
A Linear-Space Data Structure
for Range-LCP Queries in
Poly-Logarithmic Time

Paniz Abedin1, Arnab Ganguly2, Wing-Kai Hon3, Yakov Nekrich4,
Kunihiko Sadakane5, Rahul Shah6,7, and Sharma V. Thankachan1(B)

1 Department of Computer Science, University of Central Florida, Orlando, USA
paniz@cs.ucf.edu, sharma.thankachan@ucf.edu

2 Department of Computer Science, University of Wisconsin - Whitewater,
Whitewater, USA
gangulya@uww.edu

3 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
wkhon@cs.nthu.edu.tw

4 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
yakov.nekrich@googlemail.com

5 Department of Computer Science, The University of Tokyo, Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

6 Department of Computer Science, Louisiana State University, Baton Rouge, USA
rahul@csc.lsu.edu

7 National Science Foundation (NSF), Alexandria, USA

Abstract. Let T[1, n] be a text of length n and T[i, n] be the suffix
starting at position i. Also, for any two strings X and Y , let LCP(X, Y)
denote their longest common prefix. The range-LCP of T w.r.t. a range
[α, β], where 1 ≤ α < β ≤ n is

rlcp(α, β) = max{|LCP(T[i, n], T [j, n])| | i �= j and i, j ∈ [α, β]}
Amir et al. [ISAAC 2011] introduced the indexing version of this problem,
where the task is to build a data structure over T, so that rlcp(α, β) for
any query range [α, β] can be reported efficiently. They proposed an
O(n log1+ε n) space structure with query time O(log log n), and a linear
space (i.e., O(n) words) structure with query time O(δ log log n), where
δ = β − α + 1 is the length of the input range and ε > 0 is an arbitrarily
small constant. Later, Patil et al. [SPIRE 2013] proposed another linear
space structure with an improved query time of O(

√
δ logε δ). This poses

an interesting question, whether it is possible to answer rlcp(·, ·) queries in
poly-logarithmic time using a linear space data structure. In this paper,
we settle this question by presenting an O(n) space data structure with
query time O(log1+ε n) and construction time O(n log n).

A part of this work was done at NII Shonan Meeting No. 126: Computation over
Compressed Structured Data.

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 615–625, 2018.
https://doi.org/10.1007/978-3-319-94776-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_51&domain=pdf

616 P. Abedin et al.

1 Introduction and Related Work

The longest common prefix (LCP) is an important primitive employed in various
string matching algorithms. By preprocessing a text T[1, n] (over an alphabet set
Σ) into a suffix tree data structure, we can compute the longest common prefix
of any two suffixes of T, say T[i, n] and T[j, n], denoted by LCP(T[i, n],T[j, n]),
in constant time. From now onwards, we use the shorthand notation lcp(i, j) for
the length of LCP(T[i, n],T[j, n]). Given its wide range of applicability, various
generalizations of LCP has also been studied [1–3,9,15].

In this paper, we focus on the “range” versions of this problem. The line
of research was initiated by Cormode and Muthukrishnan. They studied the
Interval Longest Common Prefix (Interval-LCP) problem in the context of data
compression [6,12,13].

Definition 1 (Interval-LCP). The Interval-LCP of a text T[1, n] w.r.t a query
(p, α, β), where p, α, β ∈ [1, n] and α < β is

ilcp(p, α, β) = max{lcp(p, i) | i ∈ [α, β]}

As observed by Keller et al. [12], any Interval-LCP query on T can be reduced to
two orthogonal range successor/predecessor queries over n points in two dimen-
sions (2D). Therefore, using the best known data structures for orthogonal range
successor/predecessor queries [14], we can answer any Interval-LCP query on T
in O(logε n) time using an O(n) space data structure, where ε > 0 is an arbitrar-
ily small positive constant.1 Moreover, queries with p ∈ [α, β] can be answered
in faster O(logε δ) time, where δ = β −α+1 is the length of the input range [15].

Another variation of LCP, studied by Amir et al. [1,2], is the following.

