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Abstract

We consider the problem of high-dimensional classification between the two groups with unequal covariance ma-
trices. Rather than estimating the full quadratic discriminant rule, we propose to perform simultaneous variable
selection and linear dimension reduction on original data, with the subsequent application of quadratic discrimi-
nant analysis on the reduced space. In contrast to quadratic discriminant analysis, the proposed framework doesn’t
require estimation of precision matrices and scales linearly with the number of measurements, making it especially
attractive for the use on high-dimensional datasets. We support the methodology with theoretical guarantees on
variable selection consistency, and empirical comparison with competing approaches. We apply the method to
gene expression data of breast cancer patients, and confirm the crucial importance of ESR1 gene in differentiating
estrogen receptor status.

Keywords: Convex optimization, Discriminant analysis, High-dimensional statistics, Variable selection.

1. Introduction

We consider a binary classification problem: given n independent pairs (X1,Y1), ..., (Xn,Yn) from a random pair
(X,Y) on Rp × {1, 2}, our goal is to both learn a rule that will assign one of two labels to a new data point X ∈ Rp,
and determine the subset of p variables that influences the rule. One of the popular classification tools is linear
discriminant analysis, or LDA; see Chapter 11 in [36]. While it gives unsatisfactory results when applied to high-
dimensional datasets [12], recent work suggests that additional regularization, variable selection in particular, leads
to dramatic performance improvements. Earlier approaches perform variable selection and regularize the sample
covariance matrix by treating it as diagonal [48, 53]. More recent methods directly estimate the discriminant
directions by using convex optimization framework with sparsity-inducing penalties [5, 15, 35].

Despite these significant advances, a key underlying assumption of linear discriminant analysis is the equality
of covariance matrices between the groups, viz. Σ1 = Σ2. This assumption is unlikely to be satisfied in practice,
leading to suboptimal performance of the linear rule. When the measurements are normally distributed, viz.
Xi|Yi = g ∼ N(µg,Σg), g ∈ {1, 2}, with Σ1 , Σ2, the Bayes rule is quadratic, leading to quadratic discriminant
analysis, or QDA. As with the linear case, quadratic discriminant analysis (QDA) performs poorly when p is large.
This unsatisfactory performance is largely due to the estimation of precision matrices Σ−1

1 and Σ−1
2 , a task that is

extremely challenging when p � n. In fact, even when p = n/2 and the assumption of equal covariance matrices
is violated, the misclassification error rate of sample QDA is worse than the rates of regularized linear discriminant
methods; see the supplement in [15].

Several extensions of sample QDA have been proposed. A common strategy is to jointly estimate Σ−1
1 and

Σ−1
2 . Friedman [13], Ramey et al. [44] regularize sample covariance matrices by shrinkage. Wu et al. [55] im-

pose equicorrelation structure on each covariance matrix by pooling both the diagonal and off-diagonal elements.
Danaher et al. [11], Guo et al. [19], Price et al. [42], Simon and Tibshirani [46] use a penalized likelihood tech-
nique, where the penalty enforces similarity either between the covariance matrices Σg or the precision matrices
Σ−1

g . While these methods perform better than quadratic rules based on sample covariance matrices, they again
rely on estimating two precision matrices. As such, additional assumptions on Σ−1

g such as sparsity are usually
enforced, and the estimation procedure scales quadratically with the number of measurements p. Moreover, the
resulting classification rules still rely on all p variables, and therefore cannot be used for both classification and
variable selection.

∗Corresponding author
Email addresses: irinag@stat.tamu.edu (Irina Gaynanova), tianying@stat.tamu.edu (Tianying Wang)

Preprint submitted to Journal of Multivariate Analysis June 13, 2019



Li and Shao [31] address the variable selection problem by enforcing sparsity in both the covariance matri-
ces and the vector of mean differences via thresholding. The method comes with strong theoretical guarantees
on classification consistency and promising empirical performance. Nevertheless, it again requires additional as-
sumptions on Σg, and is computationally prohibitive for large p due to required matrices inversion together with a
3-dimensional search over tuning parameter values.

In summary, a significant progress in linear discriminant methods made it possible to apply them to large
datasets and perform variable selection. In practice, however, the covariance matrices are often unequal, but
the existing quadratic methods typically cannot perform variable selection, and are computationally prohibitive
for large p. In this work we bridge the gap between the linear and the quadratic methods by developing a new
classification rule that takes into account unequal covariance matrices without sacrificing either variable selection
or computational speed.

Our key methodological contribution is a different approach for constructing a quadratic rule in high-dimensional
settings compared to the ones taken in the literature. The existing methods rely on improved estimation of the full
Bayes quadratic discriminant rule by exploring additional structural assumptions on Σg or Σ−1

g [30, 31, 42, 46, 55].
In contrast, we modify Fisher’s formulation of linear discriminant analysis for the case of unequal covariance
matrices. The resulting method performs simultaneous variable selection and projection of original data on a
lower-dimensional space, with the subsequent application of quadratic discriminant analysis. We call this ap-
proach discriminant analysis via projections, or DAP.

Unlike the existing quadratic methods, our rule is linear in p, which allows us to devise a very efficient
optimization procedure to estimate simultaneously the projection directions and to perform variable selection. For
p = 500, it takes around 1.5 seconds to implement our method, whereas the closest competing sparse quadratic
method takes 30 minutes. This makes it possible to apply our approach in situations where other quadratic methods
are computationally infeasible. Moreover, we connect the variables in our rule with the nonzero variables in the
linear part of Bayes’ quadratic rule, and prove the variable selection consistency of our method in high-dimensional
settings. Empirical studies confirm that for large values of p, the proposed rule leads to competitive, and often
smaller, misclassification error rates than the existing approaches. At the same time, our method consistently
selects the sparsest models, thus achieving the best balance between model complexity and misclassification error
rate. Finally, the application to gene expression data of breast cancer patients [7] confirms the crucial importance
of ESR1 gene in differentiating estrogen receptor status; an insight that would be impossible to get with other
approaches due to much higher complexity of corresponding classification rules.

The rest of this paper is organized as follows. In Section 2, we describe a new quadratic classification rule,
discriminant analysis via projections. We connect the proposed approach to both linear and quadratic discriminant
analysis, and derive an efficient optimization algorithm for sparse estimation. In Section 3, we provide theoretical
guarantees on the variable selection consistency of our method in high-dimensional settings. In Section 4, we
conduct empirical studies on both simulated and real data. In Section 5, we discuss possible extensions.

For a vector v ∈ Rp, we let ‖v‖1 =
∑p

i=1 |vi|, ‖v‖2 = (
∑p

i=1 v2
i )1/2, ‖v‖∞ = maxi |vi|. We use e j to denote a unit

norm vector with jth element being equal to one, and ιp to denote the vector of ones of length p. For a matrix
M ∈ Rn×p, we let ‖M‖∞,2 = max1≤i≤n(

∑p
j=1 m2

i j)
1/2, ‖M‖2 = supx:‖x‖2=1 ‖Mx‖2 and |M| be the determinant of M.

Given an index set A, we use MA to denote the submatrix of M with columns indexed by A. For a square matrix
M, we use MAA to denote the submatrix of M with both rows and columns indexed by A. We use I to denote the
identity matrix. We use an . bn to denote that there exists a constant C > 0 such that an ≤ Cbn for n sufficiently
large. We also let a ∨ b = max(a, b).

2. Discriminant analysis via projections

2.1. Review of Fisher’s discriminant analysis
Consider n independent pairs (X1,Y1), ..., (Xn,Yn) from a random pair (X,Y) on Rp × {1, 2}. For g ∈ {1, 2},

let Σg = cov(X|Y = g), and assume Σ1 = Σ2. Fisher’s discriminant analysis seeks a linear combination of p
measurements that maximize between group variability with respect to within group variability [36, Chapter 11]:

maximize
v∈Rp

{
v>(x̄1 − x̄2)(x̄1 − x̄2)>v

v>Wv

}
, (1)

where W = (n − 2)−1 ∑2
g=1(ng − 1)S g is the pooled sample covariance matrix, S g is the sample covariance matrix,

ng is the number of samples, and x̄g is the sample mean for group g. Letting v̂ be a vector at which the maximum
above is achieved, the resulting classification rule for a new observation with observed value x ∈ Rp is

ĥv(x) = argmin
g∈{1,2}

{
(x>v̂ − x̄>g v̂)> (̂v>Wv̂)−1(x>v̂ − x̄>g v̂) − 2 ln(ng/n)

}
. (2)
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Figure 1: Two-group classification problem with p = 2 and unequal covariance matrices. Left: Projection using Fisher’s discriminant vector.
Middle: Projection using the covariance structure from the 1st group (circles). Right: Projection using the covariance structure from the 2nd
group (triangles).

Hence, both the new observation x ∈ Rp and the data X ∈ Rn×p are projected onto the line determined by v̂, and
the classification is performed according to Mahalanobis distance to the class means in the projected space. Since
both the objective function in (1) and the classification rule (2) are invariant to the scaling of discriminant vector
v̂, when n � p we can write v̂ = cW−1(x̄1 − x̄2) for any constant c , 0. Moreover, Fisher’s rule (2) coincides with
the sample plug-in Bayes rule under the normality assumption, i.e., Xi|Yi = g ∼ N(µg,Σ).

2.2. Modification of Fisher’s rule for the case of unequal covariance matrices

Our proposal is based on the modification of criterion (1) to the case of unequal covariance matrices. Specifi-
cally, we consider two discriminant directions instead of one. For g ∈ {1, 2}, let

v̂g = argmax
vg∈Rp

{v>g (x̄1 − x̄2)(x̄1 − x̄2)>vg

v>g S gvg

}
. (3)

Similar to Fisher’s criterion, when ng � p, the solutions to (3) can be expressed as v̂g = cgS −1
g (x̄1 − x̄2) for any

c1 , 0, c2 , 0. Subsequently, given matrix V̂ = [̂v1 v̂2], we modify rule (2) to take into account unequal covariance
matrices as

hV̂ (x) = argmin
g∈{1,2}

{
(x − x̄g)>V̂(V̂>S gV̂)−1V̂>(x − x̄g) + ln |V̂>S gV̂ | − 2 ln(ng/n)

}
. (4)

Remark 1. If v̂1 and v̂2 are linearly dependent, then V̂ has rank one, and V̂>S 1V̂ and V̂>S 2V̂ are both singular. In
this case the subspace spanned by the columns of V̂ is the same as the subspace spanned by only one column, and
we use V̂ = v̂1 in (4).

Rule (4) is equivalent to applying quadratic discriminant rule to V̂>x instead of applying it directly to x.
Unlike the equivalence between Fisher’s rule and the linear discriminant rule, in Section 2.6 we show that rule (4)
is generally not equivalent to quadratic discriminant analysis. Nevertheless, for a given V̂ , formulation (4) allows
to overcome possible rank degeneracy of S g as well as perform variable selection. First, rule (4) requires inversion
of 2 × 2 matrices V̂>S gV̂ , which are likely to be positive definite, in contrast to S g. Secondly, since (4) effectively
applies quadratic rule to V̂>x instead of x, it only relies on those variables for which the corresponding rows of V̂
are nonzero. Hence, performing variable selection is equivalent to using row-sparse matrix V̂ . Figure 1 shows that
each v̂g from (3) can be viewed as a basis vector for the reduced space, and coincides with discriminant vector v̂ in
Fisher’s rule (1) if the pooled sample covariance matrix W = S 1 = S 2. Therefore, we call rule (4) the discriminant
analysis via projections.

