

Electronic Structure of LiCoO₂ Surfaces and Effect of Al Substitution

Liang Hong,*,† Linhua Hu,‡ John W. Freeland,§ Jordi Cabana,‡ Serdar Öğüt,† and Robert F. Klie†

Supporting Information

ABSTRACT: The surface properties of LiCoO₂ nanoplatelets, and their chemical modifications with Al3+, were studied using combined experimental and theoretical approaches. Our model shows that the electronic structures of several LiCoO₂ surface facets are significantly different from those of bulk LiCoO₂, due to altered spin states of surface Co³⁺ atoms. O K-edge X-ray absorption revealed a prominent splitting of the Co 3*d*–O 2*p* states, which is attributed to the presence of intermediate-state and/or high-spin-state Co³⁺ at the surface. In particular, the nonpolar (104) surface with intermediatespin-state Co3+ exhibits a strong two-dimensional character of splitting in these states, whereas the polar (001) surface with low-spin-state Co3+ has a similar electronic structure to bulk LiCoO₂. Partial substitution of Co³⁺ by Al3+ through the formation of core-shell architectures increases the ratio of

low-spin-state Co^{3+} , resulting in a distinct change in the intensity ratio of the split Co 3d-O 2p states, as revealed by spectroscopy.

■ INTRODUCTION

Despite being the most widely used cathode material for Li-ion batteries, lithium cobalt oxide (LiCoO₂) undergoes destabilization of its interfaces with the electrolyte upon Li deintercalation. This interfacial instability has been attributed to the oxidized electroactive transition metals present at the surface of subsequently charged electrode. Core-shell nanocrystal heterostructures offer opportunities for improving the stability and functionality of the electrode by introducing inactive ions that passivate the electrode against reaction with the electrolyte. This ability has been recently demonstrated with the compositional and structural tailoring of passivating layers based on aluminum onto LiCoO₂ nanoplatelets,² fully leveraging tools to manipulate material assembly provided by modern nanotechnology. Through synthetic control, the surface is found to form a LiAl_xCo_{1-x}O₂ gradient structure composed of an Al-rich outer layer on a Co-rich core. The resulting heterostructures² presented a significant improvement in electrochemical performance and electrode-electrolyte interface stabilization, compared to bare LiCoO2 nanoparticles.3,4

It is well established that the physical properties, e.g., lattice parameters and magnetic susceptibility, of LiCoO₂ nanocrystals significantly differ from those of bulk LiCoO2 due to surface effects.⁵ The surface energies of bare LiCoO₂ nanoplatelets were previously studied using first-principles density functional theory (DFT) calculations by Kramer and Ceder.⁶ The nanoplatelet was predicted to consist of several low-index surfaces, including (001), (104), (012), and (110) surfaces. Furthermore, Qian et al.7 reported an electronic spin-state transition occurring on the LiCoO2 nanoplatelet surfaces, where intermediate- and high-spin-state (IS and HS) Co³⁺ ions were predicted at (104) and (110) surfaces, respectively, in contrast to the low-spin-state (LS) Co3+ observed in bulk LiCoO₂. The authors also showed that surface energies computed by DFT could be significantly lowered when the Co³⁺ electronic spin state at (104) and (110) surfaces changed from LS to IS and HS, respectively. This effect of Co spin states on surface energies has been further validated by experiments.⁸ Previously, a prominent splitting of the Co 3d and O 2p states was observed in the X-ray absorption spectra of LiCoO₂ nanocrystals of approximately 70 nm in size. The splitting was attributed to the different electronic structures of Co and O at the surface compared to the bulk. A similar observation has been reported for Ti-doped Li-Ni_{1-x-y}Mn_xCo_yO₂ cathode materials and was attributed to a surface effect. However, a fundamental understanding of such a splitting has not yet been provided. Moreover, the atomic and electronic structures of the Al-substituted LiCoO₂ surfaces, which are critical to achieving precise control of the physical and electrochemical properties of the nanoelectrode with the desired functionality, are yet to be characterized and understood.11

In this work, we perform a combined experimental and theoretical study to address the structural and electronic properties of the bare and Al-substituted LiCoO₂ surfaces, using scanning transmission electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, electron energyloss spectroscopy, and first-principles DFT modeling approaches. O K-edge X-ray absorption spectroscopy reveals a

Received: December 4, 2018 Revised: February 25, 2019 Published: March 18, 2019

8851

Department of Physics and Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States §X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

