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An approximate analytical solution is derived for a certain class of stochastic differential equations

with constant diffusion, but nonlinear drift coefficients. Specifically, a closed form expression is

derived for the response process transition probability density function (PDF) based on the concept

of the Wiener path integral and on a Cauchy–Schwarz inequality treatment. This is done in con-

junction with formulating and solving an error minimisation problem by relying on the associated

Fokker–Planck equation operator. The developed technique, which requires minimal computational

cost for the determination of the response process PDF, exhibits satisfactory accuracy and is capable

of capturing the salient features of the PDF as demonstrated by comparisons with pertinent Monte

Carlo simulation data. In addition to the mathematical merit of the approximate analytical solution,

the derived PDF can be used also as a benchmark for assessing the accuracy of alternative, more com-

putationally demanding, numerical solution techniques. Several examples are provided for assessing

the reliability of the proposed approximation.
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1 Introduction

Stochastic differential equations (SDEs) have been widely used over the past decades for

modelling the complex dynamics of diverse systems in a wide range of scientific disciplines.

Numerical Monte Carlo simulation (MCS) methodologies such as the Euler–Maruyama and

the Milstein schemes have been among the most versatile tools for solving SDEs of general

form [6]. Nevertheless, in many cases they can be computationally prohibitive, and thus, there is

a need for developing alternative efficient approximate analytical solution techniques. Indicative

alternative approaches include stochastic averaging [20], Markov approximations and related

Fokker–Planck equations, probability density evolution schemes [13], as well as numerical

versions of the Chapman–Kolmogorov equation [16, 25].
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Analytical solutions for nonlinear stochastic differential equations 929

One of the promising semi-analytical techniques relates to the concept of path integral,

developed independently by Wiener [26] and Feynman [4]. The rationale relates to express-

ing the stochastic process transition probability density function (PDF) as a functional integral

over the space of all possible paths [1]; see also [23] for a large deviation theory perspective

on the topic. Kougioumtzoglou and co-workers extended and applied recently the technique to

engineering dynamics problems, where the structural/mechanical system under consideration is

typically modelled as a set of coupled nonlinear SDEs [2, 12, 10, 11]. Although the aforemen-

tioned Wiener path integral (WPI) technique has exhibited satisfactory accuracy in determining

the response PDF, its numerical implementation is associated, in general, with non-negligible

computational cost [12]. In this regard, the authors derived recently an approximate analytical

solution PDF for a certain class of SDEs with constant diffusion, but nonlinear drift coefficients,

by relying on the WPI and on a Cauchy–Schwarz inequality treatment of the problem [14].

In this paper, the accuracy exhibited by the derived approximation of [14] is enhanced by

introducing a more general form for the response process PDF. This enhancement aims at ‘tight-

ening’ the Cauchy–Schwarz inequality as well as increasing the overall accuracy of the basic

approximation in [14]. To this aim, an optimisation problem is formulated and solved by relying

on an error definition based on the Fokker–Planck equation operator. Several numerical exam-

ples are included to demonstrate the accuracy of the derived approximate PDF. Comparisons

with pertinent MCS data are included as well.

2 Preliminaries

Let (�, F , Ft≥0, P) be a complete filtered probability space on which a scalar standard Brownian

motion (Bt, t ≥ 0) is defined; and Ft is the augmentation of σ {Bs|0 ≤ s ≤ t} by all the P-null sets

of F .

