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1. Introduction

Let n > 2 be an integer, let K be a field that contains n distinct n-th roots of 1, and
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I=(z(y"—2"),y(z" —z"),z(2" —y")) C R = Klz,y, 2],

which we shall refer to as a Fermat ideal. The variety described by this ideal is a reduced
set of n? 43 points in P2, as shown in [8, Proposition 2.1]. Specifically, n? of these points
form the intersection locus of the pencil of curves spanned by z" — y™ and z™ — 27,
while the other 3 are the coordinate points [1 : 0 : 0],[0 : 1 : 0] and [0 : 0 : 1]. The
general member of the pencil is isomorphic to the Fermat curve 2™ 4 y™ + 2", justifying
the terminology. When n is allowed to vary we obtain an infinite collection of distinct
Fermat ideals, which we refer to as the Fermat family of ideals.

The goal of this note is to understand the nature of the ordinary powers and symbolic
powers of Fermat ideals. Our motivation stems from the work of [6] and [8], where it
is shown that the relation between ordinary and symbolic powers of Fermat ideals is
quite surprising. In [9], motivated by some deep results of [7,10] and also by the fact
that this is true for general points as shown in [1], it was asked whether all ideals I
defining reduced sets of planar points satisfy the containment I3 C I2. The surprising
occurrence of a non-containment 1) ¢ I? was first discovered by [6] for the simplest
case of the Fermat ideal with n = 3. Later, in [8] the same non-containment was observed
to extend to the entire family of Fermat ideals and in [18], the minimal free resolutions
of the second and third powers of I were used to give an alternate justification for the
non-containment.

Rather than focusing on specific ordinary or symbolic powers, in this paper we take a
global approach by means of assembling all powers of these ideals into bi-graded algebras.
Our main objects of interest are the Rees algebra of I defined as R(I) = @®;>0l't" and
the symbolic Rees algebra of I given by Rs(I) = @,~, IW¢ | respectively. We study
the properties of these Rees algebras, often in close connection with the homological
properties of the various powers of Fermat ideals.

Our paper is organized as follows. In section 2 we prove that the Rees algebra in the
case of the Fermat ideals is as simple as possible, namely they have linear type. We use
this to derive an explicit formula for the minimal free resolutions of all ordinary powers
of Fermat ideals. In stark contrast to the Rees algebra, the symbolic Rees algebra of a
homogeneous ideal may in general not be Noetherian, even for ideals of points. Perhaps
the most famous illustration of this phenomenon is given by Nagata in [16], where he
constructs a counterexample to Hilbert’s fourteenth problem. Although criteria that
force symbolic Rees algebras of certain ideals to be finitely generated have been given
(see [17] or [11]), not many interesting examples of such ideals that represent geometric
collections of points are known. In section 4 we show that, in the case of Fermat ideals, the
symbolic Rees algebra is Noetherian. It follows in particular that a sufficient condition
for a symbolic Rees algebra being Noetherian established in [9] is not necessary. In order
to obtain our result on symbolic Rees algebras, we need to completely determine the
minimal generators and the minimal free resolutions of certain families of non-reduced
ideals (fat points) supported at the points of a Fermat configuration. These results form
the technical core of the paper and take up the bulk of section 3. Furthermore, they
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allow us to determine the Castelnuovo-Mumford regularity for all ordinary powers and
most symbolic powers of Fermat ideals. As another application we provide some explicit
minimal homogeneous reductions and show that they have reduction number one in
section 5.

2. The Rees algebra of the Fermat ideals and resolutions of ordinary powers

In the following, we employ the terminology almost complete intersection to mean
an ideal minimally generated by a set of generators that has cardinality at most one
higher than the height of the ideal. We call strict almost complete intersections those
ideals minimally generated by a set of generators that has cardinality exactly one higher
than the height of the ideal. Note that our Fermat ideals are strict almost complete
intersections.

We start by recalling the description of the ordinary and symbolic Rees algebras.

Definition 2.1. Denote by I = (f1, fa,..., fn) € R an n-generated homogeneous ideal of
a polynomial ring R. Let S = R[T},T5, ..., T,] denote a bigraded polynomial ring where
the variables of R have degree (1,0) and the variables T; have degree (deg(fi),1). The
R-algebra epimorphism R[T},Ts,...,T5] — R(I) sending T; — f;t gives presentations
of the symmetric algebra Sym(I) and Rees algebra R(I) respectively as quotients of
the bigraded polynomial ring S = R[Ty,T5,...,T3]. Writing L for the kernel of this
epimorphism yields:

R(I) = S/L, Where LZ {F(T17T2,...,Tn) . F(fl7f2;--~7fn) = O}

In turn, the presentation of the symmetric algebra of I only takes into account the
bidegree (*,1) relations between generators of I:

Sym(I) = S/Ly, where Ly = {Z biTi: Y bifi = o} .

=1 i=1

The structure of these algebras does not depend on the set fi,..., f, of minimal
generators of I chosen, but only on [ itself. Furthermore, there is a canonical graded
surjection Sym(I) — R(I).

Definition 2.2. If for some ideal I there is an isomorphism Sym(I) ~ R([I), I is said to
have linear type. Equivalently, I has linear type if and only if the ideal of equations of
the Rees algebra is generated in bidegree (x,1). In the notation of Definition 2.1, if L is
the ideal of relations for R(I), this means that L = L.

We start with a structural result about the Rees algebra of almost complete intersec-
tions which define reduced sets of points.
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Lemma 2.3. Let I be an almost complete intersection ideal defining a reduced set of points
in PN. Then I is an ideal of linear type.

Proof. It is shown in [20, Corollary 5.65] that an almost complete intersection I of
height h that is a generic complete intersection (i.e. I localized at each of its associated
primes of codimension h is a complete intersection) is an ideal of linear type. All these
conditions are clearly satisfied in case I defines a reduced set of points since R/I is
height 2 arithmetically Cohen-Macaulay, with Ass(I) = {I,, | 1 <i <e(R/I)} and I,
is minimally generated by N linear forms that form a regular sequence for every ideal
defining one of the points p; in the given set. O

Corollary 2.4. The Rees algebra of the Fermat ideal I = (z(y™—2z"),y(z"—a™), z(z™—y™))
is a complete intersection whose defining ideal is generated by two forms of bidegree
(n+3,1) and (2n,1).

