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Abstract— Idle time windows (ITWs) consist of one critical
trigger for various functions in green intelligent network man-
agement and traffic scheduling in mobile networks. In this paper,
we study the ITW prediction in mobile networks based on
network subscribers’ demand and mobility behaviors observed
by network operators. We first innovatively formulate the ITW
prediction into a regression problem with an ITW presence
confidence index that facilitates direct ITW detection and esti-
mation. Feature extraction on the demand and mobility history
is then proposed to capture the current trends of subscribers’
demand and mobility as well as to account for the periodicity
underlying subscribers’ demand and mobility patterns as exoge-
nous inputs. In light of feature engineering, a deep learning-
based ITW prediction model is proposed, which consists of
two components, namely the representation learning network
and the output network. The representation learning network
is aimed to learn effective patterns, whereas the output network
is designed to produce the desired ITW presence confidence index
and the ITW estimate by integrating the learned representation
and exogenous inputs. In this paper, a novel temporal graph
convolutional network (TGCN) for the representation learning
network is proposed to effectively capture the graph-based
spatiotemporal input features. The experiment results validate
the proposed direct ITW prediction formulation and demonstrate
the superiority of the proposed TGCN in terms of both ITW
detection and ITW estimation performance, which can achieve a
significant intersection-over-union (IoU) improvement compared
with baselines.

Index Terms— Machine learning, mobile communication, pre-
dictive models.
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I. INTRODUCTION

AS MOBILE phones (smartphones) have successfully
penetrated nearly every aspect of human life due to

the flourished mobile applications and services, massive data
collected at mobile devices and in mobile networks, termed
as mobile big data [1]–[3], has attracted remarkable attention
from various research communities and industries. At the
same time, with the virtualization and cloudization of network
functions in future cellular networks [4]–[6], the mobile net-
work architecture is undergoing a vast transformation facil-
itated by emerging technologies, such as software-defined
networking, network function virtualization, etc., to support
various traffic demands and to fulfill diverse quality-of-service
(QoS) requirements [7]. Mobile big data collected by mobile
network operators revealing user’ behavior patterns [8] can
significantly benefit the resource-constrained network automa-
tion, from network planning and network traffic monitoring to
network management in mobile networks.

In recent years, self-organizing networks (SON) is widely
studied to automatically manage and organize networks with
much less manual interventions so that network operational
expenditures (OPEX) and capital expenditures (CAPEX) can
both be reduced [9], [10]. Mobile data plays a critical role in
cellular SONs, providing system observability and predictabil-
ity for network management. In fact, one of the largest portions
of OPEX is the power consumption of cell towers [11]. To
switch cells off when traffic loads across the network are
extremely low [11], [12] is a potential approach to lower the
power consumption of mobile networks. However, cell towers
may not be able to switch on to meet the traffic demands in
real time. As a result, the cell on/off switching requires reliable
predictive knowledge of ITW for each cell in a mobile network
to reduce power consumption with subscribers’ quality of
experience ensured. In fact, ITWs in the network may vary
spatially, which needs to be carefully learned [13]. In addition,
the ITW prediction is not limited to the application of cell
switching on/off but can facilitate flexible traffic scheduling
and network management applications. For example, time-
dependent pricing [14] is one of the recently proposed solu-
tions to reduce the peak-to-average (PAR) by motivating delay-
tolerant traffic consumed in idle time windows so that the
network congestion could be alleviated during the peak time.
The dynamic pricing mechanism highly relies on the predictive
knowledge of the ITWs across the network, as traffics and
ITWs may vary temporally and spatially [15].
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In this paper, we propose to study the ITW prediction for
each cell in mobile networks, based on both the recent history
and periodic factors of mobile demands and subscribers’
aggregated mobility behaviors observed by mobile operators.
Prediction of the ITWs essentially amounts to answer the
following questions:

1) Will the ITW start within the prediction horizon in the
future?

2) When will the ITW start and how long will it last?

In fact, the first question is essentially a detection problem,
while the second question leads to a regression or localization
problem. The intuitive approach of ITW prediction is to first
perform a long-term demand forecasting for each cell in
the network, based on which ITWs in the future could be
extracted. However, the long-term demand forecasting is usu-
ally formulated as one-step-ahead prediction [13], [16]–[20]
and then generates long-term forecasts one-by-one sequen-
tially based on predicted results, leading to mediocre ITW
prediction due to error accumulation during forecasting. Fur-
thermore, to predict ITW based on long-term demand fore-
casting may be expensive, as it needs to generate far more
estimates than actually desired (i.e., start time and duration).

Differing from the aforementioned approaches, we propose
to directly predict ITW for each mobile network cell in this
paper. Specifically, the start time and duration within the
prediction horizon in the future will be directly estimated. To
the best of our knowledge, this paper is the first work on direct
ITW prediction. The ITW prediction is formulated as a regres-
sion problem with an ITW presence confidence index, which
simultaneously tackles the ITW detection problem (whether an
ITW will present or not) and the ITW estimation (where the
ITW is located within the prediction horizon). In fact, the novel
ITW presence confidence index proposed in this work can
effectively indicate the presence of ITWs in the forecasting
horizon, and also provide the flexibility and capability to
control the robustness of the prediction model in different
practical scenarios. In terms of feature engineering, we first
propose an innovative feature extraction scheme to obtain
multiple demands and mobility features from the raw signaling
datasets so that reliable ITW prediction can be facilitated. In
addition, the day-ahead and week-ahead periodic observations
will be regarded as exogenous inputs to account for the
strong temporal seasonality. Furthermore, the spatiotemporal
semivariogram demonstrates that mobile demand at the cell
level has a strong temporal relevancy yet relatively weak
spatial relevancy, where the spatial relevancy among cells is
modeled as a relevancy graph as in our previous work [19].

