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Abstract Linearization of the eigenvalue problem has been widely used in vibration-based 
damage detection utilizing the change of natural frequencies. However, the linearization method 
introduces bias in the estimation of damage parameters. Moreover, the commonly employed 
regularization method may render the estimation different from the true underlying solution. These 
issues may cause wrong estimation in the damage severities and even wrong damage locations. 
Limited work has been done to address these issues. It is found that particular combinations of 
natural frequencies will result in less biased estimation using linearization approach. In this 
paper, we propose a measurement selection algorithm to select an optimal set of natural 
frequencies for vibration-based damage identification. The proposed algorithm adopts 𝐿"- norm 
regularization with iterative matrix randomization for estimation of damage parameters. The 
selection is based on the estimated bias using the least square method. Comprehensive case 
analyses are conducted to validate the effectiveness of the method. 

Keywords: Structural damage identification, Bias reduction, Compressed sensing, 𝐿" -norm 
minimization, Natural frequencies 
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NOTATION 
𝐌  global mass matrix  
𝐊  global stiffness matrix 
𝐊𝐝  global stiffness matrix for damaged structure 
𝐊&
(()  the 𝑗th elemental stiffness matrix 

𝐱(𝑡)  nodal displacements 
𝐅(𝑡)  nodal forces 
𝑓/   the 𝑖th natural frequencies 
𝛟𝐢  the 𝑖th mode shape 
𝜆/  the 𝑖th eigenvalue, 𝜆/ = 𝑓/5 
𝛟𝐢
𝒅  the 𝑖th mode shape for damaged structure 

𝜆/7  the 𝑖th eigenvalue for damaged structure 
Δ𝛼&  the percentage of stiffness change of the 𝑗th element 
Δ𝛂;<=;> the underlying truth of stiffness loss 
Δ𝛂?   the estimation of Δ𝛂;<=;> 
𝐒  the first order of sensitivity matrix 
𝐒(𝐤)  the subset of 𝐒, only contains rows that in the 𝑘th combination of natural      
                        frequencies 
𝐒(C)  the subset of 𝐒(𝐤), only contains columns that elements are estimated as  
                        damaged 
𝐞  the error in the linearization Δ𝛌 = 𝐒Δ𝛂 
𝚽  the random Gaussian matrix 
𝐋(H)  the location of estimated non-damage element at 𝑞th iteration 

 

1. Introduction 

The timely and accurate identification of damage conditions in structures using real-time, 

online sensor measurements plays a critical role in ensuring the secure and sustainable operations 

of various structural systems in aerospace, marine, transportation and infrastructure, and energy 

and power industries.  Among different structural damage identification techniques, the vibration-

based methods [1] have been widely used. The basic idea of vibration-based methods is that the 

structural properties (e.g., mass, stiffness, etc.) will change due to damages in structures and such 

changes will result in the change of vibration properties including natural frequencies [2], mode 

shapes [3] and their variants such as curvature [4], flexibility [5]. Typically, natural frequencies 

can be measured directly with high accuracy and thus are broadly used in practice [6].  
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In natural frequencies based damage detection methods, damages can be identified by solving 

the eigenvalue problem with linear approximation [7]. The linearization provides the simplicity 

and efficiency in the problem-solving process. With the linearization, the unknown parameters Δ𝛂 

can be estimated by the linear equation Δ𝛌 = 𝐒Δ𝛂, where Δ𝛂 is the change in structural properties, 

𝐒 is the first order sensitivity matrix and Δ𝛌 is the difference of the eigenvalues (squared natural 

frequencies) between healthy and damaged structures. In practice, the measurements of natural 

frequencies involve noise and model updating [8,9] is often preferred to correct the model 

parameters in the finite element model (FEM) for an accurate estimation of Δ𝛂. 

However, there are generally two major challenges in damage identification based on the 

linearized relationship between Δ𝛌 and Δ𝛂. First, 𝐒 is usually a wide rectangular matrix, i.e., the 

number of columns of 𝐒 is much larger than the number of rows since the number of possible 

damaged elements are much larger than the number of available natural frequencies. Thus, the 

linear system is a highly underdetermined system. Second, the linear relationship is just an 

approximation of the true underlying relationship between Δ𝛌 and Δ𝛂. Thus, there will be bias in 

the solution obtained based on the linear relationship. 

In the literatures, research works are available trying to address these two challenges in 

structural damage identification. To relieve the impact caused by the system underdetermination, 

one approach is to enlarge the number of the measurements in the system. Typically, natural 

frequencies are only guaranteed to be measured accurately for the lower order modes due to the 

limitation in both actuation and sensing. Thus, the number of available natural frequencies is often 

enlarged through physical modification of structures. For examples, a mass addition technique is 

explored in [2] to enrich the modal measurements. In this approach, the known masses are added 

to the structure and thus new modal data is achieved. Similar ideas on adding mass or stiffness to 

extract additional natural frequencies can be found in [3]. One disadvantage of this type of physical 

modification is the difficulty to implement in practice due to many physical restrictions. Another 

type of physical modification adopts piezoelectric transducers integration onto the structure. The 

integrated structure is an electro-mechanical system with tunable piezoelectric circuits. The 

tunable inductance can introduce additional natural frequencies. Examples on such type of electro-

mechanical system can be found in [4]. The limitation of physical modification approach is that 
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the number of unknown possible damage elements is often still much larger than the available 

number of measurements.   

Another approach addressing the underdetermination issue is to work with the 

underdetermined system directly and try to obtain a sparse solution. The rationale of this strategy 

is that structural faults typically occur only at a limited number of locations simultaneously. In 

[10], the authors propose a pre-screening strategy to address the underdetermination issue. The 

fault locations are ranked according to the likelihoods and the locations with low likelihoods are 

discarded in order to reduce the fault parameter space. There are two limitations of such approach. 

The first is the underlying assumption of the distribution in the likelihood function. The 

independent and identically distributed (i.i.d.) assumption of errors is not generally true in the 

structural damages. The simplification of the error terms may lead to unreliable ranking results. 

Also, the cut-off threshold in the ranking procedure is ad hoc and may vary in different systems. 

Another technique in obtaining the sparse solution is by regularization. For example, the adaptive 

Tikhonov regularization is adopted in [11] to improve the identification results with the 

measurement noise effects. Th linear matrix inequality methods are used to constrain the unknown 

stiffness parameters in [12]. Among different types of regularization, the 𝐿" norm of the solution 

is often added to the objective function as a penalty and it often returns solution with sparsity, i.e., 

estimates most of the unknown variables to be 0.  𝐿" regularization is the most commonly used 

penalty method in the structural damage identification. For example, the authors apply the 𝐿" norm 

on the number of the damage locations in [1]. The results are sparse with the true damage locations 

are recovered. However, it is found that applying 𝐿" regularization directly often cannot guarantee 

the solution quality in the sense of solution sparsity and consistency. Moreover, the bias induced 

by the linear approximation may further reduce the accuracy of damage estimation. 