2.1 WPI overview

In general, for a stochastic process Xt, the transition PDF p
(

xf , tf |xi, ti
)

from a point in state

space xi at time ti to a point xf at time tf , where tf > ti, can be expressed as a functional integral

over the space of all possible paths C
{

xi, ti; xf , tf
}

in the form (e.g. see [1])

p
(

xf , tf |xi, ti
)

=
∫ {xf ,tf }

{xi,ti}
W [x(t)][dx(t)]. (2.1)

In (2.1), W [x(t)] represents the probability density functional, which can be explicitly deter-

mined only for relatively simple cases of stochastic processes. For instance, denoting the

expectation operator as E, the probability density functional for the white noise process v(t),

i.e. E(v(t)) = 0 and E(v(t1)v(t2)) = 2πS0δ(t1 − t2), is given by [22]:

W [v(t)] = � exp

[

−
∫ tf

ti

1

2

v(t)2

2πS0

dt

]

, (2.2)

where � is a normalisation coefficient. A detailed derivation and discussion of (2.2) can be found

in standard path integral-related books such as [1]. In the ensuing analysis, the SDE

dXt = µ (Xt) dt + σdBt (2.3)
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930 A. T. Meimaris et al.

is considered, where σ 2 = 2πS0 and dBt represents the formal time derivative of a white noise

process of unit intensity. In this regard, combining (2.1)–(2.3) yields the transition PDF of the

response process Xt (e.g. see [2, 12, 10, 11, 8])

p
(

xf , tf |xi, ti
)

=
∫ {xf ,tf }

{xi,ti}
� exp

(

−
∫ tf

ti

L(x, ẋ)dt

)

[dx(t)], (2.4)

where L(x, ẋ) represents the Lagrangian function associated with the process Xt and is given by

L(x, ẋ) = 1

2σ 2
(ẋ − µ(x))2. (2.5)

Next, it is readily seen that evaluating analytically, the WPI of (2.4) is at least a rather chal-

lenging, if not impossible, task; thus, an approximate solution technique is required. To this aim,

it is noted that the largest contribution to the WPI comes from the trajectory for which the inte-

gral in the exponential of (2.4) becomes as small as possible. According to calculus of variations

[3], this trajectory with fixed end points satisfies the extremality condition

δ

∫ tf

ti

L(xc, ẋc)dt = 0, (2.6)

where xc denotes the ‘most probable path’ to be determined by solving the functional optimisa-

tion problem

Min(Max) J [xc(t)] =
∫ tf

ti

L(xc, ẋc)dt, (2.7)

or alternatively, by solving the Euler–Lagrange (E–L) equation associated with (2.6) (e.g. see

[2, 12]), i.e.

∂L

∂xc

− ∂

∂t

∂L

∂ ẋc

= 0, (2.8)

in conjunction with the boundary conditions xc(ti) = xi, xc(tf ) = xf . Once xc(t) is determined, the

response transition PDF can be approximated by

p
(

xf , tf |xi, ti
)

≈ � exp

(

−
∫ tf

ti

L(xc, ẋc)dt

)

. (2.9)

Comparing (2.4) and (2.9), it is seen that only the largest contribution to the WPI of (2.4) is

considered in the approximation of (2.9); this comes from the most probable path xc(t) for which

the integral in (2.7) becomes as small as possible. From a computational point of view, the numer-

ical solution of a boundary value problem (BVP) of the form of (2.7) yields a single point of the

response PDF via (2.9). Therefore, following a brute force discretisation of the response PDF

domain into N points requires the solution of N BVPs of (2.7). This translates into considerable

computational cost, and thus, there is merit in developing more efficient solution methodologies.

This is also the scope of the present paper; see also [12] for a detailed presentation.

2.2 Cauchy–Schwarz inequality

Applications of the Cauchy–Schwarz inequality have been fruitful across many areas of mathe-

matics and applied sciences, ranging from analysis and geometry to combinatorics, probability

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792518000530
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 09 Sep 2019 at 17:30:32, subject to the Cambridge Core terms of use,



Analytical solutions for nonlinear stochastic differential equations 931

theory and statistics [7, 15]. For completeness, the integral form of the Cauchy–Schwarz inequal-

ity is included below, whereas a detailed presentation of the topic can be found in [21].

