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Abstract This article presents a fast sparse grid based space–time boundary element
method for the solution of the nonstationary heat equation.Wemake an indirect ansatz
based on the thermal single layer potential which yields a first kind integral equation.
This integral equation is discretized by Galerkin’s method with respect to the sparse
tensor product of the spatial and temporal ansatz spaces. By employing theH-matrix
and Toeplitz structure of the resulting discretized operators, we arrive at an algorithm
which computes the approximate solution in a complexity that essentially corresponds
to that of the spatial discretization. Nevertheless, the convergence rate is nearly the
same as in case of a traditional discretization in full tensor product spaces.

Mathematics Subject Classification 35K20 · 65F50 · 65M38

1 Introduction

The numerical solution of parabolic evolution problems arises inmany applications. In
case of the non-stationary heat equation, a boundary reduction by means of boundary
integral equations is possible. Provided that the heat equation is homogeneous, only
the n-dimensional surface Γ := ∂Ω needs to be discretized instead of the spatial
domain Ω ⊂ R

n+1, n = 1, 2. If one uses NΓ degrees of freedom for discretizing
functions on the surface Γ and N I degrees of freedom for discretizing functions on

B Johannes Tausch
tausch@smu.edu

Helmut Harbrecht
helmut.harbrecht@unibas.ch

1 Departement Mathematik und Informatik, Universität Basel, Basel, Switzerland

2 Department of Mathematics, Southern Methodist University, Dallas, TX, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-018-0963-5&domain=pdf


240 H. Harbrecht, J. Tausch

the time interval I , then a traditional Galerkin discretization would have NΓ · N I

degrees of freedom. By “traditional” we mean the discretization of functions on Γ × I
in the full tensor product space. On the other hand, by using the sparse tensor product
between the spatial and temporal ansatz space, this number of the degrees of freedom
can be considerably reduced to essentially max{NΓ , N I } degrees of freedom, see e.g.
[3,7,23]. Here and in the sequel, essentiallymeans that the complexity estimatemay be
multiplied by (poly-) logarithmic factors. In the context of space–time discretizations,
this fact has been exploited in e.g. [8,18] for finite element methods and in [5] for
boundary element methods.

The nonlocality of boundary integral operators results in densely populated system
matrices and algorithms that scale at least quadratically in the number of degrees of
freedom, unless fast methods are used. Such methods have been developed recently
for the layer potentials of the heat equation when using the full tensor product space,
see e.g. [19,20], but for sparse tensor product spaces this is still an open problem.

This article presents a fast algorithmwhich scales essentially linearly in the number
of degrees of freedom of the sparse tensor product space. Consequently, we are able
to take full advantage of the reduction of the degrees of freedom. For further literature
on boundary element methods for sparse grid discretizations, we refer the reader to
e.g. [4,9,17,21].

The rest of the article is organized as follows. Section 2 introduces the Dirichlet
problem for the heat equation and the indirect boundary integral reformulation using
the thermal single layer operator. The traditional Galerkin discretization in full tensor
product spaces is discussed in Sect. 3. The sparse tensor product discretization is then
considered in Sect. 4. In particular,we show that the convergence rate is nearly the same
as for the traditional Galerkin discretization provided that the solution offers enough
smoothness in terms of Sobolev spaces of dominant mixed derivatives. Section 5
describes the numerical realization of a fast boundary element method which scales
essentially linear in the dimension of the sparse tensor product space. This algorithm
heavily relies upon the fact that the stiffness matrix is Toeplitz in time. It remains to
show that the spatial portion of the system matrix can also be applied efficiently. This
is the topic of Sect. 6 while the related error analysis is derived in Sect. 7. Finally,
numerical results obtained with our implementation of the algorithm is presented in
Sect. 8.

To keep the technical level of the discussion at a minimum, we focus here on the
thermal single layer potential operator. The treatment of the double layer, adjoint and
hypersingular operators is analogous which permits the solution of a wide range of
initial boundary value problems of the Heat equation. The discussion is limited to
homogenous initial conditions and source terms. While the efficient treatment of the
corresponding integral operators with sparse grids is conceivable, the implementation
would likely require significant modifications of the methodology.

2 Problem formulation

Let Ω ⊂ R
n+1, n = 1, 2, be a simply connected domain with piecewise smooth

boundary Γ := ∂Ω and let I = (0, T ) be a time interval for a given T > 0. We

123



A fast sparse grid based space–time boundary element… 241

consider the following Dirichlet boundary problem for the heat equation: Seek u ∈
H1(Ω) ⊗ L2(I ) ∩ H−1(Ω) ⊗ H1(I ), such that

∂t u − Δu = 0 in Ω × I (2.1)

with boundary condition
u = f on Γ × I (2.2)

and initial condition
u = 0 on Ω × {0}. (2.3)

To solve the problem (2.1)–(2.3), we introduce the thermal single layer operator

Vg(x, t) =
∫ t

0

∫
Γ

G(‖x − y‖, t − τ)g(y, τ )dσydτ (2.4)

where x ∈ Γ and G(·, ·) is the heat kernel, given by

G(r, t) = 1

(4π t)
n+1
2

exp

(
−r2

4t

)
, t ≥ 0 (2.5)

and G(r, t) = 0 if t < 0.
In view of the continuity of the single layer potential operator at the boundary, the

ansatz

u(x, t) =
∫ t

0

∫
Γ

G(‖x − y‖, t − τ)q(y, τ )dσydτ (2.6)

amounts to the boundary integral equation

Vq = f on Γ × I. (2.7)

Once (2.7) has been solved for q, the solution u of the heat equation (2.1)–(2.3)
can be computed for all (x, t) ∈ Ω × I by means of (2.6).

To describe the mapping properties of the boundary integral operator V , let us
consider for r, s ≥ 0 the anisotropic Sobolev spaces of the following form

Hr,s(Γ × I ) := Hr (Γ ) ⊗ L2(I ) ∩ L2(Γ ) ⊗ Hs
0 (I ), (2.8)

where the index 0 indicates that zero initial conditions at t = 0 are incorporated. The
norm of Hr,s(Γ × I ) is

‖u‖Hr,s (Γ ×I ) = ‖u‖Hr (Γ )⊗L2(I ) + ‖u‖L2(Γ )⊗Hs (I ).

Moreover, if r, s < 0, the space Hr,s(Γ × I ) is defined by duality, i.e., Hr,s(Γ ×
I ) := (H−r,−s(Γ × I )

)′. Then, in accordance with [6,16], the operator V defines a

bilinear form on H− 1
2 ,− 1

4 (Γ × I ) which is continuous

〈V p, q〉L2(Γ ×I ) � ‖p‖H− 1
2 ,− 1

4 (Γ ×I )
‖q‖H− 1

2 ,− 1
4 (Γ ×I )

for all p, q ∈ H− 1
2 ,− 1

4 (Γ × I )
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and elliptic

〈V p, p〉L2(Γ ×I ) � ‖p‖2
H− 1

2 ,− 1
4 (Γ ×I )

for all p ∈ H− 1
2 ,− 1

4 (Γ × I ).

Consequently, the boundary integral equation (2.7) is uniquely solvable provided

that the right hand side satisfies f ∈ H 1
2 , 14 (Γ × I ).

Note that here and in the following � and � indicate that the inequalities hold up
to positive multiplicative constants. Further, a ∼ b means that a � b � a.

3 Galerkin discretization

For the Galerkin discretization, we consider two sequences of nested spaces

V Γ
0 ⊂ V Γ

1 ⊂ · · · ⊂ V Γ
	s

⊂ · · · ⊂ L2(Γ ), V I
0 ⊂ V I

1 ⊂ · · · ⊂ V I
	t

⊂ · · · ⊂ L2(I ).

