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DETERMINANTS OF INCIDENCE AND
HESSIAN MATRICES ARISING FROM

THE VECTOR SPACE LATTICE

SAEED NASSEH, ALEXANDRA SECELEANU AND JUNZO WATANABE

ABSTRACT. Let V =
⊔n

i=0 Vi be the lattice of sub-
spaces of the n-dimensional vector space over the finite
field Fq , and let A be the graded Gorenstein algebra de-
fined over Q which has V as a Q basis. Let F be the
Macaulay dual generator for A. We explicitly compute the
Hessian determinant |∂2F/∂Xi∂Xj |, evaluated at the point
X1 = X2 = · · · = XN = 1, and relate it to the determinant
of the incidence matrix between V1 and Vn−1. Our explo-
ration is motivated by the fact that both of these matrices
naturally arise in the study of the Sperner property of the
lattice and the Lefschetz property for the graded Artinian
Gorenstein algebra associated to it.

1. Introduction. Let P be a poset with a rank function ρ : P → N.
Then, P decomposes into a disjoint union of the level sets, namely,
P =

⊔c
i=0 Pi, where Pi = {x ∈ P | ρ(x) = i}. We say that P has the

Sperner property if the maximum size of antichains of P is equal to
the maximum of the rank numbers |Pi|. Some of the basic examples
of finite ranked posets known to have the Sperner property are the
Boolean lattice, the divisor lattice, and the vector space lattice over
a finite field. One way to show that the Sperner property holds for
the vector space lattice is as a consequence of the fact that certain
incidence matrices have full rank as illustrated in [5, Theorem 1.83].
We will say that a ranked poset with a symmetric sequence of rank
numbers has the strong Lefschetz property if the incidence matrices
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between every pair of symmetric level sets are invertible. This implies
the Sperner property for posets with symmetric sequence of rank
numbers by [5, Lemmas 1.51, 1.52]. For the vector space lattice,
the fact that it has the strong Lefschetz property follows from a result
of Kantor [7]. There are several other ways to show that the vector
space lattice has the Sperner property; the reader may consult [3] for
details.

It is remarkable that some posets with a rank function can be vector
space bases for some graded Artinian algebras over a field in such a way
that the multiplication of the algebra is compatible with the incidence
structure of the poset. For example, the Boolean lattice 2{x1,...,xn} can
be the basis for the algebra

K[x1, x2, . . . , xn]/(x
2
1, x

2
2, . . . , x

2
n).

Recently Maeno and Numata [9] succeeded in constructing a family
of algebras over a field for which vector space lattices are the bases.
To briefly explain their construction, let Fq be the finite field with q
elements, V = Fn

q the n-dimensional vector space and V =
⊔n

i=0 Vi
the vector space lattice with rank decomposition. Introduce as many
variables as the number of the one-dimensional subspaces of V , and
then define the form

F =
∑

xi1xi2 · · ·xin ,

where the indices run over the combinations such that span⟨xi1 , xi2 ,
. . . , xin⟩ is the whole space V . (A variable like xi represents a one-
dimensional vector subspace of V , and distinct variables represent
distinct spaces.) Let R = K[x1, . . . , xN ] be the polynomial ring in N
variables, where N is the number of one-dimensional subspaces of V .
(Note that K is any field and should not be confused with Fq.) Set
A = R/Ann(F ). The Artinian algebra A has the Hilbert function
displayed below ([

n

0

]
q

,

[
n

1

]
q

, . . . ,

[
n

n

]
q

)
.

An explicit formula for
[
n
i

]
q
is given at the beginning of Section 2.

Every monomial m in A represents a vector subspace in V of the
dimension which is equal to the degree of m.
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We are interested in the Hessian determinant |∂2F/∂xi∂xj | of F ,
evaluated at x1 = · · · = xN = 1. The motivation for it is as follows:
it is proven in [10] that the non-vanishing of the Hessian, together
with the non-vanishing of the higher Hessians of the Macaulay dual
generator F , i.e., ∣∣∣∣ ∂2kF

∂xi1 · · · ∂xik∂xj1 · · · ∂xjk

∣∣∣∣,
is equivalent to the strong Lefschetz property for the Gorenstein
algebra (Definition 4.4), which ensures the Sperner property of the
poset. This suggests that a connection exists between the higher
Hessians evaluated at a certain point (xi) and the determinants of
the incidence matrices for the vector space lattice. (Recall that the
first Hessian of F is the Hessian in the usual sense.) Our main result
is Theorem 4.11, where we make explicit the relation between the
Hessian matrix and the incidence matrix of the vector space lattice,
and we derive from it a closed formula in Corollary 4.12 for the Hessian
of F evaluated at x1 = · · · = xN = 1.

In the literature, efforts have been made to obtain the Smith normal
form of incidence matrices for various posets ([12]). In particular, the
Smith normal form for the incidence matrix between the sets V1 and
Vn−1 was obtained by Xiang [15]. The determinant itself is much
easier to obtain; it is sufficient to note that

A TA = (N − λ)I + λJ,

where I is the N×N identity matrix and J is the matrix with all 1s as
entries. This is due to Xiang [15, (1.1)]. In this paper, we reproduce
a proof for it since this does not seem to be well known among the
commutative algebraists (Theorem 3.6 (c)).