Proof. By Lemma 2.3, the Rees algebra of a Fermat ideal is isomorphic to its symmetric

T
algebra. Next we show the latter is a complete intersection. Let A = 511 522 gﬂ be

a presentation matrix for the module of syzygies on I. By the proof of [5, Theorem 2.1], we
have deg P; = 2 and deg Q; = n—1. As quotients of the polynomial ring S = R[T},T», T5]
the symmetric and Rees algebra of I are then defined by

R(I) ~ Sym(I) ~ S/(P\Ty + PoTs + PsT5, Q1T + Q215 + QsT3).

Since the two syzygies of I are algebraically independent, the height of this ideal is two.
This yields the desired conclusion. O

A prevailing technique ([14,4]) used in investigating resolutions of the powers of I
relies on using the resolution of the Rees algebra. Consider the bihomogeneous minimal
free resolution of R(I):

0— P S(—i,—j)rer — . — @ S(—i,—j) e — § — R(I) — 0.
(4,5) (i,9)

Note that R(I)(,») =~ I" as R-modules via the map T; ~ f;. Restricting to the strand of
this resolution corresponding to the R-submodule of the resolvent S above consisting of
elements of bidegrees (*,r) yields a (not necessarily minimal) free resolution of I" over
R as follows:

0— @S(—i, —j)f:’r(;’j) — . — @S(—z‘, - ')?j:ﬁ’j’” — Sy = I" = 0.

(4,9) (4,9)

Theorem 2.5. Let I be a strict almost complete intersection ideal with minimal generators
of the same degree d defining a reduced set of points in P2. Assume that the module of
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syzygies on I is generated in degrees dy and dy. Then the minimal free resolution of 1"
over R = K|z,y, 2] is

. R+ 1d—dy)()
0— R(—(r+2)d)) — o — R(—rd)(2) 51" 0.

r+1)

R(—(r+1)d — do)("2
Proof. As in Corollary 2.4, R(I) is a complete intersection generated in bidegrees (d +
dp, 1) and (d+ dy,1). Recall that the degree of the minimal syzygies in a Hilbert—Burch

resolution are related by dy + d; = d. Resolving the complete intersection R(I) over S
we obtain:

0 — S(—2d,—2) — S(—d —dy, —1) & S(—d — dy, —1) — S — R(I) — 0.

Taking the strand of degree (x,r) of this complex and keeping in mind the following
identities

n
r+n—1

Stayr) = ED (H T7")R(—rd) ~ R(—rd)(""") and
Sai=r j=1
S(=i,~Nem = B (I7rR(=rd =)= R(=rd)""),

S ai=r—j j=1
yields for 3-generated ideals I a free resolution of I" over R of the form
 R(—rd—dy)(%) s
0— R(—(r+1)d)®)— ® — R(—rd)(2) 5 1" 0.
R(—rd — do)("3")

Although this is not generally the case, the resolution above is in fact minimal as
long as the (“52) obvious generators of I" form a minimal generating set, because the
consecutive terms appear with distinct shifts, therefore there can be no cancellations.
However, the fact that all (TJ2r2) obvious generators are needed to generate I" follows in
the case where I is of linear type from the fact that there are no elements of bidegree
(0,7) in the defining ideal of R(I), which would be forced by this type of nonminimality.
Note also that the binomial coefficient (3) is 0 if and only if 7 = 1, thus I is the only

ordinary power that is a perfect ideal. O
Corollary 2.6. The minimal free resolutions of the ordinary powers of the Fermat ideal

I=(2(y" = 2"),y(z" —a"), 2(z" —y"))

are:
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o ifr=1
0— R(—2n)® R(—n —3) = R(—n —1)> = I — 0.
o ifr>2

R(=r(n+1)—n+1)("2)
R(=r(n+1)—2)(%)

The Castelnuovo—Mumford regularity of the ordinary powers of Fermat ideals is given
by

2n ifr=1
reg(I™) =
rm+r+n—1 ifr>2.

Proof. The minimal free resolution of I (the case r = 1) can be found in the proof
of [5, Theorem 2.1]. The minimal free resolutions for the higher powers (r > 2) follow
by setting d = n+ 1,dy = 2,dy = n — 1 in Theorem 2.5. The graded shifts in these
resolutions justify the regularity. O

3. Symbolic powers of Fermat ideals

We now establish properties of symbolic powers of Fermat ideals. This includes a
description of their minimal generators and their graded minimal free resolutions. In
order to achieve this we need to study ideals of a larger class of fat points, all supported
on Fermat configurations.

3.1. Resolutions of symbolic powers

Recall that I = (z(y"™ — 2"),y(z" — a™), z(z™ — y™)) is the ideal of a Fermat config-
uration of n? 4+ 3 (reduced) points in P2. By the classical Nagata—Zariski theorem [12,
Theorem 3.14], the m-th symbolic power of I, T (m) is the set of homogeneous polynomi-
als that vanish to order at least m at every point in the zero locus of I. Algebraically,

since I can be written as
I'=(@"—y"y" =2")N(2,9) N (y,2) N (2, 2)

and each of the ideals listed in this decomposition of I is generated by a regular sequence
(such ideals have their symbolic powers equal to their respective ordinary powers) it
follows that

10 = (2" =y y" = 2" 0 ()™ 0 (g, 2)™ N (z,2)™ (1)
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Although this description of the symbolic powers has the advantage of being concise, it
is not best suited for studying the fine relationship between various symbolic powers. The
approach we take in this section is to exhibit explicit minimal generators and minimal
free resolutions for some of the symbolic powers of I. Since the symbolic powers are
perfect ideals of height two, this is equivalent to describing a Hilbert—Burch matrix
corresponding to each of these ideals. We build these Hilbert—Burch matrices as block
matrices with some of the blocks of the form indicated below.

