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Abstract Linearization of the eigenvalue problem has been widely used in vibration-based
damage detection utilizing the change of natural frequencies. However, the linearization method
introduces bias in the estimation of damage parameters. Moreover, the commonly employed
regularization method may render the estimation different from the true underlying solution. These
issues may cause wrong estimation in the damage severities and even wrong damage locations.
Limited work has been done to address these issues. It is found that particular combinations of
natural frequencies will result in less biased estimation using linearization approach. In this
paper, we propose a measurement selection algorithm to select an optimal set of natural
frequencies for vibration-based damage identification. The proposed algorithm adopts L,- norm
regularization with iterative matrix randomization for estimation of damage parameters. The
selection is based on the estimated bias using the least square method. Comprehensive case
analyses are conducted to validate the effectiveness of the method.
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NOTATION

L@

1. Introduction

global mass matrix

global stiffness matrix

global stiffness matrix for damaged structure

the jth elemental stiffness matrix

nodal displacements

nodal forces

the ith natural frequencies

the ith mode shape

the ith eigenvalue, ; = f

the ith mode shape for damaged structure

the ith eigenvalue for damaged structure

the percentage of stiffness change of the jth element

the underlying truth of stiffness loss

the estimation of Aatt™uth

the first order of sensitivity matrix

the subset of S, only contains rows that in the kth combination of natural
frequencies

the subset of S, only contains columns that elements are estimated as
damaged

the error in the linearization AA = SAa

the random Gaussian matrix

the location of estimated non-damage element at gth iteration

The timely and accurate identification of damage conditions in structures using real-time,

online sensor measurements plays a critical role in ensuring the secure and sustainable operations

of various structural systems in aerospace, marine, transportation and infrastructure, and energy

and power industries. Among different structural damage identification techniques, the vibration-

based methods [1] have been widely used. The basic idea of vibration-based methods is that the

structural properties (e.g., mass, stiffness, etc.) will change due to damages in structures and such

changes will result in the change of vibration properties including natural frequencies [2], mode

shapes [3] and their variants such as curvature [4], flexibility [5]. Typically, natural frequencies

can be measured directly with high accuracy and thus are broadly used in practice [6].
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In natural frequencies based damage detection methods, damages can be identified by solving
the eigenvalue problem with linear approximation [7]. The linearization provides the simplicity
and efficiency in the problem-solving process. With the linearization, the unknown parameters Aa
can be estimated by the linear equation AA = SA«, where A« is the change in structural properties,
S is the first order sensitivity matrix and AA is the difference of the eigenvalues (squared natural
frequencies) between healthy and damaged structures. In practice, the measurements of natural
frequencies involve noise and model updating [8,9] is often preferred to correct the model

parameters in the finite element model (FEM) for an accurate estimation of Aat.

However, there are generally two major challenges in damage identification based on the
linearized relationship between AA and Aa. First, S is usually a wide rectangular matrix, i.e., the
number of columns of S is much larger than the number of rows since the number of possible
damaged elements are much larger than the number of available natural frequencies. Thus, the
linear system is a highly underdetermined system. Second, the linear relationship is just an
approximation of the true underlying relationship between AA and Aa. Thus, there will be bias in

the solution obtained based on the linear relationship.

In the literatures, research works are available trying to address these two challenges in
structural damage identification. To relieve the impact caused by the system underdetermination,
one approach is to enlarge the number of the measurements in the system. Typically, natural
frequencies are only guaranteed to be measured accurately for the lower order modes due to the
limitation in both actuation and sensing. Thus, the number of available natural frequencies is often
enlarged through physical modification of structures. For examples, a mass addition technique is
explored in [2] to enrich the modal measurements. In this approach, the known masses are added
to the structure and thus new modal data is achieved. Similar ideas on adding mass or stiffness to
extract additional natural frequencies can be found in [3]. One disadvantage of this type of physical
modification is the difficulty to implement in practice due to many physical restrictions. Another
type of physical modification adopts piezoelectric transducers integration onto the structure. The
integrated structure is an electro-mechanical system with tunable piezoelectric circuits. The
tunable inductance can introduce additional natural frequencies. Examples on such type of electro-

mechanical system can be found in [4]. The limitation of physical modification approach is that
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the number of unknown possible damage elements is often still much larger than the available

number of measurements.

Another approach addressing the underdetermination issue is to work with the
underdetermined system directly and try to obtain a sparse solution. The rationale of this strategy
is that structural faults typically occur only at a limited number of locations simultaneously. In
[10], the authors propose a pre-screening strategy to address the underdetermination issue. The
fault locations are ranked according to the likelihoods and the locations with low likelihoods are
discarded in order to reduce the fault parameter space. There are two limitations of such approach.
The first is the underlying assumption of the distribution in the likelihood function. The
independent and identically distributed (i.i.d.) assumption of errors is not generally true in the
structural damages. The simplification of the error terms may lead to unreliable ranking results.
Also, the cut-off threshold in the ranking procedure is ad hoc and may vary in different systems.
Another technique in obtaining the sparse solution is by regularization. For example, the adaptive
Tikhonov regularization is adopted in [11] to improve the identification results with the
measurement noise effects. Th linear matrix inequality methods are used to constrain the unknown
stiffness parameters in [12]. Among different types of regularization, the L; norm of the solution
is often added to the objective function as a penalty and it often returns solution with sparsity, i.e.,
estimates most of the unknown variables to be 0. L, regularization is the most commonly used
penalty method in the structural damage identification. For example, the authors apply the L; norm
on the number of the damage locations in [1]. The results are sparse with the true damage locations
are recovered. However, it is found that applying L, regularization directly often cannot guarantee
the solution quality in the sense of solution sparsity and consistency. Moreover, the bias induced

by the linear approximation may further reduce the accuracy of damage estimation.