In light of the proposed feature engineering, exogenous
inputs, and desired prediction output, we propose a novel ITW
prediction model, consisting of the representation learning
network and the output network. The representation learning
network is aimed to learn the useful patterns from the recent
demand and mobility history for ITW prediction via effec-
tive graph sequence modeling. The output network is aimed
to combine the learned patterns via representation learning
networks and exogenous inputs to generate the desired ITW
presence confidence index and ITW location. In the literature,

two graph-sequence spatiotemporal models, GeoMAN [21]
and DCRNN [22] were recently proposed to deal with the
sequence-to-sequence environmental pollution prediction and
road traffic prediction, respectively. However, these two mod-
els were designed for strong spatial and strong temporal
relevancy, which may not be ideally suitable for the mobile
demand traffic with strong temporal relevancy yet relatively
weak spatial relevancy. As a result, we further propose a
novel prediction model, termed as temporal graph convolu-
tional networks (TGCN), based on the cutting-edge temporal
modeling [23] and graph modeling [24] techniques.

To effectively evaluate the performance of ITW estimation,
we propose to employ a metric called intersection-over-union
(IoU) borrowed from the object detection task in the field of
computer vision [25], to assess how well the predicted time
window overlaps with the ground truth. Experiment results
demonstrate that our proposed general ITW prediction model
can achieve a significant performance improvement compared
with baselines, and the proposed TGCN-based model can out-
perform the temporal convolutional networks (TCN) [23], long
short-term memory (LSTM) [26], and graph convolutional
LSTM (GCLSTM) [19]. The good prediction performance
suggests the validity of the proposed problem formulation
and feature engineering as well as the superiority of our
proposed TGCN model. The key contributions of this paper
are summarized as follows:

• Direct ITW prediction is proposed for the first time. It is
formulated as a regression problem with an ITW presence
confidence index, which can simultaneously tackle both
the ITW detection and estimation tasks.

• A feature extraction scheme is proposed to extract the
demand and mobility features from the raw signaling
dataset as well as the exogenous inputs to account for
the inherent characteristics of the demand and mobility
behaviors.

• A novel ITW prediction model consisting of represen-
tation learning network and output network is proposed
to account for both the spatiotemporal feature and the
exogenous inputs. In addition, a graph-sequence represen-
tation network model, TGCN, is proposed to characterize
both the spatial and temporal relevancy in subscribers’
demand and mobility behaviors to facilitate a good ITW
prediction.

• A cost function combining the cross entropy loss for
ITW prediction and the mean absolute error for ITW
estimation is proposed to effectively train the prediction
model. In addition, an evaluation metric, intersection-
over-union (IoU), is proposed to assess the performance
of the ITW estimation.

The rest of this paper is organized as follows. In Section II,
the dataset employed in this paper is first described and
then the direct ITW prediction problem is formulated.
In Section III, feature engineering with respect to the charac-
teristics of the demand and mobility behaviors of the network
will be discussed. In Section IV, the proposed prediction
model will be presented and discussed in detail. In Section V,
experiment results will be demonstrated. Finally, concluding
remarks will be made in Section VI.
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II. DATASET AND PROBLEM FORMULATION

In this section, we will first describe the signaling dataset
studied in this paper, based on which two semantic time series
from the perspective of cells (base stations) can be extracted
from the raw data, namely the demand time series and the
mobility time series. According to these two semantic time
series, the problem formulation of ITW prediction will be
discussed.

A. Studied Dataset

The signaling data is a typical example of control-plane data
collected from mobile networks [2], which is collected at the
mobility management entity of LTE networks. The signaling
dataset records every communication/location update event of
all active subscribers in a mobile network. Data fields of the
signaling data include 1) subscriber’s anonymized identifier,
2) time stamp (e.g., 20160101184312), 3) location coordinates
(i.e., the longitude and latitude of the base station), 4) event
type, and 5) cell type (i.e., small cell or macro cell). The
longitude and latitude coordinates where the base station of
each cell is located are accurate to 6 decimal places and
timestamps are accurate to seconds. In addition, the signaling
data logs event type as well as the direction of the event (e.g.,
initiating a call or being called). Compared with the commonly
used call detail record (CDR) data, the signaling data does not
record the duration information of voice services. However,
the signaling data further logs two types of location update
events in addition to the regular event types (calls or texts),
namely the regular location update and the periodic location
update. In cellular networks, location updating is a funda-
mental technique of idle mobile device mobility management.
The regular location updates are triggered by tracking area
crossing, while the periodic location update is prompted by a
timeout event when no event occurs for a subscriber within
a predefined time period. In the studied dataset, the time-out
interval is about 1 hour, which can guarantee that any active
subscriber in the mobile network has at least one observation
per hour in the dataset. In this datasets, around three millions
of subscribers are recorded. The time period of the studied
signaling data utilized in this case study is from Aug 1st,
2016 to Dec 19th, 2016. To understand subscribers’ behaviors
in urban areas, we extract around 700 macro cells covering
the main urban area of a city in China.

B. Demand and Mobility Time Series

According to the event type, user pseudo-ID, timestamp and
location information recorded in the studied signaling dataset,
one can extract two semantic time series for each cell in the
mobile network to understand the aggregated spatiotemporal
behaviors of subscribers, namely

• Demand Time Series. The demand time series can be
extracted by counting the number of communication
events occurring in a counting time window for a specific
cell; that is,

di = {· · · , dt−l,i, dt−l+1,i, · · · , dt−1,i, dt,i, · · · }; (1)

• Mobility Time Series. The mobility time series is obtained
by counting the number of unique subscribers observed
in a counting time window for a specific cell; that is,

mi = {· · · , mt−l,i, mt−l+1,i, · · · , mt−1,i, mt,i, · · · };
(2)

where subscripts i and t denote the i-th cell and the t-th
counting time window (i.e., [tΔ, (t + 1)Δ)), respectively, and
Δ denotes the counting time window length (Δ = 20 minutes
in this paper). The demand time series, counting voice and
text service events of each cell, can directly illustrate the
load of mobile networks both spatially and temporally, while
the mobility time series can capture the mobility behavior of
subscribers in an aggregated manner, shedding lights on the
crowd flow of network subscribers. Both mobility and demand
time series extracted from the studied signaling dataset can
lead to better understanding of mobile network subscribers.

