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Abstract. We show that the link cobordism maps defined by the author are graded and satisfy

a grading change formula. Using the grading change formula, we prove a new bound for ΥK(t) for

knot cobordisms in negative definite 4-manifolds. As another application, we show that the link
cobordism maps associated to a connected, closed surface in S4 are determined by the genus of the

surface. We also prove a new adjunction relation and adjunction inequality for the link cobordism
maps. Along the way, we see how many known results in Heegaard Floer homology can be proven

using basic properties of the link cobordism maps, together with the grading change formula.
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1. Introduction

Ozsváth and Szabó [OS03a] define a homomorphism τ from the smooth concordance group to Z,
which satisfies

(1.1) |τ(K)| ≤ g4(K),

where g4(K) denotes the smooth 4-ball genus. More generally if (W,Σ): (S3,K1)→ (S3,K2) is an
oriented knot cobordism with b1(W ) = b+2 (W ) = 0, they proved that

(1.2) τ(K2) ≤ τ(K1)−
∣∣[Σ]

∣∣+ [Σ] · [Σ]

2
+ g(Σ)

where |[Σ]| denotes the integer obtained by factoring [Σ] ∈ H2(W,∂W ;Z) into H2(W ;Z) and setting

|[Σ]| := max
C∈Char(QW )

C2=−b2(W )

〈C, [Σ]〉.

In the above expression, Char(QW ) denotes the set of characteristic vectors of H2(W ;Z)/Tors.

This research was supported by NSF grant DMS-1703685.

1



2 IAN ZEMKE

Another set of concordance invariants from Heegaard Floer homology are Rasmussen’s local h-
invariants [Ras03]. If k is a nonnegative integer, Rasmussen defines a nonnegative integer invariant
Vk(K), and proves that

(1.3) Vk(K) ≤
⌈
g4(K)− k

2

⌉
,

whenever k ≤ g4(K) [Ras04, Theorem 2.3].
The original proofs of Equation (1.2) by Ozsváth and Szabó and Equation (1.3) by Rasmussen

used the behavior of Heegaard Floer homology with respect to surgeries on a 3-manifold.
There are several notable examples of geometric results which have been proven using maps in-

duced by link cobordisms. Sarkar gave a combinatorial proof of Equation (1.1) using maps associated
to link cobordisms defined using grid diagrams [Sar11a], though the proof does not extend to prove
the full version of the bound in Equation (1.2). Rasmussen [Ras10] gave a proof of the Milnor
conjecture using the s-invariant and cobordism maps defined on Khovanov homology.

The motivation of the present paper is to extend the tools of link Floer homology to prove
geometric results using the link cobordism maps from [Zem16]. As an example, we will show how
Equations (1.2) and (1.3) can be proven using link cobordism techniques; See Theorems 10.1 and
10.2. In the rest of the paper, we apply our techniques to derive new geometric applications of link
Floer homology.

1.1. A bound on ΥK(t). Using the techniques we develop in this paper, we prove a new bound
on Ozsváth, Stipsicz and Szabó’s concordance invariant ΥK(t) [OSS17], which is analogous to the
bound on τ(K) in Equation (1.2).

For a fixed knot K, the invariant ΥK(t) is a piecewise linear function from [0, 2] to R. The maps
ΥK(t) determine a homomorphism from the concordance group to the group of piecewise linear
functions from [0, 2] to R.

Suppose W is a compact, oriented 4-manifold with boundary equal to two rational homology
spheres. If [Σ] ∈ H2(W,∂W ;Z) is a class whose image in H1(∂W ;Z) vanishes, then [Σ] determines
a unique element of H2(W ;Z)/Tors, for which we also write [Σ]. We define the quantity

M[Σ](t) := max
C∈Char(QW )

C2 + b2(W )− 2t〈C, [Σ]〉+ 2t([Σ] · [Σ])

4
.

Although the expression for M[Σ](t) looks unmotivated, we note that if rank(H2(W ;Z)) = 1,

QW = (−1) and PD [Σ] = n · E for a generator E ∈ H2(W ;Z) and integer n ≥ 0, then

M[Σ](t) = ΥTn,n+1
(t),

where Tn,n+1 denotes the (n, n+ 1)-torus knot; See Lemma 11.7.
We now state our result about the invariant ΥK(t):

Theorem 1.1. If (W,Σ): (S3,K1)→ (S3,K2) is an oriented knot cobordism with b1(W ) = b+2 (W ) =
0, then

ΥK2(t) ≥ ΥK1(t) +M[Σ](t) + g(Σ) · (|t− 1| − 1).

The bound in Theorem 1.1 is sharp in the following sense: for any positive torus knot Ta,b, there
is a knot cobordism (W,Σ) from the unknot to Ta,b, with g(Σ) = b1(W ) = b+2 (W ) = 0, such that

ΥTa,b(t) = M[Σ](t).

See Proposition 11.6.
For small t, the function ΥK(t) satisfies ΥK(t) = −τ(K) · t. Correspondingly, for small t, our

bound reads

ΥK2
(t) ≥ ΥK1

(t) + t ·

(∣∣[Σ]
∣∣+ [Σ] · [Σ]

2
− g(Σ)

)
,

reflecting Ozsváth and Szabó’s bound on τ in Equation (1.2).
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1.2. Alexander and Maslov grading change formulas. Theorem 1.1 follows from a much more
general formula for the grading change associated to the link cobordism maps from [Zem16], as well
as some properties of the link cobordism maps. In this section, we describe a general result about
the link cobordism map grading changes.

Before we state our grading formula, we recall the setup of link Floer homology.

Definition 1.2. An oriented multi-based link L = (L,w, z) in Y 3 is an oriented link L with two
disjoint collections of basepoints w = {w1, . . . , wn} and z = {z1, . . . , zn}, such that as one traverses
L, the basepoints alternate between w and z. Furthermore, each component of L has a positive
(necessarily even) number of basepoints, and each component of Y contains at least one component
of L.

Suppose L is a multi-based link in Y 3, and s is a Spinc structure on Y . There are several algebraic
variations of link Floer homology. The most general construction is a curved chain complex

CFL∞(Y,L, s)

over the ring

F2[Uw, Vz] := F2[Uw1
, . . . , Uwn , Vz1 , . . . , Vzn ].

The curved chain complex CFL∞(Y,L, s) also has a filtration indexed by Zw⊕Zz. The construction
is outlined in Section 2.

To simplify the notation in the introduction, we describe a slight algebraic simplification. There
is a natural ring homomorphism

σ : F2[Uw1
, . . . , Uwn , Vz1 , . . . , Vzn ]→ F2[U, V ],

defined by sending each Uwi to U , and each Vzi to V . The map σ gives an action of F2[Uw, Vz] on
F2[U, V ], allowing us to define the complex

CFL∞(Y,Lσ, s) := CFL∞(Y,L, s)⊗F2[Uw,Vz] F2[U, V ].

which is a module over F2[U, V ] and has a filtration indexed by Z⊕ Z. The simplification obtained
by taking the tensor product using the homomorphism σ is an example of a more general operation
called coloring a chain complex; See Section 2.2.

In [Zem16], the author described a TQFT for the complexes CFL∞(Y,Lσ, s), modeled on the

TQFT for the hat version ĤFL(Y,L) constructed by Juhász [Juh16]. The following is an adaptation
of Juhász’s notion of a decorated link cobordism:

Definition 1.3. We say a pair (W,F) is a decorated link cobordism between two 3-manifolds with
multi-based links, and write

(W,F) : (Y1,L1)→ (Y2,L2),

if the following are satisfied:

(1) W is a 4-dimensional cobordism from Y1 to Y2.
(2) F = (Σ,A) consists of an oriented surface Σ with a properly embedded 1-manifold A, whose

complement in Σ consists of two disjoint subsurfaces, Σw and Σz. The intersection of the
closures of Σw and Σz is A.

(3) ∂Σ = −L1 t L2.
(4) Each component of Li \ A contains exactly one basepoint.
(5) The w basepoints are all in Σw and the z basepoints are all in Σz.

In [Zem16], to a decorated link cobordism (W,F) : (Y,L1) → (Y,L2), the author associates a
Z⊕ Z-filtered homomorphism of F2[U, V ]-modules

FW,F,s : CFL∞(Y1,Lσ1 , s|Y1
)→ CFL∞(Y2,Lσ2 , s|Y2

),

which is an invariant up to F2[U, V ]-equivariant, Z⊕ Z-filtered chain homotopy.
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Adapting the construction of Alexander and Maslov gradings from [OS08], if c1(s) is torsion and
L is null-homologous, there are three gradings on CFL∞(Y,Lσ, s). There are two Maslov gradings,
grw and grz, as well as an Alexander grading A. The three gradings are related by the formula

(1.4) A =
1

2
(grw− grz).

More generally, the Alexander grading can be defined even when c1(s) is non-torsion, though it
will depend on a choice of Seifert surface S for L; See Theorem 2.13. In this more general situation,
we will write AS for the Alexander grading, for the choice of Seifert surface S.

We will prove the following grading change formula:

Theorem 1.4. Suppose that (W,F) : (Y1,L1)→ (Y2,L2) is a decorated link cobordism, with type-w
and type-z subsurfaces Σw and Σz.

(1) If c1(s|Y1
) and c1(s|Y2

) are torsion, then FW,F,s is a graded with respect to grw, and satisfies

grw(FW,F,s(x))− grw(x) =
c1(s)2 − 2χ(W )− 3σ(W )

4
+ χ̃(Σw),

where

χ̃(Σw) := χ(Σw)− 1

2
(|w1|+ |w2|).

(2) If c1(s|Y1
− PD [L1]) and c1(s|Y2

− PD [L2]) are torsion, then the map FW,F,s is graded with
respect to grz, and satisfies

grz(FW,F,s(x))− grz(x) =
c1(s− PD [Σ])2 − 2χ(W )− 3σ(W )

4
+ χ̃(Σz).

(3) If L1 and L2 are null-homologous, and S1 and S2 are Seifert surfaces of L1 and L2, respec-
tively, then the map FW,F,s is graded with respect to the Alexander grading, and satisfies

AS2
(FW,F,s(x))−AS1

(x) =
〈c1(s), Σ̂〉 − [Σ̂] · [Σ̂]

2
+
χ(Σw)− χ(Σz)

2
,

where Σ̂ = (−S1) ∪ Σ ∪ S2.

We also prove a more general version of Theorem 1.4 for the Alexander multi-grading; see Theo-
rem 2.14.

Theorem 1.4 will follow from a description of the absolute Maslov and Alexander gradings in
terms of surgery presentations of the link complement; See Theorem 2.13. Our description of the
absolute gradings is modeled on the description of absolute gradings on HF−(Y, s) by Ozsváth and
Szabó [OS06].

We note that in [JM16] and [JM18], Juhász and Marengon compute the Alexander and Maslov

grading changes for Juhász’s link cobordism maps on ĤFL when the underlying 4-manifold is [0, 1]×
S3. Their formula for the grading changes agree with the ones from Theorem 1.4 (though in their
case, the only non-zero terms involve the Euler characteristic of the subsurfaces).

1.3. Adjunction relations and link Floer homology. We will show that the techniques devel-
oped in this paper naturally give simple proofs of some known adjunction relations and inequalities
on the 3- and 4-manifold invariants constructed by Ozsváth and Szabó. We then prove several new
adjunction relations and inequalities for the link cobordism maps.

In addition to link Floer homology, Ozsváth and Szabó [OS04d] described an invariant CF−(Y, s)
of a closed 3-manifold Y equipped with a Spinc structure s. For our purposes, the invariant CF−(Y, s)
is a free, finitely generated chain complex over F2[U ]. If W : Y1 → Y2 is a cobordism of connected
3-manifolds and s ∈ Spinc(W ), they describe a map [OS06]

(1.5) FW,s : Λ∗(H1(W ;Z)/Tors)⊗F2[U ] CF−(Y1, s|Y1
)→ CF−(Y2, s|Y2

),

well defined up to F2[U ]-equivariant chain homotopy. We note that technically the maps FW,s depend
on a choice of path from Y1 to Y2, though we suppress this dependency from the introduction;
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See Section 9, and more generally [Zem15], for more on the dependency of Ozsváth and Szabó’s
cobordism maps on the choice of path.

In Section 12, we show that our results about link cobordisms can be used to prove several familiar
adjunction relations from Heegaard Floer homology. First, if Σ is an oriented, connected surface
with exactly one boundary component, there is a distinguished element

ξ(Σ) ∈ F2[U ]⊗F2
Λ∗(H1(Σ;F2)),

constructed by picking a collection of 2g simple closed curves A1, . . . , Ag, B1, . . . , Bg on Σ such that
the geometric intersection number |Ai ∩Bj | is δij . The element ξ(Σ) is defined as

ξ(Σ) :=

g(Σ)∏
i=1

(U +Ai ∧Bi).

The element ξ(Σ) is in fact independent of the choice of basis, and is fixed by the mapping class
group of Σ; See Proposition 9.2.

We prove the following result about the cobordism maps on CF−:

Theorem 1.5. Suppose that F = (Σ,A) is an oriented, closed, decorated surface inside of the
cobordism W : Y1 → Y2. Write Σw and Σz for the type-w and type-z subsurfaces of F . Suppose A
consists of a simple closed curve, the surfaces Σw and Σz are connected, and

〈c1(s), [Σ]〉 − [Σ] · [Σ] + 2g(Σz)− 2g(Σw) = 0.

Then
FW,s(ξ(Σw)⊗−) ' FW,s−PD[Σ](ξ(Σz)⊗−),

as maps on CF−.

When g(Σ) = g(Σz) and g(Σw) = 0, Theorem 1.5 is well known in the Seiberg-Witten setting
[OS00b, Theorem 1.3] [FS95, Lemma 5.2], and essentially well known in the Heegaard Floer setting
[OS04a, Theorem 3.1].

We also prove a generalization of Theorem 1.5 which holds for the link cobordism maps; See
Theorem 12.5.

Theorem 1.5 is a very powerful relation satisfied by the Heegaard Floer cobordism maps. For
example, it implies Ozsváth and Szabó’s adjunction inequality for HF + [OS04c, Theorem 7.1],
which states that if W : Y1 → Y2 is a cobordism which contains a smoothly embedded surface Σ
with g(Σ) > 0 and [Σ] · [Σ] ≥ 0, and the induced map FW,s : HF +(Y1, s|Y1) → HF +(Y2, s|Y2) is
non-trivial, then

(1.6) |〈c1(s),Σ〉|+ [Σ] · [Σ] ≤ 2g(Σ)− 2;

See Corollary 12.4.
By using Theorem 12.5, our refinement of Theorem 1.5 for the link cobordism maps, we will prove

an adjunction inequality for the link cobordism maps which is analogous to Equation (1.6).
If L is a link in Y , we define CFL−(Y,L, s) to be the F2[U ]-module obtained by setting V = 0 in

the chain complex CFL−(Y,Lσ, s) (which we recall is a chain complex over F2[U, V ]), i.e.,

CFL−(Y,L, s) := CFL−(Y,Lσ, s)⊗F2[U,V ] F2[U, V ]/(V ).

Our link Floer homology adjunction inequality states the following:

Theorem 1.6. Suppose that (W,F) : (Y1,L1)→ (Y2,L2) is a link cobordism with b1(W ) = 0, such
that L1 and L2 are null-homologous in Y1 and Y2, respectively, and suppose that the induced map

FW,F,s : CFL−(Y1,L1, s|Y1
)→ CFL−(Y2,L2, s|Y2

)

is not F2[U ]-equivariantly chain homotopic to the zero map. If Σ is a closed, oriented surface in the
complement of F with g(Σ) > 0, then

|〈c1(s), [Σ]〉|+ [Σ] · [Σ] ≤ 2g(Σ)− 2.

Several examples of Theorem 1.6 are described in Section 12.3.
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1.4. Computations of the link cobordism maps. Using techniques of this paper, we compute
the maps FW,F,s in certain special cases. Our first computational result is the induced map on
HFL∞ when b1(W ) = b+2 (W ) = 0 and when the dividing set is relatively simple:

Theorem 1.7. Suppose that (W,F) : (S3,K1) → (S3,K2) is a knot cobordism between two doubly
based knots with b1(W ) = b+2 (W ) = 0. Suppose that the decorated surface F = (Σ,A) is connected,
and A consists of a pair of arcs, both running from K1 to K2, and Σw and Σz are both connected.
Then the induced map on homology

FW,F,s : HFL∞(S3,K1)→ HFL∞(S3,K2)

is an isomorphism. In fact, under the canonical identification HFL∞(S3,Ki) ∼= F2[U, V, U−1, V −1],
it is the map

1 7→ U−d1/2V −d2/2,

where

d1 =
c1(s)2 − 2χ(W )− 3σ(W )

4
− 2g(Σw)

and

d2 =
c1(s− PD [Σ])2 − 2χ(W )− 3σ(W )

4
− 2g(Σz).

Σw

Σz

Figure 1.1. An example of the dividing sets considered in Theorems 1.7
and 1.8. Here A consists of two arcs, and Σ \ A consists of two connected compo-
nents, Σw and Σz.

More generally, we will prove that if (W,F) is a decorated link cobordism between two knots in
S3, then the induced maps FW,F,s on HFL∞ can always be computed in terms of the cobordism
maps on HF∞; see Theorem 9.9.

As a consequence of Theorem 1.7, we will compute the maps associated to closed surfaces in S4,
with simple decoration:

Theorem 1.8. Suppose that F = (Σ,A) is a closed, oriented, decorated surface in S4 such that A
consists of a single closed curve which divides Σ into two connected subsurfaces, Σw and Σz. The
link cobordism map

FS4,F,s0 : CFL∞(∅)→ CFL∞(∅)

is equal to the map

1 7→ Ug(Σw)V g(Σz),

under the canonical identification CFL∞(∅) ∼= F2[U, V, U−1, V −1].
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1.5. Translating between common conventions. We note that for technical reasons, some of
our conventions differ slightly from more common conventions in the literature, so we now provide
a brief guide to help translate between various conventions.

If K = (K,w, z) is a doubly based knot in an integer homology sphere Y , it is more common to use
a different version of the full link Floer complex than the complex CFL∞(S3,K, s) considered in this
paper. Instead, one often considers a Z ⊕ Z-filtered chain complex CFK∞(Y,K) over F2[U,U−1],
defined by Ozsváth and Szabó [OS04b]. Using Ozsváth and Szabó’s notation, CFK∞(Y,K) is
generated over F2 by elements of the form [x, i, j] where A(x)− j + i = 0.

In the terminology of this paper, [x, i, j] corresponds to the element U−iV −j · x. In particular,
using our description of the Alexander grading, one has

CFK∞(Y,K) = CFL∞(Y,K, s0)0,

where CFL∞(Y,K, s0)0 denotes the homogeneous subset of zero Alexander grading. Recalling from
Equation (1.4) that A = 1

2 (grw− grz), it follows that the two Maslov gradings grw and grz coincide
on CFL∞(Y,K, s0)0 = CFK∞(Y,K), reflecting the usual convention that CFK∞ has a single Maslov
grading.

The action of U on CFK∞(Y,K) is normally described by the formula U · [x, i, j] = [x, i−1, j−1],
and hence corresponds in our notation to the action of UV on CFL∞(Y,K, s0). To disambiguate the

notation, we will often write Û for the product UV , which we think of as the standard action of U
on CFK∞.

The Z ⊕ Z filtrations are similarly translated between CFK∞ and CFL∞. One normally defines
a subset C(i,j)(Y,K) ⊆ CFK∞(Y,K) generated over F2 by elements [x, i′, j′] with i′ ≤ i and j′ ≤ i.
The chain complex CFL∞(Y,K, s) also has a Z ⊕ Z-filtration, given by filtering over powers of the
variables. If i, j ∈ Z, then we define a subset G(i,j)(Y,K, s) ⊆ CFL∞(Y,K, s) generated over F2 by

monomials of the form U i
′
V j
′ · x where i′ ≥ i and j′ ≥ j. The correspondence between the two

Z⊕Z filtrations is that C(i,j)(Y,K) ⊆ CFK∞(Y,K) is equal to G(−i,−j)(Y,K, s)∩CFK∞(Y,K), i.e.,
the subset of G(−i,−j)(Y,K, s) in Alexander grading zero.

Next, we note that if (W,F) is a decorated link cobordism from (S3,K1) to (S3,K2), then
FW,F,s may not send CFK∞(S3,K1) to CFK∞(S3,K2), since the Alexander grading change may
be nonzero. Instead, FW,F,s will send CFK∞(S3,K1) to CFK∞(S3,K2){k} for some shift k ∈ Z in
the Alexander grading (i.e. the cobordism map sends monomials U iV j · x with A(x) + (j − i) = 0

to sums of monomials of the form U i
′
V j
′ · y with A(y) + (j′ − i′) = k). See Theorem 10.2 for a

concrete example of this phenomenon in action.
Finally, we discuss the equivalence of our grading conventions with those in the literature. In

Proposition 8.1, we show that our Alexander multi-grading coincides with the description due to
Ozsváth and Szabó [OS04b] [OS08]. For the Maslov grading, one must be somewhat careful, since
there are two natural normalization conventions. The first is the invariance convention, which is
normalized by requiring that the relatively graded F2-module

ĤF (S3,w) ∼=
|w|−1⊗
i=1

(
(F2)− 1

2
⊕ (F2) 1

2

)
have top degree generator in grading 0, regardless of how many basepoints are in w. There is another
natural convention, the cobordism convention, which is normalized by setting the Maslov grading of

the top degree element of ĤF (S3,w) to be 1
2 (|w| − 1). This is the convention that we take, since it

is the most natural from the perspective of the grading change formulas. We note that when K is a
doubly based knot in S3, the two conventions coincide, and our absolute Maslov gradings coincide
with those from [OS04b] and [OS08].

1.6. Organization. In Section 2 we provide some background on link Floer homology, define some
technical notions about indexings and colorings of links, and state our most general grading formulas.
In Section 3 we describe some technical results concerning Heegaard triples and link cobordisms.
Section 4 describes a relative version of Kirby calculus for link complements. In Section 5 we describe
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the relative gradings, and state the definition of the absolute gradings in terms of Kirby diagrams.
In Section 6 we prove invariance of the absolute gradings. In Section 7 we prove the grading change
formulas for the link cobordism maps. In Section 8, we prove that our construction is equivalent to
Ozsváth and Szabó’s construction for links in S3. In Section 9 we prove some computational results
about the link cobordism maps, which are useful for proving bounds. In Section 10, we show how
the link cobordisms give conceptually simple proofs of well known bounds on τ and Vk. Section 11
covers our bound on ΥK(t). In Section 12 we prove the adjunction relations and inequalities.

1.7. Acknowledgments. I would like to thank Kristen Hendricks, Jen Hom, András Juhász, David
Krcatovich, Robert Lipshitz, Ciprian Manolescu, Marco Marengon and Peter Ozsváth for helpful
conversations and suggestions. I would also like to thank the two anonymous referees for their careful
readings and very helpful suggestions.

2. Preliminaries and statement of the full grading theorem

In this section we describe background material on the link Floer complexes, focusing on the
terminology necessary to state the Alexander multi-grading formula.

2.1. Link Floer homology. Knot Floer homology was originally constructed by Ozsváth and
Szabó [OS04b], and independently by Rasmussen [Ras03]. Link Floer homology is a generalization
to links, constructed by Ozsváth and Szabó [OS08]. In this section, we recall the basic construction
of link Floer homology, focusing on the curved variation considered in [Zem16].

To an oriented multi-based link L in Y , one can construct a multi-pointed Heegaard diagram
H = (Σ,α,β,w, z). We consider the two tori Tα,Tβ ⊆ Symn(Σ), defined as the Cartesian products

Tα = α1 × · · · × αn and Tβ = β1 × · · · × βn,

where n = |α| = |β| = g(Σ) + |w| − 1 = g(Σ) + |z| − 1. Ozsváth and Szabó define a map

sw : Tα ∩ Tβ → Spinc(Y )

in [OS04d, Section 2.6]. Recall that if w = {w1, . . . , wm} and z = {z1, . . . , zn}, we write F2[Uw, Vz]
for the polynomial ring F2[Uw1

, . . . , Uwn , Vz1 , . . . , Vzn ].
If s ∈ Spinc(Y ), then under appropriate admissibility assumptions on the diagram H, we de-

fine CFL−(H, s) to be the free F2[Uw, Vz]-module generated by intersection points x ∈ Tα ∩ Tβ
with sw(x) = s. We define CFL∞(H, s) to be the free F2[Uw, U

−1
w , Vz, V

−1
z ]-module generated by

intersection points x ∈ Tα ∩ Tβ with sw(x) = s.

Both CFL−(H, s) and CFL∞(H, s) have a filtration which is indexed by Zw ⊕ Zz, i.e., the set of
pairs (I, J) where I : w → Z and J : z → Z are functions. We now describe the filtration in detail.

If (I, J) ∈ Zw ⊕ Zz, we write U IwV
J
z for the monomial U

I(w1)
w1 · · ·U I(wn)

wn V
J(z1)
z1 · · ·V J(zn)

zn . Given
(I, J) ∈ Zw ⊕ Zz, we define G(I,J)(H, s) ⊆ CFL∞(H, s) to be the F2[Uw, Vz]-submodule

G(I,J)(H, s) := SpanF2
{U I

′

w V
J′

z · x : I ′ ≥ I and J ′ ≥ J}.

Note that with this notation, CFL−(H, s)(H, s) = G(0,0)(H, s) where (0,0) denotes the zero map
from w ∪ z to Z.

After choosing a generic 1-parameter family of almost complex structures on Symn(Σ), we can
define an endomorphism ∂ of CFL−(H, s) by counting holomorphic disks via the formula

(2.1) ∂(x) =
∑

φ∈π2(x,y)
µ(φ)=1

#M̂(φ) · Unw1
(φ)

w1 · · ·Unwn (φ)
wn V

nz1 (φ)
z1 · · ·V nzn (φ)

zn · y.

Because boundary degenerations appear in the ends of the moduli spaces of Maslov index 2 holo-
morphic curves, the map ∂ does not square to zero for a general link. Instead, according to
[Zem17, Lemma 2.1], we have that

∂2 = ωL · id,
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where ωL ∈ F2[Uw, Vz] denotes the scalar

ωL =
∑

K∈C(L)

(UwK,1VzK,1 + VzK,1UwK,2 + UwK,2VzK,2 + · · ·+ VzK,nKUwK,1).

In the above expression, wK,1, zK,1, . . . , wK,nK , zK,nK denote the basepoints on the link component
K ∈ C(L), in the order that they appear. In general, the curvature constant ωL may be non-zero,
though we note that if each link component has exactly two basepoints, then ωL = 0.

An important property of Heegaard Floer homology is that it is natural with respect to the choice
of Heegaard diagram. We will need the following result:

Proposition 2.1. If H and H′ are two strongly s-admissible diagrams for the pair (Y,L), then there
is a map

ΦH→H′ : CFL∞(H, s)→ CFL∞(H′, s),
which is filtered, and F2[Uw, Vz]-equivariant. The map ΦH→H′ is a chain homotopy equivalence, and
further, it is well defined up to filtered, F2[Uw, Vz]-equivariant chain homotopy.

A summary of the proof can be found in [Zem16, Proposition 3.5], though most of the details are
due to other mathematicians, notably Ozsváth, Szabó, Juhász and Thurston. See [JT12] for more
on the question of naturality.

We define CFL∞(Y,L, s) to be the collection of all of the complexes CFL∞(H, s), together with
the transition maps ΦH→H′ . We call the object CFL∞(Y,L, s) the transitive chain homotopy type.
There is an obvious notion of morphism between transitive chain homotopy type invariants.