Computations similar in spirit have been performed for evaluating
the determinants of all incidence matrices of the Boolean lattice in
[4, 11], obtaining explicit and recursive formulas, respectively. For
a comprehensive survey of determinant evaluations and their many
applications, see [8].

Our paper is organized as follows. In Section 2, we gather useful
properties of the vector space lattice, focusing on enumerative results.
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In Section 3, we carry out our computation of the determinant of
the incidence matrix between the first level set and the (n − 1)st
level set. In Section 4, we recall Maeno-Numata’s construction of
the graded Artinian Gorenstein algebra A associated with the vector
space lattice, as introduced in [9]. We explicitly describe the Hessian
matrix of the Macaulay dual generator of A, and we compute the
Hessian determinant. Furthermore, we show that the same method
can be used to obtain the determinant for the multiplication map

×L : A1 → An−1, where L :=
∑N

j=1 xj , and the matrix is written
with respect to the monomial bases.

2. The vector space lattice. Throughout this paper, let F be the
finite field with q elements, and let n be a positive integer.

Definition 2.1. The vector space lattice on Fn, denoted V(n, q),
is the set of all subspaces of Fn naturally ordered by inclusion.
Note that V(n, q) is a poset with the rank function ρ defined by
ρ(W ) = dimF(W ), for each W ∈ V(n, q). This gives rise to the rank
decomposition V(n, q) =

⊔n
j=0 Vj into level sets Vj := {W ∈ V(n, q) |

dimF(W ) = j}.

Using the notation [i] = (qi−1)/(q−1) for the q-integers, we recall
the formula for the sizes of the level sets in the vector space lattice
(see [5, Proposition 1.81]):

card(Vj) =
[
n
j

]
q

,

where [
n
j

]
q

=

{
[n][n−1]···[n−j+1]

[j][j−1]···[1] (0 ≤ j ≤ n),

0 (j < 0 or j > n).

Let G(n,m) denote the Grassmannian variety of m-dimensional
subspaces of an n-dimensional vector space. One reason for studying
the vector space lattice V is that each level set Vj may be regarded
as the set of rational points of the Grassmannian variety G(n, j)
corresponding to a finite vector space. In our work, we routinely
identify the set Vj as the collection of n× j matrices in echelon form
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with entries in F. For example, for n = 4 and j = 2, the set Vj is in
one-to-one correspondence with the set{(

1 0 ∗ ∗
0 1 ∗ ∗

)
,

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

(
1 ∗ ∗ 0
0 0 0 1

)
,(

0 1 0 ∗
0 0 1 ∗

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
0 0 1 0
0 0 0 1

)}
where each echelon form corresponds to the subspace spanned by the
rows of the respective matrix.

For W ∈ V(n, q), define the dual subspace W⊥ ∈ V(n, q) by

W⊥ =

{
w ∈ Fn |

n∑
i=1

viwi = 0 for all v ∈W

}
.

The map V(n, q) → V(n, q), given by W 7→ W⊥, is an inclusion-
reversing bijection meaning that it satisfies the condition: U ⊆ W if
and only if W⊥ ⊆ U⊥.

Focusing on the level sets of elements of rank 1 and n − 1, re-
spectively, the formula for the sizes of the level sets gives card(V1) =
card(Vn−1) = [ n1 ]q. Set N = card(V1), and fix the following notation
for elements of the level set V1:

V1 = {v1, v2, . . . , vN}.

In particular, the set V1 is in one-to-one correspondence with the
rational points of the projective space Pn−1

F . Thus, it will be convenient
to regard V1 as the set of vectors (a1, . . . , an) such that the first nonzero
component is 1. These vectors are a special case of the echelon matrices
described above. Since Pn−1

F = Pn−2
F ⊔ An−1

F , we have the identity
N = [ n1 ]q =

[
n−1
1

]
q
+ qn−1.

We denote by v⊥k the dual space of Fvk, which allows us to identify
the (n− 1)st level set of the vector space lattice with the set of duals
of elements of the first level set as follows:

Vn−1 = {v⊥1 , v⊥2 , . . . , v⊥N}.

The following definition introduces the focal point of our attention
in this work.
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Definition 2.2. The incidence matrix A = (aij) for V1 and Vn−1 is
the N ×N matrix, whose entries are

aij =

{
1 (vi ∈ v⊥j )

1

0 (vi /∈ v⊥j ).

The first goal of this note is to find a closed formula for the
determinant of the incidence matrix A. While our vector space lattice
is defined over a field of positive characteristic, all of our determinant
computations will be performed in characteristic zero. This is to
preserve the enumerative properties of the entries in our matrices.
Note that the truly meaningful invariant of the incidence structure
between V1 and Vn−1 is, in fact, the absolute value of this determinant,
denoted | detA|, since this is preserved under permuting the order of
the elements in V1 and Vn−1.

We begin by describing the incidence matrix in a concrete example.

Example 2.3. Let q = 2 and n = 3. In this case, we have N = 7.
Then, V1 = {v1, v2, . . . , v7}, in which

v1 = (0, 0, 1) v2 = (0, 1, 0) v3 = (0, 1, 1) v4 = (1, 0, 0)

v5 = (1, 0, 1) v6 = (1, 1, 0) v7 = (1, 1, 1).