In the literature, discussions on the bias in damage estimation caused by the linearization error 

is limited. The linearization between the structural parameters and the system response is 

introduced in [13]. The higher order terms in the Taylor series expansion are ignored to achieve 

the simplification in the equation. However, there are no thorough discussions on how to address 

the bias issue, where such bias may lead to significant errors in damage identification. In available 

studies, adding nonlinear higher order terms has been proposed to reduce the impact of bias in the 

analysis [4, 14, 15]. For example, the equation Δ𝛌 = 𝐒𝟏Δ𝛂 + Δ𝛂𝐓𝐒𝟐Δ𝛂 including both the first 
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and second order of perturbation incorporates the change of mode shapes, which enhances the 

accuracy of damage identification. However, such approach is not recommended in general due to 

the loss of the linear property in the equation, where the highly underdetermined nonlinear system 

becomes the new challenge. Also, the improvements in the solution quality may not be worth the 

loss of the simplicity and the efficiency in the solution process. In recent studies of structural 

damage identification, applying deep neural network (DNN) to the problem becomes a new trend 

[16]. DNN generates reasonable results with high quality training data and well-designed network 

structures, e.g., the choice of activation functions and the layer of the network. It is expected that 

the bias can be reduced by applying multiple layers of linear functions. However, the DNN is a 

black box approach and may be ad hoc when selecting the network structure.  

From the above review, it can see that the underdetermination issue and the identification bias 

issue are addressed separately in existing literature. In this work, we propose a systematic scheme 

that can reduce the bias in damage identification through a measurement selection method. It is 

found that particular combinations of available natural frequencies can significantly reduce the 

estimation bias compared with using all available ones. The proposed method contains three 

algorithms. In the first algorithm, 𝐿"- norm regularization is adopted with iterative random matrix 

multiplication and majority voting. The idea of matrix randomization is to multiply random 

Gaussian matrix to the linear system to achieve 1) matching of correlation structures of error terms 

and 2) unique solution of 𝐿" minimization. The majority voting process helps to estimate the 

damage severities from multiple iterations. In the second algorithm, the estimated damage 

locations are updated by removing locations with negligible damage severities. The estimated 

errors of natural frequencies are derived based on the estimated damage parameters, and are further 

adopted for natural frequency selection by a least squares method in the third algorithm. There are 

several advantages of the proposed the algorithm. First, the regular 𝐿"- norm regularization is 

modified to enhance the quality of damage estimation for measurement selection. Second, since 

the algorithm requires no additional physical modification (e.g., added mass or integrated 

piezoelectric circuits) of the structures, it can be used in many practical scenarios. It is worth 

mentioning that the proposed algorithm can also be extended for natural frequencies selection in 

the physical modified structures for better damage estimation. Third, the proposed algorithm is 
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easy to implement without deriving high order terms in the approximation. Thus, it is 

computationally friendly for practical uses.  

The rest of the paper is organized as follows. Section 2 introduces the linear approximation of 

the inverse analysis of eigenvalue problem. Section 3 introduces the 𝐿"- norm regularization with 

iterative random matrix multiplication and majority voting. Section 4 introduces the proposed 

algorithm for bias reduction through measurement selection. Section 5 presents the case studies to 

validate the proposed method. Section 6 further discusses the factors that influence the 

performance of the algorithm. Section 7 concludes the paper. 

2. Problem Formulation  

For the sake of clarity, the linear approximation of the inverse analysis of eigenvalue problem 

is first introduced for damage identification purpose. Without loss of generality, in this research, 

it is considered the structural damage that induces the change of structural stiffness [17]. Also, it 

is assumed that only a very small number of damages occur in the structure simultaneously which 

is the usual case in practice.   

The dynamics of an un-damped structural system can be described by the linear equation 

𝐌𝐱̈(𝑡) + 𝐊𝐱(𝑡) = 𝐅(𝑡)                                                 (1) 

where 𝐌 and 𝐊 are the global mass and stiffness matrices, respectively,	𝐱 and 𝐅 contain the nodal 

displacements and nodal forces, respectively. The eigenvalue problems associated with the healthy 

structure and damaged structure are shown in Eq. (2) and (3), respectively: 

(𝐊 − 𝜆/𝐌)𝛟/ = 0                                                        (2) 

R𝐊7 − 𝜆/7𝐌S𝛟/
7 = 0,                                                      (3) 

where 𝜆/ and 𝛟/ are the 𝑖th eigenvalue (squared of the ith natural frequency) and eigenvector of 

the healthy structure, and 𝜆/7  and 𝛟/
7  are the 𝑖 th eigenvalue and eigenvector of the damaged 

structure, respectively. The damages are only induced by the loss of stiffness, so the mass matrix 

𝐌 remains unchanged. The stiffness matrix 𝐊7 of the damaged structure can be expressed as the 

increment Δ𝐊 from 𝐊 in the healthy structure: 
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𝐊7 = 𝐊 + Δ𝐊                                                           (4) 

Similarly, the change in eigenvalues and eigenvectors can be expressed as: 

𝜆/7 = 𝜆/ + Δ𝜆/                                                          (5) 

𝛟/
7 = 𝛟/ + Δ𝛟/                                                        (6) 

Substituting Eq. (4)-(6) in to Eq. (3) and neglecting the high order terms, the first order (linear) 

approximation of the mapping from stiffness to natural frequencies is: 

Δ𝜆/ ≈
𝛟V
WX𝐊𝛟V
𝛟V
W𝐌𝛟V

                                                            (7) 

In most cases, the eigenvectors are mass normalized, thus, 𝛟/
Y𝐌𝛟/ = 1.  

The increment Δ𝐊 is expressed as the summation of elemental stiffness matrix change: 

Δ𝐊 = ∑ Δ𝛼&\
&]" 𝐊&

((),                                                (8) 

where 𝐊&
(()  is the 𝑗th elemental stiffness matrix, and Δ𝛼&  is the damage parameter ranging in 

[−1, 0] indicating the percentage change of stiffness of the 𝑗th element, where zero means no 

stiffness loss and −1 means the complete stiffness loss at the element, respectively. 𝑛  is the 

number of elements in the finite element model.  

Combining Eq. (7) and (8), the matrix formulation of the linear expression of the change of 

eigenvalues due to damage occurrence can be expressed as:  

Δ𝛌 = 𝐒Δ𝛂 + 𝐞(Δ𝛂)                                                       (9) 

where Δ𝛌 = [Δ𝜆", Δ𝜆5, …Δ𝜆b]Y is the set of eigenvalue difference between the damaged structure 

and the healthy structure. The number 𝑚 indicates the number of available natural frequencies in 

the measurement. Δ𝛂 = [Δ𝛼", Δ𝛼5,…Δ𝛼\]Y is the set of 𝑛 damage parameters. 𝐒 is the sensitivity 

matrix representing the sensitivity of eigenvalues to the changes in stiffness loss. 𝐞(Δ𝛂)	is the error 

in the linearization. The components in 𝐒 are: 

𝐒(𝑖, 𝑗) =
𝛟/
Y𝐊&

(()𝛟/

𝛟/
Y𝐌𝛟/
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In general, the number of columns, 𝑛, is much larger than the number of rows, 𝑚, i.e., 𝑛 ≫ 𝑚.  

