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Abstract This article presents a fast sparse grid based space—time boundary element
method for the solution of the nonstationary heat equation. We make an indirect ansatz
based on the thermal single layer potential which yields a first kind integral equation.
This integral equation is discretized by Galerkin’s method with respect to the sparse
tensor product of the spatial and temporal ansatz spaces. By employing the 7{-matrix
and Toeplitz structure of the resulting discretized operators, we arrive at an algorithm
which computes the approximate solution in a complexity that essentially corresponds
to that of the spatial discretization. Nevertheless, the convergence rate is nearly the
same as in case of a traditional discretization in full tensor product spaces.

Mathematics Subject Classification 35K20 - 65F50 - 65M38

1 Introduction

The numerical solution of parabolic evolution problems arises in many applications. In
case of the non-stationary heat equation, a boundary reduction by means of boundary
integral equations is possible. Provided that the heat equation is homogeneous, only
the n-dimensional surface I" := 9§2 needs to be discretized instead of the spatial
domain 2 c R"" n = 1,2. If one uses N' degrees of freedom for discretizing
functions on the surface I" and N' degrees of freedom for discretizing functions on
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the time interval I, then a traditional Galerkin discretization would have N - N
degrees of freedom. By “traditional” we mean the discretization of functions on I" x 1
in the full tensor product space. On the other hand, by using the sparse tensor product
between the spatial and temporal ansatz space, this number of the degrees of freedom
can be considerably reduced to essentially max{N’", N’} degrees of freedom, see e.g.
[3,7,23]. Here and in the sequel, essentially means that the complexity estimate may be
multiplied by (poly-) logarithmic factors. In the context of space—time discretizations,
this fact has been exploited in e.g. [8,18] for finite element methods and in [5] for
boundary element methods.

The nonlocality of boundary integral operators results in densely populated system
matrices and algorithms that scale at least quadratically in the number of degrees of
freedom, unless fast methods are used. Such methods have been developed recently
for the layer potentials of the heat equation when using the full tensor product space,
see e.g. [19,20], but for sparse tensor product spaces this is still an open problem.

This article presents a fast algorithm which scales essentially linearly in the number
of degrees of freedom of the sparse tensor product space. Consequently, we are able
to take full advantage of the reduction of the degrees of freedom. For further literature
on boundary element methods for sparse grid discretizations, we refer the reader to
e.g. [4,9,17,21].

The rest of the article is organized as follows. Section 2 introduces the Dirichlet
problem for the heat equation and the indirect boundary integral reformulation using
the thermal single layer operator. The traditional Galerkin discretization in full tensor
product spaces is discussed in Sect. 3. The sparse tensor product discretization is then
considered in Sect. 4. In particular, we show that the convergence rate is nearly the same
as for the traditional Galerkin discretization provided that the solution offers enough
smoothness in terms of Sobolev spaces of dominant mixed derivatives. Section 5
describes the numerical realization of a fast boundary element method which scales
essentially linear in the dimension of the sparse tensor product space. This algorithm
heavily relies upon the fact that the stiffness matrix is Toeplitz in time. It remains to
show that the spatial portion of the system matrix can also be applied efficiently. This
is the topic of Sect. 6 while the related error analysis is derived in Sect. 7. Finally,
numerical results obtained with our implementation of the algorithm is presented in
Sect. 8.

To keep the technical level of the discussion at a minimum, we focus here on the
thermal single layer potential operator. The treatment of the double layer, adjoint and
hypersingular operators is analogous which permits the solution of a wide range of
initial boundary value problems of the Heat equation. The discussion is limited to
homogenous initial conditions and source terms. While the efficient treatment of the
corresponding integral operators with sparse grids is conceivable, the implementation
would likely require significant modifications of the methodology.

2 Problem formulation

Let 2 c R* n = 1,2, be a simply connected domain with piecewise smooth
boundary I" := 952 and let [ = (0, T') be a time interval for a given 7" > 0. We
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consider the following Dirichlet boundary problem for the heat equation: Seek u €
H'(2)Q L*(I)N H~'(£2) ® H'(I), such that

ohu —Au=0 in2x1 2.1
with boundary condition
u=f onl x1I 2.2)
and initial condition
u=0 on S x {0}. 2.3)

To solve the problem (2.1)—(2.3), we introduce the thermal single layer operator

t
Ve(x, I)Z/O /FG(IIX—YII,t—T)g(y, r)doydr 2.4

where x € I" and G (-, -) is the heat kernel, given by

G(r.1) ! ( r2> 1>0 2.5)
rt)y=—— exp|(——], > .
(4mt)'s 4t

and G(r, 1) =0ifr <O.
In view of the continuity of the single layer potential operator at the boundary, the
ansatz

t
ux,t) = /0 /F G(lIx —yll,t — 1)q(y, t)doydt (2.6)

amounts to the boundary integral equation
Vg=f onl xI. 2.7

Once (2.7) has been solved for g, the solution u of the heat equation (2.1)—(2.3)
can be computed for all (x, #) € £2 x [ by means of (2.6).

To describe the mapping properties of the boundary integral operator V), let us
consider for r, s > 0 the anisotropic Sobolev spaces of the following form

HS (I x 1) := H (I ® L*(I) N L*(I") ® H(I), (2.8)

where the index 0 indicates that zero initial conditions at ¢ = 0 are incorporated. The
norm of H"*(I" x I) is

lulirrs (rxny = lullgrmer2ay + 1ulli2myemsa)-
Moreover, if r, s < 0, the space H"*(I" x I) is defined by duality, i.e., H"*(I" x
I = (H_”_S(F X I))/. Then, in accordance with [6,16], the operator V' defines a
bilinear form on H_%’_% (I" x I) which is continuous

91,14 .,y Torall pog € H=2 =3 % 1)

Vo, O 2irxn S ||P||H,%,, Y rx

%(Fxl)
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and elliptic

11
(Vp,p)Lz(pxl)ZHpH;J | I)forallpe?—[ 27 x ).

2 4(I'x

Consequently, the boundary integral equation (2.7) is uniquely solvable provided

. . . 11
that the right hand side satisfies f € H2 #(I" x I).
Note that here and in the following < and 2 indicate that the inequalities hold up
to positive multiplicative constants. Further, @ ~ b means thata < b < a.