We shall assume that these ansatz spaces are generated by single-scale basesΦΓ
	s

=
{ϕΓ

	s ,ks
}ks∈ΔΓ

	s
and Φ I

	t
= {ϕ I

	t ,kt
}kt∈ΔI

	t
, respectively, that is

|ΔΓ
	s

| = dim V Γ
	s

∼ 2	sn, |ΔI
	t

| = dim V I
	t

∼ 2	t .

and

V Γ
	s

= spanΦΓ
	s

, V I
	t

= spanΦ I
	t

.

We denote the approximation power of the ansatz spaces by ds and dt , i.e.,

inf
v	s∈V Γ

	s

‖v − v	s‖L2(Γ ) � 2−	sds‖v‖Hds (Γ ), inf
v	t ∈V I

	t

‖v − v	t ‖L2(I ) � 2−	t dt ‖v‖Hdt (I ).

For example, the piecewise constant (ds = 1) or continuous piecewise linear (ds =
2) ansatz functions on a sequence of meshes, obtained by uniform refinement, satisfy
our assumptions on the spatial ansatz spaces V Γ

	s
.

We choose a finest level Ls for space and Lt for time and write L := (Ls, Lt ). Due
to Céa’s lemma, a Galerkin scheme for (2.7) in the tensor product space UΓ ×I

L :=
V Γ
Ls

⊗ V I
Lt

leads to the error estimate

‖q − qL‖H− 1
2 ,− 1

4 (Γ ×I )
�

(
2− Ls

2 + 2− Lt
4
)(
2−Lsds + 2−Lt dt

)‖q‖Hds ,dt (Γ ×I ), (3.1)

provided that the boundary Γ and the given Dirichlet datum f , and thus the solution
q, are smooth enough, see [6,16]. As easily seen from (3.1), in case of ds = 2dt , the
optimal choice is Lt = 2Ls .
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4 Sparse tensor product discretization

The tensor product spaceUΓ ×I
L = V Γ

Ls
⊗V I

Lt
contains dim V Γ

Ls
·dim V I

Lt
∼ 2Lsn ·2Lt

degrees of freedom. Compared with this, finite element methods which are based on
a sparse grid discretization of the space–time cylinder offer essentially the complex-
ity O(2Ls (n+1)), see e.g. [3,8,18] and the references therein. This means, the time
discretization comes for free, at least from a complexity point of view. As a con-
sequence, although algorithms are available which solve the heat equation by layer
potentials in essentially linear complexity relative to the number of unknowns in the
tensor product spaceUΓ ×I

L (cf. [14,15,19,20]), there is no gain in the use of boundary
integral equations. To overcome this obstruction, as in [5], we shall consider aGalerkin
discretization in the sparse tensor product of the ansatz spaces V Γ

Ls
and V I

Lt
.

The sparse space–time tensor Galerkin discretization is based onmultilevel decom-
positions of the ansatz spaces. To that end, we set

WΓ
	s

:= V Γ
	s

� V Γ
	s−1, WΓ

	s
= spanΨ Γ

	s
,

W I
	t

:= V I
	t

� V I
	t−1, W I

	t
= spanΨ I

	t
.

The basis functions Ψ Γ
	s

= {ψΓ
	s ,ks

}ks∈∇Γ
	s
and Ψ I

	t
= {ψ I

	t ,kt
}kt∈∇ I

	t
are hierarchical

bases or wavelets. Instead of a discretization in the full tensor product space

UL := V Γ
Ls

⊗ V I
Lt

=
⊕

	s
Ls

,
	t
Lt

≤1

WΓ
	s

⊗ W I
	t

,

we will consider a discretization in the sparse tensor product space

ÛL := ̂V Γ
Ls

⊗ V I
Lt

=
⊕

	s
Ls

+ 	t
Lt

≤1

WΓ
	s

⊗ W I
	t

. (4.1)

The following lemma has been proven in [7,8]. It states that the time discretization
is essentially free provided that 2Ls � Lt .

Lemma 1 For Ls = σ Lt → ∞, where σ > 0 is fixed, the sparse tensor product
space (4.1) satisfies

dim ÛL ∼
{
2Lsn + 2Lt , if Lsn �= Lt ,

Ls2Lsn, if Lsn = Lt .

On the other hand, the approximation property in the sparse tensor product space
is essentially the same as in the full analogue, provided that we spend some extra
smoothness in terms of the mixed Sobolev spaces

Hr,s
mix(Γ × I ) := Hr (Γ ) ⊗ Hs

0 (I ). (4.2)
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In particular, we find the following result for the best approximation in the energy
space under consideration.

Lemma 2 For Ls = σ Lt → ∞, where σ > 0 is fixed, there holds

inf
v̂L∈ÛΓ ×I

L

‖v − v̂L‖H− 1
2 ,− 1

4 (Γ ×I )
�

√
Ls2

− Ls Lt
4Ls+2Lt

(
2−Lsds + 2−Lt dt

)
‖v‖Hds ,dt

mix (Γ ×I )

provided that Lsds �= Ltdt . In case of equality, i.e., Lsds = Ltdt , an additional
logarithmic factor appears:

inf
v̂L∈ÛΓ ×I

L

‖v − v̂L‖H− 1
2 ,− 1

4 (Γ ×I )
� Ls2

− Ls Lt
4Ls+2Lt 2−Lsds‖v‖Hds ,dt

mix (Γ ×I )
.

Proof We shall denote the L2-orthogonal projection onto the sparse tensor product
space ÛL by Π̂L : L2(Γ × I ) → ÛL . Then, by a standard duality argument, we obtain

inf
v̂L∈ÛΓ ×I

L

‖v − v̂L‖H− 1
2 ,− 1

4 (Γ ×I )
≤ sup

u∈H 1
2 , 14 (Γ ×I )

〈v − Π̂Lv, u〉L2(Γ ×I )

‖u‖H 1
2 , 14 (Γ ×I )

= sup

u∈H 1
2 , 14 (Γ ×I )

〈v − Π̂Lv, u − Π̂Lu〉L2(Γ ×I )

‖u‖H 1
2 , 14 (Γ ×I )

≤ ‖v − Π̂Lv‖L2(Γ ×I ) sup

u∈H 1
2 , 14 (Γ ×I )

‖u − Π̂Lu‖L2(Γ ×I )

‖u‖H 1
2 , 14 (Γ ×I )

.

From [5, Lema 5.2] it follows that

H 1
2 , 14 (Γ × I ) ⊂ H

λ
2 , 1−λ

4
mix (Γ × I ) for all λ ∈ [0, 1],

and we conclude that

inf
v̂L∈ÛΓ ×I

L

‖v − v̂L‖H− 1
2 ,− 1

4 (Γ ×I )

� ‖v − Π̂Lv‖L2(Γ ×I ) sup

u∈H
λ
2 , 1−λ

4
mix (Γ ×I )

‖u − Π̂Lu‖L2(Γ ×I )

‖u‖
H

λ
2 , 1−λ

4
mix (Γ ×I )

. (4.3)

To bound the first term on the right hand side of (4.3), we use the error estimate

‖v − Π̂Lv‖L2(Γ ×I ) �

⎧⎨
⎩

(
2−Lsds + 2−Lt dt

)‖v‖Hds ,dt
mix (Γ ×I )

, if Lsds �= Ltdt ,√
Ls2−Lsds‖v‖Hds ,dt

mix (Γ ×I )
, if Lsds = Ltdt ,

(4.4)

which has been shown in [7].
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To bound the second term on the right hand side of (4.3), we use again the error
estimate of [7] to arrive at

‖u − Π̂Lu‖L2(Γ ×I ) �
(
2− λ

2 Ls + 2− 1−λ
4 Lt

)
‖u‖

H
λ
2 , 1−λ

4
mix (Γ ×I )

for all u ∈ H
λ
2 , 1−λ

4
mix (Γ × I ), provided that 2λLs �= (1 − λ)Lt . In the case 2λLs =

(1 − λ)Lt , which means that

λ = Lt

2Ls + Lt
= 1

2σ + 1
,

an additional logarithmic factor shows up:

‖u−Π̂Lu‖L2(Γ ×I ) �
√
Ls2

− λ
2 Ls‖u‖

H
λ
2 , 1−λ

4
mix (Γ ×I )

=√
Ls2

− Ls Lt
4Ls+2Lt ‖u‖

H
λ
2 , 1−λ

4
mix (Γ ×I )

.