Definition 3.1. For integers 0 < j < t and elements a,b of a commutative ring R, we
define the following matrices and column vectors:

-b 0 0
a —-b ... 0
e H(a,b);= | : : D€ Mpugyxe(R),
0 O —b
0 0O ... a
a —-b 0 0
0 a —-b ... 0
o Cla,b); = | ¢ : : € Mixi(R),
0 0 0 ... —b
-b 0 0O ... a

o E; € Z7*! is the transpose of the row vector {(%)

o ¢; is the j-th standard basis vector of Z!*1.
Lemma 3.2. With the notation of Definition 5.1, the following statements hold true:
(1) det C(a,b); = at —bt, if t > 2.

(2) The ideal of mazimal minors of H(a,b); is I;(H(a,b):) = (a,b).
(3) If (a,b) is an ideal of height two, then the minimal free resolution of R/(a,b)! is

0 — Rt Hadr pra — R — R/(a,b)" — 0.

Proof. Applying Laplace expansion, it is easy to see that det C'(a, b); = a'+(—1)!T1(—b)?
and that the maximal minors of H(a,b); generate (a,b)!. Part (c) follows from (b) by
the Hilbert—Burch theorem. O

We need another preparatory observation.
Lemma 3.3. For any integer n > 0, set f =y" —2z",g=2"—a" h=2"—y" € R =

K[z,y, z]. Fiz an integert > 0 and consider the matrices of M1y t41)(R) given below,
whose leftmost t columns form H(f,g):. Then one has the determinantal formulas:
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(1) det [H(f,9)i ;] = (~)' =167, for 1 < j < t+1.

o

(2) det [H(f, 9t = (=1)""7g"=7h?, for 0 < j <t.

E;

E;

(3) det | H(f,9)s = (1) IR, for 0 < j <t

Proof. All statements follow by expanding along the last column. For statements (2)
and (3), one uses part (1), the binomial formula and the identity f + g = —h. O

In the following we provide an explicit description of a set of minimal generators
as well as the Betti numbers of the symbolic powers I"*) where I = (z(y™ — 2"),
y(z" — a™), z(x™ — y™)) is the ideal of a Fermat configuration and n > 3, k > 1 are
arbitrary integers. Our proof works inductively. We begin by establishing the initial
cases.

Lemma 3.4. Fiz integersn >3 andk > 1 and set f =y"—2",g=2"—a" h=a"—y" €
R = K[z,y,z]. Consider the block matriz X3 € M (j(n—3)+3n+1)x (k(n—3)+3n) (1) given
by

H(f,9)kn-3) U Vv w
<. — 0 C(z,y)n 0 0
s 0 0 C(y, 2)n 0 ’
0 0 0 C(z,2)n

where all entries in columns 2 to n of the (k(n — 3) + 1) x n matrices U,V and W are
zero and the first columns of U,V and W are defined as follows:

o The first column of U is (—1)F"=3zxfe, .

e The bottom n — 2 entries of the first column of V form the wvector
(=1)F=DC=3) g, 5, all other entries in this column are zero.

o The top (k — 1)(n — 3) + 1 entries of the first column of W form the wvector
(—1)”’3zhE(k,1)(n,3), all other entries in this column are zero.

Then the following statements hold true:

(1) The ideal of mazimal minors of X3 is

I(Xg) — (fgh)(f, g)k(n—B) + f(k—l)(n—3)+29n—2x(x’y)n—l
+g(k—l)(n—3)+2hn—2y<y7z)n—l + fn_Qh(k_l)(n_3)+22(z,.Z')"_l.
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(2) The minimal free resolution of the cyclic module defined by the ideal above is

R(—n[k(n — 3) +4)*"=3)  R(—n[k(n — 3) + 3])k—3)+1
0— @ Xs, ® — R — R/I(X3) — 0.

R(—nlk(n —3) +4] — 1)3" R(—n[k(n — 3) + 4])3"
(3)
I(X3) = (£,9)*" 7 0 (@, 9)" N (y, 2)" N (2, 2)"

Remark 3.5. (i) For n = 3, we interpret H(f,g)in—3) as an empty matrix. So in this
case the first column of U is part of the first column of Xs.
(ii) If k = 1, then Equation (1) implies that

I(X3) = (fgh)(f,9)" 7> + f2g" 2a(a,y)" ™" + g°h"Py(y, )"~ + [ 2Rz (z,2)" 7!
is the n-th symbolic power of I = (x(y™ — z"), y(z"™ — a™), z(x™ — y™)).

Proof of Lemma 3.4. (1) We start by examining the maximal minors of X3 resulting
from discarding one of the first k(n—3)+ 1 rows. By properties of block upper-triangular
matrices, such a minor is the product of four determinants: the minor of H(f, g),—_3 cor-
responding to the deleted row, det(C(z,y)n), det(C(y, z),) and det(C(z,x),). Using the
formulas in Lemma 3.2, it is clear that these minors generate the ideal (fgh)(f,g)"=%).

To analyze the maximal minors of X3 resulting from discarding one of the next n rows
note that deleting one row of C(z,y), leaves a block upper-triangular matrix with three
diagonal blocks consisting of: the first k(n — 3) + n rows and columns (corresponding to
the blocks H(f, g)n-3, C(x,y)n) and the blocks C(y, z),, and C(z, z),. The determinant
of the latter two blocks are f,g, while for the first block one gets the product of a
minor of H(z,y),—1 and the determinant of the matrix formed by H(f, g)x(n—3) and the

(k—=1)(n— 3)+1 n=32 by Lemma 3.3. Hence,
)n—ll

first column of U. This latter determinant is f
Lemma 3.2 shows that these minors generate the ideal f( k D(n=3)+2gn—2 x(z,y

For analyzing the maximal minors of X3 resulting from dlscardlng one of the next n
rows corresponding to the C(y, z),, block, we permute rows and columns of X3 to obtain

a matrix
H(f, 9)k(n—3) Vv U w
’ 0 0 Clxyn 0
0 0 0 C(z,2)n

Thus to find the maximal minors of X3 resulting from discarding one of the rows cor-
responding to the C(y, z),, block, it suffices to analyze the corresponding minors of X}
above. Arguing as in the case of deleting a row of X3 corresponding to the C(z,y),
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block, we see that the maximal minors of X3 resulting from discarding one of the rows
corresponding to the C(y, z),, block generate the ideal g(F=D(n=3)+2pn=2¢(y; »)n—1,

A similar argument yields that the minors corresponding to deleting one of the last n
rows of X3 generate the ideal f?~2p(F=1D(n=3)425 (5 4)n=1 Details are left to the reader.