In practice, Eq. (9) is approximated by Eq. (10).  

Δ𝛌 ≈ 𝐒Δ𝛂                                                                  (10) 

However, as mentioned in the introduction section, there are two major challenges in damage 

identification based on Eq. (10). First, 𝐒 is a wide rectangular matrix so that Eq. (10) is an 

underdetermined system. Second, Eq. (10) is just a linear approximation of the true underlying 

relationship. As a result, there will be bias in the solution obtained using Eq. (10). We propose two 

techniques to addresses these challenges, which are described in Section 3 and 4, respectively. 

3. 𝑳𝟏 Penalty with Iterative Random Matrix Multiplication and Majority Voting Process 

We follow the common idea in the literature to address the underdetermined system, i.e., apply 

a penalty of 𝐿"  norm of Δ𝛂 to the solution. Instead of directly solving Eq. (9), the following 

optimization problem is considered: 

min‖Δ𝛌 − 𝐒Δ𝛂‖5 + 𝛽‖Δ𝛂‖", s. t. −1 ≤ 𝚫𝛂 ≤ 0                                 (11) 

where 𝛽 is the regularization parameter controlling the weight of the penalty. In practice, Eq. (11) 

is often solved by the following equivalent expression [18]: 

min‖Δ𝛂‖" , s. t. ‖Δ𝛌 − 𝐒Δ𝛂‖5 ≤ 𝜖, −1 ≤ 𝚫𝛂 ≤ 0                                (12) 

where 𝜖 indicates the error tolerance and plays the equivalent role of 𝛽. 

There are many algorithms to solve the optimization problem in Eq. (12) efficiently. However, 

solutions to Eq. (12) may not be sparse enough [19] to recover the true non-zero damage locations. 

In other words, even if adding 𝐿" penalty results in sparse solution, the solution may be still 

“abundant” compared to the underlying truth. In practice, an iterative reweighed 𝐿" minimization 

algorithm [19] is often adopted to enhance the sparsity. For reader’s convenience, we quote the 

algorithm from [19] in Table A-1 in the appendix. There are several remarks of the algorithm: (i) 

Instead of minimizing Eq. (12), the algorithm adopts the weighted objective function. The hope is 

by properly adjusting the weights, the algorithm can recover the underlying sparsity correctly. And 

(ii) The weights are updated iteratively in step 3. The update equation can adopt different forms as 
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discussed in [19]. The general idea of this algorithm is to increase the weights for variables 

estimated with small absolute values in order to push these variables to be 0 in future iterations. In 

this paper, the similar scheme of this idea is adopted but with different approaches as described in 

Algorithms 1 and 2 below.  

Instead of solving Eq. (12), the following problem is solved iteratively in the proposed 

algorithm: 

min‖Δ𝛂‖" , s. t. qΔ𝛌r − 𝐒sΔ𝛂q5 ≤ 𝜖, −1 ≤ 𝚫𝛂 ≤ 0                              (13) 

where Δ𝛌r = 𝚽	Δ𝛌  and 𝐒s = 𝚽𝐒  and 𝚽  is an 𝑚×𝑚  random matrix, whose components are 

independent and identically distributed samples from a Gaussian distribution. The key benefit to 

solve Eq. (13) compared to solve Eq. (12) is that: the correlated structure of the error terms in the 

linear relationship is addressed.  

It is known that the optimization problems in Eq. (12) and Eq. (11) are equivalent. If the penalty 

term in Eq. (11) is ignored, then the objective function of Eq. (11) is identical to the objective 

function for a regular least squares problem. In other words, if the penalty term in Eq. (11) is 

ignored, then the solution to (11) will be the regular least squares solution. One important 

assumption on regular least squares method is that the error term in the model is homogeneous, 

i.e., the covariance of the term 𝐞 is a diagonal matrix and the diagonal elements are the same. This 

is certainly an unrealistic assumption because the term 𝐞(Δ𝛂) includes both measurement error 

and the systematical error in the linear approximation. It is known that regular least squares method 

will lead to systematic bias in the solution for a system with heterogeneous errors [20]. In the 

proposed algorithm, the objective function Eq. (13) ignoring the penalty term is equivalent to 

RΔ𝛌r − 𝐒sΔ𝛂S
𝐓RΔ𝛌r − 𝐒sΔ𝛂S = (𝚫𝛌 − 𝐒Δ𝛂)𝐓(𝚽𝐓𝚽)(𝚫𝛌 − 𝐒Δ𝛂) , which is in the form of the 

objective function of a generalized least square (GLS) problem [21] assuming the covariance 

matrix of 𝐞 is (𝚽𝐓𝚽)u𝟏. GLS is an effective way to adjust the solution of linear systems to reduce 

the bias when the heterogeneous errors occur. In practice, (𝚽𝐓𝚽)u𝟏 will not be exactly the true 

covariance of 𝐞 and further, the solution of Eq. (13) is not obtained through GLS method, but 

rather through the optimization with the penalty term. However, the above intuitive understanding 

can provide some justification on the proposed algorithm, i.e., iteratively solving Eq. (13) with 
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different random matrices 𝚽s followed by the majority voting process. The underlying intuition is 

that when (𝚽𝐓𝚽)u𝟏 is close to the true covariance structure of the error term, then the solution of 

Eq. (13) will be consistent and close to the true underlying value. On the other hand, when 

(𝚽𝐓𝚽)u𝟏 is far from the true covariance structure of the error term, the solution will be scattered 

around. As a result, if different 𝚽s are repeatedly tried, then the solutions that are close to the true 

underlying value will stand out in the followed majority voting process. Indeed, similar idea has 

been reported in the literature when solving a sparse system [1]. 

Note that, the reweighed 𝐿" minimization algorithm in Table A-1 still applies the standard 𝐿5 

norm, and thus the solution to the reweighed 𝐿" minimization may be less reliable due to the 

heterogeneous errors. The ideas of iterative random matrix multiplication and the majority voting 

procedure are summarized in Algorithm 1 in Table 1. The iterative random matrix multiplication 

step returns an estimated matrix v𝛥𝜶r y
\×z, whose column (i.e., Δ𝛂r.,{) is the estimated damage under 

each random matrix 𝚽{ . The row of v𝛥𝜶r y
\×z  (i.e., Δ𝛂r/,.) records the estimations for each element 

through 𝐿 iterations. Based on our experiences, a 𝐿 of several hundreds is sufficient to achieve 

good results while balancing the computational time.  