Definition 2 (Range-LCP). The Range-LCP of a text T[1, n] w.r.t a range
[α, β], where 1 ≤ α < β ≤ n is

rlcp(α, β) = max{lcp(i, j) | i �= j and i, j ∈ [α, β]}

In order to efficiently solve the data structure version of this problem, Amir
et al. [1,2] introduced the concept of “bridges” and “optimal bridges” and
showed that any Range-LCP query on T[1, n] can be reduced to an equivalent 2D
range maximum query over a set of O(n log n) weighted points in 2D. Therefore,
an O(n log1+ε n) space data structure with O(log log n) query time is immediate
from the best known result for 2D range maximum problem [4]. The construction
time is O(n log2 n). By choosing an alternative structure for 2D (2-sided) range
maximum query2, the space can be improved to O(n log n) with a slowdown in

1 All results throughout this paper assume the standard unit-cost word RAM model, in
which any standard arithmetic or boolean bitwise operation on word-sized operands
takes constant time. The space is measured in words of log n bits unless specified
otherwise.

2 See Theorem 9 in [16] on sorted dominance reporting in 3D.

A Linear-Space Data Structure for Range-LCP Queries 617

query time to O(log n). This sets an interesting question, whether it is possi-
ble to reduce the space further without sacrificing the poly-logarithmic query
time. Unfortunately, the query times of the existing linear space solutions (listed
below) are dependent on the parameter δ, which is Θ(n) in the worst case.

– O(n) space and O(δ log log n) query time [1,2].
– O(n) space and O(

√
δ logε δ) query time [15]

To this end, we present our main contribution below. Our model of computation
is the word RAM with word size Ω(log n).

Theorem 1. A text T[1, n] can be preprocessed into an O(n) space data struc-
ture in O(n log n) time, such that any Range-LCP query on T can be answered
in O(log1+ε n) time.

Map. We start with some preliminaries (Sect. 2). We the briefly sketch the
framework by Amir et al. [1] in Sect. 3. Sections 4 and 5 are dedicated for the
details of our solution. The details of the construction of our data structure is
deferred to Appendix.

2 Preliminaries

2.1 Predecessor/Successor Queries

Let S be a subset of {1, 2, . . . , n}. Then, S can be preprocessed into an O(|S|)
space data structure, such that for any query p, we can return pred(p,S) and
succ(p,S) in O(log log n) time [19], where

pred(p,S) = max {i | i ≤ p and i ∈ S ∪ {−∞}}
succ(p,S) = min {i | i ≥ p and i ∈ S ∪ {∞}}

2.2 Range Minimum Query

Let A[1, n] be an array of length n. A range minimum query (RMQ) with an input
range [i, j] asks to report rmq(i, j) = arg mink{A[k] | k ∈ [i, j]}. By maintaining
a data structure of size 2n + o(n) bits, any RMQ on A can be answered in O(1)
time [8] (even without accessing A).

2.3 2D Range Maximum Query

Let S be a set of m weighted points in a [1, n]×[1, n] grid. A 2D-RMQ with input
(a, b, a′, b′) asks to return the highest weighted point in S within the orthogonal
region corresponding to [a, b] × [a′, b′]. Data structures with the following space-
time trade-offs are known for this problem.

– O(m) space, O(m log m) preprocessing time and O(log1+ε m) query time [5].
– O(m logε n) space, O(m log m) preprocessing time and O(log log n) query

time [4].

618 P. Abedin et al.

2.4 Orthogonal Range Predecessor/Successor Queries in 2D

A set P of n points in an [1, n] × [1, n] grid can be preprocessed into a linear-
space data structure, such that the following queries can be answered in O(logε n)
time [14].

– ORQ([x′, x′′], [−∞, y′′]) = arg maxj{(i, j) ∈ P ∩ [x′, x′′] × [−∞, y′′]}
– ORQ([−∞, x′′], [y′, y′′]) = arg maxi{(i, j) ∈ P ∩ [−∞, x′′] × [y′, y′′]}
– ORQ([x′, x′′], [y′,+∞]) = arg minj{(i, j) ∈ P ∩ [x′, x′′] × [y′,+∞]}
– ORQ([x′,+∞], [y′, y′′]) = arg mini{(i, j) ∈ P ∩ [x′,+∞] × [y′, y′′]}

2.5 Suffix Trees and Suffix Arrays

For a string T[1, n], the suffix array SA[1, n] is an array of length n, such that SA[i]
denotes the starting position of the lexicographically ith smallest suffix among all
suffixes of T. The suffix tree ST is a compact trie of all its suffixes [18]. The suffix
tree consists of n leaves and at most n − 1 internal nodes. The edges are labeled
with substrings of T. For any node u, path(u) is defined as the concatenation of
edge labels on the path from the root of the suffix tree to u. Therefore, path(x) =
T[SA[x], n], where 	x is the xth leftmost leaf node. Moreover, path(lca(x, 	y)) =
LCP(T[SA[x], n],T[SA[y], n]), where lca(·, ·) denotes the lowest common ancestor.
The suffix tree of T occupies O(n) space, can be constructed in O(n) time and
space, and for any two text positions i, j, we can compute lcp(i, j) in constant
time. Also, define inverse suffix array ISA[1, n], such that ISA[i] = j, where
SA[j] = i.

