
Secure Intermittent Computing Protocol: Protecting State Across Power Loss

Archanaa S. Krishnan

Virginia Tech

Blacksburg, VA, USA

archanaa@vt.edu

Charles Suslowicz

Virginia Tech

Blacksburg, VA, USA

cesuslow@vt.edu

Daniel Dinu

Virginia Tech

Blacksburg, VA, USA

ddinu@vt.edu

Patrick Schaumont

Virginia Tech

Blacksburg, VA, USA

schaum@vt.edu

Abstract—Intermittent computing systems execute long-
running tasks under a transient power supply such as an
energy harvesting power source. During a power loss, they
save intermediate program state as a checkpoint into write-
efficient non-volatile memory. When the power is restored, the
system state is reconstructed from the checkpoint, and the
long-running computation continues. We analyze the security
risks when power interruption is used as an attack vector, and
we demonstrate the need to protect the integrity, authenticity,
confidentiality, continuity, and freshness of checkpointed data.
We propose a secure checkpointing technique called the Se-
cure Intermittent Computing Protocol (SICP). The proposed
protocol has the following properties. First, it associates every
checkpoint with a unique power-on state to checkpoint replay.
Second, every checkpoint is cryptographically chained to its
predecessor, providing continuity, which enables the program-
mer to carry run-time security properties such as attested
program images across power loss events. Third, SICP is
atomic and resistant to power loss. We demonstrate a prototype
implementation of SICP on an MSP430 microcontroller, and
we investigate the overhead of SICP for several cryptographic
kernels. To the best of our knowledge, this is the first work to
provide a robust solution to secure intermittent computing.

Keywords-intermittent computing, secure checkpoints, em-
bedded systems, atomicity, continuity

I. INTRODUCTION

Conventional embedded systems respond to power loss

by losing its volatile state variables and rebooting from the

initial state when power is restored. Embedded devices pow-

ered by energy harvesters, where power loss is a fact of life,

utilize intermittent computing techniques to ensure forward

progress of long-running applications [1–5]. Such systems

create checkpoints, snapshots of the volatile program state

stored in non-volatile memory, which includes the CPU

registers, stack, peripheral states and all the application vari-

ables that are necessary to restore the program state. When

the power is restored, the program state is reconstructed

from the checkpoint and the program continues execution.

If we treat power loss as an adversarial event, unprotected

checkpoints pose a significant risk.

Risks of Checkpoints: When the checkpoint data may

be accessed by the adversary, for example, through the

microcontroller debug interface, the adversary can exploit

the checkpoints in several ways, as listed in Figure 1.

First, the adversary can read the checkpoint data, which

reveals sensitive information such as the internal state of

Figure 1: Contents of microcontroller (MCU) memory including the check-
point, CKP, of an intermittent system which is vulnerable to an adversary
and state diagram of such a system under replay attack. An adversary is
able to repeatedly overwrite the new CKP2 with the stale CKP1 forcing
continued re-execution of the code between ON2 and ON3.

a cryptographic algorithm, leading to loss of confidentiality.

Second, the adversary can tamper the checkpoint and take

control over the embedded system after power is restored.

Third, when the same checkpoint can be restored infinitely,

the adversary can force repeated execution of the same

section of code, as illustrated in Figure 1. A system moves

through a sequence of activities symbolized through ON-

states, during which a checkpoint is generated and stored in

non-volatile memory. During a power transition after ON2 ,

if an adversary records and restores CKP1, the section of

code in ON2 is repeated.

Objectives: We identify four fundamental objectives,

which will be achieved by SICP, to address these risks. For

an intermittent system, the first three objectives pertain to

its security and the last objective pertains to its availability.

1) Information Security: Information security ensures the

confidentiality, integrity, and authenticity of check-

pointed data.

2) Freshness: Freshness assures the system that the

checkpoint to be restored is the most recent checkpoint

and not a replayed checkpoint.

3) Continuity: Application continuity is the assurance that

an application will resume execution from where it left

off after a power loss without modification.