(4.5)
This choice yields the best attainable rate since the two terms 2− λ

2 Ls and 2− 1−λ
4 Lt

are balanced.1

Plugging the estimates (4.4) and (4.5) into the duality argument (4.3) yields finally
the desired result. ��
Remark 1 Along the lines of [5–7], we can determine the best cost complexity of the
tensor product approximation and the sparse tensor product approximation, respec-
tively, as Ls = σ Lt → ∞. If we consider piecewise linear ansatz function in space,
i.e., ds = 2, and piecewise constant ansatz function in time, i.e., dt = 1, we obtain
the best cost complexity for the discretization in the tensor product space UL for the
choice Ls = 2Lt : when using N degrees of freedom for the discretization, it follows

‖q − qL‖H− 1
2 ,− 1

4 (Γ ×I )
�

{
N− 5

6 ‖q‖H2,1(Γ ×I ), if n = 1,

N− 5
8 ‖q‖H2,1(Γ ×I ), if n = 2.

Compared with this, the best cost complexity for the Galerkin discretization with
respect to the sparse tensor product space ÛL is given by equilibrating the degrees of
freedom in V Γ

Ls
and V I

Lt
. For N degrees of freedom, we find then the estimate

‖q − qL‖
H− 1

2 ,− 1
4 (Γ ×I )

�

⎧⎨
⎩
N− 7

6 (log N )
7
6+ 1

2 ‖q‖H2,1
mix(Γ ×I ), if n = 1 and Ls = Lt ,

N− 9
8 (log N )

9
8+1‖q‖H2,1

mix(Γ ×I ), if n = 2 and 2Ls = Lt .

We see that the cost complexity is nearly doubled when using the sparse tensor product
discretization in n = 2 dimensions. Moreover, for n = 1 dimensions, the piecewise
linear discretization in space does not pay off since the choice ds = 1would essentially
give the same cost complexity.

1 By balancing these terms, we obtain an improvement of the results in [5].
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5 Algorithms

5.1 Fast matrix-vector multiplication

Throughout the article, the basis in ÛL will be denoted by

Ψ̂L :=
{
ψ̂�,k = ψΓ

	s ,ks ⊗ ψ I
	t ,kt : k = (ks, kt ) ∈ ∇� := ∇Γ

	s
× ∇ I

	t
,

	s

Ls
+ 	t

Lt
≤ 1

}
.

Then, the Galerkin matrix V̂L = 〈VΨ̂L, Ψ̂L〉L2(Γ ×I ) consists of the block matrices

V�,�′ :=
〈
V

(
Ψ Γ

	′
s

⊗ Ψ I
	′
t

)
, Ψ Γ

	s
⊗ Ψ I

	t

〉
L2(Γ ×I )

(5.1)

where 	s
Ls

+ 	t
Lt

,
	′
s

Ls
+ 	′

t
Lt

≤ 1. Here, the block V�,�′ has asymptotically the dimen-

sion 2	sn+	t × 2	′
sn+	′

t . Obviously, by writing ûL = [u�] 	s
Ls

+ 	t
Lt

≤1, the matrix-vector

multiplication ŵL = V̂L ûL can be block wise computed by

ŵL = [w�] 	s
Ls

+ 	t
Lt

≤1 =

⎡
⎢⎢⎣

∑
	′s
Ls

+ 	′t
Lt

≤1

V�,�′u�′

⎤
⎥⎥⎦

	s
Ls

+ 	t
Lt

≤1

= V̂L ûL . (5.2)

Lemma 3 Assume that the block matrix-vector product V�,�′u�′ is computable in

complexity O(
M · 2max{	sn+	t ,	

′
sn+	′

t }). Then, the matrix-vector product ŵL = V̂L ûL

is of complexity O(
MLsLt dim(ÛL)

)
.

Proof The assertion follows immediately from (5.2) and

∑
	s
Ls

+ 	t
Lt

,
	′s
Ls

+ 	′t
Lt

≤1

M · 2max{	sn+	t ,	
′
sn+	′

t }

=
∑

	s
Ls

+ 	t
Lt

≤1

M ·
( ∑

	′s
Ls

+ 	′t
Lt

≤1

	sn+	t≤	′
sn+	′

t

2	′
sn+	′

t +
∑

	′s
Ls

+ 	′t
Lt

≤1

	sn+	t>	′
sn+	′

t

2	sn+	t

)

�
∑

	s
Ls

+ 	t
Lt

≤1

M ·
(
dim(ÛL) + 2	sn+	t Ls Lt

)

� MLsLt dim(ÛL).

��
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5.2 Restrictions and prolongations

Since it is algorithmically difficult to computematrices inwavelet coordinates andwith
ansatz and test functions on different levels, we use restrictions and prolongations to
realize matrix vector products with V�,�′ in single-scale spaces.

Because WΓ
	s

⊂ V Γ
	′
s
for any 	s ≤ 	′

s , we can represent a given function u	s ∈ WΓ
	s

in the space V Γ
	′
s
. Such a prolongation will be denoted by J

	′
s

	s
. Its discrete counterpart

J
	′
s

	s
can obviously be applied to a given vector u	s in complexityO(

2	′
sn
)
. Vice versa,

a function u	′
s
in V Γ

	′
s
can be restricted to the space WΓ

	s
which we denote by J 	s

	′
s
. The

cost of the corresponding discrete operation J
	′
s

	s
u	′

s
is of the order O(

2	′
sn
)
. Note that(

J	s
	′
s

)T = J
	′
s

	s
.

Likewise, due to W I
	t

⊂ V I
	′
t
for any 	t ≤ 	′

t , corresponding operators I
	′
t

	t
and I 	t

	′
t

exist with respect to the time. Their discrete counterparts are denoted by I
	′
t

	t
and I	t

	′
t
,

where the application to a vector costs O(
2	′

t
)
operations.

In the following, we will use the notational convention

	̃s := max{	s, 	′
s} and 	̃t := max{	t , 	′

t }.

Thus, we obtain the representation in the single-scale spaces

V�,�′ =
(

I	t

	̃t
⊗ J	s

	̃s

)
V

�̃,�̃

(
I	̃t
	′
t
⊗ J	̃s

	′
s

)
(5.3)

where �̃ = (	̃s, 	̃t ) and

V
�̃,�̃

:=
〈
V

(
ΦΓ

	̃s
⊗ Φ I

	̃t

)
, ΦΓ

	̃s
⊗ Φ I

	̃t

〉
L2(Γ ×I )

(5.4)

Remark 2 The dimension of the matrix V
�̃,�̃

is asymptotically 2max{	t ,	′
t }n+max{	s ,	′

s }
which is, in general, larger than the dimensions of V�,�′ . In fact, it turns out
that it is not possible to compute a matrix-vector product with V̂L in the desired
O(

MLsLt dim(ÛL)
)
complexity, if the factors are evaluated in the sequence sug-

gested by (5.3), even if the application of V
�̃,�̃

has linear complexity. However, we
will show below thatV

�̃,�̃
can be approximated by a sum ofKronecker products, which

will lead to an algorithm with log-linear complexity in dim(ÛL).