In the literature, discussions on the bias in damage estimation caused by the linearization error
is limited. The linearization between the structural parameters and the system response is
introduced in [13]. The higher order terms in the Taylor series expansion are ignored to achieve
the simplification in the equation. However, there are no thorough discussions on how to address
the bias issue, where such bias may lead to significant errors in damage identification. In available
studies, adding nonlinear higher order terms has been proposed to reduce the impact of bias in the

analysis [4, 14, 15]. For example, the equation AA = S;Aa + Aa’S,Aa including both the first

4
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and second order of perturbation incorporates the change of mode shapes, which enhances the
accuracy of damage identification. However, such approach is not recommended in general due to
the loss of the linear property in the equation, where the highly underdetermined nonlinear system
becomes the new challenge. Also, the improvements in the solution quality may not be worth the
loss of the simplicity and the efficiency in the solution process. In recent studies of structural
damage identification, applying deep neural network (DNN) to the problem becomes a new trend
[16]. DNN generates reasonable results with high quality training data and well-designed network
structures, e.g., the choice of activation functions and the layer of the network. It is expected that
the bias can be reduced by applying multiple layers of linear functions. However, the DNN is a

black box approach and may be ad hoc when selecting the network structure.

From the above review, it can see that the underdetermination issue and the identification bias
issue are addressed separately in existing literature. In this work, we propose a systematic scheme
that can reduce the bias in damage identification through a measurement selection method. It is
found that particular combinations of available natural frequencies can significantly reduce the
estimation bias compared with using all available ones. The proposed method contains three
algorithms. In the first algorithm, L;- norm regularization is adopted with iterative random matrix
multiplication and majority voting. The idea of matrix randomization is to multiply random
Gaussian matrix to the linear system to achieve 1) matching of correlation structures of error terms
and 2) unique solution of L, minimization. The majority voting process helps to estimate the
damage severities from multiple iterations. In the second algorithm, the estimated damage
locations are updated by removing locations with negligible damage severities. The estimated
errors of natural frequencies are derived based on the estimated damage parameters, and are further
adopted for natural frequency selection by a least squares method in the third algorithm. There are
several advantages of the proposed the algorithm. First, the regular L,- norm regularization is
modified to enhance the quality of damage estimation for measurement selection. Second, since
the algorithm requires no additional physical modification (e.g., added mass or integrated
piezoelectric circuits) of the structures, it can be used in many practical scenarios. It is worth
mentioning that the proposed algorithm can also be extended for natural frequencies selection in

the physical modified structures for better damage estimation. Third, the proposed algorithm is
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easy to implement without deriving high order terms in the approximation. Thus, it is

computationally friendly for practical uses.

The rest of the paper is organized as follows. Section 2 introduces the linear approximation of
the inverse analysis of eigenvalue problem. Section 3 introduces the L;- norm regularization with
iterative random matrix multiplication and majority voting. Section 4 introduces the proposed
algorithm for bias reduction through measurement selection. Section 5 presents the case studies to
validate the proposed method. Section 6 further discusses the factors that influence the

performance of the algorithm. Section 7 concludes the paper.

2. Problem Formulation

For the sake of clarity, the linear approximation of the inverse analysis of eigenvalue problem
is first introduced for damage identification purpose. Without loss of generality, in this research,
it is considered the structural damage that induces the change of structural stiffness [17]. Also, it
is assumed that only a very small number of damages occur in the structure simultaneously which

is the usual case in practice.
The dynamics of an un-damped structural system can be described by the linear equation
Mx(t) + Kx(t) = F(t) (1)

where M and K are the global mass and stiffness matrices, respectively, X and F contain the nodal
displacements and nodal forces, respectively. The eigenvalue problems associated with the healthy

structure and damaged structure are shown in Eq. (2) and (3), respectively:
(K—=24M)p; =0 (2)
(K¢ —2iM)df =0, (3)

where A; and ¢; are the ith eigenvalue (squared of the ith natural frequency) and eigenvector of
the healthy structure, and A% and ¢p¢ are the ith eigenvalue and eigenvector of the damaged
structure, respectively. The damages are only induced by the loss of stiffness, so the mass matrix
M remains unchanged. The stiffness matrix K¢ of the damaged structure can be expressed as the

increment AK from K in the healthy structure:
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K% = K+ AK 4)
Similarly, the change in eigenvalues and eigenvectors can be expressed as:

df = ¢; + Ad; (6)

Substituting Eq. (4)-(6) in to Eq. (3) and neglecting the high order terms, the first order (linear)

approximation of the mapping from stiffness to natural frequencies is:

¢! AK;
A, ~ LT 7
oo M; ™

In most cases, the eigenvectors are mass normalized, thus, ¢! M¢p; = 1.

The increment AK is expressed as the summation of elemental stiffness matrix change:
AK = ¥, Aq; K, (8)

where K}e) is the jth elemental stiffness matrix, and Aa; is the damage parameter ranging in

[—1, 0] indicating the percentage change of stiffness of the jth element, where zero means no
stiffness loss and —1 means the complete stiffness loss at the element, respectively. n is the

number of elements in the finite element model.