The Journal of Physical Chemistry C

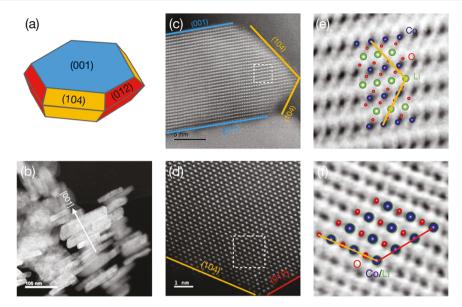


Figure 1. (a) Representative shape of a LiCoO₂ nanoplatelet with (001), (104), and (012) surfaces represented by blue, yellow, and red colors, respectively. (b) STEM-LAADF image at low magnification. (c) Atomic-resolution STEM-HAADF image along [010] with (001) and (104) surfaces marked. (d) Atomic-resolution STEM-HAADF image along [42 $\overline{1}$] with (104) and (012) surfaces marked. (e) Atomic-resolution STEM-ABF image taken from the dashed square area in (c). The DFT-optimized structure along [010] is illustrated as the inset with (104) surface marked. (f) Atomic-resolution STEM-ABF image taken from the dashed square area in (d). The DFT-optimized structure along [42 $\overline{1}$] is illustrated as the inset with (104) and (012) surfaces marked. The Li, Co, and O atoms are represented by green, indigo, and red balls, respectively.

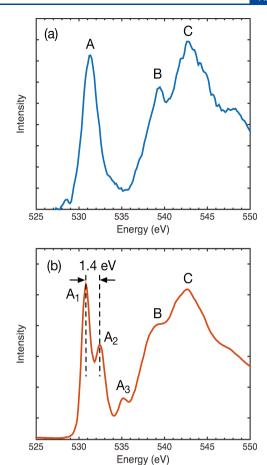
prominent splitting of the Co 3d–O 2p hybridized states resulting from the surface IS and/or HS Co³⁺. The (104) surface with IS state Co³⁺, which exhibits a strong in-plane feature of splitting in the hybridized Co 3d–O 2p states, plays a predominant role in the electronic structure of LiCoO₂ nanoplatelets. Furthermore, Al substitution on the LiCoO₂ nanoplatelets reduces the surface Co³⁺ IS/LS ratio, resulting in the intensity change of O K pre-edge peaks. These results establish a fundamental understanding of the structure–property relationship in LiCoO₂ nanoplatelets and advance our ability to precisely tailor the surface properties to enhance the optimized stability and performance of the electrode material in Li-ion batteries.

METHODS

Experimental. The LiCoO₂ nanoplatelet samples were synthesized using a hydrothermal process, followed by thermal annealing, as introduced in ref 2. Three samples were used for experiments in this work: (1) bare LiCoO₂ nanoplatelets, marked as bare; (2) surface-modified LiCoO₂ nanoplatelets with a theoretical surface Al/Co ratio of 2%, marked as 1Al; (3) surface-modified LiCoO₂ nanoplatelets with a theoretical surface Al/Co ratio of 6%, marked as 3Al. The details of sample synthesis are presented in the Supporting Information.

The scanning transmission electron microscopy (STEM) images and electron energy-loss (EEL) spectra were obtained using the aberration-corrected JEOL JEM-ARM200CF microscope operating at an acceleration voltage of 200 kV, which allows a 78 pm spatial resolution and a 0.35 eV energy resolution. The high-angle annular dark-field (HAADF), lowangle annular dark-field (LAADF), and annular bright-field (ABF) images were acquired using a convergence semi-angle of 23 mrad and a collection angle from 90 to 175 mrad for HAADF imaging, 40 to 90 mrad for LAADF imaging, and 11 to 23 mrad for ABF imaging. EELS was collected using the upgraded Gatan Quantum imaging filter with a convergence

angle of 30 mrad and a collection angle with 35 mrad. An energy dispersion of 0.3 eV/channel was used for the measurement of the O K-edge spectrum.


Powder X-ray diffraction (XRD) patterns were collected on a Bruker D8 advanced X-ray diffractometer. X-ray absorption spectroscopy (XAS) was conducted at the O K-edge and Co L-edge at beamline 4-ID-C at the Advanced Photon Source. Samples were loaded into the measurement chamber from an Ar-filled transfer stage, using an Ar-filled glovebag. To examine the electronic properties at materials surface, the spectra were collected utilizing the sample photocurrent for the total electron yield (TEY), which probes the surface of a material at $\sim 10^{-9}$ Torr. Data were obtained at a spectral resolution of 0.2 eV with a 2 s dwell time. Three scans were performed on each sample, at each absorption edge, and scans were averaged to maximize the signal-to-noise ratio. An energy reference for Co and O was recorded simultaneously with the XAS for accurate energy alignment.

