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A novel approximate technique based on Wiener path integrals (WPIs) is developed for
determining, in a computationally efficient manner, the non-stationary joint response
probability density function (PDF) of nonlinear multi-degree-of-freedom dynamical sys-
tems. Specifically, appropriate multi-dimensional (time-dependent) global bases are con-
structed for approximating the non-stationary joint response PDF. In this regard, two
distinct approaches are pursued. The first employs expansions based on Kronecker prod-
ucts of bases (e.g., wavelets), while the second utilizes representations based on positive
definite functions. Next, the localization capabilities of the WPI technique are exploited
for determining PDF points in the joint space-time domain to be used for evaluating the
expansion coefficients at a relatively low computational cost. In contrast to earlier imple-
mentations of the WPI technique, the herein developed generalization and enhancement
circumvents computationally daunting brute-force discretizations of the time domain in
cases where the objective is to determine the complete time-dependent non-stationary
response PDF. Several numerical examples pertaining to diverse structural systems are
considered, including both single- and multi-degree-of-freedom nonlinear dynamical sys-
tems subject to non-stationary excitations, as well as a bending beam with a non-Gaussian
and non-homogeneous Young’s modulus. Comparisons with pertinent Monte Carlo simu-
lation data demonstrate the accuracy of the technique.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Problems involving a probabilistic description of excitation and media properties occur in abundance in engineering (e.g.,
[1,2]). Clearly, this increased sophistication in modeling, in conjunction with complex nonlinear behaviors, renders the
response analysis of many engineering systems a challenging task. In this regard, there is a wide range of solution techniques
developed over the past few decades in the field of stochastic engineering dynamics and mechanics (e.g., [3-9]). Neverthe-
less, solving in a computationally efficient manner high-dimensional nonlinear stochastic differential equations (SDEs) mod-
eling the system dynamics remains a persistent challenge.

Recently, a promising technique has

been developed for determining the stochastic response of nonlinear multi-

degree-of-freedom (MDOF) systems, which relates to the concept of the Wiener path integral (WPI) [10,11]. The notion of
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path integral, which generalizes integral calculus to functionals, was introduced by Wiener [12] and by Feynman [13], inde-
pendently, and has been an instrumental mathematical tool in the field of theoretical physics [14]. It is noted that the WPI
based technique developed by Kougioumtzoglou and co-workers exhibits significant versatility and can account even for
systems endowed with fractional derivative terms [15]. Furthermore, it has been extended for addressing certain one-
dimensional mechanics problems with random material/media properties [16], systems subject to non-white and non-
Gaussian stochastic processes [17], as well as a class of nonlinear electromechanical energy harvesters [18].

From a computational efficiency perspective, recent work by Kougioumtzoglou et al. [19] and by Psaros et al. [20] has
reduced drastically the computational cost of the standard numerical implementation of the technique by resorting to sparse
representations of the joint response probability density function (PDF) in conjunction with compressive sampling schemes.
Nevertheless, the above developments and implementations rely on time-invariant joint response PDF expansions, or in
other words, the objective is to determine the joint response PDF at a specific time instant. Although this localization capa-
bility can be considered as an advantage of the technique (for instance, the stationary response PDF can be determined
directly at a reduced cost, without necessarily obtaining the global solution first), in many cases the determination of the
complete time-dependent non-stationary joint response PDF is required (e.g., cases of evolutionary excitations [21]).
Addressing this challenge by discretizing the temporal dimension in a brute-force manner and applying the technique for
each and every time instant would render the numerical implementation computationally daunting. In this regard, the
objective of this paper relates to generalizing the WPI technique and further enhancing its computational efficiency by con-
structing time-dependent bases for determining the non-stationary response PDF directly, based on knowledge of relatively
few PDF points in the joint space-time domain.

Evaluating the PDF of a stochastic process given partial information is a typical problem in a wide range of research fields
[22,23]. In stochastic dynamics PDF expansions have been utilized for solving the Fokker-Planck (FPE) and the Backward Kol-
mogorov (BKE) equations [24,25], or other alternative equations governing the stochastic response of a dynamical system
[26]. Indicatively, PDF expansions have been coupled with weighted residual methodologies [27-30], where the approxi-
mate PDF is substituted into the FPE and the residual error is minimized; with moment closure schemes [31-35], which yield
a finite set of moment equations to be solved for approximating the response PDF; with finite element method direct numer-
ical solution schemes [36,37]; with discretized Chapman-Kolmogorov equation schemes propagating the response PDF in
short time steps [38-41]; and with solution schemes based on the maximum entropy principle [42,43]. Typical PDF expan-
sions and approximation schemes utilize truncated Gram-Charlier or Edgeworth series [31,32,25,27,30], Hermite or other
polynomials [33,29,36,44,41,35], Gaussian distributions with varying mean and variance [45], kernel density functions
[26] and B-splines or piecewise linear functions [38,40]. Further, McWilliam et al. [28] employed Shannon wavelets for
approximating the PDF within the context of the weighted residual method. Moreover, radial basis functions (RBFs) demon-
strated accurate results in the context of numerically solving the FPE [46,47].

In this paper an approximation scheme based on the WPI technique is developed for efficiently determining the non-
stationary joint response PDF of stochastically excited MDOF dynamical systems. To this aim, two distinct expansions are
proposed for the PDF; the first is based on Kronecker products of bases such as wavelets, and the second is based on positive
definite functions, which is a more general class of functions than RBFs. As a result, the WPI technique is generalized herein
to account explicitly for the time dimension in its formulation and implementation. The paper is organized as follows: in
Section 2 the mathematical formulation of the WPI technique is outlined, in Section 3 various approximation schemes are
developed, and in Section 4 three illustrative numerical examples demonstrate the reliability of the proposed technique.

2. Wiener Path Integral technique

In this section, the main theoretical and numerical aspects of the WPI technique are delineated for completeness. A more
detailed presentation can be found in [17].

