
Exploiting Security Vulnerabilities

in Intermittent Computing

Archanaa S. Krishnan(B) and Patrick Schaumont(B)

Virginia Tech, Blacksburg, VA 24060, USA
{archanaa,schaum}@vt.edu

Abstract. Energy harvesters have enabled widespread utilization of
ultra-low-power devices that operate solely based on the energy har-
vested from the environment. Due to the unpredictable nature of har-
vested energy, these devices experience frequent power outages. They
resume execution after a power loss by utilizing intermittent computing
techniques and non-volatile memory. In embedded devices, intermittent
computing refers to a class of computing that stores a snapshot of the sys-
tem and application state, as a checkpoint, in non-volatile memory, which
is used to restore the system and application state in case of power loss.
Although non-volatile memory provides tolerance against power failures,
they introduce new vulnerabilities to the data stored in them. Sensitive
data, stored in a checkpoint, is available to an attacker after a power
loss, and the state-of-the-art intermittent computing techniques fail to
consider the security of checkpoints. In this paper, we utilize the vulner-
abilities introduced by the intermittent computing techniques to enable
various implementation attacks. For this study, we focus on TI’s Com-
pute Through Power Loss utility as an example of the state-of-the-art
intermittent computing solution. First, we analyze the security, or lack
thereof, of checkpoints in the latest intermittent computing techniques.
Then, we attack the checkpoints and locate sensitive data in non-volatile
memory. Finally, we attack AES using this information to extract the
secret key. To the best of our knowledge, this work presents the first
systematic analysis of the seriousness of security threats present in the
field of intermittent computing.

Keywords: Intermittent computing · Attacking checkpoints
Embedded system security · Non-volatile memory

1 Introduction

Energy harvesters generate electrical energy from ambient energy sources, such
as solar [JM17], wind [HHI+17], vibration [YHP09], electromagnetic radia-
tion [CLG17], and radio waves [GC16]. Recent advances in energy-harvesting
technologies have provided energy autonomy to ultra-low-power embedded
devices. Since the energy is harvested depending on the availability of ambi-
ent energy, the harvester does not harvest energy continuously. Based on the

c© Springer Nature Switzerland AG 2018
A. Chattopadhyay et al. (Eds.): SPACE 2018, LNCS 11348, pp. 104–124, 2018.
https://doi.org/10.1007/978-3-030-05072-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05072-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-05072-6_7


Exploiting Security Vulnerabilities in Intermittent Computing 105

availability of energy, the device is powered on/off, leading to an intermittent
operation.

Classical devices come equipped with volatile memory, such as SRAM
[AKSP18] or DRAM [NNM+18], which loses its state on power loss. In recent
years, there has been a vast influx of devices with write efficient non-volatile
memory, such as FRAM [YCCC07] or MRAM [SVRR13]. Non-volatile memory
retains its state even after a power loss and provides instant on/off capabilities
to intermittent devices. A majority of these devices contain both volatile and
non-volatile memory. Typically, volatile memory is used to store the system and
application state as it is relatively faster than non-volatile memory. The system
state includes the processor registers, such as the program counter, stack pointer,
and other general purpose registers, and settings of all the peripherals in use.
The application state includes the stack, heap and any developer defined vari-
ables that are needed to resume program execution. And non-volatile memory is
used to store the code sections, which is non-rewritable data. In the event of a
power loss, volatile memory loses its program state, wiping both the application
and system state. Thus, it is difficult to implement long-running applications on
intermittent devices with only non-volatile memory to ensure accurate program
execution.

Intermittent computing was proposed as a cure-all for the loss of program
state and to ensure forward progress of long-running applications. Instead of
restarting the device, intermittent computing creates a checkpoint that can be
used to restore the device when power is restored. A checkpoint contains all the
application and system state information necessary to continue the long-running
application. It involves two steps: checkpoint generation and checkpoint restora-

tion. In the checkpoint generation process, all the necessary information is stored
as a checkpoint in non-volatile memory. When the device is powered up again,
after a power loss, instead of restarting the application, checkpoint restoration
is initiated. In the checkpoint restoration process, the system and application
state are restored using the most recently recorded checkpoint, ensuring that
the application resumes execution. There is extensive research in the field of
intermittent computing, which is discussed further in the paper, that focuses on
efficient checkpointing techniques for intermittent devices.

The introduction of non-volatile memory to a device changes the system
dynamics by manifesting new vulnerabilities. Although the purpose of non-
volatile memory is to retain checkpointed data even after a power loss, the sen-
sitive data present in a checkpoint is vulnerable to an attacker who has access to
the device’s non-volatile memory. The non-volatile memory may contain pass-
words, secret keys, and other sensitive information in the form of checkpoints,
which are accessible to an attacker through a simple JTAG interface or advanced
on-chip probing techniques [HNT+13,SSAQ02]. As a result, non-volatile mem-
ory must be secured to prevent unauthorized access to checkpoints.

Recent work in securing non-volatile memory guarantees confidentiality of
stored data [MA18]. Sneak -path encryption (SPE) was proposed to secure non-
volatile memory using a hardware intrinsic encryption algorithm [KKSK15]. It



106 A. S. Krishnan and P. Schaumont

exploits physical parameters inherent to a memory to encrypt the data stored
in non-volatile memory. iNVM, another non-volatile data protection solution,
encrypts main memory incrementally [CS11]. These techniques encrypt the non-
volatile memory in its entirety and are designed primarily for classical computers
with unlimited compute power. We are unaware of any lightweight non-volatile
memory encryption technique that can be applied to an embedded system. Con-
sequently, a majority of the intermittent computing solutions do not protect their
checkpoints in non-volatile memory [Hic17,JRR14,RSF11]. As far as we know,
the state-of-the-art research in the intermittent computing field does not provide
a comprehensive analysis of the vulnerabilities enabled by its checkpoints.