Combining Eq. (7) and (8), the matrix formulation of the linear expression of the change of

eigenvalues due to damage occurrence can be expressed as:
AA = SAa + e(Aar) )

where AA = [AA;, A4, ... A, ]7 is the set of eigenvalue difference between the damaged structure
and the healthy structure. The number m indicates the number of available natural frequencies in
the measurement. Aa = [Aay, Aay, ... Aa, )7 is the set of n damage parameters. S is the sensitivity
matrix representing the sensitivity of eigenvalues to the changes in stiffness loss. e(Aa) is the error

in the linearization. The components in S are:

TRV,

D= g,
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In general, the number of columns, n, is much larger than the number of rows, m, i.e., n > m.
In practice, Eq. (9) is approximated by Eq. (10).
AA ~ SAa (10)

However, as mentioned in the introduction section, there are two major challenges in damage
identification based on Eq. (10). First, S is a wide rectangular matrix so that Eq. (10) is an
underdetermined system. Second, Eq. (10) is just a linear approximation of the true underlying
relationship. As a result, there will be bias in the solution obtained using Eq. (10). We propose two

techniques to addresses these challenges, which are described in Section 3 and 4, respectively.
3. L, Penalty with Iterative Random Matrix Multiplication and Majority Voting Process

We follow the common idea in the literature to address the underdetermined system, i.e., apply
a penalty of L; norm of Aa to the solution. Instead of directly solving Eq. (9), the following

optimization problem is considered:
min||AA — SAaf|, + Bl|lAall;,s.t.—1<Aax <0 (11)

where [ is the regularization parameter controlling the weight of the penalty. In practice, Eq. (11)

is often solved by the following equivalent expression [18]:
min||Aal|;,s.t. ||[AA —SAa|l, <€,-1<Aa<0 (12)
where € indicates the error tolerance and plays the equivalent role of £.

There are many algorithms to solve the optimization problem in Eq. (12) efficiently. However,
solutions to Eq. (12) may not be sparse enough [19] to recover the true non-zero damage locations.
In other words, even if adding L, penalty results in sparse solution, the solution may be still
“abundant” compared to the underlying truth. In practice, an iterative reweighed L; minimization
algorithm [19] is often adopted to enhance the sparsity. For reader’s convenience, we quote the
algorithm from [19] in Table A-1 in the appendix. There are several remarks of the algorithm: (i)
Instead of minimizing Eq. (12), the algorithm adopts the weighted objective function. The hope is
by properly adjusting the weights, the algorithm can recover the underlying sparsity correctly. And

(i1) The weights are updated iteratively in step 3. The update equation can adopt different forms as
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discussed in [19]. The general idea of this algorithm is to increase the weights for variables
estimated with small absolute values in order to push these variables to be 0 in future iterations. In
this paper, the similar scheme of this idea is adopted but with different approaches as described in

Algorithms 1 and 2 below.

Instead of solving Eq. (12), the following problem is solved iteratively in the proposed

algorithm:

min|Aall;,s.t.|[|AX - SAa]|, < e,—1 < Aa <0 (13)

where AL = ® AA and S = ®S and @ is an m X m random matrix, whose components are
independent and identically distributed samples from a Gaussian distribution. The key benefit to
solve Eq. (13) compared to solve Eq. (12) is that: the correlated structure of the error terms in the

linear relationship is addressed.

It is known that the optimization problems in Eq. (12) and Eq. (11) are equivalent. If the penalty
term in Eq. (11) is ignored, then the objective function of Eq. (11) is identical to the objective
function for a regular least squares problem. In other words, if the penalty term in Eq. (11) is
ignored, then the solution to (11) will be the regular least squares solution. One important
assumption on regular least squares method is that the error term in the model is homogeneous,
i.e., the covariance of the term e is a diagonal matrix and the diagonal elements are the same. This
is certainly an unrealistic assumption because the term e(Aa) includes both measurement error
and the systematical error in the linear approximation. It is known that regular least squares method
will lead to systematic bias in the solution for a system with heterogeneous errors [20]. In the
proposed algorithm, the objective function Eq. (13) ignoring the penalty term is equivalent to
(A% — SAq)' (A — SA) = (AL — SA)T(®T®) (AL — SAa) , which is in the form of the
objective function of a generalized least square (GLS) problem [21] assuming the covariance
matrix of e is (@Td)~1. GLS is an effective way to adjust the solution of linear systems to reduce
the bias when the heterogeneous errors occur. In practice, (®@Td)~1 will not be exactly the true
covariance of e and further, the solution of Eq. (13) is not obtained through GLS method, but

rather through the optimization with the penalty term. However, the above intuitive understanding

can provide some justification on the proposed algorithm, i.e., iteratively solving Eq. (13) with
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different random matrices ®s followed by the majority voting process. The underlying intuition is
that when (@Td)~1 is close to the true covariance structure of the error term, then the solution of
Eq. (13) will be consistent and close to the true underlying value. On the other hand, when
(®@Td)~1 is far from the true covariance structure of the error term, the solution will be scattered
around. As a result, if different ®s are repeatedly tried, then the solutions that are close to the true
underlying value will stand out in the followed majority voting process. Indeed, similar idea has

been reported in the literature when solving a sparse system [1].

Note that, the reweighed L; minimization algorithm in Table A-1 still applies the standard L,
norm, and thus the solution to the reweighed L; minimization may be less reliable due to the
heterogeneous errors. The ideas of iterative random matrix multiplication and the majority voting
procedure are summarized in Algorithm 1 in Table 1. The iterative random matrix multiplication

step returns an estimated matrix [Zf&]nxL, whose column (i.e., Ex.,l) is the estimated damage under
each random matrix ®;. The row of [Z\?{]nxL (i.e., Exi,.) records the estimations for each element

through L iterations. Based on our experiences, a L of several hundreds is sufficient to achieve

good results while balancing the computational time.

