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The Klein and Wiman configurations are highly symmetric configurations of lines in the

projective plane arising from complex reflection groups. One noteworthy property of

these configurations is that all the singularities of the configuration have multiplicity at

least 3. In this paper we study the surface X obtained by blowing up P
2 in the singular

points of one of these line configurations. We study invariant curves on X in detail, with

a particular emphasis on curves of negative self-intersection. We use the representation

theory of the stabilizers of the singular points to discover several invariant curves of

negative self-intersection on X, and use these curves to study Nagata-type questions for

linear series on X.

The homogeneous ideal I of the collection of points in the configuration is

an example of an ideal where the symbolic cube of the ideal is not contained in the

square of the ideal; ideals with this property are seemingly quite rare. The resurgence

and asymptotic resurgence are invariants which were introduced to measure such
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2 T. Bauer et al.

failures of containment. We use our knowledge of negative curves on X to compute the

resurgence of I exactly. We also compute the asymptotic resurgence and Waldschmidt

constant exactly in the case of the Wiman configuration of lines, and provide estimates

on both for the Klein configuration.

1 Introduction

In recent years configurations of points in P
2 arising as the singular loci of line

configurations have provided examples of many interesting phenomena in commutative

algebra and birational geometry. The dual Hesse configuration of 12 points and, more

generally, the Fermat configurations of n2 + 3 points studied in [14, 26, 32] arise as

singular points of Ceva line arrangements which correspond to the reflection groups

G(n, n, 3). In this paper we focus instead on the sporadic Klein and Wiman point

configurations of 49 and 201 points. These are the singular points of line arrangements

K and W arising from reflection groups PSL(2, 7) and A6. We give a detailed study of the

surfaces XK and XW obtained by blowing up the points in the configuration, with the

particular goal of studying curves of negative self-intersection.

The Klein and Wiman line configurations arise naturally from subgroups G ⊂
PGL3(C) of automorphisms of P

2. In the case of the Klein configuration, we denote G

by GK; it is isomorphic to PSL(2, 7), the finite simple group of order 168 which is the

automorphism group of the Klein quartic curve

x3y + y3z + z3y = 0.

This group has 21 involutions, each of which fixes a line in P
2; the Klein configuration

K consists of these 21 lines. They meet in 21 quadruple points and 28 triple points,

and have no further singularities. The group GK acts transitively on the lines, on

the quadruple points, and on the triple points. Similarly, the Wiman configuration W
consists of 45 lines meeting in 36 quintuple points, 45 quadruple points, and 120 triple

points, and arises from a subgroup GW ⊂ PGL3(C) isomorphic to the alternating group

A6. See Section 2 for additional background on the Klein and Wiman configurations.

1.1 Waldschmidt constants and a Nagata-type theorem

For a line configuration L in P
2 we let IL ⊂ S := C[x, y, z] denote the homogeneous ideal

of the collection of singular points in the line configuration. If I ⊂ S is the ideal of a

reduced collection of distinct points p1, . . . , pn ∈ P
2, then we define the mth symbolic

power I(m) = ⋂
i Im

pi
, where Ipi is the homogeneous ideal of the point pi. That is, I(m) is
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Negative Curves on Symmetric Blowups 3

the ideal generated by all homogeneous forms vanishing to order at least m at each of

the points pi. The Waldschmidt constant α̂(I) [13, 15, 38] is defined to be the limit

α̂(I) = lim
m→∞

α
(
I(m)

)

m
,

where α(J), for a nonzero ideal J, denotes the minimal degree among nonzero elements

of J (see also [8, 20]). It is always true that 1 ≤ α̂(I) ≤ √
n; for n ≥ 10 sufficiently general

points pi, the famous conjecture of Nagata asserts that α̂(I) = √
n [9, 31]. On the other

hand, for special collections of n points, the Waldschmidt constant is typically smaller

than
√

n. Our first main theorem, Theorem 1.1, gives our best result on the values of the

Waldschmidt constants of the ideals IK and IW and provides an example of this.

Theorem 1.1. For the Klein configuration K of 21 lines, we have

6.480 ≈ 661

102
≤ α̂(IK) ≤ 6.5.

For the Wiman configuration W of 45 lines, we have

α̂(IW ) = 27

2
.

In each case it is fairly easy to bound the Waldschmidt constant α̂(IL) from above

by constructing curves with appropriate multiplicities. These upper bounds rely only on

the incidence properties of the line configuration, and in particular make minimal use

of the group G of symmetries. On the other hand, we will see that lower bounds on the

Waldschmidt constant of IL can be obtained by proving that certain G-invariant divisor

classes D on the blowup XL are nef. Our proof that such divisors are actually nef will

rely heavily on the group action.

1.2 Invariant linear series

Suppose D is an effective G-invariant divisor class on XL, and that we would like to

prove D is nef. If D were not nef, then the base locus of the complete series |D| would

contain a curve of negative self-intersection. Since D is G-invariant, the base locus of

|D| is additionally G-invariant. Therefore there is a G-invariant curve of negative self-

intersection on XL which meets D negatively.

This observation suggests that we should study linear series of invariant curves

on XL in greater detail. For simplicity, let us discuss the case of the Klein configuration
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4 T. Bauer et al.

K. Suppose C is a G = GK-invariant curve on XK which does not contain the line

configuration. Then we will see that the defining equation of C is a polynomial in

some fundamental invariant forms �4, �6, �14 of degrees 4, 6, 14, respectively. Letting

T = C[�4, �6, �14] ⊂ S, we define a vector space

Td(−m4E4 − m3E3) ⊂ Td

consisting of degree d forms which are m4-uple at the quadruple points in the

configuration and m3-uple at the triple points in the configuration. Elements of this

vector space define G-invariant curves in the linear series |dH − m4E4 − m3E3| on XK,

where we write H for the class of a line and Em for the sum of the exceptional divisors

over the m-uple points in the configuration.

It is not immediately obvious what we should expect the dimension of the linear

series Td(−m4E4 − m3E3) to be. For instance, we will see that any invariant curve

passing through one of the triple points of the configuration is actually double there,

so that the obvious conditions cutting Td(−m4E4 − m3E3) out as a subspace of Td are

typically non-independent. Our key insight is to study the action of the stabilizer Gp of

p on the local ring (Op,mp) at a point p of the configuration. If C is a G-invariant curve

which has multiplicity k at p then the tangent cone of C at p must be Gp-invariant. If

f ∈ mk
p/mk+1

p defines the tangent cone then Gp acts by a linear character on f , but in our

situation this character is trivial and f is Gp-invariant. Therefore in any vector space V

⊂ Td of forms that have a k-uple point at p, the codimension of the subspace of forms

with a (k + 1)-uple point at p is at most dim(mk
p/mk+1

p )Gp . The stabilizers Gp are small

dihedral groups and these dimensions are easy to compute, which leads to the following

theorem.

Theorem 1.2. Define the expected dimension of the vector space Td(−m4E4 − m3E3)

to be

edim Td(−m4E4 − m3E3) = max {dim Td − cond4(m4) − cond3(m3), 0} ,

where condn(m) is the number of monomials of degree less than m in a polynomial

algebra C[u, v] where deg u = 2 and deg v = n. Then we have

dim Td(−m4E4 − m3E3) ≥ edim Td(−m4E4 − m3E3).

This notion of expected dimension is useful because it appears to be a rea-

sonably good approximation to the dimension. In Section 4 we make an SHGH-type
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Negative Curves on Symmetric Blowups 5

conjecture which in particular implies that the actual and expected dimension coincide

unless there is an obvious geometric reason for them not to; the conjecture has been

verified by computer so long as d < 144 (see [21, 24, 27, 33] for the original SHGH

Conjecture, and [9] for exposition).

1.3 Explicit curves of negative self-intersection

Our results on invariant linear series allow us to study explicit negative curves on XL
in detail. When G is a group acting on a surface, we say that a G-invariant curve is

G-irreducible if it has a single orbit of irreducible components. For example, since GL
acts transitively on the lines in L = K or W, the sum of the lines in L is GL-irreducible.

Theorem 1.3. There is a unique curve of class 42H − 8E3 on XK. It is GK-invariant,

GK-irreducible, and reduced.

There is a unique curve of class 90H − 4E4 − 8E3 on XW . It is GW -invariant,

GW -irreducible, and reduced.

We use these curves to prove that certain key divisors D are nef, and lower

bounds on the Waldschmidt constant α̂(IL) follow. In the case of the Wiman configu-

ration, this lower bound matches the easy upper bound, and we compute α̂(IW ) = 27
2

exactly. The computations proving Theorem 1.3 form the technical core of the paper.

Note that the divisor class 42H − 8E3 on XK is effective by Theorem 1.2, since

the expected dimension of T42(−8E3) is 1. Verifying that there is a GK-irreducible curve

of this class still takes considerable additional effort, however.

On the other hand, the class 90H − 4E4 − 8E3 on XW is not obviously effective,

as the expected dimension of T90(−4E4 − 8E3) is 0. The existence of this curve is quite

surprising, as the “local” conditions to have the given multiplicities at the different

points fail to be globally independent. Some amount of computation seems unavoidable,

but the representation-theoretic results of Section 4 streamline things considerably.

1.4 Resurgence, asymptotic resurgence, and failure of containment

Let I ⊂ S = C[x, y, z] be the homogeneous ideal of a finite set of points in P
2. It follows

from either Ein–Lazarsfeld–Smith [17] or Hochster–Huneke [29] that I(4) ⊆ I2. On the

other hand, Huneke asked whether I(3) ⊆ I2 is also true (see [2, 25] for discussion and

generalizations). It is now known that I(3) ⊆ I2 can fail [4, 12, 14, 16, 26] (see also

[36] for a compact and up to date overview), but failures seem quite rare and it is an
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6 T. Bauer et al.

open problem to characterize which configurations of points exhibit this failure of con-

tainment. Whether other similar failures, such as I(5)� I3 or more generally I(2r−1)� Ir

for r > 2, ever occur over C remains open [2, 25] (but see also [26]).

The containment I(3) ⊆ I2 typically holds even for ideals of the form I = IL (see,

for example, [2, Example 8.4.8]). Thus it is of interest that the containment I(3)

L ⊆ I2
L fails

when L is the Klein or Wiman configuration; in particular, the defining equation of the

line configuration is in I(3)

L but not in I2
L. This was first confirmed computationally [1],

then proved conceptually in [34] in the case of the Klein configuration. We offer two new

conceptual proofs based on representation theory which work for both configurations.

The resurgence

ρ(I) = sup
{m

r
: I(m) �⊆ Ir

}

and asymptotic resurgence

ρ̂(I) = sup
{m

r
: I(mt) �⊆ Irt, t 
 0

}

were respectively introduced in [5] and [23] to study failures of containment in more

depth (see, e.g., [16]). These invariants are closely related to Waldschmidt constants via

the inequalities

α(I)

α̂(I)
≤ ρ̂(I) ≤ ω(I)

α̂(I)
, (1)

and

ρ̂(I) ≤ ρ(I) ≤ reg(I)

α̂(I)
; (2)

see [5] and [23]. Here ω(I) denotes the maximal degree of a generator in a minimal set of

generators for I, and reg(I) is the regularity of I.

The Klein and Wiman ideals IL each satisfy α(IL) = ω(IL), and therefore by (1)

the computation of ρ̂(IL) is equivalent to the computation of α̂(IL).

Theorem 1.4. For the Klein configuration of lines, we have

1.230 ≈ 16

13
≤ ρ̂(IK) ≤ 816

661
≈ 1.234.

For the Wiman configuration of lines,

ρ̂(IW ) = 32

27
≈ 1.185.
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Negative Curves on Symmetric Blowups 7

On the other hand, we compute the resurgence exactly for both configurations.

Theorem 1.5. If L = K or W, then ρ(IL) = 3
2 .

For the proof (given at the end of Section 8), we show that the ideal IL is

generated by three homogeneous forms of the same degree, which allows us to compute

the regularity of powers Ir
L by results in [32]. Theorem 1.5 follows easily using this,

together with I(3)

L �⊆ I2
L, containment results from [5] and our knowledge of Waldschmidt

constants.

1.4 Conventions

For simplicity we work over C for the majority of the paper, although it is likely that

analogous results hold over other fields so long as the characteristic is sufficiently large.

In Section 9 we will briefly discuss the Klein configuration in characteristic 7, where

some exceptional behavior occurs.

By a curve on a surface we usually mean an effective divisor. We say a curve is

m-uple at a point p to mean that the multiplicity of the curve at p is at least m.

1.4 Organization of the paper

In Section 2 we will recall the necessary definitions and the basic geometry of the

Klein and Wiman configurations, as well as the group actions giving rise to them and

the corresponding rings of invariants. In Section 3 we prove our upper bound on the

Waldschmidt constants and indicate the correspondence between lower bounds on the

Waldschmidt constants and nefness of divisors. In Section 4 we use some representation

theory to study invariant linear series on the blowup XL. We precisely define the

expected dimension of such a series and prove Theorem 1.2. In Sections 5–6 we study

explicit negative curves on XL to prove Theorem 1.3 and deduce Theorem 1.1. We study

the asymptotic resurgence and resurgence in Section 7 and Section 8, respectively. We

mention some results in characteristic 7 in Section 9.

2 Preliminaries

2.1 Definitions and notation

For a line configuration L in P
2 we write XL for the blowup of P2 at the singular points

in the configuration. We write H for the pullback of the hyperplane class. For each
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8 T. Bauer et al.

m ≥ 2, we let Em be the sum of the exceptional divisors lying over the points in the

configuration of multiplicity m. We also write IL for the ideal of the singular points in

the configuration. We let AL be the divisor on XL given by the sum of the lines in the

configuration.

