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Abstract

We consider the problem of high-dimensional classification between the two groups with unequal covariance ma-
trices. Rather than estimating the full quadratic discriminant rule, we propose to perform simultaneous variable
selection and linear dimension reduction on original data, with the subsequent application of quadratic discrimi-
nant analysis on the reduced space. In contrast to quadratic discriminant analysis, the proposed framework doesn’t
require estimation of precision matrices and scales linearly with the number of measurements, making it especially
attractive for the use on high-dimensional datasets. We support the methodology with theoretical guarantees on
variable selection consistency, and empirical comparison with competing approaches. We apply the method to
gene expression data of breast cancer patients, and confirm the crucial importance of ESR1 gene in differentiating
estrogen receptor status.
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1. Introduction

We consider a binary classification problem: given n independent pairs (X, Y1), ..., (X, ¥,,) from a random pair
(X,Y) on R? x {1, 2}, our goal is to both learn a rule that will assign one of two labels to a new data point X € R?,
and determine the subset of p variables that influences the rule. One of the popular classification tools is linear
discriminant analysis, or LDA; see Chapter 11 in [36]. While it gives unsatisfactory results when applied to high-
dimensional datasets [12], recent work suggests that additional regularization, variable selection in particular, leads
to dramatic performance improvements. Earlier approaches perform variable selection and regularize the sample
covariance matrix by treating it as diagonal [48, 53]. More recent methods directly estimate the discriminant
directions by using convex optimization framework with sparsity-inducing penalties [5, 15, 35].

Despite these significant advances, a key underlying assumption of linear discriminant analysis is the equality
of covariance matrices between the groups, viz. £; = X,. This assumption is unlikely to be satisfied in practice,
leading to suboptimal performance of the linear rule. When the measurements are normally distributed, viz.
XilY; = g ~ N(ug, Zp), g € {1,2}, with I; # X,, the Bayes rule is quadratic, leading to quadratic discriminant
analysis, or QDA. As with the linear case, quadratic discriminant analysis (QDA) performs poorly when p is large.
This unsatisfactory performance is largely due to the estimation of precision matrices 21‘1 and 251, a task that is
extremely challenging when p > n. In fact, even when p = n/2 and the assumption of equal covariance matrices
is violated, the misclassification error rate of sample QDA is worse than the rates of regularized linear discriminant
methods; see the supplement in [15].

Several extensions of sample QDA have been proposed. A common strategy is to jointly estimate 2;1 and
z 1 Friedman [13], Ramey et al. [44] regularize sample covariance matrices by shrinkage. Wu et al. [55] im-
pose equicorrelation structure on each covariance matrix by pooling both the diagonal and off-diagonal elements.
Danabher et al. [11], Guo et al. [19], Price et al. [42], Simon and Tibshirani [46] use a penalized likelihood tech-
nique, where the penalty enforces similarity either between the covariance matrices X, or the precision matrices
ngl. While these methods perform better than quadratic rules based on sample covariance matrices, they again
rely on estimating two precision matrices. As such, additional assumptions on 2;1 such as sparsity are usually
enforced, and the estimation procedure scales quadratically with the number of measurements p. Moreover, the
resulting classification rules still rely on all p variables, and therefore cannot be used for both classification and
variable selection.
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Li and Shao [31] address the variable selection problem by enforcing sparsity in both the covariance matri-
ces and the vector of mean differences via thresholding. The method comes with strong theoretical guarantees
on classification consistency and promising empirical performance. Nevertheless, it again requires additional as-
sumptions on X, and is computationally prohibitive for large p due to required matrices inversion together with a
3-dimensional search over tuning parameter values.

In summary, a significant progress in linear discriminant methods made it possible to apply them to large
datasets and perform variable selection. In practice, however, the covariance matrices are often unequal, but
the existing quadratic methods typically cannot perform variable selection, and are computationally prohibitive
for large p. In this work we bridge the gap between the linear and the quadratic methods by developing a new
classification rule that takes into account unequal covariance matrices without sacrificing either variable selection
or computational speed.

Our key methodological contribution is a different approach for constructing a quadratic rule in high-dimensional
settings compared to the ones taken in the literature. The existing methods rely on improved estimation of the full
Bayes quadratic discriminant rule by exploring additional structural assumptions on X, or Z;l [30, 31,42, 46, 55].
In contrast, we modify Fisher’s formulation of linear discriminant analysis for the case of unequal covariance
matrices. The resulting method performs simultaneous variable selection and projection of original data on a
lower-dimensional space, with the subsequent application of quadratic discriminant analysis. We call this ap-
proach discriminant analysis via projections, or DAP.

Unlike the existing quadratic methods, our rule is linear in p, which allows us to devise a very efficient
optimization procedure to estimate simultaneously the projection directions and to perform variable selection. For
p = 500, it takes around 1.5 seconds to implement our method, whereas the closest competing sparse quadratic
method takes 30 minutes. This makes it possible to apply our approach in situations where other quadratic methods
are computationally infeasible. Moreover, we connect the variables in our rule with the nonzero variables in the
linear part of Bayes’ quadratic rule, and prove the variable selection consistency of our method in high-dimensional
settings. Empirical studies confirm that for large values of p, the proposed rule leads to competitive, and often
smaller, misclassification error rates than the existing approaches. At the same time, our method consistently
selects the sparsest models, thus achieving the best balance between model complexity and misclassification error
rate. Finally, the application to gene expression data of breast cancer patients [7] confirms the crucial importance
of ESR1 gene in differentiating estrogen receptor status; an insight that would be impossible to get with other
approaches due to much higher complexity of corresponding classification rules.

The rest of this paper is organized as follows. In Section 2, we describe a new quadratic classification rule,
discriminant analysis via projections. We connect the proposed approach to both linear and quadratic discriminant
analysis, and derive an efficient optimization algorithm for sparse estimation. In Section 3, we provide theoretical
guarantees on the variable selection consistency of our method in high-dimensional settings. In Section 4, we
conduct empirical studies on both simulated and real data. In Section 5, we discuss possible extensions.

For a vector v € R?, we let |[v]|; = Zle [vil, vl = (Zle v?)l/z, IIVlle = max;[v;|. We use e; to denote a unit
norm vector with jth element being equal to one, and ¢, to denote the vector of ones of length p. For a matrix
M € R™P, we let ||M||w, = maxlg,-s,,(zle mi2j)1/2’ IMll> = sup,.y,=1 [IMxll» and [M| be the determinant of M.
Given an index set A, we use My to denote the submatrix of M with columns indexed by A. For a square matrix
M, we use My, to denote the submatrix of M with both rows and columns indexed by A. We use I to denote the
identity matrix. We use a,, < b, to denote that there exists a constant C > 0 such that a, < Cb,, for n sufficiently
large. We also let a V b = max(a, b).

2. Discriminant analysis via projections

2.1. Review of Fisher’s discriminant analysis

Consider n independent pairs (X, Y1), ..., (X;, ¥;,) from a random pair (X, Y) on R? x {1,2}. For g € {1,2},

let X, = cov(X|Y = g), and assume X; = X,. Fisher’s discriminant analysis seeks a linear combination of p

measurements that maximize between group variability with respect to within group variability [36, Chapter 11]:
vI(E = X)X — %) Ty

{ vIWy }’

maximize
veRP

6]

where W = (n — 2)7! Z§:1 (ng — 1)S 4 is the pooled sample covariance matrix, S is the sample covariance matrix,
ng is the number of samples, and ¥, is the sample mean for group g. Letting v be a vector at which the maximum
above is achieved, the resulting classification rule for a new observation with observed value x € R” is

hs(x) = argmin {(x™V = X797 @7 W)~ (V- £;9) - 2In(ng/m)} 2)

g<{1,2)
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Figure 1: Two-group classification problem with p = 2 and unequal covariance matrices. Left: Projection using Fisher’s discriminant vector.
Middle: Projection using the covariance structure from the 1st group (circles). Right: Projection using the covariance structure from the 2nd
group (triangles).

Hence, both the new observation x € R? and the data X € R™? are projected onto the line determined by v, and
the classification is performed according to Mahalanobis distance to the class means in the projected space. Since
both the objective function in (1) and the classification rule (2) are invariant to the scaling of discriminant vector
v, when 1 > p we can write vV = ¢W~!(X; — X) for any constant ¢ # 0. Moreover, Fisher’s rule (2) coincides with
the sample plug-in Bayes rule under the normality assumption, i.e., X;|¥; = g ~ N (i, X).

2.2. Modification of Fisher’s rule for the case of unequal covariance matrices

Our proposal is based on the modification of criterion (1) to the case of unequal covariance matrices. Specifi-
cally, we consider two discriminant directions instead of one. For g € {1, 2}, let

3)

Vg = argmax
vgERP

{V;(J_Cl — X)X — )_Cz)TVg}

=
Vg Sgv,

Similar to Fisher’s criterion, when n, > p, the solutions to (3) can be expressed as v, = ¢,S ;1()21 — X) for any

c1 # 0,cp # 0. Subsequently, given matrix V= [vi v2], we modify rule (2) to take into account unequal covariance
matrices as L L
hy(x) = arg[rlnzi}n [ = %) TVVTS V)V (x = %) + In [VTS V| = 21In(ne/n)). )
g€tl,

Remark 1. Ifv; andv; are linearly dependent, then V has rank one, and V7S,V and VTS,V are both singular. In
this case the subspace spanned by the columns of V' is the same as the subspace spanned by only one column, and
we use V =7y in (4).