2.3. Sparse estimation

While rule (4) allows to overcome the potential singularity of sample covariance matrices, it still requires esti-
mation of O(p) parameters in V̂ . Moreover, singularity of S g leads to non-uniqueness of the solutions to (3) creat-
ing difficulties for the interpretation. Therefore, rule (4) may still have poor performance in the high-dimensional
settings when p � n. At the same time, in the context of linear discriminant analysis the classification performance
can be significantly improved by directly estimating the discriminant vector with sparsity regularization [5, 35].
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Guided by this intuition, our goal is to obtain sparse estimates of ψ1 = c1Σ−1
1 δ and ψ2 = c2Σ−1

2 δ with δ = µ1 − µ2,
which are the population counterparts of v̂1 and v̂2 in (3). This approach leads to regularized row-sparse V̂ that
can be used directly in rule (4). The direct estimation of ψg with sparse regularization has several advantages.
First, the covariance matrices serve as nuisance parameters since ψg ∝ Σ−1

g δ are functions of covariance matrices,
not the covariance matrices themselves. Second, as we discuss in more detail below, sparse penalization leads to
unique well-defined solutions even when sample covariance matrices are singular. Finally, the sparsity in V̂ leads
to simpler and more interpretable classification rule.

To produce sparse estimates of ψ1 and ψ2, we consider penalized empirical risk minimization framework:

V̂ = [̂v1 v̂2] = argmin
v1,v2∈Rp

{
L̂ψ1 (v1) + L̂ψ2 (v2) + λPen(V)

}
,

where L̂ψ1 (v1), L̂ψ2 (v2) are empirical loss functions associated with ψ1, ψ2, λ > 0 is the tuning parameter, and
Pen(V) is the sparsity-inducing penalty.

Remark 2. Another possibility is to add sparse penalization directly within criterion (3). In linear discriminant
analysis, this approach leads to significant improvement over sample plug-in rule [53]. However, it also leads to
nonconvex optimization problem and potential difficulties in obtaining very sparse solutions [16]. Therefore, we
do not pursue the direct penalization here.

First, we discuss our choice of penalty. As we are interested in simultaneous variable selection, that is row-
sparsity of V̂ , we propose to use group penalty. Specifically, we choose group-lasso, Pen(V) =

∑p
j=1(v2

1 j + v2
2 j)

1/2,
due to its convexity [56]. Other possibilities include nonconvex group penalties; we refer the reader to Huang
et al. [23] for the review.

Next, we discuss our choice of empirical loss functions L̂ψ1 (v1) and L̂ψ2 (v2). Both criterion (3) and rule (4) are
invariant to the scale of V̂ , i.e., to the choice of constants c1 and c2. While the naive approach is to fix c1 = c2 = 1,
we use c1 = π2/(1 + π2

2δ
>Σ−1

1 δ), c2 = π1/(1 + π2
1δ
>Σ−1

2 δ), which leads to a lower-bounded empirical loss function
as well as significant computational savings. To be specific, we take advantage of the following equivalence due
to the Sherman–Morrison formula.

Proposition 1. For any ρ , 0, any non-singular matrix M ∈ Rp×p and any vector a ∈ Rp,

(M + ρ2aa>)−1ρa = ρM−1a(1 + ρ2a>M−1a)−1 ∝ M−1a.

Our choice of c1 and c2 leads to ψ1 = (Σ1 + π2
2δδ
>)−1π2δ and ψ2 = (Σ2 + π2

1δδ
>)−1π1δ. Consider the following

quadratic loss function associated with ψ1

Lψ1 (v1) = (v1 − ψ1)>(Σ1 + π2
2δδ
>)(v1 − ψ1)/2 = v>1 Σ1v1/2 + (π2δ

>v1 − 1)2/2 + C,

where C is a constant independent of v1. Consider the empirical version of this loss function

L̂ψ1 (v1) = v>1 S 1v1/2 +
(
n−1n2d>v1 − 1

)2
/2 + C, (5)

where d = x̄1− x̄2. First, L̂ψ1 (v1) is invariant under linear transformation of the data [45]. Second, L̂ψ1 (v1) is always
bounded from below by C, even when S 1 is singular. This ensures convergence of the block-coordinate descent
algorithm without the need to regularize S 1, and in particular, is not the case for c1 = 1.

Furthermore, let X1 ∈ Rn1×p be the submatrix of X corresponding to the first group, and X2 ∈ Rn2×p be the
one corresponding to the second group. Let X be column-centered so that x̄ = n−1(n1 x̄1 + n2 x̄2) = 0, and hence
d = n−1

2 nx̄1. Then the loss (5) can be rewritten as

L̂ψ1 (v1) = v>1 S 1v1/2 +
(
x̄>1 v1 − 1

)2
/2 + C = n−1

1 v>1 X>1 X1v1/2 − v>1 x̄1 + C

= n−1
1 ‖X1v1 − ιn1‖

2
2/2 + C.

That is, the loss function can be expressed as the linear regression loss function. Similarly,

L̂ψ2 (v2) = n−1
2 ‖X2v2 + ιn2‖

2
2/2 + C.

Therefore, our choice of c1 and c2 allows to re-express the problem of estimating ψ1 and ψ2 as a regression
problem. This leads to the efficient optimization algorithm described in Section 2.4.
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In summary, given the column-centered data matrix X ∈ Rn×p with submatrices X1 ∈ Rn1×p, X2 ∈ Rn2×p

corresponding to two groups, we find V̂ = [̂v1 v̂2] ∈ Rp×2 as the solution to

minimize
V=[v1,v2]∈Rp×2

n−1
1 ‖X1v1 − ιn1‖

2
2/2 + n−1

2 ‖X2v2 + ιn2‖
2
2/2 + λ

p∑
j=1

(v2
1 j + v2

2 j)
1/2

 . (6)

If λ = 0, V̂ coincides with the solution to (3) up to the choice of scaling. If λ > 0, then V̂ is row-sparse leading to
variable selection. Given V̂ , we apply rule (4) for classification.

2.4. Optimization algorithm

In this section we derive a block-coordinate descent algorithm to solve (6). Consider the optimality conditions
with respect to each block v j = (v1 j, v2 j)>:

n−1
1 X>1 jX1 jv1 j = n−1

1 X>1 j(ιn1 −
∑
k, j

v1kX1k) − λu1 j, n−1
2 X>2 jX2 jv2 j = n−1

2 X>2 j(−ιn2 −
∑
k, j

v2kX2k) − λu2 j;

see Chapter 5 in [3]. In the above, u j = (u1 j, u2 j)> is the subgradient of (v2
1 j + v2

2 j)
1/2 such that u j = v j/‖v j‖2 if

‖v j‖2 , 0, and u j ∈ {u : ‖u‖2 ≤ 1} if ‖v j‖2 = 0.
In general, n−1

1 X>1 jX1 j , n−1
2 X>2 jX2 j, hence the block-update is not available in closed form and requires a line

search [2]. However, guided by the computational considerations as well as the ideas of standardized group lasso
[47], we pre-standardize X1 and X2 so that n−1

1 diag(X>1 X1) = n−1
2 diag(X>2 X2) = ιp, and then perform the back-

scaling of v̂1, v̂2. This ensures that the penalization of different variables is independent of their relative scales.
Finally, we are ready to present the algorithm.

Define the residual vectors r1, r2 as

r1 j = n−1
1 X>1 j

ιn1 −

p∑
l=1

v1lX1l

 , r2 j = n−1
2 X>2 j

−ιn2 −

p∑
l=1

v2lX2l

 ;

with r j = (r1 j, r2 j)>. From the optimality conditions, the equation for the jth block v j = (v1 j, v2 j)> takes form

v j =
(
1 − λ/‖v j + r j‖2

)
+

(
v j + r j

)
,

where a+ = max(0, a). Starting with initial value V (0), the block-coordinate descent algorithm proceeds by iterating
the updates of v1, v2 with updates of residuals r1, r2 until convergence. Due to the convexity of (6), the boundedness
of the objective function from below, and the separability of the penalty with respect to block updates, the global
optimum is finite and the algorithm is guaranteed to converge to the global optimum from any starting point [49].

2.5. Connection with sparse linear discriminant analysis

We show that sparse linear discriminant analysis can be viewed as a very special case of the proposed approach.

Proposition 2. Consider the sparse discriminant analysis in Gaynanova et al. [15] that finds the discriminant
vector ṽ(λ) for a given value of tuning parameter λ > 0. Define c = (n1/n)1/2 + (n2/n)1/2. Under the additional
constraint (n/n1)1/2v1 = (n/n2)1/2v2, the solution to (6) satisfies

(n/n1)1/2̂v1(λ) = (n/n2)1/2̂v2(λ) = c ṽ (λ/c) .

While in Proposition 2 we connect our approach with Gaynanova et al. [15] due to a more straightforward
proof, in the two-group case the method of Gaynanova et al. [15] is equivalent to the method of Mai et al. [35].
Moreover, Mai and Zou [34] show equivalence for the two-group case between the methods of Mai et al. [35],
Clemmensen et al. [9] and Wu et al. [54]. Therefore, when discriminant directions v1 and v2 are additionally
restricted to be collinear as in Proposition 2, our proposed approach (6) reduces to this class of sparse linear
discriminant analysis methods up to scaling.
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2.6. Connection with quadratic discriminant analysis
Let Y be a group indicator, Pr(Y = 1) = π1 and Pr(Y = 2) = 1 − π1 = π2, and consider X|Y = g ∼ N(µg,Σg)

(g = 1, 2). The Bayes rule assigns a new observation with observed value x ∈ Rp to group one if and only if

x>(Σ−1
2 − Σ−1

1 )x − 2x>(Σ−1
2 µ2 − Σ−1

1 µ1) + ln
(
|Σ2|/|Σ1|

)
− µ>1 Σ−1

1 µ1 + µ>2 Σ−1
2 µ2 + 2 ln(π1/π2) > 0. (7)

Consider centering x by the overall mean E(X) = µ = π1µ1 + π2µ2.

Proposition 3. Let δ = µ1 − µ2. The Bayes rule (7) can be written as

(x−µ)>(Σ−1
2 − Σ−1

1 )(x − µ) + ln
(
|Σ2|/|Σ1|

)
+ 2(x − µ)>(π1Σ−1

2 δ + π2Σ−1
1 δ) + π2

1δ
>Σ−1

2 δ − π2
2δ
>Σ−1

1 δ + 2 ln(π1/π2) > 0.
(8)

Consider the population version of the proposed discriminant analysis via projections, that is applying Bayes
rule to Ψ>X with Ψ>X|Y = g ∼ N(Ψ>µg,Ψ

>ΣgΨ) and Ψ = [ψ1, ψ2] = [c1Σ−1
1 δ, c2Σ−1

2 δ], c1, c2 , 0.

Proposition 4. Consider the population version of rule (4), that is substituting Ψ for V̂, Σg for S g, µg for x̄g and
πg for ng/n. A new observation with value x is assigned to group one if and only if

(x−µ)>Ψ
{
(Ψ>Σ2Ψ)−1 − (Ψ>Σ1Ψ)−1

}
Ψ>(x − µ) + ln

(
|Ψ>Σ2Ψ|/|Ψ>Σ1Ψ|

)
+ 2(x − µ)>(π1Σ−1

2 δ + π2Σ−1
1 δ) + π2

1δ
>Σ−1

2 δ − π2
2δ
>Σ−1

1 δ + 2 ln(π1/π2) > 0.
(9)

The only difference between the rules in Proposition 3 and 4 is on the first line, which involves the quadratic
and the log terms. The linear terms and the remaining constant terms are identical. Therefore, rule (9) can
be viewed as an approximation to rule (8). Further comparison between the two rules in terms of induced J-
divergences between class-distributions is in Appendix B.

While rule (9) is not the same as the Bayes rule, and therefore will lead to inferior performance at the popula-
tion level, in Section 4 we see this relationship to be reversed when the corresponding regularized sample versions
are considered and p is large relative to the sample size n. The main advantage of rule (9) comes from the sig-
nificant reduction in the number of parameters to be estimated. Specifically, matrix Ψ has p × 2 elements leading
to O(p) parameters in rule (9). In contrast, the Bayes rule requires estimation of the Σ−1

2 − Σ−1
1 leading to O(p2)

parameters in total.

3. Variable selection consistency in high-dimensional settings

We establish the variable selection consistency of estimator in (6) under the following assumptions.