2.2. Link cobordisms, colorings, and functoriality. In this section, we state the main result
from [Zem16], concerning the functoriality of link Floer homology.

There is an algebraic modification that one must do to the complexes to achieve functoriality,
which we call coloring the chain complexes.

Definition 2.2. If L = (L,w, z) is a multi-based link in Y , a coloring of L is a function σ : w∪z→ P
where P is a finite set.

We call P the set of colors, and we note that the set P is part of the data of a coloring. We write
Lσ for a multi-based link L equipped with a coloring σ.

If P = {p1, . . . , pn} is a set of colors, we define the ring R−P to be

R−P := F2[Xp1 , . . . , Xpn ],

the free polynomial ring generated by the formal variables Xp1 , . . . , Xpn . We define the ring R∞P by
adjoining the multiplicative inverses of the variables Xp1 , . . . , Xpn .

A coloring σ : w ∪ z → P gives the ring R∞P the structure of an F2[Uw, Vz]-module. This allows
us to form the complex

CFL∞(Y,Lσ, s) := CFL∞(Y,L, s)⊗F2[Uw,Vz] R∞P .

The module CFL∞(Y,Lσ, s) has a natural filtration by ZP , defined by filtering by powers of the
variables, similar to the filtration defined on the uncolored modules described in Section 2.1.

To define functorial cobordism maps, we need the following notion of a coloring for a decorated
link cobordism:

Definition 2.3. Suppose that F = (Σ,A) is a surface with divides. A coloring of F is a map
σ : C(Σ \ A)→ P , where P is a finite set of colors.

We will write Fσ for a decorated surface F equipped with a coloring σ. If (W,F) : (Y1,L1) →
(Y2,L2) is a decorated link cobordism (see Definition 1.3), then a coloring σ of F naturally induces
colorings of L1 and L2, for which we write σ|Li .

The following is the main result of [Zem16]:
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Theorem 2.4 ([Zem16, Theorem A]). If (W,F) is a decorated link cobordism equipped with a
coloring σ, there are Spinc functorial chain maps

FW,Fσ,s : CFL∞(Y1,Lσ1
1 , s|Y1

)→ CFL∞(Y2,Lσ2
2 , s|Y2

),

where σi = σ|Li . Furthermore, the maps FW,Fσ,s are R∞P -equivariant, ZP -filtered, and are invariants
up to R∞P -equivariant, ZP -filtered chain homotopy.

2.3. Indexings of links and compatible colorings. In this section we describe some notions
which are necessary for defining the Alexander multi-grading. As motivation, for an `-component

link in L ⊆ S3, the group ĤFL(L) has an `-component Alexander multi-grading. To obtain an
Alexander multi-grading formula defined on CFL∞(Y,L, s) for the link cobordism maps, we need
to collapse certain indices of the Alexander multi-grading. We encode this notion in an indexing
of a link or link cobordism (Definition (2.5)). Since the actions of the Uw and Vz have different
gradings in different components of the Alexander multi-grading, we need to consider colorings
which respect the indexing; These are indexed colorings (Definition (2.6)). Finally, since the Uw and
Vz variables behave differently with respect to the gradings, we also need to consider colorings which
don’t identify any of the Uw variables with any of the Vz variables; These are the type-partitioned
colorings (Definition (2.7)).

We begin with the formal definitions:

Definition 2.5. If A is a topological space, an indexing of A by a finite set J is a locally constant
map J : A→ J.

Whenever A is a finite set, we implicitly give A the discrete topology, so an indexing of A by J is
the same as a map from A to J.

If A is indexed over J, we say that the map J : A → J is the index assignment, and the set J is
the index set. If A is indexed over J and j ∈ J, we write Aj for

Aj := J−1(j).

Definition 2.6. If L is a multi-based link, an indexed coloring of L is a pair (σ, J) consisting of
a coloring σ : w ∪ z → P together with an indexing J : P → J, such that (J ◦ σ)(p) = (J ◦ σ)(p′)
whenever p, p′ ∈ w ∪ z are basepoints on the same component of L.

If (σ, J) is an indexed coloring of L, then there is an induced indexing of L. Abusing notation
slightly, we will also write J : L→ J for the induced indexing.

Definition 2.7. A type-partitioned coloring of a multi-based link L = (L,w, z) is a coloring σ : w∪
z→ P such that the following hold:

(1) P is partitioned as P = Pw t Pz.
(2) σ(w) ⊆ Pw and σ(z) ⊆ Pz.

An indexed, or type-partitioned coloring of a surface with divides is defined similarly.

Example 2.8. For any multi-based link L = (L,w, z), there are two type-partitioned, indexed color-
ings (σ, J) to keep in mind:

(1) J = {∗} and P = {U, V }. The map J : P → J is constant. The map σ sends any basepoint
in w to the element U ∈ P , and similarly sends any basepoint in z to V . Abusing notation
slightly, we identify the ring R−P with F2[U, V ].

(2) J = C(L) and P = w ∪ z. The map σ : w ∪ z→ P is the identity, and J : P → C(L) is the
natural map. The ring R−P can be identified with F2[Uw, Vz].

2.4. J-null-homologous links and generalized Seifert surfaces.

Definition 2.9. Suppose that L is an oriented link in Y which is indexed over J. We say that L is
J-null-homologous if

[Lj ] = 0 ∈ H1(Y ;Z),

for each j ∈ J.
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In this paper, we will use the following notion of a Seifert surface:

Definition 2.10. If L is an oriented link in Y , a generalized Seifert surface of L is an integral
2-chain S in Y with boundary ∂S = −L.

We will need the following notion of a Seifert surface which is indexed by J:

Definition 2.11. Suppose L is an oriented link which is indexed by J. A generalized J-Seifert
surface S = {Sj}j∈J is a collection of integral 2-chains Sj with

∂Sj = −Lj .

Remark 2.12. If L is a J-null-homologous link, it is possible to pick a generalized J-Seifert surface
(Sj)j∈J so that each Sj is an embedded surface. It is not always possible to pick a generalized
J-Seifert surface {Sj}j∈J so that the union is an embedded Seifert surface for L, since, for example,
Si and Sj will be forced to intersect if `k(Li, Lj) 6= 0, for distinct i, j ∈ J. For the purposes of
this paper, it is only necessary to work with integral 2-chains, instead of embedded Seifert surfaces,
since our description of the Alexander grading only uses S to build an integral homology class; see
Equation (5.21).

2.5. Statements of the grading theorems. Having established the necessary notation, we now
state the main technical results of this paper, generalizing Theorem 1.4 in the introduction.

Our first theorem concerns the existence of distinguished absolute gradings on link Floer homology.
Using surgery presentations of link complements, we will prove the following:

Theorem 2.13. Suppose that L = (L,w, z) is a multi-based link in Y , and s ∈ Spinc(Y ).

(a) Suppose (σ, J) is a type-partitioned, indexed coloring of L, L is J-null-homologous, and that
S is a generalized J-Seifert surface of L. Then the chain complex CFL∞(Y,Lσ, s) admits an
absolute Alexander multi-grading AS which takes values in QJ. The multi-grading is additive
with respect to collapsing indices.

(b) The component (AS)j of the Alexander multi-grading takes values in Z + 1
2`k(L \ Lj , Lj),

where `k(L \ Lj , Lj) denotes #((L \ Lj) ∩ Sj).
(c) If (σ, J) is a type-partitioned, indexed coloring of L, L is J-null-homologous, and s is torsion,

then the multi-grading AS is independent of S. More generally if S and S′ are two choices
of generalized J-Seifert surfaces, then

AS′(x)j −AS(x)j =
〈c1(s), [S′j ∪ −Sj ]〉

2
.

(d) If σ is a type-partitioned coloring of L, and c1(s) is torsion, then there is a distinguished
absolute Maslov grading grw on CFL∞(Y,Lσ, s). If c1(s − PD [L]) is torsion, then there is
an absolute Maslov grading grz.

(e) If σ is a type partitioned coloring, [L] = 0 ∈ H1(Y ;Z) and s is torsion, then grw, grz and
the collapsed Alexander grading A are all defined, and A = 1

2 (grw− grz).

Theorem 2.13 is perhaps not of particular interest on its own, since Ozsváth and Szabó described
absolute lifts of the Alexander multi-grading for links in integer homology spheres using a conju-
gation symmetry of the link Floer complexes, similar to the symmetry property of the Alexander
polynomial. We will show that the Alexander gradings induced by surgery descriptions of the link
complement in Theorem 2.13 agree with the gradings defined by Ozsváth and Szabó; See Proposi-
tion 8.

In Theorem 1.4 of the introduction, we stated our grading change formula for the Maslov and
collapsed Alexander gradings, for link cobordisms which are given a coloring with exactly two colors.
In this case, the ring R−P is isomorphic to F2[U, V ]. We will prove the following refinement of
Theorem 1.4:

Theorem 2.14. Suppose that (W,F) : (Y1,L1)→ (Y2,L2) is a decorated link cobordism.

(1) If σ is an arbitrary, type-partitioned coloring of F , then the maps FW,Fσ,s satisfy the state-
ment of Parts (1) and (2) of Theorem 1.4.
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(2) If (σ, J) is a type-partitioned, indexed coloring of F , and L1 and L2 are J-null-homologous
with generalized J-Seifert surfaces S1 and S2, then

AS2(FW,Fσ,s(x))j −AS1(x)j =
〈c1(s), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
+
χ((Σj)w)− χ((Σj)z)

2
,

where Σ̂j denotes (−S1)j ∪ Σj ∪ (S2)j, and [Σ̂] =
∑
j∈J[Σ̂j ].

3. Heegaard triples and link cobordisms

In this section we study multi-pointed Heegaard triples and Spinc structures on 3- and 4-manifolds.

3.1. Doubly multi-pointed Heegaard triples. In this section, we study the following objects:

Definition 3.1. We say that a Heegaard triple (Σ,α,β,γ,w, z) equipped with two collections of
basepoints, w and z, is a doubly multi-pointed Heegaard triple if each component of Σ\τ has exactly
one w basepoint, and exactly one z basepoint, for each τ ∈ {α,β,γ}.

If (Σ,α,β,γ) is a Heegaard triple, then by adapting the construction from [OS04d, Section 8.1],
we can construct a 4-manifold Xαβγ via the formula

(3.1) Xαβγ :=
(
(∆× Σ) ∪ (eα × Uα) ∪ (eβ × Uβ) ∪ (eγ × Uγ)

)
/ ∼,

In the above expression, ∆ denotes a triangle with edges eα, eβ and eγ , in clockwise order. Also, if
τ ∈ {α, β, γ}, then Uτ denotes the genus g(Σ) handlebody with ∂Uγ = Σ which has τ as a set of
compressing curves. The 4-manifold Xαβγ has boundary

∂Xαβγ = −Yαβ t −Yβγ t Yαγ .
If (Σ,α,β,γ,w, z) is a doubly multi-pointed Heegaard triple, then there is a properly embedded

surface
Σαβγ ⊆ Xαβγ ,

which is well defined up to isotopy. It is constructed as follows. Let fα, fβ and fγ denote Morse
functions on Uα, Uβ and Uγ which induce the curves α, β and γ on Σ, and which have Σ as a level
set. For τ ∈ {α,β,γ}, let Aτ ⊆ Uτ denote the union of the flowlines of ∇fτ which terminate at a
point in w ∪ z. Note that Aτ is a properly embedded 1-manifold in Uτ .

The surface Σαβγ is defined as the union

Σαβγ := (∆× (−w ∪ z)) ∪ (eα ×Aα) ∪ (eβ ×Aβ) ∪ (eγ ×Aγ).

For τ ,σ ∈ {α,β,γ} there is an oriented link Lτσ ⊆ Yτσ, defined as

Lτσ := Aτ ∪Aσ.
The link Lτσ can be naturally oriented by requiring that the intersections with Σ are negative at
the w basepoints, and positive at the z basepoints (note that Σ is oriented as ∂Uτ inside of Yτσ).
We include a picture in Figure 3.1.

Using the outward normal first convention for the boundary orientation, we have that

∂Σαβγ = −Lαβ t −Lβγ t Lαγ .
If (Σ,α,β,γ,w, z) is a Heegaard triple, we will write Pαβγ for the set of integral 2-chains on Σ

which have boundary equal to a linear combination of the α, β and γ curves. Elements of Pαβγ are
referred to as triply periodic domains. There is a map

H : Pαβγ → H2(Xαβγ ;Z),

described in [OS06, pg. 9]. The map H is defined by taking a domain D ∈ Pαβγ and including it
into Σ × {pt} ⊆ Xαβγ . We then extend the 2-chain outward towards the boundary of ∆, and then
cap off with disks in Uα, Uβ and Uγ to get a closed 2-chain H(D) ∈ H2(Xαβγ ;Z).

Note that the 2-chains H(D) and Σαβγ intersect only at {pt} × (w ∪ z), and the multiplicity of
the intersection points is given by the multiplicity of the domain D at the basepoints. Hence

(3.2) 〈PD [H(D)], [Σαβγ ]〉 = #(H(D) ∩ Σαβγ) = (nz − nw)(D).
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eα

eβ

eγ

z×∆

−w ×∆

Xαβγ

−Yαβ−Yβγ

Yαγ

U
α ×

e
α

Uβ × eβ

U
γ
×
e γ

Σαβγ

Σ×∆

⊆

Figure 3.1. A schematic of the surface Σαβγ inside of Xαβγ. Orientations
are shown.

More generally, if J : Σαβγ → J is an indexing, then the analogous equation for 〈PD [H(D)], [(Σαβγ)j ]〉
holds if we sum over only the basepoints mapped to j ∈ J by J .

3.2. Heegaard triples subordinate to bouquets and bands. Suppose that L = (L,w, z) is
a multi-based link in Y . Let Lα denote the arcs of L \ (w ∪ z) which go from w basepoints to z
basepoints. Let Lβ denote the arcs of L \ (w ∪ z) which go from z basepoints to w basepoints.

Definition 3.2. A β-bouquet Bβ for a framed link S1 in Y \L is a collection of arcs which connect
links in S1 to the interior of Lβ . We assume that there is exactly one arc per component of S1, and
each arc has one endpoint on S1 and one endpoint in Lβ .

An α-bouquet can be defined analogously. We will use β-bouquets to define the grading, but we
will show in Section 8.1 that either α-bouquets or β-bouquets can be used.

Given a β-bouquet Bβ for a framed link S1 ⊆ Y \L, we can consider the sutured manifold Y (L∪Bβ)
obtained by removing a regular neighborhood of L∪Bβ , and adding meridional sutures corresponding
to the basepoints w and z. As an adaptation of [OS06, Definition 4.2] and [Juh16, Definition 6.3],
we make the following definition:

Definition 3.3. Suppose that L = (L,w, z) is a multi-based link in Y , and that S1 ⊆ Y \ L is
a framed 1-dimensional link. Write `1, . . . , `k for the connected components of S1. We say that
a triple (Σ, α1, . . . , αn, β1, . . . , βn, β

′
1, . . . , β

′
n,w, z) is subordinate to the β-bouquet Bβ for a framed

1-dimensional link S1 ⊆ Y \ L if the following hold:

(1) Σ ⊆ Y is an embedded Heegaard surface such that Σ ∩ L = w ∪ z.
(2) After removing neighborhoods of w and z from the surface Σ, the diagram

(Σ, α1, . . . , αn, βk+1, . . . , βn,w, z) induces a sutured diagram for Y (L ∪ Bβ).
(3) For i ∈ {1, . . . , k}, the curve βi is a meridian of `i. Hence (Σ, α1, . . . , αn, β1, . . . , βn,w, z) is

a diagram for (Y,L).
(4) For i ∈ {k+1, . . . , n}, the curve β′i is a small Hamiltonian translate of βi, and |βi∩β′j | = 2δij .
(5) For i ∈ {1, . . . , k}, the curve β′i is a longitude of the link component that βi is a meridian

of. Furthermore, for i ∈ {1, . . . , k}, the curves βi and β′i intersect in a single point.

To prove invariance of our gradings, we will need the following result about connecting two Hee-
gaard triples subordinate to a fixed bouquet:

Lemma 3.4. Suppose that L is a multi-based link in Y , and S1 is a framed 1-dimensional link in
the complement of L, and S1 has components `1, . . . , `k. Any two Heegaard triples subordinate to a
fixed β-bouquet Bβ for S1 can be connected via a sequence of the following moves:

(1) An isotopy or handleslide amongst the α curves.
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(2) An isotopy or handleslide amongst the curves {βk+1, . . . , βn}, while performing the analogous
isotopy or handleslide of the curve {β′k+1, . . . , β

′
n}.

(3) An index 1/2-stabilization or destabilization, i.e., taking the connected sum of T with a triple
(T2, α0, β0, β

′
0) where β0 and β′0 are small Hamiltonian isotopies of each other, intersecting

at two points, and |α0 ∩ β0| = |α0 ∩ β′0| = 1.
(4) For i ∈ {1, . . . , k}, an isotopy of βi, or a handleslide of βi across a βj with j ∈ {k+1, . . . , n}.
(5) For i ∈ {1, . . . , k}, an isotopy of β′i, or a handleslide of β′i across a β′j with j ∈ {k+1, . . . , n}.
(6) An isotopy of the surface Σ inside of Y , through surfaces whose intersection with L ∪ Bβ is

exactly w ∪ z.

Proof. This can be proven by adapting [OS06, Lemma 4.5] or [Juh16, Lemma 6.5]. �

The maps from [Zem16] use the following notion of bands:

Definition 3.5. An oriented α-band B is an embedded rectangle in Y such that B ∩ L consists of
two opposite sides of ∂B, and each component of B ∩L is contained in a distinct component of Lα,
where Lα denotes the subset of L \ (w ∪ z) consisting of arcs which go from w to z.

We note that Lα can be equivalently described as the subset of L \ (w ∪ z) consisting of arcs
contained in the α-handlebody of Y , for any Heegaard diagram of (Y,L). Given a α-band, we can
form the multi-based link L(B) in Y .

Analogous to a Heegaard triple subordinate to a β-bouquet of a framed link in Y \L, we need use
the following notion of a Heegaard triple which is adapted to an α-band:

Definition 3.6 ([Zem16, Definition 6.2]). We say a triple (Σ, α′1, . . . , α
′
n, α1, . . . , αn, β1, . . . , βn,w, z)

is subordinate to the α-band B if the following hold:

(1) Σ ⊆ Y is an embedded Heegaard surface such that Σ ∩ L = w ∪ z.
(2) After removing neighborhoods of the w and z basepoints from

(Σ, α1, . . . , αn−1, β1, . . . , βn,w, z),

we obtain a sutured Heegaard diagram for the sutured manifold Y \N(L∪B) (with meridional
sutures induced by the basepoints).

(3) α′1, . . . , α
′
n−1 are small Hamiltonian isotopies of the curves α1, . . . , αn−1.

(4) The curve αn bounds a compressing disk in the complement of L, and the curve α′n bounds
a compressing disk in the complement of L(B). Furthermore, |α′n ∩ αn| = 2.

If S1 is an `-component link, we write W (Y, S1) for following 4-dimensional 2-handle cobordism:

W (Y,S1) := ([0, 1]× Y ) ∪

(∐̀
i=1

D2 ×D2

)
∪ ([1, 2]× Y (S1)).

We define the properly embedded surface Σ(S1) ⊆W (Y,S1) as

Σ(S1) := [0, 2]× L.
We write W(Y,L, S1) for the link cobordism

W(Y,L, S1) := (W (Y,S1),Σ(S1)) : (Y, L)→ (Y,L).

Similarly, if B is an oriented band for the link L ⊆ Y , there is a well defined link cobordism

W(Y, L,B) = ([0, 2]× Y,Σ(B)),

where Σ(B) is the surface

Σ(B) := ([0, 1]× L) ∪ ({1} ×B) ∪ ([1, 2]× L).

The following observation will be extremely important (compare [OS06, Proposition 4.3] and
[Juh16, Proposition 6.6]):

Lemma 3.7. Let (Y,L) be a 3-manifold containing a multi-based link.
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(1) Suppose S1 ⊆ Y \ L is an `-component framed 1-dimensional link and (Σ,α,β,β′,w, z) is
subordinate to a β-bouquet of S1. Then there is an embedding of link cobordisms

(Xαββ′ ,Σαββ′) ↪→W(Y,L, S1),

which is well defined up to isotopy. The complement of Xαββ′ in W (Y,S1) consists of a
4-dimensional 1-handlebody of genus g(Σ)− `. Furthermore Σαββ′ intersects Yββ′ in a |w|-
component unlink.

(2) Suppose B is an α-band for L in Y , and (Σ,α′,α,β,w, z) is a Heegaard triple subordinate
to B. Then there is an embedding of link cobordisms

(Xα′αβ ,Σα′αβ) ↪→W(Y, L,B),

which is well defined up to isotopy. Furthermore, the complement of Xα′αβ in [0, 2] × Y
consists of a 4-dimensional 1-handlebody of genus g(Σ). The surface Σα′αβ intersects Yα′α
in a |w| − 1 component unlink.

Proof. Let us consider Part (1), when (Σ,α,β,β′,w, z) is subordinate to a bouquet of a framed link
S1. First, recall that by assumption (Σ,α,β,w, z) is an embedded Heegaard diagram for (Y,L).
Consider

Hββ′ := ([1− ε, 1]× Uβ) ∪

(∐̀
i=1

D2 ×D2

)
⊆W (Y,S1).

We note that [1− ε, 1]×Uβ is a 4-dimensional 1-handlebody of genus g(Σ), and we can view Hββ′ as
being obtained by attaching ` 2-handles, which each cancel one of the 1-handles forming [1−ε, 1]×Uβ .
Hence Hββ′ is a 4-dimensional 1-handlebody of genus g(Σ)− `.

We now claim that Xαββ′ and W (Y, S1)\ int(Hββ′) are diffeomorphic, via a diffeomorphism which
is well defined up to isotopy. It is convenient to thicken the Heegaard surface and view Y as
Uα ∪ ([−1, 1] × Σ) ∪ Uβ . Similarly, it is convenient to also fatten the vertices of the triangle ∆ in
the construction of Xαββ′ and view ∆ as a hexagon, with sides that alternate between being in the
interior of Xαββ′ , and being on the boundary. We can write

W (Y,S1) \ int(Hββ′) = ([0, 2]× [−1, 1]× Σ) ∪ ([0, 2]× Uα) ∪ ([0, 1− ε]× Uβ) ∪ ([1, 2]× Uβ′).

Up to rounding corners, this is canonically diffeomorphic to the 4-manifold Xαββ′ defined in Equa-
tion (3.1), as long as we identify [0, 2]× [−1, 1]× Σ with ∆× Σ. Furthermore, the surface Σαββ′ is
mapped into [0, 2]× L, by construction.

The argument for Part (2), where (Σ,α′,α,β,w, z) is subordinate to an α-band, is a straightfor-
ward adaptation. �

3.3. Heegaard triples and Spinc structures. In this section we discuss Spinc structures on 3-
and 4-manifolds.

Heegaard Floer homology uses Turaev’s interpretation of Spinc structures on 3-manifolds as ho-
mology classes of non-vanishing vector fields. Two non-vanishing vector fields on Y are said to be
homologous if they are homotopic on the complement of a set of 3-balls.

If Y is a closed 3-manifold, Spinc(Y ) has an affine action of H1(Y ;Z). The action has a convenient
description in terms of vector fields, referred to as Reeb surgery [Nic03, Section 3.2], which we describe
presently. Suppose v is a non-vanishing vector field on Y 3, and γ ⊆ Y is an oriented, simple closed
curve. We can homotope v so that v|γ = −γ′. View a neighborhood of γ as S1 ×D2, and assume
that v = ∂/∂θ on this neighborhood. Viewing D2 as the unit complex disk, let [0, 1] ⊆ D2 denote
a radius of D2, and pick a non-vanishing vector field v(γ) on [0, 1] so that (v(γ))(1) = v(1) = ∂/∂θ
and (v(γ))(0) = −∂/∂θ. We can extend v(γ) over D2 by requiring it to be invariant under the
action of rotation on D2. Next, we extend v(γ) over S1×D2 by requiring v(γ) to be invariant under
the action of S1. We extend v(γ) to all of Y by setting it equal to v, outside of S1 ×D2. This is
illustrated schematically in Figure 3.2.

If s(v) denotes the Spinc structure induced by v, we claim that

(3.3) s(v(γ)) = s(v) + PD [γ].
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Figure 3.2. Reeb surgery of a non-vanishing vector field v along a curve
γ. On the left, v is shown in a regular neighborhood of γ. We assume that v|γ = −γ′.
On the right is v(γ), the result of Reeb surgery.

To establish Equation (3.3), one considers the set of relative Spinc structures on a solid torus N ,
which we identify with homology classes of non-vanishing vector fields on N which agree with some
fixed vector field v0 on ∂N . The set Spinc(N, ∂N) is an affine space over H2(N, ∂N ;Z) ∼= H1(N ;Z).
If τ0 is a fixed trivialization of v⊥0 on ∂N , then the relative Chern class

c1(s(v), τ0) := c1(v⊥, τ0) ∈ H2(N, ∂N ;Z)

gives a way of distinguishing relative Spinc structures. Abstractly, one knows that

c1(s + [γ], τ0) = c1(s, τ0) + 2PD [γ].

If D ⊆ N is a disk such that 〈PD [γ], [D, ∂D]〉 = 1, then Equation (3.3) can be verified directly by
computing

(3.4) 〈c1(v(γ)⊥, τ0), [D, ∂D]〉 − 〈c1(v⊥, τ0), [D, ∂D]〉 = 2〈PD [γ], [D, ∂D]〉,
as follows. We pick τ0 to be the planar trivialization induced by D. The 2-plane field v⊥ has a
non-vanishing section whose restriction to ∂D is constant with respect to τ0, so 〈c1(v⊥, τ0), [D, ∂D]〉
vanishes. A non-vanishing section η of v(γ)⊥ can be constructed by picking a non-vanishing section
along [0, 1] ⊆ D, and then using the action of S1 on D (i.e. rotation) simultaneously with the action
of S1 on the fibers of v(γ)⊥ to extend η over all of D. The section η induces a map from ∂D to
the unit sphere bundle of v(γ)⊥|∂D, and the trivialization τ0 gives a well defined degree of this map.
Noting that the orientation of TD is opposite to the orientation of v⊥ along ∂D, the degree is −2.
The evaluation of c1(v(γ)⊥, τ0) can be computed by using τ0 to glue an oriented 2-plane bundle over

a disk D̂, with constant fiber, to the 2-plane bundle v⊥ → D, and then extending η to a generic
section over D̂ ∪D. The value 〈c1(v(γ)⊥, τ0), [D, ∂D]〉 is the algebraic intersection number of η on

D ∪ D̂ with the zero section, which is equal to the degree of the induced map from ∂D̂ to the unit
sphere bundle of v(γ)⊥. The degree of this map over ∂D̂ is +2, since ∂D̂ has the opposite orientation
as ∂D. Hence 〈c1(v(γ)⊥, τ0), [D, ∂D]〉 = +2, establishing Equation (3.4).

In [OS04d, Section 2.6], to a Heegaard diagram (Σ,α,β,w) for Y , Ozsváth and Szabó associate
a map

sw : Tα ∩ Tβ → Spinc(Y ).

One starts with the upward gradient vector field for a Morse function inducing the Heegaard diagram.
In a neighborhood of the flowlines passing through w, as well as the flowlines passing through the
intersection points of x ∈ Tα ∩ Tβ , one modifies the gradient vector field so that it is non-vanishing
(which can be done since the chosen flowlines connect critical points of opposite parities). The
construction of sw has the following dependence on the basepoints (compare [OS04d, Lemma 2.19]):

Lemma 3.8. If H = (Σ,α,β,w, z) is a diagram for (Y,L), and x ∈ Tα ∩ Tβ, then

sw(x)− sz(x) = PD [L].