In this paper, we focus on the security of checkpoints, particularly that of
intermittent devices, when the device is powered off. We study existing inter-
mittent computing solutions and identify the level of security provided in their
design. For evaluation purposes, we choose Texas Instruments’(TI) Compute
Through Power Loss (CTPL) utility as a representative of the state-of-the-art
intermittent computing solutions [Tex17a]. We exploit the vulnerabilities of an
unprotected intermittent system to enable different implementation attacks and
extract the secret information. Although the exploits will be carried out on
CTPL utility, they are generic and can be applied to any intermittent comput-
ing solution which stores its checkpoints in an insecure non-volatile memory.

Contribution: We make the following contributions in this paper:

– We are the first to analyze the security of intermittent computing techniques
and to identify the vulnerabilities introduced by its checkpoints.

– We implement TI’s CTPL utility and attack its checkpoints to locate the
sensitive variables of Advanced Encryption Standard (AES) in non-volatile
memory.

– We then attack a software implementation of AES using the information
identified from unsecured checkpoints.

Outline: Section 2 gives a brief background on existing intermittent comput-
ing solutions and their properties, followed by a detailed description of CTPL
utility in Sect. 3. Section 4 details our attacker model. Section 5 enumerates the
vulnerabilities of an insecure intermittent system, with a focus on CTPL utility.
Section 6 exploits these vulnerabilities to attack CTPL’s checkpoints to locate
sensitive information stored in non-volatile memory. Section 7 utilizes the unse-
cured checkpoints to attack AES and extract the secret key. We conclude in
Sect. 8.

2 Background on Intermittent Computing and Its

Security

Traditionally, to generate a checkpoint of a long-running application, the appli-
cation is paused before the intermittent computing technique can create a check-
point. The process of saving and restoring the device state consumes extra energy



Exploiting Security Vulnerabilities in Intermittent Computing 107

Table 1. A comparison of the state-of-the-art intermittent computing techniques based
on the properties of its checkpoints and the nature of the checkpoint generation calls,
such as online checkpoint calls, checkpoint calls placed around idempotent sections of
code that do not affect the device state after multiple executions, voltage-aware tech-
niques that dynamically checkpoint based on the input voltage, energy-aware tech-
niques that dynamically generate checkpoints depending on the availability of energy
and checkpoint (CKP) security

Intermittent
model

Properties

Online Idempotency Voltage
aware

Energy
aware

HW SW CKP
security

DINO [LR15] – – – – – � None

Mementos [RSF11] – – – � – � None

QuickRecall [JRR14] � – � – � � None

Clank [Hic17] – � – – � – None

Ratchet [WH16] – � – – – � None

Hibernus [BWM+15] � – – � � � None

CTPL [Tex17a] � – � – – � None

Ghodsi et al. [GGK17] � – – – – � Confidentiality

and time over the regular execution of the application, which is treated as the
checkpoint overhead. This overhead depends on several factors such as the influx
of energy, power loss patterns, progress made by the application, checkpoint size,
and frequency of checkpoint generation calls. The latest intermittent comput-
ing techniques strive to be efficient, by minimizing the checkpoint overhead in
their design. Table 1 compares various state-of-the-art intermittent computing
techniques based on their design properties.

In DINO [LR15], Lucia et al. developed a software solution to maintain the
volatile and non-volatile data consistency using a task-based programming and
task-atomic execution model of an intermittent device. Ransford et al. [RSF11]
developed Mementos, a software checkpointing system, which can be used with-
out any hardware modifications. Mementos is an energy-aware checkpointing
technique because checkpoint calls are triggered online depending on the avail-
ability of energy. At compile time, energy checks are inserted at the control
points of the software program. At runtime, these checks trigger the checkpoint
call depending on the capacitor voltage.

QuickRecall [JRR14], another online checkpointing technique, is a lightweight
in-situ scheme that utilizes FRAM as a unified memory. When FRAM is utilized
as a unified memory, it acts as both the conventional RAM and ROM. Now,
FRAM contains both the application state from RAM and non-writable code
sections from ROM. In the event of power-loss, RAM data remains persistent in
FRAM and upon power-up, the program resumes execution without having to
restore it. The checkpoint generation call is triggered upon detecting a drop in



108 A. S. Krishnan and P. Schaumont

Fig. 1. MSP430FRxxxx archi-
tecture, contains the core
(CPU), power management
module (PMM), volatile mem-
ory (SRAM), non-volatile
memory (FRAM) and other
peripheral modules

Table 2. State of the core (CPU), the power man-
agement module (PMM), volatile memory (SRAM)
and various clock sources (MCLK, ACLK, SMCLK)
that drive various peripheral modules in different
operating modes

Mode CPU PMM SRAM MCLK ACLK SMCLK

LPM0 On On On On On Optional

LPM1 Off On On Off On Optional

LPM2 Off On On Off On Optional

LPM3 Off On On Off On Off

LPM4 Off On On Off Off Off

LPMx.5 Off Off Off Off Off Off

the supply voltage. The net overhead incurred for checkpointing is reduced to
storing and restoring the volatile registers that contain system state information.
Apart from these energy-aware checkpointing techniques, other schemes have
been proposed that leverages the natural idempotent properties of a program in
their design [Hic17,WH16]. This property aids in identifying idempotent sections
of code that can be executed multiple times and generate the same output every
time.

None of the above intermittent computing solutions consider the security of
its checkpoints, and the vulnerabilities introduced by non-volatile memory are
ignored. An attacker with physical access to the device has the potential to read
out the sensitive data stored in non-volatile memory. We know of one work which
attempts to secure its checkpoints by encryption [GGK17]. Although encryption
provides confidentiality, it does not guarantee other security properties, such
as authenticity and integrity, without which an intermittent system is not fully
secure because of the following reason. In all the latest checkpointing solutions,
the device decrypts and restores the stored checkpoint without checking if it
is a good or a corrupt checkpoint. If the attacker has the potential to corrupt
the encrypted checkpoints, unbeknownst to the device, it will be restored to an
attacker-controlled state. We exploit the lack of checkpoint security to mount
our attacks in Sect. 7.

In the next section, we focus on TI’s CTPL utility as an example of the latest
intermittent computing solution.

