10 1.335× 10−11 1.335× 10−11

rkf45 4.745× 10−11 8.395× 10−11 8.496× 10−10 4.034× 10−11 1.497× 10−10 1.363× 10−9 6.015× 10−11 4.979× 10−10 5.047× 10−9

ab4 1.246× 10−5 1.24× 10−7 1.511× 10−9 1.175× 10−5 1.168× 10−7 1.788× 10−9 1.017× 10−5 1.011× 10−7 5.151× 10−9

NoS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 1.282× 10−6 1.325 × 10−10 4.284× 10−11 2.566× 10−6 2.653× 10−10 4.116× 10−11 6.524× 10−6 6.385 × 10−10 2.428× 10−10

rk4qp 1.284× 10−6 1.278 × 10−10 9.143× 10−12 2.57× 10−6 2.546× 10−10 1.756× 10−11 6.532× 10−6 6.535 × 10−10 3.917× 10−11

rkf45 1.971× 10−7 1.87× 10−11 4.349× 10−11 3.946× 10−7 3.901× 10−11 4.469× 10−11 1.003× 10−6 1.359 × 10−10 2.087× 10−10

ab4 9.781× 10−5 6.202× 10−7 6.199× 10−9 1.487× 10−4 6.416× 10−7 6.377× 10−9 3.154× 10−4 6.868× 10−7 6.585× 10−9

PureS/Sol. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 4.752× 10−9 1.161× 10−10 2.201× 10−10 9.436× 10−9 2.965× 10−10 2.74× 10−10 2.63× 10−8 2.681× 10−10 1.292× 10−9

rk4qp 4.879× 10−9 1.034× 10−11 1.054× 10−11 9.72× 10−9 5.901× 10−12 7.241× 10−12 2.713× 10−8 2.156 × 10−12 1.005× 10−11

rkf45 7.937 × 10−10 1.935× 10−11 8.682× 10−10 1.692× 10−9 2.888× 10−11 2.609× 10−9 5.421× 10−9 1.172× 10−10 1.264× 10−9

ab4 7.724× 10−5 7.741× 10−7 7.675× 10−9 1.579× 10−4 1.583× 10−6 1.592× 10−8 4.002× 10−4 4.015× 10−6 3.878× 10−8

PureS/Disp. T = 1000 T = 2000 T = 5000

dT 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

rk4 2.589× 10−5 2.589× 10−5 2.589× 10−5 1.293 × 10−5 1.293× 10−5 1.293× 10−5 5.172× 10−6 5.172× 10−6 5.172× 10−6

rk4qp 2.589× 10−5 2.589× 10−5 2.589× 10−5 1.293 × 10−5 1.293× 10−5 1.293× 10−5 5.172× 10−6 5.172× 10−6 5.172× 10−6

rkf45 2.589× 10−5 2.589× 10−5 2.589× 10−5 1.293 × 10−5 1.293× 10−5 1.293× 10−5 5.172× 10−6 5.172× 10−6 5.172× 10−6

ab4 2.589× 10−5 2.589× 10−5 2.589× 10−5 1.294 × 10−5 1.293× 10−5 1.293× 10−5 5.173× 10−6 5.172× 10−6 5.172× 10−6
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