Assumption 1 (Normality). Xi|Yi = g ∼ N(µg,Σg), Pr(Yi = g) = πg for g = 1, 2 with 0 < πmin ≤ π1/π2 ≤ πmax < 1.

Assumption 2 (Sparsity). Let δ = µ1−µ2, A = {i : (e>i Σ−1
1 δ)2 +(e>i Σ−1

2 δ)2 , 0}, A{ = {1, . . . , p}/A and card(A) = s.
That is, A is the index set of nonzero variables in Σ−1

1 δ or Σ−1
2 δ.

Assumption 3 (Irrepresentability). There exist α ∈ (0, 1] such that

max
u1,u2∈Rs

u2
1i+u2

2i≤1 ∀i

‖Σ1A{AΣ−1
1AAu1,Σ2A{AΣ−1

2AAu2‖∞,2 ≤ 1 − α.

Assumption 4. 0 < c ≤ λmin(ΣgAA) ≤ λmax(ΣgAA) ≤ C and e>j Σge j ≤ M for all j ∈ {1, . . . , p} and g ∈ {1, 2}.

Assumption 1 is standard in the context of discriminant analysis [17, 26, 35], and Assumptions 2–3 are typical
in establishing variable selection consistency of penalized estimators in high-dimensional settings [1, 40, 50]. In
light of Proposition 3, Assumption 2 can be interpreted as requiring the linear part of Bayes rule to be sparse,
i.e., there are only s nonzero main effects. More specifically, the sparsity of both covariance matrices and mean
differences as in Li and Shao [31] is sufficient for Assumption 2 to hold, but not necessary. We use Assumption 4
for the convenience of treating the parameters depending on Σg as constants and presenting the rates in Theorems 1
and 2 through only n, p and s. We refer the reader to the Online Supplement for the more general statements of
Theorems 1 and 2 without the use of Assumption 4. To prove the variable selection consistency of estimator
in (6), we use the primal-dual witness technique [50]. First, we prove that under the appropriate scaling of the
sample sizes, and sufficiently large value of the tuning parameter λ, the variables in A{ are set to zero with high
probability. Let Â = {i : v̂2

1i + v̂2
2i , 0} denote the support of the solution to (6).
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Theorem 1. Let Assumptions 1–4 hold, the sample sizes satisfy ming ng & s ln{(p − s)η−1} for some η ∈ (0, 1),
and the tuning parameter satisfy λ & [ln{(p − s)η−1}/n]1/2. Then Pr(Â ⊆ A) ≥ 1 − η.

Next, we show that under the additional assumption on the minimal signal strength defined as

ψmin = min
j∈A

{
π2

2(e>j Σ−1
1 δ)2 + π2

1(e>j Σ−1
2 δ)2

}1/2
,

the true variables are nonzero with high probability leading to perfect recovery. In sparse linear models this
assumption is often called the β-min condition [50]. According to Proposition 3, ψmin can be interpreted as the
smallest magnitude of the nonzero variables in the linear part of the Bayes quadratic discriminant rule.

Theorem 2. Let the conditions of Theorem 1 hold and ψmin & λs1/2(maxg δ
>
AΣ−1

gAAδA∨1). Then Pr(Â = A) ≥ 1−η.

Theorem 2 reveals the advantage of using the group penalty in joint sparse estimation of ψ1 and ψ2. If variable
j is nonzero in both ψ1 and ψ2, then it is sufficient to have a large signal in only one of ψ1 or ψ2 for the minimal
signal strength condition to hold. In contrast, separate estimation via the lasso penalty will lead to the requirement
of sufficiently large signal in both ψ1 and ψ2 simultaneously.

4. Empirical studies

4.1. Simulated data

We compare the misclassification error rates and variable selection performance of the following methods: (i)
Sample QDA, rule (7) with plug-in estimates x̄1, x̄2, S 1, S 2; (ii) Sparse QDA of Le and Hastie [30]; (iii) Sparse
QDA of Li and Shao [31]; (iv) Sparse QDA via ridge fusion [42]; (v) Logistic regression with pairwise interactions
and lasso penalty on the vector of coefficients; (vi) Regularized discriminant analysis [13]; (vii) Sparse LDA
[15, 35]; (viii) Discriminant analysis via projections proposed in this paper, i.e., rule (4) with estimator from (6).
Since the focus of the paper is on quadratic classification rules, we only use one linear discriminant analysis
method for comparison. We expect that a choice of a different linear method, such as those of Witten and Tibshirani
[53] or Niu et al. [39], will lead to similar conclusions. The details of all methods’ implementation, together with
tuning parameter selection criteria, are described in Appendix A.

We fix the sample sizes n1 = n2 = 100, the dimension p ∈ {100, 500}, and the group means µ1 = 0p and
µ2 = ({1}5, {−1}5, {0}p−10). We consider the following types of covariance structures:

1. Block-equicorrelation with block size b ∈ {10, 100} and ρ ∈ [0, 1]:

Σg =

(
ρIb + (1 − ρ)ιbιb> 0

0 Ip−b

)
.

2. Block-autocorrelation with block size b ∈ {10, 100} and ρ ∈ [0, 1]:

Σg = {Σg}i, j, {Σg}i, j =

ρ|i− j| (1 ≤ i, j ≤ b),
1{i = j} (otherwise).

3. Spiked with parameters q1, q2 ∈ Rp: Σg = 30q1q>1 + 2q2q>2 + I.

(a) Block size b = 10: q1 = ({1/
√

5}5, {0}p−5), q2 = ({0}p−5, {1/
√

5}5, {0}p−10).

(b) Block size b = 100: q1 = (1, . . . , 100, {0}p−100)>, q2 = (I − q1q>1 )(100, . . . , 1, {0}p−100)>. q1 and q2 are
normalized so that q>1 q1 = 1 and q>2 q2 = 1.

These structures are common in assessing the performance of discriminant analysis methods [30, 35, 44]. We use
eight combinations as described in Table 1, and fix the block sizes to make the Bayes error rate independent of p.

As expected, the sample QDA performs the worst, with misclassification error rates being larger than 40%
consistently across all settings. Therefore, in Figure 2 we only present the rates for the other methods. First, we
compare the proposed approach with sparse LDA. While in models 1, 2 and 8 they perform similarly, accounting
for unequal covariance matrices results in drastic improvements on models 4–7. When comparing our approach
to sparse QDA methods, the relative ranking often depends on p. For example, when p = 100, ridge fusion of
Price et al. [42] is better than our proposal on models 2 and 8, but is significantly worse on the same models when
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Table 1: List of considered models for Σ1 and Σ2.

Model Σ1 Σ2

1 equicorrelation, b = 100, ρ = 0.5 equicorrelation, b = 100 ρ = 0.5
2 autocorrelation, b = 100 ρ = 0.8 equicorrelation, b = 100, ρ = 0.5
3 autocorrelation, b = 10, ρ = 0.5 equicorrelation, b = 10, ρ = 0.8
4 spiked, b = 10 spiked, b = 10 (q1 and q2 reversed)
5 spiked, b = 100 spiked, b = 10 (q1 and q2 reversed)
6 spiked, b = 10 equicorrelation, b = 10, ρ = 0.8
7 spiked, b = 10 equicorrelation, b = 100, ρ = 0.3
8 spiked, b = 100 equicorrelation, b = 100, ρ = 0.3

Table 2: Median time (seconds) over 10 replications to fully implement each classification method for one instance of model 8. DAP: Discrim-
inant analysis via projections, proposed; SLDA: Sparse linear discriminant analysis; RDA: Regularized discriminant analysis; SLOG: Sparse
logistic regression with interactions; SQDA LH: Sparse QDA of Le and Hastie [30]; SQDA RF: Sparse QDA via ridge fusion; SQDA LS:
Sparse QDA of Li and Shao [31].

p DAP SLDA RDA SLOG SQDA LH SQDA RF SQDA LS
100 0.6 0.4 3.1 2.7 139.5 868.5 52.6
300 1.0 1.4 5.0 28.8 2071.9 11681.4 481.5
500 1.4 1.7 5.0 117.1 7282.2 45161.7 1791.4

p = 500. Similarly, sparse QDA of Le and Hastie [30] is significantly better than our proposal on models 6 and 8
when p = 100, but significantly worse on the same models when p = 500. This confirms that the proposed rule is
well-suited to high-dimensional settings. Among the sparse QDA approaches, we find that the method of Li and
Shao [31] is most consistent across dimensions. In particular, it leads to better error rates on models 4 and 5 (2%
difference in median error rates). Nevertheless, it still leads to significantly worse error rates on models 1, 2, 6 and
8. Finally, the proposed approach performs better than regularized discriminant analysis in all cases but model 2,
p = 100, and performs as well or better than the sparse logistic regression in all scenarios.

Overall, we found that no method is universally the best in terms of error rates since the relative ranking
depends on the particular model and the underlying dimension. This is consistent with previous research. In the
words of Wu et al. [55], “it is difficult to imagine that there could be a universally optimal discriminant analysis
method for high-dimensional data. Almost every method can enjoy some advantages under certain circumstances.”
Nevertheless, three methods stand out as the best across all models and dimensions: our proposal and sparse QDA
methods of Le and Hastie [30] and Li and Shao [31]. Moreover, our proposal achieves comparable, and in certain
scenarios significantly better, error rates than the best other methods in all the cases with p = 500 except model 2.

In summary, Figure 3 shows that the proposed discriminant analysis via projections significantly improved
over sparse LDA method, and results in competitive, and often better, misclassification error rates than existing
QDA proposals. The real advantages of our approach, however, become certain when comparing variable selection
performance and computational speed. Figure 3 reveals that the proposed method consistently uses the sparsest
model (less than 50 variables for most scenarios). In comparison, the methods of Le and Hastie [30] and Price
et al. [42] always use all p variables, and are such much less interpretable.

We further compare the execution time of each method on a Linux machine with Intel Xeon X5560 @2.80
GHz. We define execution time as the full time for method’s implementation: tuning parameter selection plus
model fitting plus classification. We use one instance of model 8 with p ∈ {100, 300, 500}, and R package
microbenchmark [37] with 10 evaluations of each expression. Table 2 shows that the execution times increase
dramatically with p for logistic regression with interactions and sparse QDA methods, whereas the times are quite
consistent across dimensions for sparse LDA, RDA and our approach. Logistic regression is noticeably faster
than sparse QDA methods mainly due to the difference in tuning parameter selection criterion: it uses BIC instead
of cross-validation. Using cross-validation for logistic regression makes it too computationally demanding for
the range of p we considered. Sparse LDA and the proposed method are the fastest, confirming that they are
well-suited for the use on high-dimensional datasets in practice.

4.2. Benchmark datasets

We compare the proposed discriminant analysis via projections with competitors on three benchmark datasets
described in Table 3. These datasets are commonly used to assess classification performance [32, 39, 44], and are
publicly available from the R package datamicroarray [43].

8



● ●
●●

●

●

●●

●

●

●
●
●●

●

● ●

●●●●
●

●

●

●

●
●●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

● ●●

●

●

●●
●

●●

●

●

●

●

●●

●

●●●
●
●

●

●

●

●

●●

●

●

●●

●●●●●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

p = 100 p = 500

m
odel 1

m
odel 2

m
odel 3

m
odel 4

D
A

P

S
LD

A

S
LO

G

S
Q

D
A

_L
H

S
Q

D
A

_L
S

S
Q

D
A

_R
F

R
D

A

D
A

P

S
LD

A

S
LO

G

S
Q

D
A

_L
H

S
Q

D
A

_L
S

S
Q

D
A

_R
F

R
D

A

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

E
rr

or
 r

at
e

●

●● ●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●
●
●●●●

●

●●
●
●

●

●
●
● ●

●

●●

●●

●

●

●

●
●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●●
● ●

●

p = 100 p = 500

m
odel 5

m
odel 6

m
odel 7

m
odel 8

D
A

P

S
LD

A

S
LO

G

S
Q

D
A

_L
H

S
Q

D
A

_L
S

S
Q

D
A

_R
F

R
D

A

D
A

P

S
LD

A

S
LO

G

S
Q

D
A

_L
H

S
Q

D
A

_L
S

S
Q

D
A

_R
F

R
D

A

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Figure 2: Misclassification error rates over 100 replications, the horizontal lines show the median errors of the proposed DAP, discriminant
analysis via projections. SLDA: Sparse linear discriminant analysis; SLOG: Sparse logistic regression with interactions; SQDA LH: Sparse
QDA of Le and Hastie [30]; SQDA LS: Sparse QDA of Li and Shao [31]; SQDA RF: Sparse QDA via ridge fusion; RDA: Regularized
discriminant analysis.