Now, we have V2 = V⊥
1 = {u1, u2, . . . , u7}, where

u1 := v⊥1 =

(
1 0 0
0 1 0

)
u2 := v⊥2 =

(
1 0 0
0 0 1

)
u3 := v⊥3 =

(
1 0 0
0 1 1

)
u4 := v⊥4 =

(
0 1 0
0 0 1

)
u5 := v⊥5 =

(
1 0 1
0 1 0

)
u6 := v⊥6 =

(
1 1 0
0 0 1

)
u7 := v⊥7 =

(
1 0 1
0 1 1

)
.
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Therefore, we can compute the incidence matrix A as displayed below,
which gives det(A) = −3 · 23 and

A =



0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0


.

For later use in our computations, we record a few enumerative
invariants of the lattice V(n, q). We employ the notation card for the
cardinality of a finite set.

Proposition 2.4. The following enumerative identities hold :

(a) card(GL(n,F)) = (qn − 1)(qn − q1)(qn − q2) · · · (qn − qn−1).
(b) The number of ordered n-tuple subsets of V1 which form bases

for Fn is

tn,q =
card(GL(n,F))

(q − 1)n
= (qn(n−1)/2)

( n∏
k=1

[
k
1

]
q

)
.

(c) The number of n-tuple subsets of V1 which form bases for Fn is

sn,q =
card(GL(n,F))

n!(q − 1)n
=

(
qn(n−1)/2

n!

)( n∏
k=1

[
k
1

]
q

)
.

(d) The number of ordered n-tuple subsets of V1 which form bases
for Fn and contain a fixed linearly independent ordered subset
of size j is

tn,j,q = (q(n(n−1)−j(j−1))/2)

( n−j∏
k=1

[
k
1

]
q

)
.
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(e) The number of n-tuple subsets of V1 which form bases for Fnand
contain a fixed linearly independent subset of size j is

sn,j,q =

(
q(n(n−1)−j(j−1))/2

(n− j)!

)( n−j∏
k=1

[
k
1

]
q

)
.

(f) The number of paths in V(n, q) from the minimum element to
the maximum element in the vector space lattice of Fn is equal
to

pn,q =
n∏

k=1

[
k
1

]
q

.

Proof.

(a) Any nonzero vector can be the first row of an n × n invertible
matrix. If the first k rows u1, . . . , uk ∈ Fn of an invertible matrix are

chosen, then any vector in Fn \
∑k

i=1 Fui can be the (k + 1)st row for
such a matrix. This inductively proves the formula for the number of
elements in GL(n,F).

(b) We regard such an ordered n-tuple of vectors as a matrix
U ∈ GL(n,F), and we let ui be the ith row. Then, for each
integer i, we may find a unique vector vki ∈ V1 such that Fvki = Fui.
The correspondence U 7→ (vk1 , . . . , vkn) is (q − 1)n : 1, where, by
(vk1 , . . . , vkn), we mean the ordered n-tuple. This proves that the
number of ordered n-tuple subsets of V1 which form bases for Fn is
equal to

(qn − 1)(qn − q1)(qn − q2) . . . (qn − qn−1)

(q − 1)n
.

Noting that

qn − qk

q − 1
= qk

qn−k − 1

q − 1
= qk

[
n− k
1

]
q

,

we may rewrite the above expression as the claimed formula.

(c) This is easily deduced by observing that the correspondence
between the ordered tuples of part (b) and the unordered ones is n! : 1.

(d) We regard such an ordered n-tuple of vectors as a matrix
U ∈ GL(n,F), where the first j rows are fixed. Similar reasoning
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as in part (b) yields the following count

(qn − qj)(qn − qj+1) · · · (qn − qn−1)

(q − 1)n−j

= (q(n(n−1)−j(j−1))/2)

( n−j∏
k=1

[
k
1

]
q

)
.

(e) The statement follows from (d) because the correspondence
between the ordered tuples of part (d) and the unordered ones is
(n− j)! : 1.

(f) A path from the minimum element to the maximum element in
the lattice V(n, q) is a chain of vector subspaces in Fn

W0 = F0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wn = Fn,

with Wk ∈ Vk. Let W ∈ Vk. The number of (k + 1)-dimensional
subspaces in Fn which contains W is

[
n−k
1

]
q
, since this number is the

same as the number of linearly independent vectors in Fn/W , which
is (n− k)-dimensional. Hence, the assertion follows. �

3. The determinant of the incidence matrix between V1 and
Vn−1. We use the notation fixed in Section 2. A recurring theme in
our work will be the occurrence of matrices of a special form, for
which determinants are relatively easily computed. We find it useful
to introduce a uniform notation for these matrices.

Notation 3.1. Let Φ(ν, α, β) denote the matrix of size ν × ν with
entries

ϕij =

{
α (i = j),

β (i ̸= j).

Lemma 3.2.

(a) The determinant of Φ(ν, α, β) is given by

detΦ(ν, α, β) = (α− β)ν−1(νβ + α− β).
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(b) If α− β = α′ − β′, then

detΦ(ν, α, β)

detΦ(ν, α′, β′)
=

νβ + α− β

νβ′ + α′ − β′ .

Proof. Part (a) follows after performing convenient row and column
operations on Φ(ν, α, β) to transform the matrix to an almost diagonal
form. Part (b) then follows from (a). �

Definition 3.3. In addition to the incidence matrix A of Defini-
tion 2.2, we consider the N ×N matrix B = (bij) whose entries are

bij = 1− aij =

{
0 (vi ∈ v⊥j )

1 (vi /∈ v⊥j ).