Lemma 2.1 Let f and g be real functions that are continuous on the closed interval [a, b]. Then

(∫ b

a

f (t)g(t)dt

)2

≤
∫ b

a

f (t)2dt

∫ b

a

g(t)2dt. (2.10)

Clearly, setting g = 1 yields the special case

∫ b

a

f (t)2dt ≥ 1

b − a

(∫ b

a

f (t)dt

)2

. (2.11)

3 Main results

3.1 Approximate solution PDF for a class of SDEs with constant

diffusion and nonlinear drift coefficients

In this section, relying on the WPI-based approximation of (2.9) and on the Cauchy–Schwarz

inequality of (2.11) in conjunction with an optimisation scheme, approximate non-stationary

response PDFs are derived for the SDE of (2.3) at a minimal computational effort. The herein

developed technique can be construed as a generalisation and enhancement from an accuracy

perspective of the results presented in [14].

Considering (2.5) and (2.8), for fixed ti, tf yields

ẍc = µ(xc)
∂µ(xc)

∂xc

, (3.1)

which, equivalently, can be transformed into

ẋ2
c = µ(xc)2 + b, (3.2)

where b is a constant. Following the derivation in [14], by substituting (3.2) into (2.5) and

integrating yields

∫ tf

ti

L(xc, ẋc)dt = 1

2

(

2
∫ tf

ti
ẋc

2dt − b(tf − ti) − 2M(xf ) + 2M(xi)

2πS0

)

, (3.3)

where M(·) denotes an antiderivative of µ(·).
Next, utilising the Cauchy–Schwarz inequality (2.11), the quantity 2

∫ tf
ti

ẋc
2dt in (3.3) is

bounded by

2

∫ tf

ti

ẋc
2dt ≥

∫ tf

ti

ẋc
2dt ≥

(

xf − xi

)2

tf − ti
, (3.4)

whereas combining (3.3) and (3.4) yields

∫ tf

ti

L(xc, ẋc)dt ≥ 1

2σ 2

(

(

xf − xi

)2

tf − ti
− b(tf − ti) − 2M(xf ) + 2M(xi)

)

. (3.5)
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932 A. T. Meimaris et al.

Thus, considering (2.9) and (3.5), an approximation for the response transition PDF of (2.3)

was derived in [14] in the form

p̂
(

xf , tf |xi, ti
)

= F(tf |xi, ti) exp
(

−G
(

xf , tf |xi, ti
))

, (3.6)

where

G
(

xf , tf |xi, ti
)

=
(

xf − xi

)2 +
(

−2M(xf ) + 2M(xi)
) (

tf − ti
)

2
(

tf − ti
)

σ 2
. (3.7)

Note that the constant, for given ti and tf , term exp
(−b(tf −ti)

2σ 2

)

has been merged with the

constant F in (3.6) to be determined as

F(tf |xi, ti) =
(∫

D(M)

exp
(

−G
(

y, tf |xi, ti
))

dy

)−1

, (3.8)

where D(M) denotes the domain of M .

It can be readily seen that p̂ : D(M) × (ti, +∞) × {xi} × {ti} →R+ in (3.6) can be directly used

as an analytical approximation of the response process PDF without resorting to the numerical

solution of the E–L equation (2.8) and, thus, requires essentially zero computational effort for its

determination. However, as demonstrated in [14], although the approximation of (3.6) is capable,

in general, of capturing the salient features of the solution PDF, in many cases the degree of

accuracy exhibited can be inadequate. In this regard, a more general form is proposed herein for

the solution PDF, i.e.

p̂(k,n)

(

xf , tf |xi, ti
)

= F(k,n)(tf |xi, ti) exp
(

−G(k,n)

(

xf , tf |xi, ti
))

, (3.9)

where

G(k,n)

(

xf , tf |xi, ti
)

=
k

(

xf − xi

)2 + n
(

−2M(xf ) + 2M(xi)
) (

tf − ti
)

2
(

tf − ti
)

σ 2
, (3.10)

and the constant F in (3.9) to be determined as

F(k,n)(tf |xi, ti) =
(∫

D(M)

exp
(

−G(k,n)

