
Probabilistic Engineering Mechanics 53 (2018) 116–125

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Stochastic response determination and optimization of a class of nonlinear
electromechanical energy harvesters: A Wiener path integral approach

Ioannis Petromichelakis, Apostolos F. Psaros, Ioannis A. Kougioumtzoglou *
Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th St, New York, NY 10027, United States

A R T I C L E I N F O

Keywords:
Energy harvesting
Path integral
Stochastic dynamics
Nonlinear system
Optimization

A B S T R A C T

A methodology based on the Wiener path integral technique (WPI) is developed for stochastic response
determination and optimization of a class of nonlinear electromechanical energy harvesters. To this aim, first, the
WPI technique is extended to address the particular form of the coupled electromechanical governing equations,
which possess a singular diffusionmatrix. Specifically, a constrained variational problem is formulated and solved
for determining the joint response probability density function (PDF) of the nonlinear energy harvesters. This
is done either by resorting to a Lagrange multipliers approach, or by utilizing the nullspace of the constraint
equation. Next, the herein extended WPI technique is coupled with an appropriate optimization algorithm for
determining optimal energy harvester parameters. It is shown that due to the relatively high accuracy exhibited
in determining the joint response PDF, the WPI technique is particularly well-suited for constrained optimization
problems, where the constraint refers to low probability events (e.g. probabilities of failure). In this regard,
the WPI technique outperforms significantly an alternative statistical linearization solution treatment commonly
utilized in the literature, which fails to capture even basic features of the response PDF. This inadequacy of
statistical linearization becomes even more prevalent in cases of nonlinear harvesters with asymmetric potentials,
where the response PDF deviates significantly from the Gaussian. Several numerical examples are included,
while comparisons with pertinent Monte Carlo simulation data demonstrate the robustness and reliability of the
methodology.

1. Introduction

Vibratory energy harvesters [1–3] have flourished in recent years
as an alternative to common energy sources such as batteries. The
rationale behind energy harvesters is that compact and scalable elec-
tronic devices, such as wireless sensors [4,5] and medical implants [6],
are designed to function even with very low (sub-milliwatt) power
levels. In this regard, energy harvesters aim at converting any available
ambient energy into electricity, and eventually powering and enabling
the autonomous operation of such devices. In general, energy harvesters
exploit the ability of active materials (e.g. piezoelectric) and elec-
tromechanical coupling mechanisms to generate an electric potential in
response to external excitations. A cantilever beam with piezoelectric
patches attached near its clamped end is one of the most widely
used energy harvesters [3]. The beam is subjected to environmental
excitation causing large strains near the clamped end, thus producing
a voltage difference across the patches. Utilizing an appropriate circuit,
the electric potential is converted into current; therefore, mechanical
energy is transformed into electrical.

* Corresponding author.
E-mail address: ikougioum@columbia.edu (I.A. Kougioumtzoglou).

Typically, energy harvesters have been modeled in the literature as
linear systems. In this regard, they have been designed (e.g. by tuning
the first modal frequency of the beam) to achieve resonance with a given
a priori known deterministic (harmonic) excitation, and therefore maxi-
mize the energy output [7,8]. Of course, any kind of deviation of the ex-
citation from its pre-assumed harmonic nature decreases the resonance
phenomenon, and reduces the efficiency and energy output of the energy
harvester. Thus, to increase robustness and the coupling range between
the excitation and the harvester, researchers intentionally introduced
nonlinearities to the design of the energy harvester [9], (e.g., via
utilizing magnetic forces) resulting in a nonlinear restoring force. For
instance, in many applications the restoring force is proportional to
the cube of the deflection and such nonlinearities are well known to
increase the effective resonance bandwidth of the harvester, allowing for
more efficient energy transduction [3]. Further, most energy harvesters
operate in tandem with structures and civil infrastructure systems
(e.g. bridges), which are subjected to environmental excitations that
have random and even time-varying characteristics. Thus, researchers
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have recently realized the need for modeling the excitations as stochastic
processes [10–14].

Obviously, the ultimate goal is to design and optimize an energy
harvester for maximizing its energy output. The analysis and opti-
mization of most harvesters has been done by relying on steady-
state analyses under deterministic harmonic excitations [15]. Further,
the few papers that consider stochastic excitations almost exclusively
utilize the maximization of the average (mean) harvested power as
the optimization criterion [16–18]. However, the suitability of alter-
native performance measures was discussed in [19], and the need for
considering higher-order or peak energy (or voltage) statistics in the
optimization process was highlighted. In particular, knowledge of the
voltage peak statistics, or the probability the voltage remains above a
certain level, could be used to safeguard associated electronic circuits, or
for an enhanced utilization of the capacitors, respectively. Furthermore,
additional restrictions in terms of maximum displacement of the me-
chanical oscillator may be required in realistic situations due to limited
available space, or to avoid potential mechanical failures. In this regard,
constraints may often relate to the probability that the voltage and/or
the displacement stay within prescribed limits. Overall, incorporation
of such ‘‘extreme values’’ statistics as objectives and constraints in
the energy harvester optimization problem can lead, potentially, to
a more robust and efficient design than what is currently the norm
in the literature. A requirement for this, however, is the complete
stochastic characterization of the system response, i.e., knowledge of
the joint response transition probability density function (PDF), and not
only of the response mean and standard deviation. Thus, the standard
statistical linearization technique [20], which relies on a Gaussian
response assumption and has been widely employed to analyze and
optimize such energy harvesting systems [18,21,22], cannot possibly
be used when low probability events enter the optimization problem as
requirements and constraints.

In this paper, a methodology for stochastic response determination
and optimization of nonlinear energy harvesters is developed based
on the Wiener path integral technique (WPI) [23–26,26,27]. To this
aim, first, the WPI technique is extended to account for the singular
diffusion matrix related to the governing equations. In this regard, the
electrical equation is construed as a constraint, leading to a constrained
variational problem to be solved either by Lagrange multipliers [28],
or by nullspace [29] based approaches. Next, the herein extended WPI
technique, which exhibits significant accuracy in determining the joint
response PDF, is coupled with an appropriate optimization algorithm for
determining efficiently the optimal parameters of the energy harvester.
Several numerical examples are included, while comparisons with perti-
nent Monte Carlo simulation (MCS) data demonstrate the reliability and
robustness of the methodology. It is shown that, especially for optimiza-
tion problems with constraints referring to low probability events, the
WPI technique outperforms the standard statistical linearization, which
fails to capture basic features of the non-Gaussian response PDF, and in
many cases violates the constraints.