4) Atomicity: Atomicity guarantees that the protocol op-

erations do not leave the intermittent system with an

734978-3-9819263-2-3/DATE19/ c©2019 EDAA



Type of
solution

Related
Work

Essential properties
Target
Platform

C I A Freshness Continuity Atomicity

Intermittent
computing

[1–4] - - - - - - Embedded
deviceGhodsi [5] � - - - - -

NVM memory
encryption

iNVM [6], SPE [7] � - - - - -
Conventional
computer

State
continuity

ICE [8] � � - � � - Conventional
computer with
protected module

Ariadne [9] � � - � � �

Memoir [10] � � - � � �

Secure
checkpoints

SECCS [11] � � � - - - Embedded
devicesSICP(this work) � � � � � �

C: Confidentiality, I: Integrity, A: Authenticity.

Table I: Comparison of the essential properties of SICP with related work

invalid state in the event of power loss during protocol

execution.

Related Work: Table I compares the essential properties

of some of the latest work related to checkpoints. So far,

none of the intermittent computing proposals has considered

checkpoint security [1–4], except one [5], which only con-

siders confidentiality and does not detect checkpoint replay.

In-band memory encryption techniques have been proposed

for conventional computers [6, 7], which introduce a con-

stant encryption overhead that is less suited for embedded

devices.

Current conventional computers are equipped with module

isolation mechanisms, such as Intel SGX and ARM Trust-

Zone, that also require state continuity guarantees in case

of system crashes and power loses. ICE [8], Ariadne [9]

and Memoir [10] were designed to provide state continuity

to these computers. Although these solutions guarantee most

of the essential properties, they are not designed for resource

constrained embedded devices.

SECCS, a secure context saving solution, only provides

confidentiality and integrity of checkpoints in non-volatile

memory using a hardware module [11]. It does not consider

replay of checkpoints or availability of the intermittent

device. As a result, SECCS does not ensure freshness of

checkpoints and is not an atomic solution.
Contributions: We propose the Secure Intermittent

Computing Protocol, referenced as the SIC Protocol or SICP.

It guarantees all the essential properties listed in Table I

by the following considerations. First, SICP incorporates

freshness to checkpoints in the form of a nonce to detect

replay of checkpoints illustrated in Figure 1. Second, SICP

protects the information security of checkpoints using a de-

vice unique key. Third, all checkpoints are cryptographically

linked to preserve the application continuity across power

loss. Continuity guarantees the order of the sequence of

checkpoints and preserves the run-time security properties

in intermittent systems. Finally, SICP uses multiple stored

states to guarantee atomic checkpoint generation and restora-

tion, making SICP itself resilient to power loss. Unlike

the other state continuity solutions listed in Table I, this

protocol is designed for embedded systems. It is a bare metal

Figure 2: The architectural assumptions and memory model for SICP
illustrating the assumed attacker model with two capabilities - (1) control
power supply to the device and (2) view and modify tamnper sensitive
non-volatile memory during power-off periods.

solution that can be utilized by any embedded device with

non-volatile memory. It does not require dedicated secure

hardware support such as protected modules to guarantee

the essential properties. We believe our solution is the first

to provide comprehensive security to the checkpoints of an

embedded device.

Organization: Section II explains the design and pro-

vides a brief overview of SICP, while Section III describes

the protocol in detail. Section IV demonstrates the feasibility

of the SIC Protocol through a prototype implementation

on an MSP430 microcontroller, followed by our results in

Section V. We conclude with Section VI.

II. DESIGN

Threat Model: We assume an I/O attacker model, with

two capabilities, illustrated in Figure 2. First, the adversary

has complete control of the power supplied to the device.