(

y, tf |xi, ti
))

dy

)−1

. (3.11)

Note that the general solution form in (3.9) has two additional ‘degrees of freedom’, i.e. the

parameters k and n to be determined based on an appropriate optimisation scheme as detailed in

the following section. The rationale behind this choice relates to utilising available knowledge

and integrating it in an optimisation scheme for enhancing the overall accuracy of (3.9). In par-

ticular, the parameter k relates to optimising and ‘tightening’ the Cauchy–Schwarz inequality of

(3.4), whereas the parameter n refers to the overall accuracy of the WPI approximation of (2.9). In

comparison to (3.6), it is anticipated that the approximation of (3.9) will exhibit higher accuracy,

at the expense of course of some added modest computational cost related to the optimisation

algorithm.
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3.2 Error minimisation and optimisation scheme

To determine the parameters k and n in (3.9), for a given norm (‖ · ‖q), the error quantity ‖p̂(k,n) −
p∗‖q is sought to be minimised, where p∗ denotes the exact solution PDF. Nevertheless, since p∗

is unknown, an alternative error minimisation scheme is adopted in the ensuing analysis based

on the Fokker–Planck equation operator (see also [14] and references therein). Specifically, the

exact transition PDF p∗ for the SDE of (2.3) is given as the solution of the associated Fokker–

Planck equation [24], i.e.

∂p∗(x, t)

∂t
= −∂ (µ(x) p∗(x, t))

∂x
+ σ 2

2

∂2p∗(x, t)

∂x2
. (3.12)

Next, denoting the Fokker–Planck operator as

LFP[ p(x, t)] = ∂p(x, t)

∂t
+ ∂ (µ(x) p(x, t))

∂x
− σ 2

2

∂2p(x, t)

∂x2
, (3.13)

and considering that LFP[ p∗] = 0, the error is defined as

errq = ‖LFP[ p̂(k,n) − p∗]‖q = ‖LFP[ p̂(k,n)] −LFP[ p∗]‖q = ‖LFP[ p̂(k,n)]‖q. (3.14)

Due to the analytical expression of p̂(k,n), the error quantity errq = ‖LFP[ p̂(k,n)]‖q can be

explicitly determined as a function of k and n, see also [14]. In this regard, for a chosen q norm

and final time tf , the values of k, n are numerically evaluated by solving the optimisation problem

ẑq =
(

k̂, n̂
)

q
= arg min

k,n∈R
err = arg min

k,n∈R
‖LFP[p̂(k,n)(·, tf )]‖q, (3.15)

and, thus, the approximate response PDF of (3.9) is determined.

4 Examples

In the ensuing numerical examples, a standard interior point method [5, 17] using Matlab’s fmin-

con built-in function is employed to solve the unconstrained optimisation problem of (3.15), in

conjunction with the ‖ · ‖2 norm. To this aim, the basic approximation of (3.6) with (k, n) = (1, 1)

serves as a natural choice for the initial starting point of the algorithm. Of course, in the current

setting, the global minimum can be readily and directly identified by the three-dimensional plot

of the corresponding objective function of (3.14) at minimal computational cost. However, the

proposed numerical optimisation scheme has the additional merit that it can still be applied even

in cases of potentially more sophisticated than (3.9) PDF approximations, where more than two

parameters would need to be determined.

In all the numerical examples, the algorithm converged in less than approximately 50 itera-

tions, which translates into a matter of few seconds from a computational cost perspective. The

accuracy of the approximate PDF of (3.9) is demonstrated by comparisons to the PDF estimated

based on pertinent MCS data (100,000 realisations) produced by numerically integrating the

original equation (2.3).
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934 A. T. Meimaris et al.

FIGURE 1. Example 4.1 objective function of (3.15) for tf = 0.1.