Modeling. First-principles density functional theory (DFT) calculations were carried out using the generalized gradient approximation (GGA) with the Hubbard U correction (GGA + U) method, as implemented in Vienna Ab initio Simulation Package (VASP). 13,14 The GGA + U method has been reported to be a robust method for modeling the LiCoO2 system, and the effective U value for Co 3d electrons was chosen as U - J = 3.3 eV in accordance with previous theoretical studies.^{6,7} All of the calculations were performed using a plane wave cutoff of 550 eV. Slab models with two symmetric surfaces separated by a vacuum of 20 Å were used to simulate the LiCoO2 surfaces. Monkhorst-Pack k-point grids of $8 \times 4 \times 1$ and $16 \times 8 \times 1$ were used for geometry optimization and density of states (DOS) calculations, respectively. Two polar surfaces, (001) and (012), and two nonpolar surfaces, (104), and (110), were considered in this work. For the polar (001) and (012) surfaces, 0.5 monolayer (ML) of Li and O was considered as the terminations, respectively, to compensate the dipoles in the slabs. ^{6,15} All of the slabs were therefore stoichiometric with the chemical formula of $(\text{LiCoO}_2)_n$. We found that n=12, corresponding to a slab thickness of ~ 20 Å, is enough to simulate the surface properties. The surface models are shown in the Supporting Information. Core—hole effects were not included in our calculations, as the O K pre-edge features have been shown to be better reproduced with the use of Hubbard U without core—hole effects in ref 16.

■ RESULTS AND DISCUSSION

Bare LiCoO₂ Nanoplatelets. The bare LiCoO₂ sample was characterized using aberration-corrected STEM imaging. The equilibrium shape of LiCoO₂ single particle observed from the STEM images, shown in Figure 1a, consists of (001), (104), and (012) surfaces, among which (001) possesses the largest surface area. LAADF images at low magnification, such as the example shown in Figure 1b, reveal that the nanoplatelets favor extended stacking along the [001] direction, which largely reduces the exposed area of (001) surface in the nanoplatelets. The atomic structures of (001), (104), and (012) surfaces in the LiCoO₂ nanoplatelet can be directly observed through atomic-resolution HAADF imaging along [010] and $[42\overline{1}]$ zone directions, shown in Figure 1c,d, respectively. The three surfaces are atomically sharp without significant structural changes compared with the bulk area. The atomic structure is further characterized from the near-edge area using atomic-resolution ABF imaging, which enables the observation of O columns, shown in Figure 1e,f. It can be seen that the STEM-resolved LiCoO2 structure is in good agreement with the DFT-optimized structure in terms of the lattice spacing, surface orientation, and elemental arrangement, providing validation for the structural models used in the DFT simulation.

The energy-loss near-edge structure (ELNES) and X-ray absorption near-edge structure (XANES) at the O K-edge were measured using EELS in point mode and XAS in TEY mode, respectively, as shown in Figure 2. Similarly, intense signals were observed in both O K-edge ELNES and XANES at 537 and 543 eV, which are associated with the hybridization of O 2p and Co 4sp states, respectively. In contrast, obvious differences were found in pre-edge signals (onset features), at around 531 eV, which originate from the hybridization of O 2p and Co 3d states. A single pre-edge peak at 531 eV (peak A) was detected in ELNES, whereas the XANES showed two peaks A₁ and A₂ at 530.6 and 532 eV, respectively, with a measured splitting $\Delta = 1.4$ eV. The minor peak, A₃, at 535.2 eV is usually assigned to Li₂CO₃ surface impurities¹⁷ and will not be discussed in detail in this work. The difference between the ELNES and XANES lies in the probing depth; although EELS is a transmission technique, XAS was measured using a photoelectron detector that probes less than 10 nm into the material. Therefore, the results suggest that the electronic structures at the LiCoO₂ bulk and surface are significantly different. As demonstrated before, the splitting of the Co 3d and O 2p states has not been reported in previous XAS studies. We attributed this to the fact that LiCoO₂ studies of materials with a large grain size of limited surface areas will not exhibit the effects reported here, which appear to be the results of specific surface terminations and facets. In the following discussion, we will focus on the two split pre-edge peaks, A₁ and A2, in LiCoO2 nanoplatelets.

Figure 2. (a) O K-edge ELNES for bare $LiCoO_2$ nanoplatelets. Three characteristic peaks are labeled as A, B, and C. (b) O K-edge XANES for bare $LiCoO_2$ nanoplatelets. The characteristic peaks are labeled as A_1 , A_2 , A_3 , B, and C.