3 Galerkin discretization

For the Galerkin discretization, we consider two sequences of nested spaces
Vo cvliccvlicooc2an, vcvic-cvl cooocLr.

We shall assume that these ansatz spaces are generated by single-scale bases @ L{; =
r I _ g1 : :
{Wx,ks}k:eA[S and @, = {wﬁt,kt}kzeAér’ respectively, that is

' _ g I ~lsn Iy _ g | A
AL =dim V] ~ 25" |AL|=dim V] ~ 2%,
and
VZ: = span <15;:, Vel, = span <15£r.
We denote the approximation power of the ansatz spaces by d; and d;, i.e.,

: —{sd, : —4,d,
1nfr v —ve 2y S 27 “ vl gas (ry,  inf , v —ve, l2¢y S 277 Nl gar gy
veg €V v, €V,

For example, the piecewise constant (dy = 1) or continuous piecewise linear (dy =
2) ansatz functions on a sequence of meshes, obtained by uniform refinement, satisfy
our assumptions on the spatial ansatz spaces ng .

We choose a finest level L for space and L; for time and write L := (Lg, L;). Due
to Céa’s lemma, a Galerkin scheme for (2.7) in the tensor product space U [ =

VL1: ® VLI, leads to the error estimate

CLs oL g
||q—61L||H,%_,;{(FX1) ST 42772 h 42 err)||qn’}—{ds.d1(1‘x1), 3.1

provided that the boundary I" and the given Dirichlet datum f, and thus the solution

q, are smooth enough, see [6,16]. As easily seen from (3.1), in case of d; = 2d;, the
optimal choice is L; = 2L;.
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4 Sparse tensor product discretization

The tensor product space UFXI = VF ® VI contains dim VIZ dim VI ~ ks ol
degrees of freedom. Compared with thls ﬁnlte element methods Wthh are based on
a sparse grid discretization of the space—time cylinder offer essentially the complex-
ity OQRLs(tD)y gee e.g. [3,8,18] and the references therein. This means, the time
discretization comes for free, at least from a complexity point of view. As a con-
sequence, although algorithms are available which solve the heat equation by layer
potentials in essentially linear complexity relative to the number of unknowns in the
tensor product space U [ <1 (cf. [14,15,19,20]), there is no gain in the use of boundary
integral equations. To overcome this obstruction, as in [5], we shall consider a Galerkin
discretization in the sparse tensor product of the ansatz spaces VLF and VI

The sparse space—time tensor Galerkin discretization is based on multllevel decom-
positions of the ansatz spaces. To that end, we set

wl.=viev/ w/! = spanw/
0 " & G—1° 0 p 0

. . 1" _ 1"
The basis functions v, = {I/fe K Y, e/ and ¥, = {1/% k,}k ev! are hierarchical
bases or wavelets. Instead of a discretization in the full tensor product space

U=V, ®Vv] = @ wi e w/,

14 14
£ fe<i
we will consider a discretization in the sparse tensor product space

U.=Vvievi= @ w ew. 4.1

£
Eifst

The following lemma has been proven in [7,8]. It states that the time discretization
is essentially free provided that 2Lg 2 L;.

Lemmal For Ly = oL; — 00, where 0 > 0 is fixed, the sparse tensor product
space (4.1) satisfies

L 2Lsn + 2Lta ifLyn # L,
dim Uy, ~ L ;
Lg2%s", if Lsn = Ly.

On the other hand, the approximation property in the sparse tensor product space
is essentially the same as in the full analogue, provided that we spend some extra
smoothness in terms of the mixed Sobolev spaces

S (I x I):= H'(I') @ H{(I). 4.2)

mlx
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In particular, we find the following result for the best approximation in the energy
space under consideration.

Lemma 2 For Ly = o L; — 0o, where o > 0 is fixed, there holds

LsLy
inf vV—7 < /L2 #s12L; (2—Lsds 2—err) v
el o=l ) f ey = Vis * )

provided that Lgdy # L:d;. In case of equality, i.e., Lgd; = L;d;, an additional
logarithmic factor appears:

inf |v— vL||
o

< Lg2” 4L3+2Lt 2~ Lsds ||U||Hdv
~ x1
vpely

4(r 13 d'(FXI)'

Proof We shall denote the L%- orthogonal projection onto the sparse tensor product
space Ur by Oy L3I x 1) — Uy. Then, by a standard duality argument, we obtain

<U — HLU, u>L2(F><[)

inf flv— oLl S = sup il
~ ~SIxl] ’ X u
vl weH T3 (Ix 1) HIE (I xD)

_ sup (U_HLU,M_HLM)LZ(['XI)

11 lleell . 11
ueH2 3 (I'xI) H2 4 ([xI)
- e — Trull2ep )
< llv—="Irvllp2rxp sup T
ueH?2 4(I'xI) H24(I"'xI)

From [5, Lema 5.2] it follows that

1-r
7

HEA( x 1) € HELF (1 x 1) forall & € [0, 1],

and we conclude that

inf v—
LRI

flu —HLM||L2(F><1)

flull 2 12
(I'x 1) HZI A ()

mix

“4.3)
ue'H%

mix

S v =Tl 2rs SUP
—X
7

To bound the first term on the right hand side of (4.3), we use the error estimate

(27 Fs + 27 D) [l oy gy 1 Lods # Loy,

lv = Mevllrarn S . . (4.4)
SR V7o [ P if Lydy = L,d;,

which has been shown in [7].
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To bound the second term on the right hand side of (4.3), we use again the error
estimate of [7] to arrive at

= A _ 1=
= Frull ogrry S (2735 42755 Jul

1-1
=

A
for all u € H;lix (I' x I), provided that 2AL; # (1 — A)L,. In the case 2AL; =

(1 — 1)L;, which means that

L L1
T 2Lg+L; 2041

an additional logarithmic factor shows up:

~ _&LS __LsL;
||M—HLM||L2(1*X1)§\/LS2 27 ull 1 )=\/Ls2 ALstals ||M||H 1%
x1

LR
4.5)
This choice yields the best attainable rate since the two terms 2=5Ls and 2= 7 L
are balanced.!
Plugging the estimates (4.4) and (4.5) into the duality argument (4.3) yields finally
the desired result. O

Remark 1 Along the lines of [5-7], we can determine the best cost complexity of the
tensor product approximation and the sparse tensor product approximation, respec-
tively, as Ly = o L; — oo. If we consider piecewise linear ansatz function in space,
i.e., dy = 2, and piecewise constant ansatz function in time, i.e., d; = 1, we obtain
the best cost complexity for the discretization in the tensor product space Uy, for the
choice Ly = 2L,: when using N degrees of freedom for the discretization, it follows

5
N75Iqllp2a . ifn=1,
lg —qcll, 11 < |V Haletxa,
H 274 xI) N 8||q||H2,1(1~><1), ifn =2.

Compared with this, the best cost complexity for the Galerkin discretization with
respect to the sparse tensor product space Uy, is given by equilibrating the degrees of
freedom in VLI: and VLI,' For N degrees of freedom, we find then the estimate

N=8(0g M) gl oy i =Tand Ly = Ly,

lg —qrll 1 _1 ~ 9 9 .

HO2AIxI) N 8(logN)8+1||q||H§],i1X(FX[), ifn =2and 2L; = L;.
We see that the cost complexity is nearly doubled when using the sparse tensor product
discretization in n = 2 dimensions. Moreover, for n = 1 dimensions, the piecewise
linear discretization in space does not pay off since the choice d; = 1 would essentially
give the same cost complexity.

1 By balancing these terms, we obtain an improvement of the results in [5].
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246 H. Harbrecht, J. Tausch

5 Algorithms
5.1 Fast matrix-vector multiplication

Throughout the article, the basis in Uy, will be denoted by

L £
lI’L _{l[’ek_llfe ks ®1/fe,k, k = (ks, ki) € Vy —Vg ngt L—+L—t<1}
s t

Then, the Galerkin matrix V; = (V¥ ¥r) L2(r x 1) consists of the block matrices

Voo =(v(¢f0v)). vl ov] (5.1)

>L2(Fx1)
where LY + T+ L’ < 1. Here, the block V, ,» has asymptotically the dimen-

sion 26snH 2@ ”*Zr Obviously, by writing Uy, = [ug] Lyl the matrix-vector

Zt <15

multiplication Wy, = \% L uz, can be block wise computed by

Wi = [Wz]%+%sl = Z Ve,erllg/ = VL L- (5.2)

& r

+7-<1
Ls ZiY g
Ls+ /—1

Lemma 3 Assume that the block matrix-vector product V, puy is computable in
complexity O(M - 2ma"{zé‘”+z”4"+4}). Then, the matrix-vector product Wy, = V 0L,
is of complexity O(MLSLt dim(UL)).

Proof The assertion follows immediately from (5.2) and

Z M. 2max{l;n+l,,€§n+l;}

— Z M- ( Z 2€/n+ﬁt + Z 2@,;"+[,>

£ £ o
*Z-F*ltfl Lsr_;'_ t<1 £3Y+ t<l
Lyn+€, <ln+L; Lsn+L;>n+;
< Y M <dim(UL) + 2ZJ'"+‘fLSL,)
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5.2 Restrictions and prolongations

Since itis algorithmically difficult to compute matrices in wavelet coordinates and with
ansatz and test functions on different levels, we use restrictions and prolongations to
realize matrix vector products with V, , in single-scale spaces.

Because WKI: - VZI,: for any £, < €, we can represent a given function ug, € Wg:

in the space V[ . Such a prolongation will be denoted by J, f:. Its discrete counterpart

. . . . . . / .
J ¢, can obviously be applied to a given vector u, in complexity (’)(24'”). Vice versa,

a function u, in VZI,: can be restricted to the space WEI; which we denote by J f,:. The
cost of the corresponding discrete operation Jﬁéu(g; is of the order (’)(2‘52"). Note that
o) =1

Likewise, due to ngt - VZI; for any ¢, < ¢, corresponding operators Iez,; and / f;z

S . o I
exist with respect to the time. Their discrete counterparts are denoted by I,/ and Iﬁf ,
t

where the application to a vector costs (9(24) operations.
In the following, we will use the notational convention

s = max{ly, £,} and ¢, := max{¢,, ¢}}.

Thus, we obtain the representation in the single-scale spaces
Y £ { Oy
Voo = (@32 )V (17 @7) (5.3)
where £ = (s, £;) and

Vig=(v(ef @2]) o] o o] (5.4)

& 5:>L2(rx1)

Remark 2 The dimension of the matrix V; 7 is asymptotically pmax{ty, & Jn-+max{Ls. £}
which is, in general, larger than the dimensions of V, . In fact, it turns out
that it is not possible to compute a matrix-vector product with V. in the desired
O(M LgL, dim(ﬁ L)) complexity, if the factors are evaluated in the sequence sug-
gested by (5.3), even if the application of VE, 7 has linear complexity. However, we
will show below that V jgcan be approximated by a sum of Kronecker products, which

will lead to an algorithm with log-linear complexity in dim(ﬁ L)-

5.3 Block matrix-vector multiplication
To get a guideline for the realization of an essentially optimal block matrix-vector

multiplication, let us assume from now on that V, , is approximated by a sum of
tensor products
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248 H. Harbrecht, J. Tausch

(@) (l)
Ve~ 3 AY, @B, (5.5)
i=1

Such a representation is also called low-rank approximation. Provided that for
all i = 1,..., M the application of the matrices A( ) e and Bg) ¢ 1o a vector can

be evaluated in O(Zma"{["e;}) and O(Zma"{zx’e»’r}”) operations, respectively, then the
matrix-vector product

M
Wy = Vf,l’ul’ o Z (A(l)l, ® BEl)E’ )ll(r

i=1

is computable within the complexity O(M - 2max{tsntt ’4’”‘4}). We will show this in
the remainder of this section.