(2) By (1), the ideal I(X3) contains the polynomials f*"=3)+lgh and
fE=Dn=3)+2gn=2un 4 G(k=1)(n=3)+2pn=2yn 4 fn=2p(k-1)(n=3)+2,7 Gince none of the
(linear) divisors of f,g, and h divides the latter polynomial, the two stated polynomi-
als form a regular sequence of length two inside I(X3). Hence, an application of the
Hilbert—Burch theorem gives the stated minimal resolution.

(3) Set

J=(£,9) 0 (2, 9)" N (y,2)" N (2, 2)"

Note that f € (y,2)", g € (z,2)", and h € (x,y)"™. Thus, using the set of generators of
I(X3) given in (1) one sees that I(X3) C J. In order to establish equality, it is sufficient
to show that the ideals on both sides are unmixed and have the same multiplicity. The
unmixedness of J follows from its definition. The ideal I(X3) is unmixed as well because
R/I(X3) is Cohen—Macaulay by (2).

It remains to compare the multiplicities. By [13, Theorem 4.2 (2)], we may compute
the multiplicity of R/I(X3) as

e(R/1(X3)) = Hryr(x,)(reg(R/1(X3)) + pd(R/1(X3)) - 2)
= Hp/1(x) (n[k(n —3) + 4] — 1),
where Hj;(j) = dimg [M]; denotes the Hilbert function of a graded module M in degree
j and we used the resolution given in (2) to compute the regularity of R/I(X3). Taking
this resolution into account again, the above formula can be evaluated as follows:

e(R/1(X3)) = Hry1(xs) (n[k(n = 3) +4] = 1)
=Hg(nlk(n—3)+4]—1) — [k(n—3) + 1] - Hr(n — 1)

k(n—3)+4 n+1
2
= 3 .
() ()
We now determine the multiplicity of R/J. By the linearity formula, where p; are the
ideals of the n? points of the scheme defined by (f, g), one has
k(n — 3) + 4
_ n—
R0 %3) = 3 el /el sy Fn) =2 (M),
i=1

It follows that
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B(R/J)n2<k(n—23)+4> +3(n;1>.

We conclude that e(R/J) = e(R/I(X3)), and thus I(X3) = J, as desired. O
Now we extend the above results to higher symbolic powers.

Theorem 3.6. Let n > 3 and k > 1 be integers and consider the ideal I = (zf,yg, zh) of
the Fermat configuration, where f = y™ — 2", g=2"—a2" h=a2"—y" € R= K|z,y, z].
Then the kn-th symbolic power of I has the following set of minimal generators

15 = (fgh)k - (f,q)"=9*

k
+ 0 prmmm2 2 gkt phi g (nL (g g ynt
i=1

k
+ Zfkfig(kfi)(nf2)+2ihk+i(n73)y(ifl)nqtl (v, Z)n71

i=1
k . . . . .
+ Z fk:+z(n73)gkfzh(k71)(n72)+212(171)n+1 . (27 x)nfl.
=1

This is a consequence of the following more general result, which also describes the
Hilbert-Burch matrix of 7™ and other related ideals.

n n

Theorem 3.7. Fir integers n > 3 and k > 1, put f = y* — 2", g = 2" —
z", h = 2" —y" € R = Klz,y,2], and define recursively block matrices X; €

M (l(n=3)+jn+1)x (k(n—3)+5n) (R), for 0 < j < 3k, as follows:
If j > 1 write j = 3i + r with integers i,r such that 0 < i, 1 < r < 3, put Xg =

H(f,9)k(n-3) and

where

C(x>y)n ifr=1
Zj=<Cy,z), ifr=2 and Y]—{
C(z,x)n ifr=3

with matriz S; € Myn—3)4+1+(i—1)n]x1(R) such that

0
S = (-1 Dzfe, 5, So= ] , S3

(=1)"?zhEp(n—3)
(1) F=D0=3yg B, 4
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and, if 4 < j < 3k,

f(k—l—i)(n—3)+2ig(i+1)(n—2)—2xin+1 ZfT =1
det [X];B Sj] — g(k—l—i)(n—3)+2ih(i+1)(n—2)—1yin+1 ifr=2

FOHD(=2) =1 (k=1=0)(n=3)+2i+1 yint1 ;. _ 3

Such column vectors S; do exist.
Then the ideal of mazimal minors of X; has the following properties:

(1) If 1 < j < 3k, then

91

h - I(Xjfl) 4 f(k—l—i)(n—3)+2i+1g(i+1)(n—2)—1xin+1 . (CE, y)n—l if?“ -1
I(X]) — f . I(Xj—l) + g(kflfi)(n73)+2i+1h(i+1)(n72)yin+1 . (y7 Z)nfl Zf?" —9
qg- I(Xjfl) + f(i+1)(n72)h(kflfi)(n73)+2i+2zin+1 . (iL’, Z)nfl z'fr = 3.

(2) A minimal free resolution of 1(X;) is

R(=nlk(n —3) +j + 1)< R(=n[k(n = 3) + j]) 0=+
) )
0— @, R(—nlk(n —3)+j+ ] —1)3" RiEN @i, R(—n[k(n —3) + j + ])>"
® ®
R(—nlk(n =3)+j+i+1]-1)™" R(—n[k(n —3)+j+i+1])™
(3) If 1 < j < 3k, then
(f, k=% 0 (2, ) D" A (y, 2)™ N (2, 2)™ ifr=1
1(X;) (f, =% 0 () D7 A (g, 2) D N (2, 2)™ ifr=2

(f, g)F=3%5 A (2, y) D7 O (y, 2)FDP O (2, 2) D Gf =3,

Remark 3.8. (i) The matrix X3 in the above theorem is the same as the matrix X3 given

in Lemma 3.4.