Three demand and mobile time series examples of selected
cells located at different typical points of interest are demon-
strated in Fig. 1. The cells of business, entertainment, and
residence are located at the central business district (CBD),
zoo, and residential area, respectively. One can easily observe
that both the mobile time series and demand time series
are daily periodic in all three examples, while demands and
mobility in the business and the entertainment cells behave
differently during weekdays and weekends, which may be
regarded as weekly periodicity in both time series. In fact, both
the demand and the number of visited subscribers (mobility) of
the business-type cell clearly decline during weekends, while
the number of visited subscribers in the entertainment-type
cell increases, compared with the ones during weekdays. In
general, demands tend to increase as the number of visited
subscribers rises, but the relationship between the two is
nonlinear and depends on the cell type and the time within
a day. Two peaks can be clearly observed within a day for
both the demand and mobile time series, and the demands of
cells can drop to zero after midnight. As a result, one can
easily find that the ITWs typically occur in the early morning
in terms of the loads of each cell as illustrated by demand
time series, regardless of the mobility pattern shown by the
mobility time series.

C. Idle Time Window Prediction Problem Formulation

In this paper, we propose to predict the ITW in the near
future based on the features extracted from the demand and
mobility time series in recent history, where the definition of
ITWs is given in Definition 1.

Definition 1 (Idle Time Window): The idle time
window (ITW) of cell i at time t is represented as a
tuple, (St,i, Dt,i), indicating that a consecutive time period
during which demands fall below a predefined threshold ζi

within the prediction horizon H , i.e.,

St,i, Dt,i = argmax
S,D

D

s.t. di
t+l < ζi, ∀l ∈ [S, S + D)
1 ≤ S, D ≤ H
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Fig. 1. Mobility and demand time series of typical cells, including (a) business, (b) entertainment, and (c) residence.

where S and D denote the start time and duration of the ITW
within the time horizon [t+1, t+H ] in the future, respectively.

To predict the per-cell ITW, one needs to answer the
following questions:

1) Will an ITW present within the prediction horizon,
i.e., [t + 1, t + H ]?

2) When will the ITW start (S) and how long (D) will it
last?

In fact, the first question is essentially a binary classification or
detection problem to determine whether an ITW will present
within the future horizon H . The second one can be regarded
as a regression problem, which is to estimate the start time S
and the duration D for each cell, respectively.

Inspired by the object detection algorithm in the field of
computer vision [25], we formulate the ITW prediction as a
regression problem with a confidence index to simultaneously
account for both the ITW detection and the ITW regression
tasks, i.e.,

Ct,i, St,i, Dt,i = f(Xt, Et, A) (3)

where St,i = (St,i − 1)/H and Dt,i = Dt,i/H1 denote the
normalized start time and duration with respect to the horizon
H , respectively, when the ITW presents within the future
horizon H . In addition, Ct,i denotes the confidence index to
suggest the confidence that an ITW presents within the future
horizon. Hence, Ct,i, St,i, Dt,i ∈ [0, 1). In (3) and (5), Xt,
Et, and A represent the input features, the exogenous inputs
at time t, and the geospatial foreknowledge, respectively. And
f(·) represents the predictor or the mapping that is trainable
in a supervised manner based on extracted input-output pairs
from the raw data.

Furthermore, the presence of ITWs can be determined by
the confidence index Ct,i, i.e.,�

H0, Ct,i < τ

H1, Ct,i ≥ τ
, (4)

where H1 and H0 represent the presence and absence of ITWs,
respectively. And τ denotes the threshold for the confidence
index to determine the presence of ITWs. In this paper, we also
aim to simultaneously predict the ITWs for all cells across the

1Without confusion, St,i and Dt,i are employed to denote the start time
and duration variable and also their normalized ones.

network. As a result, the per-cell ITW prediction (3) could be
further rewritten as follows,

Ct, St, Dt = f(Xt, Et, A) (5)

where Ct = [Ct,1, · · · , Ct,N ]T , St = [St,1, · · · , St,N ]T , and
Dt = [Dt,1, · · · , Dt,N ]T . Based on the problem formulation
in (5), all components of ITW prediction will be thoroughly
discussed in next sections.

D. Combined Cost Function for Model Training

Although the value of all three outputs in our problem
formulation ranges between 0 and 1, the meanings underlying
these three outputs are different. In fact, the confidence index
Ct,i serves as a detection statistics to determine the presence
of ITWs, where St,i and Dt,i are to estimate where an ITW is
located. As a result, the loss of these outputs in training should
be specifically designed. Due to the underlying meaning of
confidence index, we employ the cross entropy loss for binary
classification (or detection) to train the model with respect to
the confidence index output, i.e.,

closs( �Ct,i, C̃t,i) = C̃t,i log( �Ct,i)+(1−C̃t,i) log(1− �Ct,i) (6)

where �Ct,i and C̃t,i denote estimated confidence index Ct,i

and its ground truth, respectively. As the true value of C̃t,i is
either 1 or 0, the cross entropy loss function could be reduced
to

closs( �Ct,i, C̃t,i) =

�
log( �Ct,i) C̃t,i = 1
log(1 − �Ct,i) C̃t,i = 0

(7)

With respect to the estimation of ITW start time and duration,
the absolute error is employed to evaluate the estimates as
follows,

bloss(�St,i, S̃t,i, �Dt,i, D̃t,i) = |�St,i − S̃t,i|+| �Dt,i−D̃t,i| (8)

Accordingly, a cost function combining the above two loss
functions is employed for model training as follows,

cost =
1

T × B

�
t

�
i

�
closs

� �Ct,i, C̃t,i

�

+ λ × �

�
bloss

��St,i, S̃t,i, �Dt,i, D̃t,i

�	

(9)

where �[·] is an indicator function to let the cost function
only consider the start time and duration estimation when
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an ITW presents. In addition, a weight hyperparameter λ
is further employed to help the cost function emphasize the
model trained on the start time and duration prediction when
an ITW exists.