Rule (4) is equivalent to applying quadratic discriminant rule to VTx instead of applying it directly to x.
Unlike the equivalence between Fisher’s rule and the linear discriminant rule, in Section 2.6 we show that rule (4)
is generally not equivalent to quadratic discriminant analysis. Nevertheless, for a given V, formulation (4) allows
to overcome possible rank degeneracy of S, as well as perform variable selection. First, rule (4) requires inversion
of 2 X 2 matrices V'S gV, which are likely to be positive definite, in contrast to S,. Secondly, since (4) effectively
applies quadratic rule to V7x instead of x, it only relies on those variables for which the corresponding rows of %
are nonzero. Hence, performing variable selection is equivalent to using row-sparse matrix V. Figure 1 shows that
each v, from (3) can be viewed as a basis vector for the reduced space, and coincides with discriminant vector v'in
Fisher’s rule (1) if the pooled sample covariance matrix W = S| = §,. Therefore, we call rule (4) the discriminant
analysis via projections.

2.3. Sparse estimation

While rule (4) allows to overcome the potential singularity of sample covariance matrices, it still requires esti-
mation of O(p) parameters in V. Moreover, singularity of S, leads to non-uniqueness of the solutions to (3) creat-
ing difficulties for the interpretation. Therefore, rule (4) may still have poor performance in the high-dimensional
settings when p > n. At the same time, in the context of linear discriminant analysis the classification performance
can be significantly improved by directly estimating the discriminant vector with sparsity regularization [5, 35].
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Guided by this intuition, our goal is to obtain sparse estimates of | = chl‘l(S and ¥ = 2% 1§ with 6 = uy — o,
which are the population counterparts of v; and v, in (3). This approach leads to regularized row-sparse V that
can be used directly in rule (4). The direct estimation of i, with sparse regularization has several advantages.
First, the covariance matrices serve as nuisance parameters since i, o 2;16 are functions of covariance matrices,
not the covariance matrices themselves. Second, as we discuss in more detail below, sparse penalization leads to
unique well-defined solutions even when sample covariance matrices are singular. Finally, the sparsity in V leads
to simpler and more interpretable classification rule.
To produce sparse estimates of 1 and », we consider penalized empirical risk minimization framework:

V = [V V2] = argmin {Ly, (1) + Ly, (v2) + APen(V)},

Vi, ERP

where Zwl(Vl), sz(vz) are empirical loss functions associated with ¢, ¥, 4 > 0 is the tuning parameter, and
Pen(V) is the sparsity-inducing penalty.

Remark 2. Another possibility is to add sparse penalization directly within criterion (3). In linear discriminant
analysis, this approach leads to significant improvement over sample plug-in rule [53]. However, it also leads to
nonconvex optimization problem and potential difficulties in obtaining very sparse solutions [16]. Therefore, we
do not pursue the direct penalization here.

First, we discuss our choice of penalty. As we are interested in simultaneous variable selection, that is row-
sparsity of V, we propose to use group penalty. Specifically, we choose group-lasso, Pen(V) = Zle (vfj + v%j.)” 2,
due to its convexity [56]. Other possibilities include nonconvex group penalties; we refer the reader to Huang
et al. [23] for the review.

Next, we discuss our choice of empirical loss functions Zwl (v1) and ’L\% (v). Both criterion (3) and rule (4) are

invariant to the scale of V, i.e., to the choice of constants c; and c,. While the naive approach is to fix c; = ¢; = 1,
we use ¢; = Mo /(1 + 7367 2716), ¢ = 7y /(1 + A26TE;'6), which leads to a lower-bounded empirical loss function
as well as significant computational savings. To be specific, we take advantage of the following equivalence due
to the Sherman—Morrison formula.

Proposition 1. For any p # 0, any non-singular matrix M € RP*? and any vector a € R?,
(M + p*aa™) pa = pM~'a(l + p*a "M 'a)™ o« M7'a.

Our choice of ¢y and ¢; leads to ¥ = (1 + 71'%55T)_17T2§ and ¥, = (X, + ﬂ%d&T)‘lmé. Consider the following
quadratic loss function associated with ¢/

Ly, (v1) = 1 =) (1 + 1368 D1 = ¥1)/2 = v Z1v1/2 + (26 vy = 1)*/2 + C,

where C is a constant independent of v;. Consider the empirical version of this loss function
— 2
Ly, (v)) =v{S /2 + (n7'mad v = 1) )2+ C, (5)

where d = x| — X,. First, Zwl (v1) is invariant under linear transformation of the data [45]. Second, Z,,,l (v1) is always
bounded from below by C, even when S is singular. This ensures convergence of the block-coordinate descent
algorithm without the need to regularize S |, and in particular, is not the case for ¢; = 1.

Furthermore, let X; € R™*? be the submatrix of X corresponding to the first group, and X, € R™*? be the
one corresponding to the second group. Let X be column-centered so that X = n~!(n, %, + n,%,) = 0, and hence
d=ny In%;. Then the loss (5) can be rewritten as

— 2
Ly, ) =viSvi/2+ (5 vi = 1) /2+C =n"V X[ Xiv1/2 = v[ % + C
= n ' IXivi = wl3/2 + C.
That is, the loss function can be expressed as the linear regression loss function. Similarly,
Ly, (v2) = 15 |Xava + 1,13/2 + C.

Therefore, our choice of ¢; and ¢, allows to re-express the problem of estimating ¢, and i, as a regression
problem. This leads to the efficient optimization algorithm described in Section 2.4.
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In summary, given the column-centered data matrix X € R"™” with submatrices X; € R"*’, X, € R"™*?
corresponding to two groups, we find V = [, 7,] € R”*? as the solution to

)4
P -1 2 -1 2 2 241/2

minimize <1y 1 X1vi = 6, 115/2 + 15 [|Xov2 + 6, 5/2 + /IZ(VU + sz) 2y (6)

V=[vi, v ]eRP*2 =

If 1 = 0, V coincides with 1 the solution to (3) up to the choice of scaling. If 4 > 0, then Vis row-sparse leading to
variable selection. Given V, we apply rule (4) for classification.

2.4. Optimization algorithm

In this section we derive a block-coordinate descent algorithm to solve (6). Consider the optimality conditions
with respect to each block v; = (vi;,v2))":

~1yT ~1yT 1T 1T )
ny Xy Xyvij = ny Xy, - Z vieKi) — Aurj,  ny Xy Xovaj=ny Xy (—tn, — Z VorXok) — Auzj;
k#j k#j

see Chapter 5 in [3]. In the above, u; = (u;j,uz;)" is the subgradient of (v%j + vgj)'/2 such that u; = v;/|lv;ll, if
vl # 0, and u; € {u : |lull, < 1} if [lvjll, = 0.

In general, nIIX X1 #n; leTsz i» hence the block-update is not available in closed form and requires a line
search [2]. However, guided by the computational considerations as well as the ideas of standardized group lasso
[47], we pre-standardize X, and X, so that nl‘ldiag(XlTXl) = n;ldiag(XzT X>) = tp, and then perform the back-
scaling of Vi, v,. This ensures that the penalization of different variables is independent of their relative scales.
Finally, we are ready to present the algorithm.

Define the residual vectors ry, r, as

P P
“1vT -1yT .
rij=ny Xy [Lnl - Z V11X11J, rj=n, X,; [—an - Z szxzz),

=1 =1

with r; = (r1j, 1 j)T. From the optimality conditions, the equation for the jth block v; = (vq, v2 j)T takes form
vi= (1= /v +rilk), (v + 1)

where a, = max(0, a). Starting with initial value V), the block-coordinate descent algorithm proceeds by iterating
the updates of v, v, with updates of residuals 7|, 7, until convergence. Due to the convexity of (6), the boundedness
of the objective function from below, and the separability of the penalty with respect to block updates, the global
optimum is finite and the algorithm is guaranteed to converge to the global optimum from any starting point [49].

2.5. Connection with sparse linear discriminant analysis

We show that sparse linear discriminant analysis can be viewed as a very special case of the proposed approach.

Proposition 2. Consider the sparse discriminant analysis in Gaynanova et al. [15] that finds the discriminant
vector V() for a given value of tuning parameter A > 0. Define ¢ = (n, /W2 + (ny/n)'?. Under the additional
constraint (n/n)V*vi = (n/n2)"?v,, the solution to (6) satisfies

(n/n)"* 1 (D) = (n/n)"53(2) = ¢V (A/c).

While in Proposition 2 we connect our approach with Gaynanova et al. [15] due to a more straightforward
proof, in the two-group case the method of Gaynanova et al. [15] is equivalent to the method of Mai et al. [35].
Moreover, Mai and Zou [34] show equivalence for the two-group case between the methods of Mai et al. [35],
Clemmensen et al. [9] and Wu et al. [54]. Therefore, when discriminant directions v; and v, are additionally
restricted to be collinear as in Proposition 2, our proposed approach (6) reduces to this class of sparse linear
discriminant analysis methods up to scaling.