4.1 Duffing kind nonlinearity: Hardening system

Consider the SDE of (2.3) with the hardening Duffing kind (e.g. [18]) nonlinear drift coefficient

of the form

µ(x) = −x − λx3. (4.1)

In (4.1), λ is a parameter controlling the nonlinearity magnitude, whereas in the following, zero

initial conditions are assumed, i.e. X0 = 0, and the value σ 2 = 2πS0 = 1. Taking into account that

M(x) = − x2

2
− λ

4
x4, the PDF p̂(k,n) of (3.9) takes the form

p̂(k,n)(xf , tf |0, 0) = F(tf |0, 0) exp

⎛

⎝−
kx2

f + n
(

x2
f + λ

2
x4

f

)

tf

2tf

⎞

⎠. (4.2)

Next, utilising the parameter values λ = 1, σ 2 = 2πS0 = 1, and applying the numerical opti-

misation scheme of (3.15) based on the ‖ · ‖2 norm, yields the values for k and n. Specifically,

in Figures 1 and 2, the objective functions of (3.14) are plotted for time instants tf = 0.1 and

tf = 1, respectively, while in Table 1, the computed values of k and n are shown. In Figure 3,

the approximate PDF p̂(k,n) of (4.2) as well as the basic approximation p̂ of (3.6) are plotted and

compared with MCS-based estimated PDFs. It is seen that the herein proposed solution PDF

approximation is in very good agreement with MCS data and yields enhanced performance as

compared to the basic approximate PDF of (3.6).

4.2 Duffing kind nonlinearity: Bimodal response PDF

Consider next the SDE of (2.3) with the Duffing kind nonlinear drift coefficient of the form

µ(x) = x − λx3. (4.3)
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Table 1. Computed (k, n) values for various final time

instants tf and starting point (1,1) for example 4.2

tf = 0.1 tf = 1

k 0.8957 0.3218

n 1.5981 1.8080

FIGURE 2. Example 4.1 objective function of (3.15) for tf = 1.

FIGURE 3. Approximate response PDFs p̂(k,n) and p̂ for a first-order hardening Duffing kind nonlinear SDE

and comparisons with the MCS-based (100,000 realisations) PDF estimates.
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Table 2. Computed (k, n) values for various final time

instants tf and starting point (1,1) for example 4.2

tf = 0.5 tf = 5

k 0.8253 1.2224

n 0.7373 1.4920

FIGURE 4. Example 4.2 objective function of (3.15) for tf = 0.5.

Note that in comparison to (4.1), the nonlinearity form of (4.3) yields a bimodal response PDF

for relatively large time instants tf [18]. Thus, it can be argued that this bimodal PDF is more

challenging to be estimated than the unimodal PDF corresponding to (4.1). Similarly as in (4.1),

for zero initial conditions, (3.9) takes the form

p̂(k,n)(xf , tf |0, 0) = F(tf |0, 0) exp

⎛

⎝−
kx2

f + n
(

−x2
f + λ

2
x4

f

)

tf

2tf

⎞

⎠, (4.4)

while for the parameter values λ = 1, σ 2 = 2πS0 = 1, the objective functions of (3.14) are plotted

for time instants tf = 0.5 and tf = 5 in Figures 4 and 5, respectively. In Table 2, the values of k

and n, as determined by the numerical optimisation scheme, are shown, whereas in Figure 6

the approximate PDF p̂(k,n) of (4.4) as well as the basic approximation p̂ of (3.6) are plotted

and compared with MCS-based estimated PDFs. It is readily seen that even in the relatively

challenging case of the bimodal PDF, the herein proposed enhanced approximation is in very

good agreement with MCS data and manages to capture the salient features of the PDF.
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Analytical solutions for nonlinear stochastic differential equations 937

FIGURE 5. Example 4.2 objective function of (3.15) for tf = 5.

FIGURE 6. Approximate response PDFs p̂(k,n) and p̂ for a first-order bimodal Duffing kind nonlinear SDE

and comparisons with the MCS-based (100,000 realisations) PDF estimates.