III. FEATURE AND FOREKNOWLEDGE ENGINEERING

A. Input Features Xt

As ITWs are directly defined based on demand time series
as shown in Definition 1, the trend of demands in each cell
captured by the demand time series should be a key feature
for the ITW prediction. In addition, the mobility time series
(2), describing the number of subscribers observed by each
cell within a counting time window, contains the information
of aggregated crowd mobility behavior trend in the network.
As a result, a series of demand and mobility observation of
each cell should be regarded as features to predict the ITWs,
i.e.,

Xdm
t,i =

�
dt−L+1,i dt−L+2,i · · · dt,i

mt−L+1,i mt−L+2,i · · · mt,i

�
, (10)

where L denotes the length of recent history considered
for ITW prediction. According to the characteristics of the
signaling data, the mobility time series can only observe
active subscribers with communication demands or location
updates. However, the counting time window (20 minutes)
is much smaller than the periodical location update interval
(60 minutes). Hence, the mobility time series may not be able
to capture all subscribers attached to cells within one counting
window, as inactive subscribers might stay in the same cell
after a location update but unobserved at time t.

In this paper, we propose an innovative feature extraction
scheme to largely characterize the aggregated subscriber’s
mobility in each cell. Let U1h

t,i denote a subscriber set of cell i

in a one-hour time window W 1h
t , i.e., W 1h

t = [(t− 2)Δ, (t +
1)Δ) based on 20-minute counting windows employed in this
paper. We then propose to extract the following semantic
feature time series based on the subscriber set U1h

t,i and its
one-step past U1h

t−1,i as follows,

• Arriving δm,+
t,i : The new arrival subscriber number is

defined as the number of subscribers that are only
observed in the counting time window t but not present
in its one-step past subscriber set U1h

t−1,i, that is

δm,+
t,i =



U1h
t,i − U1h

t−1,i



 .

Thus, the demand δd,+
t,i generated by the newly arrived

subscribers U1h
t,i − U1h

t−1,i can also be extracted in the
counting time window [tΔ, (t + 1)Δ).

• Staying δm,=
t,i : The subscribers observed in both sets, U1h

t,i

and U1h
t−1,i, are assumed to be the subscribers staying at

cell i in the past one-hour time window, that is

δm,=
t,i =



U1h
t,i ∩ U1h

t−1,i



 .

• Departing δm,−
t,i : The subscribers observed only in one-

step ahead set U1h
t−1,i, but do not appear in current

subscriber set U1h
t,i , that is

δm,−
t,i =



U1h
t−1,i − U1h

t,i



 .

Fig. 2. Features, exogenous inputs and relevancy graph for ITW prediction
at time t.

Here, the operation | · | denotes the set cardinality. Clearly,
δm,+
t,i , δm,=

t,i , δm,−
t,i , δd,+

t,i ≥ 0. Accordingly, each cell could
provide multiple features for its ITW prediction based on
above operations on subscriber sets as follows,

Xdiff
t,i =

⎡
⎢⎢⎢⎣
δm,+
t−L+1,i δm,+

t−L+2,i · · · δm,+
t,i

δm,=
t−L+1,i δm,=

t−L+2,i · · · δm,=
t,i

δm,−
t−L+1,i δm,−

t−L+2,i · · · δm,−
t,i

δd,+
t−L+1,i δd,+

t−L+2,i · · · δd,+
t,i

⎤
⎥⎥⎥⎦ . (11)

Similar to our previous work on mobile demand
forecasting [19], we also add the one-day ahead and
7-day ahead demand observations as features in order to
capture both the daily periodic and weekly periodic effects as
observed in Fig. 1, i.e.,

X
period
t,i =

�
dt−L+1−nd,i dt−L+2−nd,i · · · dt−nd,i

dt−L+1−7nd,i dt−L+2−7nd,i · · · dt−7nd,i

�
(12)

where nd denotes the number of observations in one day (i.e.,
nd = 72). In this paper, we take periodic demands to predict
ITWs, while only recent mobility information is considered
for ITW prediction.

In summary, the input features for the ITW prediction of
cell i at time t can be expressed by stacking Xdm

t,i , Xdiff
t,i , and

Xperiod
t,i as follow,

Xt,i =
�
(Xdm

t,i )T , (Xperiod
t,i )T , (Xdiff

t,i )T
	T

. (13)

By stacking Xt,i of all cells in the network, one can easily
obtain a three-dimensional tensor,

Xt ∈ RN×L×8,

each axis of which represents cells, temporal sequence, and
features, respectively, as shown in Fig. 2. The one-day plot of
the input features Xt is shown in Fig. 3, in which subscriber
movement can be rarely observed at the early morning from
3 am to 6 am by both δm,+

t,i and δm,−
t,i . Also, the quantity

(δm,+
t,i − δm,−

t,i ) is positive from 6 am to 9 am, meaning that
subscribers move into this cell in this interval. The quantity
(δm,+

t,i − δm,−
t,i ) is negative from 5 pm to 8 pm, indicating

that subscribers move out from this cell during this interval.
Hence, time series δm,+

t,i and δm,−
t,i can effectively capture the

movement of subscribers.
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Fig. 3. One-day plot of Xt,i at the cell corresponding to Fig. 1(a): demand
(dt,i), dem_p (δd,+

t,i ), mobility (mt,i), mob_p (δm,+
t,i ), mob_e (δm,=

t,i ),

mob_m (δm,−
t,i ).