Table 3: Description of benchmark datasets used for methods comparison

Dataset # samples in group 1 # samples in group 2 # gene expressions
chin [7] 75 (ER-positive) 43 (ER-negative) 22,215

gravier [18] 111 (good, no event) 57 (poor) 2,905
chowdary [8] 62 (breast tissue) 42 (colon tissue) 22,283
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Figure 3: Number of selected variables over 100 replications, the horizontal lines indicate the median model sizes of proposed DAP, discrim-
inant analysis via projections. RDA, SQDA RF and SQDA LH use all p variables, not shown. SLDA: Sparse linear discriminant analysis;
SLOG: Sparse logistic regression with interactions; SQDA LH: Sparse QDA of Le and Hastie [30]; SQDA LS: Sparse QDA of Li and Shao
[31]; SQDA RF: Sparse QDA via ridge fusion; RDA: Regularized discriminant analysis.

We randomly split each dataset 100 times preserving the class proportions, and use 80% for training and
20% for testing. To reduce the computational cost associated with sparse quadratic discriminant analysis, we
reduce the number of variables at each split by selecting the top p = 1000 variables with largest absolute value
of the two-sample t-statistic on the training data, similar approach has been taken in Cai and Liu [5]. For fair
comparison, we use the same set of 1000 variables for each of the methods. We do not consider sample quadratic
discriminant analysis given its uniformly poor performance in Section 4.1. We also do not consider sparse logistic
regression with interactions or ridge fusion due to computational issues when p = 1000 and their inferiority to
other approaches in Section 4.1.

The results are shown in Figure 4. For chin and chowdary, similar misclassification error rates are reported
in Niu et al. [39]. For the chin dataset, the error rates are the worst for linear discriminant analysis confirming
the importance of taking into account unequal covariance matrices, and are the same for other methods. At the
same time, the proposed DAP rule selects significantly smaller model than the competitors (median model size is
one). For the chowdary dataset, the best performing method is RDA [13], however the relative difference is only
one misclassification on the test data. The smallest model again corresponds to proposed DAP. For the gravier
dataset, the best performing methods are ours and sparse QDA of Li and Shao [31]. Surprisingly, however, the
method of Li and Shao [31] results in no variable selection on these datasets, the model size is 1000 over almost
all replications (not shown). We suspect that the poor variable selection performance may be due to the crudeness
of bisection procedure for selecting the tuning parameters. In summary, the proposed approach, discriminant
analysis via projections, consistently selects the smallest model, often using less than 20 variables to achieve the
same or better error rates than alternative methods. We conclude that it exhibits excellent prediction accuracy with
the smallest model complexity.

We further analyze the chin dataset using variable selection results of our approach. Figure 4 reveals that the
median model size is 1. This means that in most of the replications it is sufficient to look at the expression level
of only one gene to achieve the same misclassification error rate as the other methods. We investigate whether
the same gene is selected at each replication, and find that estrogen receptor 1 gene ESR1 is selected in 97 out
of 100 cases. Our finding confirms previous studies on a strong link between ESR1 gene and estrogen receptor
protein expression in breast cancer patients [21, 24, 28]. We refer the reader to Holst [20] for a review on the
importance of ESR1 gene amplification in breast cancer. The gene with the second highest frequency of selection,
26 out of 100 cases, is LPIN1, which is also found to be differentially expressed in ER positive and negative
patients in previous studies [6]. The relatively low selection frequency of LPIN1 is due to the median model
size one, which leads to only ESR1 being selected and no other gene. While the strong link between ER protein
expression status and ESR1 gene is not surprising, unlike the previous studies we did not focus on the ESR1 gene
in advance. We consider all 22 thousand genes, and let our method determine that ESR1 is crucial for ER status of
breast cancer. We want to emphasize that this insight is not possible with other approaches we tried. Regularized
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Figure 4: Left: Misclassification error rates over 100 splits. Right: Number of variables used in corresponding classification rules. DAP
consistently selects the smallest model. SQDA LS, SQDA LH and RDA always use all p = 1000 variables, not shown. DAP: Discriminant
analysis via projections, proposed method; SQDA LS: Sparse QDA of Li and Shao [31]; SQDA LH: Sparse QDA of Le and Hastie [30];
SLDA: Sparse linear discriminant analysis; RDA: Regularized discriminant analysis.

discriminant analysis of Friedman [13] and sparse QDA by Le and Hastie [30] use all 1000 variables, hence cannot
be directly used for identifying important genes. Sparse LDA selects a smaller number of genes, but it has worse
misclassification error rate and the median model size is still 45 variables, significantly larger than the number of
variables used by our approach.

5. Discussion

In this work we propose a new rule for high-dimensional classification in the case of unequal covariance
matrices. While the proposed approach in general differs from the Bayes rule on the population level, we show
that the nonzero variables in our rule correspond to nonzero variables in the linear part of the Bayes quadratic rule.
This connection combined with computational efficiency of our approach suggests that one can potentially use our
method as a variable screening tool. Indeed, the empirical studies in Section 4.1 indicate that the performance of
full quadratic methods deteriorates significantly with increase in p, however for small p they are computationally
feasible and may lead to better error rates. We have not explored the screening properties of our approach in this
work, but leave it for future investigation.

We focus on the two-group classification setting, however extending the methodology to the multi-group
setting will likely lead to even further computational gains. One of the main challenges in the multi-group case is
the likely rank degeneracy of the matrix of discriminant vectors when the number of groups is large. Performing
simultaneous low-rank and sparse estimation of the matrix of discriminant vectors in the multi-group case is an
interesting direction for future research.
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Appendix

Appendix A. Implementation details

In this section we describe implementation details for the methods considered in Section 4.1. We use the
R package JGL [10] to implement sparse QDA of Le and Hastie [30]; R package MGSDA [14] to implement
sparse LDA [15, 35]; R package grpreg [4] to implement logistic regression with pairwise interactions and lasso
penalty on the vector of coefficients; R package RidgeFusion [41] to implement ridge fusion for joint estimation
of precision matrices [42]; R package sparsediscrim to implement regularized discriminant analysis [13]. We
found no available R code for sparse QDA of Li and Shao [31], and implemented the method ourselves. We use
the R package DAP [51] to implement the proposed discriminant analysis via projections.

For logistic regression, we select the tuning parameter using BIC option in the grpreg. For ridge fusion,
we use the default selection in RidgeFusion with 5 folds. For Li and Shao [31], we use the proposed bisection
procedure with the maximal interval length of 0.05. For all other methods, we use 5-fold cross-validation to
minimize misclassification error rate.

Appendix B. Bounds on misclassification error rates through J-divergence

Let Pe = π1Pe1 + π2Pe2 be the Bayes error rate, where for g ∈ {1, 2}, Peg is the probability of incorrectly
assigning a new observation x into class g, and πg are prior class probabilities. To our knowledge, the exact form
of Pe is not available for discriminant analysis unless Σ1 = Σ2. However, Kadota and Shepp [25] show that it
satisfies

2−1 min(π1, π2) exp(−J/8) ≤ Pe ≤
√
π1π2(J/4)−1/4, (A.1)

where J is the divergence between class distributions [33]. Let X1 ∼ F1 and X2 ∼ F2, then J = J(X1, X2) =

KL(X1 ‖ X2) + KL(X2 ‖ X1), where KL(X1 ‖ X2) is the Kullback–Leibler divergence between probability distribu-
tions F1 and F2

While the bound (A.1) is loose, it shows that in general larger values of J-divergence lead to smaller misclas-
sification error rates. For the Bayes QDA rule, inequality (A.1) holds with J-divergence between original class
distributions N(µ1,Σ1) and N(µ2,Σ2). The population version of the proposed DAP rule is also a Bayes rule,
but applied to N(Ψ>µ1,Ψ

>Σ1) and N(Ψ>µ2,Ψ
>Σ2). Hence, (A.1) can be used to bound the error of proposed

approach by using J-divergence between the projected class distributions. Finally, the projection based on LDA
rule leads to class distributions N(V>µ1,V>Σ1) and N(V>µ2,V>Σ2) for V = (π1Σ1 + π2Σ2)−1δ, however (A.1)
cannot be applied to LDA since it still uses a linear rule on projected data rather than a quadratic rule. Since
we can use J-divergence to characterize the relative difference before class distributions before and after projec-
tions, we can bound misclassification error rates for both QDA and proposed DAP. We further obtain an explicit
form of J-divergence for the original class distributions (QDA), the class distributions induced by proposed pro-
jections approach (DAP) and the class distributions after applying LDA-based projection as in Figure 1 in case
π1 = π2 = 1/2.

Proposition 5. Let X1 ∼ N(µ1,Σ1), X2 ∼ N(µ2,Σ2) and δ = µ1 − µ2. Let Ψ = [ψ1 ψ2] with ψ1 = Σ−1
1 δ and

ψ2 = Σ−1
2 δ, V = 2 (Σ1 + Σ2)−1 δ. Then

JBayes = J(X1, X2) =
1
2
δ>(Σ−1

1 + Σ−1
2 )δ +

1
2

tr(Σ−1
2 Σ1 + Σ−1

1 Σ2) − p,

JDAP = J(X>1 Ψ, X>2 Ψ) =
1
2
δ>(Σ−1

1 + Σ−1
2 )δ +

1
2

A3

A1A2
(A1 + A2) − 2,

JLDA = J(X>1 V, X>2 V) =
1
2
δ>(Σ1 + Σ2)−1(δδ> + Σ1)(Σ1 + Σ2)−1δ

(δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ
+

1
2
δ>(Σ1 + Σ2)−1(δδ> + Σ2)(Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ
− 1,

where

A1 = δ>Σ−1
1 δ δ>Σ−1

2 Σ1Σ−1
2 δ − (δ>Σ−1

2 δ)2, A2 = δ>Σ−1
2 δ δ>Σ−1

1 Σ2Σ−1
1 δ − (δ>Σ−1

1 δ)2,

A3 = δ>Σ−1
1 Σ2Σ−1

1 δ δ>Σ−1
2 Σ1Σ−1

2 δ − δ>Σ−1
1 δ δ>Σ−1

2 δ.
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Proposition 5 reveals that JBayes and JDAP in general differ in covariance terms, confirming that the rules are
not always identical and on a population level DAP does lead to the loss of discriminatory power. Proposition 5
allows to calculate the differences in J divergences exactly for given values of δ, Σ1 and Σ2, and as a result assess
their effect on error bounds in (A.1). On the other hand, the first term in JDAP is identical to the first term in JBayes,
which captures the mean differences. This is not the case for LDA-induced projection, thus supporting that DAP
performs better than LDA when Σ1 , Σ2.

Proof for Proposition 5. From Kullback [27]

KL(X1‖X2) =
1
2

{
δ>Σ−1

2 δ + tr(Σ−1
2 Σ1 − Ip)

}
+

1
2

ln
|Σ2|

|Σ1|
,

hence

JBayes = J(X1, X2) =
1
2
δ>(Σ−1

1 + Σ−1
2 )δ +

1
2

tr(Σ−1
2 Σ1 + Σ−1

1 Σ2) − p.