2.2 The Klein configuration of 21 lines

Following [1, 19], the Klein configuration K is a configuration of 21 lines in P
2 whose

intersections consist of precisely 21 quadruple points and 28 triple points. Thus, the

divisor class of the line configuration on the blowup XK is

AK = 21H − 4E4 − 3E3,

and the intersection product on XK satisfies

H2 = 1 E2
4 = −21 E2

3 = −28,

where H, E4, E3 are pairwise orthogonal. It is most natural to define the configuration

over Q(ζ ), where ζ is a primitive 7th root of unity.

Let G = GK be the unique simple group of order 168. The group G has

an interesting irreducible three-dimensional representation ρ over Q(ζ ). There are

generators g, h, i such that this representation is given by

ρ(g) =

⎛

⎜
⎜
⎝

ζ 4 0 0

0 ζ 2 0

0 0 ζ

⎞

⎟
⎟
⎠ , ρ(h) =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

1 0 0

⎞

⎟
⎟
⎠

and

ρ(i) = 2ζ 4 + 2ζ 2 + 2ζ + 1

7

⎛

⎜
⎜
⎝

ζ − ζ 6 ζ 2 − ζ 5 ζ 4 − ζ 3

ζ 2 − ζ 5 ζ 4 − ζ 3 ζ − ζ 6

ζ 4 − ζ 3 ζ − ζ 6 ζ 2 − ζ 5

⎞

⎟
⎟
⎠ .

Note that all three matrices have determinant 1 and the element i has order 2 (we also

note that (2ζ 4 + 2ζ 2 + 2ζ + 1)2 = −7). This representation gives an embedding of G into

SL3(Q(ζ )). By projectivizing, G acts on P
2.

The transformation ρ(i) has eigenvalues 1, −1, −1. The eigenspace for −1 is a

plane in C
3, hence gives a line in P

2 which is fixed pointwise by ρ(i). The orbit of this

line under the action of G consists of 21 lines which comprise the Klein configuration K.
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Negative Curves on Symmetric Blowups 9

The eigenspace for 1 is a point p ∈ P
2; it is on exactly four of the lines so it is one of the

quadruple points of the configuration. Its orbit consists of all 21 quadruple points of the

configuration, so its stabilizer has order 8. The stabilizer turns out to be isomorphic to

the dihedral group D8 of order 8. Its permutation representation on the 4 lines through

the point p is not faithful or transitive; its image in the group S4 of permutations of the

4 lines is isomorphic to Z/2Z×2.

The point q = [1 : 1 : 1] ∈ P
2 is on L and is a triple point of the configuration.

Its orbit is the set of all 28 triple points of the configuration, and the stabilizer of the

point has order 6, isomorphic to D6 ∼= S3 (generated by ρ(h) and ρ(i)). It has a faithful

permutation representation on the 3 lines through the point q.

2.3 The Wiman configuration of 45 lines

The Wiman configuration W is a configuration of 45 lines in P
2 whose 201 intersections

consist of precisely 36 quintuple points, 45 quadruple points, and 120 triple points

[1, 39] (see also the table on p. 120 of [28]). The divisor class of the line configuration on

the blowup XW is therefore

AW = 45H − 5E5 − 4E4 − 3E3,

and the intersection product on XW satisfies

H2 = 1 E2
5 = −36 E2

4 = −45 E2
3 = −120,

where H, E5, E4, E3 are pairwise orthogonal. The configuration is naturally defined over

Q(δ, ω), where δ2 = 5 and ω is a primitive 3rd root of unity.

The group PGL3(C) has a subgroup G = GW of order 360 isomorphic to A6.

If we put μ1 = (−1 + δ)/2 and μ2 = −(1 + δ)/2, then this subgroup is generated by

transformations

R1 =

⎛

⎜
⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎟
⎠ R2 =

⎛

⎜
⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎟
⎟
⎠

R3 = 1

2

⎛

⎜
⎜
⎝

−1 μ2 μ1

μ2 μ1 −1

μ1 −1 μ2

⎞

⎟
⎟
⎠ R4 =

⎛

⎜
⎜
⎝

−1 0 0

0 0 −ω2

0 −ω 0

⎞

⎟
⎟
⎠
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10 T. Bauer et al.

Note that while each of these transformations is actually in SL3(C), the subgroup of

SL3(C) that they generate has order 1080 and is a triple cover of A6, sometimes referred

to as the Valentiner group G̃ = 3 · A6. This group is a central extension of A6 by Z/3Z; it

contains in its center a subgroup isomorphic to Z/3Z consisting of scalar matrices with

scalars the 3rd roots of unity. The image of G̃ in PGL3(C) is G.

Looking at the eigenvectors of the involution R2, it is easy to see that R2

pointwise fixes the line L with equation L : x = 0. The orbit of L under G consists of

the 45 lines in the Wiman configuration W. The orbits and stabilizers of the singular

points of the configuration are as follows.

(1) There are two G-orbits of size 60 each consisting of triple points in the con-

figuration. The stabilizer of each of these points acts faithfully on the three

lines through the point, hence is isomorphic to the dihedral group D6 ∼= S3.

(2) There is a single G-orbit of size 45 consisting of quadruple points. The stabi-

lizer of each of these points turns out to be isomorphic to the dihedral group

D8. It acts on the 4 lines through the point, but not faithfully or transitively;

its image in the group S4 of permutations of the four lines is Z/2Z×2.

(3) There is a single G-orbit of size 36 consisting of quintuple points. The

stabilizer of each of these points acts faithfully on the five lines through

the point, hence is isomorphic to the dihedral group D10 (the only order 10

subgroup of S5).

Note that each of the 45 lines contains 16 points of the configuration, with four from

each orbit.

2.4 Invariants and the Klein configuration

Most of the results in this paper rely on understanding the ring of invariant forms for

the action of the group G. We recall the necessary facts from classical invariant theory

here. Consider G = GK ⊂ SL3(C), the group of order 168 defining the Klein configuration

K. Since G is a subgroup of SL3(C), it acts in the natural way on the homogeneous

coordinate ring S = C[x, y, z] of P
2. Klein discovered the structure of the ring SG of

polynomials invariant under the action of G [30, Section 6]. The ring SG is generated

by invariant polynomials �4, �6, �14, and �21, where �d has degree d. The invariant

�21 = 0 defines the line configuration. The polynomials �4, �6, �14 are algebraically

independent, but there is a relation in degree 42 between �2
21 and a polynomial in the

other invariants.
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Negative Curves on Symmetric Blowups 11

The geometric significance of the invariants �d is explained in [19]. Briefly

recalling the discussion there, we have

�4 = x3y + y3z + z3x,

so that �4 is the defining equation of the Klein quartic curve whose automorphism group

is G. The polynomial �6 can be taken to be

�6 = − 1

54
H(�4) = xy5 + yz5 + zx5 − 5x2y2z2,

where H(�4) is the Hessian determinant

H(�4) :=

∣
∣
∣
∣
∣
∣
∣
∣

∂2�4/∂x2 ∂2�4/∂x∂y ∂2�4/∂x∂z

∂2�4/∂y∂x ∂2�4/∂y2 ∂2�4/∂y∂z

∂2�4/∂z∂x ∂2�4/∂z∂y ∂2�4/∂z2

∣
∣
∣
∣
∣
∣
∣
∣

.

The degree 14 invariant �14 is more complicated to describe; the graded piece

(SG)14 is two-dimensional, so �14 is only uniquely defined mod �2
4�6. One possible

definition is that

�14 = 1

9
BH(�4, �6),

where BH(�4, �6) is the bordered Hessian

BH(�4, �6) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2�4/∂x2 ∂2�4/∂x∂y ∂2�4/∂x∂z ∂�6/∂x

∂2�4/∂y∂x ∂2�4/∂y2 ∂2�4/∂y∂z ∂�6/∂y

∂2�4/∂z∂x ∂2�4/∂z∂y ∂2�4/∂z2 ∂�6/∂z

∂�6/∂x ∂�6/∂y ∂�6/∂z 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Finally, the invariant �21 is simply the product of the lines in the Klein configuration. It

can also be defined by a Jacobian determinant

�21 = 1

14
J(�4, �6, �14) = 1

14

∣
∣
∣
∣
∣
∣
∣
∣

∂�4/∂x ∂�4/∂y ∂�4/∂z

∂�6/∂x ∂�6/∂y ∂�6/∂z

∂�14/∂x ∂�14/∂y ∂�14/∂z

∣
∣
∣
∣
∣
∣
∣
∣
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12 T. Bauer et al.

The degree 42 relation between the invariants is given by the identity

�2
21 = �3

14 − 1728�7
6 + 1008�4�4

6�14 + 88�2
4�6�2

14 + 60032�3
4�5

6 (3)

+ 1088�4
4�2

6�14 − 22016�6
4�3

6 − 256�7
4�14 + 2048�9

4�6.

(Note that this relation differs from the one given in [19] due to an apparent error.)

Since �4, �6, and �14 are independent and �2
21 ∈ T = C[�4, �6, �14], the Veronese

subring (SG)(42) ⊂ T defined by

(SG)(42) =
⊕

k≥0

(SG)42k

is generated in degree k = 1 by monomials in �4, �6, �14, subject only to the obvious

relations. This implies that the quotient P
2/G is isomorphic to the weighted projective

space P(4, 6, 14). The quotient map is given by

φ : P2 → P(4, 6, 14)

p �→ [
�4(p) : �6(p) : �14(p)

]
.

The description of the union of lines �21 = 0 as the Jacobian determinant of �4, �6,

�14 shows that �21 = 0 defines the ramification locus of φ away from points lying over

the singular points [0 : 1 : 0], [0 : 0 : 1] in P(4, 6, 14). Note that the relation between

�21 and the other invariants implies that the points lying over [1 : 0 : 0] are in the line

configuration.

The next lemma clarifies the relationship between G-invariant curves on P
2 and

G-invariant homogeneous forms.

Lemma 2.1. For G = GK, let C ⊂ P
2 be a G-invariant curve which does not contain the

Klein configuration K of lines. Then the defining equation f ∈ S of C is G-invariant and

lies in the subalgebra T = C[�4, �6, �14] of S.

Proof. Since the ramification locus of φ consists of the union of the lines in the Klein

configuration and finitely many points lying over the singularities in P(4, 6, 14), the map

φ is a local isomorphism near a general point p ∈ C. The curve φ(C) is defined by a single

weighted homogeneous equation g(w0, w1, w2) = 0 in the coordinates w0, w1, w2 of the

weighted projective space. Then the pullback φ∗g of this equation defines C and is in the

subalgebra T. �
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Negative Curves on Symmetric Blowups 13

Remark 2.2. We record here for later use the orbit sizes for the action of G on P
2,

following [19].

(1) The triple points in the configuration form an orbit of size 28.

(2) The quadruple points in the configuration form an orbit of size 21.

(3) The invariant curves �4 = 0 and �6 = 0 meet in an orbit of 24 points lying

over the singular point [0 : 0 : 1] ∈ P(4, 6, 14).

(4) The invariant curves �4 = 0 and �14 = 0 meet in an orbit of 56 points lying

over the singular point [0 : 1 : 0] ∈ P(4, 6, 14).

(5) The invariant curves �6 = 0 and �14 = 0 are tangent at an orbit of 42 points

lying over the singular point [1 : 0 : 0] ∈ P
2(4, 6, 14). These points lie on the

line configuration.

(6) Any point on the line configuration not mentioned above has an orbit of

size 84.

(7) Any point not mentioned above has an orbit of size 168.

2.5 Invariants and the Wiman configuration

The discussion of invariant forms for the action of G = GW ∼= A6 on P
2 which gives rise

to the Wiman configuration is highly analogous to the case of the Klein configuration.

The main additional complication is that G is only a subgroup of PGL3(C), so that it does

not act on the homogeneous coordinate ring S = C[x, y, z] of P2. We must therefore work

with the Valentiner group G̃ ⊂ SL3(C) of order 1080, which has a natural action on S.

The ring of invariants SG̃ is again fully understood by the theory of complex

reflection groups. The ring of invariants is generated by forms �6, �12, �30, and �45,

where �d has degree d. The invariant �45 = 0 defines the line configuration. Here

�6, �12, and �30 are algebraically independent and �2
45 is a polynomial in the other

invariants.

While �6 is uniquely determined up to scale, it does not have a particularly nice

equation. To compute it we recall the Reynold’s operator RG : S → SG for a group G

acting on a polynomial ring S with its ring of invariants SG, defined as

RG(f ) = 1

|G|
∑

g∈G

g( f ).

Then we can compute �6 as

�6 = 16 RG̃(x6),
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14 T. Bauer et al.

where the coefficient 16 is chosen so that the coefficient of x6 is 1. Carrying this

calculation out and choosing ω = e2π i/3 and δ = −√
5 gives

�6 = x6 + y6 + z6 + 3(5 −
√

15 i)x2y2z2 + 3

4

(
2
√

5 − (5 −
√

5)ω
)

(x4y2 + y4z2 + z4x2)

+ 3

4

(
5 −

√
5 + (5 +

√
5)ω

)
(x4z2 + y4x2 + z4y2).