5.3 Block matrix-vector multiplication

To get a guideline for the realization of an essentially optimal block matrix-vector
multiplication, let us assume from now on that V�,�′ is approximated by a sum of
tensor products
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V�,�′ ≈
M∑
i=1

A(i)
	t ,	

′
t
⊗ B(i)

	s ,	′
s
. (5.5)

Such a representation is also called low-rank approximation. Provided that for
all i = 1, . . . , M the application of the matrices A(i)

	t ,	
′
t
and B(i)

	s ,	′
s
to a vector can

be evaluated in O(
2max{	t ,	′

t }) and O(
2max{	s ,	′

s }n) operations, respectively, then the
matrix-vector product

w� = V�,�′u�′ ≈
M∑
i=1

(
A(i)

	t ,	
′
t
⊗ B(i)

	s ,	′
s

)
u�′

is computable within the complexityO(
M · 2max{	sn+	t ,	

′
sn+	′

t }). We will show this in
the remainder of this section.

For a matrix X ∈ R
m×n , vec(X) ∈ R

nm is the vector that is obtained by stacking
the columns of X . From the identity

vec(w(i)
� ) =

(
A(i)

	t ,	
′
t
⊗ B(i)

	s ,	′
s

)
vec(u�′) ⇐⇒ w(i)

� = B(i)
	s ,	′

s
u�′

(
A(i)

	t ,	
′
t

)T
(5.6)

we conclude that, for 	sn + 	′
t ≤ 	′

sn + 	t , it is cheaper to compute the vector w(i)
� in

the order
z = B(i)

	s ,	′
s
u�′ , w(i)

� = (
A(i)

	t ,	
′
t
zT

)T
. (5.7)

(we refer to Fig. 1 for a corresponding visualization). Here, the evaluation of z is of
complexity O(

2	′
t · 2max{	s ,	′

s }n) and thus the complexity for computing w(i)
� via (5.7)

is

O(
2	′

t · 2max{	s ,	′
s }n + 2	sn · 2max{	t ,	′

t }) = O(
2max{	sn+	t ,	

′
sn+	′

t ,	sn+	′
t }).

w s t = B
s s

u
s t

AT
t t

Fig. 1 Visualization of the matrix-vector product in (5.6). Here, it is cheaper to perform first the multipli-
cation B	s ,	

′
s
u	′

s ,	
′
t
and then the multiplication of the result with AT

	t ,	
′
t
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Due to the supposition 	sn + 	′
t ≤ 	′

sn + 	t , we have

	sn + 	′
t ≤ (	′

sn + 	′
t ) − 	′

t + (	sn + 	t ) − 	sn

and thus

2(	sn + 	′
t ) ≤ (	′

sn + 	′
t ) + (	sn + 	t ) ≤ 2max

{
	sn + 	t , 	

′
sn + 	′

t

}
.

Therefore, the complexity for the matrix-vector multiplication (5.7) is O(
2max{	sn+	t ,	

′
sn+	′

t }) which is order optimal.
If 	sn + 	′

t > 	′
sn + 	t , we change the order of multiplication in (5.6) and compute

z = A(i)
	t ,	

′
t
uT

�′ , w(i)
� = B(i)

	s ,	′
s
zT (5.8)

By using arguments analogous to above, one readily infers that the complexity of
computing w(i)

� via (5.8) is also of order optimal complexity O(
2max{	sn+	t ,	

′
sn+	′

t }).
Remark 3 One logarithmic factor in the cost complexity of the matrix-vector product
described here can be removed by using the unidirectional principle, see e.g. [1,2,22].
Nevertheless, we have not exploited this approach for sake of simplicity in represen-
tation.

5.4 Tensor product representation of V�,�′

In this sectionwe show how to compute the approximation (5.5) using the factorization
in (5.3). To keep the technical level of the discussion at a minimum, we assume that
the temporal spaces V I

	t
consist of piecewise constant ansatz functions on a uniform

subdivision of I = [0, T ] into 2	t nt intervals, where nt is a small integer. Thus, the
temporal basis functions ϕ I

	t ,kt
are scaled and translated versions of the box function.

The coefficients of the matrix V
�̃,�̃

in (5.4) are given by

[
V

�̃,�̃

]
(ks ,kt )(k′

s ,k
′
t )

=
∫ T

0

∫ T

0

{∫
Γ

∫
Γ

G(‖x − y‖, t − τ)ϕΓ

	̃s ,ks
(x)ϕΓ

	̃s ,k′
s
(y)dσydσx

}

× ϕ I
	̃t ,kt

(t)ϕ I
	̃t ,k′

t
(τ )dτdt,

An ordering of the indices (ks, kt ), where ks runs fast and kt runs slow, results in a
block-Toeplitz structure of V

�̃,�̃
, because the integrals only depend on the difference

of the indices kt and k′
t . In addition, the matrix is block lower triangular because the

kernel vanishes for τ > t .
We now generate anH-matrix pattern of the matrix V

�̃,�̃
, see, [10,11]. To this end,

we subdivide the interval I = [0, T ] into 2m equal length sub-intervals

Im,k := [
k2−mT, (k + 1)2−mT

]
, k = 0, 1, . . . , 2m − 1, m = 0, 1, . . . , 	̃t ,

and define the index sets of level-	̃t temporal basis functions with support in Im,k
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Fig. 2 Partitioning of V
�̃,�̃

for the case that 	̃t = 5

Im,k :=
{
kt ∈ ΔI

	̃t
: supp ϕ I

	̃t ,kt
⊂ Im,k

}
.

These sets are larger for smaller values of m. Moreover, for a given m they form a
disjoint union of ΔI

	̃t
because each ϕ I

	̃t ,kt
is supported in exactly one Im,k .

Since the kernel is less peaked for a larger separation of the time variables we call
Im,k × Im,k′ admissible if d := k − k′ ≥ 2. Mind that k ≥ k′, because the matrix
is block lower triangular. The H-matrix pattern is obtained by dividing the matrix
into admissible blocks where the size of the blocks increases with the distance to the
diagonal, see Fig. 2.

Here, the blocks cdm are given by

cdm =
[
V

�̃,�̃

]
(ks ,kt )∈ΔΓ

	̃s
×Imd

(k′
s ,k

′
t )∈ΔΓ

	̃s
×Im0

. (5.9)
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Since V
�̃,�̃

is block-Toeplitz, it suffices to consider the cases d = 2 and d = 3 for

the off-diagonal blocks where 2 ≤ m ≤ 	̃t . These correspond to admissible index
sets and will be referred to as the temporal far field. In addition, the blocks c0

	̃t
and c1

	̃t
appear on and near the diagonal, and will be referred to as the temporal nearfield.

The H pattern suggests to write V
�̃,�̃

as a sum of 2	̃t block-Toeplitz matrices that
contain the identical blocks. To that end, define the (2m × 2m)-matrices

H0
m =

⎡
⎢⎢⎢⎣

1
1

. . .

1

⎤
⎥⎥⎥⎦ , H1

m =

⎡
⎢⎢⎢⎣

0
1 0

. . .
. . .

1 0

⎤
⎥⎥⎥⎦ , H2

m =

⎡
⎢⎢⎢⎢⎢⎣

0
0 0
1 0 0

. . .
. . .

. . .

1 0 0

⎤
⎥⎥⎥⎥⎥⎦

(5.10)
and

H3
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 0
1 0 0 0

0 0 0 0
1 0 0 0

0 0 0 0
. . .

. . .
. . .

. . .