Since for g ∈ {1, 2}, Ψ>Xg ∼ N(Ψ>µg,Ψ
>ΣgΨ), it follows

JDAP =
1
2
δ>(Σ−1

1 ,Σ−1
2 )δ(Ψ>Σ1Ψ)−1δ>(Σ−1

1 ,Σ−1
2 )>δ +

1
2
δ>(Σ−1

1 ,Σ−1
2 )δ(Ψ>Σ2Ψ)−1δ>(Σ−1

1 ,Σ−1
2 )>δ

+
1
2

tr{(Ψ>Σ2Ψ)−1(Ψ>Σ1Ψ)} +
1
2

tr{(Ψ>Σ1Ψ)−1(Ψ>Σ2Ψ)} − 2.

First, we simplify the term tr{(Ψ>Σ2Ψ)−1(Ψ>Σ1Ψ)}. Since

(Ψ>Σ2Ψ)−1 =
1
A2

(
ψ>2 Σ2ψ2 −ψ>1 Σ2ψ2
−ψ>2 Σ2ψ1 ψ>1 Σ2ψ1

)
=

1
A2

(
δ>Σ−1

2 δ −δ>Σ−1
1 δ

−δ>Σ−1
1 δ δ>Σ−1

1 Σ2Σ−1
1 δ

)
,

we have

(Ψ>Σ2Ψ)−1(Ψ>Σ1Ψ) =
1
A2

(
0 −A1
A2 A3

)
,

leading to tr{(Ψ>Σ2Ψ)−1(Ψ>Σ1Ψ)} = A3/A2. Thus,

1
2

tr{(Ψ>Σ2Ψ)−1(Ψ>Σ1Ψ)} +
1
2

tr{(Ψ>Σ1Ψ)−1(Ψ>Σ2Ψ)} =
1
2

(A3

A2
+

A3

A1

)
=

1
2

A3

A1A2
(A1 + A2).

Now we simplify the term δ>(Σ−1
1 ,Σ−1

2 )δ(Ψ>Σ2Ψ)−1δ>(Σ−1
1 ,Σ−1

2 )>δ. Using the expression for (Ψ>Σ2Ψ)−1 from
above

δ>(Σ−1
1 ,Σ−1

2 )δ(Ψ>Σ2Ψ)−1δ>(Σ−1
1 ,Σ−1

2 )>δ =
1
A2

(δ>Σ−1
1 δ, δ>Σ−1

2 δ)
(
δ>Σ−1

2 δ −δ>Σ−1
1 δ

−δ>Σ−1
1 δ δ>Σ−1

1 Σ2Σ−1
1 δ

) (
δ>Σ−1

1 δ
δ>Σ−1

2 δ

)
=

1
A2

A2δ
>Σ−1

2 δ = δ>Σ−1
2 δ.

Using similar approach with (Ψ>Σ2Ψ)−1 and combining the above leads to

JDAP =
1
2
δ>(Σ−1

1 + Σ−1
2 )δ +

1
2

A3

A1A2
(A1 + A2) − 2.

In contrast, for the LDA-based projection, we have

KL(V>X1‖V>X2) =
1
2

{
δ>V(V>Σ2V)−1V>δ + ln

|V>Σ2V |
|V>Σ1V |

}
+

1
2

tr
{
(V>Σ2V)−1(V>Σ1V) − 1

}
=

1
2

[δ>(Σ1 + Σ2)−1δ]2

δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ
+

1
2
δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ

+
1
2

ln
δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ
−

1
2
.
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By the definition of J-divergence, we have

JLDA =
1
2

[
δ>V{(V>Σ2V)−1 + (V>Σ1V)−1}V>δ

]
+

1
2

tr
{
(V>Σ2V)−1(V>Σ1V) + (V>Σ1V)−1(V>Σ2V) − 2

}
=

1
2

[δ>(Σ1 + Σ2)−1δ]2

δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ
+

1
2

[δ>(Σ1 + Σ2)−1δ]2

δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ

+
1
2
δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ
+

1
2
δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ
− 1

=
1
2
δ>(Σ1 + Σ2)−1[δδ> + Σ1](Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ2(Σ1 + Σ2)−1δ
+

1
2
δ>(Σ1 + Σ2)−1[δδ> + Σ2](Σ1 + Σ2)−1δ

δ>(Σ1 + Σ2)−1Σ1(Σ1 + Σ2)−1δ
− 1.

Appendix C. Proofs of propositions

Proof of Proposition 2. From Gaynanova et al. [15], ṽ(λ) = argminv L1(v, λ), where

L1(v, λ) = v> (n1S 1 + n2S 2) v/(2n) + n1n2d>vv>d/(2n2) − n1/2
1 n1/2

2 d>v/n + λ‖v‖1.

From (6), {̂v1(λ), v̂2(λ)} = argminv1,v2
L2(v1, v2, λ), where

L2(v1, v2, λ) = (v>1 S 1v1 + v>2 S 2v2)/2 +
(
n2n−1d>v1 − 1

)2
/2 +

(
n1n−1d>v2 − 1

)2
/2 + λ

p∑
j=1

(v2
1 j + v2

2 j)
1/2.

Under the constraint (n/n1)1/2v1 = (n/n2)1/2v2 = v, this leads to v̂(λ) = argminv L2(v, λ), where using c =

(n1/n)1/2 + (n2/n)1/2,

L2(v, λ) = v> (n1S 1 + n2S 2) v/(2n) + n1n2d>vv>d/(2n2) − n1/2
1 n1/2

2 cd>v/n + λ‖v‖1.

Furthermore,

L1(v/c, λ/c) = c−2
{
v> (n1S 1 + n2S 2) v/(2n) + n1n2d>vv>d/(2n2) − n1/2

1 n1/2
2 cd>v/n + λ‖v‖1

}
= c−2L2(v, λ).

Since for any c > 0, argminx f (x/c) = c{argminx f (x)}, it follows that c̃v(λ/c) = v̂(λ).

Proof of Proposition 3. Since ln(|Σ2|/|Σ1|) and 2 ln(π1/π2) are present in both rules, it remains to show the equiv-
alence of the quadratic term, the linear term and the remaining constants. Substituting x = x − µ + µ in the Bayes
rule (7) leads to

x>(Σ−1
2 − Σ−1

1 )x = (x − µ)>(Σ−1
2 − Σ−1

1 )(x − µ) + 2(x − µ)>(Σ−1
2 − Σ−1

1 )µ + µ>(Σ−1
2 − Σ−1

1 )µ,

−2x>(Σ−1
2 µ2 − Σ−1

1 µ1) = −2(x − µ)>(Σ−1
2 µ2 − Σ−1

1 µ1) − 2µ>(Σ−1
2 µ2 − Σ−1

1 µ1).

From the above, the quadratic term in x − µ is the same as stated in the Proposition, hence it remains to consider
the linear terms and the constants.

Consider the linear terms in x − µ from the above. Recall that δ = µ1 − µ2, therefore

2(x − µ)>(Σ−1
2 − Σ−1

1 )µ − 2(x − µ)>(Σ−1
2 µ2 − Σ−1

1 µ1) = 2(x − µ)>{Σ−1
2 (µ − µ2) − Σ−1

1 (µ − µ1)}

= 2(x − µ)>(π1Σ−1
2 δ + π2Σ−1

1 δ),

which is the same as the linear term in the statement of the proposition.
Finally, we complete the proof by showing the equivalence of the remaining constants:

µ>(Σ−1
2 − Σ−1

1 )µ − 2µ>(Σ−1
2 µ2 − Σ−1

2 µ1) − µ>1 Σ−1
1 µ1 + µ>2 Σ−1

2 µ2

= (µ>Σ−1
2 µ − 2µ>Σ−1

2 µ2 + µ>2 Σ−1
2 µ2) − (µ>Σ−1

1 µ − 2µ>Σ−1
1 µ1 + µ>1 Σ−1

1 µ1)

= π2
1δ
>Σ−1

2 δ − π2
2δ
>Σ−1

1 δ.
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Proof of Proposition 4. Since Ψ>X|Y = g ∼ N(Ψ>µg,Ψ
>ΣgΨ), from Proposition 3 the Bayes rule applied to Ψ>x

has the form

(x − µ)>Ψ
{
(Ψ>Σ2Ψ)−1 − (Ψ>Σ1Ψ)−1

}
Ψ>(x − µ) + ln

(
|Ψ>Σ2Ψ|/|Ψ>Σ1Ψ|

)
+ 2(x − µ)>

{
π1Ψ(Ψ>Σ2Ψ)−1Ψ>δ + π2Ψ(Ψ>Σ1Ψ)−1Ψ>δ

}
+ π2

1δ
>Ψ(Ψ>Σ2Ψ)−1Ψ>δ − π2

2δ
>Ψ(Ψ>Σ1Ψ)−1Ψ>δ + 2 ln(π1/π2) > 0.

(A.1)

Since

(Ψ>Σ1Ψ)−1 =
1

ψ>1 Σ1ψ1ψ
>
2 Σ1ψ2 − (ψ>1 Σ1ψ2)2

(
ψ>2 Σ1ψ2 −ψ>1 Σ1ψ2
−ψ>2 Σ1ψ1 ψ>1 Σ1ψ1

)
.

it follows that

Ψ(Ψ>Σ1Ψ)−1Ψ> =
ψ1ψ

>
2 Σ1ψ2ψ

>
1 − ψ2ψ

>
2 Σ1ψ1ψ

>
1 + ψ2ψ

>
1 Σ1ψ1ψ

>
2 − ψ1ψ

>
1 Σ1ψ2ψ

>
2

ψ>1 Σ1ψ1ψ
>
2 Σ1ψ2 − (ψ>1 Σ1ψ2)2 .

Recall that ψ1 = c1Σ−1
1 δ, and substituting δ = c−1

1 Σ1ψ1 into the above equation leads to

Ψ(Ψ>Σ1Ψ)−1Ψδ =
c−1

1 ψ1

{
ψ>2 Σ1ψ2ψ

>
1 Σ1ψ1 − (ψ>1 Σ1ψ2)2

}
ψ>1 Σ1ψ1ψ

>
2 Σ1ψ2 − (ψ>1 Σ1ψ2)2 = c−1

1 ψ1 = Σ−1
1 δ.

Similarly, Ψ(Ψ>Σ2Ψ)−1Ψ>δ = Σ−1
2 δ . Substituting these into (A.1) completes the proof.

Appendix D. Proofs of the main theorems

We will use the following quantities throughout the proofs:

γ = 1 + max
(
π1π

−1
2 ‖Σ

−1/2
1AA Σ2AAΣ

−1/2
1AA ‖2, π2π

−1
1 ‖Σ

−1/2
2AA Σ1AAΣ

−1/2
2AA ‖2

)
, (B.1)

ΣgA{A{:A = ΣgA{A{ − ΣgA{AΣ−1
gAAΣgA{A (g = 1, 2),

Σd1 = Σ1A{A{:A + π1π
−1
2

(
Σ2A{A{ + Σ1A{AΣ−1

1AAΣ2AAΣ−1
1AAΣ1AA{ − Σ1A{AΣ−1

1AAΣ2AA{ − Σ2A{AΣ−1
1AAΣ1AA{

)
,

Σd2 = Σ2A{A{:A + π2π
−1
1

(
Σ1A{A{ + Σ2A{AΣ−1

2AAΣ1AAΣ−1
2AAΣ2AA{ − Σ2A{AΣ−1

2AAΣ1AA{ − Σ1A{AΣ−1
2AAΣ2AA{

)
.