This gives the adversary the ability to arbitrarily stop the

execution of the target program. Second, the adversary

has access to the majority of the device memory during

power-off periods except for a small portion of non-volatile

memory, which is tamper free. The adversary can view and

modify the device memory to read, tamper, or replay check-

points except within the tamper free region. We assume a

protected embedded software execution environment which

provides execution integrity and memory protection when

the device is powered on. The feasibility of this assumption

has been demonstrated by recent efforts in attestation and

isolation for microcontrollers [12]. We do not deal with the

Design, Automation And Test in Europe (DATE 2019) 735



Figure 3: Example of the SIC Protocol. (1) The system is cleared by
the factory reset() operation. A fresh nonce, Ri is associated with each
power-on state. (2) The first valid state save packet, SS1 , is created by the
INITIALIZE. On power loss, (3) WIPE clears the volatile STATE and
upon subsequent power up, (4) RESTORE validates the latest state save
packet, SS1 , restores the program state, and generates a new state save
packet SS2 . (5) During program execution, REFRESH is called to create
a new checkpoint SS3 , overwriting the oldest state save packet, SS1 .

mitigation of side channel and fault injection attacks which

are beyond the scope of this work.

Architectural Assumptions: Based on the above threat

model, SICP requires certain basic capabilities from the

microcontroller architecture, illustrated in Figure 2. The

SICP architecture contains three types of memory. Volatile

memory holds the volatile program state and is erased upon

power loss. Tamper-sensitive non-volatile memory stores the

secure checkpoints created from run-time program state.

This non-volatile memory does not possess any tamper-

resistance and represents the vast majority of the system’s

non-volatile memory. SICP also requires a small tamper-

free non-volatile memory to store SICP variables that need

tamper-free storage. At a 128-bit security level, SICP utilizes

48 bytes of tamper-free storage for two 128-bit nonces

and a 128-bit secret key. The size of tamper free memory

must be minimized to reduce hardware cost and complexity.

Finally, we assume that the microcontroller has a residual

power source which provides a small, finite energy supply

when the regular power source is interrupted. This residual

power source can, for example, be provided through power

conditioning capacitors. We assume that the residual power

source can be physically protected and can provide the

minimum required energy to finish writing a 128-bit value

to non-volatile memory and wipe sensitive program state.

A. SICP Operation

Figure 3 illustrates a working scenario of SICP. An inter-

mittent system moves through a series of power transitions,

represented by ON-states and OFF-states. The freshness

objective is satisfied by assigning a nonce, Ri, to each

Algorithm 1 INITIALIZE

Require: K
1: Q ← nonce()
2: TB ← nonce()
3: STATE ← 0
4: RA ← Q
5: SA ← AEADencr (STATE ,TB ,RA,K )
6: TA ← AEADauth (SA,TB ,RA,K )

power-on state of the device. The nonce is stored in tamper-

free non-volatile memory to prevent checkpoint replay. It

introduces freshness to the state, even if the application

state is identical to a previous power cycle. For example,

in Figure 3, a new nonce R2 is associated with ON2 even

though the device is in the same application state as in ON1 .

Information security of the checkpointed data is pro-

tected using Authenticated-Encryption with Associated-Data

(AEAD) [13]. The encryption function takes the plain text

checkpoint, STATE , a nonce, Ri, and non-confidential as-

sociated data, Ti as input to generate the resultant encrypted

checkpoint, Si, and an authentication tag, Ti. Si and Ti are

stored in the device’s tamper sensitive non-volatile memory.

Similarly, the encrypted checkpoint is decrypted and restored

onto STATE when power is restored. With this structure, a

secure checkpoint contains a tuple of Ri, Si, and Ti, which

we call a state save packet, SSi .

The atomicity objective is satisfied using two state save

packets, SSA and SSB . They are updated in an alternating

manner, as shown in Figure 3, to keep one packet valid at

all times. SICP is made resilient to power loss by atomic

generation and restoration of checkpoints.

The continuity objective is satisfied by using the au-

thentication tag from the previous state save packet as the

associated data in the AEAD operations to generate the next

state save packet. For example, in Figure 3, T1 is used as

associated data to compute T2, which in turn is used as

associated data to compute T3. This process, referred as

tag-chaining, cryptographically chains all the checkpoints

together in a chronological order. Thus, authentication tags

protect the authenticity and integrity of checkpoints as well

as the order of the checkpoints.

Functions: SICP uses the following functions in its

implementation. factory reset() restores the device to manu-

facturer settings and loads a device unique key. nonce() gen-

erates a unique and fresh nonce. abort() flags a violation of

SICP. AEADencr() encrypts a checkpoint and AEADdecr()
decrypts it. AEADauth() generates the authentication tag.