The higher invariants �12, �30, �45 can be given by expressions completely

analogous to the invariants for the Klein configuration. We can take

�12 = c12H(�6)

�30 = c30BH(�6, �12)

�45 = J(�6, �12, �30)

where we write H, BH, J for the Hessian, bordered Hessian, and Jacobian determinants,

respectively (see Section 2.4). We choose the constants cd ∈ C so that the coefficient of

xd in �d is normalized to be 1. (Note that �45 does not have an x45 term since [1 : 0 :

0] is one of the quadruple points in the configuration; however, we will not work in any

substantial way with �45 and therefore do not worry about its normalization.) Up to

scalars, we have

�2
45 ∼ 16�13

6 �12 − 160�11
6 �2

12 + 816�9
6�3

12 − 2188�7
6�4

12 + 3271�5
6�5

12 − 1539�3
6�6

12

+ 351�6�7
12 + 72�10

6 �30 − 396�8
6�12�30 + 954�6

6�2
12�30 + 99�4

6�3
12�30

− 1377�2
6�4

12�30 + 243�5
12�30 + 324�5

6�2
30 − 1944�3

6�12�2
30

+ 729�6�2
12�2

30 + 729�3
30.

Remark 2.3. In the case of the Klein configuration the first two invariants �4, �6

were both uniquely determined up to scale, but for the Wiman configuration there is a

pencil of invariant forms of degree 12 and a four-dimensional vector space of invariant

forms of degree 30. While the determinantal formulas for the invariants give one way

of eliminating the ambiguity in the choice of invariants, the ambiguity can also be

naturally eliminated by looking at invariants that pass through interesting points in

the configuration. We will investigate this further in Section 6.
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Negative Curves on Symmetric Blowups 15

The quotient of P
2 by A6 is the weighted projective space P(6, 12, 30), with

quotient map

φ : P2 → P(6, 12, 30)

p �→ [
�6(p) : �12(p) : �30(p)

]

Away from the preimages of the singular points in P(6, 12, 30), the ramification locus of

φ is the line configuration �45 = 0. The relation between �2
45 and the other invariants

implies that the points [1 : 0 : 0] and [0 : 1 : 0] in P(6, 12, 30) are both in the image of the

line configuration; on the other hand, the points lying over [0 : 0 : 1] form a single orbit

of 72 points cut out by �6 and �12. A point in P
2 with nontrivial stabilizer either lies on

the line configuration or is one of these 72 points.

The next lemma follows exactly as in the case of the Klein configuration.

Lemma 2.4. For G = GW , let C ⊂ P
2 be a G-invariant curve which does not contain the

Wiman configuration W of lines. Then the defining equation f ∈ S of C is G̃-invariant

and lies in the subalgebra T = C[�6, �12, �30] of S.

Remark 2.5. Here we record the orbit sizes for the action of A6 on P
2, following

[10, p.18].

(1) There are two orbits of 60 triple points.

(2) The 45 quadruple points form an orbit.

(3) The 36 quintuple points form an orbit.

(4) The curves �6 = 0 and �12 = 0 intersect in an orbit of 72 points lying over

[0 : 0 : 1] ∈ P(6, 12, 30).

(5) The curves �6 = 0 and �30 = 0 are tangent at an orbit of 90 points lying over

[0 : 1 : 0] ∈ P(6, 12, 30). These points are all on the line configuration.

(6) Any point on the line configuration not mentioned above has an orbit of

size 180.

(7) Any point not mentioned above has an orbit of size 360.

3 Nef divisors and the Waldschmidt constant

In this section we first bound the Waldschmidt constant for the Klein and Wiman

configurations from above by constructing curves in symbolic powers of the ideal. We

then give an initial discussion of our strategy for bounding the Waldschmidt constant

from below.
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16 T. Bauer et al.

Proposition 3.1. Let IK be the ideal of the 49 points of the Klein configuration. Then

α̂(IK) ≤ 13

2
.

Proof. For any integer k ≥ 1 we define a divisor class

Dk = (28k + 2)H − 2kE4 − 5kE3

on the blowup XK. Observe that the vector space dimension of the linear series |Dk| is at

least
(

28k + 4

2

)

− 21

(
2k + 1

2

)

− 28

(
5k + 1

2

)

= 7k + 6 > 0.

Let AK = 21H − 4E4 − 3E3 be the class of the union of the lines in K. Then

Dk + 3kAK = (91k + 2)H − 14kE4 − 14kE3

is an effective divisor. This gives an element of the symbolic power I(14k)

K of degree

91k + 2. Letting k → ∞ proves the proposition. �

Proposition 3.2. For the ideal IW of the Wiman configuration, we have

α̂(IW ) ≤ 27

2
.

Proof. The strategy is the same as in the proof of Proposition 3.1. For k ≥ 1, let Dk be

the divisor class

Dk = (36k + 6)H − kE5 − 2kE4 − 3kE3

on XW . Then the vector space dimension of the linear series |Dk| is at least

(
36k + 8

2

)

− 36

(
k + 1

2

)

− 45

(
2k + 1

2

)

− 120

(
3k + 1

2

)

= 27k + 28 > 0.

Let AW = 45H − 5E5 − 4E4 − 3E3 be the class of the union of the lines in W. Then

Dk + kAW = (81k + 6)H − 6kE5 − 6kE4 − 6kE3,

giving an element of I(6k)

W of degree 81k + 6. The result follows when k → ∞. �
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Negative Curves on Symmetric Blowups 17

In the other direction, the proofs of Propositions 3.1 and 3.2 also suggest a

method to establish lower bounds on the Waldschmidt constant. The next two lemmas

explain how we will approach this problem.

Lemma 3.3. Let k > 0 be a positive rational number, and let Dk be the Q-divisor class

Dk = (28k + 2)H − 2kE4 − 5kE3

on the blowup XK of the points in the Klein configuration. Let

D = 28H − 2E4 − 5E3.

If D is nef, then α̂(IK) = 13
2 . If Dk is nef, then

α̂(IK) ≥ 91k + 24

14k + 4

While we will not be able to show D is nef, good bounds on the Waldschmidt

constant α̂(IK) can be obtained by showing Dk is nef for large k. It will be important later

to notice that the divisor D meets the class AK of the line configuration orthogonally:

D · AK = 0. On the other hand, for k > 0, we have Dk · AK > 0. Also observe that Dk is

effective by the proof of Proposition 3.1. Therefore, D is pseudo-effective.

Proof. Suppose that Dk is nef, and suppose there is a rational number β such that

α̂(IK) < β <
91k + 24

14k + 4
.

Then the Q-divisor class F = βH − E4 − E3 is effective. However, any curve in a multiple

|mF | also contains the line configuration, since

F · AK = 21β − 168 < 0.

Since A2
K = −147, if we strip off as many copies of AK from F as possible we get the

residual effective Q-divisor

F ′ = F − 168 − 21β

147
AK = (4β − 24)H − 1

7
(4β − 25)E4 − 1

7
(3β − 17)E3
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18 T. Bauer et al.

which has F ′ · AK = 0. We finally compute

F ′ · Dk = 28βk − 182k + 8β − 48.

The inequality β < (91k + 24)/(14k + 4) then implies F ′ · Dk < 0, contradicting that

Dk is nef.

If D is nef, then Dk is nef for every k ≥ 1. As k → ∞, we find α̂(IK) ≥ 13
2 . Since

α̂(IK) ≤ 13
2 by Proposition 3.1, we conclude that α̂(IK) = 13

2 . �

Since our computation of the Waldschmidt constant for the Wiman configuration

will be sharp, the analogous lemma for the Wiman is easier.

Lemma 3.4. If D = 36H − E5 − 2E4 − 3E3 is nef on XW , then

α̂(IW ) = 27

2
.

Note that D2 = 0 and D · AW = 0. Also, D is pseudo-effective by the proof of

Proposition 3.2.

Proof. Suppose D is nef and that there is a rational number β such that

α̂(IW ) < β <
27

2
,

so that the Q-divisor class F = βH − E5 − E4 − E3 is effective. Then

F · D = 36β − 36 − 90 − 360 = 36
(

β − 27

2

)

< 0,

contradicting that D is nef. Therefore α̂(IW ) ≥ 27
2 , and equality holds by Proposition 3.2.

�

4 Invariant linear series

Our goal is to use Lemmas 3.3 and 3.4 to establish lower bounds on the Waldschmidt

constant for the Klein and Wiman configurations. Let G = GL act on XL. To use either

lemma, we must show some particular pseudo-effective, G-invariant divisor class D

on the blowup XL is nef. While we will not need to directly apply the next lemma,

it motivates our study of invariant curves of negative self-intersection. The proof is

straightforward, so we omit it.
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Negative Curves on Symmetric Blowups 19

Lemma 4.1. Suppose D is a G-invariant divisor class on XL which is a limit of

G-invariant effective Q-divisors. If D is not nef, then there is a G-invariant, G-irreducible

curve B on XL such that D · B < 0 and B2 < 0.

Since the divisors appearing in Lemmas 3.3 and 3.4 intersect the class AL of the

line configuration nonnegatively, it is enough to study negative curves other than AL.

Lemmas 2.1 and 2.4 tell us that the defining equation of any G-irreducible curve other

than AL is a polynomial in the fundamental invariant forms �4, �6, �14 if L = K (resp.

�6, �12, �30 if L = W). This motivates the next definition.

Definition 4.2.

(1) If L = K, let T = C[�4, �6, �14] ⊂ S. For integers m4, m3 ≥ 0, we let

Td(−m4E4 − m3E3) ⊂ Td

denote the subspace of forms of degree d which are m4-uple at the 21

quadruple points of K and m3-uple at the 28 triple points of K.

(2) If L = W, let T = C[�6, �12, �30] ⊂ S. For integers m5, m4, m3 ≥ 0, we let

Td(−m5E5 − m4E4 − m3E3) ⊂ Td

denote the subspace of forms of degree d which are m5-uple at the 36

quintuple points of W, m4-uple at the 45 quadruple points of W, and m3-

uple at the 120 triple points of W.

For example, for L = K, elements of the vector space Td(−m4E4 − m3E3) define

G-invariant curves in the linear series |dH − m4E4 − m3E3| on XK.

Remark 4.3. Since there are two orbits of 60 triple points in W, it also makes sense to

assign different multiplicities at the different orbits. We will not need this more general

construction, however.

Several questions are immediate. What is the dimension of Td(−m4E4 − m3E3)?

Is there an expected dimension for this series? When the series is nonempty, is there a

(G-)irreducible curve in the series? In this section we propose a definition of the expected

dimension which gives a lower bound on the actual dimension. The other questions will

be taken up in some specific cases in later sections.
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20 T. Bauer et al.

4.1 Leading terms of invariants

In this subsection we prove general results about the leading term of an invariant form

when expressed in local coordinates at a point p ∈ P
n. We set up our initial discussion in

such a way that it will apply to both the Klein and Wiman configurations. These results

allow us to quantify the number of conditions required for an invariant form to have an

m-uple point at one of the points in the configuration.

4.1.1 Leading terms in general

Let p ∈ P
n and let S be the homogeneous coordinate ring of Pn. Suppose G̃p ⊂ GLn+1(C)

is a finite group which fixes p and let Gp be the image of G̃p in PGLn+1(C). Then the

kernel of G̃p → Gp is cyclic of some order m ≥ 1, generated by the scalar matrix ωI with

ω = e2π i/m. If there is a G̃p-invariant form 0 �= �d ∈ Sd, this forces m|d. On the other

hand, if d satisfies m|d, then the action of G̃p on Sd descends to an action of Gp on Sd

since ωI acts by the identity on Sd.

Let Ip ⊂ S be the homogeneous ideal of p. Since G̃p fixes p, the powers Ik
p are all

G̃p-invariant, so G̃p acts on the quotients Ik
p/Ik+1

p and on their graded pieces (Ik
p/Ik+1

p )d.

If m|d, then Gp also acts on (Ik
p/Ik+1

p )d. Then the next lemma is obvious but crucial.

Lemma 4.4. Suppose 0 �= �d ∈ (Ik
p)d is G̃p-invariant (so m|d and k ≤ d). Then the

element �d ∈ (Ik
p/Ik+1

p )d is both G̃p- and Gp-invariant.

Now let (Op,mp) be the local ring of Pn at p. Then both G̃p and Gp act on Op and

the powers mk
p are invariant, so that mk

p/mk+1
p is both a G̃p- and Gp-module. To identify

the Gp-modules (Ik
p/Ik+1

p )d more geometrically, it is useful to compare them with the

symmetric powers

Symk mp/m2
p

∼= mk
p/mk+1

p

of the cotangent space.

Lemma 4.5. Let W be the one-dimensional G̃p-module (S/Ip)1, and let w ∈ S1 be a linear

form not passing through p. If k ≤ d then there is an isomorphism of G̃p-modules

(
Ik
p/Ik+1

p

)

d
∼= mk

p/mk+1
p ⊗ W⊗d

F �→ F

wd
⊗ wd
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Negative Curves on Symmetric Blowups 21

Again the proof is clear. In the situations of this paper we can further assume

d is such that W⊗d is trivial. We combine the observations in this subsection in the

following form.

Corollary 4.6. Suppose 0 �= �d ∈ (Ik
p)d is G̃p-invariant and that d is a multiple of the

order of any linear character of G̃p. Let w ∈ S1 be a linear form not passing through p.

Then the element

�̃d := �d/wd ∈ mk
p/mk+1

p

is Gp-invariant. Thus if �̃d �= 0 then it spans a trivial Gp-submodule of mk
p/mk+1

p

Proof. The assumptions on d and Lemma 4.5 show that there is an isomorphism

(Ik
p/Ik+1

p )d
∼= mk

p/mk+1
p of both G̃p-modules and Gp-modules, with �d on the left

corresponding to �̃d on the right. Then �d is Gp-invariant by Lemma 4.4, so �̃d is also

Gp-invariant. �

Example 4.7. For arbitrary group actions the conclusion of Corollary 4.6 can fail

without the assumption on d. For example, let p = [0 : 1] ∈ P
1 and let Z/2Z = G̃p = Gp

act on the homogeneous coordinate ring of P
1 by x �→ x, y �→ −y. Then x ∈ (Ip)1 is Gp-

invariant, but x/y ∈ mp/m2
p is not.