2.1. Wiener Path Integral formalism

In general, a wide range of problems in engineering mechanics and dynamics can be described by stochastic equations of
the form

Fix|=f (1)

where F[] represents an arbitrary nonlinear differential operator; f denotes the external excitation; and x is the system
response to be determined. In the following, an MDOF nonlinear dynamical system with stochastic external excitation is con-
sidered in the form

Mx + Cx + Kx + g(x,x) = f(t) (2)
where x is the displacement vector process (X = [X1,...,Xs]"); M, C,K correspond to the m x m mass, damping and stiffness

matrices, respectively; g(x,x) denotes an arbitrary nonlinear vector function; and f(t) is, in general, a non-stationary, non-
white, and non-Gaussian vector process expressed as [4,5]

F(6) =D(6)&(t) 3)
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where D(t) is a diagonal matrix of deterministic time-modulating functions d;(t), j € {1,...,m}, and &(t) is given as the
response of the nonlinear filter equation
PE+QE+RE+u(E &) =w(t) (4)
where P,Q, R denote coefficient matrices; u(¢, &) is an arbitrary nonlinear vector function; and w(t) = [wy,...,wy]" is a
white noise stochastic vector process with the power spectrum matrix
So ... O
Sw=1]: " (5)
0 ... S

In passing, it is noted that the WPI technique, developed originally for Gaussian white noise excitation only [11], has been
recently extended by Psaros et al. [17] to address general non-white, non-Gaussian and non-stationary cases decribed by Egs.

(3)-(4). In particular, differentiating Eq. (2) and substituting into Eq. (4) yields the 4"-order SDE
AsXY + A3XD + AoR + A& + AoX + h(x, %, %, %)) = w(t) (6)
where
D 'M
—PD! [ 2DD'M + c} +QD'M
2

I
~

A4
As
—pp'[(2DD DD - l")D’])M —2DD'C + K]
+QD! ( —DPD'M + c) +RD'M
[(21)1) pD' l")D’])C - 2DD’1K]
+QD™! (—DD’lC + K> +RD'C
Ao =PD™' (21‘)1)*11')1)*1 - DD”)K
—QD'DD'K + RD'K

and
h(x,x,%x%) =PD 'g(x,x)
+(-2PD'DD™" + QD ) (%, %)
+[Pp " (2bD DD - DD ')
—QD'DD ! + RD’l]g(x,ic) +u(x,x,%,x0)
Notice that the differentiation of Eq. (2) yields time derivatives of order higher than 2 in Egs. (6)-(8); i.e., x® and x“ denot-

ing the 3™- and 4"-order derivatives of x(t), respectively.
Next, as shown in [17], the transition PDF p(xf,xf xf, D telxi, &, X, &)

i

ti) with {;, %%, ¢} the initial state and

{xf,xf,xf,xf ,tf} the final state can be written as

- - b
P(xf,xf,xf,xfltflxi.,xi,xi,xf),t,-) = /{ , Lo exp (/ L[x,%, % x3 ‘”}dt) x(t)] (9)
CA X; X;, x,x ik xf xf xf [f} t;

where the Lagrangian £[x, %, % x® x@] is given by

L[xx,% 59 xY] = 1 [A4x® + A3 + Ak + A1X + AoX + h (X, X, %, x(3))]T

2
x B [AgX® + AsX®) 4+ Aok + AR + AoX + h(x,%,%,x%))] (10)
where
278y 0
B- 1)

0 ... 275
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and DIx(t)] is a functional measure [17]. In Eq. (9) C{x,-,ki,}é,-,xgs), t,-;xf,kf,kf,xf(s), tf} denotes the set of all paths with initial

state {x,-,éc,-7ii7x}3)} at time t; and final state {xf72kf,.i&f7x}3)} at time t;.

The formal expression of the path integral in Eq. (9) is of little practical use as its analytical evaluation is highly challeng-
ing [14]. Therefore, an approximate approach is required. In this regard, the “most-probable path” approach (e.g., [10,14]) is
employed, according to which the largest contribution to the transition PDF of Eq. (9) comes from the path x.(t) that min-
imizes the integral in the exponential. In this regard, calculus of variations (e.g., [48]) dictates that the most probable path,
x.(t), satisfies the extremality condition

t
o‘/ L[Xe, X, %, %% xP]dt =0 (12)
t;

which yields the system of Euler-Lagrange (E-L) equations

oL 0oL 0P oL O 0L OO _o i1 m (13)
OXej Ot OXej Ot? OXey  OF axfj) oth (?X(:;)_ ) J=1,...,

together with 8 x m boundary conditions

Xej(ti) = X
Xcj(ti) = ;i
Xej(ti) = X;i
3y — 0
ey (1) =255 forj=1,....m (14)
Xej(tr) = Xif
Xej(ty) = Xig
Xej(ty) = Xy
x5 () =3

Next, solving the boundary value problem (BVP) of Egs. (13) and (14) yields the most probable path x.(t) (m-dimensional),
and the transition PDF from the initial state {x,-,k,-,ji',-,xf), ti} to the final state {xf7kf,kf7x}3)7 tf} is determined as

- A fr -
p (% &, %.%7) trlx, &, %, %7 ;) = Cexp <—/ E[xc,xc,xc,XE”,x(;”}dt) (15)
5
where the normalization constant C is evaluated based on the condition
/ . / p(Xf,Xf,kf7x}3), tr|%i, %;, %, X t,—)dxf dx =1 (16)
For the special case of time-modulated Gaussian white noise (i.e., &(t) = [&;, ..., &n]” being a white noise stochastic vector
process) Eq. (9) degenerates to
. -[f
p(xf,kf,tf|xi,ki,ti) :/ exp | — L'[x,k,k}dt D[X(t)] (17)
of i % iy Ap by Jt;
and Eq. (15) becomes
. . b o
P, & ty/%, %) = C exp f/ LR, e, X )dt (18)
5
where

L[x,% %) =1 (MX 4 Cx + Kx + g(x,%))' B

o ) (19)
X(MX + Cx + KX + g(x,X))
27Sod- (t) 0
B= : . : (20)
0 ... 2mSodA(t)

and x.(t) is the solution of the system of E-L equations
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oL 9 oc . 8_2 oL
axc_j ot (9).(5__,' ot? 85&@

=0, forj=1,...,m (21)

together with 4 x m boundary conditions

Xej(ti) = Xji
Xej(t) = X
ci(ti) =% forj=1,...,m (22)
Xej(tr) = Xif
Xej(tr) = Xig

Finally, the normalization constant C can be determined by utilizing the condition

/ / D% & by, %, ) dx, iy . Al = 1 (23)

It can be readily seen by comparing Eqs. (17) and (18) that in the approximation of Eq. (18) only a single trajectory, i.e.,
the most probable path x.(t), is considered in evaluating the path integral of Eq. (17). Nevertheless, direct comparisons of Eq.
(18) with pertinent MCS data related to various engineering dynamical systems have demonstrated a high degree of accu-
racy [15,17].

Further, considering fixed initial conditions (x;, %;) typically (i.e., system initially at rest), the solution of a functional min-
imization problem (i.e., Egs. (21)-(22)) for determining a single point of the joint response PDF is required. Utilizing a data
analysis perspective and terminology, this can be construed as obtaining joint response PDF measurements at pre-specified
sampling locations.

