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The Klein and Wiman configurations are highly symmetric configurations of lines in the
projective plane arising from complex reflection groups. One noteworthy property of
these configurations is that all the singularities of the configuration have multiplicity at
least 3. In this paper we study the surface X obtained by blowing up P? in the singular
points of one of these line configurations. We study invariant curves on X in detail, with
a particular emphasis on curves of negative self-intersection. We use the representation
theory of the stabilizers of the singular points to discover several invariant curves of
negative self-intersection on X, and use these curves to study Nagata-type questions for
linear series on X.

The homogeneous ideal I of the collection of points in the configuration is
an example of an ideal where the symbolic cube of the ideal is not contained in the
square of the ideal; ideals with this property are seemingly quite rare. The resurgence

and asymptotic resurgence are invariants which were introduced to measure such
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2 T. Bauer et al.

failures of containment. We use our knowledge of negative curves on X to compute the
resurgence of I exactly. We also compute the asymptotic resurgence and Waldschmidt
constant exactly in the case of the Wiman configuration of lines, and provide estimates

on both for the Klein configuration.

1 Introduction

In recent years configurations of points in P? arising as the singular loci of line
configurations have provided examples of many interesting phenomena in commutative
algebra and birational geometry. The dual Hesse configuration of 12 points and, more
generally, the Fermat configurations of n? + 3 points studied in [14, 26, 32] arise as
singular points of Ceva line arrangements which correspond to the reflection groups
G(n, n, 3). In this paper we focus instead on the sporadic Klein and Wiman point
configurations of 49 and 201 points. These are the singular points of line arrangements
K and W arising from reflection groups PSL(2, 7) and Ag. We give a detailed study of the
surfaces Xx and Xy obtained by blowing up the points in the configuration, with the
particular goal of studying curves of negative self-intersection.

The Klein and Wiman line configurations arise naturally from subgroups G C
PGL3(C) of automorphisms of P2. In the case of the Klein configuration, we denote G
by Gy it is isomorphic to PSL(2, 7), the finite simple group of order 168 which is the

automorphism group of the Klein quartic curve
Sy +y3z+ 2y =0.

This group has 21 involutions, each of which fixes a line in P?; the Klein configuration
K consists of these 21 lines. They meet in 21 quadruple points and 28 triple points,
and have no further singularities. The group Gx acts transitively on the lines, on
the quadruple points, and on the triple points. Similarly, the Wiman configuration W
consists of 45 lines meeting in 36 quintuple points, 45 quadruple points, and 120 triple
points, and arises from a subgroup Gyy C PGL3(C) isomorphic to the alternating group

Ag. See Section 2 for additional background on the Klein and Wiman configurations.

1.1 Waldschmidt constants and a Nagata-type theorem

For a line configuration £ in P? we let I C S := Clx, y, z] denote the homogeneous ideal
of the collection of singular points in the line configuration. If I C S is the ideal of a
reduced collection of distinct points py,...,pn € P2, then we define the mth symbolic

power 1™ = (), ", where I, is the homogeneous ideal of the point p;. That is, I™™ is
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Negative Curves on Symmetric Blowups 3

the ideal generated by all homogeneous forms vanishing to order at least m at each of
the points p;. The Waldschmidt constant &(I) [13, 15, 38] is defined to be the limit
o) = lim M,
m—oco  m
where «(J), for a nonzero ideal J, denotes the minimal degree among nonzero elements
of J (see also [8, 20]). It is always true that 1 < @(I) < 4/n; for n > 10 sufficiently general
points p;, the famous conjecture of Nagata asserts that @(I) = 4/n [9, 31]. On the other
hand, for special collections of n points, the Waldschmidt constant is typically smaller
than /n. Our first main theorem, Theorem 1.1, gives our best result on the values of the

Waldschmidt constants of the ideals Ix and I}y and provides an example of this.
Theorem 1.1. For the Klein configuration K of 21 lines, we have
6.480 ~ 20! <ax) < 6.5
. ~ 102 = o(Ix) <6.5.

For the Wiman configuration W of 45 lines, we have

&) = 27
2
In each case it is fairly easy to bound the Waldschmidt constant @(I;) from above
by constructing curves with appropriate multiplicities. These upper bounds rely only on
the incidence properties of the line configuration, and in particular make minimal use
of the group G of symmetries. On the other hand, we will see that lower bounds on the
Waldschmidt constant of I can be obtained by proving that certain G-invariant divisor
classes D on the blowup X, are nef. Our proof that such divisors are actually nef will

rely heavily on the group action.

1.2 Invariant linear series

Suppose D is an effective G-invariant divisor class on X/, and that we would like to
prove D is nef. If D were not nef, then the base locus of the complete series |D| would
contain a curve of negative self-intersection. Since D is G-invariant, the base locus of
|D| is additionally G-invariant. Therefore there is a G-invariant curve of negative self-
intersection on X, which meets D negatively.

This observation suggests that we should study linear series of invariant curves

on X, in greater detail. For simplicity, let us discuss the case of the Klein configuration
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K. Suppose C is a G = Gi-invariant curve on Xyx which does not contain the line
configuration. Then we will see that the defining equation of C is a polynomial in
some fundamental invariant forms &4, ®g, ®14 of degrees 4, 6, 14, respectively. Letting

T = Cl[dyg, ®g, 14] C S, we define a vector space
Tq(—maEs — mgE3) C Tq

consisting of degree d forms which are mg-uple at the quadruple points in the
configuration and mgs-uple at the triple points in the configuration. Elements of this
vector space define G-invariant curves in the linear series [dH — m4E4 — m3E3| on X,
where we write H for the class of a line and Ey,; for the sum of the exceptional divisors
over the m-uple points in the configuration.

It is not immediately obvious what we should expect the dimension of the linear
series Tq(—m4Es — m3E3) to be. For instance, we will see that any invariant curve
passing through one of the triple points of the configuration is actually double there,
so that the obvious conditions cutting Tg(—m4Es — m3E3) out as a subspace of T4 are
typically non-independent. Our key insight is to study the action of the stabilizer G, of
p on the local ring (Op, mp) at a point p of the configuration. If C is a G-invariant curve
which has multiplicity k at p then the tangent cone of C at p must be Gp-invariant. If
fe mg /m’l‘;*1 defines the tangent cone then G, acts by a linear character on f, but in our
situation this character is trivial and f is Gp-invariant. Therefore in any vector space V
C T4 of forms that have a k-uple point at p, the codimension of the subspace of forms
with a (k + 1)-uple point at p is at most dim(mf/mk™1)%. The stabilizers G, are small
dihedral groups and these dimensions are easy to compute, which leads to the following

theorem.

Theorem 1.2. Define the expected dimension of the vector space Ty(—m4Es — m3E3)
to be

edim T3(—mgE4s — m3E3) = max {dim T4 — cond4(m4) — conds(ms), 0},

where condy,(m) is the number of monomials of degree less than m in a polynomial

algebra C[u, v] where degu = 2 and degv = n. Then we have

dim Tq(—maEs — m3E3) > edim Tg(—maEs — m3E3).

This notion of expected dimension is useful because it appears to be a rea-

sonably good approximation to the dimension. In Section 4 we make an SHGH-type
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conjecture which in particular implies that the actual and expected dimension coincide
unless there is an obvious geometric reason for them not to; the conjecture has been
verified by computer so long as d < 144 (see [21, 24, 27, 33] for the original SHGH

Conjecture, and [9] for exposition).

1.3 Explicit curves of negative self-intersection

Our results on invariant linear series allow us to study explicit negative curves on X,
in detail. When G is a group acting on a surface, we say that a G-invariant curve is
G-irreducible if it has a single orbit of irreducible components. For example, since G,

acts transitively on the lines in £ = K or W, the sum of the lines in £ is G.-irreducible.

Theorem 1.3. There is a unique curve of class 42H — 8E3 on Xx. It is Gx-invariant,
Gy -irreducible, and reduced.
There is a unique curve of class 90H — 4E, — 8E3 on Xyy. It is Gyy-invariant,

Gyy-irreducible, and reduced.

We use these curves to prove that certain key divisors D are nef, and lower
bounds on the Waldschmidt constant &(I;) follow. In the case of the Wiman configu-
ration, this lower bound matches the easy upper bound, and we compute a(Ilyy) = %
exactly. The computations proving Theorem 1.3 form the technical core of the paper.

Note that the divisor class 42H — 8E3 on X is effective by Theorem 1.2, since
the expected dimension of T42(—8E3) is 1. Verifying that there is a Gx-irreducible curve
of this class still takes considerable additional effort, however.

On the other hand, the class 90H — 4E4 — 8E3 on X)y is not obviously effective,
as the expected dimension of Tgo(—4E4 — 8E3) is 0. The existence of this curve is quite
surprising, as the “local” conditions to have the given multiplicities at the different
points fail to be globally independent. Some amount of computation seems unavoidable,

but the representation-theoretic results of Section 4 streamline things considerably.

1.4 Resurgence, asymptotic resurgence, and failure of containment

Let I ¢ S = Clx,y, z] be the homogeneous ideal of a finite set of points in P2. It follows
from either Ein-Lazarsfeld-Smith [17] or Hochster—-Huneke [29] that I® < I2. On the
other hand, Huneke asked whether I'® C I? is also true (see [2, 25] for discussion and
generalizations). It is now known that I® C I? can fail [4, 12, 14, 16, 26] (see also

[36] for a compact and up to date overview), but failures seem quite rare and it is an
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open problem to characterize which configurations of points exhibit this failure of con-
tainment. Whether other similar failures, such as I®C I® or more generally I*"~DC "
for r > 2, ever occur over C remains open [2, 25] (but see also [26]).

The containment I® C I? typically holds even for ideals of the form I = I, (see,
for example, [2, Example 8.4.8]). Thus it is of interest that the containment 123) c I% fails
when £ is the Klein or Wiman configuration; in particular, the defining equation of the
line configuration is in I(Eg) but not in If:. This was first confirmed computationally [1],
then proved conceptually in [34] in the case of the Klein configuration. We offer two new
conceptual proofs based on representation theory which work for both configurations.

The resurgence
p@ =sup [T 1™ ¢ 1)
and asymptotic resurgence
5 = sup { D UONCS UIIN 0}

were respectively introduced in [5] and [23] to study failures of containment in more
depth (see, e.g., [16]). These invariants are closely related to Waldschmidt constants via

the inequalities

01(1) w(I)
1
(I)_ ()_A(I) (1)
and
—~ reg(l)
o) <pl) =< ) (2)

see [5] and [23]. Here w(I) denotes the maximal degree of a generator in a minimal set of
generators for I, and reg(I) is the regularity of I.
The Klein and Wiman ideals I each satisfy a(Iz) = w(,), and therefore by (1)

the computation of p(I;) is equivalent to the computation of a(I.).
Theorem 1.4. For the Klein configuration of lines, we have
16 816
1.230 ~ — < px) < — ~ 1.234.
13 = PUK) = g5y
For the Wiman configuration of lines,

o )—32~1185
pUw) = - ~ 1.185.
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Negative Curves on Symmetric Blowups 7
On the other hand, we compute the resurgence exactly for both configurations.
Theorem 1.5. If £L =K or W, then p(Ip) = %

For the proof (given at the end of Section 8), we show that the ideal I, is
generated by three homogeneous forms of the same degree, which allows us to compute
the regularity of powers I;. by results in [32]. Theorem 1.5 follows easily using this,
together with If) ZrI % containment results from [5] and our knowledge of Waldschmidt

constants.

1.4 Conventions

For simplicity we work over C for the majority of the paper, although it is likely that
analogous results hold over other fields so long as the characteristic is sufficiently large.
In Section 9 we will briefly discuss the Klein configuration in characteristic 7, where
some exceptional behavior occurs.

By a curve on a surface we usually mean an effective divisor. We say a curve is

m-uple at a point p to mean that the multiplicity of the curve at p is at least m.