2. Nonlinear electromechanical energy harvester

2.1. Modeling aspects

One of the most widely studied electromechanical energy harvesters
is a cantilever beamwith piezoelectric patches attached near its clamped
ends. As discussed in detail in [3], the dynamics of such a system can be
approximated by the following general mathematical model of coupled
electromechanical equations, expressed in a non-dimensional form as

𝑥̈ + 2𝜁𝑥̇ +
𝑑𝑈 (𝑥)

𝑑𝑥
+ 𝜅2𝑦 = 𝑤(𝑡) (1a)

𝑦̇ + 𝛼𝑦 − 𝑥̇ = 0 (1b)

where 𝑥 denotes the response displacement and 𝑦 represents the induced
voltage in capacitative harvesters or the induced current in inductive

ones. Further, 𝜁 is the damping, 𝜅 is the coupling coefficient, 𝛼 (referred
to as the electrical constant in the following) is defined as the ratio
between the mechanical and electrical time constants of the harvester
(see [21]), and 𝑈 (𝑥) denotes the potential function. Its derivative 𝑑𝑈 (𝑥)

𝑑𝑥

represents the restoring force, which is nonlinear in general; see [3]
for more details. Also, 𝑤(𝑡) represents the external excitation, which is
modeled as a Gaussian white noise stochastic process. Details regarding
the non-dimensionalization of the governing equations can be found
in [21] and [30].

In modeling the restoring force 𝑑𝑈 (𝑥)

𝑑𝑥
, a wide range of nonlinear

behaviors can be captured by the 3rd order polynomial

𝑑𝑈 (𝑥)

𝑑𝑥
= 𝑥 + 𝜆𝑥2 + 𝛿𝑥3 (2)

where 𝜆 and 𝛿 control the intensity of the quadratic and cubic nonlinear
terms, respectively, while the coefficient corresponding to the linear
stiffness term is 1 as a result of the non-dimensionalization [21]. Further,
considering the behavior of the potential function 𝑈 (𝑥) that controls the
essential dynamics of the system, for 𝛿 ≥ 0, Eq. (2) leads to a bistable
asymmetric potential for 𝜆 > 2

√
𝛿, to a monostable asymmetric for

𝜆 ≤ 2
√
𝛿, and to monostable symmetric for 𝜆 = 0. As shown in [21],

for 𝜆 = 0 and Gaussian white noise excitation, the maximum mean
harvested power is achieved for 𝛿 = 0, or in other words, the linear
system is optimum; see also [31–34] for a relevant discussion on the
optimality of linear systems under certain conditions. Furthermore, ref-
erences [22] and [30] demonstrated that utilizing nonlinear oscillators
with symmetric bistable potentials, i.e., 𝜆 = 0 and a restoring force
of the form 𝑑𝑈 (𝑥)

𝑑𝑥
= −𝑥 + 𝛿𝑥3, can be beneficial for maximizing the

mean harvested power. In this regard, a question is posed naturally
regarding the performance, in terms of harvesting efficiency, of potential
functions with asymmetries, i.e., 𝜆 ≠ 0. This was addressed by He and
Daqaq [21], who studied monostable harvesters in the regime 0 ≤ 𝜆 ≤
2
√
𝛿, and determined their response statistics by employing a statistical

linearization approach. It was shown that the maximummean harvested
power is achieved for some 𝛿 > 0 and for the bistability limit 𝜆 = 2

√
𝛿.

In this paper, without loss of generality and taking into account the
aforementioned studies, the class of nonlinear energy harvesters with
restoring forces given by Eq. (2) with 𝜆 = 2

√
𝛿 and 𝛿 ≥ 0 is considered.

The excitation is modeled as a stationary Gaussian white noise process
with a constant power spectrum value 𝑆0, under which, the system
response vector process 𝒒 = [𝑥, 𝑥̇, 𝑦]𝑇 starts from initial conditions,
exhibits a transient phase, and eventually reaches stationarity where
the maximum response variance is observed. In this regard, the mean
harvested power 𝑃ℎ is proportional to the variance of the zero-mean
electrical quantity 𝑦 and is given by

𝑃ℎ = 𝛼E{𝑦2} (3)

where E{.} represents the expectation operator.

2.2. Optimization aspects

From an optimal design perspective, the objective is typically artic-
ulated in the literature as maximizing the mean stationary harvested
power for a given excitation intensity 𝑆0. This can be formulated as
an optimization problem in the set of parameters {𝜁, 𝜅, 𝛼, 𝛿} ⊆ R

4
++
,

where R++ denotes the set of positive real numbers. The complexity of
the problem can be further decreased by investigating the role of each
parameter 𝜁 , 𝜅 and 𝛼 in the dynamics of the system.

Specifically, it can be readily seen from Eqs. (1) and (3), that the
coupling coefficient 𝜅 has a monotonic effect on the harvested power.
The strongest the coupling between the mechanical and electrical
systems, the largest the variance of the electrical quantity 𝑦. As a result,
𝜅 should take the largest value possible, and thus, can be excluded
from the optimization problem. The parameter 𝜁 results from the non-
dimensionalization of the original equations (e.g. see [3]) and includes
the mass, damping and stiffness coefficients of the mechanical system.
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Therefore, it can be regarded as a scale parameter, which is considered
fixed because its value is dictated by physical constraints of the particu-
lar application. As a result, it is excluded from the optimization problem
as well.

On the other hand, the electrical constant 𝛼 appears to affect the
response quantity 𝑦 in a more complex manner than 𝜅 and 𝜁 . It can
be readily seen in Eq. (1) that, for small values of 𝛼, 𝑦̇ approaches 𝑥̇
and thus, the quantity of interest E{𝑦2} is controlled essentially by the
variance of the mechanical displacement 𝑥. Further, for large 𝛼, the
influence of 𝑦̇ becomes less significant rendering E{𝑦2} approximately
proportional to the variance of the mechanical velocity 𝑥̇ [35]. In
this regard, 𝛼 can be construed as a weighting factor, controlling the
correlation degree between 𝑦 and each of the response quantities 𝑥 and
𝑥̇. Therefore, it becomes evident that no apparent assumptions about
optimal 𝛼 values can be made. Accordingly, for the parameter vector
𝒛 = [𝛼, 𝛿] and for 𝜁 , 𝜅 and 𝑆0 fixed, the optimization problem can be
formulated as

argmax
𝒛∈𝑍

𝑃ℎ(𝒛) (4)

where 𝑍 ⊂ R
2
++

is an effective domain of parameter values.
In practice, it is often desirable to apply additional design criteria

that enforce constraints related to the probability that 𝑦 and/or 𝑥 stay
within prescribed limits. Such a constraint can take the general form
𝑃𝑓 < 𝜖, where the probability of failure 𝑃𝑓 is typically related to an
‘‘extreme event’’ characterized by a low probability of occurrence. For
instance, 𝑃𝑓 can be defined as the probability that either |𝑥| or |𝑦| exceed
some prescribed limit, i.e. 𝑃𝑓 = 𝑃 (|𝑥| > 𝑥𝑙𝑖𝑚𝑖𝑡 or |𝑦| > 𝑦𝑙𝑖𝑚𝑖𝑡). Taking such
an additional design criterion into account, the optimization problem in
Eq. (4) needs to be reformulated as

argmax
𝒛∈𝑍

𝑃ℎ(𝒛) s.t. 𝑃𝑓 (𝒛) ≤ 𝜖 (5)