2.2. Numerical implementation aspects

In general, a numerical solution scheme needs to be implemented for the BVP of Eqgs. (21) and (22) (or of Egs. (13) and
(14) for non-white and non-Gaussian excitation). Without loss of generality and considering fixed initial conditions, the only
variables describing the PDF p(x, &, tr|x;, &;, t;) at a time instant t; are X; and &;. In this regard, dropping the subscript f for
simplicity and adopting a brute-force numerical solution approach, for each time instant t an effective domain of values is
considered for the joint response PDF p(x, %, t). Next, discretizing the effective domain using N; points in each dimension, the
joint response PDF values are obtained corresponding to the points of the mesh. More specifically, for an m-DOF system cor-
responding to 2m stochastic dimensions (m displacements and m velocities) the number of measurements required is N*".
These 2m stochastic dimensions will be referred to hereinafter as spatial dimensions. Clearly, the computational cost related
to a brute-force solution scheme implementation becomes prohibitive eventually, especially for high-dimensional systems.

To address the above computational challenge, Kougioumtzoglou et al. [19] employed a polynomial expansion for the log-
arithm of the joint response PDF; thus, the number of required PDF measurements becomes equal to the number of the
expansion coefficients. The rationale for selecting a polynomial expansion relates to the fact that in cases of linear systems
(i.e., g(x,x) = 0) the joint response PDF is Gaussian, or, in other words, the function log (p(x, %, t)) can be expressed exactly as
a second-order polynomial. In the general case, where g(x,x) = 0, p(x,x,t) can be construed as a “perturbation” (not neces-
sarily small) from the Gaussian PDF, and, thus, more monomials are required to enhance the approximation accuracy. The
resulting polynomial is, consequently, of higher order. Further, it was shown that the computational cost follows approxi-
mately a power-law function of the form ~ (2m)”*/i! (where / is the degree of the polynomial), which can be orders of mag-
nitude smaller than N*". Moreover, it has been recently shown by Psaros et al. [20] that a compressive sampling treatment in
conjunction with an appropriate optimization algorithm can further reduce drastically the required number of PDF measure-
ments (i.e., number of deterministic BVPs to be solved numerically).

Nevertheless, all the above enhancements in terms of computational efficiency of the WPI technique relate to determin-
ing the joint response PDF at a specific fixed final time instant t. In other words, in cases where the determination of the
complete time-dependent non-stationary response PDF is of interest, the procedure should be applied for each and every
time instant. Indicatively, the joint response PDF of a 10-DOF nonlinear dynamical system at a given time instant has been
obtained with only n; = 3,200 measurements as shown in [20], whereas a brute-force PDF domain discretization scheme
would require 30%° measurements (for N; = 30). However, even with the efficient implementation of [20], a brute-force dis-
cretization of the time domain (temporal dimension) into N, = 1,000 points, for instance, would still require N;nn; = 3.2 x 10°
PDF measurements. In this paper, motivated by the aforementioned challenge, the computational efficiency of the WPI is
further increased by resorting to expansions based on Kronecker products of basis matrices (Section 3.1) and on positive def-
inite functions (Section 3.2). In this regard, the WPI technique is enhanced herein and becomes capable of determining
directly the global time-dependent non-stationary joint response PDF in a computationally efficient manner.
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3. Non-stationary joint response PDF approximation

As discussed in Section 2.2, the computational cost associated with determining the global non-stationary joint response
PDF by applying a brute-force discretization of the time domain remains significant, even when using the efficient imple-
mentations of [19,20]. To address this challenge, the approximation schemes developed in this section consider the response
PDF as a function of time explicitly. In this regard, generalizing the formulations of [19,20], p(x, %, t) is written as

P(X,X,1) ~ exp (U(X, X, 1)) (24)
or, alternatively, as
PX.X,1) ~ V(xR 1) (25)

where p(x,x,t) and v(x,x,t) are approximating functions. Therefore, depending on whether Eq. (24) or Eq. (25) is used, a
measurement of the response PDF at a specific location (x,x,t) via the WPI technique refers to either the exponent or the
exponential function of Eq. (18), respectively.

First, in Section 3.1, a separable basis is constructed for approximating the non-stationary PDF by combining the bases/
structures selected for each dimension [49]. Such a basis proves, in general, capable of handling the anisotropic features of
multivariate functions and appears a natural choice for approximating the response PDF. Next, an alternative approach is
followed in Section 3.2, where the approximation takes the form of a scattered data fitting problem [50]. The non-
stationary PDF is sampled at various locations in the spatio-temporal domain and a fit to the dataset based on positive def-
inite functions (which can be construed as a generalization of the widely used RBFs [50]) is sought for. Also, it is noted that
positive definite functions have been deliberately selected over RBFs for better coping with the potentially anisotropic fea-
tures of the non-stationary PDF [50].

3.1. Kronecker product approach

3.1.1. Kronecker product bases

Various multivariate bases have been developed based on Kronecker products [51]. Remarkably, the applications of Kro-
necker structure range from image/video processing [52] and distributed sensing [49] to pre-conditioning for linear system
solution [53] and matrix approximation [54].

Specifically, the Kronecker product H ®J of two matrices H € Rz and J € R/ is a matrix of size HyJ, x H,J, defined
by (e.g., [51])

hn] thz.’

HoJ = (26)

hyJ ... hynJ

Further, given the basis matrices D; € R"*™ and D, € R™"™, consider a transform applied to a data matrix Y € R"*™ by
using the separable basis constructed by their Kronecker product. Vectorizing matrix Y, i.e., concatenating its columns ver-
tically, so that y = vec(Y) € R"™, the data vector can be written as (e.g., [51])

y=D;®Dy)c (27)

where ¢ denotes the coefficient matrix in vectorized form. Generalizing, consider p dimensions in total and n;n;, ...n, mea-
surements taken from a multivariate function y(q), where q € RP. The measurement tensor Y € R™*"2**" admits a Kro-
necker expansion of the form of Eq. (27) expressed as

y:(Dp®...®D2®D1)c (28)

where y, c € R""2-"_Therefore, after collecting n = nyn; ...n, measurements from the p-dimensional space and selecting a
basis in each dimension (Dy, ..., D)) the coefficients of the Kronecker expansion can be obtained by solving the linear system
of Eq. (28). It is noted that the columns of the basis matrices Dy, ..., D, in Eq. (28) are the basis functions selected for each
dimension discretized into ny,...,n, points, respectively.