(ii) If n = 3, then Xy is an empty matrix, and thus X; = [)Z/ﬂ :

Proof of Theorem 3.7. If j = 3, then claims (2) and (3) have been shown in Lemma 3.4.
Furthermore, there the minimal generators of 1(X3) are given. Arguments entirely similar
to those in the proof of Lemma 3.4 establish the analogous statements for I(X3) and
I(X1). From the generating sets of these ideals one infers that claim (1) is true if 1 <

J<3.
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Let 5 > 4, and thus ¢ > 1. We show all assertions simultaneously assuming their
correctness for smaller matrices.

(0) We begin by proving that a column vector S; with the claimed property exists.
We check this depending on the remainder 7.

Let r =1, s0 j = 3i+1. Recall that f € (y,2)", g € (z,2)", and h € (z,y)". It follows
that

Flh=1=0)(n=3)+2i o (i+1)(n=2) =2 in+1
€ (£,9)F T2 0 (2, )™ 0 (y,2) I A (, 2) 0O
= I(X3(-1)+1) = 1(X;-3),

where the first equality is due to the induction hypothesis. Hence
f(kf17i)(n73)+2ig(i+1)(n72)72Iin+1

of I(X,_3). These generators can be taken as the maximal minors of X;_s. Thus, col-

is a linear combination of the minimal generators

lecting the coefficients of the minors with suitable signs in a column vector gives the
desired vector S;.
Let 7 = 2. Then the induction hypothesis implies

g(k—1—i)(n—3)+2ih(i+1)(n—2)—1yin+1 c (f, g)k(n—3)+3i—1 N <x7 y>in N (y, Z)m N (JJ, Z)(z'—l)n
=I(X33-1)4+2) = I(X;-3).

Now the existence of a vector S; follows as in the case where r = 1.
If » = 3, one similarly gets

f(i+1)(n72)71h(kflfi)(n73)+2i+1zin+1 c (f’ g)k(n73)+3i71 N (x’y)zn N (y, Z)zn N (.’13, Z)in
= I(X3(i-1)43) = I(X;-3),

and the existence of S; follows.

Next we provide the arguments necessary to justify claims (1)—(3).

(1) Recall that X; = {Xﬂol }Z/ﬂ . We start by examining the maximal minors of X;

resulting from discarding one of the rows in which the block X;_; is found. By properties
of block upper-triangular matrices, such a minor is the product of a maximal minor of
X,;_1 and det(Z;). Therefore, these minors generate

h'I(Xj_l) ifr=1
det(Z;)1(X;_1) = f-I(X,;_q) ifr=2
gI(Xjfl) if r =3.

Analyzing the maximal minors of X; resulting from discarding one of the rows corre-
sponding to the lower blocks, one gets the product of a minor of H(x,y)n—1, H(Y, 2)n-1
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or H(x,2)n—1 (depending on ) and the determinant of the matrix formed by X;_; and
the first column of Y}, i.e. det[X;_1 S;]. The ideals generated by the former minors
are given in Lemma 3.2 and the value for this latter determinant is given by hypothesis.
Hence, these last minors of X; generate the ideal

f(kflfi)(n73)+2ig(i+1)(n72)72$in+1(l,’ y)nfl ifr=1

g(k—l—i)(n—3)+2ih(i+l)(n—2)—lyin-i-l(y’ Z)n—l ifr=2

f(i—i—l)(n—Q)—lh(k—1—i)(n—3)—‘,—2i+1Z’in+1(x7 z)n—l if r = 3.

Summing the two ideals above gives the formulas in part (1).

(2) By the inductive hypothesis I(X;_1) is a perfect height two ideal, therefore it is not
contained in the union of the prime ideals generated by each of the linear divisors of f, g, h
and the linear forms z,y, z. Consequently there is a polynomial o € I(X;_;) that is not
divisible by any of the linear factors of f, g, nor by x. If r = 1, consider the polynomial
ha, which is by (1) an element of I(X;). We shall find a polynomial 8 € (z,y)" ! so
that ha and fF=1=0n=8)+2i+1 4@+ (n=2)=1pint13 form a regular sequence in I(X;).
Indeed, one can pick 8 € (z,y)" ! so that ha and B form a regular sequence. This
insures that the forms ha and f(F—1-9(n=3)+2i+1(i+1)(n=2)—=14in+1 3 have no common
factors of positive degree, thus they form a regular sequence. Analogous arguments show
that the grade of I(X;) is 2 in the remaining cases r = 2 and r = 3.

The claim on the minimal free resolution of I(X;) now follows by Hilbert-Burch. The
formulas for the graded shifts in the resolution are found by taking into account the
inductive hypothesis, together with the formulas for generators of I(X;) found in part
(1) and the structure of the blocks of the matrix X, specifically the fact that the entries
of Z; are linear.