2.6. Connection with quadratic discriminant analysis
Let Y be a group indicator, Pr(Y = 1) = 7y and Pr(Y = 2) = 1 — m; = m, and consider X|Y = g ~ N(u,,Z,)
(g = 1,2). The Bayes rule assigns a new observation with observed value x € R” to group one if and only if

X2 = hx - 2T (2 y = 2y ) + In (IZl/124)) = e 2 + 3 25 e + 21In(my /7o) > 0. (7)

Consider centering x by the overall mean E(X) = y = mju; + mop,.

Proposition 3. Let 6 = y; — pp. The Bayes rule (7) can be written as

(=) (25" = 27 = ) + In (|Za0/ %)

®)
+2(x = ) (M Z3'6 + mX 1) + w26 T2y 6 — 36T 6 + 2 In(my /ma) > 0.

Consider the population version of the proposed discriminant analysis via projections, that is applying Bayes
rule to PTX with W' X|Y = g ~ NPT, VT, P) and ¥ = [y1, Y] = [c121‘16, czZ;l(S], cr,c #0.

Proposition 4. Consider the population version of rule (4), that is substituting ¥ for Vv, X, for S g, ug for X, and
7y for ng/n. A new observation with value x is assigned to group one if and only if

(=) T{(FTEE) T - (P T (- ) + In (ETEPY/TE W)

©)
+20x = ) (2316 + 12 10) + 26T 26 — 226 '8 + 2In(my /) > 0.

The only difference between the rules in Proposition 3 and 4 is on the first line, which involves the quadratic
and the log terms. The linear terms and the remaining constant terms are identical. Therefore, rule (9) can
be viewed as an approximation to rule (8). Further comparison between the two rules in terms of induced J-
divergences between class-distributions is in Appendix B.

While rule (9) is not the same as the Bayes rule, and therefore will lead to inferior performance at the popula-
tion level, in Section 4 we see this relationship to be reversed when the corresponding regularized sample versions
are considered and p is large relative to the sample size n. The main advantage of rule (9) comes from the sig-
nificant reduction in the number of parameters to be estimated. Specifically, matrix ¥ has p X 2 elements leading
to O(p) parameters in rule (9). In contrast, the Bayes rule requires estimation of the X3 I EII leading to O(p?)
parameters in total.

3. Variable selection consistency in high-dimensional settings
We establish the variable selection consistency of estimator in (6) under the following assumptions.
Assumption 1 (Normality). X;|Y; = g ~ N(ug, Xo), Pr(Y; = g) = mg for g = 1,2 with O < yin < 711 /72 < 7ipax < 1.

Assumption 2 (Sparsity). Ler§ = py—p, A = {i : (e] £7'6)2+(e] 25'6) # 0}, A = {1,..., p}/A and card(A) = s.
That is, A is the index set of nonzero variables in 21"6 orx; Is.

Assumption 3 (Irrepresentability). There exist @ € (0, 1] such that

-1 -1
max X404 a4 %15 Zopb a2 s 2o < 1 —a.
ul,uze]R‘

u%ﬁu%isl Vi

Assumption 4. 0 < ¢ < Apin(Tgaa) < Anax(Zeas) < C and ejTdej <M forall je{l,...,p}and g € {1,2}.

Assumption 1 is standard in the context of discriminant analysis [17, 26, 35], and Assumptions 2-3 are typical
in establishing variable selection consistency of penalized estimators in high-dimensional settings [1, 40, 50]. In
light of Proposition 3, Assumption 2 can be interpreted as requiring the linear part of Bayes rule to be sparse,
i.e., there are only s nonzero main effects. More specifically, the sparsity of both covariance matrices and mean
differences as in Li and Shao [31] is sufficient for Assumption 2 to hold, but not necessary. We use Assumption 4
for the convenience of treating the parameters depending on X, as constants and presenting the rates in Theorems 1
and 2 through only n, p and s. We refer the reader to the Online Supplement for the more general statements of
Theorems 1 and 2 without the use of Assumption 4. To prove the variable selection consistency of estimator
in (6), we use the primal-dual witness technique [50]. First, we prove that under the appropriate scaling of the
sample sizes, and sufficiently large value of the tuning parameter 4, the variables in AC are set to zero with high
probability. Let A = {i : v}, + 73, # 0} denote the support of the solution to (6).
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Theorem 1. Let Assumptions 1—4 hold, the sample sizes satisfy ming n, 2 sln{(p — N~ for some 7 € (0, 1),
and the tuning parameter satisfy A 2 [In{(p — s)i~'}/n]"/?. Then Pr(A C A) > 1 —n.

Next, we show that under the additional assumption on the minimal signal strength defined as

. 1/2
Umin = min (73] 516" + mi(e] 55107}

the true variables are nonzero with high probability leading to perfect recovery. In sparse linear models this
assumption is often called the S-min condition [50]. According to Proposition 3, ¥, can be interpreted as the
smallest magnitude of the nonzero variables in the linear part of the Bayes quadratic discriminant rule.

Theorem 2. Let the conditions of Theorem I hold and Yy 2,

~

As'2(max, 67%:1,64 V 1). Then Pr(A=A)>1-1.

Theorem 2 reveals the advantage of using the group penalty in joint sparse estimation of ¢ and . If variable
Jj is nonzero in both ¢, and i, then it is sufficient to have a large signal in only one of ¢ or ¢, for the minimal
signal strength condition to hold. In contrast, separate estimation via the lasso penalty will lead to the requirement
of sufficiently large signal in both ¢ and ¢, simultaneously.

4. Empirical studies

4.1. Simulated data

We compare the misclassification error rates and variable selection performance of the following methods: (i)
Sample QDA, rule (7) with plug-in estimates X, X, S, S»; (ii) Sparse QDA of Le and Hastie [30]; (iii) Sparse
QDA of Li and Shao [31]; (iv) Sparse QDA via ridge fusion [42]; (v) Logistic regression with pairwise interactions
and lasso penalty on the vector of coefficients; (vi) Regularized discriminant analysis [13]; (vii) Sparse LDA
[15, 35]; (viii) Discriminant analysis via projections proposed in this paper, i.e., rule (4) with estimator from (6).
Since the focus of the paper is on quadratic classification rules, we only use one linear discriminant analysis
method for comparison. We expect that a choice of a different linear method, such as those of Witten and Tibshirani
[53] or Niu et al. [39], will lead to similar conclusions. The details of all methods’ implementation, together with
tuning parameter selection criteria, are described in Appendix A.

We fix the sample sizes n; = n, = 100, the dimension p € {100,500}, and the group means y; = 0, and
o = ({1}s, {—1}s, {0} ,-10). We consider the following types of covariance structures:

1. Block-equicorrelation with block size b € {10, 100} and p € [0, 1]:

s = ply + (1 =ppty” 0
8 0 Ip—b '

2. Block-autocorrelation with block size b € {10, 100} and p € [0, 1]:

(5.} = pli=dl (I1<i,j<b),
i 1{i = j} (otherwise).

3. Spiked with parameters g1, g, € R?: £, = 30q19] + 2q2q, + 1.

(a) Block size b = 10: g1 = ({1/ V5}5,10},-5), g2 = ({0} -5, {1/ V5}5, {0} - 10)-

(b) Block size b = 100: q1 = (l, ey 100, {O}p_l()o)T, q2 = (1 - qlqlT)(loo, ey 1, {0}p_100)T. q1 and > are
normalized so that ¢ ¢; = 1 and ¢; ¢> = 1.

These structures are common in assessing the performance of discriminant analysis methods [30, 35, 44]. We use
eight combinations as described in Table 1, and fix the block sizes to make the Bayes error rate independent of p.

As expected, the sample QDA performs the worst, with misclassification error rates being larger than 40%
consistently across all settings. Therefore, in Figure 2 we only present the rates for the other methods. First, we
compare the proposed approach with sparse LDA. While in models 1, 2 and 8 they perform similarly, accounting
for unequal covariance matrices results in drastic improvements on models 4—7. When comparing our approach
to sparse QDA methods, the relative ranking often depends on p. For example, when p = 100, ridge fusion of
Price et al. [42] is better than our proposal on models 2 and 8, but is significantly worse on the same models when
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Table 1: List of considered models for X and X,.

Model | % 2
1 equicorrelation, » = 100, p = 0.5 | equicorrelation, » = 100 p = 0.5

2 autocorrelation, » = 100 p = 0.8 | equicorrelation, b = 100, p = 0.5

3 autocorrelation, b = 10, p = 0.5 | equicorrelation, b = 10, p = 0.8

4 spiked, b = 10 spiked, b = 10 (g, and g, reversed)
5 spiked, b = 100 spiked, b = 10 (g, and g, reversed)
6 spiked, b = 10 equicorrelation, » = 10, p = 0.8

7 spiked, b = 10 equicorrelation, » = 100, p = 0.3

8 spiked, b = 100 equicorrelation, » = 100, p = 0.3

Table 2: Median time (seconds) over 10 replications to fully implement each classification method for one instance of model 8. DAP: Discrim-
inant analysis via projections, proposed; SLDA: Sparse linear discriminant analysis; RDA: Regularized discriminant analysis; SLOG: Sparse
logistic regression with interactions; SQDA_LH: Sparse QDA of Le and Hastie [30]; SQDA_RF: Sparse QDA via ridge fusion; SQDA_LS:
Sparse QDA of Li and Shao [31].

p DAP SLDA RDA SLOG SQDALH SQDARF SQDALS
100 | 0.6 04 3.1 2.7 139.5 868.5 52.6
300 | 1.0 1.4 5.0 28.8 2071.9 11681.4 481.5
500 | 14 1.7 5.0 117.1 7282.2 45161.7 1791.4

p = 500. Similarly, sparse QDA of Le and Hastie [30] is significantly better than our proposal on models 6 and 8
when p = 100, but significantly worse on the same models when p = 500. This confirms that the proposed rule is
well-suited to high-dimensional settings. Among the sparse QDA approaches, we find that the method of Li and
Shao [31] is most consistent across dimensions. In particular, it leads to better error rates on models 4 and 5 (2%
difference in median error rates). Nevertheless, it still leads to significantly worse error rates on models 1, 2, 6 and
8. Finally, the proposed approach performs better than regularized discriminant analysis in all cases but model 2,
p = 100, and performs as well or better than the sparse logistic regression in all scenarios.