Proof. Write Aw and Az for the flowlines passing through w and z, respectively. Note Aw∪Az = L,
and that sw(x) and sz(x) differ only on a neighborhood of L. Let us consider the disk D := N(Az)∩
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Σ. As we described above, the set Spinc(N(L), ∂N(L)) is an affine space over H1(N(L);Z) ∼= Z,
and the difference between two Spinc structures can be computed by evaluating their relative Chern
classes on [D, ∂D]. Note that our orientation convention is that L goes from z to w in the handlebody
Uβ , and furthermore, the Morse function defining the diagram (Σ,α,β,w, z) obtains its maximum
on Uβ . The vector field corresponding to sw(x) naturally has L as an orbit, while the vector field for
sz(x) naturally has −L as an orbit. We can pick the vector fields for sw(x) and sz(x) so that on D,
sw(x) agrees with the Reeb surgery of sz(x) on L. The proof then follows from Equation (3.4), which
implies that the homology class of sw(x) is equal to the Reeb surgery of sz(x) on L, completing the
proof. �

Analogous to Turaev’s description of a 3-dimensional Spinc structure as a homology class of non-
vanishing vector fields, there is an interpretation of Spinc structures on a 4-manifold W in terms
of homotopy classes of almost complex structures on the 2-skeleton of W , which extend over the
3-skeleton; See [OS04d, Section 8.1.4] and [Gom97, pg. 49]. Similar to Reeb surgery in 3-dimensions,
if Σ is a properly embedded surface in W , then the action of PD [Σ] ∈ H2(W ;Z) can be described
geometrically by modifying an almost complex structure in a neighborhood of Σ. Rather than give
a general description, we will focus on a particular example arising from Heegaard triples, though
it is straightforward to extend our result to the general case.

To a Heegaard triple (Σ,α,β,γ,w), in [OS04d, Section 8] Ozsváth and Szabó associate a map

sw : π2(x,y, z)→ Spinc(Xαβγ).

Similar to Lemma 3.8, the map sw has an important dependence on the basepoints w:

Lemma 3.9. If (Σ,α,β,γ,w, z) is a doubly multi-pointed Heegaard triple, then

sw(ψ)− sz(ψ) = PD [Σαβγ ].

Proof. We briefly recall how the maps sw and sz are defined. To a homology class of triangles
ψ, Ozsváth and Szabó associate a real, oriented 2-plane field on the complement of a collection of
4-balls in Xαβγ . We will write ξw and ξz for the oriented 2-plane fields associated to sw(ψ) and
sz(ψ). We recall the construction.

One starts with a partially defined oriented 2-plane field ξ0. On eα × Uα, ξ0 is defined on the
complement of eα × Crit(fα) to be {0} ⊕ ker(dfα) = {0} ⊕ (∇fa)⊥. On eβ × Uβ and eγ × Uγ , ξ0 is
defined similarly. The 2-plane field ξ0 is defined on all of ∆× Σ to be {0} ⊕ TΣ.

If ψ ∈ π2(x,y, z) is a homology class and u : ∆ → Symn(Σ) is a topological representative, we
define the immersed surface Su ⊆ ∆×Σ as the set of points (x, σ) such that σ ∈ u(x). One extends
Su into eα × Uα by extending the image of u radially over a set of compressing disks of Uα which
have boundary α. The immersed surface Su is extended similarly into eβ × Uβ and eγ × Uγ .

Next, we define the surface Sw by extending ∆×w into eα × Uα with the product of eα and the
flowlines of ∇fα passing through w. The surface Sw is similarly extended into eβ ×Uβ and eγ ×Uγ .
A surface Sz is defined similarly. Note that Sw ∪ Sz = Σαβγ .

Ozsváth and Szabó describe a codimension 1 singular foliation F on Xαβγ [OS04d, Figure 5]. The
intersection of each leaf of F with Σαβγ induces a codimension 1 singular foliation FΣ on Σαβγ . Let
Γ ⊆ Σαβγ denote the union of the singular leaves of FΣ. The foliation FΣ is schematically shown in
Figure 3.3.

Let Bu,rep ⊆ ∆ × Σ denote a neighborhood of the set of points (x, σ) ∈ Su ∩ (∆ × Σ) where
u(x) ∈ Symn(Σ) has a repeated entry. Define Γw := Γ ∩ Sw and Γz := Γ ∩ Sz. Let Bu,w ⊆ (∆×Σ)
denote a neighborhood of the set of points (x, σ) ∈ Su ∩ (∆× Σ) where u(x) ∩w 6= ∅. Define Bu,z
similarly. By choosing the map u generically, we may assume that Bu,rep ∩Bu,w = ∅. Furthermore,
by picking u and N(Γ) appropriately, we may assume that Bu,w ⊆ N(Γw) and Bu,z ⊆ N(Γz).

The 2-plane field ξw is defined in the complement of N(Γw)∪Bu,rep. It is constructed by extending
the non-singular 2-plane field ξ0|Xαβγ\N(Sw∪Su) over all of Xαβγ \ N(Γw ∪ Bu,rep). See [OS04d,
Section 8.1.4] for a precise description of the extension to Xαβγ \N(Γw ∪Bu,rep). The 2-plane field
ξz is constructed analogously.
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−Lα,β

Lα,γ

−Lβ,γ

Γ

Figure 3.3. The codimension 1 singular foliation FΣ on Σαβγ. The union
of the singular leaves Γ is shown bold.

Note that ξw and ξz are both defined on the complement of N(Γ) ∪ Bu,rep, and they differ only
in a neighborhood of Σαβγ \N(Γ).

Let us write

X0 := Xαβγ \N(Γ) and Σ0 := Σαβγ \N(Γ).

Note that Σ0 is a disjoint union of properly embedded annuli in X0, each with one end on ∂N(Γ)
and one end on ∂Xαβγ . The singular foliation FΣ restricts to a non-singular, codimension 1 foliation
on each connected component of Σ0, and furthermore, each leaf is a simple closed curve, which is
homologically essential in Σ0.

Since Γ is a 1-dimensional cell complex, the map Spinc(Xαβγ) → Spinc(X0) is an isomorphism.
Hence it is sufficient to show that

(3.5) (sw(ψ)− sz(ψ))|X0 = PD [Σ0].

Suppose that ` is a leaf of F which is contained in X0. Note that ` can be identified with either
Yαβ , Yβγ or Yαγ . Similarly the corresponding leaf `Σ = ` ∩Σαβγ ⊆ FΣ can be identified with one of
the links Lαβ , Lβγ or Lαγ .

The foliations F and FΣ are not orientable. Nonetheless, the non-singular leaves are canonically
oriented, since if ` is a non-singular leaf of F , and `Σ ⊆ ` is the corresponding leaf of FΣ, then the
pair (`, `Σ) is canonically identified with one of the boundary components of (Xαβγ ,Σαβγ) which we
give the boundary orientation.

Now suppose that (`, `Σ) is a nested pair of leaves of F and FΣ. Note that ξw|` and ξz|` are
subbundles of T`. Let vw and vz denote the orthogonal complements of ξw and ξz inside of T`.

Note that using the outward normal first boundary orientation convention, it is easily checked
that

(3.6) vz = −T`Σ, vw = T`Σ, (ξz)⊥ = −TΣ0 and (ξw)⊥ = TΣ0.

On `, the oriented 1-plane bundles vw and vz differ only in a neighborhood of `Σ, and there they differ
exactly the same as the vector fields built using the 3-dimensional Spinc structure maps considered
in Lemma 3.8. Hence, by Lemma 3.8, we can take vw to be obtained from vz by Reeb surgery (see
Figure 3.2) on `Σ.

Together with their orthogonal complements, the oriented 2-plane fields ξw and ξz determine
almost complex structures Jw and Jz on TX0, up to homotopy. We will show that

(3.7) (TX0, Jw) ∼= (TX0, Jz)⊗C L,

where L is a complex line bundle on X0 with c1(L) = PD [Σ0]. Note that this will imply Equa-
tion (3.5), and complete the proof.
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Our strategy for showing Equation (3.7) is to find a complex 1-plane subbundle ζw ⊆ (TX0, Jw)
such that

(3.8) ζw ∼= ξz ⊗C L and ζ⊥w
∼= ξ⊥z ⊗C L,

for a line bundle L→ X0 with c1(L) = PD [Σ0]. Note Equation (3.8) will imply Equation (3.7).
We can trivialize N(Σ0) as Σ0 ×D2, viewing D2 as the unit complex disk. By construction, ξw

and ξz are both invariant under the S1 action on D2, and also constant on the Σ0 factor, under this
trivialization of N(Σ0).

We now describe our choice of ζw ⊆ (TX0, Jw). Write [0, 1] ⊆ D2 for a radius. Let Gw denote the
CP1-bundle over X0 whose fiber over p ∈ X0 is the set of complex lines in (TpX0, Jw). We define
a bundle Gz similarly. Pick p0 ∈ Σ0, and let γ : {p0} × [0, 1] → Gw denote a section of the bundle
Gw|{p0}×[0,1] which satisfies

γ(p0, 0) = (ξ⊥w)(p0,0) and γ(p0, 1) = (ξw)(p0,1).

Since the subspace ξ⊥w|(p0,0) is fixed by the rotation action on D2, we can construct a complex 1-plane
subbundle ζw of (TX0|{p0}×D2 , Jw) by declaring it to be equal to γ on {p0} × [0, 1] and also to be

invariant under the S1-action on D2. Next, we extend ζw to all of Σ0 × D2 by declaring it to be
constant on the Σ0 factor of Σ0 ×D2. Since ζw agrees with ξw on ∂N(Σ0), we can extend ζw to all
of X0 by declaring it to be ξw outside of N(Σ0).

We now describe the complex line bundle L→ X0, which will feature in Equation (3.8). We will
define L to be an oriented, real 2-plane subbundle of C ⊕ C → X0, where C denotes the trivial
complex line bundle. By trivializing TΣ0 as an oriented 2-plane bundle, we can write

(3.9) TN(Σ0) ∼= TΣ0 ⊕ TD2 ∼= C⊕ C.

By Equation (3.6), the 2-plane field ζw has constant fiber −{0} ⊕ C along ∂N(Σ0), under this
trivialization. We define the fiber of L over x to be the fiber of ζw over x, when x ∈ N(Σ0), and we
define the fiber of L over x to be −{0} ⊕ C for x 6∈ N(Σ0). We define L⊥ to be the real orthogonal
complement of L inside of C⊕ C→ X0.

We now show that

(3.10) ζw ∼= ξz ⊗C L and ζ⊥w
∼= ξ⊥z ⊗C L

⊥.

To establish Equation (3.10), note that on N(Σ0), ξz can be identified with −TD ∼= −{0}⊕C under
the trivialization in Equation (3.9). Outside of N(Σ0), the bundle L is identified with −{0} ⊕ C.
Hence we can define a bundle isomorphism ξz ⊗C L→ ζw via the formula

(3.11) (z ⊗ w)x 7→

{
z · (w)x if x ∈ N(Σ0)

w · (z)x if x 6∈ N(Σ0).

In Equation (3.11), ‘·’ denotes multiplication with respect to the homotopically unique complex
structure on ζw, induced from its orientation. This not the same as the complex structure of C⊕C.
A bundle isomorphism ξ⊥z ⊗C L

⊥ → ζ⊥w is defined similarly, establishing Equation (3.10).
Finally, it remains to show

(3.12) c1(L) = c1(L⊥) = PD [Σ0],

which also implies L ∼= L⊥ as complex line bundles. Viewing S2 as the quotient D2/∂D2, we note
that L and L⊥ are isomorphic to the pullbacks of two complex line bundles over S2 under a map
π : X0 → S2. Writing p for the point [∂D2] in S2 = D2/∂D2, the map π is given by π(x) = p if
x 6∈ N(Σ0), and π(z, w) = w if (z, w) ∈ N(Σ0) ∼= Σ0 ×D2. Write L0 and L⊥0 for these two complex
line bundles, over S2. Note that π∗(PD [p]) = PD [Σ0], so it is sufficient to show that

(3.13) c1(L0) = c1(L⊥0 ) = PD [p].

Equation (3.13) can be established by the following direct computation. For the computation, it

is easier to view S2 as the union of D2 and another disk D̂2, whose center is the point p. Over D̂2,
we define the fibers of the bundles L0 and L⊥0 to be −{0}⊕C and −C⊕{0}, respectively. To prove
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Equation (3.13), we will prove that a generic section of each of L0 and L⊥0 intersects the zero section
once, algebraically, with positive sign.

Let ρθ : D2 → D2 denote the diffeomorphism obtained by multiplication by eiθ. We will write ρθ∗
for the bundle automorphism of the trivial bundle C ⊕ C → D2, which covers the diffeomorphism
ρθ : D2 → D2, and is defined by the formula

ρθ∗((v, w)z) = (v, eiθ · w)eiθ·z.

On [0, 1] ⊆ D2 we pick any nonvanishing section v of L0. We can extend v to a non-vanishing
section on all of D2 using the formula

v(reiθ) = ρθ∗(v(r)).

Since v(0) ∈ C⊕{0}, which is fixed by the action of ρθ∗, the vector field v is well defined when r = 0.
The bundle L0 has fiber −{0} ⊕C, along ∂D2, and hence the vector field v determines a map from
∂D2 to S1 with respect to this trivialization. The map induced by v is of degree −1, with respect
to the complex orientation of L0. If we extend v generically over D̂2, then the index of v over D̂2

is the same as the oriented intersection of a generic perturbation of v with the zero section. The
index of v over D̂2 is +1, since it is the same as the degree of v as a map from ∂D̂2 to S1, and the
orientation of ∂D̂2 is opposite to ∂D2. Hence c1(L0) = PD [p].

We can analyze L⊥0 similarly. We let ṽ : [0, 1] → L⊥0 be a nonvanishing section. Since the fiber
over 0 of L⊥0 is {0} ⊕ C, we can define an extension of ṽ to all of D2 via the formula

ṽ(reiθ) = e−iθ · ρθ∗(ṽ(r)).

Multiplication is with respect to the complex structure of L⊥0 . The bundle L⊥0 has constant fiber
−{0} ⊕ C on ∂D2, and with respect to the induced trivialization of L⊥0 on ∂D2, the degree of the
induced map from ∂D2 to S1 is −1. As with L0, this implies that c1(L⊥0 ) = PD [p]. Equation (3.13)
follows, and hence so does Equation (3.12).

Combining Equations (3.10) and (3.12) implies Equation (3.7) and completes the proof. �

4. Kirby calculus for manifolds with boundary

Our strategy for constructing an absolute grading on CFL∞ will parallel the construction of the
absolute Q-gradings on the groups HF∞(Y, s) in [OS06]. W define a notion of Kirby diagram for a
3-manifold Y with an embedded link L, by presenting the link complement Y \N(L) as surgery on
the standard unlink complement S3 \N(U). We then consider a Kirby calculus argument for how
to relate two such presentations.

It will be useful for our purposes to first define a more general notion of surgery presentations,
not specific to link complements:

Definition 4.1. If M and M ′ are oriented 3-manifolds with boundary and φ : ∂M → ∂M ′ is a
fixed, orientation preserving diffeomorphism, we say that a pair (S1, f) is a parametrized surgery
presentation for (M,M ′, φ) if S1 ⊆ intM is a framed link and f : M(S1)→M ′ is a diffeomorphism
which extends φ.

It is well known that if M and M ′ are connected, oriented 3-manifolds and φ : ∂M → ∂M ′ is
an orientation preserving diffeomorphism, then there exists a parametrized surgery presentation of
(M,M ′, φ). This can be seen by the following argument (cf. [Rob97]). Using the diffeomorphism
φ, we form the closed, oriented three manifold −M ∪ (∂M × [0, 1]) ∪M ′. This bounds a compact
oriented 4-dimensional manifold W . We can view such a manifold as a cobordism of manifolds with
boundary from M to M ′. We think of M and M ′ as the “horizontal” parts of ∂W and [0, 1]×∂M as
the “vertical” part of the boundary. We can find a Morse function which is 0 on M , t on {t} × ∂M
and 1 on M ′, which has only index 1, 2, and 3 critical points. By changing the 4-manifold, we can
replace index 1 and 3 critical points with index 2 critical points, to get a cobordism from M to
M ′ which has a Morse function with only index 2 critical points. If we take a gradient like vector
field on W which is ∂/∂t on [0, 1] × ∂M , then the descending manifolds from the index 2 critical
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points yield a framed link S1 in M , and the Morse function and gradient like vector field determine
a diffeomorphism f : M(S1)→M ′ which is well defined up to isotopy and extends φ.

Using our terminology, Kirby’s calculus of links [Kir78] gives a set of moves which can relate
any two parametrized surgery presentations of triples (M,M ′, φ) = (S3, Y,∅), when Y is a closed,
oriented 3-manifold. The moves are blow-ups, blow-downs, handleslides, and isotopies of f or S1. In
[FR79], Fenn and Rourke extended the calculus to the case that M is an arbitrary, closed, oriented
3-manifold, though an extra move is required, which is supported in a solid torus; See Figure 4.1.
In [Rob97], Roberts extends the calculus to arbitrary 3-tuples (M,M ′, φ).

Keeping track of the parametrization f : M(S1)→M ′ in the definition of a parametrized surgery
decomposition is important for our purposes. A Kirby move between two framed links S1 and S′1 in
M canonically yields a diffeomorphism M(S1)→M(S′1) as we describe in the following paragraph.
In particular, if (S1, f) is parametrized surgery data, and S′1 is the result of one of the above moves
on S1, then there is a diffeomorphism f ′ : M(S′1) → M ′ which is canonically induced, and is well
defined up to isotopy.

We now illustrate the canonical diffeomorphism from M(S1) to M(S′1) resulting from a Kirby
move; See [GS99, pg. 160]. Suppose that S1 and S′1 are two framed links in M and S′1 = S1 ∪ {U},
where U is a ±1 framed unknot which is contained in a 3-ball in M \ S1. The manifolds M(S1) \B
and M(S′1) \ B(U) are canonically diffeomorphic, via the identity map. Noting that B and B(U)
are both 3-balls with an identification of their boundaries, the diffeomorphism can be extended over
B. Furthermore, the extension is unique up to isotopy, since MCG(B3, S2) = {∗}.

Similarly, consider the case that S′1 ⊆ M is obtained from S1 via a handleslide. Let H ⊆ S3(S1)
and H ′ ⊆ S3(S′1) denote the genus 2 handlebodies which contain the support of the handleslide. The
manifolds S3(S1)\H and S3(S′1)\H ′ are canonically diffeomorphic (via the identity map, and clearly
this diffeomorphism extends over H). Since MCG(Hg, ∂Hg) = {∗} for the genus g handlebody Hg,
the extension is unique, up to isotopy.

As a specific example, a diffeomorphism ψ : M →M which is the identity on ∂M may be presented
as a sequence of Kirby moves on framed links in M , starting and ending at the empty link in int(M).

We state the following version of the main result from [Rob97]:

Theorem 4.2. Any two parametrized surgery presentations of a triple (M,M ′, φ) can be connected
by a sequence of the following moves:

(Move O0): Isotopies of f or S1 which fix ∂M .
(Move O1): Handleslides of link components amongst each other.
(Move O2): Blow-ups or blow-downs along a ±1 framed unknot in int(M).
(Move O3): Addition or removal to S1 of a two component link K ∪ µK inside of a solid torus

which is disjoint from S1, where K is a core of the solid torus, and µK is a meridian
of K. Furthermore, K can be given arbitrary framing, though µK must be given the
Seifert framing. See Figure 4.1.

O3

K
µK

Figure 4.1. Move O3 The move takes place in a solid torus in M . The framing
on K can be arbitrary, but the framing on µK is the Seifert framing.

We note that in [Rob97], the moves between framed links are presented without explicitly referenc-
ing diffeomorphism f , though for our purposes, it is important to keep track of the diffeomorphism
f .

We now consider the implications of Theorem 4.2 when M and M ′ are link complements.
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Let U denote a fixed, oriented, `-component unlink in S3. Suppose that L is an `-component link
in a 3-manifold Y . Define

YL := Y \N(L) and S3
U := S3 \N(U).

Let φ0 : U → L be a fixed, orientation preserving diffeomorphism of compact 1-manifolds. Together
with a choice of framing λ of L, φ0 determines a diffeomorphism

(4.1) φλ : ∂(S3
U )→ ∂(YL),

well defined up to isotopy.

Definition 4.3. We call a tuple P = (φ0, λ,S1, f) a parametrized Kirby diagram for an oriented link
L in Y , if the following are satisfied:

(1) φ0 : U → L is an orientation preserving diffeomorphism of 1-manifolds.
(2) λ is a framing of L.
(3) S1 is a framed link in S3

U .
(4) f : S3

U (S1) → YL is a diffeomorphism such that f |∂S3
U

is isotopic to the diffeomorphism φλ
from Equation (4.1).

We now describe a new move, L3, which we will be a convenient alternative to Move O3 when we
are working with parametrized Kirby diagrams for links. Given a link L in Y , with framing λ, the
move L3 consists of performing ±1 surgery on a knot K which is a meridian of a component of U ,
as in Figure 4.2. Suppose P = (φ0, λ,S1, f) is a choice of parametrized Kirby diagram for (Y,L).
The parametrizing diffeomorphism f : S3

U (S1) → YL induces a diffeomorphism from S3
U (S1 ∪ {K})

to YL(f(K)). Furthermore, there is a canonical diffeomorphism from YL(f(K)) to YL, which is the
identity outside of a solid torus containing K whose boundary intersects ∂YL in an annulus. By
composing the two maps, we obtain a diffeomorphism

fK : S3
U (S1 ∪ {K})→ YL,

well defined up to isotopy.
On ∂S3

U , the map fK no longer restricts to φλ, but instead φλ′ , where λ′ is a new framing which
differs by ∓1 on the component that K encircled.

After performing Move L3, we get a new parametrized Kirby diagram PK = (φ0, λ
′,S1 ∪K, fK)

for (Y,L).

U U

L3

±1

K

Figure 4.2. The move L3 between two parametrized Kirby diagrams for
a link. The solid tube denotes a boundary component of S3

U . The knot K is a new
component in the framed link S1.

We now reformulate Theorem 4.2 to describe a sufficient set of moves between any two parametrized
Kirby diagrams of a link:

Proposition 4.4. Suppose Y is a 3-manifold containing an oriented link L with ` components. Let
U denote a fixed `-component unlink in S3. Any two parametrized Kirby diagrams for (Y,L) can be
connected by a sequence of the following moves:

(Move L0): An isotopy of f or S1 which fixes ∂S3
U pointwise.

(Move L1): A handleslide amongst the components of S1.
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(Move L2): A blow-up or blow-down along a ±1 framed unknot which is contained in a 3-ball in
S3 \ (U ∪ S1).

(Move L3): A blow-up or blow-down along a ±1 framed unknot which is a meridian of a single
component of U , and is unlinked from all other components of U and S1.

(Move L4): If ψ0 : U → U is an orientation preserving diffeomorphism, and ψ : (S3, U)→ (S3, U)
is an orientation preserving extension, we replace P = (φ0, λ,S1, f) with P′ = (φ0 ◦
ψ−1

0 , λ, ψ(S1), f ◦ (ψS1)−1), where ψS1 : S3
U (S1) → S3

U (ψ(S1)) is the diffeomorphism
induced by ψ.

Proof. For fixed φ0 and λ, Theorem 4.2 implies that Moves L0, L1, L2 and O3 suffice.
We first claim that for fixed φ0 and λ, it is sufficient to use only instances of Move O3 where K is

a meridian of a single component of U , and is unlinked from all other components of S1 and U . Let
us write O0

3 for an instance of Move O3 with this configuration. Move O0
3 is shown in Figure 4.3.

U U

O0
3

0

Figure 4.3. The move O0
3. It is a special instance of Move O3.

We will show that an arbitrary instance of Move O3, performed along a knot K and its meridian
µK , can instead be written as a composition of Moves L0, L1, L2 and O0

3. Let ΦK,O3
denote the

diffeomorphism from S3
U (S1) to S3

U (S1 ∪ K ∪ µK) which is the identity outside of a solid torus
containing K and µK . The knot K can be transformed into a meridian of a component of U via
a sequence of crossing changes of K with components of S1, with U , or with itself. Hence we will
show that if K ′ is obtained from K by changing a crossing of K with S1, U , or itself, then Move O3,
applied along K, can be written as a composition of Move O3, applied along K ′, as well as some
combination of Moves L0, L1, L2 and O0

3.
First, suppose that K ′ is obtained from K by either a crossing change of K with itself, or a

crossing change of K with another component of S1. The link S1 ∪K ′ ∪ µK′ can be obtained from
S1 ∪K ∪µK by handlesliding a link component across µK (if the crossing change is of K with itself,
then K is handleslid across µK ; if the crossing change is of K with another component of S1, then
the other component is handleslid across µK) followed by an isotopy. Let ΦH : S3

U (S1 ∪K ∪ µK)→
S3
U (S1∪K ′∪µK′) denote the diffeomorphism resulting from the composition of this handleslide and

isotopy. We will show that

(4.2) ΦH ◦ ΦK,O3
∼ ΦK′,O3

,

where ∼ denotes isotopy. Suppose that K ′ is obtained by changing a crossing of K with K0 ⊆ S1.
We will handleslide K0 across µK . Let a be the handleslide arc connecting K0 and µK , and let D
denote a Seifert disk of µK . Let N ⊆ S3

U denote a regular neighborhood of K ∪ a ∪ K0 ∪ D; see

Figure 4.4. We note N is a genus 2 handlebody. Note that ΦH and ΦK′,O3 ◦Φ−1
K,O3

both restrict to

diffeomorphisms between the surgered 3-manifolds N(K0 ∪K ∪ µK) and N(K0 ∪K ′ ∪ µK′), (which
are both themselves genus 2 handlebodies), and ΦH and ΦK′,O3

◦Φ−1
K,O3

agree on ∂N(K0∪K ∪µK),

we conclude that ΦH and ΦK′,O3 ◦ Φ−1
K,O3

must be isotopic since MCG(Hg, ∂Hg) = {∗}, where

Hg denotes a genus g handlebody. Hence Equation (4.2) holds. An analogous argument holds for
changing a crossing of K with itself. Let D be a Seifert disk of µK (which intersects K at a single
point), and let a be an arc from µK to K. Let N denote a regular neighborhood of K ∪ a ∪ D.
Noting that N is a genus two handlebody, since ΦH and ΦK′,O3

◦ Φ−1
K,O3

differ only inside of N , it

follows that they must be isotopic. A similar argument establishes Equation (4.2) in the the case
that K ′ is obtained by changing a crossing of K with itself.
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a

K0

K
µK

K ′
K0µK′

ΦK′,O3
◦ Φ−1

K,O3

ΦH

Figure 4.4. Move O3, applied along K, is equal to a composition of
Move O3, applied along K ′, and a handleslide. The region shown is the
genus 2 handlebody N . The diffeomorphisms ΦH and ΦK′,O3

◦ Φ−1
K,O3

are equal
outside of N , and hence are isotopic.

Next, we consider the case that K ⊆ S3
U \ S1 is a knot and K ′ is the result of changing a crossing

of K with U . We wish to show that Move O3, performed along K, can be written as a composition
of Move O3, performed on K ′, as well as Moves L0, L1, L2 and O0

3. The procedure for doing this
is shown in Figure 4.5. We perform Move O0

3 on a meridian of U , then perform a sequence of han-
dleslides, and then perform the inverse of Move O0

3. As before, the parameterizing diffeomorphism
resulting from applying Move O3 along K is isotopic to the parametrized diffeomorphism resulting
from applying Move O3 along K ′, and then applying a sequence of Moves L0, L1 and O0

3, since they
can be shown to agree outside of a genus two handlebody.