(B.2)

The quantities in (B.2) can be viewed as conditional variance terms, their origin is made precise in Lemma 2. Let
σ2

g j j:A = e>j ΣgA{A{:Ae j and σ2
jdg = e>j Σdg e j be the diagonal elements of corresponding matrices. Under Assump-

tion 4, σg j j:A, σ jdg and γ can be treated as constants.
We define the oracle (ṽ1A, ṽ2A) as the solution to

minimize
v1,v2∈Rs

{
n−1

1 ‖X1Av1 − ιn1‖
2
2/2 + n−1

2 ‖X2Av2 + ιn2‖
2
2/2 + λ

s∑
j=1

(v2
1 j + v2

2 j)
1/2

}
, (B.3)

and let ũA = (ũ1A, ũ2A) be the subgradient of
∑s

j=1(v2
1 j + v2

2 j)
1/2 evaluated at (ṽ1A, ṽ2A) such that ũA j = ṽA j/‖ṽA j‖2 if

‖ṽA j‖2 , 0, and ũA j ∈ {u : ‖u‖2 ≤ 1} if ‖ṽA j‖2 = 0.

Theorem 3 (Equivalent to Theorem 1). Let Assumptions 1–3 hold. Let the sample sizes satisfy

min(n1, n2) & max
g=1,2
‖Σ−1

gAA‖2 max
g=1,2; j∈A{

(σ2
g j j:A ∨ σ

2
jdg)s ln{(p − s)η−1},

for some η ∈ (0, 1), and the tuning parameter satisfy

λ & max
g=1,2; j∈A{

(σ2
g j j:A ∨ σ

2
jdg)

[
n−1 ln{(p − s)η−1}

]1/2
.

Then Pr(Â ⊆ A) ≥ 1 − η.
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Proof. Using the results of Section 2.3,

[̂v1 v̂2] = argmin
v1∈Rp,v2∈Rp

{
L̂ψ1 (v1) + L̂ψ2 (v2) + λ

p∑
j=1

(v2
1 j + v2

2 j)
1/2

}
,

2{L̂ψ1 (v1) + L̂ψ2 (v2)} = v>1 S 1v1 + v>2 S 2v2 +
(
n−1n2d>v1 − 1

)2
+

(
n−1n1d>v2 − 1

)2
.

Let ρ1 = n1/n and ρ2 = n2/n. The optimality conditions stated in Chapter 5 of [3] lead to

(S 1AA + ρ2
2dAd>A )̂v1A + (S 1AA{ + ρ2

2dAd>
A{ )̂v1A{ − ρ2dA = −λu1A,

(S 2AA + ρ2
1dAd>A )̂v2A + (S 2AA{ + ρ2

1dAd>
A{ )̂v2A{ − ρ1dA = −λu2A,

(S 1A{A + ρ2
2dA{d>A )̂v1A + (S 1A{A{ + ρ2

2dA{d>
A{ )̂v1A{ − ρ2dA{ = −λu1A{ ,

(S 2A{A + ρ2
1dA{d>A )̂v2A + (S 2A{A{ + ρ2

1dA{d>
A{ )̂v2A{ − ρ2dA{ = −λu2A{ ,

where u is defined in (??). Consider v̂1 = (ṽ1A, 0p−s), v̂2 = (ṽ2A, 0p−s), where ṽ1A, ṽ2A are the solutions to the oracle
problem (B.3). From the above optimality conditions, it is sufficient to have∥∥∥(S 1A{A + ρ2

2dA{d>A )ṽ1A − ρ2dA{ , (S 2A{A + ρ2
1dA{d>A )ṽ2A − ρ1dA{

∥∥∥
∞,2 < λ

for V̂ = [̂v1 v̂2] to be the solution to (6), which leads to Â ⊆ A. We next show that the above inequality holds with
high probability under the stated conditions.

Using the form of ṽ1A (Theorem 5) and Sherman–Morrison identity, we find

(S 1A{A + ρ2
2dA{d>A )ṽ1A − ρ2dA{ = S 1A{Aρ2S −1

1AAdA(1 + ρ2
2d>A S −1

1AAdA)−1 + ρ2
2dA{dAρ

>
2 S −1

1AAdA(1 + ρ2
2d>A S −1

1AAdA)−1

− λS 1A{A

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A − λρ
2
2dA{d>A

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A − ρ2dA{

= ρ2

(
S 1A{AS −1

1AAdA − dA{

)
(1 + ρ2

2d>A S −1
1AAdA)−1 − λS 1A{AS −1

1AAũ1A

+ λρ2
2S 1A{AS −1

1AAdAd>A S −1
1AAũ1A(1 + ρ2

2d>A S −1
1AAdA)−1

− λρ2
2dA{d>A S −1

1AAũ1A(1 + ρ2
2d>A S −1

1AAdA)−1

= ρ2

(
S 1A{AS −1

1AAdA − dA{

)
(1 + ρ2

2d>A S −1
1AAdA)−1 − λS 1A{AS −1

1AAũ1A

+ ρ2
2λ(S 1A{AS −1

1AAdA − dA{ )d>A S −1
1AAũ1A(1 + ρ2

2d>A S −1
1AAdA)−1.

Using normality, there exists U1 ∈ Rp×(n1−1) with columns u1,i ∼ N(0,Σ1) such that (n1 − 1)S 1 = U1U>1 . Similar
to [17], let Ed1 = dA{ − Σ1A{AΣ−1

1AAdA, EU1 = U1A{ − Σ1A{AΣ−1
1AAU1A. Then

S 1A{AS −1
1AA = (n1 − 1)−1U1A{U>1AS −1

1AA

= (n1 − 1)−1EU1U>1AS −1
1AA + (n1 − 1)−1Σ1A{AΣ−1

1AAU1AU>1AS −1
1,AA

= Σ1A{AΣ−1
1AA + (n1 − 1)−1EU1U>1AS −1

1AA,

and S 1A{AS −1
1AAdA − dA{ = (n1 − 1)−1EU1U>1AS −1

1AAdA − Ed1. Combining the above two displays gives

(S 1A{A + ρ2
2dA{d>A )ṽ1A − ρ2dA{ = −λΣ1A{AΣ−1

1AAũ1A − λ(n1 − 1)−1EU1U>1AS −1
1AAũ1A

+ (n1 − 1)−1EU1U>1AS −1
1AAdAρ2(1 + ρ2

2d>A S −1
1AAdA)−1 − Ed1ρ2(1 + ρ2

2d>A S −1
1AAdA)−1

+ λ(n1 − 1)−1EU1U>1AS −1
1AAdAρ

2
2d>A S −1

1AAũ1A(1 + ρ2
2d>A S −1

1AAdA)−1

− λEd1ρ
2
2d>A S −1

1AAũ1A(1 + ρ2
2d>A S −1

1AAdA)−1

= −λΣ1A{AΣ−1
1AAũ1A + (n1 − 1)−1EU1U>1AS −1

1AAdAρ2(1 + ρ2
2d>A S −1

1AAdA)−1

− Ed1ρ2(1 + ρ2
2d>A S −1

1AAdA)−1 − λEd1ρ
2
2d>A S −1

1AAũ1A(1 + ρ2
2d>A S −1

1AAdA)−1

− λ(n1 − 1)−1EU1U>1AS −1
1AA(I + ρ2

2dAd>A S −1
1AA)−1ũ1A.

Similarly,

(S 2A{Aρ
2
1dA{d>A )ṽ2A − ρ1dA{ = −λΣ2A{AΣ−1

2AAũ2A + (n2 − 1)−1EU2U>2AS −1
2AAdAρ1(1 + ρ2

1d>A S −1
2AAdA)−1

− Ed2ρ1(1 + ρ2
1d>A S −1

2AAdA)−1 − λEd2ρ
2
1d>A S −1

2AAũ2A(1 + ρ2
1d>A S −1

2AAdA)−1

− λ(n2 − 1)−1EU2U>2AS −1
2AA(I + ρ2

1dAd>A S −1
2AA)−1ũ2A.
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Therefore, using the triangle inequality,∥∥∥(S 1A{A + ρ2
2dA{d>A )ṽ1A − ρ2dA{ , (S 2A{A + ρ2

1dA{d>A )ṽ2A − ρ1dA{

∥∥∥
∞,2

≤ λ‖Σ1A{AΣ−1
1AAũ1A,Σ2A{AΣ−1

2AAũ2A‖∞,2 + I1 + I2 + I3 + I4,

where

I1 = ‖ρ2(1 + ρ2
2d>A S −1

1AAdA)−1Ed1, ρ1(1 + ρ2
1d>A S −1

2AAdA)−1Ed2‖∞,2,

I2 =
∥∥∥∥(n1 − 1)−1 ρ2EU1U>1AS −1

1AAdA

1 + ρ2
2d>A S −1

1AAdA
, (n2 − 1)−1 ρ1EU2U>2AS −1

2AAdA

1 + ρ2
1d>A S −1

2AAdA

∥∥∥∥
∞,2
,

I3 =
∥∥∥∥EU1U>1AS −1

1AA

n1 − 1
(I + ρ2

2dAd>A S −1
1AA)−1ũ1A,

EU2U>2AS −1
2AA

n2 − 1
(I + ρ2

1dAd>A S −1
2AA)−1ũ2A

∥∥∥∥
∞,2
,

I4 =
∥∥∥∥ ρ2

2

1 + ρ2
2d>A S −1

1AAdA
Ed1d>A S −1

1AAũ1A,
ρ2

1

1 + ρ2
1d>A S −1

2AAdA
Ed2d>A S −1

2AAũ2A

∥∥∥∥
∞,2
.

By the irrepresentability condition (Assumption 3), there exists α ∈ (0, 1] such that

‖Σ1A{AΣ−1
1AAũ1A,Σ2A{AΣ−1

2AAũ2A‖∞,2 ≤ 1 − α.

To conclude the proof, it is sufficient to show that with probability at least 1−η, each Ik ≤ λα/4 for all k ∈ {1, . . . , 4}.
Next, we consider each of these four terms separately.

1. Show I1 ≤ λα/4 with probability at least 1 − η/4. By Lemma 2, e>j Edg ∼ N(0, σ2
jdg/ng). Applying the

standard normal concentration inequality, there exists a constant C > 0 such that

Pr
( ⋂

j∈A{

{
|e>j Edg| ≥ C max

j∈A{
σ jdg

[
n−1

g ln{(p − s)η−1}
]1/2})

≤ η/4.

Since

‖ρ2(1 + ρ2
2d>A S −1

1AAdA)−1Ed1, ρ1(1 + ρ2
1d>A S −1

1AAdA)−1Ed2‖∞,2

≤
√

2 max
{
ρ2(1 + ρ2

2d>A S −1
1AAdA)−1‖Ed1‖∞, ρ1(1 + ρ2

1d>A S −1
1AAdA)−1‖Ed2‖∞

}
≤
√

2 max(‖Ed1‖∞, ‖Ed2‖∞),

it follows that there exists a constant C > 0 such that

Pr
(
I1 ≥ C max

g=1,2; j∈A{
σ jdg

[
ln{(p − s)η−1}/min(n1, n2)

]1/2)
≤ η/4.

Therefore, I1 ≤ λα/4 with probability at least 1 − η/4 under the conditions of the theorem.
2. Show I2 ≤ λα/4 with probability at least 1 − η/4. By Lemma 2, EUg ∼ N(0,ΣgA{A{:A ⊗ Ing−1) for g{1, 2},

and is independent of UgA and d. Hence,

ρ2(1 + ρ2
2d>A S −1

1AAdA)−1e>j (n1 − 1)−1EU1U>1AS −1
1AAdA|U1A, dA

∼ N
{
0, σ2

1 j j:A(n1 − 1)−1ρ2
2d>A S −1

1AAdA(1 + ρ2
2d>A S −1

1AAdA)−2
}
.