Overall, we found that no method is universally the best in terms of error rates since the relative ranking
depends on the particular model and the underlying dimension. This is consistent with previous research. In the
words of Wu et al. [55], “it is difficult to imagine that there could be a universally optimal discriminant analysis
method for high-dimensional data. Almost every method can enjoy some advantages under certain circumstances.”
Nevertheless, three methods stand out as the best across all models and dimensions: our proposal and sparse QDA
methods of Le and Hastie [30] and Li and Shao [31]. Moreover, our proposal achieves comparable, and in certain
scenarios significantly better, error rates than the best other methods in all the cases with p = 500 except model 2.

In summary, Figure 3 shows that the proposed discriminant analysis via projections significantly improved
over sparse LDA method, and results in competitive, and often better, misclassification error rates than existing
QDA proposals. The real advantages of our approach, however, become certain when comparing variable selection
performance and computational speed. Figure 3 reveals that the proposed method consistently uses the sparsest
model (less than 50 variables for most scenarios). In comparison, the methods of Le and Hastie [30] and Price
et al. [42] always use all p variables, and are such much less interpretable.

We further compare the execution time of each method on a Linux machine with Intel Xeon X5560 @2.80
GHz. We define execution time as the full time for method’s implementation: tuning parameter selection plus
model fitting plus classification. We use one instance of model 8 with p € {100,300, 500}, and R package
microbenchmark [37] with 10 evaluations of each expression. Table 2 shows that the execution times increase
dramatically with p for logistic regression with interactions and sparse QDA methods, whereas the times are quite
consistent across dimensions for sparse LDA, RDA and our approach. Logistic regression is noticeably faster
than sparse QDA methods mainly due to the difference in tuning parameter selection criterion: it uses BIC instead
of cross-validation. Using cross-validation for logistic regression makes it too computationally demanding for
the range of p we considered. Sparse LDA and the proposed method are the fastest, confirming that they are
well-suited for the use on high-dimensional datasets in practice.

4.2. Benchmark datasets

We compare the proposed discriminant analysis via projections with competitors on three benchmark datasets
described in Table 3. These datasets are commonly used to assess classification performance [32, 39, 44], and are
publicly available from the R package datamicroarray [43].
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Figure 2: Misclassification error rates over 100 replications, the horizontal lines show the median errors of the proposed DAP, discriminant
analysis via projections. SLDA: Sparse linear discriminant analysis; SLOG: Sparse logistic regression with interactions; SQDA_LH: Sparse

QDA of Le and Hastie [30]; SQDA_LS: Sparse QDA of Li and Shao [31]; SQDA_RF: Sparse QDA via ridge fusion; RDA: Regularized
discriminant analysis.

Table 3: Description of benchmark datasets used for methods comparison

Dataset # samples in group 1 | # samples in group 2 | # gene expressions
chin [7] 75 (ER-positive) 43 (ER-negative) 22,215

gravier [18] 111 (good, no event) | 57 (poor) 2,905

chowdary [8] | 62 (breast tissue) 42 (colon tissue) 22,283
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Figure 3: Number of selected variables over 100 replications, the horizontal lines indicate the median model sizes of proposed DAP, discrim-
inant analysis via projections. RDA, SQDA_RF and SQDA_LH use all p variables, not shown. SLDA: Sparse linear discriminant analysis;
SLOG: Sparse logistic regression with interactions; SQDA _LH: Sparse QDA of Le and Hastie [30]; SQDA_LS: Sparse QDA of Li and Shao
[31]; SQDA_RF: Sparse QDA via ridge fusion; RDA: Regularized discriminant analysis.

We randomly split each dataset 100 times preserving the class proportions, and use 80% for training and
20% for testing. To reduce the computational cost associated with sparse quadratic discriminant analysis, we
reduce the number of variables at each split by selecting the top p = 1000 variables with largest absolute value
of the two-sample 7-statistic on the training data, similar approach has been taken in Cai and Liu [5]. For fair
comparison, we use the same set of 1000 variables for each of the methods. We do not consider sample quadratic
discriminant analysis given its uniformly poor performance in Section 4.1. We also do not consider sparse logistic
regression with interactions or ridge fusion due to computational issues when p = 1000 and their inferiority to
other approaches in Section 4.1.

The results are shown in Figure 4. For chin and chowdary, similar misclassification error rates are reported
in Niu et al. [39]. For the chin dataset, the error rates are the worst for linear discriminant analysis confirming
the importance of taking into account unequal covariance matrices, and are the same for other methods. At the
same time, the proposed DAP rule selects significantly smaller model than the competitors (median model size is
one). For the chowdary dataset, the best performing method is RDA [13], however the relative difference is only
one misclassification on the test data. The smallest model again corresponds to proposed DAP. For the gravier
dataset, the best performing methods are ours and sparse QDA of Li and Shao [31]. Surprisingly, however, the
method of Li and Shao [31] results in no variable selection on these datasets, the model size is 1000 over almost
all replications (not shown). We suspect that the poor variable selection performance may be due to the crudeness
of bisection procedure for selecting the tuning parameters. In summary, the proposed approach, discriminant
analysis via projections, consistently selects the smallest model, often using less than 20 variables to achieve the
same or better error rates than alternative methods. We conclude that it exhibits excellent prediction accuracy with
the smallest model complexity.

We further analyze the chin dataset using variable selection results of our approach. Figure 4 reveals that the
median model size is 1. This means that in most of the replications it is sufficient to look at the expression level
of only one gene to achieve the same misclassification error rate as the other methods. We investigate whether
the same gene is selected at each replication, and find that estrogen receptor 1 gene ESR1 is selected in 97 out
of 100 cases. Our finding confirms previous studies on a strong link between ESR1 gene and estrogen receptor
protein expression in breast cancer patients [21, 24, 28]. We refer the reader to Holst [20] for a review on the
importance of ESR1 gene amplification in breast cancer. The gene with the second highest frequency of selection,
26 out of 100 cases, is LPIN1, which is also found to be differentially expressed in ER positive and negative
patients in previous studies [6]. The relatively low selection frequency of LPIN1 is due to the median model
size one, which leads to only ESR1 being selected and no other gene. While the strong link between ER protein
expression status and ESR1 gene is not surprising, unlike the previous studies we did not focus on the ESR1 gene
in advance. We consider all 22 thousand genes, and let our method determine that ESR1 is crucial for ER status of
breast cancer. We want to emphasize that this insight is not possible with other approaches we tried. Regularized
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Figure 4: Left: Misclassification error rates over 100 splits. Right: Number of variables used in corresponding classification rules. DAP
consistently selects the smallest model. SQDA_LS, SQDA_LH and RDA always use all p = 1000 variables, not shown. DAP: Discriminant
analysis via projections, proposed method; SQDA_LS: Sparse QDA of Li and Shao [31]; SQDA_LH: Sparse QDA of Le and Hastie [30];
SLDA: Sparse linear discriminant analysis; RDA: Regularized discriminant analysis.

discriminant analysis of Friedman [13] and sparse QDA by Le and Hastie [30] use all 1000 variables, hence cannot
be directly used for identifying important genes. Sparse LDA selects a smaller number of genes, but it has worse
misclassification error rate and the median model size is still 45 variables, significantly larger than the number of
variables used by our approach.

5. Discussion

In this work we propose a new rule for high-dimensional classification in the case of unequal covariance
matrices. While the proposed approach in general differs from the Bayes rule on the population level, we show
that the nonzero variables in our rule correspond to nonzero variables in the linear part of the Bayes quadratic rule.
This connection combined with computational efficiency of our approach suggests that one can potentially use our
method as a variable screening tool. Indeed, the empirical studies in Section 4.1 indicate that the performance of
full quadratic methods deteriorates significantly with increase in p, however for small p they are computationally
feasible and may lead to better error rates. We have not explored the screening properties of our approach in this
work, but leave it for future investigation.

We focus on the two-group classification setting, however extending the methodology to the multi-group
setting will likely lead to even further computational gains. One of the main challenges in the multi-group case is
the likely rank degeneracy of the matrix of discriminant vectors when the number of groups is large. Performing
simultaneous low-rank and sparse estimation of the matrix of discriminant vectors in the multi-group case is an
interesting direction for future research.

Acknowledgments

We thank the Editor, the Associate Editor and two anonymous referees for the valuable comments that helped
improve this manuscript. 1G was supported by NSF grant DMS-1712943. TW was supported by the National
Cancer Institute grant U01-CA057030. All the plots are generated using ggplot2 [52].