1.4 Organization of the paper

In Section 2 we will recall the necessary definitions and the basic geometry of the
Klein and Wiman configurations, as well as the group actions giving rise to them and
the corresponding rings of invariants. In Section 3 we prove our upper bound on the
Waldschmidt constants and indicate the correspondence between lower bounds on the
Waldschmidt constants and nefness of divisors. In Section 4 we use some representation
theory to study invariant linear series on the blowup X,.. We precisely define the
expected dimension of such a series and prove Theorem 1.2. In Sections 5-6 we study
explicit negative curves on X, to prove Theorem 1.3 and deduce Theorem 1.1. We study
the asymptotic resurgence and resurgence in Section 7 and Section 8, respectively. We

mention some results in characteristic 7 in Section 9.

2 Preliminaries
2.1 Definitions and notation

For a line configuration £ in P? we write X, for the blowup of P? at the singular points

in the configuration. We write H for the pullback of the hyperplane class. For each
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8 T. Bauer et al.

m > 2, we let E,, be the sum of the exceptional divisors lying over the points in the
configuration of multiplicity m. We also write I for the ideal of the singular points in
the configuration. We let A, be the divisor on X, given by the sum of the lines in the

configuration.

2.2 The Klein configuration of 21 lines

Following [1, 19], the Klein configuration K is a configuration of 21 lines in P? whose
intersections consist of precisely 21 quadruple points and 28 triple points. Thus, the

divisor class of the line configuration on the blowup Xy is
Ax = 21H — 4E, — 3E3,
and the intersection product on Xy satisfies
H*=1 E;=-21 E2=-28,

where H, E4, E3 are pairwise orthogonal. It is most natural to define the configuration
over Q(¢), where ¢ is a primitive 7th root of unity.

Let G = Gk be the unique simple group of order 168. The group G has
an interesting irreducible three-dimensional representation p over Q(¢). There are

generators g, h, i such that this representation is given by

¢t 0 0 010
p@=]| 0 ¢2 o], ph)=] 0 0 1
0 0 ¢ 1 00

and

c—¢% 2% gt
20t 4202420 +1
p() = 3 ‘ ¢ ¢2—¢5 ¢t ¢

7
R S S Y S o

Note that all three matrices have determinant 1 and the element i has order 2 (we also
note that (2¢% + 2¢2 + 2¢ + 1)2 = —7). This representation gives an embedding of G into
SL3(Q(¢)). By projectivizing, G acts on P?.

The transformation p(i) has eigenvalues 1, —1, —1. The eigenspace for —1 is a
plane in C3, hence gives a line in P? which is fixed pointwise by p(i). The orbit of this

line under the action of G consists of 21 lines which comprise the KXlein configuration K.
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Negative Curves on Symmetric Blowups 9

The eigenspace for 1 is a point p € P?; it is on exactly four of the lines so it is one of the
quadruple points of the configuration. Its orbit consists of all 21 quadruple points of the
configuration, so its stabilizer has order 8. The stabilizer turns out to be isomorphic to
the dihedral group Dg of order 8. Its permutation representation on the 4 lines through
the point p is not faithful or transitive; its image in the group Ss of permutations of the
4 lines is isomorphic to Z/27*2.

The point ¢ = [1 : 1 : 1] € P? is on L and is a triple point of the configuration.
Its orbit is the set of all 28 triple points of the configuration, and the stabilizer of the
point has order 6, isomorphic to Dg = S3 (generated by p(h) and p(i)). It has a faithful

permutation representation on the 3 lines through the point g.

2.3 The Wiman configuration of 45 lines

The Wiman configuration WV is a configuration of 45 lines in P> whose 201 intersections
consist of precisely 36 quintuple points, 45 quadruple points, and 120 triple points
[1, 39] (see also the table on p. 120 of [28]). The divisor class of the line configuration on
the blowup Xy is therefore

Ayy = 45H — 5E5 — 4E, — 3E3,
and the intersection product on Xy, satisfies
H*=1 E:=-36 E2=-45 E?=-120,
where H, E5, E4, E3 are pairwise orthogonal. The configuration is naturally defined over
Q(8, ), where 82 = 5 and w is a primitive 3rd root of unity.
The group PGL3(C) has a subgroup G = Gy, of order 360 isomorphic to Asg.

If we put w1 = (-1 + 48)/2 and puz = —(1 + §)/2, then this subgroup is generated by

transformations

0 0 1 0
R, = 1 0O R; = 0 -1
010 0O 0 -1
1 ( 1 2w -1 0 0
Ry=o| nz m -1 Ry = —w?
u1 —1 2 0 -o 0
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Note that while each of these transformations is actually in SL3(C), the subgroup of
SL3(C) that they generate has order 1080 and is a triple cover of Ag, sometimes referred
to as the Valentiner group G = 3 - Ag. This group is a central extension of Ag by Z/3Z; it
contains in its center a subgroup isomorphic to Z/3Z consisting of scalar matrices with
scalars the 3rd roots of unity. The image of G in PGL3(C) is G.

Looking at the eigenvectors of the involution R, it is easy to see that Rj
pointwise fixes the line L with equation L : x = 0. The orbit of L under G consists of
the 45 lines in the Wiman configuration W. The orbits and stabilizers of the singular

points of the configuration are as follows.

(1) There are two G-orbits of size 60 each consisting of triple points in the con-
figuration. The stabilizer of each of these points acts faithfully on the three
lines through the point, hence is isomorphic to the dihedral group Dg = S3.

(2) There is a single G-orbit of size 45 consisting of quadruple points. The stabi-
lizer of each of these points turns out to be isomorphic to the dihedral group
Dg. It acts on the 4 lines through the point, but not faithfully or transitively;
its image in the group Sy of permutations of the four lines is Z/27Z*?.

(3) There is a single G-orbit of size 36 consisting of quintuple points. The
stabilizer of each of these points acts faithfully on the five lines through
the point, hence is isomorphic to the dihedral group D;¢ (the only order 10
subgroup of Ss).

Note that each of the 45 lines contains 16 points of the configuration, with four from

each orbit.

2.4 Invariants and the Klein configuration

Most of the results in this paper rely on understanding the ring of invariant forms for
the action of the group G. We recall the necessary facts from classical invariant theory
here. Consider G = Gx C SL3(C), the group of order 168 defining the Klein configuration
K. Since G is a subgroup of SL3(C), it acts in the natural way on the homogeneous
coordinate ring S = Clx,y,z] of P2, KXlein discovered the structure of the ring SG of
polynomials invariant under the action of G [30, Section 6]. The ring S® is generated
by invariant polynomials ®4, ®g, 14, and ®3;, where ®4 has degree d. The invariant
®y; = 0 defines the line configuration. The polynomials ®4, ®g, ®14 are algebraically
independent, but there is a relation in degree 42 between d>§1 and a polynomial in the

other invariants.
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The geometric significance of the invariants ®4 is explained in [19]. Briefly

recalling the discussion there, we have
o4 = X3y + ysz + 2°x,

so that @4 is the defining equation of the Klein quartic curve whose automorphism group

is G. The polynomial &4 can be taken to be
1
P = —5—4H(d>4) = Xy5 + y25 + zx° — 5X2y222,
where H(®,4) is the Hessian determinant
302D, /0x>  3°D4/0xdy  3%dy/0x0z
H(®a) :=| 8%2d4/0ydx 03°D4/0y? 32dy/dydz
02d4/020x  0%2Dy/0z0y 0% Dy/0Z?
The degree 14 invariant ®;4 is more complicated to describe; the graded piece

(S%)14 is two-dimensional, so ®14 is only uniquely defined mod ¢>ﬁ¢g. One possible

definition is that
1
Dy = §BH(<D4,®6),
where BH(®4, ®g) is the bordered Hessian
02dy/0x>  3°D4/0xy 0%D4/0x0z 0dg/0x
2Dy /0ydx  3°D4/0y%  3%D4/0ydz 0dg/dy

02d,/0z0x 0°D4/0z0y 0°D4/0z° 0dg/0z
ddg/0x ddg/dy /02 0

BH(®4, ®p) :=

Finally, the invariant ®»; is simply the product of the lines in the Klein configuration. It

can also be defined by a Jacobian determinant

) ) 0dPg/0x 0D4/0y 0P4/0z
$y; = ﬂJ((Dé}r Dg, P14) = 12 0dg/0x 0Dg/dy 0Dg/0z
8@14/8X 8@14/3)/ 3@14/32
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12 T. Bauer et al.

The degree 42 relation between the invariants is given by the identity

@3, = @3, — 1728d + 1008P, PFd14 + 88D3Dg D7, + 6003203 b2 (3)

+ 108805 d3d14 — 22016D5DE — 256D D14 + 2048D) D.

(Note that this relation differs from the one given in [19] due to an apparent error.)
Since ®4, g, and &4 are independent and CDEI € T = C[d4, g, 14], the Veronese
subring (S%)“? c T defined by

()™ = P (S azx

k>0

is generated in degree k = 1 by monomials in ®4, &g, P14, subject only to the obvious
relations. This implies that the quotient P?/G is isomorphic to the weighted projective

space P(4, 6, 14). The quotient map is given by

¢ : P? - P(4,6,14)

> [Pa(p) : Pe(p) : P1a(p)].

The description of the union of lines ®3; = 0 as the Jacobian determinant of &4, &g,
@14 shows that ®3; = 0 defines the ramification locus of ¢ away from points lying over
the singular points [0 : 1 : O], [0 : O : 1] in P(4, 6, 14). Note that the relation between
®,; and the other invariants implies that the points lying over [1 : 0 : O] are in the line
configuration.

The next lemma clarifies the relationship between G-invariant curves on P? and

G-invariant homogeneous forms.

Lemma 2.1. For G = Gy, let C C P? be a G-invariant curve which does not contain the
Klein configuration K of lines. Then the defining equation f € S of C is G-invariant and
lies in the subalgebra T = C[®4, ®g, P14] of S.

Proof. Since the ramification locus of ¢ consists of the union of the lines in the Klein
configuration and finitely many points lying over the singularities in P(4, 6, 14), the map
¢ is a local isomorphism near a general point p € C. The curve ¢(C) is defined by a single
weighted homogeneous equation g(wg, w1, wy) = 0 in the coordinates wyg, w;, wy of the
weighted projective space. Then the pullback ¢*g of this equation defines C and is in the
subalgebra T. [ |
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Remark 2.2. We record here for later use the orbit sizes for the action of G on P?,

following [19].

(1) The triple points in the configuration form an orbit of size 28.

(2) The quadruple points in the configuration form an orbit of size 21.

(3) The invariant curves &4 = 0 and s = 0 meet in an orbit of 24 points lying
over the singular point [0: 0 : 1] € P(4, 6, 14).

(4) The invariant curves ®4 = 0 and ®;4 = 0 meet in an orbit of 56 points lying
over the singular point [0 : 1 : 0] € P(4, 6, 14).

(5) The invariant curves ®g = 0 and ®;4 = 0 are tangent at an orbit of 42 points
lying over the singular point [1 : 0 : 0] € P?(4,6, 14). These points lie on the
line configuration.

(6) Any point on the line configuration not mentioned above has an orbit of
size 84.

(7) Any point not mentioned above has an orbit of size 168.

2.5 Invariants and the Wiman configuration

The discussion of invariant forms for the action of G = Gy, = Ag on P? which gives rise
to the Wiman configuration is highly analogous to the case of the Klein configuration.
The main additional complication is that G is only a subgroup of PGL3(C), so that it does
not act on the homogeneous coordinate ring S = Clx, y, z] of P?2. We must therefore work
with the Valentiner group GcC SL3(C) of order 1080, which has a natural action on S.

The ring of invariants SC is again fully understood by the theory of complex
reflection groups. The ring of invariants is generated by forms &g, ®12, ®30, and P4s,
where &4 has degree d. The invariant ®45 = O defines the line configuration. Here
®g, ®12, and P3¢ are algebraically independent and dbi5 is a polynomial in the other
invariants.