As it will turn out, the determinant of B is easier to compute than
that of A, and we use the relation between A and B to complete
our computation. Furthermore, both of these matrices carry deeper
algebraic meaning, as shall be seen in Section 3.

We begin with a few structural observations regarding the matrices
A and B.

Lemma 3.4.

(a) Matrices A and B are symmetric;

(b)
∑N

i=1 aij =
∑N

j=1 aij =
[
n−1
1

]
q
;

(c)
∑N

i=1 bij =
∑N

j=1 bij = [ n1 ]q −
[
n−1
1

]
q
= qn−1.

Proof. Note that vi ∈ v⊥j if and only if vj ∈ v⊥i , which follows from
the inclusion-reversing property of dual spaces. This implies part (a).
The row sum of A is equal to the number of codimension 1 subspaces
in Fn−1 which contain v1, and this is equal to the number of the one-
dimensional subspaces in v⊥1

∼= Fn−1. Hence, part (b) follows. Finally,
since N = [ n1 ]q, part (c) follows as a consequence of the relations
bij = 1− aij . �

The following result shows the role played by the matrices Φ(ν, α, β)
in relation to A and B.
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Lemma 3.5. The following hold :

(a) A2 = Φ
(
N,
[
n−1
n−2

]
q
,
[
n−2
n−3

]
q

)
;

(b) B2 = Φ(N, qn−1, qn−2(q − 1));

(c) AB = Φ(N, 0, qn−2).

Proof.

(a) The (i, j)th entry of A2 is
∑N

k=1 aikakj . Note that

aikakj =

{
1 (vi, vj ∈ v⊥k )

0 (otherwise).

Hence, if i = j, the sum
∑N

k=1 aikakj is equal to the number of
codimension 1 subspaces in Fn which contain v1, and this number
is
[
n−1
n−2

]
q
since these subspaces are in bijection with codimension

one subspaces of v⊥1 ≃ Fn−1. If i ̸= j, the sum
∑N

k=1 aikakj is
equal to the number of codimension 1 subspaces in Fn which contain
both v1 and v2. This number is

[
n−2
n−3

]
q
due to the fact that the

codimension 1 subspaces in Fn which contain both v1 and v2 are in
bijection with codimension 1 subspaces in {v1, v2}⊥ ≃ Fn−2. This
proves the assertion for A2.

(b) The (i, j)th entry of B2 is
∑N

k=1 bikbkj . For the diagonal entry
of B2, we must count the number of the codimension 1 subspaces
of Fn which do not contain v1. This number is qn−1 since we have
[ n1 ]q −

[
n−1
1

]
q
= qn−1. To compute the off-diagonal entry of B2, we

use the inclusion-exclusion formula, since we must count the number
of the subspaces of Fn of codimension 1 which contain neither v1 nor
v2. The number of the subspaces in Fn of codimension 1 is [ n1 ]q, and
the number of the subspaces of codimension 1 which contain v1 is[
n−1
1

]
q
, and the same is true for v2. The number of the subspaces of

codimension 1 which contain both v1 and v2 is
[
n−2
1

]
q
. Hence,

N∑
k=1

bikbkj =

[
n
1

]
q

− 2

[
n− 1
1

]
q

+

[
n− 2
1

]
q

= q2(q − 1).
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(c) By the definition, A+B = Φ(N, 1, 1), which is the N×N matrix
with 1 for all entries. Hence, (A + B)B is the matrix which has the
row sum of B for all entries. By Lemma 3.4, this row sum is qn−1.
Thus, the diagonal entries of AB are 0, and the off-diagonal entries
are equal to qn−1 − qn−2(q − 1) = qn−2. �

At this point, part (a) of Lemma 3.5, together with the formula in
Lemma 3.2, would allow us to complete the computation of | det(A)|.
It turns out, however, that it is easier to find | det(B)| first and utilize
the relationship between the two determinants than to simplify the
expression resulting from a direct approach. The following is the main
result of this section.

Theorem 3.6. For the matrices A and B = Φ(N, 1, 1)−A, we have

(a) det(B2) = q(n−2)N+n;
(b) | detB| = q((n−2)N+n)/2;
(c) | detA| = (q(n−2)(N−1)/2)

[
n−1
1

]
q
.

Proof. Lemmas 3.2 (a) and 3.5 (b) imply that det(B2) = q(n−2)N

(N(q − 1) + 1). Now, part (a) follows from the formula N = (qn −
1)/(q − 1), and part (b) immediately follows from (a).

Recall from Lemma 3.5 the identities A2 = Φ
(
N,
[
n−1
n−2

]
q
,
[
n−2
n−3

]
q

)
and B2 = Φ(N, qn−1, qn−2(q−1)). Since N = [ n1 ]q,

[
n−1
n−2

]
q
−
[
n−2
n−3

]
q
=[

n−1
1

]
q
−
[
n−2
1

]
q
= qn−2 and qn−1 − qn−2(q − 1) = qn−2, it follows

from Lemma 3.2 (b) that

det(A2) : det(B2) =

(
N · q

n−2 − 1

q − 1
+ qn−2

)
:
(
Nqn−2(q − 1) + qn−2

)
=

(
(qn − 1)(qn−2 − 1)

(q − 1)2
+ qn−2

)
:
(
(qn − 1)qn−2 + qn−2

)
=

(qn − 1)2

(q − 1)2
: q2n−2 =

([
n−1
1

]
q

)2
: (qn−1)2.