2.6 Heavy Path Decomposition

We define the heavy path decomposition [11,17] of a suffix tree ST as follows.
First, we categorize the nodes in ST into light and heavy. The root node is light
and for any internal node, exactly one child is heavy. Specifically, the child having
the largest number of leaves in its subtree (ties are broken arbitrarily). When
all incident edges to the light nodes are removed, the remaining edges of ST are
decomposed into maximal downward paths, each starting from an internal light
node and following a sequence of heavy nodes. We call each path a heavy path.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at
most log2 n. Equivalently, the number of light nodes on any root to leaf path is
at most log2 n.

3 Amir et al.’s Framework

We start with some definitions.

Definition 3 (Bridges). Let i and j and two distinct positions in the text T and
let h = lcp(i, j) and h > 0. Then, we call the tuple (i, j, h) a bridge. Moreover,
we call h its height, i its left leg and j its right leg, and LCP(T[i, n],T[j, n]) its
label.

A Linear-Space Data Structure for Range-LCP Queries 619

Let Ball be the set of all such bridges. Then clearly,

rlcp(α, β) = max{h | (i, j, h) ∈ Ball and i, j ∈ [α, β]}

Therefore, by mapping each bridge (i, j, h) ∈ Ball to a 2D point (i, j) with
weight h, the problem can be reduced to a 2D-RMQ problem (refer to Sect. 2.3).
This yields an O(|Ball| logε n) space data structure with query time O(log log n).
Unfortunately, this is not a space efficient approach as the size of Ball is Θ(n2)
in the worst case. To circumvent this, Amir et al. [1] introduced the concept of
optimal bridges.

Definition 4 (Optimal Bridges). A bridge (i, j, h) ∈ Ball is optimal if there
exists no other bridge (i′, j′, h′), such that i′, j′ ∈ [i, j] and h′ ≥ h.

Let Bopt be the set of all optimal bridges. Then, it is easy to observe that

rlcp(α, β) = max{h | (i, j, h) ∈ Bopt and i, j ∈ [α, β]}.

Thus, to answer an rlcp query, it is sufficient to examine the bridges in Bopt,
instead of all the bridges in Ball. The crux of Amir et al.’s [1] data structure is
the following lemma.

Lemma 2 ([1]). The size of Bopt is O(n log n).

Therefore, by applying the above reduction (from Range-LCP to 2D-RMQ)
on the bridges in Bopt, they got an O(|Bopt| logε n) = O(n log1+ε n) space data
structure with query time O(log log n). Additionally, they showed that there
exist cases where the the size of Bopt is Ω(n log n). For example, when T is a
Fibonacci word (see Sect. 4 in [1] for its definition). This means that the bound
on the number of optimal bridges is tight.

4 Our Framework

Firstly, we present a replacement for optimal bridges, called special bridges.

Definition 5 (Special Bridges). A bridge (i, j, h) ∈ Ball is special if there
exists no other bridge (i′, j′, h′) ∈ Ball, such that i′, j′ ∈ [i, j] and

LCP(T[i, n],T[j, n]) = LCP(T[i′, n],T[j′, n])

Let Bspe be the set of all special bridges. Clearly Bopt ⊆ Bspe, therefore

rlcp(α, β) = max{h | (i, j, h) ∈ Bspe and i, j ∈ [α, β]}

From Lemma 3, |Bspe| = Θ(|Bopt|), the same space-time trade-off as in Amir et
al. [1] can be obtained by employing special bridges instead of optimal bridges.
However, the main advantage over optimal bridges is that special bridges can be
encoded efficiently, in O(1)-bits per bridge.

620 P. Abedin et al.

Lemma 3. The size of Bspe is O(n log n).