The DFT-calculated properties for the bare $LiCoO_2$ surfaces are summarized in Table 1. The relative stability of each

Table 1. DFT-Calculated LiCoO₂ Surface Properties: Lattice Constants a and b, Surface Co Coordination, Surface Co $^{3+}$ Spin State, and Surface Energy γ

surface	polarity	a (Å)	b (Å)	$\angle a, b$ (deg)	Co coord.	spin state	(J/m^2)
(001)	polar	2.832	5.663	60.0	6	LS	1.040
(012)	polar	2.832	4.987	90.0	5	IS	1.652
(104)	nonpolar	2.832	6.396	63.7	5	IS	0.791
(110)	nonpolar	4.987	4.904	70.9	4	HS	1.532

surface can be indicated by the calculated surface energy, γ . Among all of the investigated surfaces, the nonpolar (104) surface is found to possess the lowest energy. The experimentally dominant (001) surface is the second lowest, but the Li termination means that its energy is notably sensitive to the chemical potential of surface Li⁺. More specifically, the surface energy of (001) can decrease significantly from about 1-0.4 J/m², as the Li chemical potential is lowered. Similarly, the polar O-terminated (012) surface energy can also be lowered to a value comparable to the (104) surface under O-rich conditions.

According to the calculated density of states (DOS) projected on the Co $3d\ t_{2g}$ and e_g orbitals, the surface Co

The Journal of Physical Chemistry C

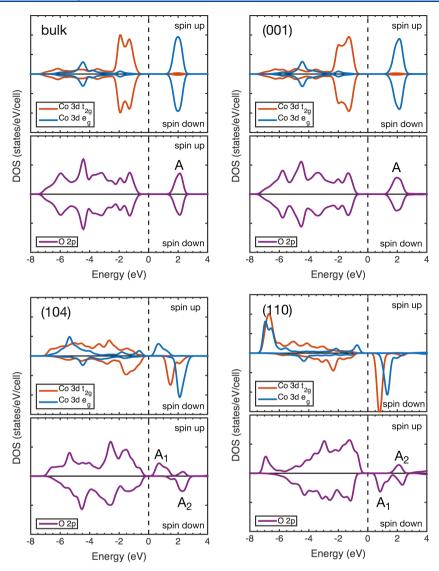


Figure 3. Spin-resolved DOS projected on Co 3d and O 2p orbitals for the LiCoO₂ bulk, (001), (104), and (110) surfaces. The characteristic peaks are marked by A, A₁, and A₂. Fermi energy is shifted to 0 eV.

possesses different spin states on different surfaces due to the changes in the Co coordination. The sixfold coordinated Co³⁺ ions in the polar (001) surface are in the low-spin state (LS, $t_{2\rho}^6 e_g^0$) and the 5-fold Co³⁺ ions in the polar (012) and nonpolar (104) surfaces are in the intermediate-spin state (IS, $t_{2\rho}^5 e_{\rho}^1$), whereas the fourfold Co3+ ions in the nonpolar (110) surface are in the high-spin state (HS, $t_{2g}^4e_g^2$). The spin-resolved projected DOS on Co 3d (t_{2g} and e_g) and O 2p orbitals are plotted for bulk LiCoO₂, (001), (104), and (110) surfaces in Figure 3. The DOS profile for the polar (001) surface is similar to that of bulk $LiCoO_2$, where the Co t_{2g} orbital is fully occupied, whereas the e_{σ} orbital is empty, lying 2 eV above the Fermi level. The characteristic O peak A at 2 eV above the Fermi level, originating from the hybridization with Co e_{σ} orbitals, corresponds to peak A in the O K-edge ELNES. Compared with the DOS in the bulk, the unoccupied Co e_{σ} orbital in the (104) surface splits into two components at 0.8 eV (spin up) and 2.3 eV (spin down) above the Fermi level due to the partial occupancy of the e_g orbital. Accordingly, the unoccupied O 2p states, A1 at 0.8 eV and A2 at 2.3 eV, can be attributed to the hybridization with the Co unoccupied e_{σ} split states. The DOS profile for the (012) surface with IS Co3+

exhibits similar features as that for the (104) surface (shown in the Supporting Information). In the DOS of (110) surface with HS Co^{3+} , the unoccupied O 2p states A_1 at 0.8 eV can be attributed to the hybridization with the unoccupied Co $t_{2\sigma}$ states at 0.8 eV above the Fermi level, whereas the A2 peak at 2.3 eV stems from the antibonding states with Co underneath the surface. These two distinct O states, A_1 and A_2 , found in the (104), (012), and (110) surfaces from the DFT modeling reproduce the experimentally observed peak splitting in O Kedge XANES. Indeed, the splitting energies from the DFT modeling ($\Delta E = 1.5 \text{ eV}$) and the XAS ($\Delta = 1.4 \text{ eV}$) are in good agreement. Similar splitting behavior at the O pre-edge has been reported in Ca₃Co₄O₉ thin films with HS Co⁴⁺. ¹⁸ It further appears that the Co L_3/L_2 -ration is not a good measure for the Co3+ spin state, whereas the O K-edge pre-peak has previously been used to quantify the Co-ion spin state, for example, in LaCoO₃.¹⁹