3 CTPL

TI has introduced several low power microcontrollers in the MSP430 series.
The FRAM series of devices, with a component identifier of the form
MSP430FRxxxx, has up to 256 kB of on-chip FRAM for long-term data stor-
age [Tex17b]. FRAM is an ideal choice of non-volatile memory for these micro-
controllers for its high speed, low power, and endurance properties [KJJL05].



Exploiting Security Vulnerabilities in Intermittent Computing 109

Fig. 2. Principle of operation of CTPL, checkpoint (CKP) generation and restoration
based on the supply voltage, Vcc, and its set threshold voltage, Vth

Figure 1 illustrates the architecture of the FR series of devices. The MSP430
CPU is a 16-bit RISC processor with sixteen general purpose registers (GPR).
The power management module (PMM) manages the power supply to CPU,
SRAM, FRAM and other modules that are used. Typically, SRAM is the main
memory that holds the application and system state. These microcontrollers can
be operated in different operating modes ranging from Active Mode (AM) to
various low power modes (LPM), listed in Table 2.

In active mode, PMM is enabled, which supplies the power supply to the
device. The master clock (MCLK) is active and is used by the CPU. The auxiliary
clock (ACLK), which is active, and subsystem master clock (SMCLK), which is
either be active or disabled, are software selectable by the individual peripheral
modules. For example, if a timer peripheral is used, it can either be sourced by
ACLK or SMCLK, depending on the software program.

In low power modes, the microcontroller consumes lesser power compared to
the active mode. The amount of power consumed in these modes depends on
the type of LPM. Typically, there are five regular low power modes - LPM0 to
LPM4; and two advanced low power modes - LPM3.5 and LPM4.5, also known
as LPMx.5. As listed in Table 2, in all low power modes, the CPU is disabled as
MCLK is not active. Apart from the CPU, other modules are disabled depending
on its clock source. For instance, if a timer peripheral is sourced by SMCLK in
active mode, this timer will be disabled in LPM3 as SMCLK is not active in this
low power mode. But in all the regular low power modes, as PMM is enabled,
SRAM remains active, which leaves the system and application state unchanged.
Upon wakeup from a regular LPM, the device only needs to reinitialize the
peripherals in use and continue with the retained SRAM state.

In LPMx.5, most of the modules are powered down, including PMM, to
achieve the lowest power consumption of the device. Since PMM is no longer
enabled, SRAM is disabled and the system and application state stored in SRAM
are lost. Upon wakeup from LPMx.5, the core is completely reset. The applica-



110 A. S. Krishnan and P. Schaumont

Fig. 3. Voltage monitor using comparator, COMP E

tion has to reinitialize both the system and application state in SRAM, including
the CPU state, required peripheral state, local variables, and global variables.
Even though LPMx.5 is designed for ultra-low power consumption, the addi-
tional initialization requirement increases the start-up time and complexity of
the application. TI introduced CTPL [Tex17a], a checkpointing utility that saves
the necessary system and application state depending on the low power mode,
to remove the dependency of saving and restoring state from the application.

CTPL utility also provides a checkpoint on-demand solution for intermittent
systems, similar to QuickRecall [JRR14]. It defines dedicated linker description
files for all its MSP430FRxxxx devices that allocates all the application data
sections in FRAM and allocates a storage location to save volatile state infor-
mation. Figure 2 illustrates the checkpoint generation and restoration process
with respect to the supply voltage. A checkpoint is generated upon detecting
power loss, which stores the volatile state information in non-volatile memory.
Volatile state includes the stack, processor registers, general purpose registers
and the state of the peripherals in use. Power loss is detected either using the
on-chip analog-to-digital (ADC) converter or with the help of the internal com-
parator. Even after the device loses the main power supply, it is powered by the
decoupling capacitors for a small time. The decoupling capacitors are connected
to the power rails, and they provide the device with sufficient grace time to
checkpoint the volatile state variables. After the required states are saved in a
checkpoint, the device waits for a brownout reset to occur as a result of power
loss. A timer is configured to timeout for false power loss cases when the voltage
ramps up to the threshold voltage, Vth, illustrated in Fig. 2. Checkpoint restora-
tion process is triggered by a timeout, device reset or power on, where the device
returns to the last known application state using the stored checkpoint.

Using a Comparator to Detect Power Loss: The voltage monitor in Fig. 3
can be constructed using the comparator peripheral, COMP E, in conjunction with
an external voltage divider, to detect power loss. The input voltage supply, VCC ,
is fed to an external voltage divider which provides an output equivalent to
VCC/2. The comparator is configured to trigger an interrupt if the output from
the voltage divider falls below the 1.5 V reference voltage, Vref , i.e, an interrupt
is triggered if VCC falls below 3 V. Vref is generated by the on-chip reference



Exploiting Security Vulnerabilities in Intermittent Computing 111

Fig. 4. CTPL checkpoint generation and restoration flowchart

module, REF A [Tex17b]. The interrupt service routine will disable the voltage
monitor and invoke the ctpl enterShutdown() function, which saves the volatile
state information.

Using ADC to Detect Power Loss: MSP430FRxxxx devices are equipped
with a 12-bit ADC peripheral, ADC12 B, which can also be used to monitor the
input voltage. Similar to the comparator based voltage monitor, the VCC/2 sig-
nal is constantly compared to a fixed reference voltage to detect power loss.
ADC peripheral is configured with the 2 V or 1.5 V reference voltage from the
device’s reference module, REF A. VCC/2 signal is provided by the internal bat-
tery monitor channel. The high side comparator is configured to 3.1 V. ADC
monitor is triggered when the device has a stable input voltage of 3.1 V, upon
which the device disables the high side trigger, enables the low side triggers, and
begins monitoring VCC . Upon detecting power loss the ADC monitor invokes
ctpl enterShutdown() function to save the volatile state information. The rest
of the brownout and timeout functionalities are the same for the comparator
and ADC based voltage monitor.