11



Appendix
Appendix A. Implementation details

In this section we describe implementation details for the methods considered in Section 4.1. We use the
R package JGL [10] to implement sparse QDA of Le and Hastie [30]; R package MGSDA [14] to implement
sparse LDA [15, 35]; R package grpreg [4] to implement logistic regression with pairwise interactions and lasso
penalty on the vector of coefficients; R package RidgeFusion [41] to implement ridge fusion for joint estimation
of precision matrices [42]; R package sparsediscrim to implement regularized discriminant analysis [13]. We
found no available R code for sparse QDA of Li and Shao [31], and implemented the method ourselves. We use
the R package DAP [51] to implement the proposed discriminant analysis via projections.

For logistic regression, we select the tuning parameter using BIC option in the grpreg. For ridge fusion,
we use the default selection in RidgeFusion with 5 folds. For Li and Shao [31], we use the proposed bisection
procedure with the maximal interval length of 0.05. For all other methods, we use 5-fold cross-validation to
minimize misclassification error rate.

Appendix B. Bounds on misclassification error rates through J-divergence

Let P, = m P, + m P, be the Bayes error rate, where for g € {1,2}, P,, is the probability of incorrectly
assigning a new observation x into class g, and 7, are prior class probabilities. To our knowledge, the exact form
of P, is not available for discriminant analysis unless X; = X,. However, Kadota and Shepp [25] show that it
satisfies

27" min(n;, 1) exp(=J/8) < P, < \mima(J/4)~4, (A.1)

where J is the divergence between class distributions [33]. Let X; ~ F; and X, ~ Fy, then J = J(X|,X;) =
KL(X; || X2) + KL(X; || X1), where KL(X; || X») is the Kullback—Leibler divergence between probability distribu-
tions F; and F,

While the bound (A.1) is loose, it shows that in general larger values of J-divergence lead to smaller misclas-
sification error rates. For the Bayes QDA rule, inequality (A.1) holds with J-divergence between original class
distributions N'(u;,%1) and N(uz, ;). The population version of the proposed DAP rule is also a Bayes rule,
but applied to N(¥ uy, P721) and N(¥ up, P7%,). Hence, (A.1) can be used to bound the error of proposed
approach by using J-divergence between the projected class distributions. Finally, the projection based on LDA
rule leads to class distributions N(V u;, V7)) and N(VTp, VTE,) for V = (mZ) + mX,)~'8, however (A.1)
cannot be applied to LDA since it still uses a linear rule on projected data rather than a quadratic rule. Since
we can use J-divergence to characterize the relative difference before class distributions before and after projec-
tions, we can bound misclassification error rates for both QDA and proposed DAP. We further obtain an explicit
form of J-divergence for the original class distributions (QDA), the class distributions induced by proposed pro-
jections approach (DAP) and the class distributions after applying LDA-based projection as in Figure 1 in case
Ty =7 = 1/ 2.

Proposition 5. Let X; ~ N(ui,Z1), Xo ~ N(uz, %) and § = py — up. Let ¥ = [Y Y] with ¥, = 2116 and
Yo =356, V=2(Z + )" 6. Then

1 _ _ 1 _

JBayes = J(X1,X2) = §6T(21' +3,6 + 3 (2" + 2 '5)) - p,
1 1 A

Jpap = JXT,XT¥) = ~6T (7" + 516 + = —> (A + As) — 2,

DAP (1 2 ) ) (1 2) 2A1A2(1 2)

16TE +2) 70T +ZDE +2)716 167TE +2) 7186 + )& +2)7 16
Jioa = JXTV,X]V) = & &1 +29)" ( DE1+2)78 16 i +29)7( D& +3)" 6
2 (5T(21 +22)_122(21 +22)_]§ 2 6T(21 +22)_]21(21 +22)_]6

]s

where

A =8T5100 S N5 - (672,10, Ay =6T5100T 2 510 - (672 16)%
VEERID N V9 S IO YD WD St R D IR R Yy
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Proposition 5 reveals that Jp,yes and Jpap in general differ in covariance terms, confirming that the rules are
not always identical and on a population level DAP does lead to the loss of discriminatory power. Proposition 5
allows to calculate the differences in J divergences exactly for given values of ¢, X; and Z,, and as a result assess
their effect on error bounds in (A.1). On the other hand, the first term in Jp,p is identical to the first term in Jpggy,,
which captures the mean differences. This is not the case for LDA-induced projection, thus supporting that DAP
performs better than LDA when Z; # X,.

Proof for Proposition 5. From Kullback [27]
R . 1%
KL(X,|1X>) = 5{5 26+ (Z'E - Ip)} +5n o
hence
| —1 1 -1 —1
Toayes = J(X1, X0) = 26T (21 + 5,106 + S (1% + %' %) - p.
Since for g € {1,2}, ¥" X, ~ N(P7,, ¥YTZ,P), it follows
1 1
Jpap = EéT(z;l,z;l)a(WTzl'{I)—léT(zl—l,zgl)T(s + EéT(zyl,zgl)a(wzz\}')*ﬁ(z;l,zgl)Té
1 1
+§tr{(‘I‘T22‘I’)_1(‘PT21‘P)} + Etr{(\{ﬁzlly)—l(\PTzz\P)} 2.

First, we simplify the term tr{(¥TZ, )" (¥TZ,'P)}. Since

Wy = ( YUsZoy Y Zoyh )_ is ( §TL'6 —oTE's )

A\~ Y Sy )T A\ —6TENS 6TEINES
we have
1 0 -A
YL PR Y) = — !
(¥ %) ( 1) Az(Az Ay |

leading to tr{(¥TZ,¥) ' (PTZ,P)} = A3/A;. Thus,

1(A3 fﬁ)_l As

1 1
—tr{(PTZP) ' (PTEP)) + tr{(PTE )T (PTRY)) = (= + -
Zf{( 2'¥) 7 ( ')} 2r{( 19 (¥ L)} Ay YA

(A1 + Aj).

Now we simplify the term 6™ (Z;!, ;)P W) 167 (", 2;1)76. Using the expression for (PTZ,¥)™! from
above

1 Ty-1 _STy-1 Ty-1
6T(zl_l,25])6(\PT22T)_16T(21_1,z;l)Td: 14_2(61'21—16’ 6T2516)( 6 22 6 6 Zl (S )( 6 21 6 )

575 §TEnE s J\ 6TE s

1
= —A'%'6=6"%"6.
Ay
Using similar approach with (¥7Z,¥)~! and combining the above leads to

1 1 A;
Jpap= =6 M+ 55+ —— (A, + Ay - 2.
AP = 5 (2] ) 2A1A2( | +A2)

In contrast, for the LDA-based projection, we have

1

VTS,V
KLVTX(IVTX,) = 5{6TV(VT22V)‘1VT6+ln| 2Vl

[VTZ V]|

b+ %tr{(VTEZV)_l(VTZIV) -1}

1 [6T(Z) + Zp) 161 . 16T(Z + )71 51(Z +2)7 1o
2 5T(21 + 22)7122(21 + 22)715 2 6T(21 + 22)7122(21 + 22)716
(5T(21 + Zz)‘122(21 + 22)_16 1

1
+-1 - -
2 T + ) + %) 6 2
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By the definition of J-divergence, we have

1 1
Jipa = z[éTV{(VTZZV)‘l+(VTEIV)‘1}VT6]+Etr{(VTEZV)'l(VTEIV)+(VT21V)‘1(VT22V)—2}

1 [67 (1 +25)7 6] 1 [67(Z1 +20)7 6]

20T(E + ) '@ +5)710 20T + ) IR (E + )71

1T+ ) ' Ei(E + 2716 LG+ D) ' BE +2)7
20T + ) 5@ +5)710 0 26T(E +20) 7 E1(E + 20) 716

16T(E +2) 7' [667 +21](E +%5)7'6 . 1672 +2)7'[067 + 5] +59)7'6 :

2 TE + ) I E + )71 2 TE+I)IEE + )71 ’

1

O
Appendix C. Proofs of propositions
Proof of Proposition 2. From Gaynanova et al. [15], v(1) = argmin, L; (v, 1), where
Li, ) =v" (S| +n282)v/Q2n) + ninad v df(2n*) = n)*n}*dTv/n + Al
From (6), {vi(1),v2(1)} = argmin,, , Lr(v1,Vv2, ), where
p
Ly(vi,v2, ) = (v S1vi +v3S2v2)/2 + (ngn_ldTvl - 1)2 /2 + (nln_ldTvz - 1)2 /2 + AZ(V% + vgj)l/z.
=1
Under the constraint (n/n;)"/?v; = (n/n2)?v, = v, this leads to ¥(1) = argmin, L,(v, 1), where using ¢ =
(m/m)'? + (na/m)'2,
L(v, D) =v" (m S| +naS2)v/(2n) + ninad w'd/(2n*) — ni/zn;/zchV/n + Al;.
Furthermore,
Liv/e,A)c) = ¢2 {vT (1S 1+ maS2)v/(2n) + ninad " w'd/(2n*) — ni/zn;/zchV/n + /lllvlll} =c 2L, ).
Since for any ¢ > 0, argmin, f(x/c) = c{argmin, f(x)}, it follows that cv(1/c) = V(). ]