To further explore the O K-edge splitting, the orbital-projected DOS for the O atoms at the (104) surface, which has the lowest surface energy, is illustrated with the surface model in Figure 4. As mentioned above, the surface fivefold $\mathrm{Co^{3+}}$ ion is in an IS state, whereas the sixfold $\mathrm{Co^{3+}}$ ions underneath the

The Journal of Physical Chemistry C

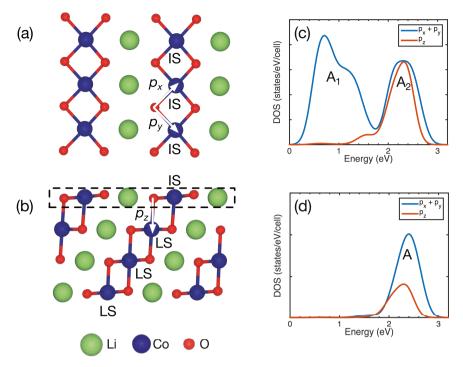


Figure 4. (a) Top view of the LiCoO₂ (104) surface structure with IS Co³⁺. The directions of O p_x and p_y states are marked by white arrows. (b) Side view of the LiCoO₂ (104) surface structure with IS and LS Co³⁺ in different layers. The direction of O p_z state is marked by a white arrow and the surface layer is marked by the dashed rectangles. (c) DOS (summed spin-up and spin-down states) of in-plane ($p_x + p_y$) and out-of-plane (p_z) O unoccupied states from the surface layer. The split peaks from in-plane states are marked by A₁ and A₂. (d) DOS (summed spin-up and spin-down states) of in-plane ($p_x + p_y$) and out-of-plane (p_z) O unoccupied states from the layer underneath the surface. The peak from in-plane states is marked by A. Fermi energy is shifted to 0 eV.

surface are in an LS state. The splitting is only observed in the O p_x and p_y states (peaks A_1 and A_2 in Figure 4b) from the surface layer, stemming from the in-plane IS Co-O bonding, which has a strong two-dimensional character. On the other hand, the O p_z states, stemming from the out-of-plane LS Co-O bonding, only contribute to peak A2. In addition to the (104) surface, the (012) surface with IS Co3+ and (110) surface with HS Co³⁺ also contribute to the splitting of O preedge, in accordance with the analysis discussed previously. Consequently, the pre-edge splitting is ascribed to the presence of surface IS and/or HS Co³⁺, and the intensity of peak A₁ can be employed to directly assess the amount of surface IS and/or HS Co³⁺. This conclusion serves to rationalize the observation of pre-edge splitting in the O K-edge XANES of LiCoO2 nanoplatelets, which possess larger surface areas than bulk LiCoO₂ materials previously measured in the literature.^{20,21}

Effects of Al Substitution on the LiCoO₂ Surface. The effects of the substitution of Co by Al on the LiCoO2 surface properties were studied using core-shell heterostructures based on LiCoO₂ nanoplatelets modified with conformal Alrich layers, where the compositional gradient into the interior, from a pure aluminum oxide layer to LiAl_xCo_{1-x}O₂ solid solutions, can be controlled by changing the annealing temperature.² Figure 5 shows the XRD patterns for the two Al-substituted LiCoO₂ samples (1Al and 3Al) and the bare LiCoO₂ at different temperatures. The peaks shown in the bare sample correspond to the layered structure of the hightemperature form of LiCoO₂, as demonstrated by the splitting of the (006)/(012) and (108)/(110) peaks, 3,22 without any visible impurities. This layered structure is preserved, in all cases, after the introduction of Al into the sample. The magnified view of the (003) reflection reveals a gradual shift to

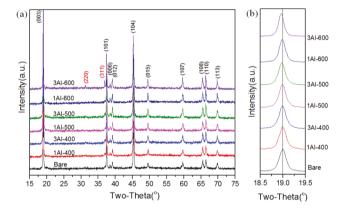


Figure 5. (a) XRD patterns of LiCoO₂ nanocrystal heterostructures. The bare sample was calcined at 500 °C for 3 h. Other samples were fabricated by modifying the surface of the bare LiCoO₂ nanoplatelets with different Al concentrations (1Al, 3Al) and thermal treatments (400, 500, and 600 °C) for 3 h. Miller indices (003), (101), (006), (012), (104), (015), (107), (108), (110), and (113) correspond to LiCoO₂, whereas (220) and (311) correspond to Co₃O₄. (b) Zoom between 18.5 and 19.5°.

lower angles for 3Al as the temperature increased from 500 to 600 °C; no shift was observed in any other samples. This observation suggests the introduction of Al on LiCoO₂ as a discrete aluminum oxide film at 400 °C, but this oxide subsequently reacts with LiCoO₂, forming LiAl_xCo_{1-x}O₂ and Co₃O₄ upon further heating, as indicated by the distinct (220) and (311) peaks of the latter in 3Al made at 600 °C.²