(3) Set

(f, 9" =D 0 (@, ) I A (y,2)™ 0 (2, 2) ™ if r=1

T(n,5) = 4 (F. 9" 0 (@, ) A (g, ) A (@, 2) i =2

(f,9)F =% 0 (2, ) D™ 0 (y, 2) T 0 (2, 2) D if =3,
Using the recursive formula for I(X;) given in (1) and the inductive hypothesis
I(X;_1) = J(n,j — 1), one sees that I(X;) C J(n,j). In order to establish equality
I(X,;) = J(n,j) it is sufficient to show that the ideals on both sides are unmixed and
have the same multiplicity. The unmixedness of J(n, j) follows from its definition. The
ideal I(X3) is unmixed as well because R/I(X;) is Cohen-Macaulay by (2). It remains

to compare the multiplicities. Using [13, Theorem 4.2 (2)] and the resolution in (2) we
compute

e(R/I(X;)) = Hryrcx,)(reg(R/1(X;) + pd(R/1(X;)) — 2)
= HR/I(Xj)(n[k(n - 3) +] + 1+ 1] - 1)
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= Hp(n[k(n—3)+j+i+1]—1)— (k(n—3) + ) Hg(n(i + 1) — 1)

- 3niHR(n(i +1-4)—1)+k(n—3)Hg(ni—1)
=1

—|—3nzz:HR(n(i+1—€) -2)
=1

_ <n[k(n—3)+2j+i+1]+l> (k(n3)+1)<n(i+21)+1>

+k(n—3)(m;1> —3n2<i—;1>,

where some of the terms in the above formula are obtained by evaluating

i:HR(n(z’ +1-4)—1)— i:HR(n(i—% 1-10)-2)= i:(n(i—k 1-40)) = m’(i2—|— 1).
=1 =1

l=1

It can be verified by straightforward computation that

n2 (k(n—32)+j+1) + 2(1n2+1) + ((i+12)n+1) =1

e(RJT(X;)) = e(R)T(n,k)) = { n2(KO=3H41) 4 (in1) L o(Gmst) iy — g
n2 (k(n732)+j+1) + 3((i+1%n+1) if r =3,

whence I(X;) = J(n, k) follows. O

Proof of Theorem 3.6. We use the notation of Theorem 3.7. Its part (3) shows that
I(X3;,) = I, Using the recursion given in Theorem 3.7(1), a routine computation

yields the claimed generating set of I(*”). It is minimal because it consists of kn + 1

polynomials, which is the number of minimal generators of I*”) by Theorem 3.7(2).

Remark 3.9. The conclusion of Theorem 3.6 can be rewritten more compactly by pre-

senting 1) as a sum of four ideals:

15 = (fgh)k(f, )"
+a(a,y) g R (fM gh, gt P!
+y(y, 2)" Th" g% (fg"2h, By
+ Z(Z7x)n71fn72h2 . (gfh"fz, fn72h2zn)k71.

3.2. Regularity of symbolic powers

In Corollary 2.6 we gave a formula for the regularity of ordinary powers of Fermat

ideals, which is a linear function in r for all » > 2: reg(I") = r(n+ 1) + n — 1. In fact
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it is known by [4] that reg(I") becomes a linear function of r for large enough values of
the exponent. We now turn our attention towards the Castelnuovo-Mumford regularity
of the symbolic powers. In the case of the Fermat ideals, it turns out that this is also
given by a linear function for high enough powers, as we will show in Theorem 3.10. By
contrast, in general it can only be shown as in [4, Theorem 4.3] that, if R4(I) is finitely
generated, then reg([ (m)) is a periodic linear function for m large enough, i.e. there exist
integers a; and b; such that reg(I(m)) =a;m—+b; fort =i mod n and ¢t > 0.

We now proceed to give an explicit formula for the regularity of high enough symbolic
powers of Fermat ideals.

Theorem 3.10. Let I = (z(y™ — 2"),y(z™ — z™), z(2™ — y™)) with n > 3. The symbolic
powers of I have their Castelnuovo—Mumford regularity given by

reg(I™) = m(n +1), for m > 0.

Proof. We begin by proving that the conclusion holds for m =n and m = n — 1. From
part (2) of Lemma 3.4 (with k = 1), we have that

reg(I™) = n(n+ 1).

More generally, it follows by part (2) of Theorem 3.7 that reg(I™®) = reg(I(Xs)) =
nk(n + 1) for all integers k > 1. Next we set f =y — 2", g =2" — 2", h = 2" — y™ and
we consider the block matrix X5 € M (4(n—3)+3n+1)x (k(n—3)+3n) () given by

H(f, g)n-u U’ Vv’ w’
X! — 0 C(z,y)n 0 0
5 0 0 C(y,2)n 0 ’
0 0 0 C(z,z)n

where the matrices U’, V', W' are defined analogously to the ones in Lemma 3.4:

o The first column of U’ is (—1)"~* fe,,_3, all other entries are zero.
e The first column of V' is the vector gF,,_4, all other entries are zero.
e The first column of W' is the vector hE, _4, all other entries are zero.

We make the following claims if n > 4:
(1) The ideal of maximal minors of X} is
I(X5) = (fgh)(f,9)" " + 29" (2, 9)" " + "y, 2)" 7+ 7003 (2, 2)"
(2) The minimal free resolution of the cyclic module defined by the ideal above is
R(—n? +n)"=3

0 — R(—n?)tn—1 X @ — R — R/I(X}) — 0.
R(_n2 + 1)3n
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I(X5) = (f.9)" ' N (@,y)" ' N (g 2)" 7 0, 2)"

The three claims follow exactly like in the proof of Lemma 3.4. We leave the details to
the diligent reader. Based on the free resolution given by our claim (2) we deduce that

regI™ ) =n?—1=(n—1)(n+1).

One checks that this equality is also true if n = 3.
Consider the set S = {an+b(n—1) | a,b € N}. We will prove that for any m € S, we
have reg(1(™) = m(n + 1). Indeed, set m = an + b(n — 1) and notice the containments

™ = IanIb(n—l) C (I(n)>a (I(n—l))b - I(m)’

b\ sat

which yield that I(™) = ((I("))a (I("_l)) ) , where the superscript sat denotes satu-
ration with respect to the homogeneous maximal ideal. Consequently, the cohomological
characterization of the Castelnuovo-Mumford regularity implies the inequality

reg ((I("))a ([("1)>b) > reg(1M).

Furthermore, iterated applications of [3, Theorem 2.5|, using the fact that
dim(R/I™) = dim(R/I™~V) = 1, yield that

a b
reg ((I(")) (I("*1)> > < areg(I™) + breg(I"~V).
Putting everything together gives

reg(1™) < reg(I™)*(I™=D)) < areg(I™) 4 breg(I1)
=an(n+1)+bn—1)(n+1) =m(n+1).