B. Exogenous Inputs Et

As shown in Fig. 1, it can be clearly observed that both
demands and mobility are daily periodic and weekly periodic.
As a result, both the one-day-ahead and the 7-day ahead
ITWs of each cell at the corresponding time point could
provide valuable information to guide the ITW predictor to
obtain more accurate estimates. In fact, the information of
the one-day ahead and 7-day ahead ITWs in each cell can
serve as relatively good starting point for ITW estimation,
which will be employed as baselines in comparison with
our proposed predictors. Hence, the information of the one-
day and 7-day ahead ITWs in each cell at time t will be
regarded as exogenous inputs to our proposed predictors,
i.e.,

Et = [Et,1, Et,2, . . . , Et,N ]T ∈ RN×4, (14)

where Et,i = [St−nd,i Dt−nd,i St−7nd,i Dt−7nd,i]T .

C. Geospatial Modeling via Graph A

Based on the spatiotemporal semivariogram analysis of the
demand time series across the network as in our previous
work [19], it can be concluded as shown in Fig. 4 that the
demand relevancy between two cells declines when their
spatial distance increases. Hence, we employ the relevancy
graph as in [19] to capture the spatial relevancy between cells
across the network. The adjacency matrix A of the dependency
graph can be obtained based on the spatial distance between
cells as follows,

Aij =

�
1, dist(si, sj) ≤ η

0, otherwise
, (15)

where si denotes the geolocation of cell i, and η is the distance
threshold, that is a hyperparameter that could be tuned. We set
η = 2 km in this paper. In fact, the threshold suggests that
any two cells whose distance is beyond the threshold will be
considered irrelevant. Such graph modeling could successfully
make the cell relevancy sparse (from N2 to

�
i,j Ai,j). As a

result, each cell could be regarded as a vertex in the spatial

Fig. 4. Spatiotemporal semivariogram analysis on demand time series.

Fig. 5. ITW prediction model.

dependency graph and the input Xt,i is viewed as the signal
observed at node i of the graph at time t.

IV. ITW PREDICTION MODEL

To predict the ITW for all cells in the network at each time
t, a deep learning based ITW prediction model is proposed
to account for the inherited structure of input features Xt

and exogenous features Et as well as the spatial relevancy
foreknowledge encoded in the graph adjacency matrix A. As
demonstrated previously, the input features take the form of
a three-dimensional tensor with both the temporal and spatial
structures as shown in Fig. 3. The proposed ITW predition
model comprises two main components as shown in Fig. 5,
namely

• Representation Learning Network: The representation
learning network is aimed to learn the high-level repre-
sentations from the spatiotemporal input tensor Xt with
the foreknowledge provided by the relevancy graph A,

• Output Network: The output network is responsible to
integrate the learned high-level representations (obtained
from the representation learning network) and the exoge-
nous inputs Et to generate the potential ITWs with
confidence index (i.e., [Ct, St, Dt]).
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In this paper, we employ the feedforward neural networks
(FNN) as the output network structure. As for the repre-
sentation learning network, a temporal graph convolutional
network (TGCN) is proposed to account for the spatiotemporal
structure of the input features Xt and to incorporate the
spatial relevancy preknowledge A. In the proposed TGCN,
we innovatively integrate the temporal convolutional networks
(TCN) [23] and graph convolutional network (GCN) [24] into
a spatiotemporal model. It is worth noting that we propose to
use exactly the same network (the same network architecture
and network parameters) at each cell in the network to predict
their respective ITWs, as the powerful prediction model could
simultaneously learn the representations of all cells in a mobile
network.

A. Representation Learning Network

To learn the high-level representations from the input fea-
tures Xt, both the sequence and graph structures in Xt need to
be sophisticatedly modeled, to prevent the overall prediction
model from overfitting. As a result, we will discuss both the
sequence and graph modeling for representation learning as
follows.

A1. Temporal Modeling
In this paper, we propose to employ the temporal convolutional
network (TCN) to model the temporal structure of input Xt in
our proposed representation learning network, which has been
demonstrated as a good generic temporal (sequence) modeling
architecture in [23].

The TCN comprises two key operations, namely the dilated
casual convolution (DC-Conv) and the residual connection,
both of which are aimed to deal with the training difficulty
issue of very deep networks in different manners and discussed
as follows.

Dilated Casual Convolution (DC-Conv): The dilated casual
convolution operation takes the form as follows,

y(t) = (Z ∗d F )(t) =
k−1�
i=0

fi × zt−d∗i (16)

where Z = [z1, z2, · · · , zL] denotes a sequence of temporal
signals, each of which zi is a vector signal. And F =
[f0, · · · , fk−1] represents a trainable filter with size k, each
tap of which fi is also a vector with the same size as zi,
as shown in Fig. 6(a). Thus, the output of a 1-D convolution
is Y = [yi, · · · , yF ], where F denotes the number of filters.
As illustrated in (16), the DC-Conv operation is different from
the conventional 1-D convolution operation in terms of two
important concepts, namely causality and dilation:

• Causality: The causality is a fundamental requirement for
temporal signal processing, which prevents the leakage of
future information to the past. In other words, the current
signal is completely dependent on its past but not relies
on its future.

• Dilation: The dilation is to relax the consecutiveness
restriction in convolution operations, i.e., fi × zt−d∗i,
in the DC-Conv operation as shown in (16), where
d denote the dilation factor. That is, the conventional

Fig. 6. An example of dilated casual convolution: a) 1-D convolution with
d = 1 and k = 2, b) conventional convolution receptive field (RF) of a
three-layer network with d = 1 and k = 2, c) dilated convolution receptive
field (RF) of a three-layer network d = 2j−1 and k = 2.

one-dimensional convolution is a special case of dilated
convolution with d = 1.