In the majority voting step, P(Exi,. > —0.05) is the probability that the estimated damage of
the ith element is no less than -0.05 (i.e., a light damage). The “if” condition states that if 95% of
the estimated damage severity Z\Eu is larger than -0.05 among L iterations, the ith element is
treated as a healthy element and is then set to be 0 (i.e., Aa; = 0). In practice, only the stiffness
loss larger than 5% (i.e., Aa; < —0.05) is treated as damage [3]. The threshold 95% is the
confidence to reject the hypothesis that the element has stiffness loss larger than 5% at level 0.05,
which is a commonly used criterion in practices [22]. Damaged elements have the majority of Exi”

significantly differ from 0 and the distribution of Exi” often forms a unimodal shape. The mean

value of all iterations are used as the estimation of damage severity.

Table 1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting

10
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Iterative Random Matrix Multiplication
Forl=1,2,..,L
Generate random matrix ®; and compute AX = ®;AL and S = ®;S
Solve Eq. (13) and record the estimation Exul = [E&Ll, 5&2,1, E&n,l]T
End
Majority Voting
Define Aa;, = [AG, 1, A5, .. A, | and A = [Adt, Adty, .., Bty ]
Fori=1,2,..,n
if P(Aa; = —0.05) > 95%

Aai =0
else
Aa; = mean(ﬂxi,.)
end
End

Return Aa and the locations L(Aa) for Aa; = 0

Besides the estimation Aa, Algorithm 1 also returns the locations of zero elements in Aa,
represented by L(Aa). In order to recover the damage locations accurately, an iterative procedure

is proposed as Algorithm 2 in Table2.

Table 2. Algorithm 2: Damage Location Identification Algorithm

1. Set the iteration count ¢ = 0, P = L(Aa@) and L©® = ¢
2. Run Algorithm 1 with constrains 4, () = 0 in Eq. (13), return Aala+t)
3. Update the sparsity
L@+D = L(ﬂx(qﬂ))
4. Terminate if L4*D = L@ or q attains the maximum number. Otherwise, increment q and
go to step 2.
5. Return Aa and L(EX) from the last iteration

In most cases, it takes q¢ = 2 or 3 to terminate the algorithm. The Aa of the last iteration is used
as the final estimation of the damage parameters with the sparsity shown in L(Aa). The estimation
Aa is named as L;-IMR (iteratively matrix randomization). In general, the L;-IMR estimation
achieves better solution quality compared with the pure L, regularization by Eq. (12). The L;-IMR

estimation for natural frequency selection is used in the next section.

11
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It is interesting to compare Algorithm 2 with the reweighed L; minimization algorithm in
Table A-1 in the appendix to see the analogy. In fact, adding constrains Aa; @ = 0 in Eq. (13) is

equivalent to modify the weight as:

—~ (@
W-(q+1) _ 1, Aai #*0

l —
w, Aa?” =0
in the reweighed L, minimization algorithm. In this updating step, all zero valued elements will

retain as 0 in the following iterations, while all non-zero valued elements will be estimated with

i(q+1) = oo, for @i(q)

equal weight of 1. The condition w = 0 is equivalent to set § = 0 in the
original weight update equation in Table A-1. The key difference between Algorithm 2 and the
reweighed L, minimization algorithm is in step 2. Instead of solving the L; minimization problem
once, Algorithm 1 solve the problem multiple times with different random matrices. The benefits

of such approach are discussed above.

4. Measurement Selection for Bias Reduction

Even if Algorithms 1 and 2 enhance the solution quality for damage identification, the bias
introduced by the linear approximation in Eq. (9) is not addressed. It is found that some subsets of
available natural frequencies can return less biased estimation compared with that using all
available natural frequencies. Thus, a natural frequencies selection is desired to reduce the bias in

the damage estimation.

Mathematically, a subgroup of natural frequencies needs to be found to minimize the following

L,- norm
d® = ”Ex(k) _Aatruth”2 (14)

truth i the underlying truth of the damage and Aa® is the damage estimation based on

where A
the k th combination of selected natural frequencies by solving min||Aa||1,s.t.||Al(k) —

SUAql| , S6—1<Aa<0. 2% and S® are the eigenvalue difference and sensitivity matrix

corresponding to the kth combination of selected natural frequencies, respectively. In other words,
AL() and S™) are the sub-vector and sub-matrix of AA and S by retaining the rows corresponding

to the kth combination of selected natural frequencies. For example, if' S has dimension 7 X 20

12
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(i.e., 7 natural frequencies and 20 elements), the submatrix S’ will have less rows but the same
number of columns, i.e., if only 4 natural frequencies are selected as system measurements, the
dimension of S®) will be 4 x 20. Please note for m available natural frequencies, there are total

2™ — 1 different combinations.

The challenges in this problem are from the following aspects. First, the underlying truth
Aa™™h is unknown. Thus, Eq. (14) cannot be used directly for bias comparison. Second, since the
sensitivity matrix S is obtained from the linear approximation, the following optimization

problems are not equivalent,
arg, min|[AA09) — S(k)Aoc”2 & arg; min||Aa® — Aatruth”Z

A reasonable approach is to derive an approximation of the incomputable quantity d® in Eq. (14).

b™ is proposed to be an approximation of d® , where b® is defined as

” (§(k)T§(k))_1 §00 T

. The details and the rational of this approximation are discussed
2

below.

First note, the eigenvalue difference AA can be expressed with the underlying damages Aa™th

and the error term e:
AA = SAat™Uth + e (15)
Similarly, the eigenvalue difference for the kth combination of selected natural frequencies is:

AR = SWpqtruth 4 e(k) (16)

where e®) measures the error in the eigenvalue difference corresponding to the kth combination.

Please note Eq. (15) and (16) are exact without approximations.