Proof. Firstly, we show how to bound the number of special bridges with a fixed
label P . Let u be the node in ST such that path(u) = P . For any such bridge
(i, j, h), the leaves (say 	ISA[i] and 	ISA[j]) corresponding to the suffixes T[i, n] and
T[j, n] must be under the subtree of u, but not under the subtree of the same
child of u. This means, either 	ISA[i] or 	ISA[j] must be under a light child of u.
Moreover, the starting position of the suffix corresponding to a leaf can be the
left-leg (resp., right-leg) of at most one special bridge with label P . Therefore
the number of special bridges with a fixed label P is at most twice the sum of
subtree sizes of all light children of u. Hence, the total number of special bridges
is at most twice the sum of subtree sizes of all light nodes in the suffix tree,
which is bounded by O(n log n), since each leaf is under at most O(log n) light
ancestors. ��
We now present an overview of our solution.

4.1 An Overview of Our Data Structure

We start by defining two queries, which are weaker than Range-LCP.

Definition 6. For a parameter Δ = Θ(log n), a query EΔ(α, β) asks to return
an estimate τ of rlcp(α, β), such that

τ ≤ rlcp(α, β) < τ + Δ

Definition 7. A query Q(α, β, h) asks to return YES if there exists special
bridge (i, j, h), such that i, j ∈ [α, β]. Otherwise, Q(α, β, h) returns NO.

The following two are the main components of our data structure.

1. A linear space structure for EΔ(·, ·) queries in O(log1+ε n) time.
2. A linear space structure for Q(·, ·, ·) queries in O(logε n) time.

Our algorithm for computing rlcp(α, β) is straightforward. First obtain
τ = EΔ(α, β). Then, for h = τ, τ + 1, τ + 2, ..., τ + Δ − 1, compute Q(α, β, h).
Then report

rlcp(α, β) = max{h | h ∈ [τ, τ + Δ − 1] and Q(α, β, h) = YES }
The time complexity is log1+ε n + Δ · logε n = O(log1+ε n) and the space com-
plexity is O(n), as claimed. In what follows, we present the details of these two
components of our data structure.

5 Details of the Components

We maintain the suffix tree ST of T and the linear space data structure for
various 2D range successor/predecessor queries (in O(logε n) time [14]) over the
following set of n points.

A Linear-Space Data Structure for Range-LCP Queries 621

P = {(i,SA[i]) | i ∈ [1, n]}
We rely on this structure for computing interval-LCP and left-leg/right-leg
queries (to be defined next).

Lemma 4. We can answer an interval-LCP query ilcp(p, α, β) in time
O(logε n).

Proof. Find the leaf 	ISA[p] first. Then find the rightmost leaf 	x before 	ISA[p]
and the leftmost leaf 	y after 	ISA[p], such that SA[x],SA[y] ∈ [α, β]. We can rely
on the following queries for this:

x = ORQ([−∞, p − 1], [α, β]) and y = ORQ([p + 1,+∞], [α, β])

Clearly, ilcp(p, α, β) is given by max{lcp(p, x), lcp(p, y)}. This completes the
proof. ��
Definition 8. Let (i, j, h) ∈ Bspe, then define

rightLeg(i, h) = j and leftLeg(j, h) = i

If there exists no j, such that (i, j, h) ∈ Bspe, then rightLeg(i, h) = ∞. Similarly,
if there exists no i, such that (i, j, h) ∈ Bspe, then leftLeg(j, h) = −∞. If exists,
then rightLeg(i, h) (resp. leftLeg(j, h)) is unique.

Lemma 5. By maintaining a linear space data structure, we can answer
rightLeg(k, h) and leftLeg(k, h) queries in O(logε n) time.

Proof. Find the ancestor u (if it exists) of 	ISA[k], such that |path(u)| = h via a
weighted level ancestor query on ST3. If u does not exist, then rightLeg(k, h) =
+∞ and leftLeg(k, h) = −∞. Otherwise, let u′ be the child of u, such that 	ISA[k]
is under u′. Also, let [x, y] and [x′, y′] be the range of leaves under u and u′,
respectively. Then,

rightLeg(k, h) = min(ORQ([x, y]\[x′, y′], [k + 1,+∞]),+∞)

leftLeg(k, h) = max(ORQ([x, y]\[x′, y′], [−∞, k − 1]),−∞)

This completes the proof. ��
The structures described in Lemma 4 and Lemma 5 are the building blocks

of our main components, to be described next. The following observation is
exploited in both.

Lemma 6. Suppose that (i, j, h) ∈ Bspe. Then, ∀k ∈ [1, h − 1], there exists
(i + k, ·, h − k) ∈ Bspe such that rightLeg(i + k, h − k) ∈ (i + k, j + k].