4.3 Haldane nonlinear stochastic equation

Consider next the SDE of (2.3) with the Haldane kind nonlinear drift coefficient of the form [19]

µ(x) = − Vmx

Km + x + x2

Ki

. (4.5)
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938 A. T. Meimaris et al.

FIGURE 7. Example 4.2 objective function of (3.15) for tf = 1.

This kind of modelling has been widely used to describe substrate inhibition kinetics and

biodegradation of inhibitory substrates [19]. In (4.5), Vm and Km denote the limiting rate and

Michaelis constant, respectively, and Ki is the inhibition constant, while the process under con-

sideration denotes the substrate concentration. In the following, the initial condition X0 = 10 is

considered and the parameter values σ 2 = 2πS0 = 0.01 and Vm = 1, Km = 1, Ki = 20, in accor-

dance with [19]. Taking into account that M(x) = −(5
√

5 + 10) log(x + 4
√

5 + 10) − (5
√

5 +
10) log(x − 4

√
5 + 10), the PDF p̂(k,n) of (3.9) takes the form

p̂(k,n)(xf , tf |10, 0) = F(tf |10, 0) exp

(

−
k

(

xf − 10
)2 + 2n

(

−M(xf ) + M(10)
)

tf

2tf σ 2

)

. (4.6)

In Figures 7–9, the objective functions of (3.14) are plotted for time instants tf = 1, tf = 5 and

tf = 10, respectively, while in Table 3, the computed values of k and n are shown. In Figure 10,

the approximate PDF p̂(k,n) of (4.6) as well as the basic approximation pB of (3.6) are plotted

and compared with MCS-based estimated PDFs. It is seen that although the accuracy of the

basic approximation of (3.6) deteriorates for larger time instants tf , the accuracy of the enhanced

approximation of (3.9) remains in excellent agreement as compared to pertinent MCS data.

4.4 Oscillators with nonlinear damping

Consider a single degree-of-freedom oscillator with nonlinear damping whose motion is

governed by

ÿ + β ẏ + ω2
0y + f (ẏ) = v(t), (4.7)
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FIGURE 8. Example 4.2 objective function of (3.15) for tf = 5.

FIGURE 9. Example 4.2 objective function of (3.15) for tf = 10.

where f ( ẏ) is a nonlinear function depending on the response velocity and β is a linear damping

coefficient, where β = 2ζ0ω0; ζ0 is the ratio of critical damping and ω0 is the natural frequency

of the corresponding linear oscillator.

As shown in [10], a stochastic averaging/linearisation treatment can be applied to (4.7) and

reduce the second-order SDE into a first-order SDE of the form of (2.3) governing the evolution

in time of the response amplitude. Specifically, adopting the assumption of light damping, it can
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Table 3. Computed (k, n) values for various final time instants

tf and starting point (1,1) for example 4.3

tf = 1 tf = 5 tf = 10

k 0.9876 0.9698 0.7851

n 0.9787 0.9350 0.7688

FIGURE 10. Approximate response PDF p̂(k,n) and p̂ for a Haldane kind nonlinear SDE and comparisons

with the MCS-based (100,000 realisations) PDF estimates.

be argued that the nonlinear oscillator (4.7) exhibits a pseudo-harmonic behaviour described by

the equations

y(t) = x cos[ω0t + φ(t)] (4.8)

and

ẏ = −ω0x sin[ω0t + φ(t)]. (4.9)

In (4.8) and (4.9), x denotes the response amplitude defined as

x =
√

y2 + ẏ2

ω2
0

, (4.10)

whereas φ(t) denotes the response phase.