U

K

U

K ′

0
0

O0
3 O0

3

L1 L0 L1

Figure 4.5. Writing an instance of Move O3 along a knot K ′ in terms of
Move O3 on K as well as Moves L0, L1, L2 and O0

3.

In such manner, by performing a sequence of crossing changes, we may reduce K to a meridian of
a single component of U . Hence we can write an arbitrary O3 move on a knot K as a composition
of the Moves L0, L1, L2 and O0

3.
Next, we note that using a standard trick, Move O0

3 can be written as a composition of two L3

moves and possibly moves L1 and L2, depending on the framing of the knot K in the O0
3 move;

see [FR79, Figure 13]. In detail, note that by handlesliding K over µK , we can assume that K has
framing 0 or 1. If K has framing 1, then handlesliding µK over K leaves two meridians of U , one
with framing +1 and the other with framing −1 (i.e. two applications of Move L3). If K is instead
given framing 0, then we blow-up along a −1 framed unknot K0 (as in Move L2), and slide both K
and µK over K0. This leaves K and µK both with framing −1. We then slide K0 over µK , which
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leaves K with framing −1, K0 with framing 0, and µK with framing −1. Furthermore, µK is now
unlinked with K and K0, and K0 is now a meridian of K. Sliding K0 over K and blowing down
along µK yields two meridians of U , one with framing +1 and the other with framing −1.

We note also that a single instance of L3 changes the framing of one component of L by ±1.
Hence for fixed φ0, by applying L3 some number of times, any framing λ can be achieved.

We finally show that any φ0 : U → L can be achieved. We note that any two φ0 maps differ by
pre-composition with an orientation preserving diffeomorphism ψ0 from U to itself, and any such
diffeomorphism extends to an orientation preserving diffeomorphism ψ of (S3, U) with itself. Writing
ψ also for the induced automorphism of S3

U , there is an induced diffeomorphism

ψS1 : S3
U (S1)→ S3

U (ψ(S1)).

Hence, via tautology, we get an induced parametrized Kirby decomposition

P := (φ0 ◦ ψ−1
0 , λ, ψ(S1), f ◦ (ψS1)−1).

Hence Move L4 can be used to move between any two φ0 maps. �

5. Definition of the gradings

In this section, we give the definition of the Alexander and Maslov gradings. In Section 5.1, we
describe the relative versions of the gradings. In Section 5.5, we define the absolute gradings.

5.1. Relative gradings. We begin with the relative Maslov gradings. For our purposes, it is
convenient to describe two Maslov gradings, grw and grz. The relative grading grw is defined on
generators by

(5.1) grw(x,y) = µ(φ)− 2
∑
w∈w

nw(φ),

for any disk φ ∈ π2(x,y). By [OS04c, Proposition 7.5], if φ ∈ π2(x,x) is a class, then

(5.2) 〈c1(sw(x)), H(φ)〉 = µ(φ)− 2
∑
w∈w

nw(φ),

where H denotes the map H : π2(x,x)→ H2(Y ;Z) obtained by capping the domain of φ (viewed as
a 2-chain in Σ with boundary an integral sum of α and β curves) with a sum of compressing disks
in Uα and Uβ which are attached along the α and β curves. In particular, if c1(s) is torsion, then
the quantity grw(x,y) defined in Equation (5.1) is independent of the choice of φ.

We extend grw to CFL∞(Y,L, s) by declaring all Uw variables to have grading −2, and all Vz
variables to have grading 0.

Analogously, we can define the relative grading grz via the formula

(5.3) grz(x,y) = µ(φ)− 2
∑
z∈z

nz(φ),

for a disk φ ∈ π2(x,y). We extend grz to all of CFL∞(Y,L, s), by declaring all Uw variables to be
0 graded, and all Vz variables to be −2 graded. By Equation (5.2), grz(x,y) is independent of the
choice of φ when c1(sz(x)) = c1(s− PD [L]) is torsion.

Remark 5.1. If c1(s) (resp. c1(s−PD [L])) is torsion, then grw (resp. grz) will also determine a well
defined relative grading on CFL∞(Y,Lσ, s) whenever σ is a type-partitioned coloring.

We now describe the relative Alexander multi-gradings. Suppose that J : L→ J is an indexing of L,
and L is J-null-homologous. The Alexander multi-grading is a relative ZJ grading on CFL∞(Y,L, s).

Given a homology class φ ∈ π2(x,y) and an index j ∈ J, we define

nz(φ)j :=
∑
z∈z

J(z)=j

nz(φ), and nw(φ)j :=
∑
w∈w
J(w)=j

nw(φ).

The relative multi-grading is defined by the equation

(5.4) A(x,y)j = (nz − nw)j(φ),
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for any class φ ∈ π2(x,y).
We extend the grading in Equation (5.4) to CFL∞(Y,L, s) by declaring Vz to have grading +1 in

index grading J(z), and Uw to have grading −1 in index J(w). As a concrete example, this implies
that A(Vz · x,x)j = 1 if J(z) = j.

To see that Equation (5.4) is independent of the choice of class φ ∈ π2(x,y), it is sufficient to show
that the expression (nz − nw)j(φ) vanishes for any element φ ∈ π2(x,x). Writing H : π2(x,x) →
H2(Y ;Z) for the map obtained by capping off a periodic domain, a simple computation shows that
if φ ∈ π2(x,x), then

(5.5) (nz − nw)j(φ) = #(H(φ) ∩ J−1(j)),

where #(H(φ)∩J−1(j)) denotes the oriented intersection number. If L is J-null-homologous, then by
definition Lj := J−1(j) is null-homologous, so the expression on the right hand side of Equation (5.5)
vanishes.

Remark 5.2. Suppose L = (L,w, z) is a link in Y . If (σ, J) is a type-partitioned, indexed coloring of
L, with index set J, and L is J-null-homologous, then the complex CFL∞(Y,Lσ, s) has a well defined
ZJ-valued relative Alexander grading. The type-partitioned requirement on the coloring assures that
none of the Uw variables are identified with one of the Vz variables. Requiring that the coloring be
indexed ensures that if two variables are identified, then their corresponding link components are
assigned the same index by J .

Remark 5.3. It is straightforward to compute that the differential ∂ on CFL∞ lowers grw and grz
by 1, and preserves Aj , whenever they are defined.

We now show that the relatively graded isomorphism type of CFL∞ is an invariant:

Lemma 5.4. Suppose L is a multi-based link in Y , with a type-partitioned, indexed coloring (σ, J)
with indexing set J, and L is J-null-homologous. If (H, Js) and (H′, J ′s) are two choices of diagrams
and almost complex structures for (Y,L), then the transition map

Φ(H,Js)→(H′,J′s) : CFL∞Js(H, σ, s)→ CFL
∞
J′s

(H′, σ, s)

preserves the relative Alexander multi-grading over ZJ. Similarly, assuming instead that the coloring
is type-partitioned and c1(s) (resp. c2(s−PD [L])) is torsion, the transition map preserves the relative
grw (resp. grz) grading.

Proof. To verify the claim, one must prove that the relative gradings are preserved by the transition
maps associated to the following Heegaard moves: isotopies and handleslides of the α- and β curves,
index 1/2-(de)stabilizations, isotopies of the Heegaard surface inside Y , and changes of the almost
complex structure.

We will focus on showing that the transition map associated to a handleslide or isotopy of the α
curves preserves the relative Alexander multi-grading. The transition maps associated to an isotopy
or handleslide of the α curves can be computed by counting holomorphic triangles. Furthermore,
an arbitrary isotopy or handleslide of the α curves can be computed as a sequence of holomorphic
triangle maps, such that in each Heegaard triple (Σ,α′,α,β,w, z), the sets α′ and α satisfy |α′i ∩
αj | = 2δij , and there is a unique intersection point Θ+

α′α ∈ Tα′ ∩ Tα which is the highest grw and
grz graded intersection point.

Suppose that x,x′ ∈ Tα ∩ Tβ are two intersection points with sw(x) = sw(x′) = s, and ψ ∈
π2(Θ+

α′α,x,y) and ψ′ ∈ π2(Θ+
α′α,x

′,y′) are two homology classes of triangles which are counted by

the map Φα→α
′

β . The triangle classes ψ and ψ′ both represent the restriction of s to Xα′αβ , under

the inclusion Xα′αβ ↪→ [0, 1]×Y from Lemma 3.7. By [OS04d, Proposition 8.5], it follows that there
are homology classes

φα′α ∈ π2(Θ+
α′α,Θ

+
α′α), φαβ ∈ π2(x′,x) and φα′β ∈ π2(y,y′)

such that

ψ′ = ψ + φα′α + φαβ + φα′β .
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Hence

A(Unw(ψ)
w V nz(ψ)

z · y, Unw(ψ′)
w V nz(ψ′)

z · y′)j = (nz − nw)j(φα′β + ψ − ψ′)
= (nz − nw)j(−φαβ)− (nz − nw)j(φα′α)

= A(x,x′)j ,

(5.6)

since (nz − nw)j(φα′α) = A(Θ+
α′α,Θ

+
α′α) = 0.

Invariance from the Alexander gradings under moves of the β curves is handled similarly. In-
variance of the relative Alexander grading under index 1/2 stabilization can be handled as follows.
Suppose that H′ = (Σ#T2,α ∪ {α0},β ∪ {β0},w, z) is obtained from H = (Σ,α,β,w, z) by a
stabilization, and let c ∈ α0 ∩ β0 denote the new intersection point. If x ∈ Tα ∩ Tβ , the transition
map Φ(H,Js)→(H′,J′s) sends x to x×{c}, for an appropriately stretched J ′s. If φ ∈ π2(x,x′) is a class
of disks on H, then we can construct a class φ′ ∈ π2(x× {c},x′ × {c}) which agrees with φ outside
of T2, and has constant multiplicity in T2. We note that

(5.7) A(x× {c},x′ × {c})j = (nz − nw)j(φ
′) = (nz − nw)j(φ) = A(x,x′)j .

Invariance of the relative Alexander grading under isotopies of the Heegaard surface inside of Y is
a tautology.

Invariance of the relative Alexander multi-graded chain homotopy type from the choice of almost
complex structure is proven similarly to invariance under moves of the α and β curves, since the
transition map

ΦJs→J′s : CFL∞Js(H, s)→ CFL
∞
J′s

(H, s)
can be computed by counting index 0 holomorphic disks in Symn(Σ), for path of paths of almost
complex structures on Symn(Σ), connecting Js and J ′s.

Invariance of the Maslov grading from moves of the α and β curves follows by adapting Equa-
tion (5.6) using the definition of the relative Maslov gradings, the fact that the transition maps count
holomorphic triangles of Maslov index 0, and that the Maslov index is additive under juxtaposition
of triangle and disk classes. Invariance of the Maslov index under index 1/2 stabilization follows by
adapting Equation (5.7), noting that µ(φ′) = µ(φ), nw(φ′) = nw(φ) and nz(φ′) = nz(φ). �

5.2. Two simple examples. We briefly give two examples, illustrating the gradings when some
components of L have non-trivial homology class.

Example 5.5. Consider Y = S1 × S2, with K = S1 × {pt}. A Heegaard diagram is shown in
Figure 5.1. For s the torsion Spinc structure, we see that

CFL−(Y,L, s) ∼=
(
F2[U, V ]

1+V−−−→ F2[U, V ]
)
.

The homology is F2[U, V ]/(1 + V ). The grading grw is defined, but grz cannot be defined since V
acts by the identity on homology. Note that s− PD [K] is not torsion.

w z

Figure 5.1. Two diagrams for S1×S2, for knots or links with components
which are not null-homologous. On the left is the knot K = S1 × {p} and on
the right is K = S1 × {p1, p2}. All intersection points are mapped to the torsion
Spinc structure by sw.
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Example 5.6. Consider Y = S1 × S2 and L = S1 × {p1, p2}. We place two basepoints on each
component of L, and orient the two components to intersect the sphere {pt}×S2 with opposite sign.
A diagram is shown on the right side of Figure 5.1. The intersection points represent the torsion
Spinc structure with respect to sw. It is easy to see that the collapsed Alexander grading can be
defined, but a two component Alexander grading cannot be defined.

5.3. Absolute gradings on CFL∞ for unlinks in (S1 × S2)#k. As a step toward describing the
absolute gradings in general, we fix the absolute gradings for unlinks in (S1 × S2)#k.

Lemma 5.7. Suppose U is a multi-based unlink in (S1 × S2)#k, with an arbitrary configuration of

basepoints. The F2-module ĤFL((S1 × S2)#k,U, s0) has rank 2|w|+k−1. Furthermore, ĤFL((S1 ×
S2)#k,U, s0) has a top degree generator with respect to each of the gradings grw and grz, for which
we write Θw or Θz.

Proof. By Lemma 5.4, the relatively graded isomorphism type of the group ĤFL((S1×S2)#k,U, s0)
is an invariant, so we need only check the claim for a particular diagram.

We start with the case that each component of U contains exactly two basepoints. In this case, we
can pick a diagram H = (Σ,α,β,w, z) where the α curves are small Hamiltonian translates of the
β curves, and the w and z basepoints come in pairs of adjacent basepoints on Σ \ (α∪β). For such
a diagram, the holomorphic disks which do not pass over any of the basepoints come in canceling
pairs, and there is an isomorphism of groups

ĈFL(H, s0) = ĤFL(H, s0) :=

k+|U|−1⊗
i=1

V,

where V is a 2-dimensional vector space over F2 with two generators which have relative (grw, grz)-

bigrading which differ by (1, 1). Hence ĤFL(H, s0) has an element Θ+ = Θw = Θz, which is
maximally graded with respect to both grw and grz. This verifies the claim when U has exactly two
basepoints.

To verify the claim when U has more than two basepoints, we proceed by induction. Supposing
the claim holds for an unlink U with some configuration of basepoints, we will show that it also
holds for the link U′ obtained by adding two extra basepoints to U. Adding two basepoints can
be achieved by the quasi-stabilization operation [MO10, Section 6]. We will consider the quasi-
stabilization operation in more detail later; See Figure 7.2 for a Heegaard diagrammatic description.
If H is a diagram for U, and H′ is a quasi-stabilization, then there is a relatively graded isomorphism

(5.8) ĈFL(H′, s0) ∼= ĈFL(H, s)⊗F2
V ′,

where V ′ is 2-dimensional vector space whose generators have (grw, grz) bi-grading (1
2 ,−

1
2 ) and

(− 1
2 ,

1
2 ). By [Zem17, Proposition 5.3], for an appropriate choice of almost complex structures,

the isomorphism in Equation (5.8) is an isomorphism of chain complexes (viewing V ′ as having

vanishing differential). In particular, if ĤFL(H, s0) has distinguished generators Θw and Θz, then

so does ĤFL(H′, s0), completing the proof. �

Lemma 5.7 allows us to declare absolute lifts of the Maslov gradings on ĈFL((S1 × S2)#k,U, s)
by setting

(5.9) g̃rw(Θw) := g̃rz(Θz) :=
1

2
(k + |w| − 1) =

1

2
(k + |z| − 1).

The declaration in Equation (5.9) specifies the gradings g̃rw and g̃rz uniquely on all intersection
points representing s0. We extend these to CFL∞ by declaring the Uw variables to have (g̃rw, g̃rz)
bi-grading (−2, 0), and declaring the Vz variables to have (g̃rw, g̃rz) bi-grading (0,−2).

In a similar manner, we can declare an absolute lift of the Alexander multi-grading. We index
the link U = (U,w, z) using its set of components, i.e., we set J0 = C(U) and let J0 : U → J0 be the
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natural map. If K is a component of U , we write nK for one half the total number of basepoints on
K (i.e. the number of w basepoints on K, or the number of z basepoints). We set

(5.10) Ã(Θw)K :=
1

2
(nK − 1).

It is straightforward to see that Equation (5.10) implies

Ã(Θz)K = −1

2
(nK − 1).

Writing Ã for the collapsed Alexander grading, it is straightforward to see that

(5.11) Ã =
1

2
(g̃rw − g̃rz),

For an arbitrary indexing J : U → J, we define the Alexander grading over J by collapsing the
Alexander grading which is indexed over J0, i.e., for j ∈ J we define

Ã(x)j :=
∑

K⊆J−1(j)

Ã(x)K .

5.4. Transitive systems of gradings. Since there are many different diagrams for a pair (Y,L),
we cannot specify the objects CFL∞(Y,Lσ, s) as concrete chain complexes. Instead, using naturality
(see Proposition 2.1) they are transitive systems in the category of RP -equivariant, ZP -filtered chain
complexes. Hence, to define the notion of a grading on CFL∞(Y,Lσ, s), we need an analogous notion
of a transitive system of gradings.

If (σ, J) is a type-partitioned, indexed coloring of the link L in Y , which is J-null-homologous and
H is a diagram for (Y,L), we define A(H, σ, J, s) to be the set of absolute lifts to QJ of the relative
Alexander gradings on CFL∞(H, σ, s), described in Section 5.1. The set A(H, σ, J, s) is an affine
space over QJ.

Similarly, if σ is a type partitioned coloring of L, we define Gw(H, σ, s) and Gz(H, σ, s) to be the
set of absolute lifts to Q of the relative gradings grw and grz. The sets Gw(H, σ, s) and Gz(H, σ, s)
are affine spaces over Q|Y |.

In this section, we prove the following naturality result for gradings:

Proposition 5.8. Suppose that L is a multi-based link in Y , with a type-partitioned, indexed coloring
(σ, J), and L is J-null-homologous. If H and H′ are two admissible diagrams, then there is a
well defined transition map FH→H′ : A(H, σ, J, s) → A(H′, σ, J, s). Furthermore, the following are
satisfied:

(1) FH→H = id.
(2) FH′→H′′ ◦ FH→H′ = FH→H′′ .
(3) (FH→H′(A))(ΦH→H′(x)) = A(x).

Similarly, if σ is a type-partitioned coloring of L, and c1(s) (resp. c1(s−PD [L])) is torsion, then
there are well defined transition maps FH→H′ : Gw(H, σ, s)→ Gw(H′, σ, s) (resp. FH→H′ : Gz(H, σ, s)→
Gz(H′, σ, s)), satisfying the same axioms.

Note that Proposition 5.8 implies that we can view the sets A(H, σ, J, s) as fitting into a transitive
system indexed by the set of admissible diagrams of (Y,L). We define A(Y,L(σ,J), s) as the transitive
limit, i.e., the set of tuples

(AH)H∈D(Y,L,s) ∈
∏

H∈D(Y,L,s)

A(H, σ, J, s)

satisfying FH→H′(AH) = AH′ for all H and H′, where D(Y,L, s) denotes the set of admissible
diagrams. We define the transitive limits Gw(Y,Lσ, s) and Gz(Y,Lσ, s) similarly.

The rest of the section is devoted to proving Proposition 5.8. First, we define the maps FH→H′

when H′ and H differ by an elementary Heegaard move, and then we verify that there is no mon-
odromy around loops in the space of Heegaard diagrams, adapting the strategy of [JT12] for the
transition maps on the Heegaard Floer complexes.
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Suppose that H′ = (Σ,α′,β,w, z) and H = (Σ,α,β,w, z) are related by a handleslide or isotopy
of the α curves, and the triple (Σ,α′,α,β,w, z) is admissible. In this case, we write FH→H′ =

Fα→α
′

β for the map

Fα→α
′

β : A(H, σ, J, s)→ A(H′, σ, J, s),

defined as follows. First note that the indexing J of L induces an indexing of the unlink Lα′α ⊆ Yα′α.
If A ∈ A(H, σ, J, s), we define

(5.12) Fα→α
′

β (A)(y)j := A(x)j + Ã(Θ)j + (nw − nz)j(ψ),

for any homology class of triangles ψ ∈ π2(Θ,x,y) with sw(ψ) = ι∗(s) where ι∗ : Xα′αβ → [0, 1]×Y
denotes the inclusion from Lemma 3.7. The grading Fα→α

′

β (A) is independent of the choice of the
intersection points x and Θ, since splicing in homology classes of disks into the ends of ψ does
not affect Equation (5.12). Similarly, the grading is independent of the homology class ψ, since by
[OS04d, Proposition 8.5] any other homology class also representing s can be obtained from ψ by
splicing in homology classes of disks on the diagrams (Σ,α′,α), (Σ,α,β), and (Σ,α′,β).

Analogously, if β′ differs from β by a sequence of handleslides or isotopies, and (Σ,α,β,β′,w, z)
is admissible, we define the transition map Fαβ→β′ via the formula

Fαβ→β′(A)(y)j := A(x)j + Ã(Θ)j + (nw − nz)j(ψ),

for a choice of ψ ∈ π2(x,Θ,y).
Similarly, if H′ = (Σ,α′,β,w, z) and H = (Σ,α,β,w, z) are related by a handleslide or isotopy

of the α curves, then we define maps

Fα→α
′

β : Gw(H, σ, s)→ Gw(H′, σ, s) and Fα→α
′

β : Gz(H, σ, s)→ Gz(H′, σ, s),

whenever (Σ,α′,α,β,w, z) is admissible, as follows. If g ∈ Gw(H, σ, s) and ψ ∈ π2(Θ,x,y) we
define

(5.13) Fα→α
′

β (g)(y) := g(x) + g̃rw(Θ)− 1

2
(k + |w| − 1)− µ(ψ) + 2nw(ψ),

for any choice of x ∈ Tα ∩ Tβ and homology class of triangles ψ ∈ π2(Θ,x,y). In Equation (5.13),
g̃rw denotes the absolute grading described in Section 5.3.

By replacing each instance of w with z, we obtain the analogous map from Gz(H, σ, s) to
Gz(H′, σ, s).

By adapting the argument given above for the Alexander grading, it is straightforward to see that
the grading defined in Equation (5.13) does not depend on the choice of ψ, x or Θ.

Next, we suppose that H′ is a stabilization of H. If x is an intersection point of H, then we let
x× {c} denote the product of x with the intersection point of the new α and β curves on H′. We
define

FH→H′(A)(x× {c})j := A(x)j .

We define the destabilization map FH′→H as the inverse of FH→H′ . An analogous transition map
for the grw and grz gradings is defined similarly.

Finally, if H′ = (Σ′,α′,β′,w, z) is obtained by an isotopy of the diagram H = (Σ,α,β,w, z)
within Y , we define the map FH→H′ via tautology.

Lemma 5.9. Suppose that U is a multi-based link in (S1 × S2)#k, with any configuration of base-

points, and H and H′ are two diagrams for ((S1 × S2)#k,U). If ÃH1 ∈ A(H1, s0) and ÃH2 ∈
A(H2, s2) denote the two gradings defined in Section 5.3, and FH1→H2

denotes the transition map
(defined using any sequence of elementary Heegaard moves), then

FH1→H2
(ÃH1

) = ÃH2
.

The same statement holds for the Maslov gradings.
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Proof. We recall the absolute Alexander grading for unlinks in (S1×S2)#k in Section 5.3 was defined
by fixing the grading of the distinguished elements Θw and Θz. By Lemma 5.4, the maps ΦH1→H2

preserve the relatively graded chain homotopy type of ĈFL, and hence must satisfy

(5.14) ΦH1→H2(Θw
H1

) = Θw
H2
,

and similarly for Θz. Next, we note that Part (3) of Proposition 5.8 is a tautology, and can be
verified for each individual Heegaard move. Hence it follows that

FH1→H2(ÃH1)(Θw
H2

)j = FH1→H2
(ÃH1

)(ΦH1→H2
(Θw
H1

))j

= ÃH1
(Θw
H1

)j .

Hence it follows that FH1→H2
(ÃH1

) = ÃH2
, completing the proof. �

We have the following:

Lemma 5.10. Suppose that L is a multi-based link in Y . The following statements hold for the
transition maps on the sets of Alexander, grw and grz gradings, whenever they are defined:

(1) Suppose that (Σ,α′′,α′,α,β,w, z) is an admissible quadruple and α, α′ and α′′ are all
related to each other by a sequence of handleslides and isotopies. Then

Fα→α
′′

β = Fα
′→α′′

β ◦ Fα→α
′

β .

A similar statement holds for an admissible quadruple (Σ,α,β,β′,β′′,w, z), where β, β′

and β′′ are related by a sequence of handleslides and isotopies.
(2) Suppose (Σ,α′,α,β,w, z) is an admissible Heegaard triple and α′ is related to α by a

sequence of handleslides and isotopies, and suppose (Σ, α̂′, α̂, β̂,w, z) is a triple obtained
by stabilizing (Σ,α′,α,β,w, z) at a point in Σ \ (α′ ∪α∪β). Writing FS for the transition
map associated to stabilization, we have

FS ◦ Fα→α
′

β = F α̂→α̂
′

β̂
◦ FS .

(3) Suppose (Σ,α,β,w, z) is an admissible diagram for (Y,L) and φ : (Σ,w ∪ z) → (Σ,w ∪ z)
is a diffeomorphism which is isotopic to idΣ, relative to w ∪ z. Then

F
α→φ(α)
φ(β) ◦ Fαβ→φ(β) = φ∗.

(4) Suppose that (Σ,α′,α,β,β′,w, z) is an admissible quadruple, such that α′ is related to α by
a sequence of handleslides and isotopies, and β′ is related to β by a sequence of handleslides
or isotopies. Then

Fα→α
′

β′ ◦ Fαβ→β′ = Fα
′

β→β′ ◦ Fα→α
′

β .

(5) If S and S′ are two disjoint stabilizations, then

FS ◦ FS′ = FS′ ◦ FS .
(6) If S is a stabilization, and φ : (Y, L)→ (Y,L) is a diffeomorphism fixing w ∪ z, then

φ∗ ◦ FS = Fφ(S) ◦ φ∗.

Proof. We consider Claim (1), focusing on Alexander gradings. Suppose that A ∈ A(Σ,α,β, σ, J, s),
and yα′′β ∈ Tα′′∩Tβ . Pick intersection points Θα′′α′ ∈ Tα′′∩Tα′ , Θα′α ∈ Tα′∩Tα, Θα′′α ∈ Tα′′∩Tα,
xαβ ∈ Tα ∩ Tβ and xα′β ∈ Tα′ ∩ Tβ , such that Θα′′α, Θα′α and Θα′′α′ represent the torsion
Spinc structures. Pick homology classes of triangles ψα′′α′α ∈ π2(Θα′′α′ ,Θα′α,Θα′′α), ψα′′αβ ∈
π2(Θα′′α,xαβ ,yα′′β), and ψα′αβ ∈ π2(Θα′α,xαβ ,xα′β), and ψα′′α′β ∈ π2(Θα′′α′ ,xα′β ,yα′′β), such
that

(5.15) ψα′′αβ + ψα′′α′α = ψα′αβ + ψα′′α′β .

By definition,

(5.16) Fα→α
′′

β (A)(yα′′β)j = A(xαβ)j + Ã(Θα′′α)j + (nw − nz)j(ψα′′αβ)
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and

(Fα
′→α′′

β ◦ Fα→α
′

β )(A)(yα′′β)j

=A(xαβ)j + Ã(Θα′α)j + Ã(Θα′′α′)j + (nw − nz)j(ψα′′α′β + ψα′αβ).
(5.17)

Equation (5.17) minus Equation (5.16) is

(5.18) − Ã(Θα′′α)j + Ã(Θα′α)j + Ã(Θα′′α′)j + (nw − nz)j(ψα′′α′α).