4.1.2 Leading terms for the Klein and Wiman configurations

We next combine Corollary 4.6 with some simple representation theory to heavily

restrict the leading terms of an invariant form vanishing at a point in one of the line

configurations. For L = K or W, we let G and G̃ be the relevant groups (taking G̃ = G

if L = K), and apply Corollary 4.6 to the stabilizers Gp and G̃p of a point p in the

configuration.

Lemma 4.8. Let L = K or W, and let p ∈ P
2 be any point of the configuration.

(1) If p is a point of multiplicity n in L, then Gp ∼= D2n and the Gp-module

U = mp/m2
p is irreducible of dimension 2. We have an isomorphism of

Gp-modules

mk
p/mk+1

p
∼= Symk U,

and the ring of invariants (Sym U)Gp of the symmetric algebra is a polynomial

algebra C[u, v] where deg u = 2 and deg v = n.
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(2) Fix a linear form w not passing through p. If �d ∈ Sd is a G̃-invariant form

of even degree which vanishes to order at least k at p, then �̃d := �d/wd ∈
mk

p/mk+1
p is Gp-invariant.

Proof.

(1) The fact that Gp ∼= D2n was discussed in the preliminaries. If n �= 4, then

the permutation representation of Gp on the lines in L through p is faithful,

and hence the action on U is also faithful. When n = 4, the permutation

representation is not faithful as the central element of D8 acts trivially on

the lines. However, the central element acts on U by multiplication by − 1,

so U is still a faithful representation in this case. If U was not irreducible,

then it would be a direct sum of one-dimensional representations and the

image of D2n in GL(U) would be abelian. Since U is faithful, we conclude that

it is irreducible. The displayed isomorphism is obvious. The computation of

the ring of invariants of SymU is well-known; see [3] or [35].

(2) For the Klein configuration, we have G̃p = Gp = D2n for n = 3 or 4, and all

linear characters of G̃p have order dividing 2. For the Wiman configuration,

we have G̃p = D2m × Z/3Z since there are no nontrivial central extensions

of D2m by Z/3Z for 3 ≤ m ≤ 5. Then the values of the linear characters of G̃p

are 6th roots of unity. Any G̃-invariant form �d of even degree has degree

divisible by 6 (see §2.5). In either case, the result follows from Corollary 4.6.

�

The next corollary is an immediate consequence. It is a surprisingly powerful tool

for determining explicit equations of invariants with prescribed multiplicities. See

Sections 5 and 6 for applications.

Corollary 4.9. Let L = K or W, let p ∈ P
2 be a point of the configuration, and let w

be a linear form not passing through p. If �d ∈ Sd is a G̃-invariant form of even degree

which vanishes at p, then it vanishes to order at least 2 at p, and �̃d = �d/wd lies in the

one-dimensional trivial Gp-submodule of m2
p/m3

p.

4.2 Expected dimension

Here we use Lemma 4.8 to count the number of (not necessarily independent) linear

conditions it is for an invariant form to have assigned multiplicities at the points in

either the Klein or Wiman configurations.
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Negative Curves on Symmetric Blowups 23

Definition 4.10. We let condn(m) be the number of monomials of degree less than m in

a polynomial algebra C[u, v] where deg u = 2 and deg v = n.

(1) If L = K, then the expected dimension edim(Td(−m4E4 − m3E3)) is

max{dim Td − cond4(m4) − cond3(m3), 0}.

(2) If L = W, then the expected dimension edim(Td(−m5E5 − m4E4 − m3E3)) is

max {dim Td − cond5(m5) − cond4(m4) − 2 cond3(m3), 0}

(Recall that in the case of the Wiman configuration there are two orbits of triple

points.) We can now prove our main result in this section.

Theorem 4.11. If L = K, then

dim(Td(−m4E4 − m3E3)) ≥ edim(Td(−m4E4 − m3E3)).

The analogous result holds for L = W.

Proof. Let V ⊂ Td be any subspace. Fix an n-uple point in the configuration p ∈ L with

stabilizer D2n, and fix a linear form w not passing through p. For k ≥ 0, write Vk ⊂ V for

the subspace of forms which are at least k-uple at p. By Lemma 4.8 (2), the map

rk : Vk → mk
p

m
k+1
p

�d �→ �d/wd

has image contained in the subspace (mk
p/mk+1

p )Gp of invariants, and its kernel is Vk+1.

Therefore

dim Vk+1 = dim ker rk ≥ dim Vk − dim
(
mk

p/mk+1
p

)Gp
.

Then the subspace Vm ⊂ V has codimension at most condn(m) by Lemma 4.8 (1).

The theorem is proved by starting from V = Td and applying the above

discussion once for each orbit of points in the configuration. �
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24 T. Bauer et al.

We conclude the section by investigating some of the immediate consequences

of the theorem, as well as by indicating how to compute the terms in the formula for the

expected dimension.

Example 4.12. We record some small values of condn(m) for easy access.

m cond3(m) cond4(m) cond5(m)

1 1 1 1

2 1 1 1

3 2 2 2

4 3 2 2

5 4 4 3

6 5 4 4

7 7 6 5

8 8 6 6

Example 4.13. To aid in the computation of expected dimensions, note that for L = K
the dimension of the vector space Td is the coefficient of td in the Taylor expansion of

the rational function

1

(1 − t4)(1 − t6)(1 − t14)
= 1 + t4 + t6 + t8 + t10 + 2t12 + 2t14 + 2t16 + 3t18 + · · · .

A similar formula holds for the Wiman configuration. Similarly, condn(m) is the

coefficient of tm in the Taylor expansion of the rational function

t

(1 − t)(1 − t2)(1 − tn)
.

Example 4.14. On XK, we have dim T18 = 3. Therefore T18(−4E4) has expected

dimension 1, and there is an effective invariant curve of class 18H − 4E4. It has self-

intersection −12.

Similarly, dim T42 = 9, so T42(−8E3) has expected dimension 1. Therefore there

is an invariant curve of class 42H − 8E3. It has self-intersection −28. We will study

this curve in more detail in Section 5 to give our best bound on α̂(IK) that doesn’t use

substantial computer computations.

Example 4.15. On XW , we have dim T90 = 18. Therefore T90(−4E4 − 8E3) has expected

dimension 0. However, we will see in Section 6 that there is actually a unique
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Negative Curves on Symmetric Blowups 25

G-irreducible curve of class 90H − 4E4 − 8E3; it has self-intersection −300. The “local”

linear conditions at each of the orbits of points in the configuration are not independent.

Studying this unexpected curve in detail will allow us to compute α̂(IW ) exactly.

Example 4.16. We can use Theorem 4.11 to find many additional interesting effective

classes of negative self-intersection on XK. We generate a list of effective divisor classes

C0, C1, C2, . . . of negative self-intersection which meet all other classes on the list

nonnegatively. This list further has the property that any class D = Td(−m4E4 − m3E3)

with negative self-intersection and positive expected dimension with degree 0 < d ≤
135786 and mi ≥ 0 meets one of the curves on the list with smaller degree negatively.

C0 = 21H − 4E4 − 3E3

C1 = 18H − 4E4 − 0E3

C2 = 42H − 0E4 − 8E3

C3 = 144H − 4E4 − 27E3

C4 = 804H − 28E4 − 150E3

C5 = 2706H − 100E4 − 504E3

C6 = 7728H − 288E4 − 1439E3

C7 = 40992H − 1534E4 − 7632E3

C8 = 135786H − 5088E4 − 25280E3

C9 = 386880H − 14500E4 − 72027E3

C10 = 2049732H − 76828E4 − 381606E3

C11 = 6787218H − 254404E4 − 1263600E3

Every class Ci with i ≥ 1 has expected dimension 1 (note that the expected dimension of

C0 has not been defined). There are far more open questions than settled ones here. Can

this list be extended infinitely? Does every G-invariant curve of negative self intersection

eventually appear on the list? Are these classes representable by G-irreducible curves?

Example 4.17. Notice that for the Klein configuration the series T42(−8E4 − 6E3)

consists of the divisor 2AK, where AK is the line configuration. However, the expected

dimension is 0.
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26 T. Bauer et al.

Example 4.17 shows that if negative curves are in the base locus then the

expected dimension can differ from the actual dimension. Computer calculations which

we have carried out in the Klein case suggest that equality holds on the Klein blowup

unless there is a negative curve in the base locus. We thus formulate the following

SHGH-type conjecture.

Conjecture 4.18. Let D = dH − m4E4 − m3E3 be a divisor on XK. If D.C ≥ 0 for every

G-invariant, G-irreducible curve C of negative self-intersection with degree less than d,

then

edim (Td(−m4E4 − m3E3)) = dim (Td(−m4E4 − m3E3)) .

Remark 4.19. The conjecture has been checked by computer when d < 144. First we

computed the list of negative curves of degree less than 144; see Example 4.16 and

Theorem 5.7. Then we checked that dim Td(−m4E4 − m3E3) = edim Td(−m4E4 − m3E3)

whenever the multiplicities are critical, meaning that either

(1) increasing either of the multiplicities would either make the series intersect

a negative curve negatively or make edim = 0, or

(2) edim = 0, but decreasing either of the multiplicities makes the edim positive.

Note that if a non-critical series of invariants has edim > 0 and dim �= edim, then

increasing the multiplicities to get a critical series with edim > 0 will give a series

with dim �= edim. There are then not that many series to check, and the function

series(d,m,n) in the Supplementary Material runs quickly enough to compute the

necessary dimensions in a couple hours on an ordinary desktop computer.

5 Negative invariant curves on XK

In this section we study the curve B of class 42H − 8E3 on XK which was first discussed

and proved to exist in Example 4.14. Our goal is to prove the following theorem.

Theorem 5.1. There is a unique curve B of class 42H − 8E3 on XK. It is G-invariant,

G-irreducible, and reduced.

The main difficulty is to show that this curve is G-irreducible; this will require

that we find its precise equation. To make this computation tractable, we make heavy

use of the results of Section 4.1. The G-irreducibility of this curve has the following

application to Waldschmidt constants. Recall the definition of the divisor class Dk =
(28k + 2)H − 2kE4 − 5kE3 from Lemma 3.3.
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Negative Curves on Symmetric Blowups 27

Corollary 5.2. The divisor D16/7 is nef on XK. Therefore

6.444 ≈ 58

9
≤ α̂(IK) ≤ 6.5.

Proof. Let AK be the class of the line configuration. By Theorem 5.1, the divisor class

8AK + 7B = 7D16/7

is effective. Both AK and B are G-irreducible, so since AK · D16/7 > 0 and B · D16/7 > 0

we conclude that D16/7 is nef. The inequalities follow from Lemma 3.3 and

Proposition 3.1. �

We will close the section with an indication of how to improve the bound with

substantial computer computations.

5.1 An alternate set of invariants.

The equation of the curve B is most naturally described in terms of an alternate set of

invariants �4, �6, �12, �14, where �d has degree d. These new invariants are defined

by incidence conditions with respect to the triple points in K. While the degree 4 and 6

invariants are uniquely determined up to scale, there are pencils of degree 12 and degree

14 invariants, spanned by 〈�3
4, �2

6〉 and 〈�2
4�6, �14〉, respectively. We let �12 and �14 be

the unique (up to scale) invariants passing through a triple point p ∈ P
2 of the config-

uration K. For clarity and to make the computation as conceptual as possible, we do

not worry about the particular multiples of the invariants until later. By Corollary 4.9,

�12 and �14 are actually both double at p. Furthermore, in local affine coordinates

centered at p, their leading terms are proportional.

Let x̃, ỹ be affine local coordinates centered at p, so that mk
p is identified with

(̃x, ỹ)k. Let w be a linear form not passing through p, and write �̃d = �d/wd ∈ Op. Then

we can find elements Ai, Bi, Ci, Di ∈ C[̃x, ỹ] which are homogeneous of degree i such that

�̃14 ≡ A2 + A3 (mod m4
p)

�̃12 ≡ B2 + B3 (mod m4
p)

�̃6 ≡ C0 + C1 (mod m2
p)

�̃4 ≡ D0 + D1 (mod m2
p).
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28 T. Bauer et al.

By Corollary 4.9, there are constants μ, ν ∈ C such that

A2 = μB2

C0 = νD0.

Furthermore, the invariant C2
0�3

4 − D3
0�2

6 vanishes at p and so must be double at p.

Therefore

0 ≡ C2
0�̃3

4 − D3
0�̃2

6 ≡ 3C2
0D2

0D1 − 2C0C1D3
0 ≡ νD4

0(3νD1 − 2C1) (mod m2
p)

which gives a relation

C1 = 3

2
νD1.

Remark 5.3. The constants μ, ν, D0 depend on the choice of linear form w and the

choice of a particular triple point p. However, if we view μ, ν, D0 as having degrees

2,2,4 respectively, then degree 0 homogeneous expressions in these constants do not

depend on these choices (although they do depend on the particular normalizations of

the invariants �d). For example, νD0/μ3 is the unique constant α ∈ C such that

α�3
14 ≡ �6�3

12 (mod I7
p)

where Ip is the homogeneous ideal of p, and applying the group action gives the same

identity for any other choice of triple point.

We will abuse notation and write, for example,
(

�6�3
12

�3
14

)

(p) := νD0

μ3

when we wish to emphasize the intrinsic nature of such constants. While the constants

μ, ν, D0 are typically horrendous, such degree 0 combinations are frequently very simple.