The advantage of dilation is to enable a deep network to
look back history of inputs much faster than that of the
conventional 1-D convolution as shown in Fig. 6 [23], [27],
as the dilation factor d is designed to grow exponentially with
respect to the depth of the network. Accordingly, the DC-Conv
networks with exponential dilation factor could achieve the
same receptive field as the conventional 1-D convolution
without a very deep network structure.

Residual Connection: The residual connection is to add a
path bypassing some layers in a very deep network as shown
in Fig. 7, which has become a prominent architecture in deep
learning [28]. The mapping enabled by the residual path could
be expressed as follows,

y = Activation(M(x)) = Activation(F(x) + x) (17)

where M(·) denotes the underlying mapping, while F(·)
denotes the actual mapping to be learned in training. In (17),
it can be observed that the term “residual” originates from the
mapping F actually learning the residual between M(x) and
x, i.e., F(x) = M(x)−x, rather than the underlying mapping
M(x). It is demonstrated in [29] that the residual connection
would lead to the easy training of very deep networks with
high accuracy gain, compared with the counterpart without
the residual connection. With the residual shortcuts, the entire
neural network could be formed in terms of blocks [23], each
of which consists of DC-Conv layers and residual connection
parallelly coupled as shown in Fig. 7. It is worth noting that
two DC convolution layers share the same dilation factor in
one TCN block. In addition, zero padding is employed to
ensure the same sequence length in both the input and the
output of TCN blocks.

A2. Spatiotemporal Modeling:
TCN blocks are employed to account for the temporal under-
lying structure of the input Xt. However, the spatial relevancy
among cells encoded by graph adjacency matrix A is not
yet touched so far. In our previous work [19], the graph
convolutional networks (GCN) has been demonstrated that it
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Fig. 7. Representation learning network: temporal graph convolutional
network (TGCN).

can successfully capture the spatial relevancy on the task of
mobile demand forecasting. In this work, we propose to further
employ the concept beneath GCN combined with TCN blocks
as discussed previously, to introduce the proposed TGCN block
that can account for both the temporal and spatial structures
of the input.

The approximated graph convolution operation proposed by
Kipf and Welling [24] takes the form as follows,

y = g
(1)
θ (�L) � Z = �D− 1

2 �A �D− 1
2 Ztheta, (18)

where �A = I + A ∈ RN×N and �D is a diagonal matrix,�Dii =
�

j
�Aij . And Z ∈ RN×F is the node-based input

matrix, each row of which is the feature vector of each node
in the graph, while theta denotes the graph filter. In (18),
it can be observed that the approximated graph convolution is
essentially to first filter the feature of each node independently
(i.e., zitheta, where zi is a row vector representing the feature
vector of node i), and the output of each node by the graph
convolution (18) is the average of the filtered results among
itself and its neighbors as follow,

yi =
1

|Ni|
�
j∈Ni

zitheta, (19)

where Ni denote the neighbor set of node i including itself.
In this paper, this operation is termed as graph average.

As a result, we propose to incorporate the graph convolution
into the TCN block, to create a model that can simultaneously
capture both the temporal and the spatial underlying structure
of the input, termed as temporal graph convolutional networks
(TGCN). The TGCN block is to add the graph average
operation in the midst of two dilated casual convolution layers
in TCN blocks as shown in Fig. 7. Let Hj−1 ∈ RN×L×Fj−1

denote the input of j-th TGCN block. The first DC-Conv
layer in TGCN blocks will filter the input Hj−1 along the
temporal axis cell-by-cell and generate Hj,1 ∈ RN×L×Fj after
activation function. The output Hj,1 will be further inputted
to graph average based on the sparsity information provided
by the graph adjacency �A as follows,

Hj,2
i =

1
|Ni|

�
n∈Ni

Hj,1
n , (20)

TABLE I

NOTATION

where Hj,2
i ∈ RL×Fj denotes the output of node i after

graph average operation and tensor Hj,2 ∈ RN×L×Fj can be
obtained by stacking Hj,2

i across all the nodes in the graph.
And Hj,2

i will be further fed to the second DC-Conv layer
and then combined with the result via the residual connection
to generate the final output of TGCN Hj . Details of TGCN
is shown in Fig. 7.

B. Prediction Model Assembly

As observed in Fig. 4, both demand and mobility time series
are more relevant to its own history than the one from its
neighbors. As a result, the proposed representation learning
network first emphasizes the temporal relevancy by employing
three TCN blocks to learn the high-level representation from
inputs as shown in Fig 7. In addition, one TGCN block is
introduced as the first block in the representation network to
embed the graph information in the proposed prediction model
so that the spatial relevancy among cells could be accounted
for by the proposed ITW prediction model.

The output network is a two-layer full-connection forward
neural networks, in which the rectifier (ReLu) function is
employed as the activation function in the input and hidden
layers. In addition, we employ sigmoid function as activation
functions in the final layer, as the value of the desired outputs
(Ct, St, and Dt) is bounded between zero and one. In addition,
it is worth noting that the output of representation learning
network will be flattened cell-by-cell (i.e., the output will be
formatted from RN×L×F4 into RN×Ff , where Ff = L×F4).
And the output layer will generate the final result also in a
cell-by-cell manner. Details of the proposed predictive model
architecture are illustrated by Fig. 7.

V. EXPERIMENTS RESULTS

In this section, we validate the proposed problem for-
mulation on cell ITW prediction and also compare the
proposed temporal graph convolutional network (TGCN)
with other sequence and sequence-graph models, namely
long short-term memory (LSTM) [30], temporal convolu-
tional networks (TCN) [23], and graph-convolutional LSTM
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Fig. 8. (a) Training and (b) validation comparisons in terms of designed cost and epochs.