Note, however, that a requirement for addressing this problem, is the
complete stochastic characterization of the system response, i.e., knowl-
edge of the joint response PDF, and not only of the response mean
and variance. To this aim, the WPI response determination technique is
extended and applied herein for addressing the constrained optimization
problem of Eq. (5). It is noted that the problem of Eq. (5) is significantly
more complex than the standard unconstrained problem of Eq. (4),
which is typically addressed in the literature.

3. Wiener path integral solution technique overview

3.1. Standard formulation

One of the recently developed promising techniques in stochastic
engineering dynamics relates to the concept of the Wiener path integral
(WPI) [23]. The technique exhibits not only relatively high accuracy
in determining the joint response PDF, but also significant versatility
as it can account for multi-degree-of-freedom systems with various
nonlinearity types [24], as well as for systems with fractional derivative
terms [27]. The essential aspects of the technique are delineated in
the present section by considering the general class of 𝑛-dimensional
randomly excited structural/mechanical systems whose dynamics is
described by

𝑫[𝒒(𝑡)] = 𝒘(𝑡) (6)

In Eq. (6), 𝑫[.] denotes a nonlinear differential operator, 𝒒 is the system
response, and 𝒘 is a white noise stochastic excitation vector process
with 𝐸[𝒘(𝑡1)𝒘(𝑡2)] = 𝑩𝛿(𝑡2 − 𝑡1); 𝛿(.) denotes the Dirac delta function
and 𝑩 is a deterministic coefficient matrix given by

𝑩 =

⎡⎢⎢⎣

2𝜋𝑆0 … 0

⋮ ⋱ ⋮

0 … 2𝜋𝑆0

⎤⎥⎥⎦
(7)

Next, relying on the mathematical framework of path integrals [36],
the transition PDF 𝑝(𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 |𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖) can be written as [24]

𝑝(𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 |𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖) = ∫{𝒒𝑖 ,𝒒̇𝑖 ,𝑡𝑖;𝒒𝑓 ,𝒒̇𝑓 ,𝑡𝑓 }𝑊 [𝒒(𝑡)][d𝒒(𝑡)] (8)

with {𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖} denoting the initial state and {𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 } the final state,
and 𝒒𝑖 = 𝒒(𝑡𝑖), 𝒒𝑓 = 𝒒(𝑡𝑓 ), 𝒒̇𝑖 = 𝒒̇(𝑡𝑖) and 𝒒̇𝑓 = 𝒒̇(𝑡𝑓 ). Eq. (8)
represents a functional integral over the space of all possible paths
{𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖; 𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 },𝑊 [𝒒(𝑡)] denotes the probability density functional
of the stochastic process in the path space and [d𝒒(𝑡)] is a functional
measure. Further, the probability density functional for the stochastic
vector process 𝒒(𝑡) pertaining to the system of Eq. (6) is defined as
(e.g., [24])

𝑊 [𝒒(𝑡)] = exp

(
−∫

𝑡𝑓

𝑡𝑖

 (𝒒, 𝒒̇, 𝒒̈) d𝑡

)
(9)

where  (𝒒, 𝒒̇, 𝒒̈) denotes the Lagrangian functional. As noted previously,
considering standard structural dynamical systems yields a differential
operator 𝑫[.] which contains up to second-order time derivatives of 𝒒
(inertia term). The corresponding Lagrangian functional is expressed
as [24]

(𝒒, 𝒒̇, 𝒒̈) = 1

2
𝑫[𝒒]𝑇𝑩−1𝑫[𝒒] (10)

Note that Eq. (9) can be loosely interpreted as the probability assigned
to each and every possible path starting from {𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖} and ending at
{𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 }.

Clearly, the largest contribution to the functional integral of Eq. (8)
comes from the trajectory 𝒒𝑐 (𝑡) for which the integral in the exponential
of Eq. (9) (also known as stochastic action) becomes as small as possible;
see [36] for instance. According to calculus of variations (e.g., [37,38])
this trajectory 𝒒𝑐 (𝑡) with fixed endpoints satisfies the extremality condi-
tion

𝛿 ∫
𝑡𝑓

𝑡𝑖

(𝒒, 𝒒̇, 𝒒̈)d𝑡 = 0 (11)

which leads to the Euler–Lagrange (E–L) equations

𝜕
𝜕𝑞𝑗

−
𝜕

𝜕𝑡

𝜕
𝜕𝑞̇𝑗

+
𝜕2

𝜕𝑡2
𝜕
𝜕𝑞𝑗

= 0, 𝑗 = 1,… , 𝑛 (12)

with the set of boundary conditions

𝑞𝑗 (𝑡𝑖) = 𝑞𝑗,𝑖 𝑞̇𝑗 (𝑡𝑖) = 𝑞̇𝑗,𝑖

𝑞𝑗 (𝑡𝑓 ) = 𝑞𝑗,𝑓 𝑞̇𝑗 (𝑡𝑓 ) = 𝑞̇𝑗,𝑓

𝑗 = 1,… , 𝑛 (13)

Next, solving Eqs. (12)–(13) yields the 𝑛-dimensional most probable
path, 𝒒𝑐 (𝑡), and thus, a single point of the system response transition
PDF can be determined as [24]

𝑝(𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 |𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖) ≈ 𝐶 exp

(
−∫

𝑡𝑓

𝑡𝑖

𝐿(𝒒𝑐 , 𝒒̇𝑐 , 𝒒̈𝑐 )d𝑡

)
(14)

In Eq. (14), the normalization constant 𝐶 can be computed by utilizing
the condition

∫
∞

−∞

…∫
∞

−∞

𝑝(𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 |𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖)d𝑥1,𝑓 d𝑥̇1,𝑓 …d𝑥𝑚,𝑓 d𝑥̇𝑚,𝑓 = 1 (15)

It can be readily seen by comparing Eqs. (8) and (14) that in the
approximation of Eq. (14) only one trajectory, i.e., the most probable
path 𝒒𝑐 (𝑡), is considered in evaluating the path integral of Eq. (8).
Regarding the degree of this approximation, direct comparisons of Eq.
(14) with pertinent MCS data related to various engineering dynamical
systems [24,27] have demonstrated satisfactory accuracy; see also [39].