Taking the square root gives | detA| : | detB| =
[
n−1
1

]
q

: qn−1.

Together with part (b), this implies part (c) of the theorem. �
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Remark 3.7. We can also compute the determinant for A using
the description of AB. From Lemmas 3.2 and 3.5, noting that
N − 1 = [ n1 ]q − 1 = q

[
n−1
1

]
q
= | detΦ(N, 0, 1)|, we get | det(AB)| =

(N−1)qN(n−2), whence | detA| = (N−1)q(N(n−2)−n)/2. This descrip-
tion for | detA| is slightly different from Theorem 3.6. Of course, they
are, in fact, the same since we have

N − 1 =

[
n
1

]
q

− 1 = q

[
n− 1
1

]
q

.

Remark 3.8. The result in Theorem 3.6 (c) recovers the non-
vanishing of one of the determinants involved in the definition of the
strong Lefschetz property for ranked posets, given in the introduction.
We recall that the vector space lattice has been proved to have the
strong Lefschetz property in [7].

Example 3.9. The determinant computations below were directly
obtained using Mathematica [14], independent of Theorem 3.6 for
q = 2, 3, 5.

q = 2:

n 3 4 5 6 7 8
N 7 15 31 63 127 255

detA 23 · 3 214 · 7 245 · 15 2124 · 31 2315 · 63 2762 · 127
detB 23 · 22 214 · 23 245 · 24 2124 · 25 2315 · 26 2762 · 27

q = 3:

n 3 4 5 6
N 13 40 121 364

detA 36 · 22 339 · 13 3180 · 23 · 5 3726 · 112
detB 36 · 32 239 · 33 3180 · 34 3726 · 35

q = 5:
n 3 4
N 31 156

detA 515 · 2 · 3 5155 · 31
detB 515 · 52 5155 · 53
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4. The Hessian of the Macaulay dual generator for the
Gorenstein algebra associated to the vector space lattice. In
this section, we relate the combinatorial data of Section 2 to algebraic
invariants arising from a graded ring associated to the vector space
lattice.

Recall that N = [ n1 ]q. Consider the polynomial rings R =

K[X1, . . . , XN ] andQ = K[x1, . . . , xN ], whereK is a field of character-
istic zero. Setting xi = ∂/∂Xi allows us to view R as a Q-module via
the partial differentiation action of Q on R, given by xi ◦f = ∂f/∂Xi,
for f ∈ R.

A bijection can be established between the set of variables in R and
the set Pn−1

F of vectors of length n with entries in the field F in which
the first non-zero entry is 1. We fix this bijection once and for all, so
that the variable Xi corresponds to the vector vi ∈ Pn−1

F .

We now outline the construction given in [9] of a graded Artinian
Gorenstein algebra associated to the vector space lattice. This uses the
theory of Macaulay inverse systems, which provides a correspondence
between homogeneous polynomials in the ring R and graded Artinian
Gorenstein quotient algebras of Q. For more details on Macaulay
inverse systems, the reader may consult [1, 6].

Definition 4.1. For a homogeneous polynomial F ∈ R, the annihila-
tor of F in Q is the ideal I ⊂ Q, defined by

AnnQ(F ) := {f ∈ Q | f ◦ F = 0}.

If I is an ideal of Q the following set is the annihilator of I in R:

AnnR(I) := {F ∈ R | f ◦ F = 0, for all f ∈ I}.

Let I ⊂ Q be a homogeneous ideal of finite colength. It is well
known that, if Q/I is Gorenstein, then there exists a homogeneous
form F ∈ R such that I = AnnQ(F ). On the other hand, if F ∈ R
is homogeneous, then I = AnnQ(F ) is a homogeneous ideal and
Q/AnnQ(F ) is an Artinian Gorenstein algebra.

The idea of constructing a Gorenstein algebra associated to the
vector space lattice is that its combinatorial structure can be encoded
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in a homogeneous polynomial of R and then the graded Gorenstein
quotient of Q corresponding to it can be considered.

Definition 4.2. We define the Macaulay dual generator for the vector
space lattice to be the following degree n homogeneous polynomial in
R:

FV(n,q) =
∑

Xi1Xi2 ···Xin∈B

Xi1Xi2 · · ·Xin .

In the sum, the sets of indices of the variables appearing in each
monomial represent the subsets of V1 that form bases for Fn, namely:

B = {Xi1Xi2 · · ·Xin | 1 ≤ i1 < i2 < · · · in ≤ N

and det[vi1vi2 · · · vin ] ̸= 0 in F}.

The cardinality of the set B above is according to Proposition 2.4:

card(B) = sn,q =

(
qn(n−1)/2

n!

)( n∏
k=1

[
k
1

]
q

)
.

Definition 4.3. Setting I = AnnQ(FV(n,q)) yields a graded Artinian
Gorenstein quotient ring AV(n,q) = Q/I, which we call the Gorenstein
algebra associated to the vector space lattice. For simplicity, we write
A for AV(n,q) henceforth, unless otherwise specified.