Intuitively, if e®) — 0, solving AL = SU)Aa returns the unbiased estimation of Aatt™"th,

Thus, it is reasonable to select the natural frequencies with small magnitudes in e to form the
combination. However, such an approach does not take the structure of the sensitivity matrix into
consideration. An ill-conditioned sensitivity matrix may result in large estimation errors. The

sensitivity matrix S can be simplified by removing the columns that corresponding to the healthy

13
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elements that are identified by Algorithm 2. S is denoted as the simplified sensitivity matrix by
removing columns corresponding to the zero elements in Aa, represented by L(ﬂx). For example,
if S has dimension 7 X 20 and only two unhealthy elements are identified, then the submatrix S

will be 7 X 2 by removing all columns that correspond to the healthy elements. Eq. (16) can be re-

written as:

Al(k) — §(k)Agtruth + e(k) (17)

where Aa™™ ™ is the subset of Aat™ " with non-zero valued components and S® is the submatrix
of S by removing the columns corresponding to zero elements in Aa'™ ™"  Following the
previous examples, if S¥ has dimension 4 x 20, then S® is 4 x 2. It is worth to point out that
the number of selected natural frequencies should be larger than the number of nonzero elements

in Aa™Ut™ 5o that S will be a square or tall matrix. Eq. (17) can be re-written as

§(k) Agtruth = A0 — o) (18)

According to Eq. (18), it can be seen that e®) does not impacts on Aa™"™" directly, rather,

through the matrix of ). More specifically, the solution of Aa™™"™ based on (18) is:

Agtruth — (§(k)T§(k))_1 ST AA® (§(lc)T§(k))_1 s e (19)

The difference between Aa™"™ in Eq. (19) and its approximation without knowing e is b®) =

. Thus, b® can be used as an approximation of d®). The optimal

” (§(k)T§(k))_1 §00 T
2

combination of natural frequencies can be chosen as k* = argy, min b9,

To compute b¥), the value of the error term e is needed. The value of e can be estimated by
& = AAL — SAa, where Aa is the output from Algorithm 2. To summarize, the proposed natural

frequency selection algorithm is shown as Algorithm 3 in Table 3.

Table 3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction

14
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RUN Algorithm 2
CALCULATE the estimated error & = AA — SAa
Fork=12,..,2m -1
CALCULATE the estimated bias b®)
End
Return k* = arg, min b®) as the final combination

There are several remarks on Algorithm 3. First, Aa is pre-computed in Algorithm 2, so that the
computational load does not explode for exhausting all possible measurement combinations. In
fact, as mentioned earlier, the number of the selected natural frequency needs to be larger than the
number of non-zero elements in Aa. Thus, the actual number of combinations is further reduced.
For example, if S has dimension 7 X 2, the combination should contain at least 2 natural
frequencies. Second, the proposed algorithm will not guarantee the selected combination k* is the
optimal one that minimize Eq. (14) because the criteria used b is just an approximation of d .
Detailed numerical studies and discussions will be conducted to illustrate the performance of the

proposed algorithms in Section 5 and 6.

In practice, it can re-do Algorithm 1 and 2 for the selected natural frequencies from Algorithm 3
to estimate the damages, where the original matrix S in Algorithm 1 becomes a matrix with only
the selected rows (corresponding to the selected natural frequencies) left. The estimation after this

additional procedure is named as L-Final to differentiate it from L,-IMR from Algorithm 2.
5. Case Studies and Validation

In this section, the proposed algorithm is validated using simulation for a fixed-free beam

structure with setup in Figure 1.

Figure 1. The fixed-free beam for the simulation. There are total 20 elements in the beam.

The system parameters are summarized in Table 4.

15
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Table 4. Parameters of the Beam Structure

Material Young’s Modulus Density Length Width ~ Thickness m n

Aluminum 7.1 X 10° N/m?  2700kg/m3 0.4184m 0.0381lm 3.175mm 7 20

The beam consists 20 elements and the first 7 modes are calculated using FEM. Thus, there are
total 127 different combinations of natural frequencies. In the simulation, two scenarios for a

damaged beam will be considered. In the first example, the beam with two faulty elements is

considered, where the stiffness loss occurs at elements 8 and 17 with Aag = —0.3 and Aay; =
—0.1, respectively. In the second example, a three-fault case with Aa; = —0.1, Aayy =
—0.2 and Aa;g = —0.2 is considered. The first seven natural frequencies are calculated for the

healthy beam and the damaged beam using FEM in Table 5.

Table 5. The First Seven Natural Frequencies (Hz) (n.f.)

Order of n.f. Healthy Beam Two Faults % change in n.f Three Faults % change in n.f

1 94.4 93.4 1.06% 93.3 1.17%
2 591.6 584.3 1.23% 583.2 1.42%
3 1657.0 1631.4 1.54% 1651.4 0.34%
4 3247.8 3225.8 0.68% 3188.6 1.82%
5 5370.5 5241.8 2.40% 5287.3 1.55%
6 8025.8 7944.3 1.02% 7821 2.55%
7 112153 11127.1 0.78% 11000.2 1.92%

5.1 Beam with two faulty elements

In the first example, the beam with two faulty elements is considered, where the stiffness loss

occurs at elements 8 and 17 with Aag = —0.3 and Aay; = —0.1, respectively.

Figure 2 presents the bias d® = ||Aa® —A(xm‘th”Z in Eq. (14) as a function of the

combination index k = 1,2,3,...,127 . The combination is ordered from the single natural
frequency to all seven natural frequencies, ie.,
{1,2,3, .., (1,2),(1,3),..,(1,2,3),(1,2,4), ...,(1,2,3,4,5,6,7)} . Aa®™® is calculated by

min|Aall;,s.t. [|[AA%) — s®Aal|, <€, -1 < Aa<0withe=107°.
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Figure 2. The bias of the estimated damages for different combinations of natural frequencies

It is clearly shown in Figure 2 that the combination of all seven natural frequencies (the 127%
combination) does not result in the smallest bias. In this damage scenario, the smallest bias is
obtained by the 26" combination of the fifth and sixth natural frequencies, i.e., (5, 6). From Figure
2, it can be seen that the bias has relatively large values for the first seven combinations. Since the
first seven combinations are all single natural frequencies, the linear system is underdetermined
with two faulty elements. Also, there is a jump at k = 18, (the combination of the second and the
seventh natural frequencies), which is due to the correlated structure of the second and the seventh
rows in S. As discussed in section 4, the ill-posed sensitivity matrix may result in large errors even

with regularization.