5.2 Equation of the curve of class 42H − 8E3

For constants λi ∈ C, we consider the curve defined by

�42 := λ1�3
14 + λ2�4�2

12�14 + λ3�6�3
12 = 0.

When the constants λi are chosen appropriately, the curve �42 = 0 will be the curve B

that we are searching for. We now determine the correct constants λi.
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Negative Curves on Symmetric Blowups 29

Lemma 5.4. The curve �42 = 0 is 7-uple at p if and only if

μ3λ1 + μD0λ2 + νD0λ3 = 0.

Proof. We expand the expression for �̃42, working mod m7
p. We have

�̃42 = λ1�̃3
14 + λ2�̃4�̃2

12�̃14 + λ3�̃6�̃3
12

= λ1A3
2 + λ2D0B2

2A2 + λ3C0B3
2

= (λ1μ3 + λ2μD0 + λ3νD0)B3
2,

from which the result follows. �

The next computation is similar albeit slightly more complicated.

Lemma 5.5. The curve �42 = 0 is 8-uple at p if it is 7-uple at p and

2μλ2 + 3νλ3 = 0.

More intrinsically, the curve �42 = 0 is 8-uple at p if the λi satisfy the system

λ1 + 1

3

(
�4�2

12

�2
14

)

(p) · λ2 = 0

λ2 + 3

2

(
�6�12

�4�14

)

(p) · λ3 = 0.

Proof. Suppose the curve is 7-uple at p. We collect the degree 7 terms in the expansion

of �̃42 as follows, working mod m8
p.

�̃42 = λ1�̃3
14 + λ2�̃4�̃2

12�̃14 + λ3�̃6�̃3
12

= λ1

(
3A2

2A3

)
+ λ2

(
D0B2

2A3 + 2D0B2B3A2 + D1B2
2A2

)
+ λ3

(
3C0B2

2B3 + C1B3
2

)

= λ1(3μ2B2
2A3) + λ2

(
D0B2

2A3 + 2μD0B2
2B3 + μD1B3

2

)
+ λ3

(

3νD0B2
2B3 + 3

2
νD1B3

2

)

.
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Divide this expression by the common factor B2
2 and then collect the coefficients of A3,

B3, and D1B2 to see that if the λi satisfy the system

⎛

⎜
⎜
⎜
⎜
⎝

3μ2 D0 0

0 2μD0 3νD0

0 μ 3
2ν

μ3 μD0 νD0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

λ1

λ2

λ3

⎞

⎟
⎟
⎠ = 0

then �42 is 8-uple at p (the fourth equation here is the requirement that �42 be 7-uple at

p, by Lemma 5.4). This matrix has rank 2, from which the first part of the result follows.

The second part of the result follows since the above system of 4 equations

is equivalent to the system consisting of the 1st and 3rd equations. Dividing through

to obtain coefficients which are homogeneous of degree 0 (see Remark 5.3) proves the

second statement. �

Having found the linear conditions which must be satisfied for �42 to be 8-uple

at p, we now fix specific multiples of the invariants �d in order to compute the explicit

equation. We put

�4 = 2

3
�4

�6 = 2�6

�12 = 2�3
4 − �2

6

�14 = 1

11
�14 − 8

33
�2

4�6.

where the �d are the standard invariants of Section 2.4. If p = [1 : 1 : 1] ∈ P
2 is a triple

point in K then

φ(p) := [�4(p) : �6(p) : �14(p)] = [3 : −2 : −48],

from which we see that the above invariants �d have the required incidence properties.

Corollary 5.6. If the invariants �d are normalized as above, then the curve

2�3
14 − 3�4�2

12�14 + �3
12�6 = 0

is 8-uple at a triple point p ∈ K.
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Proof. A straightforward computation shows that

(
�4�2

12

�2
14

)

(p) =
(

�6�12

�4�14

)

(p) = 2

Picking λ3 = 1, the explicit equation follows from Lemma 5.5. �

5.3 G-irreducibility of the curve of class 42H − 8E3

Now that we have the equation of the curve of class 42H − 8E3, the proof of Theorem 5.1

is easy.

Proof of Theorem 5.1. Consider the curve B in P
2 defined by the equation

2�3
14 − 3�4�2

12�14 + �6�3
12 = 0,

where the invariants are normalized as in Corollary 5.6. We will make use of the

modified quotient map

ψ : P2 → P(4, 6, 14)

p �→ [
�4(p) : �6(p) : �14(p)

]
.

To see that B is G-irreducible, it is enough to see that the curve B′ in P(4, 6, 14)

defined by the equation

F(w0, w1, w2) := 2w3
2 − 3

(
2w3

0 − w2
1

)2
w0w2 +

(
2w3

0 − w2
1

)3
w1 = 0

is irreducible, since then any irreducible component of B dominates B′. If B′ is not

irreducible, then there is a factorization of the form

F =
(
F2w2

2 + F1w2 + F0

)
(G1w2 + G0)

where the Fi, Gi ∈ C[w0, w1] are weighted homogeneous of appropriate degrees to make

the factors weighted homogeneous. Comparing coefficients, F2G1 = 2, so F2 and G1 are

both constant. Therefore deg G0 = 14 and G0 divides (2w3
0 − w2

1)3w1. But 2w3
0 − w2

1 is

irreducible of degree 12, so this is clearly impossible. Therefore B′ is irreducible.

Note that ψ is unramified over a general point in B′ since B′ is not the branch

divisor, so B is reduced since B′ is.
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Finally, to see that B is unique, consider the complete linear series |42H − 8E3|

on XK. Since B2 < 0 on XK, there is a curve in the base locus of this linear series. Since

the divisor class 42H − 8E3 is G-invariant, its base locus is also G-invariant. But then

since B has a single orbit of irreducible components, it follows that the only curve in the

series is B. �

5.4 Computer calculations

To show that a divisor class Dk = (28k + 2)H − 2kE4 − 5kE3 is nef, one approach is to clas-

sify all G-invariant, G-irreducible curves on XK of negative self-intersection of degree

≤ 28k + 2 and verify that they meet Dk nonnegatively. A computer can carry out this

computation in small degrees. See the Supplementary Material for the methods used.

Theorem 5.7. The only G-invariant, G-irreducible curves of negative self-intersection

on XK with degree ≤ 200 are of class 21H − 4E4 − 3E3, 18H − 4E4, 42H − 8E3, and 144H

− 4E4 − 27E3. Therefore D7 is nef, and

6.480 ≈ 661

102
≤ α̂(IK) ≤ 6.5.

In light of our computational evidence, the following conjecture seems

reasonable.

Conjecture 5.8. The divisor D = 28H − 2E4 − 5E3 on XK is nef. Therefore

α̂(IK) = 13

2
.

6 A negative invariant curve on XW

Here we prove that for the Wiman configuration we have α̂(IW ) = 27
2 . As with the Klein

configuration, the computation relies on finding a single interesting invariant curve of

negative self-intersection. While the curve we studied for the Klein configuration was

guaranteed to exist since the expected dimension of the series was positive, in this case

the expected dimension is 0 and the existence of the curve is quite surprising. Our main

focus of the section is to prove the following theorem.

Theorem 6.1. There is a unique curve B of class 90H − 4E4 − 8E3 on XW . It is

G-invariant, G-irreducible, and reduced.
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The computation of the Waldschmidt constant is an immediate corollary.

Corollary 6.2. The divisor D = 36H − E5 − 2E4 − 3E3 on XW is nef. Therefore

α̂(IW ) = 27

2
.

Proof. Let AW be the class of the line configuration. By Theorem 6.1, the divisor class

2AW + 3B = 10D

is effective. Both AW and B are G-irreducible. Then since D ·AW = D ·B = 0, we conclude

D is nef. Lemma 3.4 completes the proof. �

As with the case of the Klein configuration, we begin by determining the explicit

equation of the curve. We then use the equation to prove G-irreducibility, which is

somewhat more involved in this case.

6.1 An alternate set of invariants

As with the Klein configuration, the equation of the curve B is most easily described in

terms of a different set of invariants defined by incidence properties with the points in

the configuration. Let p4, p3, p3 be a quadruple point and two triple points in different

G-orbits. We consider invariants �6, �12, �24, �30 specified by the following incidence

conditions. There is a pencil of invariant forms of degree 12, and we let �12 pass through

p4. There is a three-dimensional vector space of invariant forms of degree 24, and we

choose �24 to pass through p3 and p3. Finally, there is a four-dimensional vector space

of invariant forms of degree 30, and we choose �30 to pass through all three points

p4, p3, p3.

Fix a linear form w meeting none of the points in the configuration, and put

�̃d = �d/wd. As with the Klein configuration, Corollary 4.9 shows that when we express

the functions �̃d in affine local coordinates around p3 or p3, we get expansions

�̃30 ≡ A2 + A3 (mod m4
p3

) �̃30 ≡ A2 + A3 (mod m4
p3

)

�̃24 ≡ B2 + B3 (mod m4
p3

) �̃24 ≡ B2 + B3 (mod m4
p3

)

�̃12 ≡ C0 + C1 (mod m2
p3

) �̃12 ≡ C0 + C1 (mod m2
p3

)

�̃6 ≡ D0 + D1 (mod m2
p3

) �̃6 ≡ D0 + D1 (mod m2
p3

).
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There are constants μ, ν, μ, ν ∈ C such that

A2 = μB2 A2 = μB2

C0 = νD0 C0 = νD0.

Since the invariant D2
0�12 − C0�2

6 vanishes at p3, it is double at p3, and thus

0 ≡ D2
0�̃12 − C0�̃2

6 ≡ D2
0C1 − 2C0D0D1 ≡ D2

0(C1 − 2νD1) (mod m2
p3

),

so that

C1 = 2νD1

C1 = 2νD1.

We can also expand �̃d in local coordinates around p4; this turns out to be

considerably simpler. Observe that [0 : 0 : 1] is one of the quadruple points of the

configuration, so there is no need to change coordinates to express an invariant �d

in local coordinates at p4. The presence of the transformations R1 and R2 in the group

G̃ imply that if xaybzc is a monomial which appears in a G̃-invariant homogeneous form

�d then a, b, c have the same parity. If d is divisible by 6, then the exponents must all

be even. It follows that the functions �̃d have expansions

�̃30 ≡ Â2 (mod m4
p4

)

�̃24 ≡ B̂0 (mod m2
p4

)

�̃12 ≡ Ĉ2 (mod m4
p4

)

�̃6 ≡ D̂0 (mod m2
p4

).

By Corollary 4.9 there are also constants μ̂, ν̂ ∈ C defined so that

Â2 = μ̂Ĉ2

B̂0 = ν̂D̂0.

6.2 Equation of the curve of class 90H − 4E4 − 8E3

For constants λi ∈ C, we study the curve �90 = 0 with equation

�90 := λ1�3
30 + λ2�6�24�2

30 + λ3�2
6�2

24�30 + λ4�12�2
24�30 + λ5�6�12�3

24 = 0,
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Negative Curves on Symmetric Blowups 35

and seek to determine values for the λi that will make �90 = 0 be the curve B that we

are looking for. The main difference with the Klein case is that we now have 3 orbits of

points at which to assign multiplicities. We begin with the point p4 since it is the most

different from the Klein.

Lemma 6.3. The curve �90 is 4-uple at p4 if and only if

μ̂λ3 + ν̂λ5 = 0.

Intrinsically, the curve is 4-uple at p4 if and only if

λ3 +
(

�12�24

�6�30

)

(p4) · λ5 = 0.

Proof. We expand �̃90 at p4, working mod m4
p. We have

�̃90 = λ1�̃3
30 + λ2�̃6�̃24�̃2

30 + λ3�̃2
6 �̃2

24�̃30 + λ4�̃12�̃2
24�̃30 + λ5�̃6�̃12�̃3

24

= λ3D̂2
0B̂2

0Â2 + λ5D̂0Ĉ2B̂3
0

= (λ3μ̂̂ν2 + λ5ν̂3)D̂4
0Ĉ2,

from which the result is immediate. �

Next we consider the requirement for �90 to be 7-uple at one of the triple points.

Lemma 6.4. The curve �90 is 7-uple at p3 if and only if

μ3λ1 + μ2D0λ2 + μD2
0λ3 + μνD0λ4 + νD2

0λ5 = 0.

Proof. Expand �̃90 at p3, working mod m7
p3

. We get

�̃90 = λ1�̃3
30 + λ2�̃6�̃24�̃2

30 + λ3�̃2
6 �̃2

24�̃30 + λ4�̃12�̃2
24�̃30 + λ5�̃6�̃12�̃3

24

= λ1A3
2 + λ2D0B2A2

2 + λ3D2
0B2

2A2 + λ4C0B2
2A2 + λ5D0C0B3

2

= λ1μ3B3
2 + λ2μ2D0B3

2 + λ3μD2
0B3

2 + λ4μνD0B3
2 + λ5νD2

0B3
2

= (λ1μ3 + λ2μ2D0 + λ3μD2
0 + λ4μνD0 + λ5νD2

0)B3
2,

which proves the result. �
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Next we analyze the further condition which gives that �90 is 8-uple at a triple

point.

Lemma 6.5. The curve �90 is 8-uple at p3 if it is 7-uple at p3 and

3μ2λ1 + 2μD0λ2 + D2
0λ3 + νD0λ4 = 0.