Note that the expression in Equation (5.18) is equal to

(5.19) Fα
′→α′′

α (Ã)(Θα′′α)j − Ã(Θα′′α)j .

By Lemma 5.9, the grading Ã on unknots in (S1 × S2)#k is a transitive grading, and hence
Equation (5.19) must vanish. It follows that Equation (5.18) vanishes as well, establishing Claim (1)
for the Alexander multi-grading.

The proof of Claim (1) for Maslov gradings, as well as the proofs of Claims (2)–(6), are straight-
forward modifications of the above argument. �

There is an important class of loops in the set of Heegaard diagrams, called simple handleswaps.
We refer the reader to [JT12, Definition 2.31] for a precise description. We state the following version
of handleswap invariance for gradings (compare [JT12, Proposition 9.25]):

Lemma 5.11. If H1
e−→ H2

f−→ H3
g−→ H1 is a simple handleswap, then

Fg ◦ Ff ◦ Fe = id,

as maps on the set of Alexander gradings or Maslov gradings on H1.

Proof. The maps Fe and Ff are maps induced by handleslides of the α and β curves, respectively.
The map Fg is induced by a diffeomorphism. In our context, the maps Fe and Fg are computed
by picking any homology class of triangles. Hence the argument can be proven by adapting the
standard proof of handleswap invariance [JT12, Proposition 9.25], noting that in our context, we
just need to check the claim for any two homology classes of triangles (one to compute Fe and one
to compute Ff ). �

We now prove that the maps FH→H′ give each of A(H, σ, J, s), Gw(H, σ, s) and Gz(H, σ, s) the
structure of a transitive system.

Proof of Proposition 5.8. It is sufficient to verify that the sets of gradings together with the transi-
tion maps we’ve defined satisfy the axioms of a strong Heegaard invariant [JT12, Definition 2.33].
Lemmas 5.10 and 5.11 imply that the sets of gradings, together with the transition maps we previ-
ously associated to elementary Heegaard moves, satisfy the axioms of [JT12, Definition 2.33]. Hence,
by [JT12, Theorem 2.38], the map FH→H′ , defined using elementary moves between Heegaard dia-
grams, does not depend on the choice of elementary Heegaard moves between H and H′.

Finally, it remains to show Claim (3), i.e., that

(5.20) (FH→H′(A))(ΦH→H′(x)) = A(x).

Equation (5.20) can be checked for each elementary Heegaard move, and is a tautology from the
definitions. �

5.5. Definition of the absolute gradings. In this section, we give the definition of the absolute
gradings. In Section 6, we prove that these gradings are well defined.

Pick a parametrized Kirby diagram P = (φ0, λ,S1, f) for (Y, L). The parametrized Kirby diagram

specifies an unlink U in S3, as well as a framed link S1 ⊆ S3 \ U , and a diffeomorphism f̂ between
S3(S1) and Y , which maps U to L. Abusing notation slightly, let us write w and z for the basepoints

on U obtained by pulling back w ∪ z ⊆ L under f̂ . Let U denote the multi-based link

U := (U,w, z).

We pick a β-bouquet B for S1, as well as a Heegaard triple T = (Σ,α,β,β′,w, z) subordinate to B.
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Note that by definition (Σ,α,β,w, z) is a diagram for (S3,U), and (Σ,α,β′,w, z) is a diagram
for (Y,L). The diagram (Σ,β,β′,w, z) is a diagram for an unlink Uββ′ in (S1×S2)#k, with exactly
two basepoints per link component.

Suppose that (σ, J) is a type-partitioned, indexed coloring of L, with index set J, and suppose
that L is J-null-homologous. Let S = (Sj)j∈J be a generalized J-Seifert surface of L. Note that
(σ, J) induces a type-partitioned, indexed coloring of both U and Uββ′ , for which we will also write
(σ, J).

Write W (S3,S1) for the 2-handle cobordism from S3 to Y obtained by attaching 2-handles to

[0, 1] × S3 along {1} × S1. Let Σj denote the surface [0, 1] × Uj ⊆ W (S3,S1), and let Σ̂j denote
the integral 2-cycle obtained by capping off Σj with {1} × f−1(Sj) ⊆ {1} × S3(S1), as well as an

arbitrary Seifert surface of Uj in {0} × S3. Let [Σ̂] denote the integral 2-cycle [Σ̂] :=
∑
j∈J[Σ̂j ].

If y ∈ Tα ∩ Tβ′ is an intersection point with sw(y) = s and j ∈ J, we pick intersection points
x ∈ Tα ∩ Tβ and Θ ∈ Tβ ∩ Tβ′ , as well as a homology class of triangles ψ ∈ π2(x,Θ,y), and set

(5.21) AS(y)j := Ã(x)j + Ã(Θ)j + (nw − nz)j(ψ) +
〈c1(sw(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
.

As defined above, the grading AS is an element of A(H, σ, J, s), where H = (Σ,α,β′,w, z).
However, there is a canonical isomorphism A(H, σ, J, s) → A(Y,L(σ,J), s), so there is an induced
transitive grading in A(Y,L(σ,J), s). Well definedness of AS amounts to showing that the induced
element AS in A(Y,L(σ,J), s) is independent from the choice of x, Θ, ψ, T and P. This will be
addressed in Section 6.

We define the absolute Maslov gradings in a similar fashion. Assuming that σ is a type-partitioned
coloring of L, and c1(sw(y)) is torsion, we define

grw(y) :=g̃rw(x) + g̃rw(Θ)− 1

2
(k + |w| − 1)− µ(ψ) + 2nw(ψ)

+
c1(sw(ψ))2 − 2χ(W (S3,S1))− 3σ(W (S3,S1))

4
.

(5.22)

We define grz similarly, by replacing each instance of nw, grw or sw in Equation (5.22) with nz, grz
or sz, respectively.

Note that we can immediately prove Part (b) of Theorem 2.13, that the Alexander grading (AS)j
takes values in Z + 1

2`k(L \ Lj , Lj):

Proof of Part (b) of Theorem 2.13. Since c1(sw(ψ)) is a characteristic vector of QW , it follows that

〈c1(sw(ψ)), [Σ̂j ]〉− [Σ̂j ] · [Σ̂j ] is an even integer. Hence, modulo Z, the expression in Equation (5.21)
is equal to

(5.23)
1

2

(
[Σ̂ \ Σ̂j ] · [Σ̂j ]

)
.

Since the link cobordism surfaces Σj and Σi are disjoint whenever i 6= j, it is straightforward to
see that the expression in Equation (5.23) is ± 1

2#((L \ Lj) ∩ Sj), which is, by definition, 1
2`k(L \

Lj , Lj). �

5.6. Rationally null-homologous links and relative cyclic gradings. There are several addi-
tional situations where one can define versions of the Alexander and Maslov gradings.

The first is when L is rationally null-homologous, i.e., [L] = 0 ∈ H1(Y ;Q). In this case, Equa-
tion (5.5) implies that the relative Alexander grading is still well defined. In fact, by picking a
rational 2-chain S with boundary −L, the techniques of this paper still give a well defined Q-valued
Alexander grading AS . We will focus on integrally null-homologous links, for notational simplicity.

More generally, if c1(s) is non-torsion, then Equation (5.2) implies that there is a Z/d(s)Z valued
relative Maslov grading grw, where

d(s) = gcd
ξ∈H2(Y ;Z)

〈c1(s), ξ〉.

Similarly, there is a Z/d(s− PD [L])Z valued relative Maslov grading grz.
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Similarly, by examining Equation (5.5) we see that when L 6= 0 ∈ H1(Y ;Q) there is still a Z/d(L)Z
valued relative Alexander grading, where

d(L) := gcd
ξ∈H2(Y ;Z)

〈PD [L], ξ〉.

The techniques of this paper do not give lifts the relative cyclic gradings to absolute cyclic gradings.

6. Invariance of the absolute gradings

In this section, we prove that the absolute lifts of the Alexander and Maslov gradings defined in
Section 5.5 do not depend on the choices made in the construction.

6.1. Invariance of the absolute Alexander grading.

Lemma 6.1. Suppose that (Y,L) is a multi-based link, and P is a parametrized Kirby decomposition
with framed link S1, Bβ is a β-bouquet for S1, and T = (Σ,α,β,β′,w, z) is a Heegaard triple
subordinate to Bβ. If y ∈ Tα ∩ Tβ′ , the expression for AS(y)j in Equation (5.21) is independent of
the choice of x ∈ Tα ∩ Tβ, Θ ∈ Tβ ∩ Tβ′ and ψ ∈ π2(x,Θ,y).

Proof. We first show that AS is independent of the triangle ψ, for fixed x and Θ. If ψ,ψ′ ∈ π2(x,Θ,y)
are two homology classes, we can write

ψ′ = ψ + P,

for a triply periodic domain P. By [OS04d, Proposition 8.5],

sw(ψ′) = sw(ψ) + q∗PD [H(P)],

where H(P) is the integral 2-cycle obtained by capping off the triply periodic domain P, and

q∗ : H2(Xαββ′ , ∂Xαββ′ ;Z)→ H2(Xαββ′ ;Z)

is the map in the long exact sequence of cohomology.

Let A
(x,Θ,ψ)
S denote the grading defined with x, Θ and ψ, and let A

(x,Θ,ψ′)
S denote the grading

defined with x, Θ and ψ′. We compute

A
(x,Θ,ψ′)
S (y)j

=Ã(x)j + Ã(Θ)j + (nw − nz)j(ψ
′) +

〈c1(sw(ψ′)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]
2

=Ã(x)j + Ã(Θ)j + (nw − nz)j(ψ) + (nw − nz)j(P) +
〈c1(sw(ψ)) + 2q∗PD [H(P)], [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2

=Ã(x)j + Ã(Θ)j + (nw − nz)j(ψ) +
〈c1(sw(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2

+ (nw − nz)j(P) + 〈q∗PD [H(P)], Σ̂j〉

=A
(x,Θ,ψ)
S (y)j

since

(nw − nz)j(P) + 〈q∗PD [H(P)], Σ̂j〉
=(nw − nz)j(P) + 〈PD [H(P)],Σj〉
=(nw − nz)j(P) + 〈PD [H(P)], (Σαββ′)j〉
=0

by Equation (3.2).



LINK COBORDISMS AND ABSOLUTE GRADINGS ON LINK FLOER HOMOLOGY 35

The independence of AS(y)j from x and Θ is handled similarly. If x′ is another choice of inter-
section point in Tα ∩ Tβ , then we pick a homology class φ ∈ π2(x′,x). We compute directly from
the definition that

A
(x′,Θ,ψ+φ)
S (y)j −A(x,Θ,ψ)

S (y)j

=Ã(x′)j − Ã(x)j + (nw − nz)j(φ)

=0

since Ã(x′)j − Ã(x)j = (nz − nw)j(φ), by definition. Independence from Θ is proven analogously.
�

Next, for fixed P and Bβ , we consider the dependence on the triple T subordinate to Bβ :

Lemma 6.2. For fixed parametrized Kirby diagram P with framed link S1, and fixed β-bouquet Bβ
for S1, the Alexander grading AS defined in Equation (5.21) is independent of the choice of Heegaard
triple T = (Σ,α,β,β′,w, z) subordinate to Bβ.

Proof. Suppose T1 = (Σ1,α1,β1,β
′
1,w, z) and T2 = (Σ2,α2,β2,β

′
2,w, z) are two triples subordinate

to Bβ . Let AS,T1 denote the grading defined with the triple T1, and let AS,T2 be the grading defined
with T2. Write H1 = (Σ1,α1,β

′
1,w, z) and H2 = (Σ2,α2,β

′
2,w, z). By definition, we need to show

that

(6.1) AS,T2 = FH1→H2
(AS,T1),

where FH1→H2
is the transition map on sets of Alexander gradings defined in Section 5.4.

Any two triples subordinate to Bβ can be connected by a sequence of the six moves of Lemma 3.4,
so it is sufficient to prove Equation (6.1) when T1 and T2 differ by one of the moves on the list.

We consider Move (1) first, when T2 is obtained from T1 by a handleslide or isotopy of the α
curves. In this case, let us write T1 = (Σ,α,β,β′) and T2 = (Σ,α′,β,β′).

Suppose that yα′β′ ∈ Tα′ ∩ Tβ′ . We make choices of the following:

(1) xα′β ∈ Tα′ ∩ Tβ .
(2) Θββ′ ∈ Tβ ∩ Tβ′ , representing the torsion Spinc structure.
(3) ψα′ββ′ ∈ π2(xα′β ,Θββ′ ,yα′β′).
(4) yαβ′ ∈ Tα ∩ Tβ′ such that sw(yαβ′) = sw(yα′β′) ∈ Spinc(Y ).
(5) ψαββ′ ∈ π2(xαβ ,Θββ′ ,yαβ′).
(6) Θα′α ∈ Tα′ ∩ Tα, representing the torsion Spinc structure.

It follows from [OS04d, Proposition 8.5] that by adding triply periodic domains into ψα′ββ′ and
ψαββ′ , we can assume

(6.2) sw(ψα′ββ′) = sw(ψαββ′)

under the canonical inclusions of Xα′ββ′ and Xαββ′ into W (S3,S1) from Lemma 3.7.
Similar to the map from homology classes of triangles to Spinc structures discussed in Section 3,

there is a Spinc map on quadrilateral classes

sw : π2(Θα′α,xαβ ,Θββ′ ,yα′β′)→ Spinc(Xα′αββ′).

We note that after filling in Yα′α with 3-handle and 4-handles, the manifolds Xα′αβ′ and Xα′αβ be-
come [0, 1]×S3 and [0, 1]×Y 3 respectively. Hence we can find triangle classes ψα′αβ ∈ π2(Θα′α,xαβ ,xα′β)
and ψα′αβ′ ∈ π2(Θα′α,yαβ′ ,yα′β′) such that

sw(ψα′αβ′ + ψαββ′) = sw(ψα′ββ′ + ψα′αβ) ∈ Spinc(Xα′αββ′) ∼= Spinc(W (S3,S1)).

By [OS04d, Section 8.1.5], it follows that the quadrilateral class ψα′αβ′+ψαββ′ can be obtained from
ψα′ββ′ + ψα′αβ by splicing homology classes of disks into the four ends. By splicing these four disk
classes into the triangle classes ψα′ββ′ and ψα′αβ , we may simply assume that

(6.3) ψα′αβ′ + ψαββ′ = ψα′ββ′ + ψα′αβ ,

as homology classes of quadrilaterals.
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By expanding out the definitions of the gradings, and simplifying slightly using Equation (6.3),
we obtain the equality

AS,T2(yα′β′)j − FH1→H2(AS,T1)(yα′β′)j

=Ã(xα′β)j − Ã(xαβ)j − Ã(Θα′α)j − (nw − nz)j(ψα′αβ)

+
〈c1(sw(ψα′ββ′)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
− 〈c1(sw(ψαββ′)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
.

(6.4)

The expression

Ã(xα′β)j − Ã(xαβ)j − Ã(Θα′α)j − (nw − nz)j(ψα′αβ),

in Equation (6.4) vanishes because it is equal to Ã(xα′β)j − Fα→α
′

β (Ã)(xα′β)j , which vanishes by
Lemma 5.9.

By Equation (6.2), the two summands involving Chern classes and self intersection numbers also
vanish. Hence the entirety of Equation (6.4) vanishes.

Invariance from Moves (2), (4) and (5) also amount to proving invariance from a sequence of
isotopies or handleslides of some of the attaching curves, and are proven similarly to Move (1).
Invariance under Move (3), (de)stabilization, is an easy computation. Finally, invariance under
Move (6), isotopies of the Heegaard surface Σ within S3, is a tautology.

�

Next, we address independence from the β-bouquet Bβ :

Lemma 6.3. For a fixed parametrized Kirby diagram for (Y,L), the Alexander multi-grading AS is
invariant from the β-bouquet Bβ for the framed link S1 of P.

Proof. This follows from an adaptation of the original argument that the 2-handle maps are invariant

of the choice of β-bouquet [OS06, Lemma 4.8]. As argued therein, if Bβ1 and Bβ2 are two bouquets
which differ by replacing a single arc with another, then Heegaard triples T1 = (Σ,α,β1,β

′
1,w, z)

and (Σ,α,β2,β
′
2,w, z) can be constructed so that β2 is obtained from β1 via a sequence of han-

dleslides and isotopies, and β′2 is obtained from β′1 via a sequence of handleslides and isotopies.
Adapting the argument from Lemma 6.2 for associativity on the level of homology classes yields the
statement. �

Lemma 6.4. The Alexander multi-grading is invariant under Move L1, handleslides amongst the
components of S1.

Proof. This follows by adapting the proof of invariance of the 2-handle maps from handleslides
[OS06, Lemma 4.14]. Handlesliding a component of S1 across another can be realized as a sequence
of several handles of the β curves over each other, and several handleslides of the β′ curves over
each other. An argument using associativity on the level of homology classes as in Lemma 6.2 shows
invariance. �

We now consider Move L2, invariance under blowing-up or down:

Lemma 6.5. Suppose that K is an unknot in S3 which is contained in a ball which is disjoint
from S1 and U . Suppose that P = (φ0, λ,S1, f) is a parametrized Kirby diagram for (Y,L) and let
P′ = (φ0, λ,S1 ∪ {K}, fK) denote the parametrized Kirby diagram obtained by adding K to S1 with
framing ±1, and let fK be the induced diffeomorphism. The gradings AS,P and AS,P′ agree.

Proof. The proof is similar to the standard proof of the blow-up formula [OS06, Section 6]. If T
is subordinate to a bouquet for S1, then we can construct a triple T + which is subordinate to a
bouquet for S1 ∪ {K} by taking the connected sum of T with one of the two diagrams shown in
Figure 6.1, depending on whether we are taking a positive or negative blow-up.

For both positive and negative blow-ups, if ψ is a class of triangles on (Σ,α,β,β′,w, z), we can
make ψ have multiplicity 0 at the connected sum point by splicing ψ with the class k · [Σ] (where
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α0 β0

β′0
−1

CP2
CP2

β0 α0 β′0
+1

Figure 6.1. A Heegaard triple for surgery after a blow-up (Move L1).
Taking connected sum of a surgery triple with one of the two triples shown above,
at the dashed circle shown, results in a surgery triple for blowing up away from Σ.
Multiplicities of a homology triangles are shown.

Σ denotes the Heegaard surface). We can construct a homology class of triangles ψ+ by taking the
product of ψ and the triangle class shown in Figure 6.1. We note that

(6.5) sw(ψ+) = sw(ψ)#s′

for some s′ in Spinc(CP2) or Spinc(CP2
). Equation (6.5) implies that

〈c1(sw(ψ+)), [Σ̂j ]〉 = 〈c1(sw(ψ)), [Σ̂j ]〉.

Furthermore, [Σ̂]·[Σ̂j ] is easily seen to be unchanged, since the blow-up occurs away from [0, 1]×U ⊆
W (S3,S1). Since (nw − nz)j(ψ) is also unchanged, it follows that Equation (5.21) is unchanged, so
AS,P and AS,P′ agree. �

We now consider Move L3, when the new component is given framing −1:

Lemma 6.6. Suppose that P = (φ0, λ,S1, f) is a parametrized Kirby diagram for (Y,L) and that
K ⊆ S3 \N(U) is a meridian of a single component of U , as in Move L3, and suppose K is given
framing −1. Let P′ = (φ0, λ

′,S1 ∪ {K}, fK) where fK is the induced diffeomorphism, and λ′ is the
new framing on L. The gradings AS,P and AS,P′ agree.

Proof. Given a Heegaard triple T subordinate to a bouquet for S1, we can construct a Heegaard
triple T + subordinate to a bouquet for S1∪{K} by taking the connected sum of the genus 1 Heegaard
triple on the right side of Figure 6.1 with T , near a basepoint z on the link component which K is
a meridian of, and then moving z into the position shown in Figure 6.2. Let j ∈ J denote the index
j := J(z).

We note that a there is a diffeomorphism between W (S3,S1 ∪{K}) and W (S3,S1)#CP2
which is

the identity outside of [0, 1]×B ⊆W (S3,S1) for a ball B ⊆ S3 containing K. Under this connected
sum decomposition, we can describe H2(W (S3,S1 ∪ {K});Z) as H2(W (S3,S1);Z) ⊕ Z where the
new copy of Z is generated by an embedded sphere E in W (S3,S1 ∪ {K}) formed by taking a
Seifert disk for K in S3 × {1} and gluing on the core of the 2-handle attached along K. Let Σj
denote the link cobordism surface [0, 1] × Uj ⊆ W (S3,S1) and let Σ′j denote the analogous surface

in W (S3,S1 ∪ {K}).
We can view the original link cobordism surface Σj as a surface inW (S3,S1∪{K}) ∼= W (S2,S1)#CP2

,
by first pushing Σj outside of the connected sum region before we take the connected sum. We note

that, by inspection, the class E is equal to H(P), the homology class obtained by capping off the
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ψ+
1 P

+1

+1

∂′β′P

∂′αP

∂′βP

−1

α0

β0

β′0

β0

α0 β′0
xa

b

b′

z z

−1

−1

−1

Figure 6.2. The Heegaard triple T + for surgery on S1∪{K} where K has
framing −1. This corresponds to Move L3. On the left is the homology class ψ+

1 ,
and a dual spider, with arcs a, b and b′. On the right is the triply periodic domain

P with H(P) ∈ H2(CP2
;Z) a generator. Also on the right are the translates ∂′αP,

∂′βP and ∂′β′P.

triply periodic domain P shown in Figure 6.2. Note that clearly

(6.6) [Σ̂′j ] = [Σ̂j ] + a · E,

for some a ∈ Z. In fact, we can compute that a = −1 by applying Equation (3.2) to the triply
periodic domain P in Figure 6.2:

1 = (nz − nw)j(P) = #(Σ′j ∩H(P)) = [Σ̂j + aH(P)] · [H(P)] = −a.

Now let ψ ∈ π2(x,Θ,y) be any homology class of triangles on T , such that Θ represents the
torsion Spinc structure. By splicing in the class of the Heegaard surface to ψ, we can assume that
nz(ψ) = 0.

We construct a class ψ+
1 ∈ π2(x×xα0β0 ,Θ× θβ0β′0

,y× yα0β′0
), by taking the product of ψ and the

small triangle class shown in Figure 6.2.
We now compute 〈c1(sw(ψ+

1 )), H(P)〉. According to [OS06, Proposition 6.3], we have

(6.7) 〈c1(sw(ψ+
1 )), H(P)〉 = e(P) + #(∂P)− 2nw(P) + 2σ(ψ+

1 ,P),

where e(P) = 0 denotes the Euler measure, #∂P = 3 is the number of boundary components of P,
and σ(ψ1,P) is the dual spider number [OS06, Section 6.1]. We recall briefly the construction of the
dual spider number σ(ψ+

1 ,P). Let u : ∆ → Symn(ΣT +) denote a topological representative of the
class ψ+

1 . Let x ∈ ∆ be a generic point, and let a, b and b′ be three paths in ∆ from x to the α0,
β0 and β′0 boundaries of ∆, respectively. Perturbing u slightly if necessary, we can view u(x) as an
n-tuple of points on Σ, and u(a), u(b) and u(b′) as integral 1-chains on Σ. The dual spider number
is defined as

(6.8) σ(ψ+
1 ,P) := nu(x)(P) + #(u(a) ∩ ∂′αP) + #(u(b) ∩ ∂′βP) + #(u(b′) ∩ ∂′β′P),

where ∂′τP denotes the translation of the boundary component ∂τP of P, in the direction of the
inward normal vector field, according to the periodic domain P.

Using Equation (6.8), we compute σ(ψ+
1 ,P) = 1− 1− 1− 1 = −2. Computing the remainder of

the terms in Equation (6.7), we see

〈c1(sw(ψ+
1 )), H(P)〉 = −1.

We note

nw(ψ+
1 )j = nw(ψ)j and nz(ψ+

1 )j = nz(ψ)j + 1.



LINK COBORDISMS AND ABSOLUTE GRADINGS ON LINK FLOER HOMOLOGY 39

Using ψ to compute the Alexander grading AS,P, and using ψ+
1 to compute the Alexander grading

AS,P′ , we see that the difference between the expressions defining AS,P′(y × yα0β′0
)j and AS,P(y) is

〈c1(sw(ψ+
1 )),−H(P)〉 − [−H(P)] · [−H(P)]

2
− nz(ψ+

1 ) = 0.

In a similar way to Lemma 6.5, it is straightforward to see that the other components of the
Alexander grading are unchanged, completing the proof. �

We now consider Move L3, when the new link component is given framing +1:

Lemma 6.7. Suppose that P = (φ0, λ,S1, f) is a parametrized Kirby diagram for (Y,L) and suppose
that K is a meridian of a single component of U , as in Move L3, and suppose K is given framing
+1. Let P′ = (φ0, λ

′,S1 ∪ {K}, fK), where fK is the induced diffeomorphism, and λ′ is the new
framing on L. The two gradings AS,P and AS,P′ agree.

Proof. The proof is similar to the proof of Lemma 6.6. Let T + be a triple subordinate to a bouquet
for S1 ∪ {K}, constructed as in the proof of Lemma 6.6; See Figure 6.3. Let j denote the index
of the grading that K is assigned to. Let ψ+

−1 and P be the homology class of triangles and triply
periodic domain shown in Figure 6.3.

ψ+
−1 P

−1

+1

∂′β′P

∂′αP

∂′βP
−1

α0

β0 β′0
β0

α0

β′0
x

a
b

b′

z z

−1

−1

−1

Figure 6.3. The Heegaard triple T + for surgery on S1∪{K} where K has
framing +1. This corresponds to Move L3. On the left is the homology class ψ+

1 ,
and a dual spider, with arcs a, b and b′. On the right is the triply periodic domain
P with H(P) ∈ H2(CP2;Z) a generator. Also on the right are the translates ∂′αP,
∂′βP and ∂′β′P.

Let Σ′j denote the surface [0, 1] × Uj ⊆ W (S3,S1 ∪ {K}) and let Σj denote the surface [0, 1] ×
Uj ⊆ W (S3,S1), which we can also view as being a surface in W (S3,S1 ∪ {K}). Let Σ̂′j and Σ̂j
denote the integral 2-cycles obtained by capping off Σ′j and Σj . As in Lemma 6.6, we can write

[Σ̂′j ] = [Σ̂j ] + aH(P). Arguing as before,

1 = (nz − nw)j(P) = #(Σ′j ∩H(P)) = a[H(P)] · [H(P)] = a,

implying that [Σ′j ] = [Σj ] +H(P). Computing using Equations (6.7) and (6.8) we have

σ(ψ+
−1,P) = −2 and 〈c1(sw(ψ+

−1)), H(P)〉 = −1.

Furthermore
nw(ψ+

−1)j = nw(ψ)j and nz(ψ+
−1)j = nz(ψ)j − 1.

Hence, the difference between AS,P′(y × yα0β′0
)j and AS,P(y)j is

〈c1(sw(ψ+
−1)), H(P)〉 − [H(P)] · [H(P)]

2
− nz(ψ+

−1)j + nz(ψ)j = 0.
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Furthermore, arguing analogously to Lemma 6.6, the Alexander grading is also unchanged in the
components other than j. �

We now consider Move L4, corresponding to changing the identification φ0 of U with L.

Lemma 6.8. Suppose that P = (φ0, λ,S1, f) is a parametrized Kirby diagram of (Y,L) and that
ψ0 : U → U is a diffeomorphism, which is extended by ψ : (S3, U) → (S3, U), and ψ is orientation
preserving for both S3 and U . Then AS,P and AS,P′ agree, where P′ = (φ0◦ψ−1

0 , λ, ψ(S1), f ◦(ψS1)−1).