While &g is uniquely determined up to scale, it does not have a particularly nice
equation. To compute it we recall the Reynold’s operator Rg : S — S¢ for a group G

acting on a polynomial ring S with its ring of invariants S°, defined as

Ro() = — 3 g(f).

Gl 7%

Then we can compute ®g as

@ = 16 Rz (x%),
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14 T. Bauer et al.

where the coefficient 16 is chosen so that the coefficient of x® is 1. Carrying this
calculation out and choosing w = €#7/3 and § = —/5 gives

3
o = x% + y6 +25+ 3(6—+15 i)Xzyzz2 + 1 (2\/_ — (b - \/g)a)) ()(4)/2 + y422 + z*x%)

3
+3 (5-V5+ G+ VBw) (2% + yix® + 2.

The higher invariants @3, ®39, ®45 can be given by expressions completely

analogous to the invariants for the Klein configuration. We can take

D12 = Cc12H(Dg)
@30 = c30BH(Pg, 12)

Dy5 = J(Pg, P12, P30)

where we write H, BH, J for the Hessian, bordered Hessian, and Jacobian determinants,
respectively (see Section 2.4). We choose the constants c¢g € C so that the coefficient of
x% in @4 is normalized to be 1. (Note that ®45 does not have an x*° term since [1 : O :
0] is one of the quadruple points in the configuration; however, we will not work in any
substantial way with ®,5 and therefore do not worry about its normalization.) Up to

scalars, we have

B2 ~ 16D D1y — 160D 02, 4+ 81603, — 2188d. 0T, + 32710303, — 15390305,
7 10 8 6 52 4 53
+ 351 PPy + 7205 P39 — 396D P12 P3g + 954P; D1, P3p + 99D D7, P3o
— 13770307, P30 + 24333, P30 + 32402 D3, — 194403 P 1,03,

+ 72906 D2, D3 + 72903

Remark 2.3. In the case of the Klein configuration the first two invariants &4, &g
were both uniquely determined up to scale, but for the Wiman configuration there is a
pencil of invariant forms of degree 12 and a four-dimensional vector space of invariant
forms of degree 30. While the determinantal formulas for the invariants give one way
of eliminating the ambiguity in the choice of invariants, the ambiguity can also be
naturally eliminated by looking at invariants that pass through interesting points in

the configuration. We will investigate this further in Section 6.
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Negative Curves on Symmetric Blowups 15

The quotient of P? by Ag is the weighted projective space P(6,12,30), with

quotient map

¢ : P? - P(6,12, 30)

p [P6(p) : P12(p) : P30(p)]

Away from the preimages of the singular points in P(6, 12, 30), the ramification locus of
¢ is the line configuration ®45 = 0. The relation between <I>25 and the other invariants
implies that the points [1: 0: 0] and [0: 1 : 0] in P(6, 12, 30) are both in the image of the
line configuration; on the other hand, the points lying over [0 : O : 1] form a single orbit
of 72 points cut out by ®g and ®;2. A point in P? with nontrivial stabilizer either lies on
the line configuration or is one of these 72 points.

The next lemma follows exactly as in the case of the Klein configuration.

Lemma 2.4. For G = Gyy, let C C P? be a G-invariant curve which does not contain the
Wiman configuration W of lines. Then the defining equation f € S of C is G-invariant
and lies in the subalgebra T = C[®g, 12, P30] of S.

Remark 2.5. Here we record the orbit sizes for the action of Ag on P?, following
[10, p.18].

(1) There are two orbits of 60 triple points.

(2) The 45 quadruple points form an orbit.

(3) The 36 quintuple points form an orbit.

(4) The curves &g = 0 and ®;2 = 0 intersect in an orbit of 72 points lying over

[0:0:1] € P(6,12,30).

(5) The curves &g = 0 and P39 = 0 are tangent at an orbit of 90 points lying over
[0:1:0] € P(6,12,30). These points are all on the line configuration.

(6) Any point on the line configuration not mentioned above has an orbit of
size 180.

(7) Any point not mentioned above has an orbit of size 360.

3 Nef divisors and the Waldschmidt constant

In this section we first bound the Waldschmidt constant for the Klein and Wiman
configurations from above by constructing curves in symbolic powers of the ideal. We
then give an initial discussion of our strategy for bounding the Waldschmidt constant

from below.
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16 T. Bauer et al.

Proposition 3.1. Let Ix be the ideal of the 49 points of the Klein configuration. Then

Q) < 13

10 —.

)= 2
Proof. For any integer k > 1 we define a divisor class

Dy = (28k + 2)H — 2kE,4 — 5kE;3

on the blowup Xy.. Observe that the vector space dimension of the linear series |Dg| is at

28k + 4 2k+1 5k +1
(355 ) a5 ) a7 ) v

Let Ax = 21H — 4E4 — 3E3 be the class of the union of the lines in . Then

least

Dy + 3kAjx = (91k + 2)H — 14kE, — 14kEs

(14k)
I

is an effective divisor. This gives an element of the symbolic power of degree

91k + 2. Letting k — oo proves the proposition. [ |
Proposition 3.2. For the ideal Iy of the Wiman configuration, we have

~ 27

a(hy) = DR

Proof. The strategy is the same as in the proof of Proposition 3.1. For k > 1, let Dy be

the divisor class
Dy = (36k + 6)H — kE5 — 2kE, — 3kE3

on Xyy. Then the vector space dimension of the linear series |Dg| is at least

36k +8 k+1 2k+1 3k+1
R O R Ca B e R

Let Ayy = 45H — 5E5 — 4E4 — 3E3 be the class of the union of the lines in W. Then
Dy + kAyy = (81k + 6)H — 6kEs — 6kE4 — 6KE3,

giving an element of Il(,?,k) of degree 81k + 6. The result follows when k — oc. |
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Negative Curves on Symmetric Blowups 17

In the other direction, the proofs of Propositions 3.1 and 3.2 also suggest a
method to establish lower bounds on the Waldschmidt constant. The next two lemmas

explain how we will approach this problem.

Lemma 3.3. Let k > 0 be a positive rational number, and let Dy be the Q-divisor class
Dy = (28k + 2)H — 2kE4 — 5kE3
on the blowup Xi of the points in the Klein configuration. Let
D = 28H — 2E, — 5Ej.

If D is nef, then @(Ix) = . If Dy is nef, then

91k + 24

oy k24
“IK) = Tarra

While we will not be able to show D is nef, good bounds on the Waldschmidt
constant @(Ix) can be obtained by showing Dy, is nef for large k. It will be important later
to notice that the divisor D meets the class Ax of the line configuration orthogonally:
D . Ax = 0. On the other hand, for k > 0, we have Dy - Ax > 0. Also observe that Dy is

effective by the proof of Proposition 3.1. Therefore, D is pseudo-effective.

Proof. Suppose that Di is nef, and suppose there is a rational number 8 such that

91k + 24

Then the Q-divisor class F = BH — E4 — Ej is effective. However, any curve in a multiple

|mF| also contains the line configuration, since
F-Ax =218—168 < 0.

Since A,zC = —147, if we strip off as many copies of Ax from F as possible we get the
residual effective Q-divisor
, . 168-21p

1 1
F'=F— ————Ax =4~ 20H - _(4f — 25)Es — - (3f — 17)E3
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18 T. Bauer et al.

which has F' - Ax = 0. We finally compute
F' . Dy = 288k — 182k + 88 — 48.

The inequality 8 < (91k + 24)/(14k + 4) then implies F' - Dy < 0, contradicting that

Dy, is nef.
If D is nef, then Dy is nef for every k > 1. As k — oo, we find a(Ix) > % Since
a(lx) < % by Proposition 3.1, we conclude that a(Ix) = % [ |

Since our computation of the Waldschmidt constant for the Wiman configuration

will be sharp, the analogous lemma for the Wiman is easier.

Lemma 3.4. If D =36H — E5 — 2E4 — 3E3 is nef on Xjy), then

N 27
aw) = -

Note that D> = 0 and D - Ayy = 0. Also, D is pseudo-effective by the proof of

Proposition 3.2.
Proof. Suppose D is nef and that there is a rational number 8 such that
- 27
O[(IW) < ﬂ < 7!
so that the Q-divisor class F = BH — E5 — E4 — Ej3 is effective. Then
27
F.-D =368 —36—90—360=236 /3—? <0,

contradicting that D is nef. Therefore a(lyy) > 277, and equality holds by Proposition 3.2.
|

4 Invariant linear series

Our goal is to use Lemmas 3.3 and 3.4 to establish lower bounds on the Waldschmidt
constant for the Klein and Wiman configurations. Let G = G, act on X,. To use either
lemma, we must show some particular pseudo-effective, G-invariant divisor class D
on the blowup X, is nef. While we will not need to directly apply the next lemma,
it motivates our study of invariant curves of negative self-intersection. The proof is

straightforward, so we omit it.
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Negative Curves on Symmetric Blowups 19

Lemma 4.1. Suppose D is a G-invariant divisor class on X, which is a limit of
G-invariant effective Q-divisors. If D is not nef, then there is a G-invariant, G-irreducible
curve B on X, such that D - B < 0 and B? < 0.

Since the divisors appearing in Lemmas 3.3 and 3.4 intersect the class A, of the
line configuration nonnegatively, it is enough to study negative curves other than A .
Lemmas 2.1 and 2.4 tell us that the defining equation of any G-irreducible curve other
than A/ is a polynomial in the fundamental invariant forms ®4, g, ®14 if £ = K (resp.
dg, Py, P3p if L = W). This motivates the next definition.

Definition 4.2.

(1) If L =K, let T = Cl[®4, g, P14] C S. For integers maq, mz > 0, we let
Ta(—myEs — m3E3) C Ty

denote the subspace of forms of degree d which are mg4-uple at the 21
quadruple points of K and m3-uple at the 28 triple points of K.
(2) IfL=W,let T = Cldg, 12, P30l C S. For integers ms, mgq, ms > 0, we let

Tq(—msEs — myEy — m3E3) C Tg

denote the subspace of forms of degree d which are ms-uple at the 36
quintuple points of W, mys-uple at the 45 quadruple points of W, and ms-
uple at the 120 triple points of W.

For example, for £ = K, elements of the vector space Tg(—m4Es — m3E3) define

G-invariant curves in the linear series |dH — myE4 — m3E3| on Xi.

Remark 4.3. Since there are two orbits of 60 triple points in W, it also makes sense to
assign different multiplicities at the different orbits. We will not need this more general

construction, however.

Several questions are immediate. What is the dimension of Tq(—m4E4s — m3E3)?
Is there an expected dimension for this series? When the series is nonempty, is there a
(G-)irreducible curve in the series? In this section we propose a definition of the expected
dimension which gives a lower bound on the actual dimension. The other questions will

be taken up in some specific cases in later sections.
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20 T. Baueretal.
4.1 Leading terms of invariants

In this subsection we prove general results about the leading term of an invariant form
when expressed in local coordinates at a point p € P. We set up our initial discussion in
such a way that it will apply to both the Klein and Wiman configurations. These results
allow us to quantify the number of conditions required for an invariant form to have an

m-uple point at one of the points in the configuration.

4.1.1 Leading terms in general
Let p € P" and let S be the homogeneous coordinate ring of P". Suppose 5p C GLp41(C)
is a finite group which fixes p and let G, be the image of E;p in PGL;4+1(C). Then the
kernel of @p — Gp is cyclic of some order m > 1, generated by the scalar matrix oI with
w = e*7U/™ If there is a Gp-invariant form 0 # W, € Sy, this forces m|d. On the other
hand, if d satisfies m|d, then the action of E’p on S4 descends to an action of G, on Sy
since ol acts by the identity on Sg.

Let I, C S be the homogeneous ideal of p. Since 5p fixes p, the powers Ig are all
@p—invariant, S0 E}p acts on the quotients I};/I;f“ and on their graded pieces (I;/Ig“)d.