For a matrix X € R™*", vec(X) € R is the vector that is obtained by stacking
the columns of X. From the identity

T
VeC(W;)) = (A(l)e’ ® Bg)e’) vec(uy) W(') B(’)g/ uy (Az(zl)e’) (5.6)

we conclude that, for ,n + K; < Egn + ¢;, it is cheaper to compute the vector wg) in

the order

(@) (l) @ ,T\T
z=B, WAS (Ae,,e’z ) . 5.7

(we refer to Fig. 1 for a corresponding visualization). Here, the evaluation of z is of
complexity O(2¢ - 2m2{s-6)1) and thus the complexity for computing wgl) via (5.7)
is

O(ZZ; .2max{6x,(§}n + zﬁsn . 2max{€,,€;}) _ O(2max{€sn+€,,ign+l;,@Sn+Z;}).

u /
LN

Wity = | By

AT
(AWA

Fig. 1 Visualization of the matrix-vector product in (5.6). Here, it is cheaper to perform first the multipli-

. . . . . T
cation Bés,lg uy and then the multiplication of the result with Ae,,l;
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Due to the supposition €sn + £ < £in + £, we have
bn+ €, < (Uin+1€,) — €, + ({sn + £;) — €sn
and thus
2(8sn +€) < (Uyn + ) + (En + £;) < 2max {€n + £, Ln + €} .

Therefore, the complexity for the matrix-vector multiplication (5.7) is O
(2max{bsntbebn+61) which is order optimal.
If €sn + ¢, > £in+ ¢, we change the order of multiplication in (5.6) and compute
_A@O T ) _p@® T
Z—Ae,,z;ue” w, —Bes,zgz (5.8)
By using arguments analogous to above, one readily infers that the complexity of
computing w‘g’) via (5.8) is also of order optimal complexity O (2ma{esnrEn+bi)),
Remark 3 One logarithmic factor in the cost complexity of the matrix-vector product
described here can be removed by using the unidirectional principle, see e.g. [1,2,22].

Nevertheless, we have not exploited this approach for sake of simplicity in represen-
tation.

5.4 Tensor product representation of V,

In this section we show how to compute the approximation (5.5) using the factorization

in (5.3). To keep the technical level of the discussion at a minimum, we assume that

the temporal spaces V(It consist of piecewise constant ansatz functions on a uniform

subdivision of I = [0, T] into 2%n, intervals, where n; is a small integer. Thus, the

temporal basis functions ‘/’L{,, , are scaled and translated versions of the box function.
The coefficients of the matrix V ii in (5.4) are given by

T T
V~~] =// {//G X—Vy|,t—1 I (x F, dada}
\Z v =L 1] Gax =yl =06l | 0] | )doydoy

I I
X (pz",,k,(t)(pz",,k,’(r)drdt’

An ordering of the indices (ks, k;), where ks runs fast and k; runs slow, results in a
block-Toeplitz structure of V; 5, because the integrals only depend on the difference

of the indices k; and k; . In addition, the matrix is block lower triangular because the
kernel vanishes for t > t.

We now generate an H-matrix pattern of the matrix VE, 7> see, [10,11]. To this end,
we subdivide the interval I = [0, T'] into 2" equal length sub-intervals

Log o= [k27"T, k+ 1D27"T], k=0,1,....2" =1, m=0,1,..., 14,

and define the index sets of level-Z, temporal basis functions with support in L.k
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ol e
ez et e
2 |<3|es]es
2 C4 cllez e |l
C3 3 2 cz et el
2 C4 C4 cilez|el|<l
C2 5 |e2fet]<
3 o | % [l
CS C3 2ot ] o0
3 2 |5 ]S |%s
Cy | G cilez|el|e
2 |<i|es]es
o | %4 [l
c3 3 2 cz el el
C C - -
3 2 4] 74 [e]ez]ei]e
€2 €2 o |ei[et]<
c HEE
3 4 cllel et |l
C3 C3 3 2 czlet|<
Ci| € [Glalale

Fig. 2 Partitioning of V; ; for the case that 6 =5

Ik = {k, € AZ; : supp <pe{ v © Im,k}.
t 1t

These sets are larger for smaller Values of m. Moreover, for a given m they form a
disjoint union of Aé because each g0~ is supported in exactly one I, k.

Since the kernel is less peaked for 21 larger separation of the time variables we call
Tk X Ly g admissible if d := k — k' > 2. Mind that k > &, because the matrix
is block lower triangular. The H-matrix pattern is obtained by dividing the matrix
into admissible blocks where the size of the blocks increases with the distance to the
diagonal, see Fig. 2.

Here, the blocks cfn are given by

d
Cn = [VE,Z](kJ,k»eAF X Ta* (.9)
(k/ k’)EA ><-’Z-mO
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Since VZ, i is block-Toeplitz, it suffices to consider the cases d = 2 and d = 3 for
the off-diagonal blocks where 2 < m < ¢;. These correspond to admissible index
sets and will be referred to as the temporal far field. In addition, the blocks ¢? 7 and c~
appear on and near the diagonal, and will be referred to as the temporal nearﬁeld -

The ‘H pattern suggests to write V; ; as a sum of 24; block- Toeplitz matrices that
contain the identical blocks. To that end define the (2" x 2")-matrices

0
HY, = , H), = ,H =1 00
1 1 0 | 0 0o

(5.10)

and . _

0
0 0
00 0
1000
H,=| 0000 (5.11)
" 10 0 0
0 0 0 0
i 1 0 0 0]

Note that the ones and zeros in the third subdiagonal of H alternate because of the
pattern in which the blocks c,3" appear in the matrix Vj ;.
With these notations, one obtains the decomposition

V= Y mod + Y med.  cn
def0,1} me(2,....0;)
del2.3})

Temporal far-field

Consider the block ¢, in the temporal far-field where the ansatz- and test-functions
(pz & and <pZ Y have support inside /,,, 4 and I, o, respectively. Since d € {2, 3}, the
kernel is smooth and can be well approximated by a degenerate kernel expansion. Such
an expansion can be obtained, for instance, by interpolation. This is most conveniently
achieved in the local coordinates #’, T/ of the respective intervals. For ¢ € I, 4 and
T € Iy o they are given by

t—T2"”(d+t—/+l) r—T2"”<f—/+l> —1<7,f/ <1, (5.13)
- 2 2) T 2 2)° - =7 '
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252 H. Harbrecht, J. Tausch

Thus, setting ¥ = r/+~/ T2, it follows that

n - 1
G(Irl.t —7) = @25 G (nrn, d+5 - r’)) ,

Pt

—@2" Y6 (n?n, d+ %@@ - w“”)) Li(t")Lir(x)) + Ep, (IF]))
i,i’=0
Pt '
-y G<||r||, 1) — r“”)Li(/)Li/(f’) + (127" E,, (IF)). (5.14)
i,i’=0

Here, o) and ) are interpolation nodes in (—1, 1), t®, 7 are their images under
the transformation (5.13), L; are Lagrange polynomials and p; is the interpolation
order. The error E, (r) will be analyzed in Sect. 7.