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.11)

Note that the ones and zeros in the third subdiagonal of H3
m alternate because of the

pattern in which the blocks c3m appear in the matrix V
�̃,�̃

.
With these notations, one obtains the decomposition

V
�̃,�̃

=
∑

d∈{0,1}
Hd

	̃t
⊗ cd

	̃t
+

∑
m∈{2,...,	̃t }
d∈{2,3}

Hd
m ⊗ cdm . (5.12)

Temporal far-field

Consider the block cdm in the temporal far-field where the ansatz- and test-functions
ϕ I

	̃t ,kt
and ϕ I

	̃t ,k′
t
have support inside Im,d and Im,0, respectively. Since d ∈ {2, 3}, the

kernel is smooth and can bewell approximated by a degenerate kernel expansion. Such
an expansion can be obtained, for instance, by interpolation. This is most conveniently
achieved in the local coordinates t ′, τ ′ of the respective intervals. For t ∈ Im,d and
τ ∈ Im,0 they are given by

t = T 2−m
(
d + t ′

2
+ 1

2

)
, τ = T 2−m

(
τ ′

2
+ 1

2

)
. − 1 ≤ τ ′, t ′ ≤ 1, (5.13)
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Thus, setting r̃ = r/
√
T 2−m , it follows that

G
(
‖r‖, t − τ

)
= (T 2−m)−

n+1
2 G

(
‖̃r‖, d + 1

2
(t ′ − τ ′)

)
,

= (T 2−m)−
n+1
2

⎧⎨
⎩

pt∑
i,i ′=0

G

(
‖̃r‖, d + 1

2
(ω(i) − ω(i ′))

)
Li (t

′)Li ′(τ
′) + Ept

(‖̃r‖)
⎫⎬
⎭

=
pt∑

i,i ′=0

G
(
‖r‖, t (i) − τ (i ′)

)
Li (t

′)Li ′(τ
′) + (T 2−m)−

n+1
2 Ept

(‖̃r‖). (5.14)

Here, ω(i) and ω(i ′) are interpolation nodes in (−1, 1), t (i), τ (i ′) are their images under
the transformation (5.13), Li are Lagrange polynomials and pt is the interpolation
order. The error Ept (r) will be analyzed in Sect. 7.

Neglecting Ept (r) and substituting the series of (5.14) in (5.9) results in a decom-
position into Kronecker products. It follows that

cdm ≈
pt∑

i,i ′=0

a(m,i)
(

a(m,i ′)
)T ⊗ b(m,d,i,i ′)

	s
, (5.15)

where

[
a(m,i)

]
kt

=
∫
Im,0

Li (τ
′)Φ I

	̃t ,kt
(τ )dτ,

[
b(m,d,i,i ′)

	̃s

]
ks ,k′

s

=
∫

Γ

∫
Γ

G(‖x − y‖, t (i) − τ (i ′))ΦΓ

	̃s ,ks
(x)ΦΓ

	̃s ,k′
s
(y)dσydσx.

Note that a(m,i) is a vector of length 2−m
∣∣∣Δ	̃t

∣∣∣ and b(m,d,i,i ′)
	̃s

is a square matrix of

size
∣∣∣Δ	̃s

∣∣∣. Since the interpolation points and ansatz functions in Im,d are obtained by

shifting 2−mTd units from the interval I 0m the vector a(m,i) is the same for t- and the
τ -variable.

Temporal near-field

Because of the uniform time discretization, the matrices cd
	̃t
, d ∈ {0, 1}, in (5.12) have

the block-Toeplitz structure
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c0
	̃t

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(	̃t ,0)
	̃s

b(	̃t ,1)
	̃s

. . .

...
. . .

. . .

b(	̃t ,nt−1)
	̃s

· · · b(	̃t ,1)
	̃s

b(	̃t ,0)
	̃s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

c1
	̃t

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(	̃t ,nt )
	̃s

b(	̃t ,nt−1)
	̃s

· · · b(	̃t ,1)
	̃s

b(	̃t ,nt+1)
	̃s

. . .
. . .

...

...
. . .

. . . b(	̃t ,nt+1)
	̃s

b(	̃t ,2nt−1)
	̃s

· · · b(	̃t ,nt+1)
	̃s

b(	̃t ,nt )
	̃s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where nt = dimV I
0 and

[
b(l̃t ,i)

	̃s

]
ks ,k′

s

=
∫

Γ

∫
Γ

G
	̃t ,i

(‖x − y‖)ΦΓ

	̃s ,ks
(x)ΦΓ

	̃s ,k′
s
(y)dσydσx. (5.16)

Here, the kernel contains integration with the ansatz functions in time

G
	̃t ,i

(‖r‖) =
∫ T

0

∫ T

0
G(‖r‖, t − τ)Φ I

	̃t ,0
(τ )Φ I

	̃t ,i
(t) dτdt. (5.17)

The kernel can be expressed in closed form. For the case i = 0, the kernel has a
O(1/‖r‖) singularity, for i = 1 the singularity is O(‖r‖), and for i ≥ 2 the kernel is
smooth. For the singular cases the spatial integration of the coefficients of (5.16) can
be computed with generalized Duffy transforms, similar to the those used for elliptic
boundary integral operators, see [14].

Define the shift-matrices

s(i)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where n indicates the dimension and i the position of the sub-diagonal. Moreover,
define

S(i)
	̃t

=
⎧⎨
⎩

s(i)

nt2	̃t
, 0 ≤ i ≤ nt − 1,

H1
	̃t

⊗ s(i−nt )
nt , nt ≤ i ≤ 2nt − 1.
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Then, the near-field in (5.12) can be written as

∑
d∈{0,1}

Hd
	̃t

⊗ cd
	̃t

=
2nt−1∑
i=0

S(i)
	̃t

⊗ b(	̃t ,i)
	̃s

. (5.18)

Tensor product form of V�,�′

The approximation of V�,�′ in the form of (5.5) can now be obtained by combining
(5.3), (5.12), (5.15) and (5.18).Using themultiplication rules of theKronecker product,
we conclude that

V�,�′ ≈
2nt−1∑
i=0

A(i)
	t ,	

′
t
⊗ B(	̃t ,i)

	s ,	′
s

+
∑

m∈{2,...,	̃t }
d∈{2,3}

i,i ′∈{0,...,pt }

A(m,d,i,i ′)
	t ,	

′
t

⊗ B(m,d,i,i ′)
	s ,	′

s
, (5.19)

where

A(i)
	t ,	

′
t
= I	t

	̃t
S(i)

	̃t
I	̃t
	′
t
,

A(m,d,i,i ′)
	t ,	

′
t

= I	t

	̃t

(
Hd

m ⊗ a(i)
m

(
a(i)
m

)T)
I	̃t
	′
t
,

B(	̃t ,i)
	s ,	′

s
= J	s

	̃s
b(	̃t ,i)

	̃s
J	̃s
	′
s
,

B(m,d,i,i ′)
	s ,	′

s
= J	s

	̃s
b(m,d,i,i ′)

	̃s
J	̃s
	′
s
.

Clearly, the matrices A(i)
	t ,	

′
t
and A(m,d,i,i ′)

	t ,	
′
t

can be applied with order 2	̃t operations.
Note that the order in which the Kronecker product in the second matrix is evaluated
is irrelevant, because both factors are square. In the following section, we will show

that the matrices b(	t ,i)
	̃s

and b(m,d,i,i ′)
	̃s

can be applied with order L7
s2

n	̃s complexity.

Then it follows easily that B(i)
	s ,	′

s
and B(m,d,i,i ′)

	s ,	′
s

can be applied with the same order of
operations.

This, together with Lemma 3 and the fact that pt ∼ Lt in (5.14) implies that the
matrix V̂L can be applied with O(

L8
s L

3
t dim(ÛL)

)
cost. Thus the complexity of the

algorithm described in Sect. 5 is log-linear in dim(ÛL).

6 Fast evaluation of the matrices b(�̃t ,i)
�̃s

and b(m,d,i,i ′)
�̃s

In this section, we show that the spatial matrices b(	̃t ,i)
	̃s

and b(m,d,i,i ′)
	̃s

are H-matrices

and describe an algorithm to computematrix vector products inO(
L7
s2

2	̃s
)
complexity.

To simplify the discussion we restrict ourselves to the more important case of a two
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dimensional surface in three-space, that is, n = 2 in (2.5). The modifications for the
case n = 1 are trivial and will result in lower powers of Ls in the complexity estimate.

Since the calculus with H-matrices is well known, see [10,11], we only present a
high-level description of the algorithm mainly to set the stage for the ensuing error
analysis. There, we will show how the parameters of the algorithm can be selected
such that error and complexity bounds can be obtained that are independent of the
parameters 	̃t , m and d, i, i ′.