Intrinsically, the curve is 8-uple at p3 whenever the λi satisfy the system

3 · λ1 + 2
(

�6�24

�30

)

(p3) · λ2 +
(

�2
6�2

24

�2
30

)

(p3) · λ3 +
(

�12�2
24

�2
30

)

(p3) · λ4 = 0

λ2 + 2
(

�6�24

�30

)

(p3) · λ3 + 2
(

�12�24

�6�30

)

(p3) · λ4 + 3

(
�12�2

24

�2
30

)

(p3) · λ5 = 0.

Proof. The proof is highly similar to the proof of Lemma 5.5, so we omit it. �

In total, we have found the following criterion for there to be a curve �90 = 0

with the required multiplicities.

Proposition 6.6. The curve �90 = 0 is 4-uple at p4 and 8-uple at both p3 and p3 if the

λi are a solution of the system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 2
(

�6�24
�30

)
(p3)

(
�2

6�2
24

�2
30

)

(p3)

(
�12�2

24
�2

30

)

(p3) 0

0 1 2
(

�6�24
�30

)
(p3) 2

(
�12�24
�6�30

)
(p3) 3

(
�12�2

24
�2

30

)

(p3)

3 2
(

�6�24
�30

)
(p3)

(
�2

6�2
24

�2
30

)

(p3)

(
�12�2

24
�2

30

)

(p3) 0

0 1 2
(

�6�24
�30

)
(p3) 2

(
�12�24
�6�30

)
(p3) 3

(
�12�2

24
�2

30

)

(p3)

0 0 1 0
(

�12�24
�6�30

)
(p4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1

λ2

λ3

λ4

λ5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

Proof. This follows immediately from Lemmas 6.3 and 6.5, noting that the obvious

analog of Lemma 6.5 holds for the triple point p3. �

Unfortunately we are not aware of a simple reason why the matrix in the

proposition actually has rank 4 instead of 5; this is why the existence of the curve B
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Negative Curves on Symmetric Blowups 37

is surprising. We now fix scalar multiples of the invariants �d to explicitly compute the

entries in the above matrix. We choose invariants

�6 = 2�6

�12 = 18(�2
6 − �12)

ϒ12 = �2
6 − 1

60
(15 + s)�12 s = i

√
15

ϒ12 = �2
6 − 1

60
(15 − s)�12.

�24 = ϒ12ϒ12 = �4
6 − 1

2
�2

6�12 + 1

15
�2

12.

�30 = 36

25
(2�5

6 − 11�3
6�12 + 36�6�2

12 − 27�30)

The auxiliary invariants ϒ12, ϒ12 are specified up to scale by the requirement

that they pass through p3 and p3, respectively. While they are not defined over Q in

terms of �6 and �12, the invariant �24 = ϒ12ϒ12 is defined over Q in terms of �6

and �12.

Corollary 6.7. If the invariants �d are normalized as above, then the curve

�90 := 4�3
30 − 10�6�24�2

30 − 20�2
6�2

24�30 + 10�12�2
24�30 − 5�6�12�3

24 = 0

is 4-uple at p4 and 8-uple at each of p3, p3.

Proof. We compute the entries of the matrix of Proposition 6.6, scaling the rows to

clear denominators. Putting s = i
√

15, the matrix becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

30 10 + 2s 1 + s 4s 0

0 5 5 + s 15 + 5s 6s

30 10 − 2s 1 − s −4s 0

0 5 5 − s 15 − 5s −6s

0 0 1 0 −4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The vector (4, −10, −20, 10, −5)T is evidently in the kernel. �
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6.3 G-irreducibility of the curve of class 90H − 4E4 − 8E3

With the equation of the curve B in hand, we now complete the proof of the main theorem

in this section.

Proof of Theorem 6.1. By Corollary 6.7, if we normalize the invariants �d appropri-

ately then the curve B in P
2 defined by the equation

4�3
30 − 10�6�24�2

30 − 10(2�2
6 − �12)�2

24�30 − 5�6�12�3
24 = 0

has the required multiplicities. Everything except the G-irreducibility of this curve

follows exactly as for the Klein configuration, so we focus on G-irreducibility.

Working in the weighted projective space P(6, 12, 30) with coordinates w0, w1,

w2, we define forms

L = w2
0 − 1

60
(15 + s)w1

L = w2
0 − 1

60
(15 − s)w1

Q = LL

F = 4w3
2 − 10w0Qw2

2 − 10(2w2
0 − w1)Q2w2 − 5w0w1Q3.

As in the proof of Theorem 5.1, it is enough to show that F is irreducible in C[w0, w1, w2].

First suppose that F factors into irreducible factors as

F = (F1w2 + F0)(G1w2 + G0)(H1w2 + G0),

where Fi, Gi, Hi ∈ C[w0, w1] and the factors are weighted homogeneous of degree 30.

Then F0, G0, H0 are weighted homogeneous of degree 30. We have

F0G0H0 = −5w0w1L3L
3
,

and the right hand side is already factored into irreducibles. Since w1, L, L each have

degree 12, this is absurd.
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Negative Curves on Symmetric Blowups 39

Next suppose that F factors into irreducible factors as

F = (G2w2
2 + G1w2 + G0)(H1w2 + H0) =: GH

where Gi, Hi ∈ C[w0, w1] are weighted homogeneous of the appropriate degrees.

Eliminating the possibility that F factors in this way is more delicate; for instance,

it depends on the particular numerical coefficients in the definition of F.

Since F is defined over Q and its two irreducible factors have different degrees,

if σ is a field automorphism of C then the action of σ on P(6, 12, 30) fixes the curves G = 0

and H = 0. This implies that there is some nonzero λ ∈ C such that all the coefficients of

G (resp. H) are rational multiples of λ (resp. λ−1). Eliminating λ, we may as well assume

G, H have Q-coefficients.

Let us compare coefficients of F and GH to determine the irreducible factors of

the Gi, Hi. We write ∼ to denote an equality which holds up to a scalar multiple. First

observe

G2 ∼ 1 deg G1 = 30 deg G0 = 60 H1 ∼ 1 deg H0 = 30.

Examining the coefficient of w0
2 gives

G0H0 ∼ w0w1Q3 = w0w1L3L
3
.

Since G0, H0 have Q-coefficients, the only possibility is that

G0 ∼ w1Q2

H0 ∼ w0Q.

Next, looking at the coefficient of w2
2,

G1H1 + G2H0 ∼ w0Q,

from which it follows that

G1 ∼ w0Q.
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Note that the relation G1H0 + G0H1 ∼ (2w2
0 − w1)Q2 is consistent with the factorizations

of the Gi, Hi that we have found so far, so to go further we must consider the numerical

coefficients of the factors.

Let gi, hi ∈ C be such that

G2 = g2 G1 = g1w0Q G0 = g0w1Q2 H1 = h1 H0 = h0w0Q.

Comparing coefficients gives relations

g2h1 = 4

g2h0 + g1h1 = −10

g1h0 = −20

g0h1 = 10

g0h0 = −5.

However, this system has no solutions. Indeed, the identity

(g0h1)(g0h0)(g2h0 + g1h1) = (g2h1)(g0h0)2 + (g1h0)(g0h1)2

shows that if all the equations in the system except the second are satisfied then

g2h0 + g1h1 = 4 · (−5)2 + (−20) · 102

10 · (−5)
= 38.

We conclude that F is irreducible. �

7 Generators and asymptotic resurgence

We can now use our results on Waldschmidt constants to compute the asymptotic

resurgence of the Wiman configuration and bound the asymptotic resurgence of the

Klein configuration. The main additional information we need is knowledge of the

generators of the ideal IL.

7.1 Jacobians and invariant ideals

In this subsection we prove a basic fact about the relationship between Jacobian ideals

and group actions. For this subsection only, we let S = K[x0, . . ., xn] be a polynomial ring
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Negative Curves on Symmetric Blowups 41

over a field K and suppose G is a group that acts linearly on S. For a polynomial f ∈ S

we write

∇f = [
∂f /∂x0 . . . ∂f /∂xn

]T

for the gradient vector of partial derivatives of f . We will need the following identity.

Lemma 7.1. Suppose g ∈ G acts on S via the matrix Ag ∈ GLn+1(K). For any f ∈ S we

have

g(∇f ) = A−1
g · ∇g(f ).

The proof is a straightforward application of the multivariable chain rule, so we

omit it.

Lemma 7.2. Suppose f 1, . . ., f s ∈ SG are G-invariant. Let

J = [∇f1 . . . ∇fs]

be the (n + 1) × s matrix with columns given by the gradient vectors of the f i. If IJ is the

ideal of maximal minors of J, then IJ is G-invariant.

Proof. Let g ∈ G and use Lemma 7.1 to compute the action of g on J as follows:

g(J) = g
[∇f1 . . . ∇fs

] =
[
A−1

g ∇g(f1) . . . A−1
g ∇g(fs)

]
= A−1

g

[∇f1 . . . ∇fs
] = A−1

g J.

In the displayed equation above, the penultimate equality uses that f 1, . . ., f s are G-

invariant. The identity g(J) = A−1
g J implies that the ideals of maximal minors for J and

g(J) are the same, that is, Ig(J) = IJ. Since the action of G respects the multiplicative

structure of S, in particular taking minors to minors, we also have that g(IJ) = Ig(J). We

conclude g(IJ) = IJ. �

7.2 Generators of ideals

Lemma 7.2 allows us to identify the ideals IL of the Klein and Wiman configurations

as natural ideals arising from the fundamental invariant forms. We begin with the

Klein case.
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Proposition 7.3. The homogeneous ideal IK of the 49 points in the Klein configuration

is the ideal of 2 × 2 minors of the matrix

J =
(

∂�4/∂x ∂�4/∂y ∂�4/∂z

∂�6/∂x ∂�6/∂y ∂�6/∂z

)

,

where �4, �6 are the invariants of §2.4. In particular, α(IK) = ω(IK) = 8 and IK is

minimally generated by 3 generators of degree 8.

Note that a different proof of the follow-up statements was given in [34,

Proposition 4.2].

Proof. Let I be the ideal of 2 × 2 minors of J; we prove I = IK. Since the Klein quartic

�4 = 0 is smooth, the entries of the gradient vector ∇�4 generate an ideal primary to

the maximal ideal of S = C[x, y, z]. Thus they form a regular sequence. By [18] or [37],

the occurrence of a syzygy on the generators of I given by a regular sequence implies

that the quotient S/I is Cohen-Macaulay with Hilbert-Burch matrix JT and minimal free

resolution

0 → S(−13) ⊕ S(−11) → S(−8)3 → S → S/I → 0.

In particular, I is saturated and S/I is the coordinate ring of a set of (not necessarily

reduced) points in P
2. Furthermore, the above free resolution of S/I allows us to compute

deg S/I = 49.

Since I is GK-invariant by Lemma 7.2, the support of S/I is a union of orbits of

the G-action on P
2. Additionally, S/I has the same length at each point of an orbit. By

Remark 2.2, we see that there are nonnegative integers ai such that

28a1 + 21a2 + 24a3 + 56a4 + 42a5 + 84a6 + 168a7 = 49.

The only solution in nonnegative integers to this equation is visibly a1 = a2 = 1 and ai

= 0 (i ≥ 3), corresponding to I = IK being the ideal of the triple and quadruple points of

K. �

A similar approach works for the Wiman configuration.
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Proposition 7.4. The homogeneous ideal IW of the 201 points in the Wiman configura-

tion is the ideal of 2 × 2 minors of the matrix

J =
(

∂�6/∂x ∂�6/∂y ∂�6/∂z

∂�12/∂x ∂�12/∂y ∂�12/∂z

)

,

where �6, �12 are the invariants of §2.5. In particular, α(IW ) = ω(IW ) = 16 and IW is

minimally generated by 3 generators of degree 16.

Proof. Let I be the ideal of 2 × 2 minors of J, so that I is GW -invariant by Lemma

7.2. Since the Wiman sextic �6 = 0 is smooth, the same argument as in the proof of

Proposition 7.3, shows that S/I has minimal free resolution

0 → S(−27) ⊕ S(−21) → S(−16)3 → S → S/I → 0.

The resolution implies that deg S/I = 201. As in the Klein case, by Remark 2.5 this yields

a solution in nonnegative integers to the equation

60a1 + 45a2 + 36a3 + 72a4 + 90a5 + 180a6 + 360a7 = 201.

It is easy to see that the only solution to this equation in nonnegative integers has a1 =
2, a2 = a3 = 1, and ai = 0 (i ≥ 4).

This leaves two possibilities: either I = IW , or S/I has length 2 at all of the points

in one of the orbits of triple points. In the latter case, we find that there is a length 2

scheme supported at a triple point p of the configuration W which is invariant under

Gp ∼= D6. Then the tangent direction spanned by this scheme gives a Gp-invariant

subspace of the tangent space TpP
2, contradicting Lemma 4.8 (1). Therefore I = IW . �

7.3 Asymptotic resurgence

Our results on Waldschmidt constants and our knowledge of α(IL) and ω(IL) now

provide estimates on the asymptotic resurgence of IK and allow us to compute the

asymptotic resurgence of IW exactly.

Theorem 7.5. For the Klein configuration of lines, we have

1.230 ≈ 16

13
≤ ρ̂(IK) ≤ 816

661
≈ 1.234.
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For the Wiman configuration of lines,

ρ̂(IW ) = 32

27
≈ 1.185.

Proof. Recall that for any ideal I we have

α(I)

α̂(I)
≤ ρ̂(I) ≤ ω(I)

α̂(I)
.

Since α(IL) = ω(IL) for L = K or W by Propositions 7.3 and 7.4, the result follows from

Theorem 5.7 and Corollary 6.2. �

Remark 7.6. For the Klein configuration, the weaker upper bound

ρ̂(IK) <
36

29
≈ 1.242

follows from Corollary 5.2, which did not require computer calculations. Conjecture 5.8

would imply that in fact ρ̂(IK) = 16/13.