If m|d, then G, also acts on (IS/I};“)d. Then the next lemma is obvious but crucial.

Lemma 4.4. Suppose 0 # Yy € (Illg)d is @p—invariant (so m|d and k < d). Then the
element W, (I],f/]];“)d is both Gp- and Gp-invariant.

Now let (Op, mp) be the local ring of P" at p. Then both E’—p and G, act on Op and

the powers mllg

the Gp-modules (I}’,f/Il',f“)d more geometrically, it is useful to compare them with the

are invariant, so that ml’f,/mllg+1 is both a Ep- and Gp-module. To identify
symmetric powers

k 2 ~ ki, k+1
Sym® mp/my = my /my"

of the cotangent space.

Lemma 4.5. Let W be the one-dimensional E;p—module (S/Ip)1, and let w € S; be a linear

form not passing through p. If k < d then there is an isomorphism of E}p—modules

ko k1)~ ko ktl ®d
(IP/IP )d_ fmp W

F d
w

610Z dUNp || UO Josn salelqi ujooulT-e)selqaN 10 AlISIonun AQ $E6SE8Y/6ZEXUI/UIWISE0L 0 | /I0P/1oBINSHE-8|01E-80UBAPE/UIWI /WO dNo olwapede//:sdiy Wol) papeojumod



Negative Curves on Symmetric Blowups 21

Again the proof is clear. In the situations of this paper we can further assume
d is such that W®? is trivial. We combine the observations in this subsection in the

following form.

Corollary 4.6. Suppose 0 # V¥, € (Il’,f)d is Ep-invariant and that d is a multiple of the
order of any linear character of Ep. Let w € S; be a linear form not passing through p.
Then the element

Ty = Wg/we e m’;/m’;“

is Gp-invariant. Thus if U, # 0 then it spans a trivial Gp-submodule of m’;, /m}‘frl

Proof. The assumptions on d and Lemma 4.5 show that there is an isomorphism
@&/t = mk/mktl of both Gp-modules and Gp-modules, with Wy on the left
corresponding to Ty on the right. Then W4 is Gp-invariant by Lemma 4.4, so Uy is also

Gp-invariant. [ |

Example 4.7. For arbitrary group actions the conclusion of Corollary 4.6 can fail
without the assumption on d. For example, let p = [0 : 1] € P! and let Z/2Z = CN;p = Gp
act on the homogeneous coordinate ring of P! by x > x, y > —y. Then x € (Ip); is Gp-

invariant, but x/y € m,/m? is not.

4.1.2 Leading terms for the Klein and Wiman configurations

We next combine Corollary 4.6 with some simple representation theory to heavily
restrict the leading terms of an invariant form vanishing at a point in one of the line
configurations. For £ = K or W, we let G and G be the relevant groups (taking G=0G
if £ = K), and apply Corollary 4.6 to the stabilizers G, and Ep of a point p in the

configuration.

Lemma 4.8. Let £ =K or W, and let p € P? be any point of the configuration.
(1) If p is a point of multiplicity n in £, then G, = D3, and the Gp-module
U = mp/mf, is irreducible of dimension 2. We have an isomorphism of
Gp-modules

k. k+1 ~ k
my/myt = Sym“ U,

and the ring of invariants (Sym U)%» of the symmetric algebra is a polynomial

algebra C[u, vl where degu = 2 and degv = n.
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22 T. Bauer et al.

Proof.

(2)

Fix a linear form w not passing through p. If W4 € S is a G-invariant form
of even degree which vanishes to order at least k at p, then Uy := Wy/w?

1
ms/mk+

18 Gp-invariant.

The fact that G, = D2, was discussed in the preliminaries. If n # 4, then
the permutation representation of G, on the lines in £ through p is faithful,
and hence the action on U is also faithful. When n = 4, the permutation
representation is not faithful as the central element of Dg acts trivially on
the lines. However, the central element acts on U by multiplication by — 1,
so U is still a faithful representation in this case. If U was not irreducible,
then it would be a direct sum of one-dimensional representations and the
image of Dy, in GL(U) would be abelian. Since U is faithful, we conclude that
it is irreducible. The displayed isomorphism is obvious. The computation of
the ring of invariants of SymU is well-known; see [3] or [35].

For the Klein configuration, we have Ep = Gp = Dgy, for n = 3 or 4, and all
linear characters of @p have order dividing 2. For the Wiman configuration,
we have Ep = Doy x Z/37Z since there are no nontrivial central extensions
of Dy, by Z/37Z for 3 < m < 5. Then the values of the linear characters of 5’-1,
are 6th roots of unity. Any G-invariant form W4 of even degree has degree

divisible by 6 (see §2.5). In either case, the result follows from Corollary 4.6.
||

The next corollary is an immediate consequence. It is a surprisingly powerful tool

for determining explicit equations of invariants with prescribed multiplicities. See

Sections 5 and 6 for applications.

Corollary 4.9. Let £ = K or W, let p € P? be a point of the configuration, and let w

be a linear form not passing through p. If ¥4 € S; is a G-invariant form of even degree

which vanishes at p, then it vanishes to order at least 2 at p, and Wg = W/w? lies in the

one-dimensional trivial G,-submodule of m2/m3.

4.2 Expected dimension

Here we use Lemma 4.8 to count the number of (not necessarily independent) linear

conditions it is for an invariant form to have assigned multiplicities at the points in

either the KXlein or Wiman configurations.
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Definition 4.10. We let cond, (m) be the number of monomials of degree less than m in

a polynomial algebra Clu, v] where degu = 2 and degv = n.

(1) If £ = K, then the expected dimension edim(T3(—m4E4 — m3E3)) is
max{dim T4 — cond4(m4) — condsz(ms), 0}.
(2) If £ =W, then the expected dimension edim(T4(—msE5 — maE4s — m3E3)) is
max {dim T4 — conds(ms) — condg(m4) — 2 conds(m3), 0}

(Recall that in the case of the Wiman configuration there are two orbits of triple

points.) We can now prove our main result in this section.

Theorem 4.11. If £ =K, then
dim(Tq(—m4Es — m3E3)) > edim(Tg(—maEs — m3E3)).

The analogous result holds for £ =W.

Proof. LetV C T4 be any subspace. Fix an n-uple point in the configuration p € £ with
stabilizer Dy, and fix a linear form w not passing through p. For k > 0, write Vi C V for

the subspace of forms which are at least k-uple at p. By Lemma 4.8 (2), the map

mk

D
k+1
Mp

T‘kZVk—>

Wy > g/ wd

has image contained in the subspace (m’;/m’lg“)GP of invariants, and its kernel is Vg, ;.
Therefore
; : ; : ko k+1)%P
dim Vi, = dimkerry > dim V; — dim (mp /my, ) .
Then the subspace V,, C V has codimension at most cond,(m) by Lemma 4.8 (1).

The theorem is proved by starting from V = T4 and applying the above

discussion once for each orbit of points in the configuration. |
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We conclude the section by investigating some of the immediate consequences
of the theorem, as well as by indicating how to compute the terms in the formula for the

expected dimension.

Example 4.12. We record some small values of cond,(m) for easy access.

condsz(m) condg(m) conds(m)
1 1 1

0 N o oA w N ~|S3
™ N O W N -
oo NN
D O b W NN -

Example 4.13. To aid in the computation of expected dimensions, note that for £L = K
the dimension of the vector space Ty is the coefficient of t¢ in the Taylor expansion of

the rational function

1

=14+t + 8+ 8+ 610 42412 4 2¢1% 4 2416 1 3418 4. ..
(1 —tH (1 —t5)(1 —t1%)

A similar formula holds for the Wiman configuration. Similarly, cond,(m) is the

coefficient of t™ in the Taylor expansion of the rational function

t
1-81—-tHA1 -t

Example 4.14. On Xy, we have dimTyg = 3. Therefore T;g(—4E4) has expected
dimension 1, and there is an effective invariant curve of class 18H — 4E4. It has self-
intersection —12.

Similarly, dim T4 = 9, so T42(—8FE3) has expected dimension 1. Therefore there
is an invariant curve of class 42H — 8Ej3. It has self-intersection —28. We will study
this curve in more detail in Section 5 to give our best bound on &(Ix) that doesn't use

substantial computer computations.

Example 4.15. On X)), we have dim T9g = 18. Therefore Tg9o(—4E4 — 8E3) has expected

dimension 0. However, we will see in Section 6 that there is actually a unique
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G-irreducible curve of class 90H — 4E4 — 8Ej3; it has self-intersection —300. The “local”
linear conditions at each of the orbits of points in the configuration are not independent.

Studying this unexpected curve in detail will allow us to compute @(Iyy) exactly.

Example 4.16. We can use Theorem 4.11 to find many additional interesting effective
classes of negative self-intersection on Xx.. We generate a list of effective divisor classes
Co, C1, C2, ... of negative self-intersection which meet all other classes on the list
nonnegatively. This list further has the property that any class D = Tg(—m4Es — m3E3)
with negative self-intersection and positive expected dimension with degree 0 < d <
135786 and m; > 0 meets one of the curves on the list with smaller degree negatively.

Co = 21H — 4E4 — 3E3

C, =18H — 4E4 — OE3

Cy =42H — OE4 — 8E3

C3 = 144H — 4E4 — 27E3

Cs = 804H — 28E4 — 150E;

Cs = 2706H — 100E; — 504E3

Co = 7728H — 288E, — 1439E;

C; = 40992H — 1534E, — 7632E;3

Cg = 135786H — 5088E, — 25280E3

C9 = 386880H — 14500E4 — 72027E3

C10 = 2049732H — 76828E4 — 381606E3

C11 = 6787218H — 254404E4 — 1263600E3

Every class C; with i > 1 has expected dimension 1 (note that the expected dimension of
Co has not been defined). There are far more open questions than settled ones here. Can
this list be extended infinitely? Does every G-invariant curve of negative self intersection

eventually appear on the list? Are these classes representable by G-irreducible curves?

Example 4.17. Notice that for the Klein configuration the series T42(—8Es — 6E3)
consists of the divisor 24y, where Ax is the line configuration. However, the expected

dimension is 0.
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Example 4.17 shows that if negative curves are in the base locus then the
expected dimension can differ from the actual dimension. Computer calculations which
we have carried out in the Klein case suggest that equality holds on the Klein blowup
unless there is a negative curve in the base locus. We thus formulate the following

SHGH-type conjecture.

Conjecture 4.18. Let D = dH — myE4 — m3E3 be a divisor on Xy. If D.C > 0 for every
G-invariant, G-irreducible curve C of negative self-intersection with degree less than d,
then

edim (Tq(—myEs — m3E3)) = dim (Tg(—m4E4 — m3E3)).

Remark 4.19. The conjecture has been checked by computer when d < 144. First we
computed the list of negative curves of degree less than 144; see Example 4.16 and
Theorem 5.7. Then we checked that dim Tj(—mg4Es — m3E3) = edim Ty(—mqyEs — m3E3)

whenever the multiplicities are critical, meaning that either

(1) increasing either of the multiplicities would either make the series intersect
a negative curve negatively or make edim = 0, or

(2) edim = 0, but decreasing either of the multiplicities makes the edim positive.

Note that if a non-critical series of invariants has edim > 0 and dim # edim, then
increasing the multiplicities to get a critical series with edim > 0 will give a series
with dim # edim. There are then not that many series to check, and the function
series(d,m,n) in the Supplementary Material runs quickly enough to compute the

necessary dimensions in a couple hours on an ordinary desktop computer.

5 Negative invariant curves on Xy

In this section we study the curve B of class 42H — 8E3 on Xx which was first discussed

and proved to exist in Example 4.14. Our goal is to prove the following theorem.

Theorem 5.1. There is a unique curve B of class 42H — 8E3 on Xx. It is G-invariant,

G-irreducible, and reduced.