TABLE II

TGCN, TCN, LSTM, AND GCLSTM SPECIFICATIONS

(GCLSTM) [19]. The GCLSTM model in our previous work
is an intuitive extension of the classic convolutional LSTM
(convLSTM) [31] from grid-like spatiotemporal data to graph-
based spatiotemporal data. The output network among com-
pared models, including TGCN, TCN, LSTM, and GCLSTM,
is kept the same as shown in Fig. 5 (one 32-unit hidden
layer), while the specifications of their representation learn-
ing networks are detailed in Table II. It is easily observed
in Table II that the total trainable parameters are designed
to be similar for fair comparisons. In addition, two baselines
are also employed to validate the problem formulation and
the performance of the proposed predictive model, namely the
baseline-Y and baseline-W, whose performances are shown
in Table III. Specifically, the baseline-Y is to directly use the
time window at the same time but one-day before as the ITW
estimate, while baseline-W is to use the time window of one-
week before. These two baselines are chosen based on the
fact that both the demand and mobility time series are daily
periodic and weekly periodic.

A. Model Training

All experiments in this paper are carried out by the PyTorch
deep learning framework [32]. In all experiments, the training-
validation data are cleaned data extracted from the previously
discussed data starting from Aug. 1st, 2016 to Nov. 30th, 2016,
while the test data is extracted from Dec. 4th to Dec. 19th. The
training and validation datasets are uniform-randomly selected
from the entire train-validation data with the 95% and 5%
of total samples, respectively. The length of history for ITW
prediction is 6 or equivalently 2 hours, while the future horizon

H is 18 or equivalently 6 hours. In this paper, we employ the
combine cost function as stated in (9) to train all the compared
models. The weight λ for ITW estimation in the cost function
(9) is set to be 5.

Before training, all the features and inputs are first nor-
malized by their mean and standard deviation. The dropout
technique [33] is employed as the regularization during train-
ing the proposed predictive model. The optimization method
utilized for training is Adam [34], which generally has a
relatively better performance compared with the commonly
used stochastic gradient descent (SGD) algorithm. In addition,
weight normalization [35] is added to every DC-Conv layer in
the TCN and TGCN to expedite the training speed as in [23].
Fig. 8 shows the loss of both the training dataset and validation
dataset during training versus epochs, which suggests that the
prediction model converge easily. It could be observed that the
LSTM and GCLSTM could easily outperform the convolution-
based models (TCN and TGCN) in terms of training loss,
however, the validation loss suggests that the lower training
loss does not necessarily lead to a good generalization. In
fact, the LSTM and GCLSTM easily overfit starting around
the 60th and 100th epoch, respectively.

B. Testing: Performance Evaluation

In this paper, two tasks are simultaneously fulfilled by our
proposed ITW prediction model, namely ITW detection and
ITW estimation. As a result, both the ITW detection and
ITW estimation performance will be evaluated differently as
follows.

ITW Detection The receiver operating characteristics (RoC)
and precision-recall curves are typically employed to assess
the performance of detection or binary classification problems.
The RoC curve consists of two core metrics, namely detection
and false alarm. In fact, the detection results could be catego-
rized into the following 4 types (as shown in the table below),
based on which the evaluation metrics (detection/recall, false
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TABLE III

ITW PREDICTION TEST RESULTS

alarm, and precision) are defined as follows,

Detection/Recall =
True Positive

True Positive + False Negative
,

Precision =
True Positive

True Positive + False Positive
,

False Alarm =
False Positive

False Positive + True Negative
. (21)

The F1 score is essentially the harmonic average of the
recall and precision as follows,

F1 = 2 × Precision × Recall
Precision + Recall

. (22)

Based on our proposed prediction model, one can obtain the
RoC and precision-recall curves by adjusting the confidence
threshold τ in the decision rule as stated in (4). Fig. 9
shows the RoC and precision-recall performance of all the
compared models. It could be observed that all the models
could well detect ITW in future horizons in terms of both
RoC and precision-recall metrics, which verifies the validness
of the proposed problem formulation, feature engineering, and
prediction model structure. In addition, the proposed TGCN
can outperform others from the perspective of both the RoC
and precision-recall.

ITW Estimation
As ITW start time and duration estimation are only mean-
ingful when an ITW is predicted to appear, ITW estimation
performance should be evaluated in terms of ITW detection.
Hence, the ITW estimation performance will be evaluated in
terms of three cases, namely ITW Presence, ITW Detected,

and ITW Correctly Detected. The ITW Presence case is to
assess the model on all the samples that ITW truly presents,
regardless of whether the prediction model can detect the
ITW, which is aimed to evaluate the overall performance that
how a prediction model can estimate ITW. The ITW detected
case is to test the model on the samples that a prediction
model claims ITW presence in the future horizon H , aimed
to evaluate a prediction model in practice, while the ITW
correctly detected is to assess a model on the samples that
correctly identified. As the detection of all the models is not
perfect, false alarms will appear in the ITW detected cases,
which will be penalized when calculating IoU detailed later.
In these three cases, the employed evaluation metrics on ITW
estimation will be discussed as follows.

• Accuracy. As both the state time and duration of ITWs as
defined in Definition 1 are discretized, the accuracy is to
assess how many start time and duration can be exactly
predicted by each predictor as follows,

sacc. =
#(S̃ = Ŝ)

total #
or dacc. =

#(D̃ = D̂)
total #

(23)

• Error. The absoluble error between ground truth and a
predict is also employed as assessment metrics, i.e., |Ŝ−
S̃| or |D̂X−D̃|. To analysis the prediction error, we will
show mean absolute error (MAE) of both the start time
and the duration estimates.

• Intersection over Union (IoU). The previous two metrics
only assess the start time and duration prediction indepen-
dently, but not the quality of the overall ITW estimation.
In this paper, we borrow the intersection-over-union (IoU)
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Fig. 9. (a) RoC and (b) precision-recall comparison.