Assuming next that x is a slowly varying function with respect to time, a statistical linearisation

treatment (e.g. [18]) yields an equivalent to (4.7) oscillator of the form

ÿ + β(x)ẏ + ω2
0y = v(t), (4.11)
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where

β(x) = β +
− 1

π

∫ 2π

0
sin[ψ] f (−ω0x sin ψ)dψ

xω0

. (4.12)

Further, resorting to stochastic averaging (e.g. [9]), the response amplitude can be decoupled

from the response phase, yielding a first-order SDE for the response amplitude x, i.e.

ẋ = −1

2
β(x)x + πS0

2xω2
0

+
√

πS0

ω0

η(t), (4.13)

where η(t) is a white noise process of unit intensity.

It can be readily seen that (4.13) is an SDE of the form of (2.3) with drift µ and diffusion σ

coefficients given by

µ(x) = −1

2
β(x)x + πS0

2xω2
0

(4.14)

and

σ =
√

πS0

ω0

, (4.15)

respectively. As an illustrative example, the linear plus cubic damping oscillator

ÿ + β ẏ(1 + εẏ2) + ω2
0y = v(t) (4.16)

is considered next. For this case, (4.2) becomes

β(x) = β

(

1 + ε
3

4
ω2

0x2

)

. (4.17)

In (4.17), ε is a parameter controlling the nonlinearity magnitude, whereas in the following, the

initial conditions, y(ti = 0) = 1, ẏ(ti = 0) = 0, and the parameter values
(

ω0 = 1, ζ0 = 0.01, S0 =
6
π
ζ0

)

are considered. Next, taking into account that M(x) = − β

2

(

x2

2
+ ε 3

16
ω2

0x4
)

+ πS0

2ω2
0

log(x),

the PDF of (3.9) for oscillator response amplitude takes the form

p̂(k,n)(xf , tf |1, 0)

= F(tf |1, 0) exp

⎛

⎜

⎜

⎝

−
k

(

xf − 1
)2 + n

(

β

(

x2
f

2
+ ε 3

16
ω2

0x4
f − 1

2
− ε 3

16
ω2

0

)

− πS0

ω2
0

log(xf )

)

tf

2tf
πS0

ω2
0

⎞

⎟

⎟

⎠

,

(4.18)

while for the parameter value ε = 3, the objective functions of (3.14) are plotted for time instants

tf = 3 and tf = 40 in Figures 11 and 12, respectively. In Table 4, the values of k and n as deter-

mined by the numerical optimisation scheme are shown, whereas in Figure 13, the approximate

PDF p̂(k,n) of (4.18) as well as the basic approximation p̂ of (3.6) are plotted and compared with

MCS-based estimated PDFs. It is readily seen that even in this relatively challenging case of

a linear plus cubic damping oscillator, the herein proposed enhanced approximation is in very

good agreement with MCS data and manages to capture the salient features of the PDF.
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Table 4. Computed (k, n) values for various final time

instants tf and starting point (1,1) for example 4.4

tf = 3 tf = 40

k 0.4076 6.5478

n 2.0611 0.3817

FIGURE 11. Example 4.4 objective function of (3.15) for tf = 3.

FIGURE 12. Example 4.4 objective function of (3.15) for tf = 40.
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FIGURE 13. Approximate response PDFs p̂(k,n) and p̂ for a linear plus cubing damping oscillator and

comparisons with the MCS-based (100,000 realisations) PDF estimates.

5 Conclusion

In this paper, an approximate analytical expression for the response transition PDF of a class

of SDEs with constant diffusion, but nonlinear drift coefficients, has been derived based on the

concept of the WPI and on a Cauchy–Schwarz inequality treatment. This has been done in con-

junction with formulating and solving an error minimisation problem by relying on the associated

Fokker–Planck equation operator. In comparison to the basic approximation proposed in [14],

the herein derived approximate PDF exhibits enhanced accuracy as demonstrated by pertinent

MCS data. Overall, a closed form approximate analytical solution PDF has been derived at min-

imal computational cost, which can serve also as a benchmark for assessing the performance of

alternative, more computationally demanding, stochastic dynamics numerical methodologies.
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