The main difficulty is to show that this curve is G-irreducible; this will require
that we find its precise equation. To make this computation tractable, we make heavy
use of the results of Section 4.1. The G-irreducibility of this curve has the following
application to Waldschmidt constants. Recall the definition of the divisor class Dy =
(28k + 2)H — 2kE, — 5kE3 from Lemma 3.3.
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Corollary 5.2. The divisor Dg,7 is nef on Xy.. Therefore

58

6.444 ~ 5 <da(x) <6.5.

Proof. Let Ax be the class of the line configuration. By Theorem 5.1, the divisor class
8Ax + 7B = 7D16/7

is effective. Both Ax and B are G-irreducible, so since Ax - D1g;7 > 0 and B - D1g;7 > 0
we conclude that Dig/; is mnef. The inequalities follow from Lemma 3.3 and

Proposition 3.1. u

We will close the section with an indication of how to improve the bound with

substantial computer computations.

5.1 An alternate set of invariants.

The equation of the curve B is most naturally described in terms of an alternate set of
invariants Vg, Wg, W12, W14, where W4 has degree d. These new invariants are defined
by incidence conditions with respect to the triple points in K. While the degree 4 and 6
invariants are uniquely determined up to scale, there are pencils of degree 12 and degree
14 invariants, spanned by (®3, ®2) and (®3dg, ®14), respectively. We let W1, and W14 be
the unique (up to scale) invariants passing through a triple point p € P? of the config-
uration K. For clarity and to make the computation as conceptual as possible, we do
not worry about the particular multiples of the invariants until later. By Corollary 4.9,
W, and W4 are actually both double at p. Furthermore, in local affine coordinates
centered at p, their leading terms are proportional.

Let X,y be affine local coordinates centered at p, so that mf) is identified with
(%, 7K. Let w be a linear form not passing through p, and write Uy = Wg/we e Op. Then

we can find elements A;, B;, C;, D; € C[X, y] which are homogeneous of degree i such that

\314 = A2 =+ A3 (mod m?,)
W1, =By + By (mod mf;)
W =Co+C1 (modm?)

\NIJ4 =Do+D; (mod mlzj)
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By Corollary 4.9, there are constants u, v € C such that
Az = By
Co = vDyg.

Furthermore, the invariant C(z)\llg - Dg\llg vanishes at p and so must be double at p.

Therefore
0= C3¥3 — DJWE = 3C5DEDy — 2CoC1 DY = vD§(3vDy — 2C1) (mod m2)
which gives a relation

Cc _3D
= —vD;.
1=5vh

Remark 5.3. The constants u, v, Dg depend on the choice of linear form w and the
choice of a particular triple point p. However, if we view u, v, Do as having degrees
2,2,4 respectively, then degree 0 homogeneous expressions in these constants do not
depend on these choices (although they do depend on the particular normalizations of

the invariants W ). For example, vDo/u® is the unique constant « € C such that
aWs, = WeWi, (mod I])

where I, is the homogeneous ideal of p, and applying the group action gives the same
identity for any other choice of triple point.

We will abuse notation and write, for example,

\116\111132 (D) = vDg
v, e

when we wish to emphasize the intrinsic nature of such constants. While the constants

wu, v, Dg are typically horrendous, such degree 0 combinations are frequently very simple.

5.2 Equation of the curve of class 42H — 8E3

For constants A; € C, we consider the curve defined by
Wap 1= A W3, 4+ A Wa W2, Wy + A3 WeWd, = 0.

When the constants A; are chosen appropriately, the curve W42 = 0 will be the curve B

that we are searching for. We now determine the correct constants ;.

610Z dUNp || UO Josn salelqi ujooulT-e)selqaN 10 AlISIonun AQ $E6SE8Y/6ZEXUI/UIWISE0L 0 | /I0P/1oBINSHE-8|01E-80UBAPE/UIWI /WO dNo olwapede//:sdiy Wol) papeojumod



Negative Curves on Symmetric Blowups 29

Lemma 5.4. The curve W4, = 0 is 7-uple at p if and only if
w31 + uDoAz + vDoAz = 0.
Proof. We expand the expression for Wy, working mod m;. We have
Wy = ?»1\3134 + )»2‘34\3122\314 + X3 ‘36‘3?2
— 3 2 3
= A1A5 + A2DgB5As + A3CoB;

= (A\11® 4+ AzuDo + A3vDo)B3,

from which the result follows. [ |
The next computation is similar albeit slightly more complicated.

Lemma 5.5. The curve W4, = 0 is 8-uple at p if it is 7-uple at p and
2ur2 + 3viz = 0.

More intrinsically, the curve W42 = 0 is 8-uple at p if the A; satisfy the system

WAL
o+ (—wzlz) () *2=0

3 14
3 [(YeV¥i2
A — a3 =0.
2¥ 2 <‘IJ4‘I’14) ®) 43

Proof. Suppose the curve is 7-uple at p. We collect the degree 7 terms in the expansion

of W4y as follows, working mod mb.
Wyp = )»1@10’4 + AZ\TJ4\T1122\T114 + )~3{i’6ﬁ;i32
= A1 (3A§A3) + g (DOB§A3 +2DoB3B3A;z + D1B§A2) + A3 (3003533 + clBg)

3
= A1(312B3A3) + A2 (DoBgAg + 2uDoB5B3 + uD1B§> + A3 <3vDOB§Bg + EuDlBg) )
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Divide this expression by the common factor B% and then collect the coefficients of Ag,
B3, and D1 B; to see that if the A; satisfy the system

3u? Do 0

Al
0 2/,LD() 3\)D0
0 3 Ao =0
3V
w 2 A3

wd®  uDo vDg

then Wy is 8-uple at p (the fourth equation here is the requirement that W4, be 7-uple at
p, by Lemma 5.4). This matrix has rank 2, from which the first part of the result follows.

The second part of the result follows since the above system of 4 equations
is equivalent to the system consisting of the 1st and 3rd equations. Dividing through
to obtain coefficients which are homogeneous of degree 0 (see Remark 5.3) proves the

second statement. [ |

Having found the linear conditions which must be satisfied for W45 to be 8-uple
at p, we now fix specific multiples of the invariants W4 in order to compute the explicit

equation. We put

where the ® are the standard invariants of Section 2.4. If p = [1: 1 : 1] € P? is a triple

point in X then

¢ (p) = [Pa(p) : Ps(p) : P1a(p)] =[3: —2:-48],
from which we see that the above invariants W4 have the required incidence properties.

Corollary 5.6. If the invariants W4 are normalized as above, then the curve
3 2 3 _
27, — 3WaW i, Wig + Yy, We =0

is 8-uple at a triple point p € K.
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Proof. A straightforward computation shows that

\1-’4\11122 _ <‘~IJ6\I/12) _
<—% )(p)— ) @)=

Picking A3 = 1, the explicit equation follows from Lemma 5.5. |

5.3 G-irreducibility of the curve of class 42H — 8E3

Now that we have the equation of the curve of class 42H — 8E3, the proof of Theorem 5.1
is easy.

Proof of Theorem 5.1. Consider the curve B in P? defined by the equation

203, — 3WaWZ Wiy + YW, =0,

where the invariants are normalized as in Corollary 5.6. We will make use of the

modified quotient map

v : P2 > P4,6,14)

p > [Ya(p) : Ys(p) : Y1a(p)].

To see that B is G-irreducible, it is enough to see that the curve B’ in P(4, 6, 14)
defined by the equation

3 3 2\2 3 2\3
F(wo, wy, w2) :=2w;, — 3 (2W0 — w1> wows + (ZWO — Wl) w; =0

is irreducible, since then any irreducible component of B dominates B’. If B’ is not

irreducible, then there is a factorization of the form
F = (Fow} + Fiwz + o) (Giwz + Go)

where the F;, G; € Clwg, w;] are weighted homogeneous of appropriate degrees to make
the factors weighted homogeneous. Comparing coefficients, FoG; = 2, so F; and G are
both constant. Therefore deg Gy = 14 and Gg divides (ZWS’ - Wf)e’wl. But ZWS - Wf is
irreducible of degree 12, so this is clearly impossible. Therefore B’ is irreducible.

Note that ¢ is unramified over a general point in B’ since B’ is not the branch

divisor, so B is reduced since B’ is.
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Finally, to see that B is unique, consider the complete linear series [42H — 8Ej|
on Xx. Since B?> < 0 on Xj, there is a curve in the base locus of this linear series. Since
the divisor class 42H — 8E3 is G-invariant, its base locus is also G-invariant. But then
since B has a single orbit of irreducible components, it follows that the only curve in the

series is B. ]

5.4 Computer calculations

To show that a divisor class Dy = (28k + 2)H — 2kE4 — 5kE3 is nef, one approach is to clas-
sify all G-invariant, G-irreducible curves on Xy of negative self-intersection of degree
< 28k + 2 and verify that they meet Dy nonnegatively. A computer can carry out this

computation in small degrees. See the Supplementary Material for the methods used.

Theorem 5.7. The only G-invariant, G-irreducible curves of negative self-intersection
on Xx with degree < 200 are of class 21H — 4E4 — 3E3, 18H — 4E4, 42H — 8E3, and 144H
— 4E, — 27E3. Therefore D7 is nef, and

6480"’661 <alx) <6.5
. ~102_alc_ 5.

In light of our computational evidence, the following conjecture seems

reasonable.

Conjecture 5.8. The divisor D = 28H — 2E4 — 5E3 on X is nef. Therefore

~ 13

6 A negative invariant curve on Xy

Here we prove that for the Wiman configuration we have @ (fy) = % As with the Klein
configuration, the computation relies on finding a single interesting invariant curve of
negative self-intersection. While the curve we studied for the Klein configuration was
guaranteed to exist since the expected dimension of the series was positive, in this case
the expected dimension is 0 and the existence of the curve is quite surprising. Our main

focus of the section is to prove the following theorem.

Theorem 6.1. There is a unique curve B of class 90H — 4E; — 8E3 on Xyy. It is

G-invariant, G-irreducible, and reduced.
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The computation of the Waldschmidt constant is an immediate corollary.
Corollary 6.2. The divisor D = 36H — E5 — 2E4 — 3E3 on X)y is nef. Therefore
aly) = —.
a(ly) >
Proof. Let Ayy be the class of the line configuration. By Theorem 6.1, the divisor class
2Aw + 3B =10D

is effective. Both A)y and B are G-irreducible. Then since D-Ayy = D-B = 0, we conclude

D is nef. Lemma 3.4 completes the proof. |

As with the case of the Klein configuration, we begin by determining the explicit
equation of the curve. We then use the equation to prove G-irreducibility, which is

somewhat more involved in this case.

6.1 An alternate set of invariants

As with the Klein configuration, the equation of the curve B is most easily described in
terms of a different set of invariants defined by incidence properties with the points in
the configuration. Let p4, p3, p3 be a quadruple point and two triple points in different
G-orbits. We consider invariants Wg, W12, Wa4, W30 specified by the following incidence
conditions. There is a pencil of invariant forms of degree 12, and we let W, pass through
pa. There is a three-dimensional vector space of invariant forms of degree 24, and we
choose W4 to pass through ps and p;. Finally, there is a four-dimensional vector space
of invariant forms of degree 30, and we choose W3 to pass through all three points
D4.D3.D3-

Fix a linear form w meeting none of the points in the configuration, and put
Wy = Wy/w?. As with the Klein configuration, Corollary 4.9 shows that when we express

the functions Wy in affine local coordinates around p3 or D3, We get expansions

\I'go =Ay+ Az (mod m§3) \1730 =A;+ A3 (mod m%3)

Uos = By + B3 (mod mf,a) Uys =By + B3 (mod m%s)

U12=Co+C; (mod mlz)s) U1, =Co+C; (mod ml%3)
Ug=Do+D; (mod mfoS) Ug=Do+D; (mod m%3).
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There are constants u, v, i, v € C such that

Ay = uB>y Z2 = EEZ
Co = vDg Co =VvDg.