Proof. Given lcp(i, j) = h, we have lcp(i+k, j +k) = (h−k). Clearly, (i+k, j +
k, h−k) ∈ Ball. This means, there exists a special bridge (i+k, lk, h−k), where
lk is the smallest integer after i+k, such that lcp(i+k, lk) = h−k. Equivalently,
lk = rightLeg(i + k, h − k). Clearly, lk ≤ j + k, since lcp(i + k, j + k) = h − k.
This completes the proof. ��
3 Weighted level ancestor queries on suffix trees can be answered in O(1) time using

a linear space data structure [10] (also see [7]).

622 P. Abedin et al.

5.1 The Structure for Estimating Range-LCP

Let Bt denotes the set of all special bridges with height t. Also, for f =
0, 1, 2, . . . , (Δ − 1), where Δ = Θ(log n), define Cf : the set of all special bridges
with its height divided by Δ leaving remainder f . Specifically,

Cf =
�n−f

Δ �⋃

k=0

B(f+kΔ)

Let Cπ : π ∈ [0,Δ−1] be the smallest set among all Cf ’s. Its size can be bounded
by O((n log n)/Δ) (by pigeonhole principle), which is O(n). We map each special
bridge (i, j, h) ∈ Cπ into a 2D point (i, j) with weight h and maintain the linear-
space data structure over them for answering 2D-RMQ. We use the linear-space
structure by Chazelle [5]. The space is |Cπ| = O(n) words and the query time is
O(log1+ε n).

Our Algorithm. Let (α∗, β∗, h∗) be the tallest special bridge, such that both
α∗, β∗ ∈ [α, β]. For computing EΔ(α, β), we query on the 2D-RMQ structure
over Cπ and find the tallest bridge (i′, j′, h′) ∈ Cπ, such that i′, j′ ∈ [α, β]. Two
possible scenarios are

1. β∗ ∈ (α, β−Δ]: We claim that h∗ ∈ [h′, h′ +Δ). Proof follows from Lemma 6.
2. β∗ ∈ (β − Δ,β]: We can rely on Interval-LCP queries. Specifically, h∗ =

max{ilcp(p, α, β) | p ∈ (β − Δ,β]}.

By combining both cases, we have

EΔ(α, β) = max
(
{ilcp(p, α, β) | p ∈ (β − Δ,β]} ∪ {h′}

)

The time complexity is proportional to that of one 2D-RMQ and at most Δ
number of Interval-LCP queries. That is, log1+ε n + Δ · logε n = O(log1+ε n).

5.2 The Structure for Handling Q(α, β, h) Queries

Recall that Bt is the set of all special bridges with height t. Let Lt represent the
sorted list of left-legs of all bridges in Bt in the form of a y-fast trie for fast prede-
cessor search. Also, let Rt be another array, such that Rt[k] = rightLeg(Lt[k], t).
In other words, for k = 1, 2, ..., |Bt|, Lt[k] (resp., Rt[k]) denotes the left-leg (resp.,
right-leg) of kth bridge among all bridges in Bt in the ascending order of left-leg.
Also, let

Sπ = {π, π + Δ,π + 2Δ,π + 3Δ, ..., (π + �(n − π)/Δ�Δ)}
For each t ∈ [1, n], we maintain a separate structure that can answer queries of
the type Q(·, ·, t). Based on whether h in the query Q(α, β, h) is in Sπ or not,
we have two cases.

Case 1: h ∈ Sπ To handle this case, we maintain Lt and the succinct data
structure for range minimum query (RMQ) on Rt for all t ∈ Sπ. The total
space is |Cπ| = O(n) words. Therefore, any query Q(α, β, h) with h ∈ Sπ can be
answered using the following steps.

A Linear-Space Data Structure for Range-LCP Queries 623

1. Find the smallest k, such that Lh[k] ≥ α via a successor query.
2. Then, find the index k′ corresponding to the smallest element in Rh[k, |Rh|]

using a range minimum query. Note that Rh is not stored.
3. Then, find rightLeg(Lh[k′], h) and report “YES” if it is ≤ β, and report “NO”

otherwise.

The time complexity is (log log n + logε n) = O(logε n). The correctness can be
easily verified.

Case 2: h /∈ Sπ We first show how to design a structure for a predefined h. Let
q = pred(h, Sπ) = π +Δ · �(h−π)/Δ� and z = (h− q). Note that for each special
bridge (i, j, h), there exists a special bridge (i + z, ·, h − z) = (i + z, ·, q) (refer to
Lemma 6). This implies the following.