Proof. The proof is essentially a tautology. We take a triple T = (Σ,α,β,β′,w, z) subordinate
to a β-bouquet of S1. The triple ψ∗T = (ψ(Σ), ψ(α), ψ(β), ψ(β′),w, z) is subordinate to a β-
bouquet for ψ(S1). Note that the resulting Heegaard surface for (Y,L) from both the pairs (P, T )
and (P′, ψ∗T ) is (f(Σ), f(α), f(β′),w, z). In particular, the pairs (P, T ) and (P′, ψ∗T ) define an
absolute grading on the same chain complex. Furthermore,the expression defining the Alexander
grading in Equation (5.21) is unchanged, since we can simply push forward a triangle class on T
under the diffeomorphism ψ to get a triangle class on ψ(T ). �

Combining the results of this section, we can prove part (a) of Theorem 2.13:

Theorem 2.13 Part (a). Suppose that L is a multi-based link in Y , and (σ, J) is a type-partitioned,
indexed coloring of L, L is J-null-homologous, and that S is a generalized J-Seifert surface of L.
Then the chain complex CFL∞(Y,Lσ, s) admits an absolute Alexander multi-grading AS which takes
values in QJ. The multi-grading is additive with respect to collapsing indices.

Proof. A-priori, the grading AS depends on the choice of parametrized Kirby decomposition P and
Heegaard triple T . By Lemma 6.2 the grading is independent of the choice of Heegaard triple T ,
subordinate to a fixed bouquet of the framed link S1 of P. By Lemma 6.3, the grading is independent
of the choice of bouquet subordinate to S1. Hence the grading AS depends at most on the P (and
Y , L and S).

By Proposition 4.4, any two choices of P can be connected by Moves L0, L1, L2, L3 and L4.
Invariance from Move L0 (isotopies of f or S1, fixing ∂(S3

U (S1))) is automatic, using naturality of
Heegaard Floer homology. Invariance under Move L1 follows from Lemma 6.4. Invariance from
Move L2 follows from Lemma 6.5. Invariance from Move L3 follows from Lemmas 6.6 and 6.7.
Finally, invariance from Move L4 follows from Lemma 6.8.

The final claim, that the Alexander grading is additive with respect to collapsing components
of the index set J, is straightforward, since each summand in the expression in Equation (5.21) is
additive under collapsing gradings. �

6.2. Dependence on the Seifert surface S. We now prove part (c) of Theorem 2.13:

Theorem 2.13 Part (c). If S and S′ are two generalized J-Seifert surfaces for a J-null-homologous
link L, and s ∈ Spinc(Y ), then

(AS′)j − (AS)j =
〈c1(s), [S′j ∪ −Sj ]〉

2
.

In particular, if c1(s) is torsion, then the absolute Alexander grading does not depend on the choice
of generalized J-Seifert surface.

Proof. Let S and S′ be two choices of generalized J-Seifert surfaces. Pick a parametrized Kirby
diagram of (Y,L) with framed 1-dimensional link S1, and pick a Heegaard triple subordinate to a β-

bouquet of S1. Let Σj ⊆W (S3,S1) denote the surface [0, 1]×Uj and let Σ̂j and Σ̂′j denote the closed

2-chain obtained by capping Σ with a Seifert surface of U in {0} × S3, and Sj or S′j , respectively,

in Y . Write [Fj ] = [S′j ∪ −Sj ]. As elements of H2(W (S3,S1);Z), we have [Σ̂′j ] = [Σ̂j ] + [Fj ]. Let

[Σ̂], [Σ̂′] and [F ] denote the sum over j ∈ J of the classes [Σ̂j ], [Σ̂′j ], and [Fj ] respectively. Using the
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definition of the absolute grading in Equation (5.21), we see

(AS′)j − (AS)j =
〈c1(s), [Σ̂′j ]〉 − [Σ̂′] · [Σ̂′j ]

2
− 〈c1(s), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2

=
〈c1(s), [Fj ]〉

2
+
−[F ] · [Σ̂j ]− [Σ̂] · [Fj ]− [F ] · [Fj ]

2

=
〈c1(s), [Fj ]〉

2
,

since [F ] and [Fj ] are in the image of the inclusion map H2(∂W (S3,S1);Z) → H2(W (S3,S1);Z),
and hence the intersection number of either with anything in H2(W (S3,S1);Z) vanishes. �

We illustrate Part (c) of Theorem 2.13 when c1(s) is torsion with the following example:

Example 6.9. Consider an unknot U in S1 × S2 with two basepoints. For convenience, we view
U as being embedded in {pt} × S2, so that there are two distinguished Seifert disks, D1 and D2,
for U. Note that D2 ∪ (−D1) = {pt} × S2. In Figure 6.4, two diagrams H1 = (Σ, α, β, w, z) and
H2 = (Σ, α′, β, w, z) are shown. We can assume that D1 and D2 intersect Σ in an embedded arc,
connecting w to z. Furthermore, we assume that D1 is disjoint from α ∪ β, and D2 is disjoint from
α′ ∪ β.

Fα→α
′

β

βα

βα′

H1 H2

w

z

Figure 6.4. Two diagrams H1 and H2 for (S1 × S2,U). In both diagrams,
sw(x) is non-torsion for any intersection point x. The two Seifert disks, D1 and
D2, can be picking a path between the basepoints the two diagrams. Pushing this
arc into the handlebodies sweeps out a half disk. The orientation of the Heegaard
surface is clockwise with respect to the page.

It is straightforward to see from the definition of the grading that AD1 ≡ 0 on ĈFL(H1) and

AD2
≡ 0 on ĈFL(H2). As transitive gradings, however, we claim that

AD2
−AD1

= 1
2 〈c1(sw(x)), [D2 ∪ −D1]〉 = −1,

where x ∈ α ∩ β is either intersection point.
Note that to compare AD2 and AD1 , we need to use the transition maps on sets of Alexander

gradings. Using the triangle class shown in Figure 6.4, we compute

Fα→α
′

β (AD1
)(y) = AD1

(x) + (nw − nz)(ψ) = 1,

for some (and hence any) choice of x ∈ α∩ β and y ∈ α′ ∩ β. Hence, as transitive gradings, we have

(6.9) AD2
−AD1

≡ −1.

On the other hand, from our orientation conventions (recall that we are using the outward normal
first convention for the boundary orientation, Seifert surfaces are oriented so that ∂S = −L and
that in the handlebody Uβ the knot goes from z to w), we have that

H(P) = [D2 ∪ (−D1)],
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where P is the periodic domain on (Σ, α, β, w, z) which has multiplicity +1 in the bigon containing
w and z, multiplicity −1 in the empty bigon, and multiplicity 0 elsewhere. Using Equation (5.2),
we see that

(6.10) 〈c1(sw(x)), H(P)〉 = −2,

for any intersection point x ∈ α ∩ β.
We finally remark that Equations (6.9) and (6.10) are in accordance with Part (c) of Theorem 2.13.

6.3. Invariance of the absolute Maslov gradings. In this section, we prove Parts (d) and (e)
of Theorem 2.13, and sketch the proof of the well-definedness of the two absolute Maslov gradings,
grw and grz. The proof of well-definedness of grw and grz is mostly analogous to the proof of the
analogous result for the absolute grading on HF− from [OS06], as well as the proof of Part a of
Theorem 2.13 from Section 6.1. Hence we only sketch the details the proof of invariance. A helpful
formula is the following:

Lemma 6.10. Suppose that P is triply periodic domain and ψ is a homology class of triangles on
the Heegaard triple (Σ,α,β,γ,w, z). Then

µ(ψ + P)− µ(ψ) = 2nw(P) +
c1(sw(ψ + P))2 − c1(sw(ψ))2

4
.

The proof of Lemma 6.10 can be found in [Sar11b, Section 5.1].
We now prove part (d) of Theorem 2.13, which we rephrase as follows:

Theorem 2.13 Part (d). If c1(s) is torsion, the absolute grading grw defined in Equation (5.22) is
a well defined transitive grading, and is independent of the intersection points x and Θ, the homology
class ψ, the Heegaard triple T , and the parametrized Kirby diagram P. Similarly, when c1(s−PD [L])
is torsion, the grading grz is well defined.

Proof. Most of the proof proceeds as in the proof of Part (a) of Theorem 2.13. The only major
difference is in the proof that the formula from Equation (5.22) is independent from the homology
class ψ and intersection points x and Θ. Independence of the absolute grading from x and Θ can
be proven by splicing in disks on those ends and seeing that the formula does not change. Next, to
see that the formula is invariant under the choice of ψ, we note that any two homology classes of
triangles with the same endpoints differ by a triply periodic domain. Suppose ψ is a homology class
of triangles and P is a triple periodic domain. Letting grψw(y) and grψ+P

w (y) denote the gradings,
computed with the classes ψ or ψ + P, respectively, we observe that the difference is

grψ+P
w (y)− grψw(y) = −µ(ψ + P) + µ(ψ) + 2nw(P) +

c1(sw(ψ + P))2 − c1(sw(ψ))2

4
,

which is zero by Sarkar’s formula from Lemma 6.10.
Independence from the choice of Heegaard triple T and bouquet Bβ can be proven by adapting

Lemmas 6.2 and 6.3. Independence from the parametrized Kirby diagram follows by adapting
Lemmas 6.4, 6.5, 6.6, 6.7 and 6.8. �

The following is part (e) of Theorem 2.13:

Theorem 2.13 Part (e). The absolute Maslov and collapsed Alexander gradings satisfy

A =
1

2
(grw− grz).

Proof. We pick a parametrized Kirby diagram and associated Heegaard triple T = (Σ,α,β,β′,w, z)
for (Y,L). We compute 1

2 times the difference between the expressions defining grw(x) and grz(x) in

Equation (5.22). By Equation (5.11), the formula Ã = 1
2 (g̃rw− g̃rz) holds for the gradings associated

to unlinks in (S1 × S2)#k. By Lemma 3.9,

sw(ψ)− sz(ψ) = PD [Σαββ′ ].
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Under the inclusion ι∗ : Xαββ′ ↪→W (Y,S1), we have that PD [Σαββ′ ] = ι∗PD [Σ]. Noting that

c1(sw(ψ))2 − c1(sz(ψ))2

4
= c1(sw(ψ)) ∪ PD [Σ]− PD [Σ] ∪ PD [Σ] = 〈c1(sw(ψ)), [Σ̂]〉 − [Σ̂] · [Σ̂],

we see that the expression defining 1
2 (grw(x) − grz(x)) becomes exactly the expression defining

A(x). �

7. Link cobordisms and absolute gradings

In this section we prove the grading formulas for link cobordisms stated in Theorems 1.4 and
2.14. In Section 7.1 we outline the construction of cobordism maps from [Zem16]. In Section 7.2 we
compute the grading change associated to each elementary link cobordism, and in Section 7.3 we
prove the general grading formula.

7.1. Overview of the link cobordism maps. Before we prove Theorem 2.14, we need to give a
brief summary of the construction of the link cobordism maps from [Zem16]. The maps are defined
as a composition of maps for elementary link cobordisms of the following form:

(1) 0- and 4-handles, which contain a standardly embedded disk with a dividing set consisting
of a single arc.

(2) Cobordisms obtained by attach a 1-handle or 3-handle to Y \ L.
(3) Cobordisms obtained by attaching a collection of 2-handles along a framed 1-dimensional

link in Y \ L.
(4) Elementary saddle link cobordisms in [0, 1]× Y (see Figure 7.1).
(5) Cylindrical link cobordisms that add a pair of adjacent basepoints to a link (see Figure 7.3).

We now briefly describe the maps associated to each of the five elementary link cobordisms. We
refer the reader to [Zem16] for further details.

We begin with the 0-handle and 4-handle maps. A 0-handle cobordism is a decorated link
cobordism (W,F) from (Y,L) to (Y t S3,L t U), where U is a doubly based unknot in S3, W =
([0, 1] × Y ) t B4 and F consists of the surface ([0, 1] × L) t D2, where D2 ⊆ B4 is a standardly
embedded slice disk of an unknot. A 4-handle cobordism is defined analogously. We let (S2, w, z) be
the Heegaard diagram for (S3,U) with no α or β curves. On the level of diagrams, if (Σ,α,β,w, z)
is a diagram for (Y,L), then (ΣtS2,α,β,w∪{w}, z∪{z}) is a diagram for (Y tS3,LtU). Noting
that the tori Tα and Tβ coincide between the two diagrams, we define the 0-handle and 4-handle
maps as the identity on the level of intersection points, with respect to these diagrams.

The 1-handle and 3-handle maps are defined similarly to the constructions in [OS06] and [Juh16].
Given a pair of points S0 = {p1, p2} in Y \L (thought of as a 0-sphere), we pick a Heegaard diagram
(Σ,α,β,w, z) such that p1, p2 ∈ Σ \ (α ∪ β). A Heegaard diagram for the surgered manifold Y (S0)
can be obtained by removing two small disks centered at p1 and p2, and connecting the resulting
boundary components with an annulus A. Inside of A, we add two new curves, α0 and β0, which are
both homologically essential in A, and intersect in a pair of points {θ+, θ−}. The points θ+ and θ−

are distinguished by the relative Maslov grading. The 1-handle map is then defined by the formula

FY,L,S0,s(x) := x⊗ θ+,

extended equivariantly over the ring R∞P . The 3-handle map is defined similarly, and is the dual of
the 1-handle map.

The 2-handle maps are defined similarly to [OS06]. If S1 is a framed 1-dimensional link in Y \ L,
and s ∈ Spinc(W (Y,S1)), then the 2-handle map FY,L,S1,s is defined by picking a β-bouquet in Y
for S1, as well as a Heegaard triple T = (Σ,α,β,β′,w, z) which is subordinate to S1. In this case,
the Floer homology HFL−(Σ,β,β′,w, z, σ, s0) has a distinguished element Θ+

ββ′ , for any coloring σ
of w ∪ z. The 2-handle map is then defined by counting holomorphic triangles via the formula

FY,L,S1,s(x) :=
∑

y∈Tα∩Tβ′

∑
ψ∈π2(x,Θ+

ββ′ ,y)

µ(ψ)=0
sw(ψ)=s

#M̂(ψ) · Unw(ψ)
w V nz(ψ)

z · y.
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Next we discuss the band maps. The band maps are described in detail in [Zem16, Section 6].
We refer the reader back to Definitions 3.5 and 3.6 for the definition of an oriented α-band, and the
definition of a Heegaard triple subordinate to an α-band. If (Σ,α′,α,β,w, z) is subordinate to an
α-band, then (Σ,α′,α,w, z) represents an unlink Uα′α in (S1×S2)#k. Furthermore, all components
of Uα′α have exactly two basepoints, except for one component, which has four.

According to [Zem16, Lemma 3.7], there are two distinguished elements

Θw
α′α,Θ

z
α′α ∈ HFL

−(Σ,α′,α,w, z, σ, s0),

for an appropriate coloring σ. The element Θw
α′α is a generator of the top grw graded subset of

HFL−(Σ,α′,α,w, z, σ, s0), while Θz
α′α is a generator of the top grz graded subset.

There are two band maps

(7.1) Fw
B , F

z
B : CFL∞(Y,Lσ, s)→ CFL∞(Y,L(B)σ, s),

defined by counting holomorphic triangles via the formulas

Fw
B (x) := Fα′αβ,s(Θ

z
α′α ⊗ x) and F z

B(x) := Fα′αβ,s(Θ
w
α′α ⊗ x).

The map Fw
B is the map induced by a decorated saddle cobordism inside of [0, 1] × Y , where all

divides go from {0} × L to {1} × L(B). Furthermore, if f denotes the Morse function (t, y) 7→ t,
then f restricts to the link cobordism surface to be Morse and have a single critical point, which is
of index 1, and occurs inside of Σw. Furthermore, f restricts to a Morse function on the dividing
set with no critical points. The map F z

B corresponds to a similar decorated saddle cobordism, where
the index 1 critical point occurs inside of Σz. These are illustrated in Figure 7.1.

The requirement on the coloring σ for one of the band maps in Equation (7.1) to be defined
corresponds exactly to the requirement that σ is induced by the appropriate decorated link cobordism
from Figure 7.1.

(Y,L)

(Y,L(B))

F z
B

Fw
B

Figure 7.1. Decorated link cobordisms corresponding to F z
B and Fw

B . The
underlying 4-manifold is [0, 1]× Y . Outside of the region shown, all of the dividing
arcs are of the form [0, 1]× {p}, for a point p ∈ L \ (w ∪ z).

Finally, we need to describe the cobordism maps which add or remove an adjacent pair of base-
points on the link. These are the quasi-stabilization maps, and are described in the context of the
link Floer TQFT in [Zem16, Section 4]. Suppose that H = (Σ,α,β,w, z) is a diagram for L and
that C is a component of L \ (w ∪ z) which is contained in the α handlebody Uα. Suppose that
∂C = {w′, z′}. Let w and z be two new basepoints, contained in C. Let L+

w,z denote the link

(L,w ∪ {w}, z ∪ {z}). We can form a diagram H+ for (Y,L+
w,z), as follows. Let A ⊆ Σ \ α be the

connected component containing w′ and z′. Let αs be a simple closed curve in A which divides A
into two components, one of which contains w′, and the other contains z′. We then pick an arbitrary
point on αs (away from the β curves), and add a very small β0 curve, which intersects αs in two
points, and bounds a small disk. The disk bounded by β0 is split into two bigons by αs. In one
bigon, we put w, and in the other, we put z. The curves αs and β0 intersect in two points, which
are distinguished by their grw and grz gradings. Let us write θw for the top grw graded intersection
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point, and θz for the top grz graded intersection point. The curves αs, β0, and the intersection
points θw and θz are shown in Figure 7.2.

z

wθw

θz αs
β0

Figure 7.2. A local picture of a quasi-stabilized Heegaard diagram.

For appropriately chosen colorings σ and σ′, there are two positive quasi-stabilization maps

(7.2) S+
w,z, T

+
w,z : CFL∞(Y,Lσ, s)→ CFL∞(Y, (L+

w,z)
σ′ , s),

defined by the formulas

(7.3) S+
w,z(x) := x⊗ θw and T+

w,z(x) = x⊗ θz,

extended linearly over the ring R∞P .
There are also two negative quasi-stabilization maps, with the opposite domain and codomain as

S+
w,z and T+

w,z, defined via the formulas

(7.4) S−w,z(x⊗ θw) = 0, S−w,z(x⊗ θz) = x, T−w,z(x⊗ θw) = x and T−w,z(x⊗ θz) = 0.

The quasi-stabilization maps correspond to the decorated link cobordisms shown in Figure 7.3. The
requirement on the colorings σ and σ′ in Equation (7.2) corresponds exactly to σ and σ′ being induced
by a coloring of the associated decorated link cobordism in Figure 7.3. See [Zem16, Corollary 4.4]
for more on the coloring requirements and the quasi-stabilization maps.

S+
w,z S−w,z

zw

T+
w,z T−w,z

zw

Figure 7.3. Decorated link cobordisms for the quasi-stabilization maps
S+
w,z, S

−
w,z, T

+
w,z and T−w,z. The underlying 4-manifolds are [0, 1]× Y .

7.2. Grading changes of elementary link cobordism maps. In this section, we compute the
grading changes induced by the link cobordism maps for elementary link cobordisms.

We begin with the quasi-stabilization maps:

Lemma 7.1. The quasi-stabilization maps are graded and satisfy

AS(S◦w,z(x))j −AS(x)j = 1
2δ(J(K), j) and AS(T ◦w,z(x))j −AS(x)j = − 1

2δ(J(K), j),

for ◦ ∈ {+,−}, and where K denotes the component of L which contains w and z. Furthermore,

grw(S◦w,z(x))− grw(x) = grz(T ◦w,z(x))− grz(x) = + 1
2

and

grz(S◦w,z(x))− grz(x) = grw(T ◦w,z(x))− grw(x) = − 1
2
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Proof. We will focus on the Alexander grading formula, since the proof of the Maslov grading formula
is similar.

We start with a parametrized Kirby diagram P = (φ0, λ,S1, f) for (Y,L) and a Heegaard triple
T = (Σ,α,β,β′,w, z) subordinate to a β-bouquet of S1. We can quasi-stabilize T to get a triple
T + = (Σ,α∪{αs},β∪{β0},β′∪{β′0},w∪{w}, z∪{z}) which is subordinate to the same β-bouquet
for S1. In T +, the curves β0 and β′0 both bound small disks, and intersect each other in two points,
θ+
β0β′0

and θ−β0β′0
. The configuration is shown in Figure 7.3.

Suppose yαβ′ ∈ Tα ∩ Tβ′ . Pick xαβ ∈ Tα ∩ Tβ , Θββ′ ∈ Tβ ∩ Tβ′ , and a homology class ψ ∈
π2(xαβ ,Θββ′ ,yαβ′).

To compute the Alexander grading of S+
w,z(yαβ′) = yαβ′ × θwαsβ′0 , we will use the homology class

ψ+ ∈ π2(xαβ × θwαsβ0
,Θββ′ × θ+

β0β′0
,yαβ′ × θwαsβ′0

) shown in Figure 7.4. The homology class ψ+

is formed by taking a class ψ ∈ π2(xαβ ,Θββ′ ,yαβ′), and adjoining a small triangle in the quasi-
stabilization region.

z

w

θw θz αs

β0

θw θz

θ+
β0β′0

θ−β0β′0

β′0

Figure 7.4. The quasi-stabilization region of the triple T +, and the tri-
angle class ψ+. The subscripts on the intersection points labeled θw and θz have
been suppressed.

By explicit examination of the formula defining the Alexander grading in Equation (5.21), we
compute

A(S+
w,z(yαβ′))j −A(yαβ′)j

=A(yαβ′ × θwαsβ′0)j −A(yαβ′)j

=Ã(xαβ × θwαsβ0
)j − Ã(xαβ)j + Ã(Θββ′ × θ+

β0β′0
)j − Ã(Θββ′)j

+ (nw∪{w} − nz∪{z})j(ψ+)− (nw − nz)j(ψ)

=Ã(xαβ × θwαsβ0
)j − Ã(xαβ)j + Ã(Θββ′ × θ+

β0β′0
)j − Ã(Θββ′)j .

(7.5)

However by the definition of Ã from Section 5.3, the last line of Equation (7.5) is + 1
2 if J maps w

and z to j, and 0 otherwise.
The above argument can be modified to compute the grading changes of the other quasi-stabilization

maps S−w,z, T
+
w,z and T−w,z. The Maslov grading formulas are proven using a similar argument. �

We now consider the grading changes associated to the band maps. Suppose that L is a link,
J : L → J is an indexing and S is a generalized J-Seifert surface. If B is an oriented band, whose
ends are on components of L which are given the same index by J , then S ∪ B is a generalized
J-Seifert surface for L(B). Note that S ∪B may not be an embedded Seifert surface, though that’s
not a requirement for a generalized J-Seifert surface (see Definition 2.11).

Lemma 7.2. Suppose that (Y,L) is a multi-based link with an indexed, type-partitioned coloring
(σ, J), with index set J, and B is an α-band for L in Y . If (σ, J) is compatible with one of the
decorated link cobordisms shown in Figure 7.1, then the maps Fw

B and F z
B are graded with respect to
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the Alexander multi-grading over J, and satisfy

AS∪B(F z
B(x))j −AS(x)j = +

1

2
δ(j, j0) and AS∪B(Fw

B (x))j −AS(x)j = −1

2
δ(j, j0),

where j0 denotes the index assigned to the link components that B is attached to. If σ is a type-
partitioned coloring of L which is compatible with the appropriate decorated link cobordism in Fig-
ure 7.1, then the band maps are graded with respect to the Maslov gradings, and satisfy

grw(F z
B(x))− grw(x) = grz(Fw

B (x))− grz(x) = 0,

and

grw(Fw
B (x))− grw(x) = grz(F z

B(x))− grz(x) = −1.

Proof. We will focus on the Alexander grading change of F z
B .

First, in general, if (Σ,α′,α,β,w, z) is any triple subordinate to a band B attached to L in Y , and
yαβ ∈ Tα ∩Tβ and yα′β ∈ Tα′ ∩Tβ are intersection points representing the same Spinc structure in
Y , then there is a homology class ψα′αβ ∈ π2(Θw

α′α,yαβ ,yα′β) by [OS04d, Proposition 8.5]. Recalling
from Lemma 3.7 that Xα′αβ becomes [0, 1] × Y after filling Yα′α with 3- and 4-handles, any other
triangle in π2(Θw

α′α,yαβ ,yα′β) can be obtained by splicing disks into the ends of ψα′αβ . Hence, it
follows that the quantity

(7.6) AS∪B(yα′β)j + (nz − nw)j(ψα′αβ′)−AS(yαβ)j

is independent of the intersection points yα′β , yαβ and the triangle ψα′αβ . Furthermore, any two
Heegaard triples subordinate to B can related by a set of moves similar to those in Lemma 3.4 (see
[Zem16, Lemma 6.3]) and hence an associativity argument like the one in Lemma 6.2 implies that
the quantity in Equation (7.6) is independent of the Heegaard triple (Σ,α′,α,β,w, z) subordinate
to B.

We now claim that we can choose a parametrized Kirby diagram P so that the set Lαβ ∪B0 can
be isotoped into a plane in S3. To construct such a P, we work backwards, and start with an unlink
U embedded in a plane in S3, and define B0 to be a planar band connecting or separating two
components of U . We let S3

U∪B0
denote S3 \ (N(U) ∪ N(B0)), and YL∪B denote Y \ N(L ∪ B).

The 3-manifolds S3
U∪B0

and YL∪B each have one genus 2 boundary component, as well as the same
number of torus boundary components. Let D and D′ denote two compressing disks in N(L ∪ B)
which are disjoint from L and L(B), respectively. Let D0 and D′0 denote analogous compressing
disks in N(U ∪B0). We pick a diffeomorphism

φ : ∂S3
U∪B0

→ ∂YL∪B

which maps meridians of U to meridians of L, and sends ∂D to ∂D0 and sends ∂D′ to ∂D′0. We
now pick a parametrized surgery datum (Definition 4.1) for the pair (S3

U∪B0
, YL∪B , φ), which then

induces a parametrized Kirby diagram P with the stated properties.
Using the parametrized Kirby diagram P constructed in the previous paragraph, we construct a

Heegaard quadruple (Σ,α′,α,β,β′,w, z) such that

(1) (Σ,α,β,β′,w, z) is subordinate to the framed link S1 ⊆ S3 \ U .
(2) (Σ,α′,α,β′,w, z) is subordinate to the band B ⊆ Y .

Since B is contained in the α-handlebody, there is an induced band B0 for the link Lαβ inside of
Yαβ ∼= Yα′β ∼= S3. We note that Lαβ(B0) = Lα′β . Furthermore, the triple (Σ,α′,α,β,w, z) is
subordinate to the band B0.

Let yαβ′ ∈ Tα ∩ Tβ′ , Θw
α′α ∈ Tα′ ∩ Tα, and let ψα′αβ′ ∈ π2(Θw

α′α,yαβ′ ,yα′β′) be any homology
class of triangles (such as one which might be counted by the map Fw

B ). Next, pick intersection
points xαβ ∈ Tα ∩ Tβ and Θββ′ ∈ Tβ ∩ Tβ′ with sw(Θββ′) torsion, as well as a class ψαββ′ ∈
π2(xαβ ,Θββ′ ,yαβ′).