Figure 6 shows the O K-edge XANES for the 1Al and 3Al samples at different annealing temperatures. Both 1Al and 3Al samples at 400 $^{\circ}$ C show the peaks with a similar intensity

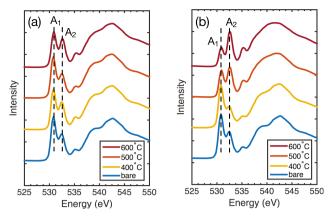


Figure 6. O K-edge XANES of LiCoO₂ nanocrystal heterostructures, (a) 1Al and (b) 3Al, at temperatures of 400, 500, and 600 °C. Data for bare LiCoO2 is shown for comparison. The split pre-edge peaks are marked as A₁ and A₂.

profile compared with the bare LiCoO2, suggesting that the local chemical environment of Co at the surface does not change with the presence of Al at 400 °C, as would be expected from an Al₂O₃/LiCoO₂. As the annealing temperature increased to 600 °C, LiAl_xCo_{1-x}O₂ gradients were introduced. For the 1Al sample, the intensity of peak A₁ slightly decreases, whereas that of peak A₂ slightly increases. This trend is significantly more pronounced for the 3Al sample, where the A_1/A_2 intensity ratio even reverses at the highest temperature. This change suggests that the Al concentration has a significant effect on the electronic structure of the LiAl, $Co_{1-x}O_2$ surface. Co L_3 - and L_2 -edge XANES were also measured for the samples to assess whether the Co valence state was affected by the annealing process, as well. However, no visible peak shift or intensity change can be observed compared with the bare LiCoO₂ (Figure 7). Therefore, the surface Co valence remains +3, as indicated by the L_3/L_2 intensity ratio, as Al3+ is introduced in the surface of the transition-metal oxide.

The LiAl_xCo_{1-x}O₂ surfaces were simulated by replacing the surface Co with Al atoms in the extended 2 × 2 surface cell with Al concentrations x = 0.5 and 0.25. In the optimized surface structures (shown in the Supporting Information), the differences between Al-O and Co-O bond lengths are found

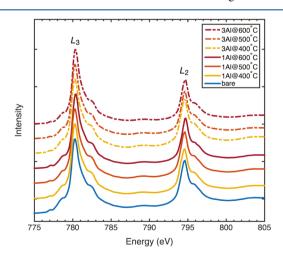


Figure 7. Co $L_{3,2}$ -edge XANES for bare LiCoO₂, 1Al and 3Al, at different temperatures.

to be less than 0.05 Å, and no significant surface reconstruction is observed. As shown in Table 2, the surface energy of the Al-

Table 2. DFT-Calculated LiAl_xCo_{1-x}O₂ (x = 0.5, 0.25) Surface Properties: Surface Co³⁺ Spin State, Surface Energy γ , and Surface Energy Difference $\Delta \gamma$ between Al-Substituted and Bare LiCoO2

surface	x	spin state	$\gamma \left(J/m^2 \right)$	$\Delta \gamma \; \big(J/m^2\big)$
(001)	0.5	LS	1.049	0.010
(001)	0.25	LS	1.035	-0.005
(104)	0.5	IS	0.760	-0.032
(104)	0.25	IS	0.764	-0.027
(012)	0.5	IS	1.805	0.153
(110)	0.5	HS	1.702	0.169

substituted (001) surface barely changes, whereas that of the Al-substituted (104) surface slightly lowers. The surface energy of (012) and (110) increases after Al substitution at x = 0.5, suggesting that the (012) and (110) surfaces might be less favorable for this chemical substitution than the (001) and (104) surfaces.

The effect of Al substitution on the surface electronic structure is further explored through the DOS projected on O unoccupied 2p orbitals for the (104) surface, as shown in Figure 8. In both Al-substituted cases, compared with the bare

Figure 8. DOS (summed spin-up and spin-down states) of in-plane $(p_x + p_y)$ and out-of-plane (p_z) O unoccupied states at LiAl_xCo_{1-x}O₂ (104) surfaces, where $\alpha = 0.25$ and 0.5. The split peaks from in-plane states are marked by A1 and A2. Fermi energy is shifted to 0 eV.