Define L = (1 + ρ2
2d>A S −1

1AAdA)−2ρ2
2d>A S −1

1AAdA. Using standard normal concentration inequality, there exists a con-
stant C > 0 such that conditionally on L, the event⋂

j∈A{

{
ρ2(1 + ρ2

2d>A S −1
1AAdA)−1|e>j (n1 − 1)−1EU1U>1AS −1

1AAdA| ≥ C max
j∈A{

σ1 j j:A

[
Ln−1

1 ln{(p − s)η−1}
]1/2}

has probability at most η/4. Since L = (1 + ρ2
2d>A S −1

1AAdA)−2ρ2
2d>A S −1

1AAdA ≤ (1 + ρ2
2d>A S −1

1AAdA)−1 ≤ 1, it follows that
with probability at least 1 − η/4

ρ2

1 + ρ2
2d>A S −1

1AAdA

∥∥∥∥EU1U>1AS −1
1AAdA

n1 − 1

∥∥∥∥
∞
≤ C

[
max
j∈A{

σ1 j j:An−1
1 ln{(p − s)η−1}

]1/2
.
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The case g = 2 is similar, leading to the desired bound under the conditions of the theorem.
3. Show I3 ≤ α/4 with probability at least 1 − η/4. Similar to part 2,

e>j (n1 − 1)−1EU1U>1AS −1
1AA(I + ρ2

2dAd>A S −1
1AA)−1ũ1A|U1A, ũ1A, dA

∼ N
(
0, (n1 − 1)−1σ2

1 j j:Aũ>1A(S 1AA + ρ2
2dAd>A )−1S 1AA(S 1AA + ρ2

2dAd>A )−1ũ1A

)
.

Define L = ũ>1A(S 1AA + ρ2
2dAd>A )−1S 1AA(S 1AA + ρ2

2dAd>A )−1ũ1A. As in part 2, there exists a constant C > 0 such that
conditionally on L the event⋂

j∈A{

{
|e>j (n1 − 1)−1EU1U>1AS −1

1AA(I + ρ2
2dAd>A S −1

1AA)−1ũ1A| ≥ C max
j∈A{

σ1 j j:A

[
Ln−1

1 ln{(p − s)η−1}
]1/2}

has probability at most η/4. Furthermore,

L ≤ ‖ũ1A‖
2
2‖(S 1AA + ρ2

2dAd>A )−1S 1AA(S 1AA + ρ2
2dAd>A )−1‖2

≤ s‖S −1/2
1AA (I + ρ2

2S −1/2
1AA dAd>A S −1/2

1AA )−2S −1/2
1AA ‖

2
2

≤ s‖S −1
1AA‖2,

where in the last inequality we used ‖ũ1A‖
2
2 + ‖ũ2A‖

2
2 ≤ s by definition of subgradient. By Lemma 3, there exists a

constant C > 0 such that with probability at least 1 − η/4,

‖S −1
1AA‖2 ≤ ‖Σ

−1
1AA‖2

[
1 + C

{
n−1

1 ln(η−1)
}1/2

]
.

Combining the above displays leads to

‖(n1 − 1)−1EU1U>1AS −1
1AA(I + ρ2

2dAd>A S −1
1AA)−1ũgA‖∞ ≤ C max

j∈A{
σ1 j j:A

[
‖Σ−1

1AA‖2n−1
1 s ln{(p − s)η−1}

]1/2

with probability at least 1 − η/4. The proof for g = 2 is similar leading to the desired bound.
4. Show I4 ≤ α/4 with probability at least 1 − η/4.
By Lemma 2, e>j Edg ∼ N(0, n−1

g σ2
jdg), where σ jdg is from Lemma 2. Then

ρ2
2(1 + ρ2

2d>A S −1
1AAdA)−1e>j Ed1d>A S −1

1AAũ1A|U1A, ũ1A, dA ∼ N

0, σ2
jd1ρ

4
2

n1(1 + ρ2
2d>A S −1

1AAdA)2
ũ>1AS −1

1AAdAd>A S −1
1AAũ1A

 .
Define L = (1 +ρ2

2d>A S −1
1AAdA)−2ρ4

2ũ>1AS −1
1AAdAd>A S −1

1AAũ1A. Using the standard normal concentration inequality there
exists a constant C > 0 such that conditionally on L, the event⋂

j∈A{

{ ρ2
2

1 + ρ2
2d>A S −1

1AAdA
e>j Ed1d>A S −1

1AAũ1A ≥ C max
j∈A{

σ jd1

[
Ln−1

1 ln{(p − s)η−1}
]1/2}

has probability at most η/4. Furthermore,

L = (1 + ρ2
2d>A S −1

1AAdA)−2ρ4
2(ũ>1AS −1/2

1AA S −1/2
1AA dA)2 ≤ ρ2

2(1 + ρ2
2d>A S −1

1AAdA)−2ρ2
2d>A S −1

1AAdAũ>1AS −1
1AAũ1A

≤ ρ2
2ũ>1AS −1

1AAũ1A

≤ s‖S −1
1AA‖2,

where in the last inequality we used ‖ũ1A‖
2
2 + ‖ũ2A‖

2
2 ≤ s by definition of subgradient. Similar to part 3, this means

that there exists a constant C > 0 such that∥∥∥∥ ρ2
2

1 + ρ2
2d>A S −1

1AAdA
Ed1d>A S −1

1AAũ1A

∥∥∥∥
∞
≥ C max

j∈A{
σ jd1

[
‖Σ−1

1AA‖2n−1
1 s ln{(p − s)η−1}

]1/2

with probability at most η/4. The proof for g = 2 is analogous, leading to the desired bound.

Theorem 4 (Equivalent to Theorem 2). Assume the conditions of Theorem 3 hold. If in addition

ψmin & λs1/2 max
g
‖Σ−1

g,AA‖2(max
g
δ>AΣ−1

gAAδA ∨ γ),

then Pr(Â = A) ≥ 1 − η.

18



Proof of Theorem 4. Consider the oracle solution

ṽ1A = ρ2S −1
1AAdA(1 + ρ2

2d>A S −1
1AAdA)−1 − λ

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A,

ṽ2A = ρ1S −1
2AAdA(1 + ρ2

1d>A S −1
2AAdA)−1 − λ

(
S 2AA + ρ2

1dAd>A
)−1

ũ2A;

where ũA is the subgradient. To show Â = A, it is sufficient to show

min
j∈A

∥∥∥ρ2(1 + ρ2
2d>A S −1

1AAdA)−1e>j S −1
1AAdA, ρ1(1 + ρ2

1d>A S −1
2AAdA)−1e>j S −1

2AAdA

∥∥∥
2

≥ λmax
j∈A
‖e>j

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A, e>j
(
S 2AA + ρ2

1dAd>A
)−1

ũ2A‖2.
(B.4)

Consider the right-hand side in (B.4)

max
j∈A
‖e>j

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A, e>j
(
S 2AA + ρ2

1dAd>A
)−1

ũ2A‖2

= max
j∈A

[{
e>j

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A

}2
+

{
e>j

(
S 2AA + ρ2

1dAd>A
)−1

ũ2A

}2]1/2

≤ max
j∈A

{
‖e>j

(
S 1AA + ρ2

2dAd>A
)−1
‖22‖ũ1A‖

2
2 + ‖e>j

(
S 2AA + ρ2

1dAd>A
)−1
‖22‖ũ2A‖

2
2

}1/2

≤ max
j∈A

{
‖e>j

(
S 1AA + ρ2

2dAd>A
)−1
‖2 ∨ ‖e>j

(
S 2AA + ρ2

1dAd>A
)−1
‖2

}(
‖ũ1A‖

2
2 + ‖ũ2A‖

2
2

)1/2

≤
{
‖(S 1AA + ρ2

2dAd>A )−1‖2 ∨ ‖(S 2AA + ρ2
1dAd>A )−1‖2

}
s1/2.

Furthermore,

‖
(
S 1AA + ρ2

2dAd>A
)−1
‖2 = ‖S −1/2

1AA

(
I + ρ2

2S −1/2
1AA dAd>A S −1/2

1AA

)−1
S −1/2

1AA ‖2 ≤ ‖S
−1
1AA‖2,

and similarly ‖(S 2AA + ρ2
1dAd>A )−1‖2 ≤ ‖S −1

2AA‖2. Using Lemma 3, with probability at least 1 − η

max
j∈A
‖e>j

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A, e>j
(
S 2AA + ρ2

1dAd>A
)−1

ũ2A‖2 ≤ max
g
‖Σ−1

gAA‖2s1/2
[
1 + C{s ln(η−1)/min(n1, n2)}1/2

]
.

Consider the left-hand side in (B.4). Applying Lemma 1 and Corollary 1, there exist constants C1, C2 such
that with probability at least 1 − η

min
j∈A

∥∥∥ρ2(1 + ρ2
2d>A S −1

1AAdA)−1e>j Σ−1
1AAδA, ρ1(1 + ρ2

1d>A S −1
2AAdA)−1e>j Σ−1

2AAδA

∥∥∥
2

≥
[
1 + C1 max

g
δ>AΣ−1

gAAδA + C2(max
g
δ>AΣ−1

gAAδA ∨ γ)
{
s ln(η−1)/min(n1, n2)

}1/2]−1
min
j∈A

∥∥∥π2e>j S −1
1AAdA, π1e>j S −1

2AAdA

∥∥∥
2
.

Furthermore,

min
j∈A

∥∥∥π2e>j S −1
1AAdA, π1e>j S −1

2AAdA

∥∥∥
2

= min
j∈A

{
π2

2(e>j S −1
1AAdA)2 + π2

1(e>j S −1
2AAdA)2

}1/2

= min
j∈A

[
π2

2{e
>
j (S −1

1AAdA − Σ−1
1AAδA + Σ−1

1AAδA)}2 + π2
1{e
>
j (S −1

2AAdA − Σ−1
2AAδA + Σ−1

2AAδA)}2
]1/2

≥ min
j∈A

∥∥∥π2e>j Σ−1
1AAδA, π1e>j Σ−1

2AAδA

∥∥∥
2
−max

g

(
‖S −1

gAAdA − Σ−1
gAAδA‖∞

)
= ψmin −max

g

(
‖S −1

gAAdA − Σ−1
gAAδA‖∞

)
,

where in the last inequality we used π2
1 + π2

2 ≤ 1. Using Lemma 8, with probability at least 1 − η

max
g

(
‖S −1

gAAdA − Σ−1
gAAδA‖∞

)
≤ C

[
max
j∈A,g

{
(Σ−1

gAA) j j(δ>AΣ−1
gAAδA ∨ γ)

}
s ln(η−1)/min(n1, n2)

]1/2
.
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Therefore, to have A ⊆ Â, it is sufficient to have

ψmin > C
[

max
j∈A,g

{
(Σ−1

gAA) j j(δ>AΣ−1
gAAδA ∨ γ)

}
s ln(η−1)/min(n1, n2)

]1/2

+

[
1 + C1 max

g
δ>AΣ−1

gAAδA + C2(max
g
δ>AΣ−1

gAAδA ∨ γ)
{
s ln(η−1)/min(n1, n2)

}]
× λmax

g
‖Σ−1

gAA‖2s1/2
[
1 + C

{
s ln(η−1)/min(n1, n2)

}1/2
]
.

Using the conditions on λ, and the fact that γ ≥ 1, it follows that the second term above is the dominant term, and
therefore it is sufficient to have, for some constant C > 0,

ψmin > Cλs1/2 max
g
‖Σ−1

gAA‖2(max
g
δ>AΣ−1

gAAδA ∨ γ).

Appendix E. Supporting theorems and lemmas

Theorem 5 (Oracle solution). Consider an oracle estimator [ṽ1A ṽ2A] from (B.3). Let ρ1 = n1/n, ρ2 = n2/n. Then

ṽ1A = ρ2S −1
1AAdA(1 + ρ2

2d>A S −1
1AAdA)−1 − λ

(
S 1AA + ρ2

2dAd>A
)−1

ũ1A,

ṽ2A = ρ1S −1
2AAdA(1 + ρ2

1d>A S −1
2AAdA)−1 − λ

(
S 2AA + ρ2

1dAd>A
)−1

ũ2A;

where ũA is the subgradient of
∑s

j=1(v2
1A j + v2

2A j)
1/2.