Figure 3 presents the results of the histogram of the severity estimation of 20 elements from

Algorithm 1.
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Figure 3. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each
element are labeled using dash lines.

In Figure 3, the true damage locations, i.e., elements 8 and 17, have histograms around the
underlying true damages -0.3 and -0.1. The densities for most of other elements concentrate exactly
at 0 as expected, e.g., elements 2, 6 and 10. Elements 1, 4, 9 and 18 have the majority of the density
concentrate at 0 with a light tail spreading to negative values. Element 13 has density concentrate
both at 0 and -0.2. It can be seen that true damage locations have densities apparently differ from
0, while non-damaged locations tend to have most density distributed at 0. These locations are set

to A@ = 0 in the majority voting process.

Results obtained after Algorithm 2 are shown in Figure 4. In Figure 4, the only two non-zero
distributed elements are the element 8 and 17 with density concentrated around the true damage
magnitudes. The estimated damage parameters are Aag = —0.33 and Aay, = —0.11 with all

Other Aai#_.g ori7 — 0.
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Figure 4. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each

element are labeled using dashed lines

The estimated bias b for k = 8,9, ...,127 are presented in Figure 5. It can be seen that b

has very similar trend compared to || Aa(® — A(xm‘th”Z. By Algorithm 3, k* = 26 and the result

is consistent with the smallest bias combination as shown in Figure 1. Thus, only the fifth and sixth

natural frequencies are suggested to be included in the estimation of damage parameters to reduce

the estimation bias. Please note that the comparison between the estimated bias b®) and the

|Aat — Aatr“th”Zis only shown for k > 8. Two elements are identified as stiffness loss by

Algorithm 2. In order to apply the least square method in Eq. (19), S should consist at least two

rows, i.e., combination of at least two natural frequencies. Thus, k > 8 because the first 7

combinations only contain one natural frequency.
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Figure 5. Plots of 5®) and d® fork = 8,9, ...,127.

Figure 6 presents the comparison results of the damage parameter estimation using different

methods.
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Figure 6. Comparison of damage parameter estimation using different approaches.

The L;- Norm method adopts Eq. (12), the L;-IMR adopts the proposed method with iterative
matrix randomization, i.e., Aa by Algorithm 2 and the L, -Final is the estimation by re-doing
Algorithms 1 and 2 using the selected natural frequencies only. The L,- Norm adopts Eq. (12) but
with L, penalty. It can be seen from the comparison, the L;-IMR and L,-Final return the most
accurate estimation both for the damage locations and damage severities compared to all other two
methods. The L;-Final has a slightly better estimation compared to L;-IMR. The L;- norm method

returns comparable results at the true damage locations, but also has estimation with small
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magnitudes on a few healthy elements. The L,- norm performs the worst among all three methods
with distributed estimation along elements. In practice, the L;-IMR is good enough for damage

estimation and L;-Final can be further adopted if cost is allowed.
5.2 Beam with Three Faulty Elements

In the following, the proposed algorithm is adopted for a scenario with three faulty elements,
where Aa; = —0.1, Aa;y, = —0.2 and Aa;g = —0.2. The histogram of elements after Algorithm
2 is presented in Figure 7. Similar to the case with two faulty elements, the true damage locations

are identified correctly.
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Figure 7. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each
element are labeled using dash lines

The comparison between h® and the ||Ex(k) — Agtruth ||2 is presented in Figure 8. Since three

damage locations are identified, at least three natural frequencies are needed, i.e., k = 29. By

Algorithm 3, k* = 43 with the first, the sixth and the seventh natural frequencies is the

combination with the smallest bias in the estimation. The jumpy peaks for some b®s are due to
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the correlated structure of S&. In Figure 9, the comparison of damage parameter estimation is
presented. The proposed L;-Final has the best estimation.
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Figure 8. Plots of b and the ||Ex(k) — A(xt“‘th”Z for k = 29,30, ...,127.
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Figure 9. Comparison of damage parameter estimation using different approaches

5.3 Performance and Robustness Evaluation

In Table 6, the overall performance of the proposed algorithm in a comprehensive study is
presented. The study adopts the same beam structure in previous two examples (i.e., Table 4) and
exhausts all possible combinations between damage locations and damage severities for —0.4 <
Aa < —0.05 with increment 0.05. The lower bound —0.4 of A« is an average of stiffness loss by

exhausting all individual element with different level of stiffness loss to make the mean reduction
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of the first seven natural frequencies about 5%. In most cases, 5% decrease in natural frequencies

can be referred to a severe damage in the structure [23,24].

Table 6. Performance of the Proposed Algorithm in Different Damage Scenarios

Single Fault Two Faults Three Faults
k* = arg;, min d® 94.3% 83.5% 80.2%
dk) < q(27) 97.1% 94.7% 91.5%
# simulations 160 12160 583680

In the simulation study, three fault scenarios have been studied, i.e., single fault, two faults and
three faults. The performance is measured in two ways. 1) k* = arg, mind® indicates the
selected combination k* by Algorithm 3 is the optimal combination that minimizes the bias. It can
be seen the proposed algorithm can detect the optimal combination above 80 percentage in all
three damage scenarios. 2) d®? < d(127) indicates that the selected combination k* has smaller
bias compared with the case when all natural frequencies are used. The selected combination by
the proposed algorithm can achieve smaller bias than using all seven natural frequencies over 90
percentage in all three damage scenarios. It is not surprising to see the single fault scenario has the
best performance, in which case the Eq. (19) is reduced to the scalar calculation without any matrix

inversion.