Proof of Proposition 3. Since In(|X;|/|X;]) and 2 In(rr; /75) are present in both rules, it remains to show the equiv-
alence of the quadratic term, the linear term and the remaining constants. Substituting x = x — u + u in the Bayes
rule (7) leads to
E - = =T E - D - )+ 200 )T - (& -2 e
20T (% = 2 ) = 200 = )T (2 = B ) = 267 (25 = 2 ).
From the above, the quadratic term in x — y is the same as stated in the Proposition, hence it remains to consider

the linear terms and the constants.
Consider the linear terms in x — u from the above. Recall that 6 = u; — uy, therefore

200 =) (5 =7 = 200 = )T (25 pa = E7 ) = 200 = ) S (= ) = By — )
=2(x— )" (m X6 + mE o),

which is the same as the linear term in the statement of the proposition.
Finally, we complete the proof by showing the equivalence of the remaining constants:

fE = = 2T (5 e = 2 ) — 2 i+ 3 55 e
= (U = 20 e + g 2 ) — T = 2y + 27 )
S ST S o I D)
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Proof of Proposition 4. Since ¥TX|Y = g ~ N(¥7 g, Y72, P), from Proposition 3 the Bayes rule applied to ¥ x
has the form

(=) )T (P (- )+ In (/19T W)
+2(x = 1) {m PPTEY) WO + mP(PTE W) o) (A1)
+ 6 TP (PP TS - a6 TP (YT ) T TS + 2 In(ny /7p) > 0.

Since

T - 1 Yo Zie Y Ziyn )
P = 27 gl _
(¥ 2) i, Xy _(¢1T§;1¢2)2( U T Y Zn

it follows that

Y Zioy | — Yo T + oy 2oy — [ Zigag,
UIZ g T — (U Xiyn)? '

YT, YT =

Recall that | = clEflé, and substituting 6 = cl‘lElwl into the above equation leads to

Tyl i T - W] Ty

YT P) WS = =cly, =316
! U Zins 2 — (W] Ziyn)? g !
Similarly, ¥(¥"%,¥)'W76 = £;'6 . Substituting these into (A.1) completes the proof. O
Appendix D. Proofs of the main theorems
We will use the following quantities throughout the proofs:
y = 1+ max (m7; 1Z 2z s o 1125, T 214250 ) (B.1)

Tea0ata = Zeatat — ZpataZeaaZeats (€= 1,2),
Tay = Xipta0s + ﬂlﬂil(zzAﬂAG + 2140 Z 4224 A Z 10 — ZiaeaZiaaZoant 22A0A21_AA21AAD)’ (B.2)
Za, = ZoptaLig T+ ”27TI1(ZIAUAG + 2040aZ0aa 2144 Z04a Zoane — 22404 ZoaaZ14a0 — ZIACAZ;}AZZAAC)'
The quantities in (B.2) can be viewed as conditional variance terms, their origin is made precise in Lemma 2. Let
o= eJTZgAc sc.q€jand o2, = eJTng e; be the diagonal elements of corresponding matrices. Under Assump-

" 8JJA Jjdg
tion 4, 0.4, 0 jag and y can be treated as constants.

We define the oracle (¥4, 724) as the solution to

S -1 2 -1 2
minimize {n; '1X14v1 = 00, 13/2 + 13! 1Xaavs + 0, /2 + 2

o+ 32, (B.3)

S

J=1

and let ity = (@14, lip4) be the subgradient of Z;zl(vfj + v%j,)l/2 evaluated at (¥14, 724) such that i ; = V4;/|[Vajll if
P4l # 0, and dia; € {u : [lulla < 1}if [V ll2 = 0.

Theorem 3 (Equivalent to Theorem 1). Let Assumptions 1-3 hold. Let the sample sizes satisfy

: -1 2 2 -1
min(ny,no) 2 ?i?é”ngA”Z lnzl‘aneAc(o-gjj:A N O'jdg)s In{(p — s)n"},

s=1,
for some i € (0, 1), and the tuning parameter satisfy
1/2

A2 max (@ Y )|n Inl(p = 97|

Then Pr(ZQ A)>1-n.
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Proof. Using the results of Section 2.3,

P
[vivz] = argmin {Lwl 1)+ Ly,(vp) + 4 Z(V%j + V%j)l/Z}’

viERP v, eRP j=1
T T T T -1 T 2 -1 T 2
2{Ly, (v1) + Ly,(v2)} = v{ S1vi +v, 821, + (n nyd' vy — l) + (n md' vy — 1) .
Let p; = ny/n and p, = ny/n. The optimality conditions stated in Chapter 5 of [3] lead to
(S1a4 + P3dad; V1a + (S pa0 +P§dAch WVise — p2da = —Auia,
(Saaa + p1dad] aa + (Sypuc + P%dAch Woue — p1da = —Auza,
(S 1404 + Padsedy Wi + (S 14040 + prdacd o)V g0 — padye = —Auy e,
(Souta + P%dAGdDVZA +(So4040 + P%dAU dzc Waat — p2adyo = —Auyye,
where u is defined in (??). Consider v = (¥14, O,,_S),'v} = (P24, 0,—s), where ¥4, 24 are the solutions to the oracle
problem (B.3). From the above optimality conditions, it is sufficient to have

1S 1404 + PAdacd)P1a — padys . (Syp04 + prdsedy )ioa _p]dAC”oo,Z <4

forV = [vi V2] to be the solution to (6), which leads to A C A. We next show that the above inequality holds with
high probability under the stated conditions.
Using the form of vi4 (Theorem 5) and Sherman—Morrison identity, we find
(Siaca + P%dAG d)Via = padse = S 1404928 I/}AAdA(l + pidXS IﬁAdA)_l + p%dAchp;S I/iAdA(l * p%dIS I/iAdA)_l
25 T\l 2 T 25 T\l
- ASIAGA (S 1AA +p2dAdA) Uia — /lpszGdA (S 1AA +p2dAdA) uia —pszc
=p2 (S lAGASI_AAdA - dAG) I+ PgdZSIAAdA)_] - A8 1ACA51_11A5‘1A
+ 4038 14048 Taadadi S Taaitia(l + p3d; S Taada)™!
— Aprd,od; STasiia(l +p3ds S 1aada)™
=p2 (S 14848 Taada dAG) (1 +p3di S 1aada) ™" = AS 4048 Taalhia
+ PIAS 14048 iada = duo)di S ipitia(l +p3ds S 4ada) "
Using normality, there exists U; € RP™~D with columns u;; ~ N(0,%;) such that (7, — 1)S; = U, U] . Similar
to [17], let Eqy = dye — Zy404Z744das Evt = Uyge — Zi4042 74, Ura. Then
S140aSTas = (1 = DU 0 UL S 144
= (m = DT EQURS s + (1= D70, Zi0, Uia Ul S
= Z140aZiaa + 00 = DT Eq UL, S aas

and S 4048 Aada — dyc = (ny — 1)'Ey U], ST1,ds — Eq1. Combining the above two displays gives

(S 1ACA +P§dA'3dD‘71A _PZdAG = _AZIAGAZI};A’}]A - Any - 1)_1EU1 UlTAS I/;AIZIA
+(m = V) Eq U, S 1aadapa(l + p3dy S 14xda)™" = Enpa(l + p3dy S 14xda) ™
+A(ny — V) Eg UL S 1 ,dapady S Thsiiia(l + p3di S 14 ,da)™
~ AEqip3d} S {aatiia(l + p3d; S 1huda)”
= —AZyy0aZTaaltia + (11 = D7 Eui Uy S Taadapa(1 + p3d; S Taada)™!
— Enpa(1 + p3dy S jada) ™" = AEqp3dy S hatia(l + p3dy S Thada)™
— Ay = D Eq UL ST+ p3dadl ST ) iia.

Similarly,

(Spa0apdacd )P = prdys = =ATg40,Zoualion + (2 = 1) EuaUyyS jpadapi (1 + pdiS yiuda)™
— Expi(1 +pidi Sopada) ™" = AEppidy Syasdin(l + pid} S 54 4da)™"

— Ay — D EpUs,Soa,( + prdady S 51 ) .
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Therefore, using the triangle inequality,

”(SlAGA +p3dacd)ia = padye s (Saacy +pidacd])oa _pldAG”ooQ
< A 04 ZiAndi1as ZopcaZonnioallon + I + b + Iy + I,

where

I = llo2(1 + p3di S 1A ada) " Ear, p1(1 + p2d} S 54 ,da) " Eillco2,

L PmEn U] SThda P, EnU] S5l dy
b= o - S By
1+ p2dTS 7! dy 1+ p2d] S50 dy N
EnUL,S T, Lo EnULSH o
s = SR  pRdad ]S Th ) s, — A pldad] S 3h ) |
n—1 ny —1 00,2
05 or
Iy = “ 2 EalldTS_1 i1, _ EdszS_l ﬁZA” .
L+p2dySih,da T AT L p2d TS5l dy AT e

By the irrepresentability condition (Assumption 3), there exists « € (0, 1] such that
121404 ZTAn 14> EapcpZoiplioalleo < 1 - .

To conclude the proof, it is sufficient to show that with probability at least 1-n, each I, < Aa/4forallk € {1,...,4}.
Next, we consider each of these four terms separately.