In the majority voting step, 𝑃RΔ𝛂r /,. ≥ 	−0.05S is the probability that the estimated damage of 

the 𝑖th element is no less than -0.05 (i.e., a light damage). The “if” condition states that if 95% of 

the estimated damage severity 𝛥𝛼r/,{  is larger than -0.05 among 𝐿 iterations, the 𝑖th element is 

treated as a healthy element and is then set to be 0 (i.e., Δ𝛼?/ = 0 ). In practice, only the stiffness 

loss larger than 5% (i.e., Δ𝛼/ < −0.05)  is treated as damage [3]. The threshold 95% is the 

confidence to reject the hypothesis that the element has stiffness loss larger than 5% at level 0.05, 

which is a commonly used criterion in practices [22]. Damaged elements have the majority of Δ𝛂r/,. 

significantly differ from 0 and the distribution of Δ𝛂r/,. often forms a unimodal shape. The mean 

value of all iterations are used as the estimation of damage severity. 

Table 1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting 
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Iterative Random Matrix Multiplication 
  For 𝑙 = 1,2,… , 𝐿 
    Generate random matrix 𝚽{  and compute Δ𝛌r = 𝚽{Δ𝛌 and 𝐒s = 𝚽{𝐒 
    Solve Eq. (13) and record the estimation Δ𝛂r.,{ = vΔαr",{, Δαr5,{, … Δαr\,{y

Y
   

  End 
Majority Voting 
  Define Δ𝛂r/,. = vΔαr/,", Δαr/,5,… Δαr/,zy and Δ𝛂? = [Δ𝛼?",Δ𝛼?5, … , Δ𝛼?\] 
  For	𝑖 = 1,2,… , 𝑛 
      if 𝑃RΔ𝛂r/,. ≥ 	−0.05S ≥ 95% 
        Δ𝛼?/ = 0  
      else 
         Δ𝛼?/ = mean(Δ𝛂r/,.) 
       end 
   End 
Return Δ𝛂?  and the locations 𝐋(Δ𝛂?) for Δ𝛼?/ = 0 

 

 Besides the estimation Δ𝛂? , Algorithm 1 also returns the locations of zero elements in Δ𝛂? , 

represented by 𝐋(Δ𝛂?). In order to recover the damage locations accurately, an iterative procedure 

is proposed as Algorithm 2 in Table2.  

Table 2. Algorithm 2: Damage Location Identification Algorithm 

1. Set the iteration count 𝑞 = 0, 𝐋(H) = 	𝐋RΔ𝛂?(H)S	and	𝐋(𝟎) = 𝜙  
2. Run Algorithm 1 with constrains 𝛥𝛼𝐋(ä) = 𝟎	 in Eq. (13), return Δ𝛂?(Hã") 
3. Update the sparsity 

𝐋(Hã") = 	𝐋RΔ𝛂?(Hã")S 
4. Terminate if 𝐋(Hã") = 	𝐋(H) or 𝑞 attains the maximum number. Otherwise, increment 𝑞 and 

go to step 2. 
5. Return Δ𝛂?  and 𝐋RΔ𝛂?S from the last iteration	

 

In most cases, it takes 𝑞 = 2 or 3 to terminate the algorithm. The Δ𝛂?  of the last iteration is used 

as the final estimation of the damage parameters with the sparsity shown in 𝐋RΔ𝛂?S. The estimation 

Δ𝛂?  is named as 𝐿"-IMR (iteratively matrix randomization). In general, the 𝐿"-IMR estimation 

achieves better solution quality compared with the pure 𝐿" regularization by Eq. (12). The 𝐿"-IMR 

estimation for natural frequency selection is used in the next section.   
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It is interesting to compare Algorithm 2 with the reweighed 𝐿" minimization algorithm in 

Table A-1 in the appendix to see the analogy. In fact, adding constrains 𝛥𝛼𝐋(ä) = 𝟎	 in Eq. (13) is 

equivalent to modify the weight as: 

𝑤/
(Hã") = ç 1, Δ𝛼? 𝑖

(𝑞) ≠ 0
∞, Δ𝛼? 𝑖

(𝑞) = 0
 

in the reweighed 𝐿" minimization algorithm. In this updating step, all zero valued elements will 

retain as 0 in the following iterations, while all non-zero valued elements will be estimated with 

equal weight of 1. The condition 𝑤/
(Hã") =∞, 	for	Δ𝛼?/

(H) = 0 is equivalent to set 𝛿 = 0	in the 

original weight update equation in Table A-1. The key difference between Algorithm 2 and the 

reweighed 𝐿" minimization algorithm is in step 2. Instead of solving the 𝐿" minimization problem 

once, Algorithm 1 solve the problem multiple times with different random matrices. The benefits 

of such approach are discussed above.   

4. Measurement Selection for Bias Reduction 

Even if Algorithms 1 and 2 enhance the solution quality for damage identification, the bias 

introduced by the linear approximation in Eq. (9) is not addressed. It is found that some subsets of 

available natural frequencies can return less biased estimation compared with that using all 

available natural frequencies. Thus, a natural frequencies selection is desired to reduce the bias in 

the damage estimation.  

Mathematically, a subgroup of natural frequencies needs to be found to minimize the following 

𝐿5- norm 

𝑑(C) = qΔ𝛂?(C) − Δ𝛂;<=;>q5                                                  (14) 

where Δ𝛂;<=;> is the underlying truth of the damage and Δ𝛂?(C) is the damage estimation based on 

the 𝑘 th combination of selected natural frequencies by solving min‖Δ𝛂‖" , s. t. qΔ𝛌(𝐤) −

𝐒(𝐤)Δ𝛂q5 	≤ 𝜖,−1 ≤ 𝚫𝛂 ≤ 0. 𝛌(C) and 𝐒(C) are the eigenvalue difference and sensitivity matrix 

corresponding to the 𝑘th combination of selected natural frequencies, respectively. In other words, 

Δ𝛌(C) and 𝐒(C) are the sub-vector and sub-matrix of Δ𝛌 and 𝐒 by retaining the rows corresponding 

to the 𝑘th combination of selected natural frequencies. For example, if 𝐒 has dimension 7 × 20 
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(i.e., 7 natural frequencies and 20 elements), the submatrix 𝐒(C) will have less rows but the same 

number of columns, i.e., if only 4 natural frequencies are selected as system measurements, the 

dimension of  𝐒(C) will be 4 × 20. Please note for 𝑚 available natural frequencies, there are total 

2b − 1 different combinations.  

The challenges in this problem are from the following aspects. First, the underlying truth 

Δ𝛂;<=;> is unknown. Thus, Eq. (14) cannot be used directly for bias comparison. Second, since the 

sensitivity matrix 𝐒  is obtained from the linear approximation, the following optimization 

problems are not equivalent, 

argC minqΔ𝛌(C) − 𝐒(C)Δ𝛂q5 ⇎ argC	minqΔ𝛂?(C) − Δ𝛂;<=;>q5 

A reasonable approach is to derive an approximation of the incomputable quantity 𝑑(C) in Eq. (14). 

𝑏(C)  is proposed to be an approximation of 𝑑(C) , where 𝑏(C)  is defined as 

öõ𝐒(C)𝐓𝐒(C)ú
u"
𝐒(C)𝐓𝐞(C)ö

5
. The details and the rational of this approximation are discussed 

below. 