We first give more detail on how the spatial finite element spaces V Γ
	s

are generated.
To that end, assume that the surface Γ is given by a number of parameterizations of
the reference triangle σ̂ = {(x̂1, x̂2): 0 ≤ x̂2 ≤ x̂1 ≤ 1}

xν : σ̂ → Γν, ν ∈ P(0),

whereP(0) is an index set for the initial triangular patches.We assume that the interiors
of Γν are disjoint and that common sides of two adjacent Γν’s are parametrized in a
consistent manner.

The coarsest space V Γ
0 consists of functions whose preimage in σ̂ is a polynomial.

The spaces V Γ
	s

consist of functions whose preimages are piecewise polynomials on
the 	s-th uniform refinement of σ̂ . Every 	s-th level refined triangle parameterizes a
triangular patchΓν , ν ∈ P(	s)which in turn generates a sequence of triangularizations
of Γ

Γ =
⋃

ν∈P(	s )

Γν.

The uniform refinement implies a tree structure in the sense that every triangular patch
Γν , ν ∈ P(	s) is the union of four triangular patches in level 	s + 1, denoted as the
four children K(ν) of ν

Γν =
⋃

ν′∈K(ν)

Γν′ .

Moreover, every patch ν in level 	s > 0 has a parent π(ν) in level 	s − 1.
The neighbors N (ν) of a patch ν ∈ P(	s) are given by

N (ν) =

⎧⎪⎨
⎪⎩ν′ ∈ P(	s): min

x∈Γν

y∈Γν′

‖x − y‖ ≤ SL
1
2
s 2

−	s

⎫⎪⎬
⎪⎭ . (6.1)

Here, S > 0 is a predetermined constant. The factor L
1
2
s implies that the neighbor

list is expanded as the mesh is refined and is necessary to ensure convergence of
the method. We assume that the constants are such that all patches in level zero are
neighbors of each other. The interaction list I(ν) of a patch ν ∈ P(	s) is the set of
patches whose parents are neighbors, but who are not neighbors themselves:
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I(ν) = {
ν′ ∈ P(	s): π(ν′) ∈ N (

π(ν)
)
and ν′ /∈ N (ν)

}
.

Because of the uniform subdivision, the number of neighbors and the number of
patches in interactions list are O(Ls).

The definition of neighbors and interaction lists implies the subdivision

Γ × Γ =
⋃

ν∈P(	̃s )

ν′∈N (ν)

Γν × Γν′ ∪
	̃s⋃

	s=0

⋃
ν∈P(	s )

ν∈I(ν)

Γν × Γν′ , (6.2)

where the number of terms is O(
Ls22	̃s

)
.

Let b
	̃s

be one of the spatial matrices b(	t ,i)
	̃s

or b(m,d,i,i ′)
	̃s

and let G(·) denote its

kernel. Since we will introduce additional superscripts below, we omit the kernel
identifying superscripts for notational convenience. From the subdivision (6.2), we
obtain the decomposition

b
	̃s

= bnear
	̃s

+
	̃s∑

	s=0

b(	s )

	̃s
, (6.3)

where ks, k′
s ∈ Δ

	̃s
and

[
bnear

	̃s

]
ks ,k′

s

=
∑

ν∈P(	̃s )

ν∈N (ν)

∫
Γν

∫
Γν′

G(‖x − y‖)ϕΓ

	̃s ,ks
(x)ϕΓ

	̃s ,k′
s
(y)dσydσx,

[
b(	s )

	̃s

]
ks ,k′

s

=
∑

ν∈P(	s )

ν′∈I(ν)

∫
Γν

∫
Γν′

G(‖x − y‖)ϕΓ

	̃s ,ks
(x)ϕΓ

	̃s ,k′
s
(y)dσydσx.

Since the number of basis functions in level 	̃s that overlapwith a patch in level 	̃s are
bounded, thematrix bnear

	̃s
hasO(

Ls22	̃s
)
nonvanishing entries. Of course, thematrices

b(	s )

	̃s
become increasingly populated as the level 	s decreases, but since the integrals

are over patches in interaction lists, the kernels are smooth functions. Thus, we can
approximate the kernel by a degenerate expansion which will lead to a factorization
that can be evaluated with O(

Ls22	̃s
)
complexity.

To that end, we enclose every patch Γν in P(	s) by an axiparallel cube with side-
length S12−	s and center xν . The constant S1 is chosen such that the cubes will contain
the patch Γν tightly which is possible for all 	s with the same S1 because of the uni-
form refinement scheme. Then any point in the enclosing cube has local coordinates
in [− 1, 1]3, that is,

x = 2−	s S1

(
xν + 1

2
x̂
)

, where x̂ ∈ [− 1, 1]3. (6.4)
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For two points x ∈ Γν , y ∈ Γν′ , where ν ∈ P(	s) and ν′ ∈ I(ν), the kernel can be
expanded into a Chebyshev series in the local coordinates, that is,

G(‖x − y‖) ≈
∑

|α|≤ps
|β|≤ps

Eν,ν′
α,β Tα(x̂)Tβ(ŷ) (6.5)

where α,β are multiindices and Tα(·) are the Chebyshev polynomials. In Sect. 7 we
will show that for suitable expansion order the error can be neglected. Then replacing
the kernel by the expansion leads to

[
b(	s )

	̃s

]
ks ,k′

s

≈
∑

ν∈P(	s )

ν′∈I(ν)

∑
|α|≤ps
|β|≤ps

Eν,ν′
α,β

∫
Γν

Tα(x̂)ϕΓ

	̃s ,ks
(x)dσx

∫
Γν′

Tβ(ŷ)ϕΓ

	̃s ,k′
s
(y)dσy.

(6.6)
In matrix form, this can be expressed as the factorization

b(	s )

	̃s
≈ b̃(	s )

	̃s
=

(
M(	s)

	̃s

)T
E(	s )M(	s )

	̃s

where the matrices M(	s )

	̃s
contain the moments, i.e., the integrals in (6.6), and the

matrices E(	s ) contain the expansion coefficients Eν,ν′
α,β . It is not hard to see that these

matrices can be evaluated with O(
Ls p3s 2

2	̃s
)
and O(

Ls p6s 2
2	s

)
complexity.

Finally, we note that all kernels G(·) decay exponentially at infinity. Since inter-
action lists in the coarser levels contain increasingly distant pairs of patches, it is not
necessary to evaluate all terms in the sum (6.3). Instead, we select a minimal level 	̄s
and evaluate the approximation

b
	̃s

≈ b̃
	̃s

= bnear
	̃s

+
	̃s∑

	s=	̄s

b̃(	s )

	̃s
. (6.7)

In the following section we will show that the choice of parameters

ps ∼ Ls and 	̄s =
⎧⎨
⎩

	̃t
2 when b

	̃s
= b(	̃t ,i)

	̃s
,

m
2 when b

	̃s
= b(m,d,i,i ′)

	̃s
,

(6.8)

will be sufficient to ensure that the approximation error does not affect the asymptotic
convergence of the discretization error. Thus the complexity of a matrix vector product
of b

	̃s
using the approximation (6.7) is O(

L7
s2

n	̃s
)
.

Note that the introduction of the minimal level 	̄s does not reduce the asymptotic
cost of the matrix-vector product, but ensures the accuracy of the degenerate kernel
expansion (6.5). This will become clear in the following error analysis.
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7 Error analysis

We analyse the errors introduced by the low-rank approximation in (5.14) and the
fast evaluation of the spatial matrices in (6.7). In both cases, numerical efficiency is
achievedby replacing the heat kernelwith its interpolate at theChebyshevnodes. For an
analytic function, the interpolation error exhibits exponential convergence andwith the
Strang lemma it can be concluded that this approximation results in an exponentially
small error of theGalerkin solution. Since the convergence of the discretizationmethod
is algebraic, the discretization error dominates the error of the fast method as long as
the interpolation order grows linearly with the refinement level. This kind of argument
is commonly used in the analysis of fast methods for integral equations, see, e.g. [15]
in the context of the heat equation and the space–time fast multipole method. For
the sparse grid method of this article it remains to ensure that the interpolations have
convergence rates that are independent of the various space time levels. This will be
discussed below. Our argument is based on the following approximation result for
Chebyshev interpolation, which is well known for single-variate functions, see, e.g.
[13, Lemma 6.6], but appears to be hard to find for the multivariate case.