Typically, the AEAD interface for encryption/decryption

returns both the ciphertext/plaintext and authentication tag.

They are separated here into AEADencr(), AEADdecr()
and AEADauth() to provide clarity in protocol description.

III. SIC PROTOCOL

SICP is defined as a collection of four algorithms:

INITIALIZE, REFRESH, RESTORE and WIPE, de-

fined as follows.

736 Design, Automation And Test in Europe (DATE 2019)



Algorithm 2 REFRESH and RESTORE

Require: K ,STATE ,Si ,Ri ,Ti , where i ∈ {A,B}
operation ∈ {REFRESH,RESTORE}

1: Q ← nonce()
2: if TA = AEADauth (SA,TA,RA,K ) then
3: if operation = RESTORE then
4: STATE ← AEADdecr (SA,TA,TB ,RA,K )
5: end if
6: RB ← Q
7: SB ← AEADencr (STATE ,TA,RB ,K )
8: TB ← AEADauth (SB ,TA,RB ,K )
9: else

10: if TB = AEADauth (SB ,TA,RB ,K ) then
11: if operation = RESTORE then
12: STATE ← AEADdecr (SB ,TB ,TA,RB ,K )
13: end if
14: RA ← Q
15: SA ← AEADencr (STATE ,TB ,RA,K )
16: TA ← AEADauth (SA,TB ,RA,K )
17: end if
18: else
19: abort()
20: end if

INITIALIZE: This function is called the first time

the device is powered on and is detailed in Algorithm 1.

It is used to generate the first state save packet of the

application, SSA, following a factory reset(). Since the first

state save packet has no previous authentication tag to

use for associated data, the tag, TB , is initialized with

a nonce before it is used to generate SSA. This ensures

a unique chain of tags after each factory reset(). Finally,

STATE is overwritten with zeros to ensure future tests for

factory reset() fail and INITIALIZE is only executed once

after a factory reset().

REFRESH: Since the process of generating and restor-

ing a checkpoint is similar, they are both described in one

procedure, Algorithm 2. REFRESH can be called at any

point by the application when the device is powered-on after

INITIALIZE has finished generating the first valid state

save packet. A state save packet is valid if it satisfies the

following conditions. First, its nonce, Ri, must match the

nonce used in the AEADencr and AEADauth operations.

Second, the associated data used in these AEAD operations

must match the tag of the previously valid state save packet.

This ensures that at any point, only one state save packet is

valid.

REFRESH will determine which is the latest state save

packet, to update the alternating state save packet. For

example, if SSA was the latest packet to be refreshed,

then when REFRESH is called again, line 2 in Algorithm

2 would be true. Correspondingly, the microcontroller will

start updating SSB by first updating RB and then SB . As

long as TB is not updated, SSB does not yet contain a

valid state save packet and SSA remains valid. As soon

as TB is updated, it simultaneously invalidates SSA and

makes SSB the latest valid state save packet. This write to

TB makes REFRESH atomic. The implementation of SICP

makes an explicit assumption regarding the tag update in

lines 8 and 16 of Algorithm 2. The tag update must be

an atomic operation. The feasibility of this assumption is

discussed in Section IV-A using the residual power source.

RESTORE: RESTORE is called upon every power-

up, except immediately after a factory reset(), restores the

most recent valid STATE of the microcontroller. This func-

tion operates in the same manner as REFRESH with the

difference listed on lines 4 and 12 of Algorithm 2. If

there is a valid state save packet, the AEADdecr () function

decrypts the ciphertext to restore it in STATE, otherwise,

the program is aborted. SICP documents every power event

in the sequence of checkpoints by generating a new state

save packet upon every power-up. For example, if SSB is

valid, SB is decrypted and restored in STATE , SSA is

updated with this STATE, a new nonce, Q and TB . At the

end of RESTORE, SSA is made valid, invalidating SSB .

Thus, SICP ensures that no two different ON-states of the

device are represented by the same element in the sequence

of checkpoints.