Checkpoint Generation: Call to ctpl enterShutdown() function saves the
volatile state in three steps, as shown in the bottom of Fig. 4. In the first step,
the volatile peripheral state, such as a timer, comparator, ADC, UART, etc.,
and general purpose registers (GPRs) are stored in the non-volatile memory.
The second and third step are programmed in assembly instructions to prevent
mangling the stack when it is copied to the non-volatile memory. In the second
step, the watchdog timer module is disabled to prevent unnecessary resets and
the stack is saved. Finally, the ctpl valid flag is set. ctpl valid flag, which is
a part of the checkpoint stored in FRAM, is used to indicate the completion of
the checkpoint generation process and is set after the CTPL utility has check-
pointed all the volatile state information. Until ctpl valid is set, the system



112 A. S. Krishnan and P. Schaumont

does not have a complete checkpoint. After the flag is set, the device waits for
a brownout reset or timeout. CTPL defines dedicated linker description files for
all MSP430FRxxxx devices that places its application data sections in FRAM.
Application specific variables, such as local and global variables, are retained in
FRAM through power loss without explicitly storing or restoring them.

Checkpoint Restoration: Upon power-up, the start-up sequence checks if the
ctpl valid flag is set, as illustrated in Fig. 4. If the flag is set, then the non-
volatile memory contains a valid checkpoint which can be used to restore the
device, else the device starts execution from main(). Checkpoint restoration is
also carried out in three steps. First, the stack is restored from the checkpoint
location using assembly instructions, which resets the program stack. Second,
CTPL restores the saved peripherals and general purpose registers before restor-
ing the program counter in the final step. Then, the device jumps to the program
counter set in the previous step and resumes execution.

In this complex mesh of checkpoint generation and restoration process of
CTPL, checkpoint security is ignored. All the sensitive information from the
application that is present in the stack, general purpose registers, local variables
and global variables are vulnerable in the non-volatile memory. In the following
sections, we describe our attacker model and enumerate various security risks
involved in leaving checkpoints unsecured in a non-volatile memory.

4 Attacker Model

To evaluate the security of the current intermittent computing solutions, we
focus on the vulnerabilities of the system when it is suspended after a power
loss, and assume that the device incorporates integrity and memory protection
features when it is powered on. We study two attack scenarios to demonstrate
the seriousness of the security threats introduced by the checkpoints of an inter-
mittent system. In the first case, we consider a knowledgeable attacker who has
sufficient information about CTPL and the target device to attack the target
algorithm. In the second case, we consider a blind attacker who does not have
any information about CTPL or the target device but still possess the objective
to attack the target algorithm. In both the cases, the attacker has the following
capabilities.

– The attacker has physical access to the device.
– The attacker can access the memory via traditional memory readout ports

or employ sophisticated on-chip probing techniques [HNT+13,SSAQ02], to
retrieve persistent data. This allows unrestricted reads and writes to the data
stored in the device memory, particularly the non-volatile memory, directly
providing access to the checkpoints after a power loss. All MSP430 devices
have a JTAG interface, which is mainly used for debugging and program
development. We use it to access the device memory using development tools,
such as TI’s Code Composer Studio (CCS) and mspdebug.



Exploiting Security Vulnerabilities in Intermittent Computing 113

– The attacker has sufficient knowledge about the target algorithm to analyze
the memory. We assume that each variable of the target algorithm is stored in
a contiguous memory location on the device. The feasibility of this assumption
is described in Sect. 6 using Fig. 5

– The attacker can also modify the data stored in non-volatile memory without
damaging the device. Therefore, the attacker has the ability to corrupt the
checkpoints stored in non-volatile memory.

5 Security Vulnerabilities of Unsecured Checkpoints

Based on the above attacker model, we identify the following vulnerabilities,
which are introduced by the checkpoints of an intermittent system.

Checkpoint Snooping: An attacker with access to the device’s non-volatile
memory has direct access to its checkpoints. Any sensitive data included in a
checkpoint, such as secret keys, the intermediate state of a cryptographic prim-
itive and other sensitive application variables, is now available to the attacker.
Since CTPL is an open-source utility, a knowledgeable attacker can study the
utility and easily identify the location of checkpoints, and in turn, extract sen-
sitive information. A blind attacker can also extract sensitive information by
detecting patterns that occur in memory. Section 6 provides a detailed descrip-
tion of techniques used in this paper to extract sensitive information. Vulnerable
data, which is otherwise private during application execution, is now available
for the attacker to use at their convenience. A majority of the intermittent com-
puting techniques, similar to CTPL, do not protect their checkpoints. Although
encrypting checkpoints protects the confidentiality of data, as in [GGK17], it is
not sufficient to provide overall security to an intermittent system.

Checkpoint Spoofing: With the ability to modify non-volatile memory, the
attacker can make unrestricted changes to checkpoints. In CTPL and other inter-
mittent computing solutions, if a checkpoint exists, it is used to restore the device
without checking if it is indeed an unmodified checkpoint of the current appli-
cation setting. Upon power off, both the blind and knowledgeable attacker can
locate the sensitive variable in a checkpoint, change it to an attacker-controlled
value. As long as the attacker does not reset ctpl valid, the checkpoint remains
valid for CTPL. At the next power-up, unknowingly, the device restores this tam-
pered checkpoint. From this point, the device continues execution in an attacker-
controlled sequence. Encrypting checkpoints is not sufficient protection against
checkpoint spoofing. The attacker can corrupt the encrypted checkpoint at ran-
dom, and the device will decrypt and restore the corrupted checkpoint. Since the
decrypted checkpoint may not necessarily correspond to a valid system or appli-
cation state, the device may restore to an unstable state, leading to a system
crash.



114 A. S. Krishnan and P. Schaumont

Fig. 5. AES variables present in a checkpoint and their contiguous placement in
FRAM identified using the Linux command nm. nm lists the symbol value (hexadec-
imal address), symbol type (D for data section) and the symbol name present in the
executable file main.elf.

Checkpoint Replay: An attacker who can snoop into the non-volatile memory
can also make copies of all the checkpoints. Since both the blind and knowledge-
able attackers are aware of the nature of the software application running on the
device, they possess enough information to control the sequence of program exe-
cution. Equipped with the knowledge of the history of checkpoints, the attacker
can overwrite the current checkpoint with any arbitrary checkpoint from their
store of checkpoints. Since ctpl valid is set in every checkpoint, the device is
restored to a stale state from the replayed checkpoint. This gives the attacker
capabilities to jump to any point in the software program with just a memory
overwrite command. Similar to CTPL, the rest of the intermittent computing
techniques also restore replayed checkpoints without checking if it is indeed the
latest checkpoint.