Further, note that instead of directly solving the derived E–L equa-
tions (12)–(13), an alternative solution approach can be applied for
determining the most probable path 𝒒𝑐 (𝑡). Specifically, since 𝒒𝒄 is an
extremum for the functional

 (𝒒) = ∫
𝑡𝑓

𝑡𝑖

(𝒒, 𝒒̇, 𝒒̈)d𝑡, (16)
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calculus of variations rules suggest that a direct functional minimization
formulation can be applied, which can be readily coupled with a stan-
dard Rayleigh–Ritz solution approach (see [26,27,40]). In this regard,
𝒒 is approximated by

𝒒̂ = 𝝍 +𝑹𝒉 ≈ 𝒒. (17)

The function 𝝍(𝑡) is chosen so that it satisfies the boundary conditions,
while the trial functions 𝒉(𝑡) = [ℎ0, ℎ1,… , ℎ𝐿−1]

𝑇 should vanish at the
boundaries, i.e. 𝒉(𝑡𝑖) = 𝒉(𝑡𝑓 ) = 𝟎.𝑹 ∈ R

𝑛×𝐿 is a coefficient matrix, where
𝐿 is the chosen number of trial functions considered. Clearly, there is a
wide range of options for the choice of functions 𝝍 and 𝒉. In the ensuing
analysis, the Hermite interpolating polynomials

𝜓𝑗 (𝑡) =

3∑
𝑘=0

𝛼𝑗,𝑘𝑡
𝑘 (18)

are adopted, i.e., 𝝍 = [𝜓1, 𝜓2,… , 𝜓𝑛]
𝑇 , where the 𝑛 × 4 coefficients

𝛼𝑗,𝑘 are determined by the 𝑛 × 4 boundary conditions (13). For the
trial functions, the shifted Legendre polynomials given by the recursive
formula

𝑃𝑝+1(𝑡) =
2𝑝 + 1

𝑝 + 1

(
2𝑡 − 𝑡𝑖 − 𝑡𝑓

𝑡𝑓 − 𝑡𝑖

)
𝑃𝑝(𝑡) −

𝑝

𝑝 + 1
𝑃𝑝−1(𝑡), 𝑝 = 1, 2,… (19)

are employed, which are orthogonal in the interval [𝑡𝑖, 𝑡𝑓 ], with 𝑃0(𝑡) = 1;
and 𝑃1(𝑡) = (2𝑡 − 𝑡𝑖 − 𝑡𝑓 )∕(𝑡𝑓 − 𝑡𝑖). The trial functions take the form

ℎ𝑙(𝑡) = (𝑡 − 𝑡𝑖)
2(𝑡 − 𝑡𝑓 )

2𝑃𝑙(𝑡). (20)

A practical advantage of the Rayleigh–Ritz method is that the vari-
ational problem (functional minimization) degenerates to an ordinary
minimization problem of a function that depends on a finite number
of variables [38]. Specifically, the functional  (𝒒), dependent on the 𝑛
functions 𝒒(𝑡), is replaced by the function 𝐽 (𝑹), dependent on a finite
number of 𝑛 × 𝐿 coefficients 𝑹. Accordingly, the extremality condition
(11) is replaced by

𝜕𝐽 (𝑹)

𝜕𝑹
= 𝟎 (21)

which represents essentially a set of 𝑛𝐿 nonlinear equations for the
unknown coefficients (parameters) 𝑹. Once solved numerically, the
most probable path 𝒒𝒄 is determined via Eq. (17).

3.2. Computational aspects

Considering fixed initial conditions (𝒒𝑖, 𝒒̇𝑖) (i.e., system initially at
rest), both approaches, i.e. the E–L equations ((12)–(13)) and the
Rayleigh–Ritz solution scheme, yield a single point of the joint re-
sponse PDF via the solution of a deterministic boundary value problem
(BVP). According to a brute-force implementation of the WPI technique,
choosing a time instant 𝑡𝑓 large enough so that the response has
reached stationarity, an effective domain of values is considered for the
joint response PDF 𝑝(𝒒𝑓 , 𝒒̇𝑓 , 𝑡𝑓 |𝒒𝑖, 𝒒̇𝑖, 𝑡𝑖). Next, discretizing the effective
domain using𝑁 points in each dimension, the joint response PDF values
are obtained corresponding to the points of the mesh. Specifically, for
an 𝑛-DOF system with 2𝑛 stochastic dimensions (𝑛 displacements and 𝑛
velocities) the number of BVPs to be solved is 𝑁2𝑛. It is clear that the
computational cost becomes prohibitive for relatively high-dimensional
MDOF systems. However, efficient implementations, such as the one de-
veloped by Kougioumtzoglou et al. [25], can be utilized in conjunction
with theWPI technique. Specifically, employing a polynomial expansion
for the joint response PDF yields a number of BVPs to be solved equal
to the number of the expansion coefficients. This implementation has
been shown to follow approximately a power-law function of the form
∼ (2𝑛)𝑙∕𝑙! (where 𝑙 is the degree of the polynomial), which, depending
on the value of 𝑛, can be orders of magnitude smaller than 𝑁2𝑛 [25].

4. Extension of the Wiener path integral technique to account for
singular diffusion matrices: A constrained variational problem

Taking into account the form of Eq. (1), it can be readily seen that
a straightforward application of Eq. (10) is not possible, as it would
lead to a singular matrix 𝑩. Thus, a modification is required to the WPI
technique presented in Section 3 to account for the special form of Eq.
(1). In this regard, consider Eq. (1a) as an under-determined stochastic
differential equation (SDE) with 2 unknowns (𝑥 and 𝑦), excited by the
Gaussian white noise process 𝑤(𝑡). For this SDE, the Lagrangian can be
expressed as

(𝒒, 𝒒̇, 𝒒̈) = (𝑥, 𝑦, 𝑥̇, 𝑥̈) = 1

4𝜋𝑆0

[
𝑥̈ + 2𝜁𝑥̇ + 𝑥 + 2

√
𝛿𝑥2 + 𝛿𝑥3 + 𝜅2𝑦

]2

(22)

Clearly, considering Eq. (22) alone is inadequate, as the dynamics
described by Eq. (1b) have so far been neglected. To proceed, Eq. (1b)
is treated next as a constraint in the form

𝜙(𝒒, 𝒒̇) = 𝜙(𝑦, 𝑦̇, 𝑥̇) = 𝑦̇ + 𝛼𝑦 − 𝑥̇ = 0 (23)

Eq. (22) in conjunction with Eq. (23) lead to a constrained variational
problem, which is addressed in the following either by Lagrange multi-
pliers [41], or by nullspace [29] based approaches.