First note, the eigenvalue difference Δ𝛌 can be expressed with the underlying damages Δ𝛂;<=;> 

and the error term 𝐞: 

Δ𝛌 = 𝐒Δ𝛂;<=;> + 𝐞                                                        (15) 

Similarly, the eigenvalue difference for the 𝑘th combination of selected natural frequencies is: 

Δ𝛌(C) = 𝐒(C)Δ𝛂;<=;> + 𝐞(C)                                               (16) 

where 𝐞(C) measures the error in the eigenvalue difference corresponding to the 𝑘th combination. 

Please note Eq. (15) and (16) are exact without approximations. 

Intuitively, if 𝐞(C) → 𝟎, solving Δ𝛌(C) = 𝐒(C)Δ𝛂 returns the unbiased estimation of Δ𝛂;<=;>.  

Thus, it is reasonable to select the natural frequencies with small magnitudes in 𝐞 to form the 

combination. However, such an approach does not take the structure of the sensitivity matrix into 

consideration. An ill-conditioned sensitivity matrix may result in large estimation errors. The 

sensitivity matrix 𝐒 can be simplified by removing the columns that corresponding to the healthy 
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elements that are identified by Algorithm 2. 𝐒 is denoted as the simplified sensitivity matrix by 

removing columns corresponding to the zero elements in Δ𝛂? , represented by 𝐋RΔ𝛂?S.  For example, 

if 𝐒 has dimension 7 × 20 and only two unhealthy elements are identified, then the submatrix 𝐒 

will be 7 × 2 by removing all columns that correspond to the healthy elements. Eq. (16) can be re-

written as: 

Δ𝛌(C) = 𝐒(C)Δ𝛂;<=;> + 𝐞(C)                                               (17) 

where Δ𝛂;<=;> is the subset of Δ𝛂;<=;> with non-zero valued components and 𝐒(C) is the submatrix 

of 𝐒(C)  by removing the columns corresponding to zero elements in Δ𝛂;<=;> . Following the 

previous examples, if 𝐒(C) has dimension 4 × 20, then 𝐒(C) is 4 × 2. It is worth to point out that 

the number of selected natural frequencies should be larger than the number of nonzero elements 

in Δ𝛂;<=;> so that 𝐒(C) will be a square or tall matrix. Eq. (17) can be re-written as  

𝐒(C)Δ𝛂;<=;> = Δ𝛌(C) − 𝐞(C)                                               (18) 

According to Eq. (18), it can be seen that 𝐞(C) does not impacts on Δ𝛂;<=;> directly, rather, 

through the matrix of 𝐒(C). More specifically, the solution of Δ𝛂;<=;> based on (18) is: 

Δ𝛂;<=;> = õ𝐒(C)𝐓𝐒(C)ú
u"
𝐒(C)𝐓Δ𝛌(C) − õ𝐒(C)𝐓𝐒(C)ú

u"
𝐒(C)𝐓𝐞(C)                                (19) 

The difference between Δ𝛂;<=;> in Eq. (19) and its approximation without knowing 𝐞(C) is 𝑏(C) =

öõ𝐒(C)𝐓𝐒(C)ú
u"
𝐒(C)𝐓𝐞(C)ö

5
. Thus, 𝑏(C)  can be used as an approximation of 𝑑(C) . The optimal 

combination of natural frequencies can be chosen as 𝑘∗ = argü min 𝑏(C).  

To compute 𝑏(C), the value of the error term 𝐞 is needed.  The value of e can be estimated by 

𝐞† = Δ𝛌 − 𝐒Δ𝛂? , where Δ𝛂?  is the output from Algorithm 2. To summarize, the proposed natural 

frequency selection algorithm is shown as Algorithm 3 in Table 3. 

Table 3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction  
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RUN Algorithm 2 
CALCULATE the estimated error 𝐞† = Δ𝛌 − 𝐒Δ𝛂?  
For 𝑘 = 1,2, … , 2b − 1  
  CALCULATE the estimated bias 𝑏°(C) 
End 
Return 𝑘∗ = argü min 𝑏°(C)	 as the final combination 

There are several remarks on Algorithm 3. First, Δ𝛂?  is pre-computed in Algorithm 2, so that the 

computational load does not explode for exhausting all possible measurement combinations. In 

fact, as mentioned earlier, the number of the selected natural frequency needs to be larger than the 

number of non-zero elements in Δ𝛂? . Thus, the actual number of combinations is further reduced. 

For example, if 𝐒  has dimension 7 × 2 , the combination should contain at least 2 natural 

frequencies. Second, the proposed algorithm will not guarantee the selected combination 𝑘∗ is the 

optimal one that minimize Eq. (14) because the criteria used 𝑏(C) is just an approximation of 𝑑(C). 

Detailed numerical studies and discussions will be conducted to illustrate the performance of the 

proposed algorithms in Section 5 and 6.  

In practice, it can re-do Algorithm 1 and 2 for the selected natural frequencies from Algorithm 3 

to estimate the damages, where the original matrix 𝐒 in Algorithm 1 becomes a matrix with only 

the selected rows (corresponding to the selected natural frequencies) left. The estimation after this 

additional procedure is named as 𝐿"-Final to differentiate it from 𝐿"-IMR from Algorithm 2. 

5. Case Studies and Validation 

In this section, the proposed algorithm is validated using simulation for a fixed-free beam 

structure with setup in Figure 1.  

 

Figure 1. The fixed-free beam for the simulation. There are total 20 elements in the beam. 

The system parameters are summarized in Table 4.  
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Table 4. Parameters of the Beam Structure 

Material Young’s Modulus Density Length Width Thickness 𝑚 𝑛 

Aluminum 7.1 × 10"¢ N/𝑚5 2700kg/𝑚• 0.4184m 0.0381m 3.175mm 7 20 

The beam consists 20 elements and the first 7 modes are calculated using FEM. Thus, there are 

total 127 different combinations of natural frequencies. In the simulation, two scenarios for a 

damaged beam will be considered. In the first example, the beam with two faulty elements is 

considered, where the stiffness loss occurs at elements 8 and 17 with Δ𝛼¶ = −0.3 and Δ𝛼"® =

−0.1 , respectively. In the second example, a three-fault case with Δ𝛼• = −0.1 , Δ𝛼"¢ =

−0.2	and	Δ𝛼"¶ = −0.2 is considered. The first seven natural frequencies are calculated for the 

healthy beam and the damaged beam using FEM in Table 5. 

Table 5. The First Seven Natural Frequencies (Hz) (n.f.)  

Order of n.f. Healthy Beam Two Faults % change in n.f Three Faults % change in n.f 

1 94.4 93.4 1.06% 93.3 1.17% 

2 591.6 584.3 1.23% 583.2 1.42% 

3 1657.0 1631.4 1.54% 1651.4 0.34% 

4 3247.8 3225.8 0.68% 3188.6 1.82% 

5 5370.5 5241.8 2.40% 5287.3 1.55% 

6 8025.8 7944.3 1.02% 7821 2.55% 

7 11215.3 11127.1 0.78% 11000.2 1.92% 

5.1 Beam with two faulty elements 

In the first example, the beam with two faulty elements is considered, where the stiffness loss 

occurs at elements 8 and 17 with Δ𝛼¶ = −0.3 and Δ𝛼"® = −0.1, respectively. 