6 Exploiting CTPL’s Checkpoints

In this section, we provide a brief description of the software application under
attack, followed by our experimental setup. We then explain our method to
identify the location of checkpoints and sensitive data in FRAM, based on the
capabilities of the attacker. We show that checkpoint snooping is sufficient to
identify the sensitive data in non-volatile memory.

6.1 Experimental Setup

To mount our attack on CTPL utility, we used TI’s MSP430FR5994 LaunchPad
development board. The target device is equipped with 256 kB of FRAM which
is used to store the checkpoints. We use TI’s FRAM utility library to implement
CTPL as a utility API [Tex17a]. We implement TI’s software AES128 library
on MSP430FR5994 as the target application running on the intermittent device.
Figure 5 lists a minimum set of variables that must be checkpointed to ensure
forward progress of AES. They are declared persistent to ensure that they are
placed in FRAM. Figure 5 also lists the location of these variables in FRAM,
identified using the Linux nm command. All the AES variables are placed next to
each other in FRAM, from 0x1029F to 0x1037E, which satisfies our assumption
that the variables of the target algorithm are stored in a contiguous memory



Exploiting Security Vulnerabilities in Intermittent Computing 115

Fig. 6. Memory dump of FRAM, where the checkpoint begins from 0x10000 and ends
at 0x103DB

location. The executable file,main.elf, was only used to prove the feasibility
of this assumption and is not needed to carry out the attack described in this
paper.

As CTPL is a voltage-aware checkpointing scheme, the application devel-
oper need not place checkpoint generation and restoration calls in the soft-
ware program. CTPL, which is implemented as a library on top of the soft-
ware program, automatically saves and restores the checkpoint based on the
voltage monitor output. To access the checkpoints, we use mspdebug commands
memory dump (md) and memory write (mw) to read from and write to the non-
volatile memory, respectively, via the JTAG interface. Other memory probing
techniques, [HNT+13,SSAQ02], can also be utilized to deploy our attack on AES
when JTAG interface is disabled or unavailable.

6.2 Capabilities of a Knowledgeable Attacker

Armed with the information about CTPL and the target device, a knowledge-
able attacker analyzes the 256 kB of FRAM to identify the location and size of
checkpoints in non-volatile memory. The following analysis can be performed
after CTPL generates at least one checkpoint, which is generated at random, on
the target device.

Locate the Checkpoints in Memory: A knowledgeable attacker examines
CTPL’s linker description file for MSP430FR5994 to identify the exact location
of FRAM region in the device’s memory that hosts the checkpoints. In the linker
description file, FRAM memory region is defined from 0x10000, which is the
starting address of .persistent section of memory. CTPL places all application
data sections in the .persistent section of the memory. Thus, the application
specific variables required for forward progress are stored somewhere between in
0x10000 and 0x4E7FF.

Identifying Checkpoint Size: A knowledgeable attacker has the ability to
distinguish the checkpoint storage from regular FRAM memory regions using two



116 A. S. Krishnan and P. Schaumont

Fig. 7. A section of the diff output of memory dumps that locates a consistent dif-
ference of 16 bytes at the memory location 0x102B0, which pinpoints the location of
the intermediate state of AES

properties of the target device. First, any variable stored in FRAM must either be
initialized by the program or it will be initialized to zero by default. Second, the
target device’s memory reset pattern is 0xFFFF. Based on these properties, the
attacker determines that the checkpoint region of FRAM will either be initialized
to a zero or non-zero value and the unused region of FRAM will retain the
reset pattern. The knowledgeable attacker generates a memory dump of the
entire FRAM memory region to distinguish the location of checkpoints. In the
memory dump, only a small section of the 256 kB of FRAM was initialized, and
the majority of the FRAM was filled with 0xFFFF, as shown in Fig. 6. Thus,
the checkpoint is stored starting from 0x10000 up to 0x103DB, with a size of 987
bytes. In an application where the length of input and output are fixed, which is
the case of our target application, the size of a checkpoint will remain constant.
It is sufficient to observe this 987 bytes of memory to monitor the checkpoints.

Thus, a knowledgeable attacker who has access to the device’s linker descrip-
tion file and device’s properties can pinpoint the exact location of the checkpoint
with a single copy of FRAM.

6.3 Capabilities of a Blind Attacker

Unlike knowledgeable attackers, blind attackers do not possess any information
about CTPL or the device, but only have unrestricted access to the device mem-
ory. They can still analyze the device memory to locate sensitive information
stored in it. The set capabilities of a knowledgeable attacker is a superset of the
set of capabilities of a blind attacker. Therefore, the following analysis can also
be performed by a knowledgeable attacker.

To ensure continuous operation of AES, CTPL stores the intermediate state
of AES, state; secret key, key; round counter, round and other application
variables in FRAM. These variables are present in every checkpoint and can be



Exploiting Security Vulnerabilities in Intermittent Computing 117

identified by looking for a pattern in the memory after a checkpoint is generated.
To study the composition of device memory, the blind attacker collects 100
different dumps of the entire memory of the device, where each memory dump is
captured after a checkpoint is generated at a random point in AES, irrespective
of the location and frequency of checkpoint calls. 100 was chosen as an arbitrary
number of memory dumps to survey as a smaller number may not yield conclusive
results. And a larger number will affirm the conclusions derived from 100 memory
dumps. The blind attacker uses the following technique to locate state in the
memory.

