Poster Session

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

Faster Computation of Genome Mappability

Sahar Hooshmand
University of Central Florida
Orlando, FL
sahar@cs.ucf.edu

Srinivas Aluru
Georgia Institute of Technology
Atlanta, GA
aluru@cc.gatech.edu

ABSTRACT

The k-mappability problem is defined as follows: Given a sequence
S[1, n] of length n over a constant alphabet X, and two integers k
and m < n, compute an array Fg, such that:

Felil=Wj#i|dg(Sli,i+m—-1],S[,j+m-1]) <k}

The function dg (-, -) denotes the hamming distance. Derrien et
al. [2] introduced this problem in the context of genome analysis.
We propose a provably efficient algorithm for 1-mappability with
O(nlog n) worst case run time. The previous best known bound is
O(nlog?n) [1].

KEYWORDS

Genome mappability, suffix tree, heavy path decomposition, Ham-
ming distance.

ACM Reference Format:

Sahar Hooshmand, Paniz Abedin, Daniel Gibney, Srinivas Aluru, and Sharma
V. Thankachan. 2018. Faster Computation of Genome Mappability. In ACM-
BCB’18: 9th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, August 29-September 1, 2018, Washington,
DC, USA. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3233547.
3233645

1 INTRODUCTION

Genome mappability (see Table 1) is an important concept used
in the analysis of high-throughput sequencing data, such as gene
expression quantification, SNP calling and paired-end experiments.
Very recently, Alzamel et al. [1] studied the 1-mappability problem
and proposed three linear space algorithms with time complexities
O(nlog? n), O(nm), and a O(n) average-case time algorithm for
m = Q(log n).

We propose a new algorithm for 1-mappability with time com-
plexity of O(nlog n) and space complexity of O(n). It based on the
approximate string matching framework in [3], which makes use
of heavy path decomposition of the suffix tree, ST, of S.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5794-4/18/08.

https://doi.org/10.1145/3233547.3233645

Paniz Abedin
University of Central Florida
Orlando, FL
paniz@cs.ucf.edu

537

Daniel Gibney
University of Central Florida
Orlando, FL
dangibney@ucf.edu

Sharma V. Thankachan
University of Central Florida
Orlando, FL
sharma.thankachan@ucf.edu

Table 1: Mappability for m = 3 and S = CCACAACA

Position i 1 2 3 4 5 6
substring | CCA | CAC | ACA | CAA | AAC | ACA
Foli] 0 0 1 0 0 1
Filil 3 2 2 2 1 2

2 OVERVIEW

The algorithm consists of two phases. In the first phase, we con-
struct data structures based on ST. The first set of structures consists
of compact tries for every light node in the heavy path decompo-
sition with string depth less than m. The second set of structures
consists of compact tries for every node in ST with string depth
less than m. Both are created using modified suffixes involving one
substitution. The essential property of these trees is that pairs of
suffixes where a single modification could make the longest com-
mon prefix greater or equal to m correspond to leaves in a subtree
rooted at string depth greater or equal to m. The total number of
leaves in these new structures is O(n log n).

In the second phase, we traverse these structures one time. In
the traversal, the subtree sizes along with the number of modified
and unmodified suffixes in each trie are used to update the array
Fi. Some final modifications to F; are done based on Fy, which is
easily computed beforehand.

3 RESULTS

The creation of the data structures can be done in O(nlog n) time
using fast-merging techniques. Their traversal can also be done in
O(nlog n) time. By creating the new tries, performing the traversal,
and then deleting them, space is maintained at O(n). Combining
these results, we have that there exists an O(n log n) time and O(n)
working space algorithm for the 1-mappability problem.

REFERENCES

[1] M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, S. P. Pissis, J. Radoszewski,
and W.-K. Sung. Faster algorithms for 1-mappability of a sequence. In Interna-
tional Conference on Combinatorial Optimization and Applications, pages 109-121.
Springer, 2017.

T. Derrien, J. Estellé, S. M. Sola, D. G. Knowles, E. Raineri, R. Guigd, and P. Ribeca.
Fast computation and applications of genome mappability. PloS one, 7(1):e30377,
2012.

S. V. Thankachan, C. Aluru, S. P. Chockalingam, and S. Aluru. Algorithmic
framework for approximate matching under bounded edits with applications to
sequence analysis. In Research in Computational Molecular Biology - 22nd Annual
International Conference, RECOMB 2018, Paris, France, April 21-24, 2018, Proceedings,
pages 211-224, 2018.

N,

https://doi.org/10.1145/3233547.3233645
https://doi.org/10.1145/3233547.3233645
https://doi.org/10.1145/3233547.3233645

	Abstract
	1 Introduction
	2 Overview
	3 Results
	References