Since the invariant Dg\lllz — Colllg vanishes at p3, it is double at p3, and thus

0=D§W, — CoW¢ = D§C) — 2CoDoD; = D§(Cy — 2vDy) (mod m?)),

so that

Cl = 2VD1
51 = 231_)1.

We can also expand U4 in local coordinates around ps; this turns out to be
considerably simpler. Observe that [0 : O : 1] is one of the quadruple points of the
configuration, so there is no need to change coordinates to express an invariant Wy
in local coordinates at ps4. The presence of the transformations R; and R; in the group
G imply that if x?y?zC is a monomial which appears in a G-invariant homogeneous form
W, then a, b, ¢ have the same parity. If d is divisible by 6, then the exponents must all
be even. It follows that the functions Wy have expansions

l330 = :4\2 (mod m§4)

Uyy =By (mod mf,4)

Vo = 6’2 (mod m§4)

~ ~ 2

Vg =Dy (mod my,).

By Corollary 4.9 there are also constants i,V € C defined so that

Ay =[iCy
Bo =vDo

6.2 Equation of the curve of class 90H — 4E,; — 8E3

For constants A; € C, we study the curve Vg9 = 0 with equation

Wgq = )\.I\IJSO + )»2\1—’6\1/24\1130 + )Lglllg\l—’224‘~y30 + )»4\-1112\.11224‘-1130 + X5\P6\D12\D§4 =0,
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and seek to determine values for the A; that will make W99 = 0 be the curve B that we
are looking for. The main difference with the Klein case is that we now have 3 orbits of
points at which to assign multiplicities. We begin with the point p4 since it is the most

different from the Klein.
Lemma 6.3. The curve Wyq is 4-uple at p4 if and only if
A3 +VAs = 0.

Intrinsically, the curve is 4-uple at p4 if and only if

WioWoy
ks-i—(—) 4) - A5 = 0.
WeW3g P

Proof. We expand Ugg at pa, working mod m;‘,. We have
\I’go = )»1@:‘;’0 + AZ\TJG\T’QAL\T’:?() + A3®g$§4q’30 + )»4‘312\3224@30 + )»5\1;5‘1’12\1’24
= A3ﬁ%§%22 + )»5f)0/(:'2§8

= (M3fiv? 4 A50°)DECo,
from which the result is immediate. |
Next we consider the requirement for Wgy to be 7-uple at one of the triple points.
Lemma 6.4. The curve Wyg is 7-uple at p3 if and only if
w3r1 + uPDorz + uDEA3 + uvDorg + vDirs = 0.
Proof. Expand Wy at p3, working mod my . We get
Tgo = M U3y + Ao W Upa U2y + A3 W2 W2, Wag + Ag W12, Tao + A5 Ve V1203,
= MA3 + 22DoB2A3 + A3D3B2A5 + 14CoB3A2 + 5D CoB3

= A u>BS + Aou?DoB3 + A3uD3B3 + AgjuvDoB3 + A5vD3B3

= (mp® + A1’ Do + 23uD§ + hapvDo + 5vD5)B3,

which proves the result. n

610Z dUNp || UO Josn salelqi ujooulT-e)selqaN 10 AlISIonun AQ $E6SE8Y/6ZEXUI/UIWISE0L 0 | /I0P/1oBINSHE-8|01E-80UBAPE/UIWI /WO dNo olwapede//:sdiy Wol) papeojumod



36 T. Bauer et al.

Next we analyze the further condition which gives that Wqg is 8-uple at a triple

point.

Lemma 6.5. The curve Wy is 8-uple at p3 if it is 7-uple at p3 and
3u?x1 + 2uDohy + D3rg 4+ vDors = 0.

Intrinsically, the curve is 8-uple at p3 whenever the A; satisfy the system

WeWos w22 Wy W2
3-A1+2<T>@) xw(% (P3) - A3+ \p—z‘* (P3) - Aa =0

30 30 30

YeW v
A2+2(—6 24>(p) A3+2<—” 24>(p3)-x4+3 —12 22 ) (p3) - A5 = 0.
W3 YeW \1130

Proof. The proof is highly similar to the proof of Lemma 5.5, so we omit it. |

In total, we have found the following criterion for there to be a curve Wgg = 0

with the required multiplicities.

Proposition 6.6. The curve Wgg = 0 is 4-uple at ps and 8-uple at both p3 and p; if the

A; are a solution of the system

We W N \plzxp A
3 2(%g2) (pa) ( ¢> (P) ( ) (Ps) 0 !
YW Wi W \1’12‘1’ A
0 1 2 (%% ) (pa) 2 ;;q,;;) (s) 3 ( ) (p3) 2
3 2 (—‘PS,%‘*) @3) (wg%) @3) (lewz“) (P3) 0 A3 | =0.
30 \1/30
YW — Wi W — Wy, W2 — A
0 1 2 ( 33024) Bs) 2 (ﬁ) ®s) 3 ( %24) Bs) 4
0 0 1 0 () oo )| 2

Proof. This follows immediately from Lemmas 6.3 and 6.5, noting that the obvious

analog of Lemma 6.5 holds for the triple point ps. |

Unfortunately we are not aware of a simple reason why the matrix in the

proposition actually has rank 4 instead of 5; this is why the existence of the curve B
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is surprising. We now fix scalar multiples of the invariants W4 to explicitly compute the

entries in the above matrix. We choose invariants

Vg = 2Pg

Wiy = 18(d3 — d12)

V15

lezwg—%(15+s)\y12 s
Tio= W2 — (15— 50,
5 60 '
~ 4 1 2 1 2
Woq = T12T12 = Vg — 5‘1’5‘1/12 + E‘Iﬁz-

36
Wsp = 2_5(2q>g — 11d3d15 4 36D D7, — 27D30)

The auxiliary invariants Yi3, Y12 are specified up to scale by the requirement
that they pass through ps; and pj, respectively. While they are not defined over Q in
terms of Wg and Wiy, the invariant Wys = Y1212 is defined over Q in terms of Wg
and Wqs.

Corollary 6.7. If the invariants W4 are normalized as above, then the curve
Wog 1= 4W3) — 10WgWaaWs) — 20WE W3, Wao + 10W W2, W30 — 5We W12 W3, = 0

is 4-uple at p4 and 8-uple at each of p3, ps.

Proof. We compute the entries of the matrix of Proposition 6.6, scaling the rows to

clear denominators. Putting s = i+/15, the matrix becomes

30 10+2s 1+s 4s 0
0 5 5+s 15455 6s
30 10—2s 1-s —4s 0
0 5 5—s 15—-5bs —6s
0 0 1 0 —4
The vector (4, —10, —20, 10, —5)7 is evidently in the kernel. [
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6.3 G-irreducibility of the curve of class 90H — 4E, — 8E3

With the equation of the curve B in hand, we now complete the proof of the main theorem

in this section.

Proof of Theorem 6.1. By Corollary 6.7, if we normalize the invariants W4 appropri-

ately then the curve B in P? defined by the equation
4W3) — 10WeWaa W2, — 10(2W2 — W12) W2, W3 — 5We W13, = 0

has the required multiplicities. Everything except the G-irreducibility of this curve
follows exactly as for the Klein configuration, so we focus on G-irreducibility.
Working in the weighted projective space P(6,12,30) with coordinates wg, wy,

wo, we define forms

1
L=wj— %(15 + s)wy

1
L=w?——(15-s)w
0 60( ywy
Q=LL

F = 4w3 — 10wpQw3 — 10(2w3 — w1)Q*wy — 5wow; Q3.

Asin the proof of Theorem 5.1, it is enough to show that F is irreducible in Clwg, wy, wa].

First suppose that F factors into irreducible factors as

F = (Fiwy + Fp)(Giwz + Go)(Hiwz + Go),

where F;, G;,H; € Clwg, w;] and the factors are weighted homogeneous of degree 30.

Then Fg, Go, Hy are weighted homogeneous of degree 30. We have
373
FoGoH() = —5WOW1L L ,

and the right hand side is already factored into irreducibles. Since w1, L, L each have

degree 12, this is absurd.
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Next suppose that F factors into irreducible factors as
F = (Gaw? + Giwz + Go)(Hywz + Ho) =: GH

where G;, H; € Clwg,wi] are weighted homogeneous of the appropriate degrees.
Eliminating the possibility that F factors in this way is more delicate; for instance,
it depends on the particular numerical coefficients in the definition of F.

Since F is defined over Q and its two irreducible factors have different degrees,
if o is a field automorphism of C then the action of o on P(6, 12, 30) fixes the curves G =0
and H = 0. This implies that there is some nonzero A € C such that all the coefficients of
G (resp. H) are rational multiples of A (resp. A~!). Eliminating A, we may as well assume
G, H have Q-coefficients.

Let us compare coefficients of F and GH to determine the irreducible factors of
the G;, H;. We write ~ to denote an equality which holds up to a scalar multiple. First

observe
Gy ~1 deg G; = 30 deg Gp = 60 H ~1 deg Hy = 30.
Examining the coefficient of w) gives
GoHy ~ wow1 Q% = W0W1L3Z3.

Since Gg, Hp have Q-coefficients, the only possibility is that

G() ~ Wi 02

Hy ~ wpQ.
Next, looking at the coefficient of W%,
G1Hy + G2Hp ~ wpQ,
from which it follows that

Gl ~ W()O.
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Note that the relation GiHy + GoH; ~ (ZWg —w)Q2 is consistent with the factorizations
of the G;, H; that we have found so far, so to go further we must consider the numerical
coefficients of the factors.

Let g;, h; € C be such that

G2=92 Gi=giwoQ Go=gowiQ*> Hi=h  Ho=howoQ.
Comparing coefficients gives relations

g2h1 =4

g2ho + g1h1 = —10

giho = —20
goh1 =10
goho = —5.

However, this system has no solutions. Indeed, the identity

(goh1)(goho)(gzho + g1h1) = (g2h1)(goho)* + (g1ho)(gohi)?

shows that if all the equations in the system except the second are satisfied then

2 2
4 (=5 +(-20)-10° _
10 - (—5)

g2ho +g1h1 =

We conclude that F is irreducible. [ |

7 Generators and asymptotic resurgence

We can now use our results on Waldschmidt constants to compute the asymptotic
resurgence of the Wiman configuration and bound the asymptotic resurgence of the
Klein configuration. The main additional information we need is knowledge of the

generators of the ideal I-.

7.1 Jacobians and invariant ideals

In this subsection we prove a basic fact about the relationship between Jacobian ideals

and group actions. For this subsection only, we let S = Klxy, ..., xn] be a polynomial ring
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over a field K and suppose G is a group that acts linearly on S. For a polynomial f € S

we write

Vf = [af foxo ... 3f Joxn]"
for the gradient vector of partial derivatives of f. We will need the following identity.

Lemma 7.1. Suppose g € G acts on S via the matrix Ay € GL,1(K). For any f € S we

have
g(vf) = Ag" - Vg(.
The proof is a straightforward application of the multivariable chain rule, so we
omit it.
Lemma 7.2. Suppose fi, ..., fs € S¢ are G-invariant. Let

be the (n + 1) x s matrix with columns given by the gradient vectors of the f;. If I; is the

ideal of maximal minors of J, then I;is G-invariant.

Proof. Letg e G and use Lemma 7.1 to compute the action of g on J as follows:

9() =g[VA ... V] = [A;Vg(fl) A§1Vg(fs)] — A,V [Vfi... Vf] = 451

In the displayed equation above, the penultimate equality uses that fi, ..., fs are G-
invariant. The identity g(J) = Ag_lJ implies that the ideals of maximal minors for J and
glJ) are the same, that is, Iy = Iy. Since the action of G respects the multiplicative
structure of S, in particular taking minors to minors, we also have that g(I;) = I4,. We

conclude g(Iy) = I;. [ |

7.2 Generators of ideals

Lemma 7.2 allows us to identify the ideals I of the Klein and Wiman configurations
as natural ideals arising from the fundamental invariant forms. We begin with the

Klein case.
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Proposition 7.3. The homogeneous ideal Ix of the 49 points in the Klein configuration

is the ideal of 2 x 2 minors of the matrix

ID4/dx 0D4/dy IDs/dz
IDg/0x 0dg/dy IDg/dz

where ®4, &g are the invariants of §2.4. In particular, «(Ix) = w(Ix) = 8 and I is

minimally generated by 3 generators of degree 8.