Arguing as in Lemma 6.2, we can find an intersection point xα′β ∈ Tα′ ∩Tβ , as well as homology
classes ψα′αβ ∈ π2(Θw

α′α,xαβ ,xα′β) and ψα′ββ′ ∈ π2(xα′β ,Θββ′ ,yα′β′) such that

(7.7) ψα′αβ + ψα′ββ′ = ψα′αβ′ + ψαββ′ .
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We note that (Σ,α′,β,β′,w, z) is a Heegaard triple subordinate to the framed link S1, and (Σ,α′,β,w, z)
is a diagram for a multi-based unlink in S3. Hence (Σ,α′,β,β′,w, z) can be used to compute the
Alexander grading of the intersection point yα′β′ .

Arguing as in Lemma 6.2, using the definition of the Alexander grading, we compute that

AS∪B(yα′β′)j −AS(yαβ′)j =Ã(xα′β)j + Ã(Θββ′)j + (nw − nz)j(ψα′ββ′)

− Ã(xαβ)j − Ã(Θββ′)j − (nw − nz)j(ψαββ′).
(7.8)

Combining Equations (7.7) and (7.8) and rearranging, we see that

(7.9) AS∪B(yα′β′)j + (nz−nw)j(ψα′αβ′)−AS(yα′β)j = Ã(xα′β)j + (nz−nw)j(ψα′αβ)− Ã(xαβ)j .

We note that quantity on the left side of Equation (7.9) is exactly the formal grading change of the
map F z

B .
Next, we note that the quantity on the right side of Equation (7.9) is exactly the formal Alexander

grading change of the map F z
B0

, for the band B0 attached to U ⊆ S3.
As we argued earlier, the formal grading change of F z

B0
is independent of the choice of homology

class of triangle, as well as the Heegaard triple subordinate to B0, and hence we can pick any
convenient Heegaard triple and compute the grading change for any convenient homology class of
triangle. We perform the model computation in Figure 7.5. We can pick a triple (Σ,α′,α,β,w, z)
subordinate to the band B0 such there is an annular subregion which appears as in Figure 7.5, and
outside the annular region, the α′ curves are all small Hamiltonian isotopies of the α curves. We
pick a triangle class ψ ∈ π2(Θw

α′α,Θ
w
αβ ,Θ

w
α′β). Outside of the annular region shown in Figure 7.5,

we can assume that the class ψ consists of only small triangles, and inside the annular region, we
assume that the class ψ is one of the two shown in Figure 7.5, depending on whether B0 splits a
component of U into two components, or connects two components. It is straightforward to compute

in both cases, using Figure 7.5 and the definition of the Alexander grading Ã for unlinks in S3 from
Section 5.3, that

(7.10) Ã(Θw
α′β)j + (nz − nw)j(ψ)− Ã(Θw

αβ)j =
1

2
δ(j, j0).

As we described previously, Equation (7.10) is equal to the right hand side of Equation (7.9), and the
left hand side of Equation (7.9) is exactly the formal Alexander grading change of F z

B , establishing
the grading formula for F z

B .
A symmetrical argument can be used to compute the Alexander grading change of the band maps

Fw
B . Finally, we note that a simple modification of the above argument can be used to compute the

Maslov grading changes.
�

7.3. Proof of Theorem 2.14. We can now prove our main grading theorem:

Proof of Theorem 2.14. Firstly, it is straightforward to check that each of the formulas we’ve de-
scribed for the Alexander and Maslov gradings are additive under composition of cobordism. Hence,
it is sufficient to check the grading change formulas for the elementary cobordisms in Section 7.1.

We will focus on proving the theorem for the Alexander grading, since the proof of the Maslov
grading formulas is an easy modification.

We begin with the 0-handle and 4-handle maps. Clearly the 0-handle and 4-handle maps induce
grading change zero. To verify our grading formula, note that the link cobordism surface consists of
a cylindrical decorated link cobordism inside of [0, 1]× Y , together with a disk in B4 which is split
into two components by its single dividing arc. It is straightforward to compute that the expected
Alexander grading change in the theorem statement is also 0, agreeing with the actual grading
change.

Next, we consider 1-handle and 3-handle cobordisms. For simplicity, we will focus on the 1-handle
maps, since the 3-handle maps are dual to the 1-handle maps. For a 1-handle which connects two
components (Y1,L1) and (Y2,L2), we can obtain a parametrized Kirby diagram P for (Y1#Y2,L1∪L2)
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Θw

α

β

Θw

z1

z2

α′

Θw

β

α′

z1

z2

Θw
Θw

Θw

α

Figure 7.5. A model computation to compute the grading change of the
band map F z

B0
. The left side corresponds to the case that B0 is connecting to

components of L, and the right side corresponds to the case that B0 is splitting a
component of L into two components.

by taking the connected sum of a parametrized Kirby diagram P1 for (Y1,L1), and a parametrized
Kirby diagram P2 for (Y2,L2). A Heegaard triple T for P can be obtained by taking the connected
sum of a triple T1 = (Σ1,α1,β1,β

′
1) for P1 and a triple T2 = (Σ2,α2,β2,β

′
2) for P2. In the connected

sum annulus, we add three new curves to the Heegaard triple, α0, β0 and β′0, which are homologically
essential in the annulus and such that α0 ∩ β0, β0 ∩ β′0 and α0 ∩ β′0 each consists of exactly two
points. We will write θ+

α0β0
and θ−α0β0

for the two points of α0 ∩ β0, and similarly for β0 ∩ β′0 and

α0 ∩ β′0. We pick classes ψα1β1β′1
∈ π2(xα1β1

,Θβ1β′1
,yα1β′1

) and ψα2β2β′2
∈ π2(xα2β2

,Θβ2β′2
,yα2β′2

),

assuming Θβ1β′1
and Θβ2β′2

represent the torsion Spinc structure. For convenience, we can assume
ψα1β1β′1

and ψα2β2β′2
have zero multiplicity at the connected sum points. We construct a triangle

class

ψ+ ∈ π2(xα1β1
× θ+

α0β0
× xα2β2

,Θβ1β′1
× θ+

β0β′0
×Θβ2β′2

,yα1β′1
× θ+

α0β′0
× yα2β′2

)

on T + by taking the connected sum of ψα1β1β′1
and ψα2β2β′2

and inserting a small triangle class in

the connected sum region. A straightforward computation using ψ+, ψα1β1β′1
and ψα2β2β′2

shows
that

AS1∪S2
(yα1β′1

× θ+
α0β′0

× yα2β′2
)j = AS1

(yα1β′1
)j +AS2

(yα2β′2
)j ,

whenever S1 and S2 are generalized J-Seifert surfaces of L1 and L2 in Y1 and Y2, respectively. It
follows that the 1-handle maps are 0-graded with respect to the Alexander grading, agreeing with
the formula in the theorem statement. A similar argument works for the 3-handle maps, when a
3-handle splits a component of Y into two components.

For a 1-handle which is attached with both feet on a single component of Y , we argue as follows.
If P is a parametrized Kirby diagram for (Y,L), with framed link S1, then a parametrized Kirby
diagram P′ for (Y#(S1 × S2),L) can be obtained by adding a 0-framed unknot to S1, which is
unlinked from S1∪U . If T = (Σ,α,β,β′,w, z) is a surgery triple for P, a surgery triple for P′ can be
obtained by taking the connected sum of a genus one Heegaard triple (T 2, α0, β0, β

′
0), where β0 and

β′0 are small Hamiltonian isotopies of each other, intersecting twice, and α0 is a curve on T 2 which
intersects each of β0 and β′0 exactly once. An easy computation shows that if yαβ′ ∈ Tα ∩ Tβ′ , and
S is a generalized J-Seifert surface for L in Y , then

AS(yαβ′ × θ+
ββ′)j = AS(yαβ′)j ,

showing that the 1-handle maps induce Alexander grading change 0, agreeing with the formula from
the theorem statement.

We now consider the 2-handle maps. The fact that the 2-handle maps induce the stated grading
change is essentially a tautology, and follows from an associativity argument similar to the proof of
Lemma 7.2.
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Finally, the quasi-stabilization and band maps have the expected Alexander grading changes by
Lemmas 7.1 and 7.2 (note that the corresponding decorated link cobordisms are shown in Figures 7.1
and 7.3).

Having established the Alexander grading change for each elementary link cobordism, the grad-
ing change follows for a general link cobordism. The formula for the Maslov grading change is a
straightforward modification. �

8. Equivalence with Ozsváth and Szabó’s construction

In this section, we prove the following:

Proposition 8.1. If L is a multi-based link in S3, and each component of L has exactly two base-
points, then the Alexander multi-grading A defined in Section 5.5 coincides with the Alexander
multi-grading defined by Ozsváth and Szabó in [OS08].

We warn the reader that Proposition 8.1 is stated only for the Alexander multi-grading, and not
the Maslov gradings. For links in S3, there is a canonical choice of absolute Alexander grading,
characterized by a conjugation symmetry property. For the Maslov gradings, there are several
natural normalization conventions, depending on ones perspective. Nonetheless, for doubly based
knots in S3, the Maslov grading grw coincides with Ozsváth and Szabó’s homological grading; See
Section 1.5.

8.1. Gradings using α-bouquets. We defined the absolute grading in Section 5.5 using β-bouquets
of framed links in S3, but it will be useful to know that α-bouquets can be used as well. We will write

AαS for the gradings defined using α-bouquets, and AβS for the gradings defined using β-bouquets.
Similarly there are Maslov gradings grαw, grβw, grαz and grβz .

Lemma 8.2. The absolute gradings satisfy

grαw = grβw, grαz = grβz and AαS = AβS .

Proof. We focus on the equality for the Alexander gradings; the equality for the Maslov gradings
can be proven similarly.

The key idea is that given a framed link S1 in Y \ L, we can define two “cobordism maps”

(8.1) FαY,L,S1,S,S′ , FαY,L,S1,S,S′ : A(Y,L, s)→ A(Y (S1),L, s′),

whenever s ∈ Spinc(Y ) and s′ ∈ Spinc(Y (S1)) are Spinc structures which have a common extension
over the 2-handle cobordism W (Y,S1), and S and S′ are generalized J-Seifert surfaces in Y and
Y (S1).

To define the map F βY,L,S1,S,S′ , we pick a β-bouquet Bβ for S1, as well as a triple T = (Σ,α,β,β′,w, z)

which is subordinate to Bβ . We pick a homology class ψ ∈ π2(x,Θ,y) where sw(x) = s, sw(y) = s′

and sw(Θ) is torsion. If A ∈ A(Y,L(σ,J), s), we define

F βY,L,S1,S,S′(A)(y)j := A(x)j + Ã(Θ)j + (nw − nz)j(ψ) +
〈c1(s), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2

where Σ̂j is formed by capping off the surface [0, 1] × Lj ⊆ W (Y,S1) with Sj and −S′j . A map
FαY,L,S1,S,S′ is defined analogously, using α-bouquets.

The proofs of Lemmas 6.1, 6.2 and 6.3 adapt to show invariance of the maps FαY,L,S,S′ and F βY,L,S,S′
from the choice of bouquet and Heegaard triple.

Furthermore, we claim that the cobordism maps on gradings satisfy the following “composition
law”:

(8.2) F βY,L,S1,S,S′(A
β
S) = AβS′ and FαY,L,S1,S,S′(A

α
S) = AαS′ .

Equation (8.2) is proven similar to the standard composition for the link cobordism maps. If P is a
parametrized Kirby diagram for (Y,L), with framed link S′1 ⊆ S3\U , one takes a Heegaard quadruple
(Σ,α,β,β′,β′′,w, z) such that (Σ,α,β,β′) is subordinate to a bouquet of S′1, and (Σ,α,β′,β′′) is
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subordinate to a bouquet for S1 ⊆ Y , and (Σ,α,β,β′′) is subordinate to a bouquet for S′1 ∪ S1 ⊆
S3. Using an associativity argument like the one in Lemma 6.2, it is straightforward to establish
Equation (8.2).

If S1 and S′1 are two framed links in Y , then adapting the associativity argument from Lemma 6.2
also shows that

(8.3) F βY (S1),L,S′1,S′′,S′
◦ FαY,L,S1,S,S′′ = FαY (S′1),L,S1,S′′′,S′ ◦ F

β
Y,L,S′1,S,S′′′

whenever S′′ and S′′′ are generalized J-Seifert surfaces for L inside of Y (S1) and Y (S′1), respectively
(compare [OS06, Lemma 5.2]).

If U is an unlink in any (S1 × S2)#k, we will write (abusing notation slightly) S0 for any Seifert

surface for U . Recall that Ã denotes the Alexander grading on the link Floer homology of the unlink
in (S1 × S2)#k, which we declared in Section 5.3. We note that it is easy to compute from the
definition that

(8.4) Ã = AαS0
= AβS0

.

We pick a parametrized Kirby diagram P of (Y,L), with framed link S1 ⊆ S3 \ U , and a diffeo-
morphism between (S3(S1), U) and (Y,L). Let S′1 denote the framed link consisting of a 0-framed
meridian for each component of S1.

By Equation (8.2), we have

(8.5) Ã = (F βY,L,S′1,S,S0
◦ F βS3,U,S1,S0,S

)(Ã) = F βY,L,S′1,S,S0
(AβS),

where U denotes the unlink U in S3, decorated with the basepoints from L induced by P
Since the “cobordism maps” on the set of Alexander gradings are isomorphisms of affine sets over

QJ, to establish that AβS = AαS , it is sufficient to show that they have the same evaluation under any
2-handle cobordism map. Hence, by Equation (8.5), it is sufficient to show that

(8.6) Ã = F βY,L,S′1,S,S0
(AαS).

Importantly, we note that since S′1 ⊆ S3 consists of 0-framed unknots which are unlinked from U,

the pair (S3(S′1),U) is an unlink in (S1 × S2)#|S′1|. Hence, by Equation (8.4)

F βS3,U,S′1,S0,S0
(Ã) = FαS3,U,S′1,S0,S0

(Ã) = Ã.

Hence we compute that

F βY,L,S′1,S,S0
(AαS) = (F βY,L,S′1,S,S0

◦ FαS3,U,S1,S0,S
)(Ã) (Equation (8.2))

= (FαS3(S′1),L,S1,S0,S0
◦ F βS3,U,S′1,S0,S0

)(Ã) (Equation (8.3))

= FαS3(S′1),L,S1,S0,S0
(Ã) (Equation (8.4))

= Ã, (Equation (8.2))

completing the proof. �

8.2. Conjugation symmetry. As a step towards proving the equivalence of our construction with
Ozsváth and Szabó’s, we will analyze the interaction of our gradings with the conjugation action on
link Floer homology.

If L = (L,p,q) is a multi-based link, then we let L = (L,q,p) denote the same link, but with the
designation of the basepoints as type-w or type-z switched. There is a natural conjugation action
on Spinc(Y ). If s ∈ Spinc(Y ) corresponds to the vector field v, then the conjugate Spinc structure
s corresponds to the vector field −v.

We now describe the conjugation action η on ĈFL. Given a Heegaard diagram H = (Σ,α,β,p,q)
for L = (L,p,q), we consider the conjugate diagram H = (−Σ,β,α,q,p) for (Y,L). There is
a natural correspondence between the intersection points on H and H. We note however, that
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sH,p(x) = sH,p(η(x)), by explicit examination of the vector fields constructed by Ozsváth and

Szabó in [OS04d]. On the other hand,

(8.7) sH,q(η(x)) = sH,p(x) + PD [L],

from Lemma 3.8. By Equation (8.7), we see that η maps ĈFL(Y,L, s) to ĈFL(Y,L, s + PD [L]).
By extending η linearly over the ring F2[Up, Vq], the map η induces an equivariant, filtered chain

homotopy equivalence
CFL∞(Y,L, s)→ CFL∞(Y,L, s + PD [L]).

In this section, we prove the following:

Proposition 8.3. Suppose that L = (L,p,q) is a multi-link in Y with an indexed, type partitioned
coloring (σ, J), and L is J-null-homologous. If S is a choice of generalized J-Seifert surface for L,
then the map η : CFL∞(Y,L, s)→ CFL∞(Y,L, s) satisfies

AS(η(x)) = −AS(x),

for homogeneously graded x. If in addition c1(s) is torsion, then

grw(η(x)) = grz(x) and grz(η(x)) = grw(x).

Proof. It is sufficient to show the claim for ĈFL, since the map η is F2[Up, Vq]-equivariant.
We take a parametrized Kirby diagram P = (φ0, λ,S1, f) and a surgery triple T = (Σ,α,β,β′,p,q),

which is subordinate to a β-bouquet for S1. If y ∈ Tα ∩ Tβ′ , and ψ ∈ π2(x,Θ,y) is a homology

class of triangles, then the absolute Alexander grading AS on ĈFL(Σ,α,β′,w, z) is defined by the
formula

AS(y)j = Ã(x)j + Ã(Θ)j + (np(ψ)− nq(ψ))j +
〈c1(sp(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
.

We can form the conjugate triple T = (−Σ,β
′
,β,α,q,p) of T . The β-bouquet for S1 now becomes

an α-bouquet for S1, and T is now subordinate to this α-bouquet for the same framed link S1 in
S3 \ U .

Using Lemma 8.2, we can use T to compute the grading of η(y). Notice that there is a canonical,
orientation preserving diffeomorphism

(8.8) Xαββ′
∼= Xβ

′
βα.

The identification in Equation (8.8) respects the embedding of both Xαββ′ and Xβ
′
βα into the 2-

handle cobordism W (S3,S1) from Lemma 3.7. The diffeomorphism from Equation (8.8) restricts to
an orientation preserving diffeomorphism

Σαββ′ ∼= Σβ′βα.

The homology class ψ induces a class ψ on the conjugate Heegaard triple.
The Alexander grading of η(y) can be computed using the triple T and the triangle class ψ, and

indeed we see that

A(η(y))j = Ã(η(x))j + Ã(η(Θ))j + (nq(ψ)− np(ψ))j +
〈c1(sq(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

2
.

We will show that A(η(y))j = −A(y)j .
First observe that

(8.9) Ã(η(x))j = −Ã(x)j and Ã(η(Θ))j = −Ã(Θ)j ,

using the definition of Ã from Section 5.3 and an easy model computation.
Note that the roles of p and q as type-w and type-z is reversed in T . Correspondingly

(8.10) (nq(ψ)− np(ψ))j = −(np(ψ)− nq(ψ))j .

We now consider the homological terms involving the homology class of the surface Σαββ′ appear-

ing in the formula for the grading. We note that sp(ψ) = sp(ψ). Similarly sq(ψ) = sp(ψ)+PD [Σβ′βα]
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by Lemma 3.9. Note that after filling in (Yββ′ , Lββ′) with 3-handles and 4-handles containing stan-
dardly embedded slice disks of Lββ′ , the pair (Xαββ′ ,Σαββ′) becomes (W (S3,S1),Σ) by Lemma 3.7.
Hence we compute

〈c1(sq(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ] = 〈c1(sp(ψ) + PD [Σ]), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

= −〈c1(sp(ψ)), [Σ̂j ]〉+ 2〈PD [Σ], [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

= −
(
〈c1(sp(ψ)), [Σ̂j ]〉 − [Σ̂] · [Σ̂j ]

)
.

(8.11)

Combining Equations (8.9), (8.10) and (8.11), we see that each summand of A(y)j is changed to
its negative in A(η(y))j , from which we conclude that A(η(y))j = −A(y)j .

The claim about the Maslov gradings is proven similarly. �

8.3. Proof of the equivalence. We can now prove that our gradings coincide with Ozsváth and
Szabó’s:

Proof of Proposition 8.1. By Proposition 8.3, the map η induces an isomorphism

(8.12) ĤFL(S3,L)s ∼= ĤFL(S3,L)−s,

where s ∈ QL denotes our Alexander multi-grading. Since L and L are isotopic links inside of S3

(they are related by a half twist on each link component), ĤFL(S3,L) and ĤFL(S3,L) are isomorphic
as multi-graded groups. By [OS08, Equation 25], the gradings defined by Ozsváth and Szabó also
satisfy Equation (8.12). Since the hat version of link Floer homology groups for links in S3 are
non-vanishing and finitely generated over F2, it is straightforward to see that our definition of the
Alexander multi-gradings must coincide with theirs. �

9. Computations of the link cobordism maps

In this section, we perform some computations of the link cobordism maps in certain special cases.
We focus on computing the map when F is obtained by puncturing a closed surface, or computing
the induced map on HFL∞ for more general link cobordisms.

A key computational tool is [Zem16, Theorem C], stated below as Theorem 9.4, which computes
the map induced by a decorated link cobordism when we algebraically forget about either the w
basepoints, or the z basepoints.

Throughout this section, we will focus on colorings of links σ : w ∪ z → P where P has exactly
two colors, and all w basepoints are assigned the variable U , and all z basepoints are assigned the
variable V . For such colorings, we write R− for the ring

R− := R−P ∼= F2[U, V ].

For notational simplicity, we omit the coloring σ from the notation in this section.

9.1. A distinguished element of F2[U ] ⊗ Λ∗(H1(Σ;F2)). In this section we describe a distin-
guished element of F2[U ] ⊗F2

Λ∗(H1(Σ;F2)), which appears frequently in our computations, and is
a familiar expression from Seiberg–Witten theory.

Definition 9.1. Suppose Σ is an oriented surface of genus g, with either zero or one boundary
component. We say a collection of simple closed curves A1, . . . , Ag, B1, . . . , Bg on Σ form a geometric
symplectic basis of H1(Σ;Z) if the following hold:

(1) {[A1], . . . , [Ag], [B1], . . . , [Bg]} is a basis of H1(Σ;Z).
(2) The geometric intersection number of Ai and Bj is δi,j .

Given an oriented, connected surface with zero or one boundary component, we consider the
element

(9.1) ξ(Σ) :=

g(Σ)∏
j=1

(U + [Aj ] ∧ [Bj ]) ∈ F2[U ]⊗F2
Λ∗(H1(Σ;F2)).
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Although the element ξ(Σ) is defined by picking a geometric symplectic basis, we in fact have the
following:

Proposition 9.2. The element ξ(Σ) is independent of the choice of geometric symplectic basis of
H1(Σ;Z). Furthermore, the action of MCG(Σ) on F2[U ]⊗ Λ∗(H1(Σ;F2)) fixes ξ(Σ).

Proof. If ∂Σ 6= ∅, let Σ̂ denote the surface obtained by capping off the boundary of Σ with a disk.
Since H1(Σ;Z) → H1(Σ̂;Z) is an isomorphism, it is sufficient to show the analogous statement for

the element ξ(Σ̂) ∈ F2[U ]⊗ Λ∗(H1(Σ̂;F2)), defined using a geometric symplectic basis of H1(Σ̂;Z).
Suppose that {[A1], . . . , [Ag], [B1], . . . , [Bg]} and {[A′1], . . . , [A′g], [B

′
1], . . . , [B′g]} are two choices of

geometric symplectic bases. We can pick a single automorphism φ of Σ such that for all i ∈ {1, . . . , g}
we have φ(Fi) = F ′i , where Fi and F ′i are the punctured tori

Fi := N(Ai ∪Bi) and F ′i := N(A′i ∪B′i).

Furthermore, we can arrange that φ(Ai) = A′i and φ(Bi) = B′i (up to orientation reversal). Hence, it

is sufficient to show that ξ(Σ̂), computed with the basis A1, . . . , Ag, B1, . . . , Bg, is fixed by MCG(Σ̂).

According to [Lic64], the group MCG(Σ̂) is generated by Dehn twists along the curves a1, . . . , ag,
b1, . . . , bg, c1, . . . , cg−1 shown in Figure 9.1. We can assume ai = Ai and bi = Bi.

a1

b1
c1

bg

ag

cg−1

Figure 9.1. Generators of MCG(Σ̂).

We now consider invariance of ξ(Σ̂) under Dehn twists along ai. The only curve in our basis which
is changed by a Dehn twist along ai is Bi. A Dehn twist along ai sends the class [Bi] to [Bi] + [Ai].

This does not change the element ξ(Σ̂), since

U + [Ai]([Ai] + [Bi]) = U + [Ai][Bi].

Invariance under Dehn twists along a curve bi is similar.
We finally consider a Dehn twist along a curve ci, which we note intersects both Bi and Bi+1,

and none of the other Ai or Bj curves. A Dehn twist along ci sends the homology class [Bi] to

[Bi] + [Ai] + [Ai+1] and sends [Bi+1] to [Bi+1] + [Ai] + [Ai+1]. To show invariance of ξ(Σ̂), we
compute (

U + [Ai]([Bi] + [Ai] + [Ai+1])
)(
U + [Ai+1]([Bi+1] + [Ai] + [Ai+1])

)
=U2 +

(
[Ai][Bi] + [Ai+1][Bi+1]

)
U + [Ai][Bi][Ai+1][Bi+1]

=(U + [Ai][Bi])(U + [Ai+1][Bi+1]).

It follows that ξ(Σ̂) is preserved by the action of MCG(Σ̂), and hence is independent of the choice
of geometric symplectic basis. As we remarked earlier, this implies that ξ(Σ) is also independent of
the choice of geometric symplectic basis, and consequently is fixed by the action of MCG(Σ). �

9.2. The algebraic reductions of the link cobordism maps. We recall that if (Σ,α,β,w) is
a multi-pointed Heegaard diagram for (Y,w), the module CF−(Y,w, s) is the free F2[U ]-module
generated by intersection points x ∈ Tα ∩ Tβ . By counting holomorphic curves, one can define a

differential on CF−(Y,w, s), similar to the expression which appears in Equation (2.1).
For links equipped with a coloring with exactly two colors, such that the w basepoints are given

the same color, and the z basepoints are given the other, we can recover CF− from CFL− via either
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of the two natural isomorphisms

CFL−(Y,L, s)⊗R− R−/(V − 1) ∼= CF−(Y,w, s) and

CFL−(Y,L, s)⊗R− R−/(U − 1) ∼= CF−(Y, z, s− PD [L]).
(9.2)

As a general algebraic fact, if F : M1 → M2 is a map of R-modules, and N is an R-module, there
is an induced map F ⊗ idN : M1 ⊗R N → M2 ⊗R N . Hence, given a decorated link cobordism
(W,F) : (Y1,L1)→ (Y2,L2), we obtain two maps:

FW,F,s|V=1 : CF−(Y1,w1, s|Y1
)→ CF−(Y2,w2, s|Y2

)

and

FW,F,s|U=1 : CF−(Y1, z1, s|Y1
− PD [L1])→ CF−(Y2, z2, s|Y2

− PD [L2]).

In [Zem15], the author constructs a “graph TQFT” for CF−. The objects of the associated
cobordism category are closed 3-manifolds with collections of basepoints. A cobordism from (Y1,w1)
to (Y2,w2) consists of a pair (W,Γ) such that W is a compact, oriented 4-manifold with ∂W =
−Y1 t Y2, and Γ ⊆W is a finite, embedded graph satisfying the following:

(1) Γ ∩ Yi = wi.
(2) Each basepoint in wi has valence 1 in Γ.
(3) Γ is decorated which a choice of cyclic ordering at each of its vertices.

Given a ribbon graph cobordism (W,Γ): (Y1,w1)→ (Y2,w2), there are two maps

FAW,Γ,s, F
B
W,Γ,s : CF−(Y1,w1, s|Y1)→ CF−(Y2,w2, s|Y2).

The construction from [Zem15] corresponds to the type-A maps. The type-B maps are a simple
variation, which are described in [HMZ18, Section 3].

The type-A maps and the type-B maps satisfy the relation

(9.3) FAW,Γ,s ' FBW,Γ,s,

where Γ is the graph obtained by reversing the cyclic orders of Γ [HMZ18, Lemma 5.9].
To relate the link cobordism maps to the graph cobordism maps, we need the following notion:

Definition 9.3. Suppose (W,F) : (Y1,L1) → (Y2,L2) is a decorated link cobordism with type-w
subsurface Σw. If Γ ⊆ W is a ribbon graph, we say that Γ is a ribbon 1-skeleton of Σw if the
following hold:

(1) Γ ⊆ Σw.
(2) Γ ∩ Yi = wi.
(3) Σw is a regular neighborhood of Γ inside of Σ.
(4) The ribbon structure of Γ is compatible with the orientation of Σ.