Figure 2 presents the bias 𝑑(C) = qΔ𝛂?(C) − Δ𝛂;<=;>q5 in Eq. (14) as a function of the 

combination index 	𝑘 = 1,2,3,… ,127 . The combination is ordered from the single natural 

frequency to all seven natural frequencies, i.e., 

{1,2,3, … , (1,2), (1,3),… , (1,2,3), (1,2,4),… , (1,2,3,4,5,6,7)} . Δ𝛂?(C)  is calculated by 

min‖Δ𝛂‖" , s. t. qΔ𝛌(𝐤) − 𝐒(𝐤)Δ𝛂q5 	≤ 𝜖,−1 ≤ 𝚫𝛂 ≤ 0 with 𝜖 = 10u¨ . 
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Figure 2. The bias of the estimated damages for different combinations of natural frequencies 

It is clearly shown in Figure 2 that the combination of all seven natural frequencies (the 127th 

combination) does not result in the smallest bias. In this damage scenario, the smallest bias is 

obtained by the 26th combination of the fifth and sixth natural frequencies, i.e., (5, 6). From Figure 

2, it can be seen that the bias has relatively large values for the first seven combinations. Since the 

first seven combinations are all single natural frequencies, the linear system is underdetermined 

with two faulty elements. Also, there is a jump at 𝑘 = 18, (the combination of the second and the 

seventh natural frequencies), which is due to the correlated structure of the second and the seventh 

rows in 𝐒. As discussed in section 4, the ill-posed sensitivity matrix may result in large errors even 

with regularization.  

Figure 3 presents the results of the histogram of the severity estimation of 20 elements from 

Algorithm 1.  
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Figure 3. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each 
element are labeled using dash lines. 

In Figure 3, the true damage locations, i.e., elements 8 and 17, have histograms around the 

underlying true damages -0.3 and -0.1. The densities for most of other elements concentrate exactly 

at 0 as expected, e.g., elements 2, 6 and 10. Elements 1, 4, 9 and 18 have the majority of the density 

concentrate at 0 with a light tail spreading to negative values. Element 13 has density concentrate 

both at 0 and -0.2. It can be seen that true damage locations have densities apparently differ from 

0, while non-damaged locations tend to have most density distributed at 0. These locations are set 

to ΔαÆ = 0 in the majority voting process. 

Results obtained after Algorithm 2 are shown in Figure 4. In Figure 4, the only two non-zero 

distributed elements are the element 8 and 17 with density concentrated around the true damage 

magnitudes. The estimated damage parameters are Δ𝛼?¶ = −0.33  and Δ𝛼?"® = −0.11  with all 

other Δ𝛼?/Ø¶	∞<	"® = 0.  
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Figure 4. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dashed lines 

The estimated bias 𝑏°(C) for 𝑘 = 8, 9,… ,127 are presented in Figure 5. It can be seen that 𝑏°(C) 

has very similar trend compared to qΔ𝛂?(C) − Δ𝛂;<=;>q5. By Algorithm 3, 𝑘∗ = 26 and the result 

is consistent with the smallest bias combination as shown in Figure 1. Thus, only the fifth and sixth 

natural frequencies are suggested to be included in the estimation of damage parameters to reduce 

the estimation bias. Please note that the comparison between the estimated bias 𝑏°(C)  and the 

qΔ𝛂?(C) − Δ𝛂;<=;>q5is only shown for 𝑘 ≥ 8. Two elements are identified as stiffness loss by 

Algorithm 2. In order to apply the least square method in Eq. (19), 	𝐒(C) should consist at least two 

rows, i.e., combination of at least two natural frequencies. Thus, 𝑘 ≥ 8  because the first 7 

combinations only contain one natural frequency. 
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Figure 5. Plots of 𝑏°(C) and 𝑑(C)  for 𝑘 = 8, 9, … ,127. 

Figure 6 presents the comparison results of the damage parameter estimation using different 

methods.  

 
Figure 6. Comparison of damage parameter estimation using different approaches. 

The 𝐿"- Norm method adopts Eq. (12), the 𝐿"-IMR adopts the proposed method with iterative 

matrix randomization, i.e., Δ𝛂?  by Algorithm 2 and the 𝐿"-Final is the estimation by re-doing 

Algorithms 1 and 2 using the selected natural frequencies only. The 𝐿5- Norm adopts Eq. (12) but 

with 𝐿5 penalty. It can be seen from the comparison, the 𝐿"-IMR and 𝐿"-Final return the most 

accurate estimation both for the damage locations and damage severities compared to all other two 

methods. The 𝐿"-Final has a slightly better estimation compared to 𝐿"-IMR.  The 𝐿"- norm method 

returns comparable results at the true damage locations, but also has estimation with small 
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magnitudes on a few healthy elements. The 𝐿5- norm performs the worst among all three methods 

with distributed estimation along elements. In practice, the 𝐿"-IMR is good enough for damage 

estimation and 𝐿"-Final can be further adopted if cost is allowed.  

5.2 Beam with Three Faulty Elements 

In the following, the proposed algorithm is adopted for a scenario with three faulty elements, 

where	Δ𝛼• = −0.1, Δ𝛼"¢ = −0.2	and	Δ𝛼"¶ = −0.2.	 The histogram of elements after Algorithm 

2 is presented in Figure 7. Similar to the case with two faulty elements, the true damage locations 

are identified correctly. 

 

Figure 7. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dash lines 

The comparison between 𝑏°(C) and the qΔ𝛂?(C) − Δ𝛂;<=;>q5 is presented in Figure 8. Since three 

damage locations are identified, at least three natural frequencies are needed, i.e., 𝑘 ≥ 29. By 

Algorithm 3, 𝑘∗ = 43  with the first, the sixth and the seventh natural frequencies is the 

combination with the smallest bias in the estimation. The jumpy peaks for some 𝑏°(C)s are due to 



DS-18-1005 Measurements Selection for Bias Reduction in Structural Damage Identification 
 
 

22 
 

the correlated structure of 𝐒(ü). In Figure 9, the comparison of damage parameter estimation is 

presented. The proposed 𝐿"-Final has the best estimation.  

 
Figure 8. Plots of 𝑏°(C) and the qΔ𝛂?(C) − Δ𝛂;<=;>q5 for 𝑘 = 29, 30,… ,127. 

 
Figure 9. Comparison of damage parameter estimation using different approaches 

5.3 Performance and Robustness Evaluation  

In Table 6, the overall performance of the proposed algorithm in a comprehensive study is 

presented. The study adopts the same beam structure in previous two examples (i.e., Table 4) and 

exhausts all possible combinations between damage locations and damage severities for −0.4 ≤

Δ𝛼 ≤ −0.05 with increment 0.05. The lower bound −0.4 of  Δ𝛼 is an average of stiffness loss by 

exhausting all individual element with different level of stiffness loss to make the mean reduction 
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of the first seven natural frequencies about 5%. In most cases, 5% decrease in natural frequencies 

can be referred to a severe damage in the structure [23,24].  