Locate the Intermediate State of AES: At a given point of time, AES
operates on 16 bytes of intermediate state. This intermediate state is passed
through 10 rounds of operation before a ciphertext is generated. By design,
each round of AES confuses and diffuses its state such that at least half the
state bytes are changed after every round. After two rounds of AES, all the 16
bytes of intermediate state are completely different from the initial state [DR02].
Thus, any 16 bytes of contiguous memory location that is different between
memory dumps is a possible intermediate state. To identify the intermediate
state accurately, the blind attacker stores each of the collected memory dump in
an individual text file for post-processing using the Linux diff command. diff
command locates the changes between two files by comparing them line by line.
The attacker computes the difference between each of the 100 memory dumps
using this command and makes the following observation. On average, seven
differences appear between every memory dump. Six of the seven differences
correspond to small changes to memory ranging from a single bit to a couple
of bytes. Only one difference, located at 0x102A2, corresponds to a changing
memory of up to 16 contiguous bytes, as shown in Fig. 7. Based on the design of
AES, the attacker concludes that any difference in memory that lines up to a 16
bytes can be inferred as a change in state. From the diff output highlighted in
Fig. 7, the blind attacker accurately identifies state to begin from 0x102B0 and
end at 0x102BF. It is also reasonable to assume that state is stored in the same
location in every checkpoint as it appears at 0x102B0 in all memory dumps.

The attacker can also pinpoint the location of the round counter using a
similar technique. round is a 4-bit value that ranges from 0 to 11 depending on
the different rounds of AES. Thus, any difference in memory that spans across
4 contiguous bits, and takes any value from 0 to 11 are ideal candidates for the
round counter.

7 Attacking AES with Unsecured Checkpoints

Equipped with the above information on checkpoints and location of sensitive
variables in FRAM, we extract the secret key using three different attacks -
brute forcing the memory, injecting targeted faults in the memory and replay-
ing checkpoints to enable side channel analysis. We demonstrate that when the
attacker can control the location of checkpoint generation call, it is most efficient



118 A. S. Krishnan and P. Schaumont

to extract the secret key using fault injection techniques, and when the attacker
has no control over the location of checkpoint call, brute forcing the key from
memory yields the best results.

7.1 Brute Forcing the Key from Memory

Since the device must checkpoint all the necessary variables to ensure forward
progress, it is forced to checkpoint the secret key used for encryption as well. To
extract the key by brute forcing the memory, the attacker needs a checkpoint
or a memory dump with a checkpoint, a valid plaintext/ciphertext pair, and
AES programmed on an attacker-controlled device who’s plaintext and key can
be changed by the attacker. The attacker generates all possible keys from the
memory, programs the attacker-controlled device with the correct plaintext and
different key guesses. The key guess that generates the correct ciphertext output
on the attacker-controlled device is the target device’s secret key. Based on the
assumption that the key stored in FRAM appears in 16 bytes of contiguous
memory location, the attacker computes the number of possible keys using the
following equation:

NKeyGuess = Lmemory − Lkey + 1 (1)

where, NKeyGuess is the total number of key guesses that can be derived from
a memory, Lmemory is the length of the memory in bytes and Lkey is the length
of key in bytes. The number of key guesses varies depending on the capabilities
of the attacker, as detailed below.

Knowledgeable Attack: Knowledgeable attackers begins with a copy of a
single checkpoint from FRAM. The 16-byte key is available in FRAM amidst
the checkpointed data, which is 987 bytes long. Using Eq. 1, a knowledgeable
attacker computes the number of possible key guesses to be 972. Thus, for a
knowledgeable attacker, the key search space is reduced from 2128 to 29 + 460.

Blind Attack: Since blind attackers do not know the location or size of the
checkpoint, they start with a copy of the memory of the device that contains a
single checkpoint. MSP430FR5994 has 256 kB of FRAM, which is 256,000 bytes
long. Using Eq. 1, the number of key guesses for a blind attacker equals 255,985.
For a blind attacker, the search space for the key is reduced to 218

− 6159
In both the attacker cases, all possible keys are derived by going over the

memory 16 contiguous bytes at a time. These key guesses are fed to the attacker-
controlled device to compute the ciphertext. The key guess that generates the
correct ciphertext is found to be the secret key of AES. Even though a blind
attacker generates more key guesses and requires more time, they can still derive
the key in less than 218 attempts, which is far less compared to the 2128 attempts
of a regular brute force attack. The extracted key can be used to decrypt sub-
sequent ciphertexts as long as it remains constant in checkpoints. If none of the



Exploiting Security Vulnerabilities in Intermittent Computing 119

key guesses generate the correct ciphertext, then the secret was not checkpointed
by CTPL. When the key is not stored in FRAM, it can be extracted using the
two attacks described below.

7.2 Injecting Faults in AES via Checkpoints

Fault attacks alter the regular execution of the program such that the faulty
behavior discloses information that is otherwise private. Several methods of fault
injection have been studied by researchers, such as single bit faults [BBB+10]
and single byte faults [ADM+10]. A majority of these methods require dedicated
hardware support in the form of laser [ADM+10] or voltage glitcher [BBGH+14]
to induce faults in the target device. Even with dedicated hardware, it is not
always possible to predict the outcome of a fault injection. In this paper, we
focus on injecting precise faults to AES and use existing fault analysis methods
to retrieve the secret key.

To inject a fault on the target device, the attacker needs the exact location
of the intermediate state in memory and the ability to read and modify the
device memory. They also require a correct ciphertext output to analyze the
effects of the injected fault. The correct ciphertext output is the value of state
after the last round of AES, which is obtained from a memory dump of the
device that contains a checkpoint that was generated after AES completed all
ten rounds of operation. Both the blind and the knowledgeable attacker know
the location of state in memory and have access to memory. A simple memory
write command can change the state and introduce single or multiple bit faults
in AES. This type of fault injection induces targeted faults in AES without
dedicated hardware support. We describe our method to inject single bit and
single byte fault to perform differential fault analysis (DFA) on AES introduced
in [Gir05] and [DLV03] respectively.

Inducing Single Bit Faults: To implement the single-bit DFA described in
[Gir05], the attacker requires a copy of the memory that contains a checkpoint
that was generated just before the final round of AES. This memory contains
the intermediate state which is the input to the final round. The attacker reads
state from 0x102B0, modifies a single-bit at an arbitrary location in state and
overwrites it with this faulty state to induce a single-bit fault. When the device
is powered-up, CTPL restores the tampered checkpoint and AES resumes com-
putation with the faulty state. The attacker then captures the faulty ciphertext
output and analyzes it with the correct ciphertext to compute the last round key
and subsequently the secret key of AES using the method described in [Gir05].
With the help of the unsecured checkpoints from CTPL, both blind and knowl-
edgeable attackers can inject targeted faults in AES with single bit precision,
enabling easy implementation of such powerful attacks.