{Lh[k] | k ∈ [1, |Bh|]} ⊆ {(Lq[k] − z) | k ∈ [1, |Bq|]} (1)

Now, define an array R′
h of length |Bq|, such that for any k ∈ [1, |Bq], R′

h[k] =
rightLeg((Lq[k] − z), h). Note that R′

h[k] = ∞ if there exists no special bridge
with left-leg (Lq[k] − z) and height h. Our data structure is a succinct range
minimum query (RMQ) structure over R′

h. We now show how to answer an
Q(α, β, h) query using R′

h and Lq (in Case 1). The steps are as follows.

1. Find the smallest k, such that (Lq[k]− z) ≥ α. We perform a successor query
on Lq for this.

2. Then, find the index k′ corresponding to the smallest element in R′
h[k, |Rq|]

using a range minimum query.
3. Then, find rightLeg(Lh[k′] − z, h) and report “YES” if it is ≤ β, and report

“NO” otherwise.

The time complexity is (log log n + logε n) = O(logε n). The correctness follows
from the definition of R′

h and Eq. 1. The space complexity for a fixed h is |Bq|(2+
o(1)) bits. Therefore, by maintaining the above structure for all values of h, we
can answer Q(α, β, h) for any α, β and h in O(logε n) time. Total space (in bits)
is:

(2 + o(1))
n∑

h=1

|Bπ+Δ·�(h−π)/Δ�| = (2 + o(1))Δ
∑

q∈Sπ

|Bq| = O(n log n).

In summary, any Range-LCP query on the text T[1, n] can be answered in
O(log1+ε n) time using a linear space data structure. We remark that our data
structure can be constructed in O(n log n) time.

Acknowledgments. This research is supported in part by the U.S. NSF under the
grants CCF-1703489 and CCF-1527435, and the Taiwan Ministry of Science and Tech-
nology under the grant 105-2221-E-007-040-MY3.

624 P. Abedin et al.

References

1. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 683–692. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25591-5 70

2. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)

3. Amir, A., Lewenstein, M., Thankachan, S.V.: Range LCP queries revisited. In:
Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
350–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 33

4. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

5. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

6. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 321–
330. Society for Industrial and Applied Mathematics (2005)

7. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: formalization and algo-
rithms. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–
140. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0 11

8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

9. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 107–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 12

10. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix
trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 455–466.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 38

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

12. Keller, O., Kopelowitz, T., Feibish, S.L., Lewenstein, M.: Generalized substring
compression. Theor. Comput. Sci. 525, 42–54 (2014)

13. Lewenstein, M.: Orthogonal range searching for text indexing. In: Brodnik, A.,
López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 267–302. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40273-9 18

14. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 24

15. Patil, M., Shah, R., Thankachan, S.V.: Faster range LCP queries. In: Kurland,
O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 263–270.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02432-5 29

16. Patil, M., Thankachan, S.V., Shah, R., Nekrich, Y., Vitter, J.S.: Categorical range
maxima queries. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2014, 22–27 June 2014,
Snowbird, UT, USA, pp. 266–277 (2014)

https://doi.org/10.1007/978-3-642-25591-5_70
https://doi.org/10.1007/978-3-642-25591-5_70
https://doi.org/10.1007/978-3-319-23826-5_33
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/978-3-642-38905-4_12
https://doi.org/10.1007/978-3-642-38905-4_12
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1007/978-3-642-40273-9_18
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-319-02432-5_29

A Linear-Space Data Structure for Range-LCP Queries 625

17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, 11–13 May 1981,
Milwaukee, Wisconsin, USA, pp. 114–122 (1981)

18. Weiner, P.: Linear pattern matching algorithms. In: SWAT, pp. 1–11 (1973)
19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space

theta(n). Inf. Process. Lett. 17(2), 81–84 (1983)

	A Linear-Space Data Structure for Range-LCP Queries in Poly-Logarithmic Time
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Predecessor/Successor Queries
	2.2 Range Minimum Query
	2.3 2D Range Maximum Query
	2.4 Orthogonal Range Predecessor/Successor Queries in 2D
	2.5 Suffix Trees and Suffix Arrays
	2.6 Heavy Path Decomposition

	3 Amir et al.'s Framework
	4 Our Framework
	4.1 An Overview of Our Data Structure

	5 Details of the Components
	5.1 The Structure for Estimating Range-LCP
	5.2 The Structure for Handling Q(,,h) Queries

	References