3.1.2. Multi-dimensional basis construction for approximating the non-stationary joint response PDF

Following the procedure outlined in Section 3.1.1 it is rather straightforward to construct a multi-dimensional basis for
approximating the non-stationary response PDF by employing Eqs. (25) and (28). Specifically, the response PDF is a function
of (x,x,t), which is of size 2m + 1; that is, 2m spatial dimensions and 1 temporal dimension. In this regard, various (poten-
tially different) bases can be chosen for the approximation in each dimension in conjunction with the numbers
g,k € {1,...,2m + 1}. Next, the expansion coefficients vector c is determined by solving the linear system of Eq. (28), where
y is the vector containing n; ...nNy,.; Mmeasurements of p(x,x,t) determined via WPI and employing a uniform mesh. In the
following, and without loss of generality, two distinct approaches are pursued in choosing the bases to be utilized in Eq. (28).
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First, the same one-dimensional wavelet basis is used for each and every dimension. In particular, an arbitrary function
f(t) can be expressed as

O =33 o (29)

l=—ool=—00

where c are the expansion coefficients to be determined, r and [ denote the different scales and translation levels, respec-
tively, and y,.(t) = %W(% - r), with y(t) the wavelet family to be chosen. Alternatively, Eq. (29) can be expressed via the
associated scaling function ¢(t) as

n-1
Falt) = ey (t) (30)
r=0

where f,(t) denotes the n-term approximation of the function f(t) with only n=27" scaling functions, given as
() = 217(/’;(2% - r), and L denotes the selected scale, or equivalently the approximation level. A detailed presentation of

wavelet theory can be found in several books, such as [55]. Obviously, the efficacy of the chosen wavelet family is
application-dependent. Thus, various both discrete and continuous wavelets have been developed over the past decades
[55], as well as generalizations with additional parameters such as harmonic wavelets (e.g., [56-58]) and chirplets (e.g.,
[59]); see also the review paper by Spanos and Failla [60] for diverse wavelet applications in engineering dynamics. In
the ensuing analysis, the Meyer wavelet (e.g., [55]) is used in the related expansions.

Second, an alternative approach is pursued, which exploits the flexibility of the herein proposed framework to use differ-
ent bases. In this regard, and considering Eq. (24), a multivariate polynomial can be employed for the spatial dimensions, as
in [19], and a wavelet basis for the temporal dimension. Therefore, the linear system of Eq. (27) becomes

y={D,®P)c (31)

where y contains the measurements of log (p(x, X, t)) determined via the WPI, D,, denotes the one-dimensional wavelet basis,
P the monomial basis (e.g., [61]) and ¢ the coefficient vector. Specifically, P is an n; x n, matrix, where n; = (*}2) for a poly-
nomial of degree 4, and D,, is an n; x n, matrix. Therefore, n = n;n, measurements of the joint response PDF via the WPI tech-
nique are required.

Overall, it is readily seen that utilizing a Kronecker product formulation is a conceptually simple approach for higher-
dimensional approximations by combining several lower-dimensional approximations in a straightforward manner. This
yields enhanced flexibility in the implementation of the approach as various, potentially different, bases can be used, which
have already proven to be well-suited for the respective lower-dimensional problems. For instance, the monomial basis has
exhibited significant accuracy in approximating the spatial dimensions of a class of problems in [19] and in [20]. Thus, under
the Kronecker product formulation, it can be directly used in conjunction with an additional basis related to the temporal
dimension. Nevertheless, the lower-dimensional bases and the respective number of measurements need to be selected a
priori, while as noted in [20], the monomial basis is prone to ill-conditioning, and, hence, the points of the mesh should
be selected based on certain optimality criteria for enhanced robustness and accuracy of the approximation (see for instance
[62]). If, alternatively, only one-dimensional wavelet bases are used for constructing the multi-dimensional basis via Eq. (28),
the associated computational cost increases exponentially with increasing number of dimensions and becomes eventually
prohibitive for relatively high-dimensional problems. .

To address the above points, a mesh-free approximation scheme is developed in Section 3.2 by utilizing positive definite
functions. The advantages of such an approach pertain mainly to the fact that the basis functions depend on the measure-
ment locations, and thus, are not selected a priori. Therefore, as explained in detail in Section 3.2, the resulting interpolation
matrix is well-conditioned yielding a robust and accurate approximation. Overall, positive definite functions appear more
general and suitable for higher-dimensional systems, whereas Kronecker product bases perform better for lower-
dimensional systems, especially when there is some available information regarding the response PDF.

3.2. Positive definite functions approach
3.2.1. Positive definite functions aspects

In this section, the multivariate (p-dimensional) approximation problem is formulated as a scattered data fitting problem,
which is a fundamental problem in approximation theory and is summarized in the following [50]: Given a set of measure-

ments (q;,y;) from a function y(q;), where i € {1,...,n},q; € R” and y; € R, determine a function p(q) such that
W) =i (32)
Vie {1,...,n}. Even though in the univariate case (i.e., p = 1) this meshfree problem has a unique solution using n distinct

measurements and a polynomial of order n — 1, the multivariate case is more complex leading to ill-conditioned interpola-
tion matrices [63]. According to the Mairhuber-Curtis theorem (e.g., [64]), for the problem to be well-posed, i.e., for a solu-
tion to exist and be unique, the basis functions cannot be fixed a priori.
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The above challenge has led mathematicians to introduce data-dependent bases, which are bases created following the
selection of the sampling locations. In this direction, positive definite functions (or kernels more generally) have been com-
monly used in approximation theory [50,65]. Following [63], a complex-valued continuous function @ : R” — C is called pos-
itive definite on R” if

iicm(m -q) >0 (33)

i=1 j=1

for any n pairwise different points q;,...,q, € R” and ¢ = [c;,...,c,]" € C". Among the most widely used positive definite
functions is the Gaussian function, i.e., ®(q) = e-<'l9/3, with q € R” and a shape parameter € > 0. The widespread utilization
of positive definite functions in the approximation field can be attributed, at least partly, to their connection with the scat-
tered data fitting problem of Eq. (32), and to the existence of well-behaved (i.e., non-singular) interpolation matrices (e.g.,
[66]). Further, there are constantly new classes of positive definite functions being introduced in conjunction with related
theoretical work on error bounds [63]. Finally, it is worth noting that the numerical implementation of positive definite func-
tions is amenable to high-performance computing [67], while their applications range from meshfree interpolation and solu-
tion of partial differential equations (PDEs) [68] to simulation of stochastic processes [69] and machine learning [70].