This graded ring decomposes into homogeneous components as
follows:

A = Q/I =
n⊕

i=0

(Q/I)i =
n⊕

i=0

Ai.

We note the similarity between the homogeneous decomposition of
A and the rank decomposition of V(n, q). It is shown in [5, Lemma
1.48, Proof of Theorem 1.83, step 4] and [9, Lemma 4.1, Theorem 4.2]
that the non-zero monomials in A are in bijective correspondence with
the elements of V(n, q) in such a way that the level set Vi corresponds
to the monomials in the graded component Ai. In particular, we have
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the following correspondences:

A0 ∋ 1←→ F0 ∈ V0
An ∋ g ←→ Fn ∈ Vn,

where g is a monomial of degree n, called a socle generator for A. The
socle of A is a one-dimensional vector space; thus, in A, g is unique
up to scalar. However, any product of variables of Q whose indices
correspond to a basis of V can be chosen to be a representative for g.

Next, we recall the algebraic counterpart of the Lefschetz properties,
defined for ranked posets in the introduction, with the end goal of
explicitly relating the incidence matrices of Section 2 with certain
matrices arising from the Macaulay dual generator in Definition 4.2.

Consider, for some scalar values a1, . . . , aN ∈ K, the linear form

L = a1x1 + · · ·+ aNxN ∈ Q,

and let 0 ≤ j ≤ ⌊n/2⌋. We set ×Ln−2j : A → A to be the Q-module
homomorphism given by x 7→ Ln−2jx. Restricting to the degree j and
n− j homogeneous components of A, we obtain the K-linear maps

×Ln−2j : Aj −→ An−j .

The motivation for considering such a map originally arises from the
study of cohomology rings of compact Kähler manifolds, where we can
regard such a map as taking a class in cohomology and intersecting it
with hyperplanes (represented by L) n− 2j times.

Fixing the sets of monomials corresponding to elements of Vj and
Vn−j , respectively, as bases for Aj and An−j , we can express the
linear transformations ×Ln−2 as matrices Mj . Note that dimK Aj =
dimK An−j , since the bases for these vector spaces correspond to
symmetric level sets Vj and Vn−j of V(n, q) which have the same size.
Thus, it is logical to consider detMj .

Definition 4.4. Let A be any graded Gorenstein Artinian algebra.
If there exist scalars a1, . . . , aN ∈ K such that the matrices Mj

representing the K-linear maps ×Ln−2j : Aj → An−j for L =
a1x1 + · · ·+ aNxN have detMj ̸= 0 for all 0 ≤ j ≤ ⌊n/2⌋, the algebra
A is said to have the strong Lefschetz property.
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We turn to our case of interest, A = AV(n,q), and focus on a
particular choice of linear form, ℓ = x1 + x2 + · · · + xN . We shall be
particularly concerned with computing the determinant of the matrix
that represents the map ×ℓn−2. Setting x⊥

i =
∏

vj∈v⊥
i
xj , consider the

bases B1 = {x1, . . . , xN} for A1 and Bn−1 = {x⊥
1 , . . . , x

⊥
N} for An−1,

which we shall call canonical bases, and let M be the matrix that
represents the linear transformation ℓn−2 with respect to these fixed
bases.

Example 4.5. Let q = 2 and n = 3, which yield N = 7. We use the
notation of Example 2.3. A computation with Macaulay2 [2] yields
that the matrix representing ×ℓ : A1 → A2 with respect to the bases

B1 = {x1, x2, x3, x4, x5, x6, x7}
B2 = {x2x4, x1x4, x3x4, x1x2, x2x5, x1x6, x3x5}

is the matrix M below, related to the incidence matrix A computed
in Example 2.3, as follows:

M =



0 2 0 2 0 2 0
2 0 0 2 2 0 0
0 0 2 2 0 0 2
2 2 2 0 0 0 0
0 2 0 0 2 0 2
2 0 0 0 0 2 2
0 0 2 0 2 2 0


= 2A.

The next theorem describes the precise relation between the inci-
dence matrix A of Definition 2.2 and the matrix describing multipli-
cation by ℓn−2.

Theorem 4.6. The matrix M representing ×ℓn−2, with respect to
the standard bases for A1 and An−1, is M = tn−1,1,qA. Hence,
| detM | = tNn−1,1,q| detA|.

Proof. To find the entry ofM in the position indexed by the variable
xi ∈ A1 corresponding to vi and the basis element x⊥

j =
∏

vk∈v⊥
j
xk ∈

An−1 corresponding to the element v⊥j ∈ νn−1, we need to count the
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number of monomials xk1xk2 · · ·xkn−1 in the expansion of ℓn−1 in the
polynomial ring, which satisfy the following conditions:

(a) one of xk1 , xk2 , . . . , xkn−1 is xi;

(b) Span⟨vk1 , vk2 , vk3 . . . , vkn−1⟩ = v⊥j .

If vi /∈ v⊥j , then, clearly, this number is zero. If vi ∈ v⊥j , then we
need to count the number of ordered (n− 1)-tuples which form bases
for v⊥j and contain v1. By Proposition 2.4, this number is

tn−1,1,q =
(
q(n−1)(n−2)/2

)( n−2∏
k=1

[
k
1

]
q

)
.