Neglecting E ), (r) and substituting the series of (5.14) in (5.9) results in a decom-
position into Kronecker products. It follows that

Pt
. o0\ T .
ol ~ Z 2(mi) (a““” >) ®bZn~d’l»t ) (5.15)
i,i'=0

where

(m,i) — (!
[a ]k _/ Li(t )(bil,k,(t)dt’
t Im,O

(m,d,i,i") _ _ i) _ @i" r r
[ = /F /F GUx =yl 1? v 0L @], (doydor.

. .
Note that a®? is a vector of length 2~ ’AZ, ‘ and bém’d”’l ) is a square matrix of

size )A i, ‘ Since the interpolation points and ansatz functions in I, 4 are obtained by

shifting 27" T'd units from the interval 1,2 the vector a®™) is the same for - and the
T-variable.

Temporal near-field

Because of the uniform time discretization, the matrices cg ,d € {0, 1},in (5.12) have
t
the block-Toeplitz structure
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[ @0
&
p&D
d = Ls and
7 :
=1y P D) p(6,0)
%, b by,
[ p@on) = p@D ]
A I £
(Z,,n,Jrl) .
1 _ bZS
C- = ~ ’
& : . .. b(£1~,"1+1)
: . : .
(€,2n,—1) . (Lrn+1) (Lr.nr)
7, b, b
where n;, = dimV{/ and
l~,'
[b%t z)]k y =/ / Gzt’i(||x—y||)(D£k (x)q); o (V)doydoy. (5.16)
s 5K rJr 59Ks 5K

Here, the kernel contains integration with the ansatz functions in time

T pT
Gy ,(Irl) =/ / GIrll, t =)@l (@] (1) drdr. (5.17)
" 0o Jo " o

The kernel can be expressed in closed form. For the case i = 0, the kernel has a
O(1/|Ir])) singularity, for i = 1 the singularity is O(||r||), and for i > 2 the kernel is
smooth. For the singular cases the spatial integration of the coefficients of (5.16) can
be computed with generalized Duffy transforms, similar to the those used for elliptic
boundary integral operators, see [14].

Define the shift-matrices

S}(,li)z 1 s

1 0

where n indicates the dimension and i the position of the sub-diagonal. Moreover,
define

@ _ << —
0 _ 8,20 ' 0<i=<n —1,
A H[l ® sg,_"’), ny <i<2n—1.
t
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Then, the near-field in (5.12) can be written as

2n;—1

> Hl@c = Z S”@b“f i, (5.18)
de{0,1}

Tensor product form of V p

The approximation of V, , in the form of (5.5) can now be obtained by combining
(5.3),(5.12),(5.15) and (5.18). Using the multiplication rules of the Kronecker product,
we conclude that

2n,—1
V“,mZAE’)e, g";;; + Y AT eBY (519
me{2,...4;}
de{2,3}
ii’€{0,..., pr}
where
A(’) er(l)lft

6. = L e

T ~
(m,d,i,i") L d i j 4
AL _I’<H @af) (af) )1'

as AN
B{',) = I b T

B(md!l) JZTb(mdtt)J

L U s s
Clearly, the matrices A( ) e and Aim K‘,l L) can be applied with order 2l operations.

Note that the order in Wthh the Kronecker product in the second matrix is evaluated
is irrelevant, because both factors are square. In the following section, we will show

that the matrices b( 1) and b(m 44 can be applied with order L72"€S complexity.

Then it follows easily that Bé') o and BZ" ; b can be applied with the same order of

operations.

This, together with Lemma 3 and the fact that p; ~ L, in (5.14) implies that the
matrix Vi, can be applied with (’)(LSL3 dlm(UL)) cost. Thus the complexity of the
algorithm described in Sect. 5 is log-linear in dlm(UL).

and

6 Fast evaluation of the matrices bg"i) bg"’d’i’i,)

s

b(& i) b(m,d,i,i’)

v

and describe an algorithm to compute matrix vector products inO (L7222 ) complexity.
To simplify the discussion we restrict ourselves to the more important case of a two

In this section, we show that the spatial matrices and are H-matrices
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dimensional surface in three-space, that is, n = 2 in (2.5). The modifications for the
case n = 1 are trivial and will result in lower powers of L in the complexity estimate.

Since the calculus with 7{-matrices is well known, see [10,11], we only present a
high-level description of the algorithm mainly to set the stage for the ensuing error
analysis. There, we will show how the parameters of the algorithm can be selected
such that error and complexity bounds can be obtained that are independent of the
parameters ¢,,mandd,i,i’.

We first give more detail on how the spatial finite element spaces VKI; are generated.
To that end, assume that the surface I” is given by a number of parameterizations of
the reference triangle 6 = {(X1, X2):0 < X» < & < 1}

xy:0 — I,, vePQ),

where P (0) is an index set for the initial triangular patches. We assume that the interiors
of I', are disjoint and that common sides of two adjacent I',’s are parametrized in a
consistent manner.