8 Failure of containment and resurgence

The resurgences of the Klein and Wiman configurations can be computed exactly. We

begin with the failure of containment that achieves the supremum in the definition of

resurgence. In the case of the Klein configuration a computer-free but computationally

heavy proof of the next result was first given in [34]. We offer two new proofs here that

use tools from representation theory.

Proposition 8.1. If IL is the ideal of the Klein or Wiman configurations of points, then

there is a failure of containment I(3)

L �⊆ I2
L. More precisely, the product of the linear forms

defining the configuration is an element of I(3)

L which is not in I2
L.

The fact that the product of the lines is contained in I(3)

L is clear since both

configurations only have points of multiplicity 3 or higher. Our first proof makes use of

the character theory of the group.

First Proof. We begin with the Klein configuration. We claim that there are no

invariant forms in the degree 21 piece (I2
K)21. Note that (I2

K)21 is a finite-dimensional
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representation of GK. Letting S be the homogeneous coordinate ring, the multiplication

map

(I2
K)16 ⊗ S5 → (I2

K)21

is a surjective map of G-modules. Thus every irreducible submodule of (I2
K)21 appears

in (I2
K)16 ⊗ S5 by Schur’s Lemma, and in particular the induced map on G-invariants is

surjective. Thus, to prove the claim, it will be enough to show that (I2
K)16 ⊗ S5 has no

trivial submodules.

Let V = S∗
1 be the three-dimensional irreducible representation of G which gives

rise to the Klein configuration. From the character table of G (see [19]) we know that

V and V∗ are the only three-dimensional irreducible representations of G and the only

one-dimensional representation of G is the trivial representation. Since (IK)8 is three-

dimensional and contains no invariants (�4 is not in IK), we deduce that it is isomorphic

to either V or V∗. Both V and V∗ have the same symmetric square Sym2V ∼= Sym2V∗,

which is the unique irreducible six-dimensional representation of G. Then the natural

map Sym2(IK)8 → (I2
K)16 is a nonzero surjective map of G-modules since IK is generated

in degree 8 by Proposition 7.3, so it is an isomorphism by Schur’s Lemma. Since

S5 ∼= Sym5V∗, our question is to determine whether

Sym2 V ⊗ Sym5 V∗

contains a trivial submodule. This can be determined immediately from the character

of this representation, which we now compute.

First we recall the character of V∗ and Sym2V, as well as the conjugacy class

data for G. We also display some values for the character of Sym5V∗ which we will

derive in a moment. Blank entries in χSym5 V∗ will not be needed in our computation.

The conjugacy classes are labeled by the order of an element and a letter to distinguish

between several classes consisting of elements of the same order. For example, class 7A

is one of two classes consisting of elements of order 7.

c 1A 2A 3A 4A 7A 7B

#c 1 21 56 42 24 24

χV∗ 3 −1 0 1 α α

χSym2 V 6 2 0 0 −1 −1

χSym5 V∗ 21 −3 0 0

α = ζ + ζ 2 + ζ 4

ζ 7 = 1
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Observe that the indicated entries for χSym5 V are enough to prove the theorem. Indeed,

χSym2 V⊗Sym5 V∗ takes value 6 · 21 on class 1A, value 2 · (−3) on class 2A, and 0 on all other

conjugacy classes. Its inner product with the trivial character is then 0, so there are no

trivial submodules in Sym2V ⊗ Sym5V∗.

To compute the indicated values for χSym5 V∗ , we first recall how to compute the

character. Suppose the action of the group element g ∈ G on V∗ has eigenvalues λ1, λ2,

λ3. Let p(x, y, z) be the sum of all monomials in x, y, z of degree 5. Then

χSym5 V∗(g) = p(λ1, λ2, λ3).

The given entries in the character table now follow from easy combinatorics, as follows.

To compute the character on the class 2A, observe that such a group element

g acts on V∗ with eigenvalues 1, −1, −1. The number of monomials xaybzc of degree 5

such that b ≡ c (mod 2) is 9, while there are 12 monomials with b �≡ c (mod 2). Thus p(1,

−1, −1) = −3.

For the class 7B, there is a group element g acting on V∗ with eigenvalues ζ ,

ζ 2, ζ 4. If we weight the variables x, y, z with Z/7Z degrees 1, 2, 4 and partition the

monomials of (ordinary) degree 5 according to their Z/7Z-degree, we find there are

precisely 3 monomials of each Z/7Z-degree. Thus the fact that χSym5 V∗(g) = 0 follows

from the identity

1 + ζ + ζ 2 + ζ 3 + ζ 4 + ζ 5 + ζ 6 = 0.

The value on class 7A must be conjugate to the value on class 7B, so is also 0.

The argument for the Wiman configuration follows an identical outline, although

at first glance the character table is more intimidating (the full character table can be

obtained in GAP by the command CharacterTable("3.A6"), but we will only need a

very small portion of it here). In the end, however, the amount of computation we must

do is the same as for the Klein. We show there are no invariants in (I2
W )45 by showing

that (I2
W )32 ⊗ S13 has no trivial submodule.

Let V = S∗
1 be the three-dimensional representation of the Valentiner group G̃ =

G̃W which gives rise to the Wiman configuration. Again V ′ = (IW )16 is a 3-dimensional

irreducible representation, and its symmetric square Sym2V′ is isomorphic to (I2
W )32

and is an irreducible six-dimensional representation. The group G̃ has 4 different

three-dimensional irreducible characters and 2 different six-dimensional irreducible

characters; we display one of each χ3, χ6 below, choosing χ6 to be the character of the
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symmetric square of the representation corresponding to χ3. The alternate characters

are related by complex conjugation and/or an automorphism exchanging ±√
5; our

argument will not be sensitive to this. We let ψ be the character corresponding to the

13th symmetric power of the representation corresponding to χ3, and display some of

its values which we will verify. We group the conjugacy classes in a way that emphasizes

the fact that G̃ is the triple cover 3 · A6.

c 1A 3A 3B 2A 6A 6B 3C 3D 4A 12A 12B

#c 1 1 1 45 45 45 120 120 90 90 90

χ3 3 3ω 3ω2 −1 −ω −ω2 0 0 1 ω ω2

χ6 6 6ω2 6ω 2 2ω2 2ω 0 0 0 0 0

ψ 105 105ω 105ω2 −7 −7ω −7ω2

c 5A 15A 15B 5B 15C 15D

#c 72 72 72 72 72 72

χ3 −μ1 −μ1ω −μ1ω2 −μ2 −μ2ω −μ2ω2

χ6 1 ω2 ω 1 ω2 ω

ψ 0 0 0 0 0 0

ω3 = 1

μ1 = −1+√
5

2

μ2 = −1−√
5

2

As with the Klein, observe that if we establish the displayed values for ψ then

both χ6 ⊗ ψ and χ6 ⊗ ψ are orthogonal to the trivial character; the same result also

clearly holds if we define ψ in terms of any of the other conjugate three-dimensional

characters. Thus, whichever irreducible six-dimensional representation (I2
W )32 is, the

representation (I2
W )32 ⊗ S13 has no trivial submodule.

To compute the displayed values of ψ , it is enough to compute the values on

classes 2A and 5A. This is because the center of G̃ acts on the conjugacy classes by

permuting the blocks of 3 columns. Furthermore, since the values of χ3 on classes 5A

and 5B are conjugate under the automorphism exchanging ±√
5, the same holds for ψ .

The value of ψ on 2A follows from the same logic as in the Klein case. An element

of class 2A has eigenvalues 1, −1, −1. There are 49 monomials xaybzc of degree 13 with

b ≡ c (mod 2), and 56 with b�≡c (mod 2). Thus the value on 2A is − 7.

For the value of ψ on 5A, we have − μ1 = 1 + ζ 2 + ζ 3, where ζ = e2π i/5. An element

of class 5A has eigenvalues 1, ζ 2, ζ 3. Give the degree 13 monomial xaybzc a Z/5Z degree
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of 0a + 2b + 3c. Partitioning the monomials of degree 13 by their Z/5Z-degree, there are

21 monomials in each class. Since

1 + ζ + ζ 2 + ζ 3 + ζ 4 = 0,

we conclude that the value of ψ on 5A is 0. �

Our second proof uses less information about the group GL, but requires a better

understanding of the resolution of the ideal IL.

Second Proof. We handle both configurations simultaneously. Let d be the number of

lines in the configuration, and let �d be the product of the lines in the configuration.

Therefore d = 21 if L = K and d = 45 if L = W. Recall that �d is the only invariant form

of degree d up to scalars. We clearly have �d ∈ I(2)

L .

We claim that, in order to establish the desired conclusion �d �∈ I2
L, it is

sufficient to show that the degree d component (I(2)

L /I2
L)d is a one-dimensional trivial

representation of G. Indeed, suppose that is spanned by a nonzero element f̄ . Pick a

representative f ∈ I(2)

L \ I2
L for f̄ . Since g(f̄ ) = f̄ by the assumption that G acts trivially, it

follows that g(f ) − f ∈ I2
L for any g ∈ G. Summing over the group elements yields

∑

g∈G

g(f ) − |G| · f ∈ I2
L,

which shows that the G-invariant polynomial
∑

g∈G g(f ) is not in I2
L, since f �∈ I2

L. Then
∑

g∈G g(f ) is a nonzero multiple of �d since �d is the only invariant form of degree d up

to scalars, and we conclude that �d /∈ I2
L.

The rest of the proof will aim to establish that (I(2)

L /I2
L)d is a one-dimensional

vector space having trivial G action. In order to do this, the key idea is to use the action

of G on a free resolution of I2
L in order to study the action of G on the quotient I(2)

L /I2
L.

Recall from Propositions 7.3 and 7.4 that the minimal free resolution of IL has the form

0 → M → N → IL → 0, where M = S2 and N = S3. Since IL is an almost complete

intersection, the minimal free resolution for I2
L is given by the following complex (see

e.g. [32, Theorem 2.5])

0 →
2∧

M →
1∧

M ⊗S Sym1 N → Sym2 N → I2
L → 0. (4)
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We record below the explicit form of this resolution for the two ideals of interest to us,

with particular attention to the graded twists:

0 → S(−24) → S3(−21) ⊕ S3(−19) → S6(−16) → I2
K → 0

0 → S(−48) → S3(−43) ⊕ S3(−37) → S6(−32) → I2
W → 0.

Notice that the last free module in the resolution in both situations has rank one and is

generated in degree d + 3. Since in our setting we have H0
m(S/I2

L) = I(2)

L /I2
L, we can apply

local duality to perform the following computations

(
I(2)

L /I2
L
)

d
= H0

m(S/I2
L)d = Ext3

S(S, S/I2
L)∨−d−3 = Ext2

S(S, I2
L)∨−d−3.

Thus to compute the vector space dimension of
(
I(2)

L /I2
L

)

d
as well as the group

action on this vector space it suffices to examine Ext2
S(S, I2

L)−d−3. Applying the functor

HomS(−, S) to the resolutions displayed above and restricting to degree −d −3 gives in

both cases that Ext2
S(S, I2

L)−d−3 = HomC((
∧2 M)d+3,C) is a one-dimensional vector space

spanned by the dual of the generator of the last free S-module in the resolution (4). It

remains to show that G acts trivially on (
∧2 M)d+3. Let {e1, e2} be a basis for the free

module M = S2. Then (
∧2 M)d+3 = span{e1 ∧ e2} and it is in turn sufficient to show that

G acts trivially on e1 and e2 or equivalently on M/mM.

Towards this goal, we begin by analyzing the group action on the minimal free

resolution of S/IL, which is given by 0 → M → N → S → S/IL → 0. Fix an element g ∈ G.

Denote by S′ the S-module that is isomorphic to S as a ring, but carries a right S-module

structure given by f · s = f · g(s) for any f ∈ S′ and s ∈ S. Since S′ is a Cohen–Macaulay

S-module and S is regular we have that S′ is a flat S-module. Tensoring the resolution

for IL with S′ gives an exact complex 0 → M ⊗S S′ → N ⊗S S′ → S′ → S′/IL → 0. The

two resolutions fit into the rows of the commutative diagram below, with vertical maps

obtained by lifting the map φ : S → S′ that maps 1 �→ 1, denoted by the equality symbol.

Notice that this map sends s = 1 · s ∈ S �→ 1 · s = g(s) ∈ S′, thus this map represents the

action of g on S.
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In the top row of the above diagram, J denotes the Hilbert–Burch matrix for IL and �

denotes the vector of signed maximal minors of this matrix. By Propositions 7.3 and 7.4

the Hilbert–Burch matrix J is the Jacobian matrix of the two smallest degree invariants

of the relevant group acting on the set L. In the bottom row of the above diagram, J′ and

�′ are obtained by letting g act on each of the entries of J and � respectively.

Let Ag be the matrix representing the action of g on S1. From Lemma 7.1 we have

that J ′ = g(J) = A−1
g J. Next we seek an analogous description for �′. Since � is the set

of 2 × 2 minors of J, we see that �T = ∧2J. Thus we have g(�)T = g(∧2J) = ∧2(A−1
g J).

We compute this by applying the ∧2 functor to the following commutative diagram as

shown

It follows from the second diagram that

(�′)T = (∧2A−1
g )�T = Cof(A−1

g )�T = det(AT
g )AT

g �T = (�Ag)T ,

were Cof(A−1
g ) denotes the cofactor matrix and we use the property det(Ag) = 1 for all

elements of G. Thus we conclude that �′ = � · Ag.