1. Show I; < Aa/4 with probability at least 1 — /4. By Lemma 2, ejTEdg ~ N, a?dg/ng). Applying the
standard normal concentration inequality, there exists a constant C > 0 such that

_ _ 1/2
Pr( () {lef Eael = € maxcrjugln Inicp — sy 7)) < /4.
jeAt jeA®
Since
llo2(1 + p3d} S TAnda) " Ear. p1(1 + pids S 144da) " Esdlleo2
< V2max {pa(1 + p3dr S hada) " NEarller p1(1 + P13 S Taada)  IE o}
< V2max(IEqilleos I Eaalleo),

it follows that there exists a constant C > 0 such that

_ . 1/2
Pr(h > C max O'jdg[ln{(p -5 1}/mm(nl,nz)] ) <n/4.
g=1.2; jeAC

Therefore, I} < Aa/4 with probability at least 1 — /4 under the conditions of the theorem.
2. Show I, < Aa/4 with probability at least 1 — /4. By Lemma 2, Ey, ~ N(O, ZgAGAC:A ® Iy,-1) for g{1,2},
and is independent of Ugz4 and d. Hence,
pa(1 +p3d; STAsda) "] (ny = ) Egy U S 1A sdalUsas da
~ N{0, 04001 = )7 p3dx S TA4da(l + p3dr S TA4da) ).

Define L = (1 + pgd/IS ]‘j AdA)‘2p§d/IS 1_/1 4da. Using standard normal concentration inequality, there exists a con-
stant C > 0 such that conditionally on L, the event

_ _ _ _ _ _1.11/2
() {o2(1 + P3drS Taadn) ] (m1 = D™ Evy UT,S A dal > Cmax e jja| Ly Inf(p = 77|}
jeAl e

has probability at most /4. Since L = (1 + p3d; S14,da)2p3d S 1A da < (1 +p3d; STh,da)~" < 1, it follows that
with probability at least 1 — /4
P2 En\U[,S 3444

1+ p3d; ST} da H np—1

H < C[ max oy jj.an; | Inf(p — S)n_l}]l/z'
0 jeAt
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The case g = 2 is similar, leading to the desired bound under the conditions of the theorem.
3. Show I3 < a/4 with probability at least 1 — /4. Similar to part 2,

ej(m — 1) VEgi ULy S iaad + p3dad} S 1A ) 1alUras fira, da
~ N(O (n —1)” 0'1,,AM1A(S 144 + 03dad} )1 S 144 (S 14a + p3dady)” MlA)

Define L = ii],(S 144 + pszdT) 1S 144(S 144 + p%dAdT) fi14. As in part 2, there exists a constant C > 0 such that
conditionally on L the event

1 T T -1,1/2
rNkMr4)Ew%ﬁmAHwﬂmSmQum>CmMGm4M1{@—@nﬂ }
jeA® eA?

has probability at most r7/4. Furthermore,
L < li1alBICS 144 + p3dad )" S 144 (S 144 + p3dad}) " II2
< SISTAL T + 38 T dadi S TS TG

< slIs lAAHZ’

where in the last inequality we used ||121A||§ + |liioall? < s by definition of subgradient. By Lemma 3, there exists a
constant C > 0 such that with probability at least 1 — /4,

_ _ 10172
1S TAall < Il | 1+ Cla e ) .

Combining the above displays leads to
l(ng — 1)~ 1EUIU]TASMA(I ""pszdTS]AA) ugA”oo < CIIliXO'lHA[HZMA”an sIn{(p - 5)77_1}]

with probability at least 1 — 1/4. The proof for g = 2 is similar leading to the desired bound.
4. Show I, < a/4 with probability at least 1 — /4.
By Lemma 2, ejTEdg N@O,n 10'J dg) where o j4, is from Lemma 2. Then

2 4
T a1P2 _ _
1+ p3d; S aada) " €] Etd} S {414l Unas it1a da ~ N |0, i ST dadlST) itial.
P31+ p3di S asda) " ] Enrd} S 1 iatalUias fina, da ~ (4 pd[S Ly 145 1a19Ada S atia

Define L = (1 +p3d; S 1 ,da)2050t],S 1 ,dad} S 11 ,ii1a. Using the standard normal concentration inequality there

exists a constant C > 0 such that conditionally on L, the event

2
P el -1,1/2
_ E drShi >Cmax0' Ln;! s
ﬂ {1 N %dTSIAA !A diay 1AA 1A P ]dl[ 1 Inf(p — s }] }

has probability at most /4. Furthermore,
L = (1 +p3d; S 1aada) p3 @i, 1_,&2 1/&2“'/4) < P31+ 3 S 14adn) 03RS TiadaliisS Tpaliin

1
< P2”1A51AA”1A

-1
< s”S]AAHZ,

where in the last inequality we used ||i; AII% + ||ﬁ2A||§ < s by definition of subgradient. Similar to part 3, this means
that there exists a constant C > 0 such that

2
P> Tl ~ 1 1 1712
—— o End Sl > Cmax o |lIZ n; sln{(p—s
Hl T2 S ds a1d, S 1an IAHOO may ]d1[|| aalln] {(p—9m }]
with probability at most 17/4. The proof for g = 2 is analogous, leading to the desired bound. O
Theorem 4 (Equivalent to Theorem 2). Assume the conditions of Theorem 3 hold. If in addition

wszWWM%MM@MB@@vn

then Pr(A = A) > 1 — 1.
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Proof of Theorem 4. Consider the oracle solution
-1
U1a = 28 Taada(l + p5d S Taada) ™ = 2 (S 144 +p§dAdX) fi14,
-1
Vop = PISEAAdA(l + P%d/ISE/iAdA)_I -4 (SZAA + P%dAd,I) foas
where 74 is the subgradient. To show A= A, it is sufficient to show

min [lo2(1 + P33 S 1iada) ] S Laadas p1(1+pidrS aada) ™ €] S nda
. " (B.4)
> /115162}34 lle; (S 144 + p%dAd,I) fia, €] (SzAA +p%dAdX) fizall>.

Consider the right-hand side in (B.4)
T 2 ! T 2 !
I?eaAX”ej (SIAA +,02dAdA) A, €; (SzAA +,01dAdA> all2
T 2 oo )2 T 2 e 22
= I?EE}XX [{ej (S 14A +p2dAdA) I/l]A} + {ej (SzAA +p1dAdA) MZA} ]
1 A V-
< max {lle] (S 144 + p3dady) " IBlAIR + lle] (S2as + piacd]) " I3lnal)

2 -1 2 -1 =2 e 2\
< max {lle] (S 140 + p3dad) Ik Vlle] (S2aa + pidad]) o (1ally + lliaalB)
< {lCS 144 + P3dady) N2 V 1S 24 + prdady) " |},

Furthermore,
-1 _ _ A -
(S 144 +P3dady) Il = IS Ty2 (1 + 038 [aedadi S T4i2) S Talh < IS Thall,
and similarly [|(S 244 + p?dad}) ' Il2 < IS5}, ll. Using Lemma 3, with probability at least 1 —

—1 -1 .
maxlle] (S 11 +p3dad))  fa, €] (Saan +pidady)  aal < max|Egillas™? [1+ ClsinGy™)/ min(ny, n)}'?].
JEA 8

Consider the left-hand side in (B.4). Applying Lemma 1 and Corollary 1, there exist constants Cy, C, such
that with probability at least 1 —

min [lo2(1 + 0318 1iada) e[ E i, 11+ PIdRS 2aada)” €] Z0404,

_ _ e 291 _ _
> [1 + Cy max O3 Toasda + Ca(max 1 Zea104 V Y{sInGy™)/ min(ny, n)) ] rjglunzejs tanda me] Soiudall, -

Furthermore,
r?eiAn ||ﬂ2e;Sf1§AdA, me]T.ng{AdA”z
= min {m3(e]Sihada)? + el Shadn?)
= min [73(e] (S haca = Zikeda + Sihadn)l + ] (Sbada = Zahaba + Zibon?]
> min |lm2e] A 404s m1e] Z34004]], — max (IS zAada — Zgrs0allss)
= Yrmin = max (IS zaada = Tiaallo)
where in the last inequality we used ﬂ% + 71'% < 1. Using Lemma 8, with probability at least 1 — 7

St di-216 <C I I CIOININ) In(p~")/ mi 2
mgax I gAAdA gAA Alleo ) < 5227; ( gAA)jj( A%gAAOA Vy)isin(n™")/ min(ng, ny) .
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Therefore, to have A C A\, it is sufficient to have

Ymin > C| max {(Zg4a)j/(01 Zeaa0a V )} InGy™")/ min(ny, n )]”2
min Jeng \\gAA ITN0AZgAA A VY n 1,12

+

1+ Cy max 83 Zep0a + Co(max 83 Zp 84 V Y){sInGyp™")/ min(ny, nz)}]
8 8

1/2
x Amax [[Z 445"/ [1 + C{sIn(y™")/ min(ny, ny)| ] .
8

Using the conditions on 4, and the fact that y > 1, it follows that the second term above is the dominant term, and
therefore it is sufficient to have, for some constant C > 0,

Ymin > CAs'"* max |24, [lo(max 3 1464 V ).