If the stored state is tampered during power-off, the

conditional checks on lines 2 and 10 fail, which flags a

security exception and calls abort(). At a minimum, this

function should either end program execution or clear the

device memory and restart the device.

WIPE: WIPE must be called as soon as power loss

is detected and the device is about to shut down. It clears

transient information such as the program variables stored

as plain text using the residual power source. The function

must overwrite the sections of non-volatile memory that

contain sensitive data, STATE. Volatile memory is wiped

to prevent cold-boot style attacks [14]. The residual power

source must have sufficient power to finish this operation

otherwise the protocol will fail to protect the confidentiality

of checkpoints. The specific implementation of WIPE will

be device dependent. Section IV-A outlines our implemen-

tation’s approach.

IV. IMPLEMENTATION

To evaluate the SIC Protocol, we establish an intermit-

tent system and implement SICP to secure the system’s

checkpoints. We use a modified version of TI’s Compute

Through Power Loss (CTPL) utility [15] as the intermittent

computing solution. The proof-of-concept implementation

is created on an MSP430FR5994 Launchpad development

board [16], which is equipped with 256kB of on-chip non-

volatile ferroelectric RAM (FRAM). We use two different

AEAD schemes. First, a software implementation of block

cipher based EAX [17], provided by the Cifra [18] crypto-

graphic library. Second, KETJE v2, specifically KETJE SR, a

lightweight one-pass AEAD scheme, from the Keccak Code

Package (KCP) [19].

A. Secure Intermittent Computing Support

Figure 4 illustrates the working of our implementation of

SICP. The CTPL utility is modified to support user declared

system checkpoints and to invoke the protocol functions

Design, Automation And Test in Europe (DATE 2019) 737



Figure 4: Our implementation of SICP. (1) SICP checks for factory reset() and calls (2) INITIALIZE or (3) RESTORE to populate STATE in non-volatile
memory. RESTORE(4) inspects the non-volatile memory for a valid state save packet by checking the authentication tags, restoring it (6) if one is found or
invoking main() (5) if one does not exist. Program execution will then continue normally until power is lost or another checkpoint is created by calling
secureCheckpoint() which in turns calls (7) REFRESH to generate a new checkpoint.

Component Size (B)

Checkpoint Support 2532
EAX (HW) 3938
KETJE SR 3336

Table II: Executable Size Overhead

Method
INITIALIZE REFRESH RESTORE

Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Checkpoint Support 0.032 0.033 14.4 12.6 14.1 12.8
EAX(HW) 0.061 0.039 355.2 263.2 455.2 332.3
KETJE SR 0.073 0.044 1912.1 15433.3 1301.4 10011.2

Table III: Energy and time overhead for SICP

within the checkpoint and startup process. INITIALIZE

and RESTORE are called automatically during system

startup, as shown in Figure 4. WIPE is also automatically

triggered upon power loss. Only RESTORE is called during

program execution by the user declared checkpoint func-

tion secureCheckpoint(). The application code calls

secureCheckpoint() which in turn invokes REFRESH

to generate a secure checkpoint.

Atomicity Support: The atomicity of the

secureCheckpoint() function is ensured by using

two state save packet buffers, SSA and SSB . All changes

to non-volatile memory are made to the alternate buffer,

such that the most recent state save packet remains valid

until the newly computed tag is ready. Once the new tag

computation is complete and stored in a temporary buffer,

the sic_copyTag() function is called to overwrite

the previous tag and set the newly created checkpoint as

the only valid checkpoint in an atomic operation. This is

achieved by disabling all interrupts for the copy duration of

48 cycles and relying on the residual energy of the device

to ensure that even if power is lost, the copy operation

will complete before the system stops operating. Thus,

secureCheckpoint() completes the protocol operation

without incident, ensuring the availability of the intermittent

device.

nonce(): A majority of the nonces used in this protocol

are provided by a 128-bit counter that is initialized to a

random number during the INITIALIZE process and incre-

mented each time a new nonce is requested. The exception

is for the nonce for TB in the INITIALIZE function. This

nonce is generated randomly to ensure that no two different

uses of a device create the same pattern of tags, even if the

exact same code is executed following a factory reset().