Lemma 4 If f : [−1, 1]d → R has a complex extension which, for some μ > 0, is
analytic in every variable within the ellipse

Eμ := {
z ∈ C: z = cos

(
θ + iμ

)
, θ ∈ [0, 2π ]} ,

then themultivariate Chebyshev interpolate of degree N−1 satisfies the error estimate

| f (x) − p(x)| ≤ C max
zi∈Eμ

| f (z)| sinh−1(Nμ).

Proof The proof for the one dimensional case (d = 1) is well known and is based on
the contour integral representation of the interpolate and the remainder

p(x) = 1

2π i

∫

Eμ

(
1 − TN (x)

TN (z)

)
f (z)

z − x
dz,

f (x) − p(x) = 1

2π i

∫

Eμ

TN (x)

TN (z)

f (z)

z − x
dz,

where TN (x) = cos(N arccos(x)) is the N th Chebyshev polynomial. This implies
that the contour integral formula for the multivariate interpolate is

p(x) = 1

(2π i)d

∫

Eμ

. . .

∫

Eμ

(
1 − TN (x1)

TN (z1)

)

. . .

(
1 − TN (xd)

TN (zd)

)
f (z)

(z1 − x1) . . . (zd − xd)
dzd . . . dz1.
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For x ∈ [− 1, 1] real, |TN (x)| ≤ 1, whereas |TN (z)| ≥ sinh(Nμ) for z ∈ Eμ.
Multiplying out the TN -terms in the above integral gives

p(x) = f (x) − 1

(2π i)d

∫

Eμ

. . .

∫

Eμ

(
TN (x1)

TN (z1)
+ · · · + TN (xd )

TN (zd )

)
f (z)

(z1 − x1) . . . (zd − xd )
dzd . . . dz1 + lot (x).

Here, the term f (x) follows from Cauchy’s integral formula and lot (x) denotes terms
of order sinh−2(Nμ). Estimating the remaining integral in the obvious way gives the
assertion. ��

The estimate for the interpolation error is a direct application of the above lemma.

Lemma 5 For 1 < η < d + √
d2 − 1 there is a constant Cη > 0, independent of r

and m, such that the interpolation error in (5.14) is bounded by

Ept

(‖̃r‖) ≤ Cη2
3
2 Ltη−pt .

Proof Recall that in the local coordinates (5.13) the heat kernel is

G(t ′, τ ′) := 2
3
2m

T
3
2
(
d + 1

2 (t
′ − τ ′)

) exp
(

− ‖̃r‖2
4
(
d + 1

2 (t
′ − τ ′)

)
)

.

This function satisfies the assumptions of lemma 4 when coshμ < d which is equiv-
alent to eμ < d + √

d2 − 1. Since m ≤ Lt we see that

max
t ′,τ ′∈Eμ

∣∣G(t ′, τ ′)
∣∣ ≤ Cμ2

3
2 Lt .

This bound is independent of ‖̃r‖ because Re d + 1
2 (t

′ − τ ′) > 0, so the argument
to the exponential function has negative real part. We estimate the hyperbolic sine in
Lemma 4 by sinh(ptμ) > (eμ)pt /4, thus for any η < d + √

d2 − 1 the assertion
follows. ��
Remark 4 The estimate in the above lemma makes clear that any exponential rate of
convergence can be achieved if pt ∼ Lt and the proportionality constant is sufficiently
large.

We now turn to the error of the fast evaluation method in Sect. 6. There are two error
sources in this algorithm, namely replacing the kernel by zero in levels 	s < 	̄s , and
the Chebyshev approximation in levels 	̄s ≤ 	s ≤ 	̃s . For points x ∈ Γν and y ∈ Γν′
on the patches in the subdivision (6.2) the kernel of the matrix b

	̃s
in (6.7) is given by
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G̃(x, y) =

⎧⎪⎨
⎪⎩
G(‖x − y‖), ν ∈ P(	̃s), ν′ ∈ N (ν),

Gps (x, y), ν ∈ P(	s), ν′ ∈ I(ν), 	̄s ≤ 	s ≤ 	̃s,

0, ν ∈ P(	s), ν′ ∈ I(ν), 0 ≤ 	s < 	̄s,

where Gps is the truncated series expansion in (6.5).

Lemma 6 For ps and 	̄s given by (6.8), there are constantsC > 0,η > 1, independent
of 	̃s , 	̃t , m, d, i and i ′, such that

∣∣G(‖x − y‖) − G̃(x, y)
∣∣ ≤ Cη−Ls . (7.1)

Proof We begin with the far-field truncation for b(m,d,i,i ′)
	̃s

. The kernel of the matrix is

G(‖x − y‖) = exp

(
−‖x − y‖2

2−mδ

)
,

where δ = d + 1
2 (ω

(i) − ω(i ′)) is in the interval [1, 4]. For the points x ∈ Γν and

y ∈ Γν′ , ν ∈ P(	s) and ν′ ∈ I(ν) the distance satisfies ‖x − y‖ ≥ SL
1
2
s 2−	s because

ν′ and ν are not neighbors. Thus the estimate

G(‖x − y‖) ≤ exp

(
−2m−2	s Ls

S2

δ

)
≤ exp

(
−Ls

S2

δ

)

holds when 	s < m
2 and the bound in (7.1) is established for η = exp

(
S2

)
.

We now consider the far-field truncation error for the matrices b(	̃t ,i)
	̃s

. A simple

change of variables in (5.17) shows that the kernel is

G(‖x − y‖) = h
1
2
t gi

(‖x − y‖√
ht

)
.

where gi is given by

gi (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

0

∫ t

0

1

(t − τ)
3
2

exp

(
− r2

4(t − τ)

)
dτdt, i = 0,

∫ 1

0

∫ 1

0

1

(d + t − τ)
3
2

exp

(
− r2

4(i + t − τ)

)
dτdt, 0 < i < dim(V I

0 ).

From their closed expression in [14] it can be seen that they satisfy the estimate

gi (r) ≤ C
r2

exp
(
− r2

i+1

)
. As before, it follows for x ∈ Γν and y ∈ Γν′ , where ν ∈

P(	s), ν′ ∈ I(ν) and 	̃s < 	̃t
2 , that G(‖x − y‖) ≤ C exp

(
−Ls

S2
i+1

)
holds. This is the

bound in (7.1).
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We now turn to the Chebyshev approximation error of the matrices b(m,d,i,i ′)
	̃s

. For

x ∈ Γν , y ∈ Γν′ , ν ∈ P(	s), ν′ ∈ I(ν), the kernel is

G(‖x − y‖) = exp

(
− S212

m−2	s

d + 1
2 (ωi − ωi ′)

‖rν,ν′ + x̂ − ŷ‖2
)

,

where rν,ν′ = xν − xν′ and x̂, ŷ ∈ [−1, 1]3 are the local coordinates defined in (6.4).
The scaling of the enclosing cubes and the definition of the neighbors and interaction
lists implies that ‖rν,ν′ ‖ > 3 if S and Ls are sufficiently large. In view of Lemma 4
the function (x̂, ŷ) → ‖rν,ν′ + x̂ − ŷ‖2 is strictly positive in [−1, 1]6 and, for some
μ > 0 can be extended to E6

μ such that real part of the image remains positive. It
follows that the interpolation error decays exponentially at a rate that can be bounded
independently of all of the parameters m, 	s , i , i ′ and d. If we let ps ∼ Ls , we obtain
bound (7.1).