Table 6. Performance of the Proposed Algorithm in Different Damage Scenarios 

 Single Fault Two Faults Three Faults 
𝑘∗ = argC min𝑑(C) 94.3% 83.5% 80.2% 
𝑑(C∗) ≤ 𝑑("5®) 97.1% 94.7% 91.5% 
# simulations 160 12160 583680 

In the simulation study, three fault scenarios have been studied, i.e., single fault, two faults and 

three faults. The performance is measured in two ways. 1) 𝑘∗ = argC min𝑑(C)  indicates the 

selected combination 𝑘∗ by Algorithm 3 is the optimal combination that minimizes the bias. It can 

be seen the proposed algorithm can detect the optimal combination above 80 percentage in all 

three damage scenarios. 2) 𝑑(C∗) ≤ 𝑑("5®) indicates that the selected combination 𝑘∗ has smaller 

bias compared with the case when all natural frequencies are used. The selected combination by 

the proposed algorithm can achieve smaller bias than using all seven natural frequencies over 90 

percentage in all three damage scenarios. It is not surprising to see the single fault scenario has the 

best performance, in which case the Eq. (19) is reduced to the scalar calculation without any matrix 

inversion.  

To test the robustness of the proposed algorithm, different levels of random noise are added to 

the measurements of natural frequencies. Figure 10 presents the performance of the algorithm. The 

accuracy is defined as true positive rate to identify the damage locations, i.e., the proportion to 

recover the underlying damage location by Algorithm 2. For example, the 0.81 in the single fault 

scenario with noise level 5% indicates 130 out 160 cases that Algorithm 2 can recover the true 

damage location.  The 0% noise level indicates noise free case for all three scenarios.  The accuracy 

decreases as the noise level increases. The impact of noise is greater in multiple faults case 

compared to the single fault case. In general, the proposed algorithm performs well for random 

noise level no larger than 5%, where accuracies are above 60%.  
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Figure 10. Accuracy of damage location identification by Algorithm 2 under random noise 
scenarios.  

5.4 Damage Location Identification Using a FEM with 200 Elements 

The accuracy of natural frequency selection by Algorithm 3 depends on the estimated damage 

from Algorithm 2, which is equivalent to the damage locations being identified. To further validate 

the performance of the proposed method for a large number of elements, we adopt the same beam 

structure with n=200 elements. The underlying damages are Δ𝛼±¢ = −0.4 and Δ𝛼"®¢ = −0.3. The 

first seven natural frequencies are used to identify the damage locations. The results of  Δ𝛂?  for the 

first, fifth and the seventh iteration (i.e., 𝑞 = 1, 5	and	7) by Algorithm 2 are reported in Figure 11. 

The damage locations converge at 𝑞 = 7, where the true damage locations (elements 40 and 170) 

are recovered with the estimated values Δ𝛼±¢≤ = −0.38 and Δ𝛼"®¢≤ = −0.27. In the first iteration, 

most of the estimated damages are around the true damage locations. It turns out that the true 

damage values are under-estimated due to this reason. A few elements (elements 1 and 50-55) 

have estimated values larger than -0.1. In the fifth iteration, elements that are not around the true 

damage locations are removed. The damage locations eventually converge at the seventh iteration.   
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Figure 11. Δ𝛂?  for each iteration 𝑞 by Algorithm 2. The x-axis is 200 elements and the y-axis is 
Δ𝛂? . The dashed lines are the underlying damage for elements 40 and 170. 

5.5 Experimental Study  

      In this section, the proposed method is validated using a real experimental setup of a fixed-

fixed beam structure [25]. The parameters of the beam are summarized in Table 7. 

Table 7. Parameters of the Real Beam Structure  

Material Young’s Modulus Density Length Width Thickness 
Aluminum 68.9Gpa 2700kg/𝑚• 510 mm 19.05𝑚𝑚 4.76𝑚𝑚 

 

𝑞 = 1

𝑞 = 5

𝑞 = 7

Δ𝛼()

element
Δ𝛼()

element
Δ𝛼()

element
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To mimic the stiffness loss, a small mass with weight 2.9g is added to the middle section of the 

beam as shown in Figure 12. 

 

Figure 12. A small mass is attached on the middle of the beam to mimic the stiffness reduction 
with an accelerometer located near one end of the beam. 

The first three natural frequencies of the beam are measured for both before and after mass added 

in Table 8. 

Table 8. Natural Frequencies (Hz) Before and After Mass Added 

Order of n.f. Before Mass After Mass % change in n.f 

1 92 89.5 2.72% 

2 498 489 1. 80% 

3 1219 1200 1.56% 

Based on the width of the small mass, the FEM of the fixed-fixed beam is designed to contain 41 

elements with the 21st element as faulty. The equivalent stiffness lost can be calculated as Δ𝛼5" =

−0.54  by considering model updating [8]. The proposed algorithm detects the true damage 

location with estimation Δ𝛼5"≤ = −0.51. The first and the third natural frequencies are selected to 

minimize the bias error by Algorithm 3. 

6. Impact of Severe Damage and Discussion on Implementation in Practice 

In this section, we first explore the influence of severe damage on the performance of the 

proposed algorithm. The proposed algorithm is effective on selection of natural frequencies to 

reduce the estimation bias. However, it does not eliminate the bias. In Figure 11, the accuracy of 

Accelerometer

Added mass
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linear approximation of natural frequency compared with the underlying truth is presented. The 

beam is set up as that in Table 4 with stiffness loss only at element 8.  

Figure 13(a) presents the linear approximation of the first order natural frequency. The solid 

line is the underlying truth and the dashed line is the linear approximation. Since Taylor’s 

expansion is conducted at the healthy condition, the difference between the linear approximation 

and the underlying truth is getting larger as Δ𝛼 → −1. Figure 13(b) summarizes the accuracy of 

the linear approximation of the first seven modes in terms of the difference in percentage, i.e., 
X≥u𝐒(¥)X𝜶µ∂∑µ∏

X≥
. 

 

Figure 13. Accuracy of linear approximation in natural frequencies 

It can be seen that the accuracy is about 60% for Δ𝛼 = −0.4. As the comprehensive simulation 

study indicated in Section 4, the proposed algorithm performs well at such accuracy level. It is 

worth noting that the performance of the algorithm gets worse for severe stiffness loss. Under mild 

damage conditions, the histogram of Δ𝛼 s are close to the underlying truth but with small 

differences (e.g., Figure 4 and 7). For severe damage loss, such differences can be large or even 

the identified damage locations can be wrong. In Figure 14, an example of the histogram of Δ𝛼s 

after Algorithm 2 for a severe damage case Δ𝛼• = −0.9 , Δ𝛼"¢ = −0.9	and 	Δ𝛼"¶ = −0.2  is 

presented.  