WIPE: The implementation of the WIPE operation

requires detection of power loss by monitoring the de-

vice’s Vcc. This is accomplished with MSP430FR5994’s

ADC12 B analog-to-digital converter, measuring Vcc against

the system’s Vref as described in TI’s FRAM Utilities [15].

The MSP430FR5994 development board’s unmodified im-

plementation, including one 10µF capacitor and three 100nF

capacitors, has sufficient residual energy to consistently

overwrite up to 16kB of memory following the trigger [16].

When Vcc falls below Vref , ADC12 B triggers the overwrite

of STATE and SRAM via direct-memory-access using the

residual power source.

V. RESULTS

We demonstrate SICP’s feasibility and measure the cost in

terms of energy, time and code size overhead incurred to pro-

tect a sequence of checkpoints. We have utilized reference

implementations for both AEAD designs. EAX(HW), which

is a hybrid hardware AEAD primitive, is obtained by sub-

stituting the software block cipher operations within EAX

with the MSP430FR5994’s AES hardware accelerator [16].

The comparison between the performance of the different

AEAD schemes is specific to our protocol implementation

and is not an evaluation of the different AEAD construc-

tions themselves. All measurements were taken when the

microcontroller was operating at 1 MHz and use a state size

of 2kB, a reasonable region for applications on a resource

constrained device. The energy and time overhead of SICP

functions must be measured separately when SSA and when

SSB are the valid state because the authenticity of SSA is

always checked first in the protocol. The two measurements

are then averaged to present the following results.

Overhead: Table II provides an estimate of the ex-

pected growth of a program’s memory footprint when sup-

port for each component is added to the system. EAX(HW)

and KETJE SR represent the executable size overhead for

SICP functions along with their respective cryptographic

738 Design, Automation And Test in Europe (DATE 2019)



kernels. The energy and time overhead are listed in Table III.

SICP with EAX(HW) achieves lower overhead compared to

KETJE SR because of its two-pass structure and the use of

hardware accelerated AES module. In all cases, the overhead

incurred by the checkpointing system is constant and is listed

under Checkpoint Support in Table II and III.

Analysis: Even though KETJE SR is a lightweight

AEAD scheme, it still generates significant overhead within

SICP compared to a hardware accelerated version of EAX

both in terms of energy and time. This highlights the

advantage of hardware accelerated cryptographic modules

within SICP. Even with a hardware accelerated AEAD

primitive, SICP takes considerable time and energy to secure

the checkpointed state, which highlights the need for effi-

cient, lightweight AEAD primitives. The latest advantages

in technology scaling does not apply to non-volatile mem-

ories. FRAM, one of the most energy efficient non-volatile

memories, is only available in 130nm technology. Advances

in non-volatile memory technologies will help improve the

performance of the protocol.

SICP does not provide any backdoor for the attacker. For

example, if an adversary tries to repeatedly cut power to

the device during protocol operations, the device continues

operation without any glitches because of the atomicity

guarantees of the protocol. Similarly, if an adversary tries

to emulate a factory reset(), they will be left with a de-

vice with a clean memory and newly loaded key. Since a

factory reset() wipes all the device memory, any sensitive

information the adversary wishes to recover will be unavail-

able to the attacker.

VI. CONCLUSION

This paper was motivated by the lack of appropriate se-

curity features incorporated in existing intermittent systems.

The Secure Intermittent Computing Protocol addresses the

security of intermittent systems across periods of power loss

and its implementation highlights the heavy computational

cost required to secure a stored system state. It is a generic

protocol that can be used on top of any intermittent com-

puting solution to secure its checkpoints. Our work demon-

strated the need for future work in lightweight cryptographic

kernels that can support AEAD schemes. In the future, a

platform could be developed with a low latency non-volatile

memory and the necessary hardware acceleration to support

secure storage of larger system states.

Acknowledgements: This work was supported in part

by NSF grant 1704176 and SRC GRC Task 2712.019.