To establish the opposite inequality it is sufficient to prove that there exist minimal
generators of 1™ of degree at least m(n+1). Towards this end we show that, if 7 € 1™
and deg(7) < m(n+1), then 7 € (fgh). This follows easily by Bezout’s Theorem. Indeed,
consider any linear factor £ of the product fgh. Since the line defined by ¢ contains n+ 1
points at which 7 vanishes to order at least m, the intersection multiplicity of 7 and /¢
is at least (n 4+ 1)m > deg(7)deg(¢). Thus ¢ | 7 for every such linear form ¢, whence
(fgh) | 7. This shows that the generators of (™) of degrees less than m(n + 1) generate
an ideal of height one properly contained in 1™, therefore there must be additional
minimal generators of higher degree. This gives in particular that reg(I(™)) > m(n+1).
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The two inequalities above prove that reg(I(™)) = m(n+1) for m € S. Noting that ev-
ery large enough positive integer is an element of the semigroup S, since ged(n,n—1) = 1,
finishes the proof. 0O

Remark 3.11. It is natural to ask for effective bounds on the magnitude of m that would
insure the formula in Theorem 3.10 applies. The proof of Theorem 3.10 gives that the
Frobenius number of the semigroup S is one such bound. By work of Sylvester [19] this
Frobenius number is n(n — 1) —n — (n — 1) = n? — 3n + 1, thus we obtain

reg(1™) = m(n + 1) for m > n% — 3n + 2.

Computational evidence suggests that in fact reg(I(™) = m(n + 1) for m > n — 2.
Indeed, this is true if n = 3 by using also Corollary 2.6.

4. Symbolic Rees algebras of Fermat ideals are Noetherian

It is well-known that, unlike the ordinary Rees algebra, the symbolic Rees algebra of
a homogeneous ideal may in general not be Noetherian, even for ideals defining reduced
sets of points. In this section we show that for the Fermat family of ideals the symbolic
Rees algebras are in fact Noetherian. A particular case of this result (the case n = 3) can
be found in [8, Proposition 1.1], where it is derived as a direct consequence of a result
in [9]. Our methods here are entirely disjoint from the approach of [9,8].

The key to our approach is the following result.

Proposition 4.1. Let I = (x(y™ — 2"),y(z" — 2™), z(z™ — y™)), with n > 3. Then
1R — I(")k for all integers k > 1.

Proof. Since the assertion is tautologically true if £ = 1, we assume now k > 2. We are
going to establish the following claim:
For each k > 2,

k) ¢ () p((k=1)n) (2)

We check this using the list of minimal generators given in Theorem 3.6. It gives that
I+ contains

(fgh)k - (f.9) "% = [(fgh) - (f,9)" %] [(fgh)"~1 - (f,g) " DED].

Hence, (fgh)* - (f,g)=3k c 1M . [((k=1)n),
Next, we show that, for each i € [k],

f(k—i)(n—2)+2igk+i(n—3)hk—ix(i—l)n—o—l . (x,y)n—l C I(n) . I((k—l)n) (3)
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To this end rewrite the product on the left-hand side as

[f29n721, . (1,7 y)nfl] . f(lcfi)(n72)+2i72gk71+(i71)(n73)hk7ix(i71)n+1.

Notice that f2g" 2z - (z,y)"~! C I™ (see, e.g., Remark 3.5(ii)). Moreover, we get

FU—(n=2)42i2 =14 (=1)(n=8) ph—i g (i=Dnt1 ¢ (k=)
because hkfix(ifl)n (JU y)(kfl)n fkfix(ifl)n c (y,z)(kfl)n’ and gkfl c (x Z)(k Hn
Now the containment (3) follows.

Similarly, one proves for each i € [k],

fk % —i)(n—2) +21hk+zn 3) (1 1)n+1 | (y7z)n71 C I(n) I((kfl)n)

and

fk+i(n—3)gk—ih(k—i)(n—2)+2iz(i—1)n+1 . (Z,.’L’)n_l c I(n) . I((k:—l)n)-

Comparing with Theorem 3.6, we have shown that each minimal generator of ™) is
contained in (™. T((k=1)n) "which gives the desired containment (2). Since for every ideal
I one has the inclusion I . J(:=Dn C [(kn) e obtain the equality 1(") . J(k=1n = j(kn)
which together with the inductive hypothesis finishes the proof. O

Remark 4.2. For n = 3, the above Proposition was also proved in [8, Proposition 1.1]
using a different method based on [9, Proposition 3.5]. We note that one cannot apply |9,
Proposition 3.5] directly for proving this property of Fermat ideals when the parameter n
is greater than 3. Indeed, since, in the notation of [9], we have that the minimum degree of
an element of a minimal set, of generators for I is a,, = a(I™) = n? and the maximum
degree of an element of a minimal set of generators for 1™ is £, = S(I™) = n? +n
we obtain a, 3, = n?(n? 4+ n). The hypothesis needed to employ [8, Proposition 1.1] is
nfn = n%(n? + 3), which does not apply if n? + n # n? + 3, that is if n # 3.

Next we will show that the symbolic Rees algebra of a Fermat ideal I is Noetherian.
We use the observation [17, Theorem 1.3] that the Noetherian property of a symbolic
Rees algebra is equivalent to the fact that any of its Veronese subalgebras is Noetherian.
More precisely, we refer to the subalgebra

Ro(I)™ =R, (IM) = P 1"

k>0

as the n-th Veronese subalgebra of Rs(I). In the case of Fermat ideals, as a corollary of
our previous results, we have complete control on the structure of this algebra.

As an important effect of this, it turns out that the symbolic Rees algebra of I is
Noetherian:
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Theorem 4.3. For any ideal I describing a Fermat configuration of points, the symbolic
Rees algebra R4(I) is Noetherian.