Underlying Truth 
Linear Approx.

a) b)
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Figure 14. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dashed lines 

All three true damage locations are identified but with an additional element 14 wrongly 

identified. The magnitude of stiffness loss at element 18 is estimated much smaller than the truth 

due to the additional element. Thus, the results of the proposed algorithm will not be informative 

on the selection of natural frequencies as shown in Figure 15. 

  

Figure 15. Plots of 𝑏°(C) with qΔ𝛂?(C) − Δ𝛂;<=;>q5 for 𝑘 = 29, 30,… ,127 with severe damage 
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Figure 15(a) is similar to Figure 5 or 8 showing the comparison between 𝑏°(C)  and 

qΔ𝛂?(C) − Δ𝛂;<=;>q5. Since they have quite difference scales, the normalized comparison is shown 

in Figure 15(b). As expected, the two trends are different. For such severe damage scenario, the 

inaccuracy of the linear approximation causes the overall estimated damage parameters biased 

from the underlying truth as shown in Figure 15(c).  Figure 15(c) presents the bias 𝑑(C).  It can be 

seen the average bias for this severe damage case is around 1.7, which is roughly 17 times large 

than the bias shown in Figure 2. In other words, the estimation of damages can be extremely biased 

for severe damage scenario. 

It is worth to point out that it is more important to estimate mild damage conditions in practice. 

Severe damages not only reduce natural frequencies significantly, but also cause visible changes 

in structures. However, mild damages can be hidden from simple visual inspection. Thus, it is 

more important to identify mild damages accurately for preventive repair or correction.  

For practice implementation of the proposed methods, it is suggested to adopt the model 

updating first to establish high fidelity FE model [19,20]. In practice, model updating can help to 

correct model parameters in the FEM (e.g. 	𝐌  and 𝐊)  due to measurement noise or model 

inadequacy. For a complicated structural system or FEM with thousands of elements, the concerns 

of implementing the proposed methods and possible solutions are: i) Achieve a reasonable sparse 

solution from thousands of elements. In general, this is a large 𝑝 (number of unknows) and small 

𝑛 (number of equations) problem. One possible solution to achieve a reasonable sparsity is to 

increase the penalty level. For example, the value -0.05 in the majority voting process of the 

proposed method can be further reduced (e.g. -0.1) to allow more elements to be treated as healthy 

in the following iterations. Similarly, it is also reasonable to adjust the 95% level (e.g. reduce to 

90%) to make the proposed method flexible for a complicated structure. In the proposed method, 

we choose -0.05 and 95% by the general guidelines from the mechanical engineering and statistics. 

Indeed, these values are tuning parameters can be adjusted to meet the practice. ii) the accuracy of 

the linear approximation to describe the dynamics of a system. The proposed method is based on 

the linear approximation of the structural system. Once the linear approximation is not proper to 

describe the dynamics of the system, the performance of the proposed method may get hurt (e.g., 
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as shown in Figure 13 and 14). In general, the proposed method performs well for mild damages, 

where the linear approximation preserves high accuracy. 

7. Conclusion 

In this paper, we propose a natural frequency selection algorithm to reduce the bias in the 

estimation of damage parameters using linear approximation under mild damage scenarios. The 

selected combination of natural frequency has high probability to be the optimal combination 

which leads to the smallest bias in the estimation among all the possible combinations. The 

proposed method consists of three algorithms. In the first algorithm, the 𝐿"- norm regularization 

with iterative matrix randomization is adopted for estimation of damage parameters followed by a 

majority voting process. In the second algorithm, the damage locations are identified by sequential 

updating. The improved estimation  𝐿"- IMR obtained by the third algorithm helps to choose the 

best combination of measurements in the third algorithm. The effectiveness of the proposed 

method is validated through numerical studies. Factors that influence the performance of the 

method are also discussed.  

The proposed algorithm is flexible in dealing with natural frequencies, thus has potential to be 

extended to the schemes with physical modification, e.g., modification through mass addition or 

tunable sensing systems. The proposed algorithm can be applied to select measurements among 

different setups of the structure (i.e., different mass additions or tunable inductances), which may 

provide a better estimation than combining all available modes from all setups. We will investigate 

along this direction and report our findings in the near future. 
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Appendix 

Table A-1 Iterative Reweighted 𝐿" Minimization Algorithm [14] 

1. Set the iteration count 𝑙 = 0 and 𝑤/
(∫) = 1, 𝑖 = 1,2, …𝑛  

2. Solve the weighted 𝐿" minimization problem: 
           𝐱({) = argminq𝐖({)𝐱q1 	 , subject	to	‖𝐲 − 𝐀𝐱‖2 	≤ 𝜖 
3. Update the weights for 𝑖 = 1,2, …𝑛 

𝑤/
({ã") =

1

¬𝑥/
({) + 𝛿¬

 

4. Terminate on convergence or 𝑙 attains the maximum number. Otherwise, increment 𝑙 and go to 
step 2. 
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Figure Captions List 

Figure 1. The fixed-free beam for the simulation. There are total 20 elements in the beam. 

Figure 2. The bias of the estimated damages for different combinations of natural frequencies 

Figure 3. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each 
element are labeled using dash lines. 

Figure 4. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dashed lines 

Figure 5. Plots of 𝑏°(C) and 𝑑(C)  for 𝑘 = 8, 9, … ,127. 

Figure 6. Comparison of damage parameter estimation using different approaches. 

Figure 7. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dash lines 

Figure 8. Plots of 𝑏°(C) and the qΔ𝛂?(C) − Δ𝛂;<=;>q5 for 𝑘 = 29, 30,… ,127. 

Figure 9. Comparison of damage parameter estimation using different approaches 

Figure 10. Accuracy of damage location identification by Algorithm 2 under random noise 
scenarios.  

Figure 11. Δ𝛂?  for each iteration 𝑞 by Algorithm 2. The x-axis is 200 elements and the y-axis is 
Δ𝛂? . The dashed lines are the underlying damage for elements 40 and 170. 

Figure12. A small mass is attached on the middle of the beam to simulate the stiffness reduction 
with an accelerometer located near one end of the beam. 

Figure 13. Accuracy of linear approximation in natural frequencies 

Figure 14. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 
element are labeled using dashed lines 

Figure 15. Plots of 𝑏°(C) with qΔ𝛂?(C) − Δ𝛂;<=;>q5 for 𝑘 = 29, 30,… ,127 with severe damage 
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Table Caption List 

Table 1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting 

Table 2. Algorithm 2: Damage Location Identification Algorithm 

Table 3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction  

Table 4. Parameters of the Beam Structure 

Table 5. The First Seven Natural Frequencies (HZ) (n.f.)  

Table 6. Performance of the Proposed Algorithm in Different Damage Scenarios 

Table 7. Parameters of the Real Beam Structure  

Table 8. Natural Frequencies (Hz) Before and After Mass Added 

Table A-1 Iterative Reweighted 𝐿" Minimization Algorithm [15] 

 

 

 