REFERENCES

[1] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac,
“Peripheral state persistence for transiently-powered sys-
tems,” in Global Internet of Things Summit, GIoTS 2017,
Geneva, Switzerland, June 6-9, 2017, 2017, pp. 1–6.

[2] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan,
“QuickRecall: A HW/SW Approach for Computing across
Power Cycles in Transiently Powered Computers,” JETC,
vol. 12, no. 1, pp. 8:1–8:19, 2015.

[3] M. Hicks, “Clank: Architectural Support for Intermittent
Computation,” in Proc. of the 44th Annual Inter. Symposium
on Computer Architecture, ISCA 2017, 2017, pp. 228–240.

[4] S. C. Bartling, S. Khanna, M. P. Clinton, S. R. Summer-
felt, J. A. Rodriguez, and H. P. McAdams, “An 8MHz 75
microa/MHz zero-leakage non-volatile logic-based cortex-m0
mcu soc exhibiting 100vdd=0v with lt;400ns wakeup and
sleep transitions,” in ISCC2013, Feb 2013, pp. 432–433.

[5] Z. Ghodsi, S. Garg, and R. Karri, “Optimal checkpoint-
ing for secure intermittently-powered IoT devices,” in 2017
IEEE/ACM Inter. Conf. on Computer-Aided Design (ICCAD),
Nov 2017, pp. 376–383.

[6] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile
main memory system with incremental encryption,” in 38th
Inter. Symp. on Computer Architecture (ISCA 2011, 2011, pp.
177–188.

[7] S. Kannan, N. Karimi, O. Sinanoglu, and R. Karri, “Security
Vulnerabilities of Emerging Nonvolatile Main Memories and
Countermeasures,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and System, vol. 34, no. 1, pp. 2–15,
Jan 2015.

[8] R. Strackx, B. Jacobs, and F. Piessens, “ICE: A passive, high-
speed, state-continuity scheme,” in Proc. of the 30th Annual
Computer Security Applications Conf., ser. ACSAC ’14. New
York, NY, USA: ACM, 2014, pp. 106–115.

[9] R. Strackx and F. Piessens, “Ariadne: A minimal approach to
state continuity,” in 25th USENIX Secur. Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp.
875–892.

[10] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune, “Memoir: Practical state continuity for protected
modules,” in 2011 IEEE Symp. on Secur. and Priv., May 2011,
pp. 379–394.

[11] E. Valea, M. D. Silva, G. D. Natale, M. Flottes, S. Dupuis,
and B. Rouzeyre, “SECCS: SECure Context Saving for IoT
devices,” in 13th Inter. Conf. on Design & Techn. of Integrated
Systems In Nanoscale Era, DTIS 2018, 2018, pp. 1–2.

[12] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens,
P. Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller,
and F. Freiling, “Sancus 2.0: A Low-Cost Security Architec-
ture for IoT Devices,” ACM Trans. Priv. Secur., vol. 20, no. 3,
pp. 7:1–7:33, Jul. 2017.

[13] P. Rogaway, “Authenticated-encryption with associated-data,”
in Proc. of the 9th ACM Conf. on Computer and Communi-
cation Security, CCS 2002, 2002, pp. 98–107.

[14] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: Cold boot attacks
on encryption keys,” in Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, 2008, pp. 45–60.

[15] MSP MCU FRAM Utilities, 2017. [Online].
Available: http://software-dl.ti.com/msp430/msp430\
public\ sw/mcu/msp430/FRAM\ Utilities/latest/exports/
FRAM-Utilities-UsersGuide.pdf

[16] MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User’s Guide, 2012, no.
SLAU678M. [Online]. Available: http://www.ti.com/lit/ug/
slau367o/slau367o.pdf

[17] M. Bellare, P. Rogaway, and D. Wagner, The EAX Mode of
Operation. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 389–407.

[18] J. Birr-Pixton, “Cifra: Cryptographic primitive collection,”
https://github.com/ctz/cifra, 2017.

[19] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V.
Keer, “Keccak code package,” 2017.

Design, Automation And Test in Europe (DATE 2019) 739