Note that a different proof of the follow-up statements was given in [34,

Proposition 4.2].

Proof. LetI be the ideal of 2 x 2 minors of J; we prove I = Ix. Since the Klein quartic
®,4 = 0 is smooth, the entries of the gradient vector V&, generate an ideal primary to
the maximal ideal of S = Clx, y, z]. Thus they form a regular sequence. By [18] or [37],
the occurrence of a syzygy on the generators of I given by a regular sequence implies
that the quotient S/I is Cohen-Macaulay with Hilbert-Burch matrix J7 and minimal free

resolution
0— S(—-13)® S(—11) —> S(-8)° > S — S/T — 0.

In particular, I is saturated and S/I is the coordinate ring of a set of (not necessarily
reduced) points in P2, Furthermore, the above free resolution of S/I allows us to compute
deg S/I = 49.

Since I is Gi-invariant by Lemma 7.2, the support of S/I is a union of orbits of
the G-action on P?. Additionally, S/I has the same length at each point of an orbit. By

Remark 2.2, we see that there are nonnegative integers a; such that
28ay + 21ag + 24a3 + 56a4 + 42as + 84ag + 168a7 = 49.

The only solution in nonnegative integers to this equation is visibly a; = a; = 1 and a;
=0 (i > 3), corresponding to I = I being the ideal of the triple and quadruple points of
K. |

A similar approach works for the Wiman configuration.
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Proposition 7.4. The homogeneous ideal I}y of the 201 points in the Wiman configura-

tion is the ideal of 2 x 2 minors of the matrix

[ d®s/ox  9%e/dy  de/oz
C\ 8d12/0x  d12/dy 9D12/0z

where ®g, ®;2 are the invariants of §2.5. In particular, «(lyy) = w(lyy) = 16 and Iy is

minimally generated by 3 generators of degree 16.

Proof. Let I be the ideal of 2 x 2 minors of J, so that I is Gyy-invariant by Lemma
7.2. Since the Wiman sextic ®g = 0 is smooth, the same argument as in the proof of

Proposition 7.3, shows that S/I has minimal free resolution
0 — S(—27) ® S(—-21) — S(-16)° > S — S/I — 0.

The resolution implies that deg S/I = 201. As in the Klein case, by Remark 2.5 this yields

a solution in nonnegative integers to the equation
60a; +45az + 36a3 + 72a4 + 90as 4+ 180ae + 360a; = 201.

It is easy to see that the only solution to this equation in nonnegative integers has a; =
2,ay=a3=1,and a; =0 (i > 4).

This leaves two possibilities: either I = Iy, or S/I has length 2 at all of the points
in one of the orbits of triple points. In the latter case, we find that there is a length 2
scheme supported at a triple point p of the configuration W which is invariant under
Gp = Dg. Then the tangent direction spanned by this scheme gives a Gp-invariant

subspace of the tangent space TpP?, contradicting Lemma 4.8 (1). Therefore I =I)y. W

7.3 Asymptotic resurgence

Our results on Waldschmidt constants and our knowledge of «a(Iz) and w(Iz) now
provide estimates on the asymptotic resurgence of Ix and allow us to compute the

asymptotic resurgence of Iy exactly.

Theorem 7.5. For the Klein configuration of lines, we have

1230~ 28— 500) < 815 1 1 034
: 13 =P =661 T T
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For the Wiman configuration of lines,

o )—32~1185
pUw) = = ~ 1.185.

Proof. Recall that for any ideal I we have

al) . w()
% <pd =< ﬁ-

Since a(Iz) = w(Iy) for £ = K or W by Propositions 7.3 and 7.4, the result follows from
Theorem 5.7 and Corollary 6.2. [ |

Remark 7.6. For the Klein configuration, the weaker upper bound

36
o — & 1.242
plx) < 29

follows from Corollary 5.2, which did not require computer calculations. Conjecture 5.8
would imply that in fact p(Ix) = 16/13.

8 Failure of containment and resurgence

The resurgences of the Klein and Wiman configurations can be computed exactly. We
begin with the failure of containment that achieves the supremum in the definition of
resurgence. In the case of the Klein configuration a computer-free but computationally
heavy proof of the next result was first given in [34]. We offer two new proofs here that

use tools from representation theory.

Proposition 8.1. If I, is the ideal of the Klein or Wiman configurations of points, then
there is a failure of containment I(£3) Z Iz. More precisely, the product of the linear forms

defining the configuration is an element of 123) which is not in I[ZL'

The fact that the product of the lines is contained in Ig) is clear since both
configurations only have points of multiplicity 3 or higher. Our first proof makes use of

the character theory of the group.

First Proof. We begin with the Klein configuration. We claim that there are no

invariant forms in the degree 21 piece (I#)21. Note that (I2)z; is a finite-dimensional
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representation of Gi. Letting S be the homogeneous coordinate ring, the multiplication

map
I£)16 ® S5 — (I£)21

is a surjective map of G-modules. Thus every irreducible submodule of (I,ZC)21 appears
in (I;ZC)IG ® S5 by Schur’s Lemma, and in particular the induced map on G-invariants is
surjective. Thus, to prove the claim, it will be enough to show that (I,2C)16 ® S5 has no
trivial submodules.

Let V = S be the three-dimensional irreducible representation of G which gives
rise to the Klein configuration. From the character table of G (see [19]) we know that
V and V* are the only three-dimensional irreducible representations of G and the only
one-dimensional representation of G is the trivial representation. Since (Ix)g is three-
dimensional and contains no invariants (®4 is not in Ix), we deduce that it is isomorphic
to either V or V*. Both V and V* have the same symmetric square Sym?V = Sym?V*,
which is the unique irreducible six-dimensional representation of G. Then the natural
map Sym?(Ix)g — (I,zc)lg is a nonzero surjective map of G-modules since I is generated
in degree 8 by Proposition 7.3, so it is an isomorphism by Schur’s Lemma. Since

S5 = Sym®V*, our question is to determine whether
Sym? V ® Sym® v*

contains a trivial submodule. This can be determined immediately from the character
of this representation, which we now compute.

First we recall the character of V* and Sym?V, as well as the conjugacy class
data for G. We also display some values for the character of Sym®V* which we will
derive in a moment. Blank entries in XsymS v will not be needed in our computation.
The conjugacy classes are labeled by the order of an element and a letter to distinguish
between several classes consisting of elements of the same order. For example, class 7A

is one of two classes consisting of elements of order 7.

c 1A 2A 3A 44 7A 7B

#cC 1 21 56 42 24 24 ) 4
a = {+{°+¢

xvv |3 -1 0 1 @ «
Xsym?y | 6 2 0 0 -1 -1
Xsymsve | 21 —3 0 o
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Observe that the indicated entries for XsymS v are enough to prove the theorem. Indeed,
XSym? V@SymS v+ takes value 6 - 21 on class 14, value 2 - (—3) on class 24, and 0 on all other
conjugacy classes. Its inner product with the trivial character is then 0, so there are no
trivial submodules in Sym?V ® Sym®V*.

To compute the indicated values for XsymS v+ We first recall how to compute the
character. Suppose the action of the group element g € G on V* has eigenvalues 11, X2,

A3. Let p(x, y, z) be the sum of all monomials in x, y, z of degree 5. Then

Xst5 V* (g) = p()"ll )"21 )\'3)

The given entries in the character table now follow from easy combinatorics, as follows.

To compute the character on the class 24, observe that such a group element
g acts on V* with eigenvalues 1, —1, —1. The number of monomials x%y?z¢ of degree 5
such that b = ¢ (mod 2) is 9, while there are 12 monomials with b # ¢ (mod 2). Thus p(1,
-1, -1)=-3.

For the class 7B, there is a group element g acting on V* with eigenvalues ¢,
¢?, ¢*. If we weight the variables x, y, z with Z/7Z degrees 1, 2, 4 and partition the
monomials of (ordinary) degree 5 according to their Z/77Z-degree, we find there are
precisely 3 monomials of each Z/7Z-degree. Thus the fact that xg ;5 .(9) = 0 follows
from the identity

1+c+2+3+%+5+¢5=0.

The value on class 74 must be conjugate to the value on class 7B, so is also 0.

The argument for the Wiman configuration follows an identical outline, although
at first glance the character table is more intimidating (the full character table can be
obtained in GAP by the command CharacterTable ("3.26"), but we will only need a
very small portion of it here). In the end, however, the amount of computation we must
do is the same as for the Klein. We show there are no invariants in (112/V)45 by showing
that (I,Z/V)sz ® S13 has no trivial submodule.

Let V = S} be the three-dimensional representation of the Valentiner group G=
51/\; which gives rise to the Wiman configuration. Again V' = (Iyy);6 is a 3-dimensional
irreducible representation, and its symmetric square Sym?V’ is isomorphic to (I12/V)32
and is an irreducible six-dimensional representation. The group G has 4 different
three-dimensional irreducible characters and 2 different six-dimensional irreducible

characters; we display one of each x3, x5 below, choosing x¢ to be the character of the
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symmetric square of the representation corresponding to x3. The alternate characters
are related by complex conjugation and/or an automorphism exchanging ++/5; our
argument will not be sensitive to this. We let ¢ be the character corresponding to the
13th symmetric power of the representation corresponding to x3, and display some of
its values which we will verify. We group the conjugacy classes in a way that emphasizes
the fact that G is the triple cover 3 - Ag.

c|l14 34 3B 124 64 6B 13C 3D 144 124 12B
| | |

#c| 1 1 1 145 45 45 1120 120190 90 90

3] 3 8w 302 -1 —o -1 0 0 w2

| | |
| | |
x6 | 6  6w? 6w ' 2 20% 2w ' 0 00 O 0
| | |
¥ | 105 1050w 1050?21 —7 —70w —7w? 1 .

c| 54 154 15B 1 5B 15C 15D

#c| 72 72 72 : 72 72 72 P =1

X3 | —m1 —mio —mwzi—uz —pow  —p2w? o= =S
X6 1 w? w [ | w? w H2 = _15*/5
vl o 0 0 : 0 0 0

As with the Klein, observe that if we establish the displayed values for v then
both xs ® ¥ and ¥g ® ¥ are orthogonal to the trivial character; the same result also
clearly holds if we define i in terms of any of the other conjugate three-dimensional
characters. Thus, whichever irreducible six-dimensional representation (I)z/v)gz is, the
representation (112/\;)32 ® S13 has no trivial submodule.

To compute the displayed values of ¢, it is enough to compute the values on
classes 24 and 5A. This is because the center of G acts on the conjugacy classes by
permuting the blocks of 3 columns. Furthermore, since the values of x3 on classes 5A
and 5B are conjugate under the automorphism exchanging ++/5, the same holds for .

The value of ¥ on 24 follows from the same logic as in the Klein case. An element
of class 2A has eigenvalues 1, —1, —1. There are 49 monomials x%y?z¢ of degree 13 with
b = ¢ (mod 2), and 56 with b#c (mod 2). Thus the value on 24 is — 7.

For the value of ¥ on 54, we have — u; = 1 + ¢2 + ¢3, where ¢ = e27i/5

. An element

of class 5A has eigenvalues 1, ¢2, ¢3. Give the degree 13 monomial x?y?z¢ a Z/5Z degree
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of Oa + 2b + 3c. Partitioning the monomials of degree 13 by their Z/5Z-degree, there are

21 monomials in each class. Since
1+¢ 482+ +¢% =0,

we conclude that the value of ¢ on 54 is 0. [ |

Our second proof uses less information about the group G, but requires a better

understanding of the resolution of the ideal I,.