To test the robustness of the proposed algorithm, different levels of random noise are added to
the measurements of natural frequencies. Figure 10 presents the performance of the algorithm. The
accuracy is defined as true positive rate to identify the damage locations, i.e., the proportion to
recover the underlying damage location by Algorithm 2. For example, the 0.81 in the single fault
scenario with noise level 5% indicates 130 out 160 cases that Algorithm 2 can recover the true
damage location. The 0% noise level indicates noise free case for all three scenarios. The accuracy
decreases as the noise level increases. The impact of noise is greater in multiple faults case
compared to the single fault case. In general, the proposed algorithm performs well for random

noise level no larger than 5%, where accuracies are above 60%.
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Figure 10. Accuracy of damage location identification by Algorithm 2 under random noise
scenarios.

5.4 Damage Location Identification Using a FEM with 200 Elements

The accuracy of natural frequency selection by Algorithm 3 depends on the estimated damage
from Algorithm 2, which is equivalent to the damage locations being identified. To further validate
the performance of the proposed method for a large number of elements, we adopt the same beam
structure with n=200 elements. The underlying damages are Aa,, = —0.4 and Aa;,, = —0.3. The
first seven natural frequencies are used to identify the damage locations. The results of Aa for the
first, fifth and the seventh iteration (i.e., ¢ = 1,5 and 7) by Algorithm 2 are reported in Figure 11.
The damage locations converge at ¢ = 7, where the true damage locations (elements 40 and 170)
are recovered with the estimated values Aa,, = —0.38 and Aa;,, = —0.27. In the first iteration,
most of the estimated damages are around the true damage locations. It turns out that the true
damage values are under-estimated due to this reason. A few elements (elements 1 and 50-55)
have estimated values larger than -0.1. In the fifth iteration, elements that are not around the true

damage locations are removed. The damage locations eventually converge at the seventh iteration.
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5.5 Experimental Study

In this section, the proposed method is validated using a real experimental setup of a fixed-

fixed beam structure [25]. The parameters of the beam are summarized in Table 7.

Table 7. Parameters of the Real Beam Structure

Material

Young’s Modulus

Density

Length

Width Thickness

Aluminum

68.9Gpa

2700kg/m3

510 mm

19.05mm

4.76mm
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To mimic the stiffness loss, a small mass with weight 2.9g is added to the middle section of the

beam as shown in Figure 12.

e 5 o w s o

s .

Figure 12. A small mass is attached on the middle of the beam to mimic the stiffness reduction
with an accelerometer located near one end of the beam.

The first three natural frequencies of the beam are measured for both before and after mass added

in Table 8.

Table 8. Natural Frequencies (Hz) Before and After Mass Added

Order of n.f. Before Mass After Mass % change in n.f
1 92 89.5 2.72%
2 498 489 1. 80%
3 1219 1200 1.56%

Based on the width of the small mass, the FEM of the fixed-fixed beam is designed to contain 41
elements with the 21% element as faulty. The equivalent stiffness lost can be calculated as Aa,; =
—0.54 by considering model updating [8]. The proposed algorithm detects the true damage
location with estimation Aa,; = —0.51. The first and the third natural frequencies are selected to

minimize the bias error by Algorithm 3.

6. Impact of Severe Damage and Discussion on Implementation in Practice

In this section, we first explore the influence of severe damage on the performance of the
proposed algorithm. The proposed algorithm is effective on selection of natural frequencies to

reduce the estimation bias. However, it does not eliminate the bias. In Figure 11, the accuracy of

26



DS-18-1005 Measurements Selection for Bias Reduction in Structural Damage Identification

linear approximation of natural frequency compared with the underlying truth is presented. The

beam is set up as that in Table 4 with stiffness loss only at element 8.

Figure 13(a) presents the linear approximation of the first order natural frequency. The solid
line is the underlying truth and the dashed line is the linear approximation. Since Taylor’s
expansion is conducted at the healthy condition, the difference between the linear approximation
and the underlying truth is getting larger as Aa — —1. Figure 13(b) summarizes the accuracy of

the linear approximation of the first seven modes in terms of the difference in percentage, i.e.,
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Figure 13. Accuracy of linear approximation in natural frequencies
It can be seen that the accuracy is about 60% for Aa = —0.4. As the comprehensive simulation

study indicated in Section 4, the proposed algorithm performs well at such accuracy level. It is
worth noting that the performance of the algorithm gets worse for severe stiffness loss. Under mild
damage conditions, the histogram of Aas are close to the underlying truth but with small
differences (e.g., Figure 4 and 7). For severe damage loss, such differences can be large or even
the identified damage locations can be wrong. In Figure 14, an example of the histogram of Aas
after Algorithm 2 for a severe damage case Aa; = —0.9, Aa;, = —0.9 and Aa,;3 = —0.2 is

presented.
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Figure 14. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each

element are labeled using dashed lines

All three true damage locations are identified but with an additional element 14 wrongly

identified. The magnitude of stiffness loss at element 18 is estimated much smaller than the truth

due to the additional element. Thus, the results of the proposed algorithm will not be informative

on the selection of natural frequencies as shown in Figure 15.
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Figure 15. Plots of b with ||Aa®® — A(xm‘th”Z for k = 29,30, ...,127 with severe damage
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Figure 15(a) is similar to Figure 5 or 8 showing the comparison between b and

||E?x(") — Aatruth ||2 Since they have quite difference scales, the normalized comparison is shown

in Figure 15(b). As expected, the two trends are different. For such severe damage scenario, the
inaccuracy of the linear approximation causes the overall estimated damage parameters biased
from the underlying truth as shown in Figure 15(c). Figure 15(c) presents the bias d®). It can be
seen the average bias for this severe damage case is around 1.7, which is roughly 17 times large
than the bias shown in Figure 2. In other words, the estimation of damages can be extremely biased

for severe damage scenario.