Next we proceed to determine the maps labeled B and C in our first diagram.

The rightmost square gives � =�′B or, equivalently, � = �AgB. Hence we can pick the

lifting B = A−1
g . The leftmost square gives BJ = J′C, which becomes with our choice

for B the identity A−1
g J = A−1

g JC. Thus one can further pick C = I3. Any other choices

for B and C compatible with the above commutative diagram will be homotopic to the

choices we made above. Since any pair of homotopic maps induce the same map on the

quotient M/mM, it follows that the action of g on any basis elements of M is the same

as the action of C, namely the identity. Using the reductions made in the beginning of

the proof, this finishes the argument. �

One final result that we will need to compute the resurgence is a computation of

the regularity of the ordinary powers of the ideal IL.

Proposition 8.2. If r ≥ 2, then reg(Ir
K) = 8r + 6 and reg(Ir

W ) = 16r + 14.
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Proof. The ideal IL defines a reduced collection of points in P
2 and it is generated by

3 homogeneous polynomials of the same degree d, with d = 8 for L = K and d = 16 for

L = W (see Propositions 7.3 and 7.4). These properties allow us to use [32, Theorem 2.5]

to explicitly compute the minimal free resolution of any power Ir
L. From the minimal

free resolution we determine that reg(Ir
L) = rd + d − 2. �

We can now give the proof of Theorem 1.5, computing the resurgence of the ideal

of the Klein and Wiman configurations of points.

Proof of Theorem 1.5. By Proposition 8.1 and the Ein–Lazarsfeld–Smith theorem [17],

we need to show that if m, r are positive integers with 3
2 < m

r then I(m)

L ⊂ Ir
L; let m,

r be such integers. Recall that if α(I(m)

L ) ≥ reg Ir
L then the containment I(m)

L ⊂ Ir
L holds

by [5, §2.1].

In the case of the Klein ideal IK, we estimate α(I(m)

K ) ≥ mα̂(IK) ≥ 58
9 m by Corollary

5.2. Since reg(Ir
K) = 8r+6 by Proposition 8.2, we see that the containment I(m)

K ⊂ Ir
K holds

whenever

58

9
m ≥ 8r + 6.

It is easy to see that this inequality holds for any positive integers m, r with 3
2 < m

r .

For the Wiman ideal IW , we use Corollary 6.2 to estimate α(I(m)

W ) ≥ 27
2 m. From

reg(Ir
W ) = 16r + 14, we conclude that the containment I(m)

W ⊂ Ir
W holds if

27

2
m ≥ 16r + 14.

Again, the inequality holds for any positive integers m, r with 3
2 < m

r . �

Remark 8.3. Note that in the case of the Klein configuration we only needed to use the

weaker lower bound on α̂(IK) coming from Corollary 5.2.

9 Positive characteristic

The Klein configuration can be defined over fields of characteristics other than 0; to

be able to define the coordinates of the points of the configuration one needs the base

field to contain a root of x2 + x + 2 = 0 (see section 1.4 of [1]) and the field needs to be

sufficiently large that the resulting 49 points are different. There is reason to believe

that it behaves much as it does over the complex numbers except for characteristic 7
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(see [34]). The fact that characteristic 7 is special is suggested by the fact that it is the

only characteristic for which x2 + x + 2 = 0 has a double root (in this case x = 3). We

now consider the case of characteristic 7, as given in [22].

The configuration is described geometrically in [22] in a very simple way.

Consider the conic C defined by x2 + y2 + z2 = 0. Over the finite field K = F7 of

characteristic 7, C has 8 points and thus 8 tangents. There are 21 K-lines in P
2
K that

do not intersect C in a K-point; these are the 21 lines of the Klein configuration. There

are also 21 K-points of P2 not on any of the 8 K-tangents to C; these are the 21 quadruple

singular points of the Klein configuration. The remaining 28 singular points, which are

triple points, are the K-points on a tangent but not on C.

Theorem 9.1. Let I be the ideal of the 49 Klein points over K = F7. Then α̂(I) = 6.25

and 1.28 ≤ ρ̂(I) ≤ 1.44 < ρ(I) = 3/2.

Proof. To verify α̂(I) = 6.25, note that the 28 = (8
2

)
triple points are the pairwise

intersections of the 8 tangent lines. Thus they comprise a star configuration on these 8

lines, for which α(I(2)) is known to be the degree of the product G of the forms defining

the 8 lines [5]. Let F be the product of the linear forms for the 21 Klein lines. Then F2G

vanishes on each of the 49 points with order 8, so F2G ∈ I(8), hence α(I(8)) ≤ deg(F2G) =
50, so α̂(I) ≤ 50/8 = 6.25. (We note that this argument does not apply to the Klein

configuration of 49 points in characteristic 0, since the 28 points are not in that case a

star configuration. Alternatively, α(I(8)) = 50 can be checked in characteristic 7 explicitly

using Macaulay2. In contrast, in characteristic 0 Macaulay2 gives α(I(8)) = 54.)

For the lower bound it is enough to show that α(I(m)) ≥ 6.25m = 50m
8 for infinitely

many m ≥ 1. We used the general methods of [11] to discover the argument we now give.

We will show that α(I(8m)) ≥ 50m for all m ≥ 1.

Any form H of degree d ≤ 50m vanishing to order at least 8m at the 49 Klein

points is divisible by FG. This is because FG is a product of 21 + 8 = 29 linear factors,

and each factor vanishes on either 7 or 8 of the 49 points. But 7(8m) > 50m, so by

Bézout’s Theorem, each linear factor of FG is a factor of H. Factoring these out leaves

a form H′ of degree 50m − 29 vanishing to order at least 8m − 4 at the 21 quadruple

points and to order at least 8m − 5 at the 28 triple points. Since each linear factor of F

vanishes at 4 of the quadruple points and 4 of the triple points and since 50m − 29 <

4(8m − 4) + 4(8m − 5) as long as m ≥ 1, it follows, again by Bézout, that F divides H′,
and so for m ≥ 1 it follows that F2G divides H.
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Dividing H by F2G gives a form H∗ of degree d − 50 ≤ 50(m − 1) vanishing to

order at least 8(m − 1) at the 49 Klein points. Up to scalars, it follows by induction that

H = (F2G)m and thus that d = 50m.

Since Macaulay2 gives α(I) = 8 and ω(I) = 9, applying (1) gives the bounds 1.28 =
α(I)/α̂(I) ≤ ρ̂(I) ≤ ω(I)/α̂(I) = 9/6.25 = 1.44.

Finally we show that ρ(I) = 3/2. Macaulay2 demonstrates the failure of contain-

ment I(2) �⊂I3. Suppose m
r > 3

2 ; we need to check the containment I(m) ⊂ Ir holds. First, if

r ≤ 7 then we can check with Macaulay2 that I(m) ⊂ Ir; it suffices to only consider m =
�3r/2�. So suppose r ≥ 8. By [5], if α(I(m)) ≥ reg(Ir) then the containment I(m) ⊂ Ir holds.

Now we estimate α(I(m)) ≥ 6.25m and

reg(Ir) ≤ 2 reg(I) + (r − 2)ω(I)

by [7, Theorem 0.5]. Macaulay2 gives reg(I) = 12, so this simplifies to

reg(Ir) ≤ 9r + 6.

Since m
r > 3

2 we have m ≥ 3
2r + 1

2 , and since r ≥ 8 we have

α(I(m)) ≥ 25

4
m ≥ 75

8
r + 25

8
≥ 9r + 6 ≥ reg(Ir).

Therefore the containment I(m) ⊂ Ir holds and we conclude ρ(I) = 3/2. �
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“Resurgences for ideals of special point configurations in P
N coming from hyperplane

arrangements.” J. Algebra 443 (2015): 383–94.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnx329/4835934 by U

niversity of N
ebraska-Lincoln Libraries user on 11 June 2019



Negative Curves on Symmetric Blowups 55

[17] Ein, L., R. Lazarsfeld, and K. Smith. “Uniform behavior of symbolic powers of ideals.” Invent.

Math., 144 (2001): 241–52.

[18] Eisenbud, D. and C. Huneke. “Ideals with a regular sequence as syzygy,” Appendix to Sur

les hypersufaces dont les sections hyperplanes sont module constant by Arnaud Beauville.

Progress in Mathematics 86:132–33. Grothendieck Festschrift. Vol.1. pp.121–33.

[19] Elkies, N. D. “The Klein quartic in number theory, in The eightfold way.”, 51–101, Math. Sci.

Res. Inst. Publ., 35, Cambridge: Cambridge Univ. Press, 1999.

[20] Esnault, H. and E. Viehweg “Sur une minoration du degré d’hypersurfaces s’annulant en

certains points.” Math. Ann. 263 (1983): 75–86.

[21] Gimigliano, A. “On Linear Systems of Plane Curves.” Thesis, Kingston: Queenés University,

1987.

[22] Grünbaum, B. and J. F. Rigby. “The real configuration (214).” J. London Math. Soc. (2) 41

(1990): 336–46.

[23] Guardo, E., B. Harbourne, and A. Van Tuyl. “Asymptotic resurgences for ideals of positive

dimensional subschemes of projective space.” Adv. Math. 246 (2013): 114–27.

[24] Harbourne, B. “The Geometry of rational surfaces and Hilbert functions of points in the

plane.” Can. Math. Soc. Conf. Proc., vol.6 (1986): 95–111.

[25] Harbourne, B. and H. Huneke. “Are symbolic powers highly evolved?” J. Ramanujan Math.

Soc. 28, no. 3 (Special Issue-2013) 311–30.

[26] Harbourne, B. and A. Seceleanu. “Containment Counterexamples for ideals of various

configurations of points in P
N .” J. Pure Appl. Algebra 219, no. 4 (2015): 1062–72.

[27] Hirschowitz, A. “Une conjecture pour la cohomologie des diviseurs sur les surfaces

rationelles génériques.” J. Reine Angew. Math 397 (1989): 208–13.

[28] Hirzebruch, F. “Arrangements of lines and algebraic surfaces.” Arithmetic and Geometry,

Vol. II, Progr. Math., vol.36, 113–140. Boston: Birkhäuser Boston, 1983.

[29] Hochster, M. and C. Huneke. “Comparison of symbolic and ordinary powers of ideals.”

Invent. Math. 147, no. 2 (2002): 349–69.

[30] Klein, F. “Über die Transformation siebenter Ordnung der elliptischen Functionen.” Math.

Ann. (14) (1879): 428–71.

[31] Nagata, M. “On the fourteenth problem of Hilbert.” Amer. J. Math 81 (1959): 766–72.

[32] Nagel, U. and A. Seceleanu. “Ordinary and symbolic Rees algebras for ideals of Fermat point

configurations.” J. Algebra 468 (2016): 80–102.

[33] Segre, B. “Alcune questioni su insiemi finiti di punti in Geometria Algebrica,” In: éAtti del

Convegno Internaz. Torino: di Geom. Alg., 1961.

[34] Seceleanu, A. “A homological criterion for the failure of containment of the symbolic cube in

the square of some ideals of points in P
N .” J. Pure Appl. Algebra 219, no. 11 (2015): 4857–71.

[35] Shephard, G. C. and J. A. Todd. “Finite unitary reflection groups.” Canadian Journal of

Mathematics (1954) 6: 274–04.

[36] Szemberg, T. and J. Szpond. “On the containment problem.” Rend. Circ. Mat. Palermo 66

(2017): 233–45.

[37] S. Tohaneanu. “On freeness of divisors on P
N .” Comm. Algebra 41, no. 8 (2013): 2916–32.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnx329/4835934 by U

niversity of N
ebraska-Lincoln Libraries user on 11 June 2019



56 T. Bauer et al.

[38] Waldschmidt, M. “Propriétés arithmétiques de fonctions de plusieurs variables II.” In

Séminaire P. Lelong (Analyse), 1975–76, Lecture Notes Math.578, Springer–Verlag, 1977,

108–135.

[39] Wiman, A. “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der

Ebene.” Math. Ann.(48) (1896): 195–40.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnx329/4835934 by U

niversity of N
ebraska-Lincoln Libraries user on 11 June 2019


	Negative Curves on Symmetric Blowups of the Projective Plane, Resurgences, and Waldschmidt Constants
	1 Introduction
	1.1 Waldschmidt constants and a Nagata-type theorem
	1.2 Invariant linear series
	1.3 Explicit curves of negative self-intersection
	1.4 Resurgence, asymptotic resurgence, and failure of containment
	1.4 Conventions
	1.4 Organization of the paper

	2 Preliminaries
	2.1 Definitions and notation
	2.2 The Klein configuration of 21 lines
	2.3 The Wiman configuration of 45 lines
	2.4 Invariants and the Klein configuration
	2.5 Invariants and the Wiman configuration

	3 Nef divisors and the Waldschmidt constant
	4 Invariant linear series
	4.1 Leading terms of invariants
	4.2 Expected dimension

	5 Negative invariant curves on XK
	5.1 An alternate set of invariants.
	5.2 Equation of the curve of class 42 H - 8 E 3
	5.3 G-irreducibility of the curve of class 42 H - 8 E 3
	5.4 Computer calculations

	6 A negative invariant curve on XW
	6.1 An alternate set of invariants
	6.2 Equation of the curve of class 90 H - 4 E 4 - 8 E 3
	6.3 G-irreducibility of the curve of class 90 H - 4 E 4 - 8 E 3

	7 Generators and asymptotic resurgence
	7.1 Jacobians and invariant ideals
	7.2 Generators of ideals
	7.3 Asymptotic resurgence

	8 Failure of containment and resurgence
	9 Positive characteristic