4.1. Lagrange multipliers

According to the Lagrange multipliers solution approach [28,38,41–
44], the function 𝒒(𝑡), for which the functional in Eq. (16) reaches
an extremum subject to the constraint of Eq. (23), satisfies the E–L
equations corresponding to the functional

 ∗ = ∫
𝑡𝑓

𝑡𝑖

[
𝜆0 + 𝜆(𝑡)𝜙

]
d𝑡 = ∫

𝑡𝑓

𝑡𝑖

∗d𝑡, (24)

where ∗ ∶= 𝜆0 + 𝜆(𝑡)𝜙, and 𝜆0 and 𝜆(𝑡) being appropriately chosen
scalar and function multipliers, respectively. The corresponding E–L
equations become

𝜕∗

𝜕𝑥
−
𝜕

𝜕𝑡

𝜕∗

𝜕𝑥̇
+
𝜕2

𝜕𝑡2
𝜕∗

𝜕𝑥̈
= 0 (25a)

𝜕∗

𝜕𝑦
−
𝜕

𝜕𝑡

𝜕∗

𝜕𝑦̇
+
𝜕2

𝜕𝑡

𝜕∗

𝜕𝑦̈
= 0 (25b)

together with the boundary conditions

𝑥(𝑡𝑖) = 𝑥𝑖, 𝑥̇(𝑡𝑖) = 𝑥̇𝑖, 𝑥(𝑡𝑓 ) = 𝑥𝑓 , 𝑥̇(𝑡𝑓 ) = 𝑥̇𝑓 (26a)

𝑦(𝑡𝑖) = 𝑦𝑖, 𝑦̇(𝑡𝑖) = 𝑥̇𝑖 − 𝛼𝑦𝑖, 𝑦(𝑡𝑓 ) = 𝑦𝑓 , 𝑦̇(𝑡𝑓 ) = 𝑥̇𝑓 − 𝛼𝑦𝑓 (26b)

Clearly, the boundary conditions for 𝑦̇(𝑡) in Eq. (26b) cannot be arbitrary,
and reflect the constraint relationship of Eq. (23).

The scalar 𝜆0, multiplying the original Lagrangian , in Eq. (24)
can take the value 0 or 1 [28]. Note that for 𝜆0 = 0, the influence of
 is eliminated, and the extremal ‘‘most probable path’’ is determined
solely by the constraint equation, without considering the effect of the
excitation. This solution is physically non-realizable and falls under the
category of abnormal extrema [41,43,45]. Thus, the case 𝜆0 = 1 is
considered in the following, which corresponds to the so-called normal
extremal solutions.

In this regard, for 𝜆0 = 1, 𝑥(𝑡), 𝑦(𝑡) and 𝜆(𝑡) can be found by
solving the two E–L equations (25), in conjunction with the constraint
Eq. (23) and with the boundary conditions of Eq. (26). Specifically,
employing a state variable representation yields a response vector in
the form [𝑥, 𝑥̇, 𝑥̈, 𝑥(3), 𝑦, 𝑦̇, 𝑦̈, 𝜆, 𝜆̇]𝑇 so that 9 boundary values are required
for the solution of the BVP. These are the 8 boundary conditions in
Eq. (26) together with an arbitrary [38] initial value 𝜆(0). It is noted
that since independent boundary conditions are provided for 𝑥, 𝑥̇ and
𝑦 only, the proposed WPI methodology yields the 3-variate joint PDF
𝑝(𝑥, 𝑥̇, 𝑦). According to Section 3.2, applying a brute force approach
and choosing a number of 𝑁 = 30 spatial discretization points per
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dimension, yields 303 = 27000 deterministic BVPs to be solved for
determining the response PDF 𝑝(𝑥, 𝑥̇, 𝑦). Alternatively, utilizing a 4th
order polynomial expansion for the PDF [25], the number of BVPs to be
solved is reduced drastically to only

(3+4
4

)
= 35; thus, rendering the WPI

technique computationally efficient.

4.2. Nullspace of constraint equations

An alternative solution approach, which takes advantage of the
linearity of the constraint Eq. (23) in terms of the variables 𝑥̇, 𝑦 and
𝑦̇, is delineated next. In this regard, adopting the Rayleigh–Ritz scheme
of Section 3, and utilizing the polynomial expansion 𝒒̂ = 𝝍 + 𝑹𝒉 for 𝒒
(see Eq. (17)), the optimization problem is restricted within the space
of solutions of 𝜙(𝒒̂, ̇̂𝒒) = 𝜙̂(𝑡) = 0.

Specifically, linearity of the constraint equation ensures that 𝜙̂(𝑡)
is a polynomial of degree 𝐿 + 4 in 𝑡 (see Eqs. (17) and (20)), with
coefficients linear in the 2𝐿 unknown expansion parameters 𝑹 ∈ R

2×𝐿.
Setting these polynomial coefficients equal to zero, yields a set of 𝐿 + 4

linear equations with 2𝐿 unknown variables. Of course, for any well-
posed constrained optimization problem, the number of independent
constraints is smaller than the dimension of 𝒒. For the herein concerned
problem, this yields 𝐿 + 4 < 2𝐿, which provides the lower bound
𝐿 > 4 for the number 𝐿 of Legendre polynomials used in the polynomial
expansion. Next, expressing the unknown parameters 𝑹 ∈ R

2×𝐿 as a
vector 𝒖 ∈ R

𝑝, where 𝑝 = 2𝐿, the aforementioned equations are cast as
a linear system in the form

𝑨𝒖 = 𝒃 (27)

where 𝑨 ∈ R
𝑠×𝑝, 𝒃 ∈ R

𝑠 and 𝑠 = 𝐿 + 4. This system is underdetermined
(since 𝐿 > 4), while 𝑨 might not have full row rank, i.e., 𝑟𝐴 ≤ 𝑠. For
instance, dependent rows can appear because some of the coefficients of
the polynomials 𝜙̂(𝑡) set to zero, might be zero anyway, leading to 0 = 0

equations.
It is now possible to restrict minimization of the objective function

𝐽 = 𝐽 (𝒖), where 𝒖 ∈ R
𝑝, to the set of solutions of Eq. (27) which lie

on a lower dimensional space of dimension 𝑝− 𝑟𝐴. To elaborate further,
consider solving one of the 𝑟𝐴 independent equations for one unknown
component of 𝒖 and substituting it into the rest 𝑟𝐴 − 1 equations and
into the objective function 𝐽 (𝒖). Repeating this process and eliminating
one equation and one unknown at every step, eventually decreases the
number of equations to 𝑝 − 𝑟𝐴, while also accounting implicitly for the
constraints. More rigorously, the vector space 𝑈 ⊆ R