3.2.2. Multi-dimensional basis construction for approximating the non-stationary joint response PDF
As mentioned in Section 3.2.1, given the measurements (q;,y;) the objective is to determine an interpolating function
(q), expressed as

n
(g) =>_ci®i(q) (34)
i-1
where the basis functions @, for i € {1,...,n}, are positive definite and ¢ = [cy, ..., ca]" € R" denotes the expansion coeffi-

cient vector. Clearly, the choice of the specific basis functions is problem-dependent, with RBFs being among the most pop-
ular choices [71]. RBFs are rotationally and translationally invariant and are commonly used in engineering problems. For
RBF interpolation the basis functions are expressed as a function of ||q — q;||, where g, for i € {1,...,n}, corresponds to
the sampling locations.

Alternative choices include, but are not limited to, multiscale kernels [72], which are defined as linear combinations of
shifted and scaled versions of a single function and exhibit properties similar to wavelets, and translationally invariant func-
tions [50]. The latter are constructed by relaxing the rotational invariance property of RBFs and have been found to provide
further flexibility in the interpolation and to improve the condition number of the interpolation matrix [50]. A typical exam-
ple that is also adopted in the ensuing analysis is the anisotropic multivariate Gaussian function

)4
®i(q) = exp (—Zei(qk - qikf) (35)
k=1

where €, for k € {1,...,p}, denotes the shape parameter for the k-th dimension, while g, and g;, denote the k-th component
of q and g, respectively. The basis then becomes a collection of functions of the form of Eq. (35), i.e.,

{D1(q), ..., Du(q)} (36)

Next, considering q = (x,x,t) yields p = 2m + 1 dimensions, while the same shape parameter value ¢; is used for all the spa-
tial dimensions and the value ¢, for the temporal dimension. In this regard, by employing anisotropic Gaussian functions, Eq.
(24) becomes

n m m
p(X,%,t) ~ exp {Zci exp (Zesz(xk —x)? = > € —xn)* — €X(t - ti)z>} (37)
i=1 k=1 k=1

Note that the n sampling locations need to be well-distributed in the (2m + 1)-space. To this aim, the Halton sequence is
used [73], which is also frequently employed in quasi-Monte Carlo methods for multi-dimensional integration; see also the
papers by Bratley et al. [74] and by De Marchi et al. [75] for some alternative sampling strategies. Further, it is desirable in
many cases to have an interpolant that exactly reconstructs a polynomial of a given order; see, for instance, the “patch test”
in finite elements (e.g., [76]). To this aim, the basis of Eq. (36) can be augmented by including monomials to a given order;
that is

{CI)l(q),...,(I)n(q)71,q1,q27.. . 7q%72q1q27"'} (38)

Therefore, the size of the basis of Eq. (38) becomes n + n,, where n is the number of measurements, and n, = (’3;3]"31) is the
number of monomials P,(q),u € {1,...,n,}, for a polynomial of degree /. In the following, a 4™_degree polynomial is con-
sidered in the augmented basis of Eq. (38), in accordance with the rationale presented in [20]. Concisely, for problems of

the form of Eq. (2), the joint response PDF is Gaussian for g(x, %) = 0; thus, it is represented exactly by a 2"-degree polyno-
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mial. The nonlinear system joint response PDF can be construed as a perturbation (not necessarily small) from the Gaussian,
and it can be approximated by higher-order polynomials. In several examples, including rather challenging cases of bimodal
response PDFs [20], it has been demonstrated that the choice of a 4"-degree polynomial reflects a reasonable compromise
between accuracy and efficiency. In this regard, enforcing the n interpolation conditions of Eq. (34) and adding n, conditions
of the form

Zcipu(qi):O> forue{l""’np} (39)
i=1

leads to the augmented linear system of equations [63]

v ollel Lo 0

where ® = [®(q;), . .., Pn(q;)]yns P = [Pu(gi)]y<n, € denotes the expansion coefficients vector, ¢, the polynomial coefficients
vector, and y the measurement vector. It is noted that the conditions of Eq. (39) are arbitrary and have been added for obtain-
ing a non-singular interpolation matrix [63]. Once the system of Eq. (40) is solved, the coefficient vector [c;¢,] is determined;
see also [77] for more details on the conditions to be satisfied for the well-posedness of Eq. (40). Note that although the aug-
mented coefficient vector of Eq. (40) is of length n + n, > n, the number of measurements required for the approximation
remains the same and equal to n. Further, Eq. (37) is modified to account for the augmented basis, and the non-
stationary joint response PDF can be approximated as

n np
p(X, X, ) ~ exp (Zc,»(l)i(x, X0+ > cuPuX,%, r)) (41)
u=1

i=1

3.2.3. Selection of shape parameters

Positive definite functions have been criticized for producing ill-conditioned interpolation matrices ®, and thus, causing
numerical instability issues [78]. Note, however, that a careful examination of the matter [63] reveals that there is a trade-off
between accuracy and stability. Theoretical bounds pertaining to several positive definite functions indicate that by decreas-
ing the values of the shape parameters €, in Eq. (35), or the separation distance between the sampling locations (i.e., by
increasing n), the accuracy of the interpolation is improved. Nevertheless, this theoretically attainable accuracy is hard to
be reached in practice. This is due to numerical stability issues related to the rapid increase of the interpolation matrix con-
dition number. This trade-off has led researchers to seek for “optimal” shape parameters, which provide high accuracy with-
out compromising numerical stability [79].

The approach adopted in the ensuing analysis was developed in [80] and is based on leave-one-out cross validation. Specif-
ically, for fixed shape parameters €; and €, fitting an interpolant of the form of Eqs. (34) and (40) to n — 1 measurements n
times (one is left out each time) yields an interpolation error E;, fori € {1,...,n}, by comparing the interpolant with the mea-
surement left out. The error, E, associated with the pair (¢, € ) is then selected to be the maximum of all the errors E;. There-
fore, the error associated with the pair (€, €;) becomes the cost function in an optimization algorithm that searches for the pair
(€&s, €¢) with the minimum error E. Finally, as stated in Section 3.2.2, introducing the anisotropic Gaussian function of Eq. (35)
also improves the condition number of the interpolation matrix as a “side-effect”. Of course, alternative approaches such as
pre-conditioning [63], or exploration of other bases [81], can always be used for addressing cases of ill-conditioned matrices.

3.3. Mechanization of the technique
The mechanization of the Kronecker product approach of Section 3.1 involves the following steps:

(a) Select p lower dimensional bases Dy, ...,D,.