Hence, it follows from Definition 2.2 that the matrix for ×ℓn−2 is
tn−1,1,qA. �

It is shown in [10] that there is a close connection between the
matrices representing ×Ln−2j for L = a1x1 + · · · + aNxN and the
determinants of higher analogues of the classical Hessian matrix of the
Macaulay dual generator FV(q,n), evaluated at X1 = a1, . . . , XN = aN .
For our purposes, it suffices to consider the classical Hessian, as this
corresponds to ×Ln−2, which we have been able to relate to the
incidence matrix in Theorem 4.6.

Definition 4.7. The Hessian matrix of a polynomial F ∈ R =
K[X1, . . . , XN ] is the matrix of partial derivatives

H(F ) =

(
∂2F

∂Xi∂Xj

)
1≤i≤N,1≤j≤N

.

We begin by describing the Hessian matrix in our running example.

Example 4.8. Let q = 2 and n = 3. We use the notation of
Examples 2.3 and 4.5. The Macaulay dual generator, as introduced in
Definition 4.2, is:
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FV(3,2) = X1X2X4 +X1X3X4 +X2X3X4 +X1X2X5 +X1X3X5

+X2X3X5 +X2X4X5 +X3X4X5 +X1X2X6 +X1X3X6

+X2X3X6 +X1X4X6 +X3X4X6 +X1X5X6 +X2X5X6

+X4X5X6 +X1X2X7 +X1X3X7 +X2X3X7 +X1X4X7

+X2X4X7 +X1X5X7 +X3X5X7 +X4X5X7 +X2X6X7

+X3X6X7 +X4X6X7 +X5X6X7.

Note that this polynomial has s3,2 = 28 terms, in accordance to the
formula in Proposition 2.4. A computation with Macaulay2 [2] yields
that, after evaluating at X1 = · · · = X7 = 1, the Hessian matrix is:

H(FV(3,2))|X1=X2=···=X7=1 =



0 4 4 4 4 4 4
4 0 4 4 4 4 4
4 4 0 4 4 4 4
4 4 4 0 4 4 4
4 4 4 4 0 4 4
4 4 4 4 4 0 4
4 4 4 4 4 4 0


= Φ(7, 0, 4).

In the following, we aim to understand this especially nice form
of the Hessian matrix by describing the relation between the Hessian
of the Macaulay dual generator of A and the matrices introduced in
Section 2.

Lemma 4.9. Let F ∈ R = K[X1, . . . , XN ] be a homogeneous polyno-
mial of degree n, let a1, . . . , aN ∈ K, and consider the linear form

L = a1
∂

∂X1
+ · · ·+ aN

∂

∂XN
∈ Q.

Then, there is a commutative diagram

A1 ⊗K A1

1A1
⊗K(×Ln−2)

//

(n−2)!H(F )|X1=a1,...,XN=aN

33A1 ⊗K An−1
µ // An

◦F // K

where
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(a) µ denotes the internal multiplication on A;
(b) the map ◦F maps f ∈ An 7→ f ◦ F ∈ K; and

(c) H(F )|X1=a1,...,XN=aN
denotes the K-bilinear form A1⊗KA1 →

K, represented with respect to the basis {∂/∂X1, ∂/∂X2, . . . , ∂/∂XN}
of A1 by the matrix in Definition 4.7, evaluated at X1 = a1, . . . , XN =
aN .

Proof. From the proof of [5, Theorem 3.76], [10, Theorem 3.1] or
[13, Theorem 4], we have the following identity:

Ln−2 ∂

∂Xi

∂

∂Xj
F (X) = (n− 2)!

∂

∂Xi

∂

∂Xj
F (X)|X1=a1,...,XN=aN

.

The left side of the above expression can be viewed as the composition
of the three maps in the top line of the diagram, applied to the element
∂/∂Xi ⊗ ∂/∂Xj ∈ A1 ⊗K A1. The right side of the displayed equality
is the bottom map in the diagram evaluated at the same element. The
commutative diagram represents this equality in visual form. �

To exploit the relations illustrated in the above diagram, we prove
the following.

Proposition 4.10. The matrix describing the natural (bilinear) mul-
tiplication map

A1 ⊗K An−1
µ−→ An

with respect to the canonical bases of A1, An−1 and An, respectively,
is the matrix B introduced in Definition 3.3.

Proof. Since the squares of variables are in the ideal I, by [9,
Proposition 3.1], we have that the action of µ on the pairs of basis
elements is the following:

µ(xi, x
⊥
j ) =

{
0 (xi | x⊥

j , equivalently vi ∈ v⊥j )

g (xi - x⊥
j , equivalently vi /∈ v⊥j ).

Clearly, then, µ is represented as a bilinear form by B with respect
to the bases B1 and Bn−1 of A1 and An−1, and the basis {g} for An,
where g is a monomial generator of An. �
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We are now ready to see how the Hessian relates to matrices A
and B.

Theorem 4.11. The Hessian matrix of FV(q,n), evaluated at X1 =
· · · = Xn = 1, is

H(FV(q,n))|X1=···=Xn=1 =
tn−1,1,q

(n− 2)!
AB.

Proof. It follows from Lemma 4.9 that the matrix of the Hessian is
1/(n− 2)! times the product of the matrices of µ and ×ℓn−2. Propo-
sition 4.10 and Theorem 4.6, which give that the matrix representing
µ is B and the matrix representing ×ℓn−2 is tn−1,1,qA, respectively,
now finish the proof. �

Corollary 4.12. The Hessian matrix of the dual socle generator
FV(n,q), evaluated at X1 = X2 = · · · = XN = 1, is given by

H(FV(q,n))|X1=···=Xn=1 = Φ(N, 0, tn,2,q).