𝑝 of solutions of the
system 𝑨𝒖 = 𝟎, can be fully described with the aid of a basis 𝑺 = [𝒔1 𝒔2
... 𝒔𝑝−𝑟𝐴] for the nullspace of 𝑨 [46] where 𝑺 ∈ R

𝑝×(𝑝−𝑟𝐴). In this regard,
any element 𝒖 ∈ 𝑈 can be represented by an element 𝒗 ∈ 𝑉 ⊆ R

𝑝−𝑟𝐴 as
𝒖 = 𝑺𝒗. Then the vector space 𝑈𝑏 ⊆ R

𝑝 of solutions of 𝑨𝒖 = 𝒃 can be
obtained as an affine transformation of 𝑈 [47]. More specifically, the
solutions 𝒖 ∈ 𝑈𝑏 of Eq. (27) can be represented as 𝒖 = 𝑺𝒗+ 𝒖𝑝 where 𝒖𝑝
is any particular solution of Eq. (27) [46,47]; see also [48]. It becomes
now possible to cast the original constrained optimization problem

argmin
𝒖∈R𝑝

𝐽 (𝒖) subject to 𝑨𝒖 = 𝒃 (28)

into the lower dimensional, unconstrained problem

argmin
𝒗∈R𝑝−𝑟𝐴

𝐽 (𝑺𝒗 + 𝒖𝑝) (29)

which is solved by applying the optimality conditions

𝜕𝐽 (𝑺𝒗 + 𝒖𝑝)

𝜕𝒗
= 𝟎 (30)

Note that the minimizer 𝒖∗ of Eq. (28) can be obtained by the minimizer
𝒗∗ of Eq. (29) as 𝒖∗ = 𝑺𝒗∗ + 𝒖𝑝. Clearly, solving numerically the
reformulated unconstrained problem of Eq. (29) is significantly more ef-
ficient computationally than addressing the corresponding constrained
problem of Eq. (28) [29]. This becomes particularly beneficial when
the approach is integrated with the WPI technique. It is emphasized,
of course, that such a treatment is possible due to the linearity of the
constraint equations. In a different, more general, case, the Lagrange
multipliers solution approach of Section 4.1 can be adopted.

5. Numerical examples

To demonstrate the efficiency and accuracy of the proposed tech-
nique for analyzing and optimizing energy harvesting systems, a mono-
stable asymmetric harvester (𝜆 = 2

√
𝛿, 𝛿 ≥ 0) described by Eqs. (1),

(2) is considered in this section. First, utilizing the herein extended
WPI technique of Section 4, the stationary joint response PDF 𝑝(𝑥, 𝑥̇, 𝑦)
is determined. The corresponding marginal PDFs are compared both
with pertinent MCS data, and with PDF estimates based on a statistical
linearization treatment [20]. It is shown that due to the Gaussian
response assumption, the standard statistical linearization implemen-
tation (which has been widely utilized for response analysis of energy
harvesters described by Eq. (1) [18,21,22]) cannot possibly determine
accurately the tails of the response PDFs. Thus, it cannot be used in
conjunction with optimization problems such as Eq. (5), where the con-
straint refers to low probability events. Next, optimal energy harvester
designs are obtained by using the aforementioned WPI technique in con-
junction with Eq. (3) as the objective function of a global optimization
algorithm, constrained via a prescribed probability of failure, as in Eq.
(5).

5.1. Energy harvester stochastic response analysis

5.1.1. Linear system
The linear system (𝛿 = 0), for which an exact solution exists

(i.e., Gaussian response PDF [11]), is considered first. In this regard,
the stationary marginal response PDFs for 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8,
𝛿 = 0 and 𝑆0 = 0.05 determined via the WPI technique are shown
in Fig. 1, and compared with the exact solution. It can be readily
seen that the WPI technique exhibits a high degree of accuracy, while
there is practically no difference between the results produced by the
Rayleigh–Ritz-nullspace (Section 4.2) and by the Lagrange multipliers
(Section 4.1) approaches. Thus, the Rayleigh–Ritz-nullspace approach
is utilized in the following examples, as it is computationally more
efficient.

For the chosen value of the electrical constant (𝛼 = 0.8), which
is neither too small (→ 0), nor too large (→ ∞), it is anticipated by
observing Eq. (1b), that the response of the electrical quantity 𝑦 is
correlated with both the mechanical displacement 𝑥 and velocity 𝑥̇, as
discussed in Section 2. Indeed, this is depicted in the joint PDFs 𝑝(𝑦, 𝑥)
and 𝑝(𝑦, 𝑥̇), shown in Figs. 2a and 2b, respectively.

Further, as the value of 𝛼 increases, 𝑦 is expected to become more
correlated with 𝑥̇ and less correlated with 𝑥 (see Eq. (1b)). Indeed, this
is depicted in Figs 3a and 3b, where the stationary joint response PDFs
𝑝(𝑦, 𝑥) and 𝑝(𝑦, 𝑥̇) are shown, respectively, for the energy harvester with
the same parameters as in Fig. 2, but with a larger electrical constant
𝛼 = 3.

5.1.2. Nonlinear system
The nonlinear energy harvester with mono-stable asymmetric po-

tential and parameters 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8, 𝛿 = 0.2 and
𝑆0 = 0.05 is considered next. The marginal stationary response PDFs of
this energy harvester are shown in Fig. 4, where the WPI based solutions
are compared both with pertinent MCS data, and with solutions obtained
by applying the statistical linearization method [20]. Clearly, because
of the fundamental assumption of a Gaussian response PDF, a standard
statistical linearization treatment fails to capture, not only the tails,
but also basic features of the response PDFs. Indeed, considering the
response PDF of 𝑥 in Fig. 4a, it is seen that while the WPI technique
exhibits a high degree of accuracy, the statistical linearization fails
to capture the asymmetric shape due to the 𝑥2 term in the nonlinear
restoring force of Eq. (2). Note that this inadequacy of statistical
linearization becomes significant from an optimization perspective as
well, especially when a constrained optimization problem such as the
one in Eq. (5) is considered. In particular, if maximizing E{𝑦2} is the
only objective to be taken into account as in Eq. (4), then statistical
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Fig. 1. Stationary marginal response PDFs of a linear energy harvester with 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8, 𝛿 = 0 and 𝑆0 = 0.05. Solid black line: Gaussian PDF — Exact
solution Dotted line with ‘‘x’’: WPI Rayleigh–Ritz-nullspace approach with 7 Legendre polynomials, Dotted line with ‘‘o’’: WPI E–L equations — Lagrange
multipliers approach.