The coarsest space V0 consists of functions whose preimage in 6 is a polynomial.
The spaces VF consist of functions whose preimages are piecewise polynomials on
the £5-th unlform refinement of 6. Every £,-th level refined triangle parameterizes a
triangular patch I, v € P(£5) which in turn generates a sequence of triangularizations
of I

U n.

veP(Ls)

The uniform refinement implies a tree structure in the sense that every triangular patch
Iy, v € P(Ly) is the union of four triangular patches in level £; + 1, denoted as the
four children K(v) of v

U

Vel(v)

Moreover, every patch v in level £; > 0 has a parent 7 (v) in level £, — 1.
The neighbors NV (v) of a patch v € P(£) are given by

1
N@©) = v’eP(ES):)I(Ielilgllx—yllSSLsZTZ‘ . 6.1)

yel,

1
Here, S > 0 is a predetermined constant. The factor L? implies that the neighbor
list is expanded as the mesh is refined and is necessary to ensure convergence of
the method. We assume that the constants are such that all patches in level zero are
neighbors of each other. The interaction list Z(v) of a patch v € P(£y) is the set of
patches whose parents are neighbors, but who are not neighbors themselves:
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Zw)={V e Ply):n(v') e N(m(v)) andv' ¢ N(v)}.

Because of the uniform subdivision, the number of neighbors and the number of
patches in interactions list are O(Ly).
The definition of neighbors and interaction lists implies the subdivision

I
I'x I’ = U I, xIy, U U U I, x Ty, (6.2)
veP(£y) Ls—0 vEP(Ly)
veN (v) veZ(v)

where the number of terms is O(L L,2%s 0).
Let b; be one of the spatial matrices bé D or bim i) and Jet G(-) denote its

kernel. Slnce we will introduce additional superscripts below, we omit the kernel
identifying superscripts for notational convenience. From the subdivision (6.2), we
obtain the decomposition

[ _bnear Zb(f) (63)
where ks, k, € AZS and
near —_ —
], = X [ ctx—yiel, wel , wdoyden
TR epy Y
veN (v)
(£s) _ N r r
] = / | Gax=yirel, el doyden
. veP (L)
V' eZ(v)

Since the number of basis functions in level s that overlap with a patchin level ZS are
bounded, the matrix b‘lear has O (L 22’5“) nonvanishing entries. Of course, the matrices

b(e *) become 1ncreasmgly populated as the level ¢, decreases, but since the integrals

are over patches in interaction lists, the kernels are smooth functions. Thus, we can
approximate the kernel by a degenerate expansion which will lead to a factorization
that can be evaluated with O(L;2%) complexity.

To that end, we enclose every patch I, in P({) by an axiparallel cube with side-
length S 2~% and center x,.. The constant S} is chosen such that the cubes will contain
the patch I}, tightly which is possible for all £; with the same S; because of the uni-
form refinement scheme. Then any point in the enclosing cube has local coordinates
in[— 1, 1], that is,

1
x=2"bg, (xv + Ef() , where xe[—1,1]. (6.4)
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For two points x € I,y € I'y, where v € P({s) and v’ € Z(v), the kernel can be
expanded into a Chebyshev series in the local coordinates, that is,

GUlx=yl)~ Y EyyTa®Tp() (6.5)
le| <ps
|ﬂ|fps

where o, 8 are multiindices and 7, (-) are the Chebyshev polynomials. In Sect. 7 we
will show that for suitable expansion order the error can be neglected. Then replacing
the kernel by the expansion leads to

) v 5 A
LS AP ED DD fr Tu®p) , (x)doy /F Tp§)ef , W)doy.

veP(Ly) le|<ps v v
V' eZ(v) IBI<ps
(6.6)

In matrix form, this can be expressed as the factorization
b ~ ) _ (Mgm>7 EEOME)
Ly Ly Ly Ly

where the matrices Mg‘) contain the moments, i.e., the integrals in (6.6), and the

s

matrices E(*) contain the expansion coefficients E;; . It is not hard to see that these

matrices can be evaluated with (9( 5Py 3926 ) and O( sp82%6 ) complexity.

Finally, we note that all kernels G(-) decay exponentially at infinity. Since inter-
action lists in the coarser levels contain increasingly distant pairs of patches, it is not
necessary to evaluate all terms in the sum (6.3). Instead, we select a minimal level £
and evaluate the approximation

by ~b; =blr 4 3 bl 6.7)

In the following section we will show that the choice of parameters

when bz = b(e’ ')

ps ~Ls and {5 = (6.8)

when b;

s

SRk

(mdzl)
7. —b

3

will be sufficient to ensure that the approximation error does not affect the asymptotic
convergence of the discretization error. Thus the complexity of a matrix vector product
of b; using the approximation (6.7) is O(L]2").

Note that the introduction of the minimal level £; does not reduce the asymptotic
cost of the matrix-vector product, but ensures the accuracy of the degenerate kernel
expansion (6.5). This will become clear in the following error analysis.

@ Springer



258 H. Harbrecht, J. Tausch

7 Error analysis

We analyse the errors introduced by the low-rank approximation in (5.14) and the
fast evaluation of the spatial matrices in (6.7). In both cases, numerical efficiency is
achieved by replacing the heat kernel with its interpolate at the Chebyshev nodes. For an
analytic function, the interpolation error exhibits exponential convergence and with the
Strang lemma it can be concluded that this approximation results in an exponentially
small error of the Galerkin solution. Since the convergence of the discretization method
is algebraic, the discretization error dominates the error of the fast method as long as
the interpolation order grows linearly with the refinement level. This kind of argument
is commonly used in the analysis of fast methods for integral equations, see, e.g. [15]
in the context of the heat equation and the space—time fast multipole method. For
the sparse grid method of this article it remains to ensure that the interpolations have
convergence rates that are independent of the various space time levels. This will be
discussed below. Our argument is based on the following approximation result for
Chebyshev interpolation, which is well known for single-variate functions, see, e.g.
[13, Lemma 6.6], but appears to be hard to find for the multivariate case.

Lemma4 If f:[—1,1]? — R has a complex extension which, for some . > 0, is
analytic in every variable within the ellipse

E,:={zeCiz=cos(0+in).0 €[0,27]},
then the multivariate Chebyshev interpolate of degree N — 1 satisfies the error estimate

£ () = p()| = € max | f(2)] sinh ™! (N ).