Hence, the absolute value of the determinant for this matrix is∣∣ detH(FV(q,n))|X1=X2=···=XN=1

∣∣ = (N − 1)tNn,2,q.

Proof. This follows from Theorem 4.11 and Proposition 3.5 (c),
after we note that(

qn−2

(n− 2)!

)
(tn−1,1,q) =

(
q(n

2−n−2)/2

(n− 2)!

)( n−2∏
k=1

[
k
1

]
q

)
= tn,2,q.

The determinantal formula in Lemma 3.2 finishes the proof. �

We conclude the paper with a description of the zeroth Hessian of
FV(n,q) evaluated at X1 = X2 = · · · = XN = 1 which is by definition
FV(n,q)(1, 1, . . . , 1) and its implications on the map ℓn : A0 → An.

Proposition 4.13. Recall that ℓ = ∂/∂X1+∂/∂X2+· · ·+∂/∂XN ∈ Q.
Then:

(a) the K-linear homomorphism KFV(n,q) → K mapping FV(n,q) 7→
ℓnFV(n,q) is given by the formula
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ℓnFV(n,q) = q(1/2)n(n−1)
n∏

k=1

[ k1 ]q;

(b) the homomorphism ×ℓn : A0 → An is given with respect to the
bases B0 = {1} and Bn = {g} (where g is any monomial in An)
by multiplication by the integer

q(1/2)n(n−1)
n∏

k=1

[ k1 ]q.

Proof.

(a) The coefficient of a square-free monomial in ℓn is n!, so, acting
by partial differentiation, ℓnFV(n,q) = n!FV(n,q)(1, 1, . . . , 1). Since
the number of monomials in FV(n,q) is FV(n,q)(1, 1, . . . , 1) = sn,q,
Proposition 2.4 (c) proves the first assertion.

(b) Since the maps in (a) and (b) are dual to each other by the
theory of inverse systems, it follows that ×ℓn : A0 → An is given by
multiplication by the same integer as the map in (a). �

Remark 4.14. Our results in Proposition 4.13 and Corollary 4.12
recover, via Lemma 4.9, the non-vanishing of two of the determinants
involved in the definition of the strong Lefschetz property (Definition
4.4) of the Gorenstein algebra A. This algebra has been proved to
have the strong Lefschetz property in [9].
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ENDNOTES

1. Throughout this article, we write vi ∈ v⊥j rather than vi ⊂ v⊥j
because we prefer to think of vi as vectors rather than subspaces of V ,
via a canonical identification explained previously.



DETERMINANTS OF INCIDENCE AND HESSIAN MATRICES 153

REFERENCES

1. A.V. Geramita, Inverse systems of fat points : Waring’s problem, secant
varieties of Veronese varieties and parameter spaces for Gorenstein ideals, Queen’s
Papers Pure Appl. Math. 102 (1996).

2. D.R. Grayson and M.E. Stillman, Macaulay2, A software system for research
in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.

3. C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets, in
Studies in combinatorics, Mathematics Association of America, Washington, DC,
1978.

4. M. Hara and J. Watanabe, The determinants of certain matrices arising
from the Boolean lattice, Discr. Math. 308 (2008), 5815–5822.

5. T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi and J. Watanabe,

The Lefschetz properties, Lect. Notes Math. 2080 (2013).

6. A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determi-
nantal loci, Lect. Notes Math. 1721 (1999).

7. W.M. Kantor, On incidence matrices of finite projective and affine spaces,
Math. Z. 124 (1972), 315–318.

8. C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42
(1999).

9. T. Maeno and Y. Numata, Sperner property and finite-dimensional Goren-
stein algebras associated to matroids, in Tropical geometry and integrable systems,
Contemp. Math. 580 (2012), 73–84.

10. T. Maeno and J. Watanabe, Lefschetz elements of Artinian Gorenstein
algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53 (2009),
591–603.

11. R.A. Proctor, Product evaluations of Lefschetz determinants for Grass-
mannians and of determinants of multinomial coefficients, J. Combin. Th. 54
(1990), 235–247.

12. P. Sin, Smith normal forms of incidence matrices, Sci. China Math. 56
(2013), 1359–1371.

13. J. Watanabe, A remark on the Hessian of homogeneous polynomials,

Queen’s Papers Pure Appl. Math. 119 (2000), 171–178.

14. Wolfram Research, Inc., Mathematica, version 9.0, Champaign, IL, 2012.

15. Q. Xiang, Recent results on p-ranks and Smith normal forms of some
2 − (v, k, λ) designs, in Coding theory and quantum computing, Contemp. Math.
381 (2005), 53–67.

Georgia Southern University, Department of Mathematical Sciences,

Statesboro, GA 30460
Email address: snasseh@georgiasouthern.edu



154 S. NASSEH, A. SECELEANU AND J. WATANABE

University of Nebraska, Department of Mathematics, Lincoln, NE 68588

Email address: aseceleanu@unl.edu

Tokai University, Department of Mathematics, Hiratsuka 259-1292, Japan

Email address: watanabe.junzo@tokai-u.jp