Proof. We present the proof only for ṽ1A, the proof for ṽ2A is analogous. From Section 2.3,

[ṽ1A ṽ2A] = argmin
v1A,v2A∈Rs

{
L̂ψ1 (v1A) + L̂ψ2 (v2A) + λ

s∑
j=1

(v2
1A j + v2

2A j)
1/2

}
,

L̂ψ1 (v1A) + L̂ψ2 (v2A) = v>1AS 1AAv1A/2 +
(
n2/nd>A v1A − 1

)2
/2 + v>2AS 2AAv2A/2 +

(
n2/nd>A v2A − 1

)2
/2.

Using the optimality conditions, the oracle solution must satisfy

ṽ1A =
(
S 1AA + ρ2

2dAd>A
)−1

(ρ2dA − λũ1A) ,

where ũA is the subgradient of
∑s

j=1(v2
1A j + v2

2A j)
1/2. By Sherman–Morrison identity,

(S 1AA − ρ
2
2dAd>A )−1 = S −1

1AA − (1 + ρ2
2d>A S −1

1AAdA)−1ρ2
2S −1

1AAdAd>A S −1
1AA.

The statement follows by combining the above two displays.

Lemma 1. There exists a constant C > 0 such that with probability at least 1 − η∣∣∣ng/n − πg

∣∣∣ ≤ C
{

ln(η−1)/n
}1/2

(g = 1, 2), |n1/n2 − π1/π2| ≤ C
{

ln(η−1)/n
}1/2

.

Proof. Given that ng ∼ Bin(n, πg), by Hoeffding’s inequality Pr(|πg − ng/n| ≥ ε) ≤ 2 exp(−2nε2). Let η =

2 exp(−2nε2), then 2nε2 = ln(2η−1), ε = C{ln(η−1)/n}1/2 and ng/n = πg + Op{n−1/2}. Let f (x) = x/(1 − x),
which is non-decreasing for x ∈ (0, 1). Since n1/n2 = f (n1/n) , the second inequality in the lemma follows from
the first.

Lemma 2. Let EUg = UgA{ − ΣgA{AΣ−1
gAAUgA, Edg = dA{ − ΣgA{AΣ−1

gAAdA, g = 1, 2. Then EUg is independent

from UgA, EUg ∼ N(0,ΣgA{A{:A ⊗ Ing−1), e>j Edg ∼ N
(
0, n−1

g σ2
jdg

)
; where σ2

jdg = e>j Σdg e j, and ΣgA{A{:A, Σdg are
defined in (B.2).
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Proof. Since Edg, EUg are formed by applying linear transformation to normal d, U1, U2, it follows that Edg, EUg

are also normally distributed. It remains to verify the form of the means and covariance matrices. We consider
g = 1, the proof for g = 2 is similar.

Consider EU1. By definition, the columns of U1 satisfy u1i ∼ N(0,Σ1). Since

EU1 = (−Σ1A{AΣ−1
1AA Ip−s)

(
U1A

U1A{

)
,

it follows that E(EU1) = 0, and

var(EU1) = (−Σ1A{AΣ−1
1AA Ip−s)

(
Σ1AA Σ1AA{

Σ1A{A Σ1A{A{

)
(−Σ1A{AΣ−1

1AA Ip−s)> ⊗ In1−1

= (Σ1A{A{ − Σ1A{AΣ−1
1AAΣ1AA{ ) ⊗ In1−1.

Consider Ed1. Since Σ−1
1 δ = ψ1 = (ψ>1A, 0)>, by rewriting Σ1Σ−1

1 δ = δ, and using block matrices of Σ1 and Σ−1
1 , it

follows that Σ1A{AΣ−1
1AAδA = δA{ . Then E(Ed1) = δA{ − Σ1A{AΣ−1

1AAδA = 0. Furthermore,

var(Ed1) = var(dA{ − Σ1A{AΣ−1
1,AAdA)

= var(dA{ ) + Σ1A{AΣ−1
1AA var(dA)Σ−1

1AAΣ1AA{ − Σ1A{AΣ−1
1AA cov(dA, dA{ ) − cov(dA{ , dA)Σ−1

1AAΣ1AA{

= n−1
1 Σ1A{A{ + n−1

2 Σ2A{A{ + Σ1A{AΣ−1
1AA

(
n−1

1 Σ1AA + n−1
2 Σ2AA

)
Σ−1

1AAΣ1AA{

− Σ1A{AΣ−1
1AA

(
n−1

1 Σ1AA{ + n−1
2 Σ2AA{

)
−

(
n−1

1 Σ1A{A + n−1
2 Σ2A{A

)
Σ−1

1AAΣ1AA{

= n−1
1 Σ1A{A{:A + n−1

2

(
Σ2A{A{ + Σ1A{AΣ−1

1AAΣ2AAΣ−1
1AAΣ1AA{ − Σ1A{AΣ−1

1AAΣ2AA{ − Σ2A{AΣ−1
1AAΣ1AA{

)
.

Lemma 3. Let S gAA be a submatrix of the sample covariance matrix for group g ∈ {1, 2} corresponding to
variables in A, with s = card(A). Let ΣgAA be the corresponding submatrix of population covariance matrix.
Under Assumption 1, there exist constants C1,C2 > 0 such that with probability at least 1 − η

‖Σ
1/2
gAAS −1

gAAΣ
1/2
gAA − I‖2 ≤ C1

{
s ln(η−1)/ng

}1/2
, ‖S −1

gAA‖2 ≤ ‖Σ
−1
gAA‖2

[
1 + C2

{
s ln(η−1)/ng

}1/2]
.

Proof. Using normality, the sample covariance matrices satisfy S gAA = (ng − 1)−1WgW>g with Wg ∈ Rs×(ng−1)

having independent columns wgi ∼ N(0,ΣgAA). Then the desired bounds follow from Lemma 9 in Wainwright
[50].

Lemma 4. Let a random vector X ∈ Rs be such that X ∼ N(0, n−1A). Then there exists a constant C > 0 such
that with probability at least 1 − η

‖X‖2 ≤ C
{
‖A‖2n−1s ln(η−1)

}1/2
.

Proof. Since A−1/2X ∼ N(0, n−1Is), by Hsu et al. [22, Proposition 1.1], with probability at least 1 − η

‖A−1/2X‖22 ≤ s/n + 2
{
s ln(η−1)

}1/2
/n + 2 ln(η−1)/n.

For small η it follows that there exist C > 0 such that ‖A−1/2X‖22 ≤ Cn−1s ln(η−1) with probability at least 1 − η.
The statement of the lemma follows since

‖X‖22 = X>X = X>A−1/2AA−1/2X ≤ ‖A‖2‖A−1/2X‖22.

Lemma 5. There exist constant C > 0 such that with probability at least 1 − η, and γ in (B.1)

max
g
‖Σ
−1/2
gAA (dA − δA)‖2 ≤ C

{
γs ln(η−1)/min(n1, n2)

}1/2
.

Proof. Since dA − δA ∼ N(0, n−1
1 Σ1AA + n−1

2 Σ2AA), it follows that

Σ
−1/2
1AA (dA − δA) ∼ N

[
0, n−1

1

(
I + n−1

2 n1Σ
−1/2
1AA Σ2AAΣ

−1/2
1AA

)]
.

Applying Lemmas 1 and 4 concludes the proof. The case g = 2 is analogous.
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Lemma 6. There exist constants C1,C2 such that with probability at least 1 − η for g = 1, 2

d>A S −1
gAAdA ≤ C1d>A Σ−1

gAAdA

[
1 + C2

{
ln(η−1)/(ng − s)

}1/2
]
.

Proof. We prove for g = 1, case g = 2 is analogous. Since (n1 − 1)S 1AA ∼ Ws(n1 − 1,Σ1AA), and dA is independent
of S 1AA, by Theorem 3.2.12 in [38]

(n1 − 1)
d>A Σ−1

1AAdA

d>A S −1
1AAdA

∼ χ2
n1−s.

Using Lemma 1 in [29],

Pr
[
(n1 − 1)

d>A Σ−1
1AAdA

d>A S −1
1AAdA

≥ (n1 − s) − 2
{
(n1 − s) ln(η−1)

}1/2]
≥ 1 − η.

Therefore, with probability at least 1 − η

d>A S −1
1AAdA ≤ (n1 − 1)(n1 − s)−1d>A Σ−1

1AAdA

[
1 − 2

{
ln(η−1)/(n1 − s)

}1/2
]−1

.

Hence, there exist constants C1,C2 > 0 such that with probability at least 1 − η

d>A S −1
1AAdA ≤ C1d>A Σ−1

1AAdA

[
1 + C2

{
ln(η−1)/(n1 − s)

}1/2
]
.

Lemma 7. There exists a constant C > 0 such that with probability at least 1 − η, and γ in (B.1)

d>A Σ−1
gAAdA ≤ C

{
δ>AΣ−1

gAAδA + γn−1
g s ln(η−1)

}
(g = 1, 2).

Proof. We prove the result for g = 1, the case g = 2 is similar. Consider

d>A Σ−1
1AAdA = δ>AΣ−1

1AAδA + 2(dA − δA)>Σ−1
1AAδA + (dA − δA)>Σ−1

1AA(dA − δA)

≤ 2δ>AΣ−1
1AAδA + 2(dA − δA)>Σ−1

1AA(dA − δA).

By Lemma 5, there exists a constant C ≥ 0 such that with probability at least 1 − η,

(dA − δA)>Σ−1
1AA(dA − δA) ≤ Cγn−1

1 s ln(η−1).

The result follows by combining the above displays.

Corollary 1. There exist constants C1,C2,C3 > 0 such that with probability at least 1 − η for g = 1, 2 and γ
in (B.1)

d>A S −1
gAAdA ≤ C1δ

>
AΣ−1

gAAδA

[
1 + C2

{
ln(η−1)/(ng − s)

}1/2
]

+ C3γn−1
g s ln(η−1).

Proof. The result follows by combining results of Lemmas 6–7.

Lemma 8. There exists a constant C > 0 such that with probability at least 1 − η for g ∈ {1, 2}, and γ in (B.1)

‖S −1
gAAdA − Σ−1

gAAδA‖∞ ≤ C
{

max
j∈A

(Σ−1
gAA) j j(δ>AΣ−1

gAAδA ∨ γ)n−1
g s ln(η−1)

}1/2
.

Proof. We prove the result for g = 1, the case g = 2 is similar. Consider

|e>j S −1
1AAdA − e>j Σ−1

1AAδA|

= |e>j (S −1
1AA − Σ−1

1AA)(dA − δA) + e>j (S −1
1AA − Σ−1

1AA)δA + e>j Σ−1
1AA(dA − δA)|

≤ (e>j Σ−1
1AAe j)1/2‖(Σ1/2

1AAS −1
1AAΣ

1/2
1AA − I)Σ−1/2

1AA (dA − δA)‖2 + (e>j Σ−1
1AAe j)1/2‖(Σ1/2

1AAS −1
1AAΣ

1/2
1AA − I)Σ−1/2

1AA δA‖2

+ (e>j Σ−1
1AAe j)1/2‖Σ

−1/2
1AA (dA − δA)‖2.
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Let m1 = ‖Σ
1/2
1AAS −1

1AAΣ
1/2
1AA − I‖2 and m2 = ‖Σ

−1/2
1AA (dA − δA)‖2. Using the above display

‖S −1
1AAdA − Σ−1

1AAδA‖∞ ≤ max
j∈A

(Σ−1
1AA)1/2

j j

{
m1m2 + m1(δ>AΣ−1

1AAδA)1/2 + m2

}
. (C.1)

Using Lemma 3, there exists a constant C1 > 0 such that m1 ≤ C1{s ln(η−1)/n1}
1/2 with probability at least 1 − η.

Using Lemma 5, there exists a constant C2 > 0 such that m2 ≤ C2{γs ln(η−1)/n1}
1/2 with probability at least 1 − η.

Combining these bounds with (C.1), there exist constant C > 0 such that with probability at least 1 − η

‖S −1
1AAdA − Σ−1

1AAδA‖∞ ≤ C
{

max
j∈A

(Σ−1
1AA) j j(δ>AΣ−1

1AAδA ∨ γ)n−1
1 s ln(η−1)

}1/2
.
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