Appendix E. Supporting theorems and lemmas

Theorem 5 (Oracle solution). Consider an oracle estimator [V14 V24] from (B.3). Let py = ny/n, po = np/n. Then

-1
1a = p2S aada(1 + p3d} S TAada) ™" = /1(5 144 +P§dAdD i,

-1
Daa = p1Soasda(l + p1d} S50 da) ™" - /l(SzAA +P%dAdX) figa;

where iiy is the subgradient onjl:l(v%Aj + v%Aj)l/z.

Proof. We present the proof only for ¥4, the proof for 7,4 is analogous. From Section 2.3,

s
[f/IA ‘72A] = argmin {L¢I(V1A) + L¢2(V2A) + AZ(V%AJ» + V%Aj)l/z},

Via,v24€ERS =
T T T T 2 T T 2
Ly, (via) + Ly,(vaa) = v4S 144v14/2 + (ng/ndAle - 1) [24+v5,8244v24/2 + (nz/ndA Vou — 1) /2.

Using the optimality conditions, the oracle solution must satisfy

-1
Via = (S 144 +P§dAdX) (p2da — Aliya),
where i, is the subgradient of 35, (v} s v Aj)'/ 2. By Sherman—Morrison identity,
(S1a1 = p3dady)™ = Sap = (1 4+ P3dST44da)" P2 andady S i
The statement follows by combining the above two displays. O

Lemma 1. There exists a constant C > 0 such that with probability at least 1 — n

Ing/n—m| < {inGry/m)” (= 120, mijmy - mijmal < Clinty™y/m)

Proof. Given that n, ~ Bin(n, ), by Hoeffding’s inequality Pr(lmr, — ng/nl > &) < 2exp(-2ne?). Let n =
2 exp(—2ng?), then 2ne? = In(2y'), & = C{ln(n~")/n}'/? and ng/n = me + Op{n"/2}. Let f(x) = x/(1 — x),
which is non-decreasing for x € (0, 1). Since n;/n, = f (n;/n), the second inequality in the lemma follows from
the first. &

Lemma 2. Let Ey, = Ugye — ZgAcAZ;/{AUgA, Eq = dyc — ZgAcAZ;jAdA, g = 1,2. Then Ey, is independent

]Zfoﬁm l[]ZgA (I;;U;)N N0, Z 4040.4 ® In-1), eJTEdg ~ N((), n;laidg); where U?dg = e]TEdgej, and X,4048.5, Xa, are
efined in (B.2).
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Proof. Since Egq, Ey, are formed by applying linear transformation to normal d, Uy, U,, it follows that Eg,, Ey,
are also normally distributed. It remains to verify the form of the means and covariance matrices. We consider
g = 1, the proof for g = 2 is similar.

Consider Ey. By definition, the columns of U, satisfy u;; ~ N(0,%;). Since

_ U
Eyr = (_ZlAUAzlziA Ip-) (U " )’
1AC

it follows that E(Ey) = 0, and

_ z > _
var(Eun) = (~Zi404Z 144 1p-s) (2 v 5 1442 )(_ZlAGAEquA Iy-s)" ® I,
1ACA 1ACAC
= (Z14048 — 21404 Z A4 Z1440) ® Iy

Consider E4;. Since £7'6 = ¢y = (],,0)", by rewriting £,%;'§ = 6, and using block matrices of £; and ", it
follows that ZlAcAZL{A(SA = 646. Then E(Eq1) = 0,0 — zlABAZI};A‘SA = 0. Furthermore,

var(Eq;) = var(dse — 1404 Z7 44d4)
= var(d,o) + 404 =14 Var(da)Z A 4 Ziaac — Z1acaZiaq cOV(da, dyo) — cov(dye, da)Z 442 1 4n0
=17y ae40 15 Ega0 + 240,00 (”TlZlAA + ”EIZZAA) ZiaaZiaa0
~ 21404 Z 044 (nl_lZlAAG + ”ElzzAAG) - (nl_lElAcA + nEIZZAGA)Zl_f{AZIAAG
= Ep0a0.4 + ”El(zzABAC + 2140 Z1aa 22441 4a T a0 — ZiaeaZiaaZoanc - EZAGAEL};AEIAAU)'
O

Lemma 3. Let S 44 be a submatrix of the sample covariance matrix for group g € (1,2} corresponding to
variables in A, with s = card(A). Let Z,a4 be the corresponding submatrix of population covariance matrix.
Under Assumption 1, there exist constants Cy,C, > 0 such that with probability at least 1 —n

_ _ 1/2 _ _ _ 1/2
IZ0S eAaZii = Tl < Co{stnGy)/ng} ™, IS gaalle < IZgiallo[ 1+ CofsInGr~")/mg) .

Proof. Using normality, the sample covariance matrices satisfy Sgax = (ng — 1)™' W, W, with W, € R>"~1
having independent columns w,; ~ N(0,X44). Then the desired bounds follow from Lemma 9 in Wainwright
[501]. O
Lemma 4. Let a random vector X € R be such that X ~ N(0,n"'A). Then there exists a constant C > 0 such
that with probability at least 1 — n

_ _ 1/2
X1l < C{llAlLn™ sInGp ™}

Proof. Since A™'/2X ~ N(0,n7'Iy), by Hsu et al. [22, Proposition 1.1], with probability at least 1 — 7
12
IA72X)12 < s/n + 2{sln(77‘1)} /n+21In( H/n.

For small 7 it follows that there exist C > 0 such that [|A~"2X|3 < Cn~'sIn(y") with probability at least 1 — 7.
The statement of the lemma follows since

XI5 = X"X = XTA2AA712X < ||AlLIIATY2 X3

O
Lemma 5. There exist constant C > 0 such that with probability at least 1 — 1, and vy in (B.1)
“172 —1 . 1/2
max I 12 (da = a)lb < ClysinG™)/ min(ni, m)} .
Proof. Since dy — 64 ~ N(O, nl‘lZlAA + n;lEZAA), it follows that
Sl da = 64) ~ N{0.n7 (1403 mZ) P S0aaZ 7 )| -
Applying Lemmas 1 and 4 concludes the proof. The case g = 2 is analogous. O
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Lemma 6. There exist constants C1, Cy such that with probability at least 1 —nfor g = 1,2
- _ _ 1/2
]S ads < C1d]Z5h0da [1 + Cof In(y™)/(ng = 9) ]

Proof. We prove for g = 1, case g = 2 is analogous. Since (n; — 1)S 144 ~ Wi(n; — 1,Z144), and d, is independent
of S 144, by Theorem 3.2.12 in [38]
1l dTZIAAdA

T ~ np—s*
d S lAA

(n -

Using Lemma 1 in [29],

Pr{(ns - TG ) =2{m - 9o} = 17
s ds T ! z

Therefore, with probability at least 1 — 7

-1
d3STaada < (m = D(m = )7 d{Z44da [] 2{ i)/ - )} ] .
Hence, there exist constants Cy, C, > 0 such that with probability at least 1 — 5

_ _ _ 1/2
dTSTLda < C1dTE7)da [1 + Cof Inty™) /(1 = 9) ]

Lemma 7. There exists a constant C > 0 such that with probability at least 1 —n, and vy in (B.1)
A} TeAsda < C{07Ze4a0a +yng' sn(r ) (g=1,2).
Proof. We prove the result for g = 1, the case g = 2 is similar. Consider
diZiaada = 61X 1404 +2(da — 64) " Z1a,0a + (da — 64) T 1A (da — 5a)
< 260X 1404 +2(da — 64) " Z A4 (da — Sa).
By Lemma 5, there exists a constant C > 0 such that with probability at least 1 — 7,
(da —64) " Z14a(da = 64) < Cyni'sInm™).
The result follows by combining the above displays. O

Corollary 1. There exist constants Cy,Cp,Cs > 0 such that with probability at least 1 — n for g = 1,2 and y
in (B.1)

_ _ _ 1/2 _ _
d1S7hads < C10TE3) 64 [1 + o {In( )/ (ng - )} ] + Cyyny'sInGy ™).
Proof. The result follows by combining results of Lemmas 6-7. O

Lemma 8. There exists a constant C > 0 such that with probability at least 1 — n for g € {1,2}, and y in (B.1)
IS 2ads — Thaballe < C{max(;h0);65Tokaba v vz sinep )
jeA
Proof. We prove the result for g = 1, the case g = 2 is similar. Consider
|eJTS f/iAdA - TZIAA5A|
|eT(S 144 ~ f/iA)(dA 0a) +e; T(STA 1AA — TAA)‘SA + eszl_/iA(dA —6a)l
< (€ Zihae) PIE S aaZ s — DENY (da = o)l + (€] Ziiae) P 5 S AT oy = DEL all

+ (] Ziaaen) PIE L (da = S0l
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Letm; = |[TV/2 571 5172

VASTL 2 — 1|l and my = |[Z],/2(da — 6)Il>. Using the above display

IS TAada — Ziaadalleo < %x(zl—;A);j/? {mymy +m(STZ74 400" + ma). (C.)

Using Lemma 3, there exists a constant C; > 0 such that m; < C{sIn(7")/n;}'/? with probability at least 1 — 7.
Using Lemma 5, there exists a constant C, > 0 such that m, < C»{ysIn(z77")/n;}/> with probability at least 1 — 7.
Combining these bounds with (C.1), there exist constant C > 0 such that with probability at least 1 —
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