 $LiCoO_2$ (104) surface, the in-plane O 2p states $(p_x + p_y)$ remain split into two peaks A1 and A2 above the Fermi level, whereas the out-of-plane O 2p states (p_z) slightly shift to lower energy due to the tilting of the out-of-plane Co-O bonds. As the Al concentration x increases from 0.25 to 0.5, the intensities of both A_1 and A_2 peaks reduce compared to that of the out-of-plane states, since the number of the in-plane IS Co-O bonds reduces as more surface IS Co is substituted by Al, whereas the number of the out-of-plane LS Co-O remains the same. Furthermore, the effect of Al substitution of LS Co is also examined in the layers underneath the (104) surface as well as in the (001) surface. No significant change is found in the DOS of O 2p orbitals after Al substitution except the decreased intensity of the single peak A (shown in the Supporting Information). Therefore, the experimentally observed decrease in the A₁/A₂ intensity ratio as the Al concentration increases in the form of a LiAl_xCo_{1-x}O₂ solid solution at higher temperature can be attributed to the decreased surface Co^{3+} IS/LS ratio. In the case of 3Al sample at 600 °C, the intensity of peak A_1 is significantly suppressed, whereas the intensity of peak A_2 increases accordingly, as more LS Co^{3+} dominates the surface.

CONCLUSIONS

Combining experimental and theoretical results, we observe that the LiCoO₂ nanoplatelet mainly consists of atomically sharp (001), (104), and (012) surfaces, which have electronic properties that, in the case of the latter two facets, deviate from bulk LiCoO₂. From the comparison of O K-edge EELS and, especially, XAS, we uncover the existence of splitting of signals at the pre-edge due to surface effects. DFT simulation results indicate that the splitting originates from the existence of IS and/or HS Co3+ at different surface facets due to altered Co coordinations from the ideal octahedron. From the projected DOS of Co and O at the (104) surface, which is predicted to be lowest in energy, we find that the splitting of the Co 3d–O 2p hybridized states is induced by the in-plane IS Co-O bonding with a strong two-dimensional character. Therefore, the existence of splitting directly reflects the amount of surface IS and/or HS Co³⁺. Substitution of Co³⁺ by Al³⁺ on the surface of the LiCoO2 nanoplatelets, through core-shell structures with compositional gradients, did not affect the Co valence; yet, the intensity ratio of O pre-edge reverted as the Al concentration increased, and DFT modeling indicated that Al substitution reduced the surface IS/LS ratio, explaining the changes in intensity ratio. Our work illustrates that the electronic properties of LiCoO2 surfaces can be tailored by controlling crystal growth and chemical compositions at the atomic level, providing the opportunities for designing and developing novel Li-ion battery materials with higher stability and better performance.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b11661.

(1) Synthesis method; (2) DFT models for simulating the (001), (104), (012), and (110) surfaces (Figure S1); (3) Calculation method of surface energies; (4) Projected DOS for the LiCoO₂ (012) surface (Figure S2); (5) DFT-optimized structures for Al-substituted LiCoO₂ (104) surfaces (Figure S3); (6) Projected DOS for Al-substituted LiCoO₂ (001) surfaces (Figure S4) (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: ikiddo1412@gmail.com. Phone: +1 (312)-888-6350.

ORCID ®

Liang Hong: 0000-0003-1499-5806 Linhua Hu: 0000-0002-0177-3983 Jordi Cabana: 0000-0002-2353-5986

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Synthesis and X-ray analysis by L.H.H. and J.C. were supported by the National Science Foundation under Grant No. CBET-1605126. DFT modeling and STEM/EELS

characterization by L.H., S.O., and R.F.K. were supported by the National Science Foundation DMR Ceramics program under Grant No. NSF-1831406. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357. Acquisition of JEOL JEM-ARM200CF was supported by an MRI-R² grant from the National Science Foundation (DMR-0959470). The Gatan Quantum GIF acquisition at UIC was supported by an MRI grant from the National Science Foundation (DMR-1626065). The authors acknowledge the use of the Electron Microscopy Service and the High-Performance Computing Service at the University of Illinois at Chicago. The authors thank Dr. Hakim Iddir and Dr. Juan Garcia for useful discussions and suggestions.