Fig. 2. Stationary joint response PDFs of a linear energy harvester with 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8, 𝛿 = 0 and 𝑆0 = 0.05 determined by the WPI Rayleigh–Ritz-nullspace
approach with 7 Legendre polynomials.

Fig. 3. Stationary joint response PDFs of a linear energy harvester with 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 3.0, 𝛿 = 0 and 𝑆0 = 0.05 determined by the WPI Rayleigh–Ritz-nullspace
approach with 7 Legendre polynomials.

Fig. 4. Stationary marginal response PDFs of a nonlinear energy harvester with 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8, 𝛿 = 0.2 and 𝑆0 = 0.05. Solid gray line: MC — 10000
realizations, Solid black line: Statistical linearization, Dotted line with ‘‘x’’: WPI Rayleigh–Ritz-nullspace approach with 7 Legendre polynomials.

linearization could potentially provide with relatively accurate results

as suggested by the accuracy degree shown in Fig. 4b related to the

PDF of 𝑦. However, if a more sophisticated optimization strategy is

sought for, such as the one in Eq. (5) with a constraint of the form

𝑃𝑓 = 𝑃 (|𝑥| > 𝑥𝑙𝑖𝑚𝑖𝑡) < 𝜖, then satisfactory accuracy in estimating the tails
of the PDF of 𝑥 is obviously required. As clearly shown in Fig. 4a, this
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is achieved by the WPI technique, but not by a statistical linearization
treatment.

Further, the significant effect of nonlinearities on the stationary joint
response PDFs can be readily seen by comparing Fig. 5 with Fig. 2.

5.2. Energy harvester optimization with constraints

The constrained optimization problem of Eq. (5) is considered in this
section. For this problem, the objective function 𝑃ℎ(𝒛) with 𝒛 = [𝛼, 𝛿]𝑇 is
Eq. (3); thus, a procedure for calculating E{𝑦2} is required. Additionally,
accounting for the constraint that the probability of failure does not ex-
ceed a prescribed threshold 𝜖, requires knowledge of the joint response
PDF. In this regard, the extended WPI technique developed in Section 4
in conjunction with the Rayleigh–Ritz-nullspace approach of Section 4.2
is employed next. Comparisons with a statistical linearization treatment
are included as well, demonstrating the limitations and incapability of
statistical linearization to handle constraints related to low probability
events, as anticipated by examining Fig. 4a.

Two failure scenarios 𝑥 < 𝑥𝑙𝑖𝑚𝑖𝑡 and |𝑥| > 𝑥𝑙𝑖𝑚𝑖𝑡 are considered, and
the corresponding probabilities of failure are defined as

𝑃𝑓 = 𝑃 (𝑥 < 𝑥𝑙𝑖𝑚𝑖𝑡) = ∫
𝑥𝑙𝑖𝑚𝑖𝑡

−∞

𝑝𝑠(𝑥)d𝑥 (31)

𝑃𝑓 = 𝑃 (|𝑥| > 𝑥𝑙𝑖𝑚𝑖𝑡) = ∫
−𝑥𝑙𝑖𝑚𝑖𝑡

−∞

𝑝𝑠(𝑥)d𝑥 + ∫
∞

𝑥𝑙𝑖𝑚𝑖𝑡

𝑝𝑠(𝑥)d𝑥 (32)

respectively, where 𝑝𝑠(𝑥) is the stationary marginal PDF of the mechan-
ical displacement 𝑥. For the solution of the corresponding constrained
optimization problem (see Eq. (5)), a penalty approach is utilized. This
yields an unconstrained problem with the modified objective function
𝑃ℎ,𝜖(𝒛) = 1𝜖(𝒛)𝑃ℎ(𝒛) where 𝒛 = [𝛼, 𝛿]𝑇 and 1𝜖 is an indicator function
defined as

1𝜖(𝒛) =

{
0, 𝑃𝑓 (𝒛) ≥ 𝜖

1, otherwise
(33)

Taking into account that information regarding the gradient of
𝑃ℎ,𝜖(𝒛) is not available in general, the gradient-free Generalized Pattern
Search (GPS) optimization algorithm is utilized next [49]. It is noted
that the GPS algorithm was further extended in [50] to account for
bound constraints, while no assumptions about the differentiability and
continuity of the objective function are required [51].

First, the performance of the GPS algorithm is assessed by compar-
isons with brute-force full grid evaluations of the objective function
𝑃ℎ,𝜖(𝒛) by relying on statistical linearization. In this regard, a full grid
computation of 𝑃 𝑆𝐿

ℎ,𝜖
(𝛼, 𝛿) in the interval {𝛼, 𝛿} ⊂ [0.5, 1.5]×[0, 0.5] with a

mesh size of 0.007 and parameter values 𝜁 = 0.1, 𝜅 = 0.65 and 𝑆0 = 0.05,
is presented in Fig. 6, with the constraint 𝑃𝑓 = 𝑃 (𝑥 < −3.0) ≤ 10−2,
showing the existence of a global optimum point.

It can be readily seen that multiplication with 1𝜖 , introduces a dis-
continuity to the objective function. Convergence of the GPS algorithm,
however, does not assume continuity [51], and thus, the algorithm is
expected to exhibit satisfactory performance in this particular discontin-
uous optimization problem. To test the validity of the above argument,
the GPS algorithm is employed to solve the same problem and the
results presented in Fig. 7 exhibit practically the same accuracy as the
full grid computation. Note, however, that approximately only ∼0.5%
of the objective function evaluations used in the full grid computation
are required by the GPS algorithm, rendering the overall optimization
scheme computationally efficient.

Finally, the optimization results obtained by the WPI technique are
shown in Fig. 8, revealing the significant but anticipated difference
between the WPI and the linearization based optimal designs. This is
attributed primarily to the incapability of statistical linearization to
capture accurately the tails of the response PDF, which are related to
the constraint of Eq. (31). The above argument is corroborated further
by Table 1, where the WPI and linearization based optimal designs are
assessed by using MCS. In particular, the WPI based optimum design
yields a probability of failure of 0.00932, which is very close to the

Table 1
Assessment of the WPI and statistical linearization based optima using MCS with
50 000 realizations.

Constraint: 𝑃𝑓 = 𝑃 (𝑥 < −3.0) ≤ 10−2

WPI optimum Stat. Lin. optimum
(𝛼, 𝛿) = (0.9874, 0.0625) (𝛼, 𝛿) = (1.0580, 0.1907)

𝑃ℎ 0.16886 0.18530
𝑃𝑓 0.00998 0.00999

MCS

𝑃ℎ 0.17021 0.17731
𝑃𝑓 0.00932 0.03664

Table 2
Assessment of the WPI and statistical linearization based optima using MCS with
50 000 realizations.