(b) Create the interpolation matrix D =D, ® ... ® D, @ Dy.

(c) Obtain n = nyn, ...n, measurements of the PDF via the WPI by utilizing Eq. (18).

(d) Determine the coefficient vector ¢ by solving the linear system of Eq. (28).

(e) The complete non-stationary joint response PDF is evaluated by employing the Kronecker product basis and the coef-
ficient vector via Eqgs. (25) and (28).

Further, the mechanization of the positive definite functions approach of Section 3.2 involves the following steps:

(a) Select the n basis functions of Eq. (38), in conjunction with Eq. (35).

(b) Obtain n measurements of the PDF via the WPI by utilizing Eq. (18) and by employing the Halton sequence for select-
ing the locations of the measurements [73].

(c) Determine the coefficient vector ¢ by solving the linear system of Eq. (40).

(d) The complete non-stationary joint response PDF is approximated via Eq. (41).
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4. Numerical examples

To assess the performance and demonstrate the efficacy of the developed approximation schemes, three examples with
distinct features are considered. In Section 4.1, two single-degree-of-freedom (SDOF) Duffing nonlinear oscillators subject to
Gaussian white noise are considered: one with a standard hardening restoring force (Section 4.1.1), and another exhibiting a
bimodal response PDF (Section 4.1.2). In Section 4.1.1 the Kronecker product approach with a 4”-degree polynomial for the
spatial dimensions and a one-dimensional wavelet basis for the temporal dimension is used, whereas in Section 4.1.2 a basis
constructed via a Kronecker product of three one-dimensional wavelet bases is employed. Next, in Section 4.2 a 2-DOF non-
linear oscillator subject to non-stationary time-modulated Gaussian white noise is considered, and the positive definite func-
tions approach of Section 3.2 is employed. Finally, the positive definite functions approach is also employed in Section 4.3,
where a statically determinate Euler-Bernoulli beam is considered with Young’s modulus modeled as a non-Gaussian, non-
white and non-homogeneous stochastic field.

4.1. SDOF Duffing nonlinear oscillator

4.1.1. SDOF Duffing oscillator with a hardening restoring force

Consider an SDOF Duffing oscillator, whose equation of motion is given by Eq. (2) with parameter values
(M =1;C=0.1;K = 1;g = x3). The stochastic excitation is given by Eq. (3) with D(t) = 1 and &(t) is a white noise process.
Therefore, f(t) is a Gaussian white noise process, whose power spectrum is given by Eq. (5) with Sy = 0.0637. Assuming qui-
escent initial conditions, its transition PDF, written as p(x, x, t), is a function of the two spatial dimensions, i.e., x and %, and of
the temporal dimension t. In implementing the approximate WPI technique developed herein, the monomial basis is used for
the two spatial dimensions, while the wavelet basis is used for the temporal dimension as discussed in Section 3.1.2. In par-
ticular, utilizing a 4"-degree polynomial, the joint response PDF is sampled at n = n;n, = 15 x 32 = 480 locations in the
spatio-temporal domain and the expansion coefficient vector ¢ is determined by solving Eq. (31). Finally, p(x, X, t) is approx-
imated by utilizing the constructed basis and the coefficient vector via Eq. (28). The non-stationary marginal PDFs of x(t) and
x(t) are shown in Fig. 1, where it is seen that the oscillator response PDF does not experience any significant changes after
about t = 6s; that is, the system has reached stationarity effectively. Moreover, the marginal PDFs of x(t) and x(t) for two
arbitrary time instants are shown in Fig. 2. Although the accuracy of the technique depends, in general, on the choice of
the polynomial degree and the number of points in the temporal dimension, it is shown in this example that a 4"-degree
polynomial and n; = 32 points are adequate in determining the non-stationary PDF of this Duffing oscillator with high accu-
racy as compared to pertinent MCS data (50,000 realizations).

To provide a rough comparison and highlight the gain of the proposed technique in terms of computational efficiency, it is
worth noting that a brute-force numerical implementation of the WPI technique as described in Section 2.2 would require a
number of PDF measurements of the order of ~ 10° (assuming that the temporal dimension is, indicatively, discretized into
1,000 points). Further, the approximation based on polynomials and wavelets employed in this example also requires a
smaller number of measurements as compared to the efficient implementation of [19]. Specifically, by utilizing the approx-
imate technique developed in [19] the response PDF needs to be separately determined at every time instant, which (for an
indicative discretization of the time domain into 1,000 points) yields approximately 35,000 required PDF measurements via
the WPI technique.

4.1.2. SDOF Duffing oscillator with a bimodal response PDF

Although Example 4.1.1 has shown that utilizing a Kronecker product of a polynomial and a wavelet bases can be ade-
quate for a certain class of problems, the resulting interpolation matrix may often be ill-conditioned. Such is the case of
the SDOF oscillator, whose equation of motion is given by Eq. (2) with parameter values (M =1;C = 1;K = —0.3;g = x3)
and external excitation as in Example 4.1.1. In fact, attempting to use the same basis as in 4.1.1 has led to ill-
conditioning. To bypass this limitation, a multi-dimensional wavelet basis is instead utilized for this case, as discussed in
Section 3.1.2. In this regard, a mesh is employed for discretizing the three-dimensional spatio-temporal domain character-
izing the transition PDF. Specifically, following the procedure delineated in Section 3.1.2 the two spatial dimensions are dis-
cretized into n; = n, = 16 points and the temporal dimension into n, = 32 points; thus, yielding n = 8,192 required
measurements via the WPI technique. To put it into perspective, note that a brute-force implementation of the technique
would require a number of PDF measurements of the order of ~ 10°, while applying the efficient implementation of [19]
for each and every time instant would yield approximately 35,000 required measurements (assuming that the temporal
dimension is, indicatively, discretized into 1,000 points). Following the determination of the expansion coefficient vector
¢ by solving Eq. (28), where all basis matrices correspond to the wavelet basis in each dimension, p(x, X, t) is approximated
based on Eq. (25). In this regard, p(x, X, t) can be approximated at any location by utilizing the constructed basis and the coef-
ficient vector. In Fig. 3 the joint response PDF p(x, x, t) is shown at three arbitrary time instants t = 1,2 and 6s. Comparisons
with corresponding MCS based results demonstrate the relatively high accuracy of the technique for addressing dynamical
systems even with relatively complex PDF shapes, such as the bimodal. Finally, in Figs. 4 and 5 the marginal PDFs of x(t) and
x(t) are shown for various time instants, as obtained by utilizing the herein developed technique. Pertinent MCS based
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Fig. 1. Non-stationary marginal PDF of x(t) and x(t) for an SDOF hardening Duffing oscillator under Gaussian white noise excitation, as obtained via the WPI
technique (a and c); comparisons with MCS data - 50,000 realizations (b and d).
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Fig. 2. Marginal PDFs of x(t) (a) and x(t) (b) at time instants t =1 s and t = 12 s for an SDOF hardening Duffing oscillator under Gaussian white noise
excitation, as obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