REFERENCES

- (1) Alva, G.; Kim, C.; Yi, T.; Cook, J. B.; Xu, L.; Nolis, G. M.; Cabana, J. Surface chemistry consequences of Mg-based coatings on $LiNi_{0.5}Mn_{1.5}O_4$ electrode materials upon operation at high voltage. *J. Phys. Chem. C* **2014**, *118*, 10596–10605.
- (2) Hu, L.; Bruner, P.; Grehl, T.; Brongersma, H. H.; Cabana, J. Control of chemical structure in core-shell nanocrystals for the stabilization of battery electrode/electrolyte interfaces. *Chem. Mater.* **2017**, *29*, 5896–5905.
- (3) Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO₂ electrode. *J. Am. Chem. Soc.* **2007**, *129*, 7444–7452.
- (4) Chen, H.; Grey, C. P. Molten salt synthesis and high rate performance of the "desert-rose" form of LiCoO₂. *Adv. Mater.* **2008**, 20, 2206–2210.
- (5) Okubo, M.; Kim, J.; Kudo, T.; Zhou, H.; Honma, I. Anisotropic surface effect on electronic structures and electrochemical properties of LiCoO₂. *J. Phys. Chem. C* **2009**, *113*, 15337–15342.
- (6) Kramer, D.; Ceder, G. Tailoring the morphology of LiCoO₂: A first principles study. *Chem. Mater.* **2009**, *21*, 3799–3809.
- (7) Qian, D.; Hinuma, Y.; Chen, H.; Du, L.-S.; Carroll, K. J.; Ceder, G.; Grey, C. P.; Meng, Y. S. Electronic spin transition in nanosize stoichiometric lithium cobalt oxide. *J. Am. Chem. Soc.* **2012**, *134*, 6096–6099
- (8) Maram, P. S.; Costa, G. C.; Navrotsky, A. Experimental confirmation of low surface energy in LiCoO₂ and implications for lithium battery electrodes. *Angew. Chem., Int. Ed.* **2013**, *52*, 12139–12142
- (9) Kwon, B. J.; Phillips, P. J.; Key, B.; Dogan, F.; Freeland, J. W.; Kim, C.; Klie, R. F.; Cabana, J. Nanocrystal heterostructures of LiCoO₂ with conformal passivating shells. *Nanoscale* **2018**, *10*, 6954–6961.
- (10) Lin, F.; Nordlund, D.; Pan, T.; Markus, I. M.; Weng, T.-C.; Xin, H. L.; Doeff, M. M. Influence of synthesis conditions on the surface passivation and electrochemical behavior of layered cathode materials. *J. Mater. Chem. A* **2014**, *2*, 19833–19840.
- (11) Cabana, J.; Kwon, B. J.; Hu, L. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Liion batteries. *Acc. Chem. Res.* **2018**, *51*, 299–308.
- (12) Klie, R.; Gulec, A.; Guo, Z.; Paulauskas, T.; Qiao, Q.; Tao, R.; Wang, C.; Low, K.; Nicholls, A.; Phillips, P. The new JEOL JEM-ARM200CF at the University of Illinois at Chicago. *Cryst. Res. Technol.* **2014**, *49*, 653–662.
- (13) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev.* B **1996**, *54*, 11169.
- (14) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **1999**, *59*, 1758.
- (15) Garcia, J. C.; Bareño, J.; Yan, J.; Chen, G.; Hauser, A.; Croy, J. R.; Iddir, H. Surface structure, morphology, and stability of Li

- $(Ni_{1/3}Mn_{1/3}Co_{1/3})O_2$ cathode material. J. Phys. Chem. C **2017**, 121, 8290–8299.
- (16) Juhin, A.; De Groot, F.; Vankó, G.; Calandra, M.; Brouder, C. Angular dependence of core hole screening in LiCoO 2: A DFT+ *U* calculation of the oxygen and cobalt *K*-edge x-ray absorption spectra. *Phys. Rev. B* **2010**, *81*, No. 115115.
- (17) Yogi, C.; Takamatsu, D.; Yamanaka, K.; Arai, H.; Uchimoto, Y.; Kojima, K.; Watanabe, I.; Ohta, T.; Ogumi, Z. Soft X-ray absorption spectroscopic studies with different probing depths: Effect of an electrolyte additive on electrode surfaces. *J. Power Sources* **2014**, 248, 994–999.
- (18) Klie, R. F.; Qiao, Q.; Paulauskas, T.; Gulec, A.; Rebola, A.; Öğüt, S.; Prange, M. P.; Idrobo, J.; Pantelides, S. T.; Kolesnik, S.; et al. Observations of Co⁴⁺ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca³Co⁴O⁹. *Phys. Rev. Lett.* **2012**, *108*, No. 196601.
- (19) Klie, R.; Zheng, J.; Zhu, Y.; Varela, M.; Wu, J.; Leighton, C. Direct measurement of the low-temperature spin-state transition in LaCoO₃. *Phys. Rev. Lett.* **2007**, *99*, No. 047203.
- (20) Yoon, W.-S.; Kim, K.-B.; Kim, M.-G.; Lee, M.-K.; Shin, H.-J.; Lee, J.-M.; Lee, J.-S.; Yo, C.-H. Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO₂ investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B **2002**, 106, 2526–2532.
- (21) Graetz, J.; Hightower, A.; Ahn, C.; Yazami, R.; Rez, P.; Fultz, B. Electronic structure of chemically-delithiated LiCoO₂ studied by electron energy-loss spectrometry. *J. Phys. Chem. B* **2002**, *106*, 1286–1289.
- (22) Li, C.-N.; Yang, J.-M.; Krasnov, V.; Arias, J.; Nieh, K.-W. Phase transformation of nanocrystalline LiCoO₂ cathode after high-temperature cycling. *Electrochem. Solid-State Lett.* **2008**, *11*, A81–A83.