It is worth to point out that it is more important to estimate mild damage conditions in practice.
Severe damages not only reduce natural frequencies significantly, but also cause visible changes
in structures. However, mild damages can be hidden from simple visual inspection. Thus, it is

more important to identify mild damages accurately for preventive repair or correction.

For practice implementation of the proposed methods, it is suggested to adopt the model
updating first to establish high fidelity FE model [19,20]. In practice, model updating can help to
correct model parameters in the FEM (e.g. M and K) due to measurement noise or model
inadequacy. For a complicated structural system or FEM with thousands of elements, the concerns
of implementing the proposed methods and possible solutions are: i) Achieve a reasonable sparse
solution from thousands of elements. In general, this is a large p (number of unknows) and small
n (number of equations) problem. One possible solution to achieve a reasonable sparsity is to
increase the penalty level. For example, the value -0.05 in the majority voting process of the
proposed method can be further reduced (e.g. -0.1) to allow more elements to be treated as healthy
in the following iterations. Similarly, it is also reasonable to adjust the 95% level (e.g. reduce to
90%) to make the proposed method flexible for a complicated structure. In the proposed method,
we choose -0.05 and 95% by the general guidelines from the mechanical engineering and statistics.
Indeed, these values are tuning parameters can be adjusted to meet the practice. ii) the accuracy of
the linear approximation to describe the dynamics of a system. The proposed method is based on
the linear approximation of the structural system. Once the linear approximation is not proper to

describe the dynamics of the system, the performance of the proposed method may get hurt (e.g.,
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as shown in Figure 13 and 14). In general, the proposed method performs well for mild damages,

where the linear approximation preserves high accuracy.
7. Conclusion

In this paper, we propose a natural frequency selection algorithm to reduce the bias in the
estimation of damage parameters using linear approximation under mild damage scenarios. The
selected combination of natural frequency has high probability to be the optimal combination
which leads to the smallest bias in the estimation among all the possible combinations. The
proposed method consists of three algorithms. In the first algorithm, the L,- norm regularization
with iterative matrix randomization is adopted for estimation of damage parameters followed by a
majority voting process. In the second algorithm, the damage locations are identified by sequential
updating. The improved estimation L,- IMR obtained by the third algorithm helps to choose the
best combination of measurements in the third algorithm. The effectiveness of the proposed
method is validated through numerical studies. Factors that influence the performance of the

method are also discussed.

The proposed algorithm is flexible in dealing with natural frequencies, thus has potential to be
extended to the schemes with physical modification, e.g., modification through mass addition or
tunable sensing systems. The proposed algorithm can be applied to select measurements among
different setups of the structure (i.e., different mass additions or tunable inductances), which may
provide a better estimation than combining all available modes from all setups. We will investigate

along this direction and report our findings in the near future.

Funding/Acknowledgment

This work is supported by the Air Force Scientific Research Office, grant # FA9550-14-1-0384.

30



DS-18-1005 Measurements Selection for Bias Reduction in Structural Damage Identification

Appendix
Table A-1 Iterative Reweighted L; Minimization Algorithm [14]
1. Set the iteration count [ = 0 and Wl.(o) =1,i=12,..n
2. Solve the weighted L; minimization problem:
x® =arg min”W(”x”1 ,subjectto |ly — Ax|l, <€
3. Update the weights fori = 1,2,...n
1
Wi(l+1) — 0
x; +46 |
4. Terminate on convergence or [ attains the maximum number. Otherwise, increment ! and go to
step 2.
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Figure Captions List
Figure 1. The fixed-free beam for the simulation. There are total 20 elements in the beam.

Figure 2. The bias of the estimated damages for different combinations of natural frequencies

Figure 3. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each
element are labeled using dash lines.

Figure 4. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each
element are labeled using dashed lines

Figure 5. Plots of 5®) and d® fork = 8,9, ...,127.
Figure 6. Comparison of damage parameter estimation using different approaches.

Figure 7. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each
element are labeled using dash lines

Figure 8. Plots of b and the ||Ex(k) — A(xm‘th”Z for k = 29,30, ...,127.

Figure 9. Comparison of damage parameter estimation using different approaches

Figure 10. Accuracy of damage location identification by Algorithm 2 under random noise
scenarios.

Figure 11. Aa for each iteration g by Algorithm 2. The x-axis is 200 elements and the y-axis is
Aa. The dashed lines are the underlying damage for elements 40 and 170.

Figurel2. A small mass is attached on the middle of the beam to simulate the stiffness reduction
with an accelerometer located near one end of the beam.

Figure 13. Accuracy of linear approximation in natural frequencies

Figure 14. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each
element are labeled using dashed lines

Figure 15. Plots of b with ||Aa(® — A(xm‘th”Z for k = 29,30, ...,127 with severe damage
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Table Caption List
Table 1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting
Table 2. Algorithm 2: Damage Location Identification Algorithm
Table 3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction
Table 4. Parameters of the Beam Structure

Table 5. The First Seven Natural Frequencies (HZ) (n.f.)

Table 6. Performance of the Proposed Algorithm in Different Damage Scenarios
Table 7. Parameters of the Real Beam Structure

Table 8. Natural Frequencies (Hz) Before and After Mass Added

Table A-1 Iterative Reweighted L; Minimization Algorithm [15]
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