results (50,000 realizations) are included as well for comparison purposes. Overall, it is seen that for this specific numerical
example the gain of the proposed technique in terms of computational efficiency, as compared both to the standard [11] and
to the enhanced [19] implementations, is drastic. It is worth noting that the herein developed technique based on global
bases can be potentially coupled with sparsity concepts and compressive sampling for further reducing the associated com-
putational cost (see [20] for more details on sparse representations).
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Fig. 3. Non-stationary joint PDF of x(t) and x(t) at time instants t = 1,2 and 6 s for an SDOF Duffing oscillator with bimodal response PDF under Gaussian
white noise excitation, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Fig. 4. Non-stationary marginal PDF of x(t) and x(t) for an SDOF Duffing oscillator with bimodal response PDF under Gaussian white noise excitation, as
obtained via the WPI technique (a and c); comparisons with MCS data - 50,000 realizations (b and d).
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Fig. 5. Marginal PDFs of x(t) (a) and x(t) (b) at time instants t = 1 s and t = 12 s for an SDOF Duffing oscillator with bimodal response PDF under Gaussian
white noise excitation, as obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

4.2. MDOF nonlinear oscillator subject to non-stationary time-modulated Gaussian white noise

In this section the efficacy of the mesh-free approximate WPI technique presented in Section 3.2 is assessed, in conjunc-
tion with a 2-DOF nonlinear dynamical system whose equation of motion is given by Eq. (2) with

mo 0
M= 42
[ ° mo], (42)
2¢0 —Co
= 4
=% ) (43)
Zko —ko
K= {—ko 2k0]’ (44)
and
. €1kox3
gx.%) = { "0 ] (45)

and parameter values (my = 1;¢o = 0.35; ko = 0.5;€; = 0.2; and Sp = 0.1). The matrix D(t) of Eq. (3) containing the time-
modulating functions d; (t) and d,(t) is diagonal with

d] (t) = dz(t) =7+ 11(6’“ — e”") (46)

and parameters values (¢ = 0.4; § = 1.6;y = 10 %; and 5 = 5). The non-stationary excitation power spectrum is, thus, given

as
Sw() 0
Sw= , 47
=170 s @)
where S,,(t) = Sod>(t) = Sod(t) is shown in Fig. 6.

Considering the system initially at rest, the joint response PDF p(x, %, t) is sampled at n = 60,000 Halton points (see Sec-
tion 3.2 for more details). Note that this is a rather challenging example from an approximation theory perspective due to the
fact that the response PDF is non-stationary. As a result, the bounds of the effective PDF domain may vary continuously with
time in an arbitrary manner. In this regard, if the bounds are pre-specified and fixed, there are measurements of the PDF
whose values are effectively zero; thus, causing numerical instabilities in the approximation. This challenge can be
addressed by considering “adaptive” bounds, whose time-varying values can be estimated, for instance, via a preliminary
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Fig. 6. Non-stationary Gaussian white noise excitation power spectrum, given by Eq. (47), where S,(t)= SOdf(t) = Sodg(t) and
dy (t) = dy(t) =7 +n(e* — e~’) with parameter values (Sp = 0.1;0 = 0.4; f = 1.6;y = 10>; and 5 = 5).

MCS analysis with very few realizations (e.g., of the order of 10%). Next, the leave-one-out cross validation follows and the set
of optimal parameters (¢, €;) is determined. It is noted that, as discussed in Section 3.2.2, a 4™-degree polynomial is also
added in the approximation scheme, and thus, the joint response PDF is approximated via Eq. (41) with the augmented coef-
ficient vector determined via Eq. (40).

In Figs. 7 and 8 the joint PDFs p(x1,x;,t) and p(X1,x»,t) obtained by the approximate WPI technique based on positive
definite functions are plotted, respectively. Comparisons with pertinent MCS data (50,000 realizations) demonstrate a rela-
tively high accuracy degree. Further, as shown in Figs. 9 and 10 for the non-stationary marginal PDFs of x;(t) and x,(t),
respectively, and based on comparisons with MCS data, the herein developed technique is capable of capturing accurately
the evolution in time of the PDF shape and features. Furthermore, in Fig. 11 the marginal PDFs of x, (t) and X, (t) for two arbi-
trary time instants are shown and compared with respective MCS-based results. In passing, note that an alternative brute-

Time (s) z1(t)

Fig. 7. Non-stationary joint PDF of x; (t) and x; (t) at time instants t = 1,2 and 6 s for a 2-DOF nonlinear system subject to time-modulated Gaussian white
noise, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Fig. 8. Non-stationary joint PDF of X, (t) and x,(t) at time instants t = 1,4 and 6 s for a 2-DOF nonlinear system subject to time-modulated Gaussian white
noise, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Fig. 9. Non-stationary marginal PDF of x; (t) and X, (t) for a 2-DOF nonlinear system subject to time-modulated Gaussian white noise, as obtained via the
WPI technique (a and c); comparisons with MCS data - 50,000 realizations (b and d).
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Fig. 10. Non-stationary marginal PDF of x,(t) and x,(t) for a 2-DOF nonlinear system subject to time-modulated Gaussian white noise, as obtained via the
WHPI technique (a and c); comparisons with MCS data - 50,000 realizations (b and d).
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Fig. 11. Marginal PDFs of x,(t) (a) and x,(t) (b) at time instants t = 1 s and t = 6 s for a 2-DOF nonlinear system subject to time-modulated Gaussian white
noise, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).

force implementation (e.g., [11,17]) and employing an expansion basis for each and every time instant independently [19]
would require approximately 10° and 70,000 PDF measurements, respectively (assuming that the temporal dimension is,
indicatively, discretized into 1,000 points).