Constraint: 𝑃𝑓 = 𝑃 (𝑥 < −2.0) ≤ 10−2

WPI optimum Stat. Lin. optimum
(𝛼, 𝛿) = (1.1121, 0.0310) (𝛼, 𝛿) = (1.1220, 0.1002)

𝑃ℎ 0.16572 0.17411
𝑃𝑓 0.00999 0.00999

MCS

𝑃ℎ 0.16926 0.17185
𝑃𝑓 0.00996 0.07382

prescribed threshold (10−2). On the other hand, the linearization based
optimum yields a probability of failure 𝑃𝑓 = 0.03664 that is significantly
larger than 10−2. Thus, the statistical linearization based optimal design
violates the imposed constraint, rendering the technique unsuitable for
handling low probability events.

Similar conclusions can be drawn if a more conservative failure
event, e.g. 𝑥 < −2.0 is considered. The optimal WPI and linearization
based designs are shown in Table 2, where it is observed that the optimal
𝛿 values are reduced compared to the values in Table 1. As anticipated,
this ‘‘stricter’’ constraint promotes a system behavior closer to linear.
Similarly as in Table 1, MCS data in Table 2 based on the optimal designs
demonstrate the relatively high accuracy degree of theWPI technique, as
well as the inadequacy of statistical linearization to satisfy the imposed
constraint.

As the nonlinearity magnitude 𝛿 increases, the asymmetry degree of
the marginal PDF of 𝑥 increases as well. Thus, the shapes of the left
and the right PDF tails become substantially different (see Fig. 4a). For
this reason, it is expected that statistical linearization, which assumes
a symmetric Gaussian response PDF, will perform poorly in cases of
constraints of Eq. (32) referring to both tails of the PDF. Indeed,
for 𝑥𝑙𝑖𝑚𝑖𝑡 = 2.0 in Eq. (32), the corresponding WPI and statistical
linearization based optimal designs are assessed by using MCS and the
results are shown in Table 3. It is observed, that due to the relatively
‘‘steep’’ right tail of the PDF of 𝑥, theWPI optimum designs for the failure
events 𝑥 < −2.0 and |𝑥| > 2.0 are identical, i.e. the probability 𝑃 (𝑥 > 2.0)

is zero. In the statistical linearization based optimization, however, the
two failure events lead to slightly different designs because the Gaussian
response PDF of 𝑥 is not steep enough at the right tail leading to
𝑃 (𝑥 > 2.0) > 0. In a similar manner as in the previous examples, the
statistical linearization based optimal design violates again the imposed
constraint.

6. Concluding remarks

A methodology based on the WPI technique has been developed
for determining the response of a class of nonlinear electromechanical
energy harvesters subject to Gaussian white noise excitation. In this
regard, the WPI technique [23–25] has been extended herein to account
for a singular diffusion matrix present in the governing equations.
Specifically, treating the coupled electromechanical equations as an
‘‘underdetermined’’ SDE in conjunction with a constraint equation has
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Fig. 5. Stationary joint response PDFs of a nonlinear energy harvester with 𝜁 = 0.1, 𝜅 = 0.65, 𝛼 = 0.8, 𝛿 = 0.2 and 𝑆0 = 0.05 obtained by the WPI Rayleigh–Ritz-
nullspace approach with 7 Legendre polynomials.

Fig. 6. Stationary mean harvested power 𝑃ℎ,𝜖 obtained by statistical linearization with constraint of the form of Eq. (31), and parameters 𝑥𝑙𝑖𝑚𝑖𝑡 = −3.0 and 𝜖 = 10−2. Full
grid computation with mesh size 0.007 required 10 296 objective function evaluations: (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = (1.0600, 0.1890), 𝑃 𝑆𝐿

ℎ,𝜖
(𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.1850 and 𝑃𝑓 (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.009864.

Fig. 7. Stationary mean harvested power 𝑃ℎ,𝜖 obtained by statistical linearization with constraint of the form of Eq. (31), and parameters 𝑥𝑙𝑖𝑚𝑖𝑡 = −3.0 and 𝜖 = 10−2.
GPS optimization required 164 objective function evaluations to converge: (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = (1.0580, 0.1907), 𝑃 𝑆𝐿

ℎ,𝜖
(𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.1853 and 𝑃𝑓 (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.009987.

Table 3
Assessment of the WPI and statistical linearization based optima using MCS with
50 000 realizations.

Constraint: 𝑃𝑓 = 𝑃 (|𝑥| > 2.0) ≤ 10−2

WPI optimum Stat. Lin. optimum
(𝛼, 𝛿) = (1.1121, 0.0310) (𝛼, 𝛿) = (1.1244, 0.0969)

𝑃ℎ 0.16572 0.17382
𝑃𝑓 0.00999 0.00999

MCS

𝑃ℎ 0.16926 0.17114
𝑃𝑓 0.00996 0.07072

yielded a constrained variational problem. This has been solved either

via a Lagrange multipliers approach, or by utilizing the nullspace of

the constraint equation. It has been shown that the WPI technique
exhibits satisfactory accuracy in determining the joint response PDF as
compared with pertinent MCS data, and significantly outperforms an
alternative statistical linearization treatment. Indeed, the inadequacy
of statistical linearization in capturing even the basic features of the
response PDF becomes more prevalent in nonlinear harvesters with
asymmetric potentials, where the response PDF deviates significantly
from the Gaussian.

Next, the herein extended WPI technique has been coupled with an
appropriate optimization algorithm for determining optimal parameters
for the energy harvester. In particular, a GPS algorithm [51] has been
employed, and has been shown to converge to the global optimum
even for the case of a discontinuous objective function. This appears
when a constrained optimization problem is considered with constraints
referring to probabilities of failure. For such cases, where relatively high
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Fig. 8. Stationary mean harvested power 𝑃ℎ,𝜖 obtained by WPI with constraint of the form of Eq. (31), and parameters 𝑥𝑙𝑖𝑚𝑖𝑡 = −3.0 and 𝜖 = 10−2. GPS optimization
required 144 objective function evaluations to converge: (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = (0.9874, 0.0625), 𝑃𝑊𝑃𝐼

ℎ,𝜖
(𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.1689 and 𝑃𝑓 (𝛼𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡) = 0.009981.

accuracy in determining the response PDF tails is required, optimization
based on statistical linearization yields, in general, either sub-optimal
solutions or solutions that violate the constraint.
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