Proof The proof for the one dimensional case (d = 1) is well known and is based on
the contour integral representation of the interpolate and the remainder

po= o [ (1-I0) 10,

2mi In@) ) z—x

Eﬂ‘-

_ 1 [Tv® f©

TO=r0 =05 | vz —x ¢
Ep

’

where Tx(x) = cos(N arccos(x)) is the Nth Chebyshev polynomial. This implies
that the contour integral formula for the multivariate interpolate is

om0
PR = riyd | - Tn (1)
E, E

(1 TN(Xd)) f (@)

S TnGa)) 1 —x1) .. (zd — xa)

dzd...dZI.
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For x € [—1, 1] real, [Ty (x)| < 1, whereas [Ty (z)| > sinh(Np) for z € E,.
Multiplying out the 7 -terms in the above integral gives

1
P(X)=f(X)—W/

EU-
Tn(x1) Tn(xq) f@)
/ (TN(ZI) L TN(Za’)> (z1 —x1) ... (zg — xq) dzq...dzy +lot (x).

Eyn
Here, the term f(x) follows from Cauchy’s integral formula and /ot (x) denotes terms
of order sinh =2 (N ). Estimating the remaining integral in the obvious way gives the

assertion. O

The estimate for the interpolation error is a direct application of the above lemma.

Lemma 5 For 1 <n < d + /d? — 1 there is a constant Cyy > 0, independent of r
and m, such that the interpolation error in (5.14) is bounded by

~ 3
Ep, (IF]) < C22kp=P,

Proof Recall that in the local coordinates (5.13) the heat kernel is

G e 23m oxp - IFP
’ . T% (d-i-%(l/—‘c/)) 4(d+%(l‘/—‘[’)) -

This function satisfies the assumptions of lemma 4 when cosh u < d which is equiv-
alent to e”* < d + +/d?> — 1. Since m < L, we see that

/o 3L
max ’G(l‘,‘t’)’ < C,22™.
t',1'eE,

This bound is independent of |F|| because Re d + %(t’ — ') > 0, so the argument
to the exponential function has negative real part. We estimate the hyperbolic sine in
Lemma 4 by sinh(p,u) > (e*)?" /4, thus for any n < d + +/d? — 1 the assertion
follows. O

Remark 4 The estimate in the above lemma makes clear that any exponential rate of
convergence can be achieved if p, ~ L, and the proportionality constant is sufficiently
large.

We now turn to the error of the fast evaluation method in Sect. 6. There are two error
sources in this algorithm, namely replacing the kernel by zero in levels ¢; < £, and
the Chebyshev approximation in levels £; < £, < £,. For pointsx € I, andy € Iy
on the patches in the subdivision (6.2) the kernel of the matrix ng in (6.7) is given by
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G(lx—yl), vePE), veNW),
G, y) =1{Gp(xYy), veEPWUy), VvV eI, I <t; <,
0, vePU), VeIV, 0<l, <,

where G, is the truncated series expansion in (6.5).

Lemma 6 For ps and £y given by (6.8), there are constants C > 0,1 > 1, independent
of bs, £;, m, d, i and i’, such that

GUIx—ylI) - Gx.y)| < Cn". (1.1)

Proof We begin with the far-field truncation for bfzm’d‘i’i/). The kernel of the matrix is

s

Ix —yll?
G(lx—yl) = -,
(x =yl exp( BT

where § = d + l(cu(") — a)(i/)) is in the interval [1, 4]. For the points x € I, and
7 p

1
y e Iy,v e Pl and v € Z(v) the distance satisfies || x — y|| > SL2 2~ because
V" and v are not neighbors. Thus the estimate

S2 SZ
G(lIx —yl) < exp (—Zm_% Ly ?> < exp (_Ls ?)

holds when £; < 5 and the bound in (7.1) is established for n = exp (Sz).

We now consider the far-field truncation error for the matrices bg’ DA simple
change of variables in (5.17) shows that the kernel is

1 _
G(lIx —yl) = h} g (%) '
1

where g; is given by

1 t 1 V2
/ [ —— €exp <_4(t T)) drdr, i =0,
o Jo (t—1)2 -
gi(ry=1"7"0,0 1)12 2
/ / T eXp (— - ) drdt, O0<i< dim(VOI).
0Jo (d+t—1)2 4i+1—71)

From their closed expression in [14] it can be seen that they satisfy the estimate

gi(r) < r% exp (—%) As before, it follows for x € I, andy € I/, where v €

P(ly),v' € T(v) and Iy < %, that G(lx — y||) < Cexp (—L%) holds. This is the
bound in (7.1).
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We now turn to the Chebyshev approximation error of the matrices bg"’d’i’i/). For
xeTl,,yeT,,veP{),Vv €Z({),thekernel is

22m—2£x

G(lx —yl) = exp (- IIFu,u/+ﬁ—5’||2>,

+ 3 (i — o)

where r, ,y =X, — X, and X, § € [—1, 113 are the local coordinates defined in (6.4).
The scaling of the enclosing cubes and the definition of the neighbors and interaction
lists implies that ||r, /|| > 3 if S and Ly are sufficiently large. In view of Lemma 4
the function (X, §) — ||r,,,» + & — §||? is strictly positive in [—1, 1]° and, for some
© > 0 can be extended to EE such that real part of the image remains positive. It
follows that the interpolation error decays exponentially at a rate that can be bounded
independently of all of the parameters m, £y, i, i’ and d. If we let p; ~ L, we obtain
bound (7.1).