It remains to estimate the truncation error in b(	̃t ,d)

	̃s
. The argument is based on a

similar scaling. In local coordinates, the kernel is

G(‖x − y‖) = √
T 2

	̃t
2 gd

(
‖x − y‖
√
T 2

	̃t
2

)
= √

T 2
	̃t
2 gd

(
2

	̃t
2 −	s

S1√
T

‖rν,ν′ + x̂ − ŷ‖
)

The above definition implies that the functions r → gi (r) are analytic and uniformly
bounded for Re{r} ≥ r0 > 0. As before, there is μ > 0 such that the function
(x̂, ŷ) → ‖rν,ν′ + x̂ − ŷ‖2 has positive real part in E6

μ. However, to get uniform

bounds of G in E6
μ the factor 2

	̃t
2 −	s must be bounded away from zero. Fortunately,

this is the case, because in the sum (6.8) we have 	s ≥ 1
2 	̃t . This establishes (7.1) for

ps ∼ Ls + Lt . ��

8 A numerical example

To illustrate the theory presented in this work, we discuss numerical results obtained
with an implementation of the method. We solve the indirect integral formulation
(2.7) where Γ is the unit sphere and I = [0, 1]. The right hand side f (x, t) is
chosen such that the solution is given by g(x, t) = t2(3x23 − 1). The spaces V Γ

	s
are the continuous, piecewise linear functions (i.e., ds = 2), subject to a triangu-
lation of the sphere. The coarsest triangulation is obtained by radial projection of
the tetrahedron onto the sphere. The spaces V I

	t
are the piecewise constants (i.e.,

dt = 1), subject to a uniform subdivision of the unit interval, where initial space has
five intervals. The relationship between the finest spatial and temporal resolution is
Lt = 2Ls .

In Sect. 6 we have described how matrix vector products with the spatial matrices
in (6.3) can be evaluated efficiently usingH-matrix calculus. For a fully discrete algo-
rithm, the coefficients of thematricesbnear

	̃s
must be computed by numerical quadrature.
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Table 1 Numerical results obtained with sparse grid implementation.

Ls Lt dimUL Fac dim ÛL Fac Error Fac

1 2 2.00e+2 1.10e+2 3.77e−1

2 4 2.72e+3 13.6 5.60e+2 5.09 2.87e−1 0.762

3 6 4.16e+4 15.2 2.72e+3 4.86 6.96e−2 0.242

4 8 6.58e+5 15.8 1.28e+5 4.71 1.82e−2 0.261

5 10 1.05e+7 16.0 5.89e+5 4.60 4.81e−3 0.264

6 12 1.68e+8 16.0 2.66e+6 4.52 1.38e−3 0.286

Since the kernels have in the worst case a O ( 1
r

)
-singularity, one can use the singu-

larity removing transformations of [12] combined with Gauss quadrature. However,
for coarse spatial and fine time scales the kernels can become very peaked and an
additional space refinement is necessary to ensure rapid convergence of the Gauss
rules. In this process, one can exploit that computations for fixed values of 	̃t and m
can be re-used for different values of 	̃s . We do not describe this algorithm in detail
and only note that the numerical quadrature introduces additional logarithmic factors
in the overall complexity estimate of the method.

Table 1 displays the dimensions of the full and sparse spaces as well as the L2-error
‖g − ĝL‖L2(Γ ×I ) of the solution. For comparison, we also include results obtained
with the full grid method with no fast evaluation techniques in Table 3.

As apparent from Table 1 the convergence order is not O(2−2Ls ) as in case of the
full method. This can be explained as follows. We have Lsds = Ltdt , so that in view
of Lemma 2 the convergence rate with respect to the energy norm is

‖g − ĝL‖H− 1
2 ,− 1

4 (Γ ×I )
� Ls2

− Ls Lt
4Ls+2Lt 2−Lsds‖g‖Hds ,dt

mix (Γ ×I )
.

Hence, inserting the L2-orthogonal projection Π̂L onto the space ÛL , we find by the
inverse inequality

‖g − ĝL‖L2(Γ ×I ) ≤ ‖(I − Π̂L)g‖L2(Γ ×I ) + ‖Π̂Lg − ĝL‖L2(Γ ×I )

�
√
Ls2

−Lsds‖g‖Hds ,dt
mix (Γ ×I )

+ (2Ls/2 + 2Lt/4)‖Π̂Lg − ĝL‖H− 1
2 ,− 1

4 (Γ ×I )

� Ls(2
Ls/2 + 2Lt/4)2− Ls Lt

4Ls+2Lt 2−Lsds‖g‖Hds ,dt
mix (Γ ×I )

.

If we insert ds = 2, dt = 1, and 2Ls = Lt , then we obtain

‖g − ĝL‖L2(Γ ×I ) � Ls2
−Ls (ds−1/4)‖g‖Hds ,dt

mix (Γ ×I )
∼ Ls2

− 7
4 Ls‖g‖H2,1

mix(Γ ×I ).

In Table 1, it can be seen that the error indeed closely reproduces theO(Ls2− 7
4 Ls )

convergence. Also, the dimensions of the sparse tensor product spaces dim ÛL repro-
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Table 2 Timings in seconds and
number of stored coefficients for
the sparse grid method

Ls Setup (s) Fac Apply (s) Fac Coeffs Fac

1 6.00e−4 4.68e+3

2 3.00e+0 7.99e−3 13.3 1.27e+5 27.1

3 3.60e+1 12.0 1.69e−1 21.2 2.57e+6 20.2

4 5.57e+2 15.5 3.56e+0 21.0 4.61e+7 17.9

5 1.19e+4 21.3 7.81e+1 21.9 8.20e+8 17.8

6 1.48e+5 12.4 1.24e+3 15.9 9.24e+9 11.3

Table 3 L2-errors and timings for the full method

Ls Error Fac Setup (s) Fac Apply (s) Fac Coeffs Fac

1 2.24e−1 1.60e−5 2.00e+3 25.0

2 2.86e−1 1.28 2.00e+0 3.20e−3 200 9.25e+4 46.2

3 5.48e−2 0.191 1.00e+2 50 2.09e+0 654 5.41e+6 58.4

4 1.24e−2 0.226 6.30e+3 63 4.83e+2 231 3.38e+8 62.5

duce the O(Ls22Ls ) estimate of Lemma 1 well. Note that for the finer meshes the
dimensions of the sparse spaces are dramatically smaller than the full tensor product
spaces.

Table 2 displays complexity resultswith our implementation.Our code precomputes
the matrices bnear

	̃s
in (6.3) and the coefficients Eν,ν′

α,β in (6.5) and store them in memory.

We have parallelized this aspect in OpenMP using 16 threads and the timings are
reported as setup time. The major cost of the iterative solver is in the computation of
the matrix vector product. This aspect of the code is run in serial on a single thread
and reported as the apply time. The table also displays the number of stored matrix-
and translation-coefficients.

From the shown data it is apparent that in most cases the magnification factors
obtained are significantly smaller than 16. This shows that the sparse grid method has
an improved complexity over any method that is based on the full grid discretization,
even if that method has optimal complexity in dimUL , such as the methods of [19]
and [15]. The results displayed in Table 3 is for the full method, where the theoretical
factors are 64 for the setup and 256 for the solution.

For the smaller values of Ls the observed memory allocation and cpu-times for
the sparse grid method grow much faster than the theoretical dim ÛL rate. The reason
is that most of the computing resources are consumed by the many b

	̃s
-matrices in

(6.3). Since these matrices are relatively small for the values of 	̃s that we computed,
the H-format does not yield high compression rates, because the asymptotic rates
of Sect. 6 have not been reached. Only for the largest number of refinements the
complexity curves level out and suggest that a nearly dim ÛL complexity is indeed
possible.
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