Second Proof. We handle both configurations simultaneously. Let d be the number of
lines in the configuration, and let ®4 be the product of the lines in the configuration.
Therefore d = 21 if £ = K and d = 45 if £ = W. Recall that ®4 is the only invariant form
of degree d up to scalars. We clearly have &4 € I(Ez).

We claim that, in order to establish the desired conclusion ®; ¢ IZ, it is
sufficient to show that the degree d component (Ig) /I%)d is a one-dimensional trivial
representation of G. Indeed, suppose that is spanned by a nonzero element f. Pick a
representative f € I(ﬁz) \ILZ1 for f. Since g(f) = f by the assumption that G acts trivially, it
follows that g(f) — f € 1[2: for any g € G. Summing over the group elements yields

> g —IGI-felZ,

geG

which shows that the G-invariant polynomial degg(f) is not in I2, since f ¢ Iz. Then
deGg(f) is a nonzero multiple of &4 since ®4 is the only invariant form of degree d up
to scalars, and we conclude that &4 ¢ I%.

The rest of the proof will aim to establish that (Ig)/I%)d is a one-dimensional
vector space having trivial G action. In order to do this, the key idea is to use the action
of G on a free resolution of I% in order to study the action of G on the quotient I(EZ)/I%.
Recall from Propositions 7.3 and 7.4 that the minimal free resolution of I has the form
0> M —- N — I - 0, where M = S? and N = S3. Since I is an almost complete
intersection, the minimal free resolution for I% is given by the following complex (see
e.g. [32, Theorem 2.5])

2 1
0> \M— A\ M®sSym' N - Sym®N — I% — 0. (4)
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We record below the explicit form of this resolution for the two ideals of interest to us,

with particular attention to the graded twists:
0 — S(—24) — S3(-21) ® S3(~19) — S%(-16) > I2 > 0
0 — S(—48) — S3(-43) ® S*(—37) — $%(-32) > I}, — 0.

Notice that the last free module in the resolution in both situations has rank one and is
generated in degree d + 3. Since in our setting we have HY, (S/I%) = Ig)/Iz, we can apply

local duality to perform the following computations
(122) /I%)d = HO,(S/1%)q = Ext3(S, S/1%)¥ 4_s = Ext2(S,13)" 4_s.

Thus to compute the vector space dimension of (I(LZ)/I%)d as well as the group
action on this vector space it suffices to examine Extg(S, I%)_d_g. Applying the functor
Homg(—, S) to the resolutions displayed above and restricting to degree —d —3 gives in
both cases that Extg(S,I%)_d_3 = Hom(c((/\2 M)g43,C) is a one-dimensional vector space
spanned by the dual of the generator of the last free S-module in the resolution (4). It
remains to show that G acts trivially on (/\2 M)g.3. Let {e1, ez} be a basis for the free
module M = S%. Then (/\2 M)g+3 = span{e; A ez} and it is in turn sufficient to show that
G acts trivially on e; and ey or equivalently on M/mM.

Towards this goal, we begin by analyzing the group action on the minimal free
resolution of S/I, which is given by 0 > M — N — S — S/I; — 0. Fix an element g € G.
Denote by S’ the S-module that is isomorphic to S as a ring, but carries a right S-module
structure given by f - s = f - g(s) for any f € S’ and s € S. Since S’ is a Cohen-Macaulay
S-module and S is regular we have that S’ is a flat S-module. Tensoring the resolution
for Iy with S’ gives an exact complex 0 > M ®sS — N®sS — S — S'/I; — 0. The
two resolutions fit into the rows of the commutative diagram below, with vertical maps
obtained by lifting the map ¢ : S — S’ that maps 1 — 1, denoted by the equality symbol.
Notice that this map sendss=1-se€ S+ 1-s=g(s) € §, thus this map represents the

action of g on S.

0o—— M 2% N A2, R

Je & H

00— Mogs —L 3 Neogs -2 g
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In the top row of the above diagram, J denotes the Hilbert-Burch matrix for I and A
denotes the vector of signed maximal minors of this matrix. By Propositions 7.3 and 7.4
the Hilbert-Burch matrix J is the Jacobian matrix of the two smallest degree invariants
of the relevant group acting on the set £. In the bottom row of the above diagram, J’ and
A’ are obtained by letting g act on each of the entries of J and A respectively.

Let Ay be the matrix representing the action of g on S;. From Lemma 7.1 we have
that J = g(J) = A;lJ. Next we seek an analogous description for A’. Since A is the set
of 2 x 2 minors of J, we see that AT = A%J. Thus we have g(A)T = g(A?J) = /\Z(AEIJ).

We compute this by applying the A% functor to the following commutative diagram as

shown
J 2 T=n2J o
M — N A2M B =N p2y
| e = s
J'=A;1J ANT
M= N a2y B ey

It follows from the second diagram that

(AT = (A2A,H)AT = Cof(A; AT = det(4)A7 AT = (AAy)T,

were Cof(Ag‘l) denotes the cofactor matrix and we use the property det(44) = 1 for all
elements of G. Thus we conclude that A" = A - Ag.

Next we proceed to determine the maps labeled B and C in our first diagram.
The rightmost square gives A =A’B or, equivalently, A = AAgB. Hence we can pick the
lifting B = A;l. The leftmost square gives BJ = JC, which becomes with our choice
for B the identity Ag_IJ = Ag_IJC. Thus one can further pick C = I3. Any other choices
for B and C compatible with the above commutative diagram will be homotopic to the
choices we made above. Since any pair of homotopic maps induce the same map on the
quotient M/mM, it follows that the action of g on any basis elements of M is the same
as the action of C, namely the identity. Using the reductions made in the beginning of

the proof, this finishes the argument. |

One final result that we will need to compute the resurgence is a computation of

the regularity of the ordinary powers of the ideal I..

Proposition 8.2. If r > 2, then reg(I-) = 8r + 6 and reg(ly,)) = 16r + 14.
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Proof. The ideal I defines a reduced collection of points in P? and it is generated by
3 homogeneous polynomials of the same degree d, with d = 8 for £ = K and d = 16 for
L =W (see Propositions 7.3 and 7.4). These properties allow us to use [32, Theorem 2.5]
to explicitly compute the minimal free resolution of any power I}.. From the minimal

free resolution we determine that reg(I;) = rd +d — 2. [ |

We can now give the proof of Theorem 1.5, computing the resurgence of the ideal

of the Klein and Wiman configurations of points.

Proof of Theorem 1.5. By Proposition 8.1 and the Ein-Lazarsfeld—-Smith theorem [17],
we need to show that if m, r are positive integers with % < % then Ign) C IE; let m,
r be such integers. Recall that if a(Ig")) > regI, then the containment I(ﬁm) C I} holds
by [5, §2.1].

In the case of the Klein ideal I, we estimate a(I,(Cm)) > ma(Ix) > %m by Corollary
5.2. Since reg(I;-) = 8r+6 by Proposition 8.2, we see that the containment I,(Cm) C Ii- holds

whenever

58
gm > 8r+ 6.

It is easy to see that this inequality holds for any positive integers m, r with % <
For the Wiman ideal Iy, we use Corollary 6.2 to estimate oz(I)%l)) > 277m. From

reg(I{/V) = 167 + 14, we conclude that the containment Il(/'\'}) - I{/V holds if
27
7m > 167 + 14.

Again, the inequality holds for any positive integers m, r with % < |

Remark 8.3. Note that in the case of the Klein configuration we only needed to use the

weaker lower bound on @(Ixc) coming from Corollary 5.2.

9 Positive characteristic

The Klein configuration can be defined over fields of characteristics other than O; to
be able to define the coordinates of the points of the configuration one needs the base
field to contain a root of x> + x + 2 = 0 (see section 1.4 of [1]) and the field needs to be
sufficiently large that the resulting 49 points are different. There is reason to believe

that it behaves much as it does over the complex numbers except for characteristic 7
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(see [34]). The fact that characteristic 7 is special is suggested by the fact that it is the
only characteristic for which x? + x + 2 = 0 has a double root (in this case x = 3). We
now consider the case of characteristic 7, as given in [22].

The configuration is described geometrically in [22] in a very simple way.
Consider the conic C defined by x? + y? + z?> = 0. Over the finite field K = F; of
characteristic 7, C has 8 points and thus 8 tangents. There are 21 K-lines in ]P’f{ that
do not intersect C in a K-point; these are the 21 lines of the Klein configuration. There
are also 21 K-points of P? not on any of the 8 K-tangents to C; these are the 21 quadruple
singular points of the Klein configuration. The remaining 28 singular points, which are

triple points, are the K-points on a tangent but not on C.

Theorem 9.1. Let I be the ideal of the 49 Klein points over K = F7. Then a(I) = 6.25
and 1.28 < p(I) < 1.44 < p(I) = 3/2.

Proof. To verify @(I) = 6.25, note that the 28 = (g) triple points are the pairwise
intersections of the 8 tangent lines. Thus they comprise a star configuration on these 8
lines, for which «(I'?) is known to be the degree of the product G of the forms defining
the 8 lines [5]. Let F be the product of the linear forms for the 21 Klein lines. Then F?G
vanishes on each of the 49 points with order 8, so F2G € I®, hence «(I®) < deg(F?G) =
50, so a(I) < 50/8 = 6.25. (We note that this argument does not apply to the Klein
configuration of 49 points in characteristic 0, since the 28 points are not in that case a
star configuration. Alternatively, «(I®) = 50 can be checked in characteristic 7 explicitly
using Macaulay2. In contrast, in characteristic 0 Macaulay2 gives «(I®) = 54.)

For the lower bound it is enough to show that «(I"™) > 6.25m = 5on for infinitely
many m > 1. We used the general methods of [11] to discover the argument we now give.
We will show that «(I®) > 50m for all m > 1.

Any form H of degree d < 50m vanishing to order at least 8m at the 49 Klein
points is divisible by FG. This is because FG is a product of 21 + 8 = 29 linear factors,
and each factor vanishes on either 7 or 8 of the 49 points. But 7(8m) > 50m, so by
Bézout's Theorem, each linear factor of FG is a factor of H. Factoring these out leaves
a form H' of degree 50m — 29 vanishing to order at least 8m — 4 at the 21 quadruple
points and to order at least 8m — 5 at the 28 triple points. Since each linear factor of F
vanishes at 4 of the quadruple points and 4 of the triple points and since 50m — 29 <
4(8m — 4) + 4(8m — 5) as long as m > 1, it follows, again by Bézout, that F divides H,
and so for m > 1 it follows that F2G divides H.
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Dividing H by F2G gives a form H* of degree d — 50 < 50(m — 1) vanishing to
order at least 8(m — 1) at the 49 Klein points. Up to scalars, it follows by induction that
H = (F?G)™ and thus that d = 50m.

Since Macaulay2 gives «(I) = 8 and w(I) = 9, applying (1) gives the bounds 1.28 =
a)/ad) < p5d) < wd)/ad) = 9/6.25 = 1.44.

Finally we show that p(I) = 3/2. Macaulay2 demonstrates the failure of contain-
ment I #I®. Suppose 2 > %; we need to check the containment I™ c I" holds. First, if
r < 7 then we can check with Macaulay?2 that I™M  I": it suffices to only consider m =
[3r/2]. So suppose r > 8. By [5], if «(I"™) > reg(I") then the containment I™ c I” holds.

Now we estimate «(I™) > 6.25m and
reg(I") < 2reg(l) + (r — 2)w()
by [7, Theorem 0.5]. Macaulay2 gives reg(l) = 12, so this simplifies to

reg(I") < 9r + 6.

Since % > % we have m > %r+ %, and since r > 8 we have

25 75 25
ad™) > Tz gTt g z9r+6z= reg(I").

Therefore the containment I™ ¢ I" holds and we conclude p(I) = 3/2. |
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