Inducing Single Byte Faults: To induce a single byte fault and implement
the attack described in [DLV03], the attacker requires a copy of the memory



120 A. S. Krishnan and P. Schaumont

that contains a checkpoint that was generated before the Mix Column trans-
formation of the ninth round of AES. Similar to a single bit fault, the attacker
overwrites state with a faulty state. The faulty state differs from the original
state by a single byte. For example, if state contains 0x0F in the first byte, the
attacker can induce a single byte fault by writing 0x00 to 0x102B0. When the
device is powered-up again, CTPL restores the faulty checkpoint. AES resumes
execution and the single byte fault is propagated across four bytes of the out-
put at the end of the tenth round of AES. The faulty ciphertext differs from
the correct ciphertext at memory locations 0x102B0, 0x102B7, 0x102BA and
0x102BD. Using this difference, the attacker derives all possible values for four
bytes of the last round key. They induce other single byte faults in state and
collect the faulty ciphertexts. They use the DFA technique described in [DLV03]
to analyze the faulty ciphertext output and find the 16 bytes of AES key with
less than 50 ciphertexts. Thus, the ability to modify checkpoints aids in precise
fault injection which can be exploited to break the confidentiality of AES.

7.3 Replaying Checkpoints to Side Channel Analysis

The secret key of AES can also be extracted by using differential power analysis
(DPA) [KJJ99]. In DPA, several power traces of AES are needed, where each
power trace corresponds to the power required to process a different plaintext
using the same secret key. These power traces are then analyzed to find the
relation between the device’s power consumption and secret bits, to derive the
AES key.

Similar to DFA, to extract the secret key using DPA, the attacker needs the
correct location of state of AES, which is known by both the blind and knowl-
edgeable attacker. With access to the device memory, the attacker can read and
modify state to enable DPA. To perform DPA on the target device, they need
a copy of the device memory that contains a checkpoint that was generated
just before AES begins computation. The state variable in this checkpoint con-
tains the plaintext input to AES. It is sufficient to replay this checkpoint to
restart AES computations multiple times. To obtain useful power traces from
each computation, the attacker overwrites state with a different plaintext every
time. Upon every power-up, CTPL restores the replayed checkpoint and AES
begins computation with a different plaintext each time. The target device now
encrypts each of the plaintext using the same key. The power consumption of
each computation is recorded and processed to extract the secret bits leaked
in the power traces, and consequently, derive the secret key. Even though this
attack also requires a copy of memory and modifications to state, it requires
other hardware, such as an oscilloscope, to collect and process the power traces
to derive the secret key.

7.4 Attack Analysis

If it is feasible to obtain a copy of the memory that contains a checkpoint from
a specified round of AES, then extracting the secret key by injecting faults in



Exploiting Security Vulnerabilities in Intermittent Computing 121

checkpoints and performing DFA is the most efficient method for two reasons.
First, DFA can extract secret key with less than 50 ciphertexts and an existing
DFA technique, such as [DLV03,Gir05], but DPA requires thousands of power
traces. Second, unlike DPA, DFA does not require hardware resources such as
an oscilloscope to extract the secret key. Thus, injecting faults in checkpoints
breaks the confidentiality of AES with the least amount of time and resources,
compared to replaying checkpoints. If it not possible to determine when the
checkpoint was generated, brute forcing the memory to extract the secret key is
the only feasible option. All the attacks described in this paper can be carried out
without any knowledge of the device or the intermittent computing technique in
use. The attacker only needs unrestricted access to the non-volatile memory to
extract sensitive data from it.

Apart from AES, the attacks explored in this paper are also effective
against other cryptographic algorithms and security features, such as control
flow integrity protection [DHP+15] and attestation solutions [EFPT12], that
maybe implemented on an intermittent device. Thus, unprotected checkpoints
undermine the security of the online protection schemes incorporated in inter-
mittent devices.

8 Conclusions

Intermittent computing is emerging as a widespread computing technique for
energy harvested devices. Even though several researchers have proposed effi-
cient intermittent computing techniques, the security of such computing plat-
forms is not a commonly explored problem. In this paper, we study the security
trends in the state-of-the-art intermittent computing solutions and investigate
the vulnerabilities of the checkpoints of CTPL. Using the unsecured checkpoints,
we demonstrate several attacks on AES that was used to retrieve the secret key.
This calls for intermittent computing designs that address the security pitfalls
introduced in this paper. Since security is not free, resource constrained devices
require lightweight protection schemes for their checkpoints. Hence, dedicated
research is needed to provide comprehensive, energy efficient security to inter-
mittent computing devices.

Acknowledgements. This work was supported in part by NSF grant 1704176 and
SRC GRC Task 2712.019.

References

[ADM+10] Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L.,
Tria, A.: Single-bit DFA using multiple-byte laser fault injection. In: 2010
IEEE International Conference on Technologies for Homeland Security
(HST), pp. 113–119, Novomber 2010

[AKSP18] Afzali-Kusha, H., Shafaei, A., Pedram, M.: A 125mV 2ns-access-time
16Kb SRAM design based on a 6T hybrid TFET-FinFET cell. In: 2018
19th International Symposium on Quality Electronic Design (ISQED),
pp. 280–285, March 2018



122 A. S. Krishnan and P. Schaumont

[BBB+10] Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.:
Fault attack on AES with single-bit induced faults. In: 2010 Sixth Inter-
national Conference on Information Assurance and Security, pp. 167–172,
August 2010

[BBGH+14] Beringuier-Boher, N., et al.: Voltage glitch attacks on mixed-signal sys-
tems. In: 2014 17th Euromicro Conference on Digital System Design, pp.
379-386, August 2014

[BWM+15] Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli,
D., Benini, L.: Hibernus: sustaining computation during intermittent sup-
ply for energy-harvesting systems. IEEE Embed. Syst. Lett. 7(1), 15–18
(2015)