It remains to estimate the truncation error in bif”d). The argument is based on a
similar scaling. In local coordinates, the kernel is

o (lIx—yl i, S .
G(||x—y||)=ﬁ22gd( y) VT2% g4 (22 ‘v—||rv,vf+x—y||>
\/_22 \/T

The above definition implies that the functions r — g; (r) are analytic and uniformly
bounded for Re{r} > ro > 0. As before, there is © > 0 such that the function
Xy = ey +X— 11> has positive real part in Eg. However, to get uniform

4
bounds of G in Eg the factor 27 ~% must be bounded away from zero. Fortunately,

this is the case, because in the sum (6.8) we have £, > %f,. This establishes (7.1) for
pS ~ LS + Ll" O

8 A numerical example

To illustrate the theory presented in this work, we discuss numerical results obtained
with an implementation of the method. We solve the indirect integral formulation
(2.7) where I' is the unit sphere and / = [0, 1]. The right hand side f(x,¢) is
chosen such that the solution is given by g(x,t) = t2(3x32 — 1). The spaces VEI:
are the continuous, piecewise linear functions (i.e., d; = 2), subject to a triangu-
lation of the sphere. The coarsest triangulation is obtained by radial projection of
the tetrahedron onto the sphere. The spaces Vel, are the piecewise constants (i.e.,
d; = 1), subject to a uniform subdivision of the unit interval, where initial space has
five intervals. The relationship between the finest spatial and temporal resolution is
Ly =2L;.

In Sect. 6 we have described how matrix vector products with the spatial matrices
in (6.3) can be evaluated efficiently using H-matrix calculus. For a fully discrete algo-
rithm, the coefficients of the matrices bgear must be computed by numerical quadrature.

s
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Table 1 Numerical results obtained with sparse grid implementation.

Lg L; dim Uy, Fac dim U L Fac Error Fac

1 2 2.00e+2 1.10e+2 3.77e—1

2 4 2.72e+3 13.6 5.60e+2 5.09 2.87e—1 0.762
3 6 4.16e+4 15.2 2.72e+3 4.86 6.96e—2 0.242
4 8 6.58e+5 15.8 1.28e+5 4.71 1.82e—2 0.261
5 10 1.05e+7 16.0 5.8%+5 4.60 4.8le-3 0.264
6 12 1.68e+8 16.0 2.66e+6 4.52 1.38e—3 0.286

Since the kernels have in the worst case a O (%)-singularity, one can use the singu-
larity removing transformations of [12] combined with Gauss quadrature. However,
for coarse spatial and fine time scales the kernels can become very peaked and an
additional space refinement is necessary to ensure rapid convergence of the Gauss
rules. In this process, one can exploit that computations for fixed values of ¢, and m
can be re-used for different values of £;. We do not describe this algorithm in detail
and only note that the numerical quadrature introduces additional logarithmic factors
in the overall complexity estimate of the method.

Table 1 displays the dimensions of the full and sparse spaces as well as the L,-error
lg — 8LllL,rx1 of the solution. For comparison, we also include results obtained
with the full grid method with no fast evaluation techniques in Table 3.

As apparent from Table 1 the convergence order is not O(2~2L+) as in case of the
full method. This can be explained as follows. We have Lyd; = L,;d;, so that in view
of Lemma 2 the convergence rate with respect to the energy norm is

- S VN
— 2L 11 S L 2 4Lg+2L; 2_ sls d
lg =8l 5 811y gas

1 d .
2TA(IxT) X))

Hence, inserting the L>-orthogonal projection M. onto the space UL, we find by the
inverse inequality

lg —8LllLyrxn <1 — ﬁL)g”Lz(Fxl) + |[ALg — Srllarxn

7LY S
SVL275 liglytoar oy

ALs/2 L AL/ Ty o — B
+ ( + MNiILg gLIIH_%,_;{(FX])

LsL
S LM 4 2l BT g v
If weinsertd; = 2,d;, = 1, and 2Ly = L, then we obtain

~ —Ly(ds—1/4 —3Ls
lg = Bellarxn S L™ gly i oy ~ L2735 gl (-

In Table 1, it can be seen that the error indeed closely reproduces the O(L 32_%LS)
convergence. Also, the dimensions of the sparse tensor product spaces dim Uy, repro-
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Table 2 Timings in seconds and
number of stored coefficients for
the sparse grid method

Ly Setup (s)  Fac Apply (s)  Fac Coeffs Fac

6.00e—4 4.68e+3
3.00e+0 7.99e—3 13.3 1.27e+5  27.1
3.60e+1 12.0 1.69e—1 21.2  2.57e+6 202
5.57e+2 15.5 3.56e+0 21.0  4.6le+7 17.9
1.19e+4 213 7.8le+1 219  8.20e+8 17.8
1.48e+5 12.4 1.24e4-3 159  9.24e+9 11.3

AN L B W N =

Table 3 LZ2-errors and timings for the full method

Ly Error Fac Setup (s) Fac Apply (s) Fac Coefts Fac

1 2.24e—1 1.60e—5 2.00e+3 25.0
2 2.86e—1 1.28 2.00e+0 3.20e—-3 200 9.25¢e+4 46.2
3 5.48e—2 0.191 1.00e+2 50 2.09e+0 654 5.41le+6 58.4
4 1.24e-2 0.226 6.30e+3 63 4.83e+2 231 3.38e+8 62.5

duce the O(L,2%Ls) estimate of Lemma 1 well. Note that for the finer meshes the
dimensions of the sparse spaces are dramatically smaller than the full tensor product
spaces.

Table 2 displays complexity results with our implementation Our code precomputes

the matrices bneaI in (6.3) and the coefficients E v,V 1n (6.5) and store them in memory.

We have parallehzed this aspect in OpenMP usmg 16 threads and the timings are
reported as setup time. The major cost of the iterative solver is in the computation of
the matrix vector product. This aspect of the code is run in serial on a single thread
and reported as the apply time. The table also displays the number of stored matrix-
and translation-coefficients.

From the shown data it is apparent that in most cases the magnification factors
obtained are significantly smaller than 16. This shows that the sparse grid method has
an improved complexity over any method that is based on the full grid discretization,
even if that method has optimal complexity in dim Uy, such as the methods of [19]
and [15]. The results displayed in Table 3 is for the full method, where the theoretical
factors are 64 for the setup and 256 for the solution.

For the smaller values of L the observed memory allocation and cpu-times for
the sparse grid method grow much faster than the theoretical dim Uy, rate. The reason
is that most of the computing resources are consumed by the many b; -matrices in

(6.3). Since these matrices are relatively small for the values of £ that we computed,
the H-format does not yield high compression rates, because the asymptotic rates
of Sect. 6 have not been reached. Only for the largest number of refinements the
complexity curves level out and suggest that a nearly dim Ur complexity is indeed
possible.
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