Proof. Let I = (x(y" — 2"),y(z" — ™), z(z" — y™)), with n > 3. Then R,(I)(™ =
R(I™) by Proposition 4.1. In particular, R,(1)(™ is finitely generated. It follows from a
result of Schenzel [17, Theorem 1.3] that the symbolic Rees algebra R;(I) is Noetherian
whenever any of its Veronese subrings is Noetherian. In our case, we know that R (I ("))
is Noetherian, whence the desired conclusion follows. O

Remark 4.4. As mentioned in Remark 4.2, Harbourne and Huneke [9, Proposition 3.5]
give a condition guaranteeing that a symbolic Rees algebra is Noetherian. In fact, they
wonder [9, Remark 3.13] if this condition is also necessary. Theorem 4.3 shows that this
is not the case as I = (z(y"™ — z"), y(z™ — a™), z(x™ — y™)) does not satisfy the condition
if n > 4.

5. Minimal reductions for Fermat ideals

Using our detailed knowledge of symbolic powers of Fermat ideals allows us to describe
some explicit minimal homogeneous reductions.

Let J C I be ideals, then J is said to be a reduction of I if there exists a non-negative
integer ¢t such that I*T! = JI*. The reduction J is called minimal if no ideal strictly
contained in J is in turn a reduction of I.

The minimum integer n with the property I'*! = JI? for a fixed reduction J of I is
called the reduction number of I with respect to J. In this section we give a description
of a homogeneous ideal that is a homogeneous minimal reduction of 1™,

The following notation will be used in the proof of Proposition 5.1 below: given a
homogeneous ideal I, the least degree of a non-zero element of I (hence also of a minimal
generator of I) will be denoted «(I) and the largest degree of a minimal generator of T
will be denoted S(I).

Proposition 5.1. Let n > 3 be an integer and consider the ideal I = (xf,yg,zh) of the
Fermat configuration, where f = y™ — 2", g = 2" —a" h = 2" —y" € R = K|z,y, 2].

Then

(1) If n >4, I™ has no homogeneous reduction with two generators.
(2) A homogeneous minimal reduction of 1™ is

(fgh, gf*a™ + hg®y™ + fh22"), ifn=3
(fn_2gh, fgn_Qh, g"_sz.’L‘n+hn_292yn+f"_2h22"), an Z 4

and in either case the reduction number of I'™) with respect to J is 1.
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Proof. (1) Suppose n > 4 and J = (0, 7) is a homogeneous minimal reduction for I so
that (I(™)kJ = (I()k+1 holds for some integer ¢ > 1, or equivalently, by the identities
proven in Proposition 4.1, 1("%) J = J(n(k+1
that deg(o) < deg(7).

We make the following claims: (i) deg(c) = n?, (ii) £ = 1. To prove the first of
these claims, notice that by Theorem 3.7, a(I™¥)) = n2k and a(IF+H1)) = n2(k +1).
We must have a(I™%)J) = o(I™*+D)) 5o n?k + deg(c) = n?(k + 1), which gives
deg(c) = n?. To prove the second claim we see that o € J C I("%) | therefore a(I("*)) =
n?k < deg(c) = n?. Tt follows that k = 1 and thus we have (™) .J = 12",

It follows from the description of the minimal generators of I(™) and I(?™ of The-
orem 3.6 that (fgh)?(f,9)>"=3 C o - fgh(f,g)" 3. Comparing the Hilbert function
of these two ideals in degree 2n? yields 2(n — 3) +1 < n — 2, i.e. n < 3, which is a
contradiction.

(2) is equivalent to showing that JI (n) = 17 We prove this statement for

). Without loss of generality we may assume

J= (fn72gh’ fgn72h’ gn72f2$n + hn7292yn + fn72h22n)’
which covers both cases (with some redundancy for n = 3). By Remark 3.9, we have

1% = (fgh)*(f,9)*" =%
+a(x,y) g R (1 gh, g TR )
+yly,2)" 'R  (fg" PR, BTy
+ 2(z, )" P22 (gfRTR, frTRR2RM.

The standard minimal generators of the ideal (fgh)2(f, g)%"3) can be written as

fg"2h - (fgh)fign—3-" ifo<i<n-3

(fgh>2fi92(n—3)—i — 4 4
fn—Qgh . (fgh)fz—n+392(n—3)z ifn—23 <i< Q(TL _ 3)’

showing that (fgh)2(f,9)>"=3) < (f* 2gh, fg"2h)(fgh)(f,9)" > C JI™. Next note
that
(gn—2f21,n + hn—292yn + fn—2h22n)f2‘gn—2x(x,y)n—1 C JI(n)
But
(gn—2f2xn + hn—292yn 4 fn_2h22n)f29n_2$(.1‘, y)n—l —
9" 2 fPar,y) g P+ " R (R PPy () 4 T e () )

and the last term in the sum is contained in JI™) therefore ¢" 2f2x(z,y)" ! -
g"2f2z™ < JI™. Similarly it can be shown that h"~2¢%y(y, 2)" ' - h* 2%y c JI™
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and " 2h2z(z, )" - f*72h22" C JI™. The other terms in the description of I(2")
being clearly contained in JI(™, we obtain the containment 1™ C JI(™ . The converse
containment being trivial, equality follows.

The fact that J does not contain another homogeneous reduction L for I follows
from part (1) of this proposition. A careful reading of the last paragraph in the proof of
(1) shows that, if n > 4, any homogeneous reduction for I(™ must contain at least two
generators of degree n?. Hence (f"2gh, fg"~2h) C L. Since L cannot be 2-generated
by (1), it must contain a multiple of the third generator of J. Comparing the degrees of
the generators of LI and 1™ one sees that this polynomial must have degree n?+n,
the same as the third generator of J. Thus the conclusion L = J follows. O

We thank the referee for pointing out the following:

Remark 5.2. Set A = K[z,y,2](z,y,.). For any positive integer k we have
depth (A/I(")k) = 1 because I(")k = I("k) by Proposition 4.1. By Burch’s inequal-
ity [2], we see that the analytic spread of I(™ A is at most

dim A — inf {depth (A/I(")kA) l0<ke Z} =2

This implies that any minimal reduction of I A has two minimal generators, if K is
infinite. By part (1) of Proposition 5.1, such a reduction would necessarily not be a
homogeneous ideal as long as n > 4.
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