4.3. Beam bending problem with a non-Gaussian and non-homogeneous stochastic Young’s modulus
The example considered in this section serves to demonstrate that the WPI formalism delineated in Section 2 (see [17] for

more details) can account not only for stochastically excited dynamical systems governed by Eq. (2), but also for certain engi-
neering mechanics problems with stochastic media properties. In this regard, it has been shown [16,17] that a class of one-
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dimensional mechanics problems with stochastic system parameters, such as the herein considered Euler-Bernoulli beam
with stochastic Young’'s modulus, can be cast equivalently in the form of Eq. (6). Thus, the left hand-side of Eq. (6) can be
used for defining an auxiliary Lagrangian function, and the WPI solution technique can be applied in a rather straightforward
manner.
In this regard, a statically determinate Euler-Bernoulli beam is considered next whose response is governed by the dif-
ferential equation
d2
3 E2I§(2) = 1(2) (48)
where E(z) is the Young’s modulus; I is the constant cross-sectional moment of inertia; q(z) is the deflection of the beam; and

I(z) denotes a deterministic distributed force. In this static problem the dot above a variable denotes differentiation with
respect to the space variable z. Further, as explained in [16,17], Eq. (48) can be integrated twice and cast in the form

M(z)
—-——<=Ez 49
Tz ~ E@ (49)
where the Young’s modulus is modeled as a non-Gaussian, non-white and non-homogeneous stochastic field as
Ez) _
E2) w(2) (50)

with E(0) = Ey, and w(z) is the white noise process as defined in Eq. (4). It can be readily seen that Eq. (50) represents a stan-
dard geometric Brownian motion SDE, whose space-dependent response PDF is log-normal (e.g., [82]). Combining Eq. (49)
and (50) yields an equation in the form of Eq. (6); that is,

M@z q%@)

M@z) 42

Next, the case of a cantilever beam subject to a single point moment at its free end is considered (Fig. 12). Thus, taking
into account that M(z) is constant along the length of the beam, i.e., M(z) = M, Eq. (51) becomes

= w(2) (51)

9% (2)
— = =w(z 52
q(z) (52)
while based on Eq. (10) the expression
- 19(2))°
£[q,4,4,9%] = (7 (53)
| } 4750(4(2))?

can be construed as the corresponding Lagrangian function. In this regard, the E-L equation becomes

2 3
oL 9oL Por & oL _ (54)

together with the initial conditions for z; = 0,q.(z;) = ¢; = 0,4c(2)) = g = 0 and §c(z) = — %

Subsequently, the joint response PDF p(q, q,,z) is sampled at n = 20,000 Halton points with bounds that vary with z.
Specifically, the bounds of the response PDF space-varying effective domain are determined via a preliminary MCS with only
a few realizations (see Example 4.2 for details). Next, following the evaluation of the augmented coefficient vector via Eq.
(40), Eq. (41) is utilized in conjunction with an 8"-degree polynomial, and p(q,q,q,z) is determined. In Figs. 13 and 14
the WPI-based non-stationary (space-dependent) marginal PDFs of q(z) and q(z) are shown, respectively, while MCS-
based data (50,000 realizations) are also provided for comparison. Moreover, Fig. 15 shows the marginal PDFs of q(z) and
q(z) atz= 0.6, z= 0.8 and z = 1, as obtained via the herein developed technique, and includes comparisons with pertinent
MCS data. It is worth mentioning that the considered beam bending problem is significantly challenging from a global
approximation point of view, since the response mean varies considerably in the spatial domain; thus, rendering necessary
the utilization of an adaptive with z effective PDF domain. Nevertheless, it has been shown that the WPI technique in con-
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Fig. 12. Cantilever beam subject to a single-point moment.
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Fig. 13. Non-stationary (space-dependent) marginal PDF of q(z) for a statically determinate beam with a non-Gaussian and non-homogeneous stochastic
Young’s modulus, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Fig. 14. Non-stationary (space-dependent) marginal PDF of ¢(z) for a statically determinate beam with a non-Gaussian and non-homogeneous stochastic
Young’s modulus, as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).

junction with positive definite functions for approximating the joint response PDF yields accurate results at a relatively low
computational cost. In this regard, note for comparison purposes that alternative implementations, such as the brute-force
scheme delineated in Section 2.2, would require a several orders of magnitude higher number of PDF measurements. Further,
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Fig. 15. Marginal PDFs of q(z) (a) and q(z) (b) at z= 0.6, z= 0.8 and z = 1 for a statically determinate beam with a non-Gaussian and non-homogeneous
stochastic Young’s modulus, as obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

a direct comparison in terms of cost with the enhanced implementation in [19] is not possible as the 4"-order polynomial
employed in [19] would be, most likely, an inappropriate choice for approximating the joint response p(q, q, g, z).

5. Concluding remarks

In this paper, the WPI technique has been generalized and enhanced for determining directly, and in a computationally
efficient manner, the complete time-dependent non-stationary response PDF of stochastically excited nonlinear multi-
degree-of-freedom dynamical systems. This has been done, first, by constructing multi-dimensional (time-dependent) global
bases for approximating the non-stationary joint response PDF, and second, by exploiting the localization capabilities of the
WPI technique for determining PDF points in the joint space-time domain. These points have been used for evaluating the
expansion coefficients at a relatively low computational cost. Specifically, two distinct expansions have been constructed:
the first is based on Kronecker products of bases (e.g., wavelets), while the second employs positive definite functions.
Although the performance of the expansions in approximating the response PDF is, in general, problem-dependent, it can
be argued that positive definite functions appear more versatile and suitable for handling higher-dimensional problems,
whereas Kronecker products perform better for lower-dimensional problems, especially when some information regarding
the PDF is available a priori.

Several numerical examples pertaining to both single- and multi-degree-of-freedom nonlinear dynamical systems subject
to non-stationary excitations have been considered for assessing the reliability of the technique. Further, to illustrate that the
technique can account also for certain engineering mechanics problems with stochastic media properties, a bending beam
with a non-Gaussian and non-homogeneous Young’s modulus has been included in the numerical examples as well. The lat-
ter example has also been found to be significantly challenging from a global approximation perspective, since the response
PDF effective domain varies considerably along the spatial dimension. Nevertheless, this challenge can be addressed by uti-
lizing adaptive PDF domain bounds. Comparisons with pertinent MCS data have demonstrated a relatively high accuracy
degree for all the considered examples.

Finally, although the related computational cost is, in general, problem-dependent, it has been shown that in most exam-
ples considered herein the computational efficiency exhibited by the developed technique is significant. Specifically, com-
pared both to a brute-force numerical implementation (see Section 2.2) and to employing an expansion basis for each
and every time instant independently [19], the gain in terms of computational cost of the herein proposed WPI technique
enhancement is notable, measured even at several orders of magnitude for some cases. Future work relates to coupling

the proposed WPI technique with sparse representations and compressive sampling [20] for further reducing the computa-
tional cost.
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