Fig. 10. IoU comparison, where line legend “-detected”, “-truth”, and “corr” denote the ITW detected case, ITW presence case, ITW correctly detected case,
respectively. (a) ITW detected: IoU. (b) ITW correctly detected: IoU.

metric from the object detection task from the field of
computer vision [25] to assess how well the predicted
time window overlaps with the ground truth as follows,

Intersection = min{Ŝ + D̂, S̃ + D̃} − max{Ŝ, S̃}
Union = max{Ŝ + D̂, S̃ + D̃} − min{Ŝ, S̃}

IoU = Intersection/Union (24)

Among the above three evaluation metrics, the IoU shall be
the most important one, as it directly reflects how a predictor
performs in terms of window estimation. As for false alarms,
the IoU will be directly set to be zero as the penalty, since the
IoU metric when ITW is absent is meaningless.

Fig. 10 shows the IoU comparisons in three cases discussed
previously in terms of confidence threshold τ . It is intuitive
that the IoU of all compared prediction models does not
vary with the confidence threshold, which is also shown as
a horizontal line in the figure. In fact, the tradeoff between
precision and recall could be demonstrated by adjusting the
confidence threshold. That is, the high confidence threshold
suggests the high precision performance but relatively low
recall performance and vice versa. As a result, one can
clearly observe that the IoU in both the ITW detected and

ITW correctly detected cases can grow with the increase
of confidence threshold. Such phenomenon demonstrates the
flexibility of our proposed prediction model facilitated by
the designed confidence index. The IoU can reach 90%
even in the ITW detected case when the confidence thresh-
old is high. Compared with other representation learning
models, our proposed TGCN model is the best in terms
of IoU.

Fig. 11 illustrates the ITW estimation performance in terms
of start time and duration accuracy and MAE. It can be
observed that the accuracy and MAE have the similar pattern
as IoU performance for each compared prediction model. In
Table III, all the metrics discussed previously of all com-
pared prediction models are compared with baselines. The
confidence threshold for each prediction model is selected
based on its optimal F1 score in Table III. It can be observed
that the proposed prediction model can have about 10%
IoU improvement compared with two baselines employed
(as shown by IoU in ITW presence case). By relaxing the
detection performance to be the same level as the baselines
via adjusting the confidence threshold, the IoU performance
can be further improved according to the relationship between
IoU and confidence threshold as shown in Fig. 10.
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Fig. 11. Accuracy and MAE comparisons of ITW estimation, where line legend “-detected”, “-truth”, and “corr” denote the ITW detected case, ITW presence
case, ITW correctly detected case, respectively. (a) ITW detected: start accuracy. (b) ITW detected: start MAE. (c) ITW correctly detected: start accuracy.
(d) ITW correctly detected: start MAE.

C. Discussion
The experiment results discussed previously have shown

the validness and effectiveness of our proposed feature engi-
neering scheme, ITW prediction model network structure, and
temporal-graph convolutional networks. In fact, ITW can be
well predicted by one-day or one-week ahead observations
at the same time, due to the strong seasonality exhibited in
mobile demand time series across the network. In this paper,
our proposed prediction model can effectively learn the pattern
from recent history via representation learning network and
project a better ITW detection and estimation by taking the
periodic observations as exogenous inputs.

In the proposed ITW prediction model, the ITW existence
confidence index plays an important role, as it not only
indicates the confidence of ITW presence during the model
inference, but also helps eliminate the negative impact of ITW
non-presence samples on the ITW estimation performance
during the model training. In fact, such ITW estimation
performance enhancement during model training is facilitated
by the indicator function for ITW presence in the designed cost
function (9) for model training as well as its tunable weight
hyperparameter λ emphasizing ITW starting time and duration
estimation. In addition, the confidence index threshold can
be further employed to control the tradeoff between the

recall performance and the IoU performance (or the precision
performance) of the predictor as shown in Figs. 10 and 11. In
such a manner, our proposed model is flexible and can fulfill
different robustness requirements in practice.

As for representation learning models, both the TCN and
LSTM can effectively learn useful patterns for ITW prediction
as demonstrated by the experiment results discussed previ-
ously. In addition, the spatial modeling by graph averaging
employed in TGCN can further improve the ITW predic-
tion, compared with the one by TCN and LSTM. However,
due to the strong individual temporal relevancy of mobile
demand time series—semivariogram is much smaller at 0
spatial distance as shown in Fig. 4—the overwhelming spatial
modeling may lead to a deteriorated prediction performance.
This is the reason why the GCLSTM has a worse perfor-
mance compared with LSTM, where GCLSTM employs the
graph averaging operation (19) in both two layers. In fact,
TCGN employs one TGCN block (Fig. 7) involving the graph
averaging operation (19) with other TCN blocks for temporal
modeling, which could effectively capture both the spatial and
temporal characteristics. Since the TGCN is similar to TCN
yet with one additional graph averaging operation, the TGCN
inherits the advantages and limitation of TCN. The advantages
and disadvantages of TCN compared with LSTM has been
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thoroughly discussed in [23] in terms of model training and
inference. Overall, the proposed TGCN model demonstrates its
superiority by experiment results by properly capturing both
the spatial and temporal patterns.

VI. CONCLUSIONS

In this paper, we proposed to directly predict the idle
time window based on subscribers’ demand and mobility
in mobile networks. A novel feature extraction scheme has
been discussed to capture current trends of demand and
mobility as well as the exogenous inputs accounting for the
periodicity inherited in subscribers’ demands. By modeling
the spatial relevancy among cells as a graph, an ITW predic-
tion model consisting of the representation learning network
and the output network has been proposed, in which the
temporal graph convolutional networks (TGCN) was further
proposed to learn the high-level spatiotemporal patterns for
the ITW prediction. Experiment results validated the effec-
tiveness of the proposed idle time window prediction for-
mulation and demonstrated the superiority of the proposed
TGCN.
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