[CLG17] Chaari, M.Z., Lahiani, M., Ghariani, H.: Energy harvesting from elec-
tromagnetic radiation emissions by compact flouresent lamp. In: 2017
Ninth International Conference on Advanced Computational Intelligence
(ICACI), pp. 272–275, February 2017

[CS11] Chhabra, S., Solihin, Y.: i-NVMM: a secure non-volatile main memory
system with incremental encryption. In: 38th International Symposium
on Computer Architecture (ISCA 2011), San Jose, CA, USA, 4–8 June
2011, pp. 177–188 (2011)

[DHP+15] Davi, L., et al.: HAFIX: hardware-assisted flow integrity extension. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, June 2015

[DLV03] Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on
A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol.
2846, pp. 293–306. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45203-4 23

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.
1007/978-3-662-04722-4

[EFPT12] El Defrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and
minimal architecture for (establishing a dynamic) root of trust. In: NDSS:
19th Annual Network and Distributed System Security Symposium, San
Diego, USA, 5–8 February 2012 (2012)

[GC16] Ghosh, S., Chakrabarty, A.: Green energy harvesting from ambient RF
radiation. In: 2016 International Conference on Microelectronics, Com-
puting and Communications (MicroCom), pp. 1–4, January 2016

[GGK17] Ghodsi, Z., Garg, S., Karri, R.: Optimal checkpointing for secure
intermittently-powered IoT devices. In: 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 376–383, Novem-
ber 2017

[Gir05] Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005).
https://doi.org/10.1007/11506447 4

[HHI+17] Habibzadeh, M., Hassanalieragh, M., Ishikawa, A., Soyata, T., Sharma,
G.: Hybrid solar-wind energy harvesting for embedded applications:
supercapacitor-based system architectures and design tradeoffs. IEEE
Circuits Syst. Mag. 17(4), 29–63 (2017)

[Hic17] Hicks, M.: Clank: architectural support for intermittent computation. In:
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, pp. 228–240. ACM, New York (2017)

https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11506447_4


Exploiting Security Vulnerabilities in Intermittent Computing 123

[HNT+13] Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C.,
Seifert, J.-P.: Breaking and entering through the silicon. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & #38; Communi-
cations Security, CCS 2013, pp. 733–744. ACM, New York (2013)

[JM17] Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar
energy harvesting. In: 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–4, May 2017

[JRR14] Jayakumar, H., Raha, A., Raghunathan, V.: QUICKRECALL: a low over-
head HW/SW approach for enabling computations across power cycles
in transiently powered computers. In: 2014 27th International Conference
on VLSI Design and 2014 13th International Conference on Embedded
Systems, pp. 330–335, January 2014

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[KJJL05] Kim, K., Jeong, G., Jeong, H., Lee, S.: Emerging memory technologies.
In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference,
pp. 423–426, September 2005

[KKSK15] Kannan, S., Karimi, N., Sinanoglu, O., Karri, R.: Security vulnerabili-
ties of emerging nonvolatile main memories and countermeasures. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(1), 2–15 (2015)

[LR15] Lucia, B., Ransford, B.: A simpler, safer programming and execution
model for intermittent systems. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2015, pp. 575–585. ACM, New York (2015)

[MA18] Mittal, S., Alsalibi, A.I.: A survey of techniques for improving security of
non-volatile memories. J. Hardw. Syst. Secur. 2(2), 179–200 (2018)

[NNM+18] Navarro, C., et al.: InGaAs capacitor-less DRAM cells TCAD demonstra-
tion. IEEE J. Electron Dev. Soc. 6, 884–892 (2018)

[RSF11] Ransford, B., Sorber, J., Kevin, F.: Mementos: system support for long-
running computation on RFID-scale devices. SIGARCH Comput. Archit.
News 39(1), 159–170 (2011)

[SSAQ02] Samyde, D., Skorobogatov, S., Anderson, R., Quisquater, J.J.: On a new
way to read data from memory. In: Proceedings of First International
IEEE Security in Storage Workshop, pp. 65–69, December 2002

[SVRR13] Sharad, M., Venkatesan, R., Raghunathan, A., Roy, K.: Multi-level mag-
netic RAM using domain wall shift for energy-efficient, high-density
caches. In: International Symposium on Low Power Electronics and
Design (ISLPED), pp. 64–69, September 2013

[Tex17a] Texas Instruments: MSP MCU FRAM Utilities (2017)
[Tex17b] Texas Instruments: MSP430FR58xx, MSP430FR59xx, MSP430FR68xx,

and MSP430FR69xx Family User’s Guide (2017)
[WH16] Van Der Woude, J., Hicks, M.: Intermittent computation without hard-

ware support or programmer intervention. In: 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2016), pp. 17–
32. USENIX Association, Savannah (2016)

https://doi.org/10.1007/3-540-48405-1_25


124 A. S. Krishnan and P. Schaumont

[YCCC07] Yang, C.F., Chen, K.H., Chen, Y.C., Chang, T.C.: Fabrication of one-
transistor-capacitor structure of nonvolatile TFT Ferroelectric RAM
devices using BA(Zr0.1 Ti0.9)O3 gated oxide film. IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 54(9), 1726–1730 (2007)

[YHP09] Yun, S.-N., Ham, Y.-B., Park, J.H.: Energy harvester using PZT actuator
with a cantilver. In: 2009 ICCAS-SICE, pp. 5514–5517, August 2009


	Exploiting Security Vulnerabilities in Intermittent Computing
	1 Introduction
	2 Background on Intermittent Computing and Its Security
	3 CTPL
	4 Attacker Model
	5 Security Vulnerabilities of Unsecured Checkpoints
	6 Exploiting CTPL's Checkpoints
	6.1 Experimental Setup
	6.2 Capabilities of a Knowledgeable Attacker
	6.3 Capabilities of a Blind Attacker

	7 Attacking AES with Unsecured Checkpoints
	7.1 Brute Forcing the Key from Memory
	7.2 Injecting Faults in AES via Checkpoints
	7.3 Replaying Checkpoints to Side Channel Analysis
	7.4 Attack Analysis

	8 Conclusions
	References