The following general reduction theorem is proven in [Zem16]:

Theorem 9.4 ([Zem16, Theorem C]). If (W,F) is a decorated link cobordism, and Γw ⊆ Σw and
Γz ⊆ Σz are ribbon 1-skeleta, then

FW,F,s|V=1 ' FBW,Γw,s and FW,F,s|U=1 ' FAW,Γz,s−PD[Σ].

We now describe the maps induced by several simple graph cobordism, based on several compu-
tations from [Zem18].

Appearing in our formulas are two natural endomorphisms of CF−(Y,w, s). The first endomor-
phism is the action of Λ∗(H1(Y ;Z)/Tors), described by Ozsváth and Szabó [OS04d, Section 4.2.5].
If γ is a closed loop in Y , we will write Aγ for the map

Aγ(x) :=
∑

φ∈π2(x,y)
µ(φ)=1

a(γ, φ)#M̂(φ) · Unw(φ) · y,

where a(γ, φ) denotes the intersection number of φ with γ (appropriately interpreted).
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The second endomorphism is the map Φw, defined via the formula

Φw(x) := U−1
∑

φ∈π2(x,y)
µ(φ)=1

nw(φ)#M̂(φ) · Unw(φ) · y.

The map Φw is considered in [Zem15].
We consider the four ribbon graph cobordisms ([0, 1]× Y,Γi) shown in Figure 9.2. The homology

classes of various loops in the graphs are labeled.

([0, 1]× Y,Γ1) ([0, 1]× Y,Γ2) ([0, 1]× Y,Γ3) ([0, 1]× Y,Γ4)

γ γ1

γ2 γ

w w

Figure 9.2. The graph cobordisms ([0, 1] × Y,Γi) for i ∈ {1, 2, 3, 4} consid-
ered in Proposition 9.5.

Proposition 9.5. The graph cobordism maps for ([0, 1]× Y,Γi) satisfy

(1) F[0,1]×Y,Γ1,s ' Aγ .
(2) F[0,1]×Y,Γ2,s ' U +Aγ1Aγ2 .
(3) F[0,1]×Y,Γ3,s ' Aγ + UΦw.
(4) F[0,1]×Y,Γ4,s ' Φw.

The above relations hold for both the type-A and B versions of the graph cobordism maps.

Proof. The computation of the maps for Γ1 and Γ2 is performed in [Zem18, Proposition 4.6]. We
note that [Zem18, Proposition 4.6] is stated only in the case that [γ1] = [γ2] = 0 ∈ H1(Y ;Z) (so
that the induced map is the action of U). Nonetheless, the proof given in [Zem18] demonstrates
the stated formula for general γ1 and γ2, and then specializes to the case that [γ1] = [γ2] = 0. The
computation of the map for Γ4 is performed in [Zem18, Lemma 4.5].

The computation of the cobordism map for Γ3 follows from the computation of the map for Γ1,
and Γ4, using the vertex breaking relation, which describes the effect of changing the relative order
of two edges adjacent to a vertex in the graph. The relation is shown in Figure 9.3, and is proven in
[Zem18, Lemma 4.4]. To obtain the stated formula for the graph cobordism map for Γ3, we apply
the vertex breaking relation at the valence 4 vertex, showing that the induced map is a sum of a
graph cobordism for the graph Γ1, as well as U times the graph cobordism map for Γ4.

Finally, we briefly describe why the type-A and B maps coincide for the graphs Γ1, Γ2, Γ3 and
Γ4. For a rigorous proof, we refer the reader to the proof of [Zem18, Proposition 4.6], where the
claim is proven for Γ1 and Γ2. The proof therein extends easily to Γ3. We note that Equation (9.3)
implies that switching from type-A to type-B corresponds to reversing the cyclic orders (immediately
implying that the type-A and B maps agree for Γ4). Hence, on a more conceptual level, one can
use several applications of the vertex breaking relation in Figure 9.3 to relate the type-A the graph
cobordism map for Γi to the type-A graph cobordism map for Γi, for i ∈ {1, 2, 3, 4}, though we leave
this exercise to the reader. �

The graph cobordism computations from Proposition 9.5 provide a useful description of certain
reductions of the link cobordism maps:

Lemma 9.6. Suppose that (W,F) : (Y1,K1)→ (Y2,K2) is a decorated knot cobordism, such that F
is a connected, decorated surface whose dividing set consists of exactly two arcs, a1 and a2, which
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Figure 9.3. The vertex breaking relation. The vertex breaking relation illus-
trates the effect of changing the relative ordering of two edges adjacent at a vertex
v0. Note that the embedding of the actual edges at a vertex does not effect the
induced map, though it makes it clearer to switch the embedding between the first
and second pictures.

divide F into two connected components. Then

FW,F,s|V=1(−) ' FW,cw,s(ι∗ξ(Σw)⊗−) and FW,F,s|U=1(−) ' FW,cz,s−PD[Σ](ι∗ξ(Σz)⊗−),

where cw and cz denote any choice of paths in W formed by concatenating either of the arcs, a1 or
a2, with subarcs of Σw ∩Ki or Σz ∩Ki, respectively. Here ι : Σ ↪→W denotes inclusion.

Proof. From Theorem 9.4 we know that

(9.4) FW,F,s|V=1 ' FBW,Γw,s,

where Γw is a ribbon 1-skeleton of the type-w subsurface Σw of F . We will use the graph cobordism
computations from Proposition 9.5. The key observation is that a ribbon 1-skeleton for Σw can be
constructed from choice of geometric symplectic basis of H1(Σw;Z), as well as an additional arc,
which will be the path cw. Let cw be one of the two embedded paths on Σw, which connect the
two w basepoints and run parallel to ∂Σw. Suppose A1, . . . , Ag, B1, . . . , Bg is a symplectic basis
of H1(Σw;Z). We can now construct a ribbon 1-skeleton for Σw by isotoping each Ai so that it
intersects cw non-transversally at a single point. This procedure is shown in Figure 9.4. Write Γw

for the ribbon 1-skeleton formed via this procedure.

cw
a1

a2

Figure 9.4. Constructing a ribbon 1-skeleton of Σw from a geometric
symplectic basis of H1(Σw;Z), and the additional arc cw. On the left are the
curves in the symplectic basis. The two solid dots are the w basepoints. On the
right, a ribbon 1-skeleton has been constructed, using the symplectic basis and the
arc cw. The dividing arcs of F , labeled a1 and a2, are shown in red on the left side.

We can now use Proposition 9.5 to compute the graph cobordism map FBW,Γw,s
. We decompose

the 4-manifold W into a sequence of handle attachments, so that the 1-handles occur before the 2-
handles, which occur before the 3-handles. It is straightforward to arrange that all of the loops of Γw

occur in a product cobordism [0, 1]×Y ⊆W which occurs between the 1-handles and the 2-handles.
Furthermore, since W is a 4-manifold, it is straightforward to arrange Γw ∩ ([0, 1] × Y ) so that it
is a composition of graph cobordisms, each with two loops, and with the same configuration as the
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graph cobordism ([0, 1]× Y,Γ2), shown in Figure 9.2. Using the computation from Proposition 9.5,
combined with the composition law, it follows that

(9.5) FBW,Γw,s(−) ' FW,cw,s(ξ(Σw)⊗−).

Combining Equation (9.4) and (9.5) implies the stated formula for the V = 1 reduction of FW,F,s.
A similar argument works for the U = 1 reduction. �

9.3. The cobordism maps for closed surfaces. In this section, we compute the cobordism maps
for link cobordism obtained by puncturing a closed, decorated surface inside of a 4-manifold W with
∂W = −Y1 t Y2.

Suppose that F is a closed, decorated surface in a cobordism W : Y1 → Y2. Suppose furthermore
that W , Y1 and Y2 are nonempty and connected. Let D1 and D2 be two embedded disks in F ,
which each intersect the dividing set of F in a single arc. Let F0 be a properly embedded decorated
surface in W , obtained by isotoping F so that it intersects Yi along Di, and then removing D1 and
D2 from F . Let Ui denote the decorated unknot in Yi obtained by adding two basepoints to ∂Di in
such a way that (W,F0) becomes a decorated link cobordism from (Y1,U1) to (Y2,U2).

Let F2[Û ] denote the free polynomial ring in the variable Û . We give the ring F2[U, V ] an action

of F2[Û ] by declaring Û to act by UV .
If U is an unknot in Y with exactly two basepoints, w and z, as well as a distinguished Seifert

disk D, then we can restrict attention to diagrams H for (Y,U), where the disk D intersects the
Heegaard surface in an arc connecting w and z which is disjoint from the α and β curves on H. If
p denotes the center of D, then by viewing CF−(Y, p, s) as an F2[Û ]-module, we obtain a canonical
isomorphism

CFL−(Y,U, s) ∼= CF−(Y, p, s)⊗F2[Û ] F2[U, V ].

In particular, if (W,Γ): (Y1, p1) → (Y2, p2) is a graph cobordism, the graph cobordism map FW,Γ,s
determines a map from CFL−(Y1,U1, s|Y1) to CFL−(Y2,U2, s|Y2), for which we write FW,Γ,s|F2[U,V ].

To be explicit, if the expression FW,Γ,s(x) contains the summand Û ` · y, then FW,Γ,s|F2[U,V ](x)
contains the summand U `V ` · y.

Proposition 9.7. Suppose that F = (Σ,A) is a closed, decorated surface inside of the cobordism
W : Y1 → Y2, and let (W,F0) denote the decorated link cobordism obtained by isotoping F so that it
intersects Y1 and Y2 in two disks, and then removing those two disks, as described above. Let ∆A
denote the quantity

∆A =
〈c1(s),Σ〉 − [Σ] · [Σ]

2
+
χ(Σw)− χ(Σz)

2
.

(1) In general,

FW,F0,s '

{
V ∆A · FBW,Γw,s

|F2[U,V ] if ∆A ≥ 0,

U−∆A · FAW,Γz,s−PD[Σ]|
F2[U,V ] if ∆A ≤ 0,

where Γw ⊆ Σw and Γz ⊆ Σz are ribbon 1-skeleta.
(2) If Σ is connected and A consists of a single closed curve a, dividing Σ into two connected

components, then

FW,F0,s '

{
V ∆A · FW,c,s(ι∗ξ(Σw)⊗−)|F2[U,V ] if ∆A ≥ 0

U−∆A · FW,c,s−PD[Σ](ι∗ξ(Σz)⊗−)|F2[U,V ] if ∆A ≤ 0,

where c is one of the two dividing arcs in F0, viewed as a path from Y1 to Y2.

Proof. We consider Claim (1) first. Let D1 and D2 denote the two disks of Σ, which are pushed
into Y1 and Y2, and let U1 and U2 denote ∂D1 and ∂D2. We pick Heegaard diagrams H1 =
(Σ1,α1,β1, w1, z1) and H2 = (Σ2,α2,β2, w2, z2) such that the disk Di intersects Σi along an arc
connecting wi and zi which is disjoint from αi and βi. On this diagram, the Alexander grading on
CFL−(Yi,Ui, s|Yi) with respect to the Seifert disk Di is given by

ADi(U
mV n · x) = (n−m).
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In particular, the map FW,F,s is determined entirely by the reduction FW,F,s|V=1 and the Alexander
grading change ∆A. If ∆A ≥ 0, then FW,F,s can be recovered from its V = 1 reduction by correcting
powers of V via the formula

(9.6) FW,F0,s ' V ∆A · (FW,F0,s|V=1)|F2[U,V ].

Note that ∆A must be nonnegative for Equation (9.6) to be satisfied, since otherwise the right hand
side is not well defined up to filtered, equivariant chain homotopy.

If ∆A ≤ 0, a similar argument shows that

(9.7) FW,F0,s ' U−∆A · (FW,F0,s|U=1)|F2[U,V ].

Combining Equations (9.6) and (9.7) with Theorem 9.4 concludes the proof of Claim (1).
Claim (2) follows from Claim (1), together with Lemma 9.6. �

9.4. The cobordism maps on HFL∞. In this section we compute the maps associated to knot
cobordisms on the level of HFL∞ when the dividing set is relatively simple, focusing on the case
that the 4-manifold is negative definite.

When L is not an unlink, there is in general no way to recover the Z ⊕ Z-filtered complex
CFL∞(Y,L, s) from CF∞(Y,w, s), however we can recover HFL∞(Y,L, s) from HF∞(Y,w, s), as
we now describe.

As a general algebraic principle, if R and R0 are two unital rings such that R0 has an action of
R, and N is an R-module, then there is a natural map

N → N ⊗R R0,

which is simply n 7→ n⊗ 1R0 .
Hence, using the isomorphisms in Equation (9.2), we obtain chain maps

(9.8) Rw : CFL∞(Y,L, s)→ CF∞(Y,w, s) and Rz : CFL∞(Y,L, s)→ CF∞(Y, z, s− PD [L]),

by mapping V to 1, or mapping U to 1, respectively.
Suppose L is a null-homologous link in Y , and s ∈ Spinc(Y ) is torsion. We can decompose

CFL∞(Y,L, s) as a direct sum over (collapsed) Alexander gradings

CFL∞(Y,L, s) =
⊕
i∈Z
CFL∞(Y,L, s)i.

Note that the direct sum is not of F2[U, V, U−1, V −1]-modules, but instead of F2[Û , Û−1]-modules.
We define maps

(Rw)i : CFL∞(Y,L, s)i → CF∞(Y,w, s) and (Rz)i : CFL∞(Y,L, s)i → CF∞(Y, z, s),

as the restriction of the reduction maps Rw and Rz from Equation (9.8) to CFL∞(Y,L, s)i.

Lemma 9.8. Suppose that L is a null-homologous link in Y . The map

(Rw)i : CFL∞(Y,L, s)i → CF∞(Y,w, s),

is an isomorphism of chain complexes over F2[Û , Û−1].

Proof. Suppose H = (Σ,α,β,w, z) is a fixed diagram of (Y,L). We define an inverse (Qw)i of (Rw)i
via the formula

(Qw)i(Û
j · x) = U jV j+i−A(x) · x.

It is straightforward to see that (Qw)i is a chain map, and that (Rw)i and (Qw)i are inverses of
each other. �

Note that the map (Qw)i in Lemma 9.8 does not necessarily respect the Z ⊕ Z-filtration on
CFL∞(Y,L, s).

Using Lemma 9.8, we can define a chain isomorphism

Rw : CFL∞(Y,L, s)→
⊕
i∈Z

CF∞(Y,w, s),
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by taking the direct sum of all the (Rw)i. The map Rw intertwines the action of V on CFL∞(Y,L, s)
with the endomorphism of

⊕
i∈Z CF∞(Y,w, s) which shifts the index i by +1.

Theorem 9.9. Suppose that (W,F) : (Y1,K1)→ (Y2,K2) is a knot cobordism. Write F = (Σ,A).

(1) If Γw and Γz are ribbon 1-skeleta of Σw and Σz, then

FW,F,s = V ∆A ·R−1
w ◦ FBW,Γw,s ◦Rw

and

FW,F,s = U−∆A ·R−1
z ◦ FAW,Γz,s−PD[Σ] ◦Rz

as maps from HFL∞(Y1,K1, s|Y1) to HFL∞(Y2,K2, s|Y2). Here

∆A :=
〈c1(s),Σ〉 − [Σ] · [Σ]

2
+
χ(Σw)− χ(Σz)

2

denotes the Alexander grading change.
(2) Suppose further that each Ki is a null-homologous knot with two basepoints and A consists

of two arcs running from K1 to K2 (necessarily implying that Σ, Σw and Σz are connected).
If Y1 and Y2 are rational homology 3-spheres and b1(W ) = b+2 (W ) = 0, then the induced
map on homology

FW,F,s : HFL∞(Y1,K1, s|Y1
)→ HFL∞(Y2,K2, s|Y2

)

is an isomorphism.
(3) If (W,F) : (S3,K1) → (S3,K2) is a knot cobordism such that F is decorated as in Part (2)

and b1(W ) = b+2 (W ) = 0, then under canonical the identification

HFL∞(S3,Ki) ∼= R∞ = F2[U,U−1, V, V −1]

given by the gradings, the map FW,F,s is equal to the map

1 7→ U−d1/2V −d2/2,

where

d1 =
c1(s)2 − 2χ(W )− 3σ(W )

4
− 2g(Σw)

and

d2 =
c1(s− PD [Σ])2 − 2χ(W )− 3σ(W )

4
− 2g(Σz).

Proof. We consider Claim (1) first. It follows from Theorem 9.4 and the Alexander grading formula
that

(Rw)i+∆A ◦ (FW,F,s)i = FBW,Γw,s ◦ (Rw)i,

where (FW,F,s)i denotes FW,F,s restricted to the ith Alexander grading. Noting that (Rw)i+∆A =
(Rw)i ◦ V −∆A, we obtain the formula

(FW,F,s)i = V ∆A · (Rw)−1
i ◦ F

B
W,Γw,s ◦ (Rw)i

Taking the direct sum over Alexander gradings yields the first formula in Claim (1). This strategy
also adapts to prove the stated formula for Rz and FAW,Γz,s−PD[Σ] as well.

We now consider Claim (2). By Lemma 9.6

FW,F,s|V=1 ' FW,cw,s(ι∗ξ(Σw)⊗−),

for some path cw from Y1 to Y2. According to the proof of [OS03b, Theorem 9.6], the map FW,cw,s
is an isomorphism on HF∞ for all s ∈ Spinc(W ). Since b1(W ) = 0, the actions of the elements in
Λ∗(H1(W ;Z)/Tors) in the formula for ξ(Σw) vanish, and hence

FW,cw,s(ι∗ξ(Σw)⊗−) = Ug(Σw) · FW,cw,s(−).

Since the reduction maps Rw are isomorphisms on homology by Lemma 9.8, by applying Claim (1)
we conclude that FW,F,s is an isomorphism on HFL∞, since it is a composition of isomorphisms.
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Finally, we note that Claim (3) follows from Claim (2), as well as our grading formula from
Theorem 1.4, since the map 1 7→ U−d1/2V −d2/2 is the unique map from R∞ to R∞ which is an
isomorphism of groups, and induces the correct grading change. �

Corollary 1.8. Suppose that Σ ⊆ S4 is a closed, oriented and connected surface, and A is a simple
closed curve on Σ which divides Σ into two connected subsurfaces, Σw and Σz. The link cobordism
map

FS4,F,s0 : CFL−(∅)→ CFL−(∅)

is equal to the map

1 7→ Ug(Σw)V g(Σz),

under the canonical identification of CFL−(∅) ∼= F2[U, V ].

In particular the map for the link cobordism obtained by puncturing a 2-knot in any homotopy
S4 is the identity map.

Remark 9.10. Combining Corollary 1.8 with the composition law, we can compute the effect of
taking the connected sum of a link cobordism (W,F) with an oriented surface Σ contained in a ball
in W which is disjoint from F . If we add Σ to a type-w region, then the effect is to multiply FW,F,s
by Ug(Σ). If we add Σ to a type-z region, then the effect is to multiply FW,F,s by V g(Σ).

10. Link cobordism proofs of bounds on τ(K) and Vk(K)

In this section, we show that the link cobordism maps give simple proofs on the bounds on τ(K)
and Vk(K) stated in the introduction.

Let CFK−(K) denote the module

CFK−(K) := CFL−(S3,K, s0)⊗F2[U,V ] F2[U, V ]/(V ),

i.e., CFK−(K) is the free F2[U ]-module generated by intersection points x ∈ Tα ∩ Tβ , and the

differential counts disks φ with nz(φ) = 0. We let HFK−(K) denote the homology of CFK−(K).
We note that HFK−(K) is isomorphic to F2[U ]⊕ T for some torsion F2[U ]-module T .

We note that by [OST06, Lemma A.2],

τ(K) = −max{A(x) : x ∈ HFK−(K) is homogeneous and non-torsion}.

Similarly, there is an ∞ flavor of CFK−(K). To avoid confusion with the bifiltered CFK∞(K),
which is the zero Alexander graded part of CFL∞(S3,K), we will write U−1CFK−(K) for the module
CFL−(S3,K)⊗F2[U,V ]F2[U,U−1, V ]/(V ), and HFK∞(K) for the homology groupH∗(U

−1CFK−(K)).
We note that

HFK∞(K) ∼= F2[U,U−1].

There is a natural map HFK−(K)→ HFK∞(K). An element x ∈ HFK−(K) is non-torsion if and
only if its image in HFK∞(K) is non-vanishing.

Suppose that W is an oriented 4-manifold with boundary equal to two rational homology spheres,
and b+2 (W ) = b1(W ) = 0. If [Σ] ∈ H2(W,∂W ;Z) is a class whose image in H1(∂W ;Z) vanishes,
then we can uniquely pull [Σ] back to a class in H2(W ;Z)/Tors. With this in mind, we define

|[Σ]| := max
C∈Char(QW )

C2=−b2(W )

〈[Σ], H〉.

If ∂W = S3 t S3, we can use Donaldson’s diagonalization theorem to pick an orthonormal basis
e1, . . . , eb of H2(W ;Z)/Tors, and write PD [Σ] = s1 · e1 + · · ·+ sb · eb. In this case, we have∣∣[Σ]

∣∣ = |s1|+ · · ·+ |sb|.

We now give our link cobordism proof of Ozsváth and Szabó’s bound:



62 IAN ZEMKE

Theorem 10.1 ([OS03a, Theorem 1.1]). Suppose that (W,Σ): (S3,K1) → (S3,K2) is an oriented
knot cobordism with b+2 (W ) = b1(W ) = 0. Then

τ(K2) ≤ τ(K1)−
∣∣[Σ]

∣∣+ [Σ] · [Σ]

2
+ g(Σ).

Proof. Let K1 and K2 denote K1 and K2 decorated with two basepoints. Construct a decorated link
cobordism (W,F) : (S3,K1) → (S3,K2) by letting F be obtained by adding two parallel dividing
arcs to Σ, so that Σz is a disk, and Σw is a genus g(Σ) surface with one boundary component. We
have a commutative diagram

(10.1)

HFL−(S3,K1) HFL−(S3,K2)

HFK−(K1) HFK−(K2),

FW,F,s

FW,F,s

induced by the natural maps CFL−(S3,Ki)→ CFK−(Ki). There is a similar commutative diagram
involving HFL∞ and HFK∞.

By Part (3) of Theorem 9.9, the map FW,F,s on HFL∞ will be multiplication by U−d1/2V −d2/2,
where

d1 =
c1(s)2 + b2(W )

4
− 2g(Σ) and d2 =

c1(s− PD [Σ])2 + b2(W )

4
.

From Equation (10.1) and its analog for HFL∞ and HFK∞, the map FW,F,s will be an isomorphism
on HFK∞ if and only if c1(s − PD [Σ])2 + b2(W ) = 0. Using Theorem 1.4, the Alexander grading
change of FW,F,s is (after manipulating the expression slightly)

〈c1(s− PD [Σ]), [Σ]〉+ [Σ] · [Σ]

2
− g(Σ).

Since FW,F,s maps non-torsion elements of HFK−(K1) to non-torsion elements of HFK−(K2) when
d2 = 0, it follows that

(10.2) τ(K2) ≤ τ(K1)− 〈c1(s− PD [Σ]), [Σ]〉+ [Σ] · [Σ]

2
+ g(Σ),

for any s with c1(s−PD [Σ])2 + b2(W ) = 0. Minimizing Equation (10.2) over such Spinc structures,
we obtained the bound in the theorem statement. �

Next, we consider Rasmussen’s local h-invariants, and the bounds on the slice genus. Recall that
the standard, Z ⊕ Z filtered, full knot Floer complex CFK∞(K) is isomorphic to the subset of
CFL∞(S3,K) in zero Alexander grading. Given an integer k ≥ 0, we define the sub-complex of
CFL∞(S3,K)

Ak(K) := SpanF2
{U iV j · x : A(x) + j − i = 0, i ≥ 0, j ≥ −k}.

Writing Û for the product UV , A−k (K) is a F2[Û ]-module. The invariant Vk(K) is defined as

(10.3) Vk(K) := −1

2
max{gr(x) : x ∈ H∗(Ak(K)) is homogeneous and non-torsion}.

In the above expression, gr denotes either grw or grz; they are equal when A = 0.
We note that Rasmussen’s original definition [Ras03, Definition 7.1] for Vk was in terms of the

d-invariants of large surgeries on K, though using the large surgery formula [OS04b, Section 4],
Equation (10.3) is equivalent.

We now give a simple proof of Rasmussen’s bound:

Theorem 10.2 ([Ras04, Theorem 2.3]). If K is a knot in S3, then

Vk(K) ≤
⌈
g4(K)− k

2

⌉
,

for any 0 ≤ k ≤ g4(K).
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Proof. Suppose that Σ is a surface in B4 with ∂Σ = K. After puncturing (B4,Σ) along Σ, we
obtain a genus g knot cobordism ([0, 1]× S3,Σ0) from (S3, U) to (S3,K). By stabilizing Σ0 with a
null-homologous torus, if necessary, we may assume that g(Σ0)− k is even. We decorate Σ0 with a
dividing set A consisting of two arcs, both running from U to K, which divide Σ0 into two connected
components, Σw and Σz, such that

g(Σw) =
g(Σ)− k

2
and g(Σz) =

g(Σ) + k

2
.

Let (W,F) denote ([0, 1]×S3, (Σ0,A)). OnHFL∞, the map FW,F,s is multiplication by Ug(Σw)V g(Σz)

by Part (3) of Theorem 9.9, and it changes Alexander grading by g(Σz) − g(Σw) = k. The map

FW,F,s does not map A−0 (U) ∼= F2[Û ] into A−0 (K), instead FW,F,s maps F2[Û ] into the subset

of CFL−(S3,K) of Alexander grading +k. The subset of CFL−(S3,K) in Alexander grading k is

canonically isomorphic as an F[Û ]-module to A−k (K); the isomorphism is given by the action of

V −k. Hence V −k · FW,F,s(1) is an element of H∗(A
−
k (K)) which is non-torsion. Furthermore,

V −k · FW,F,s(1) has Maslov grading −(g(Σ) − k) since the grw-grading change of V −k · FW,F,s is
−(g(Σ)− k), and grw = grz on A−k (K). It follows that

Vk(K) ≤ g(Σ)− k
2

,

completing the proof. �

11. t-modified knot Floer homology and a bound on the ΥK(t) invariant

In [OSS17], Ozsváth, Stipsicz and Szabó define a homomorphism from the smooth concordance
group to the group of piecewise linear functions from [0, 2] to R. In this section, we prove our bound
on ΥK(t), Theorem 1.1.

We recall the construction of ΥK(t). Suppose that K ⊆ S3 is an oriented knot, and H =
(Σ,α,β, w, z) is a diagram for (S3,K,w, z). If t ∈ [0, 2], we define the t-grading on intersection
points x ∈ Tα ∩ Tβ by

grt(x) =

(
1− t

2

)
grw(x) +

t

2
grz(x).

If t = m
n , with m and n relatively prime, tCFK−(K) is the free F2[v1/n]-module generated by

intersection points x ∈ Tα ∩ Tβ . The module tCFK−(K) has an endomorphism

∂(x) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#M̂(φ) · vtnz(φ)+(2−t)nw(φ) · y,

which squares to zero. The module tHFK−(K) is defined as the homology of (tCFK−(K), ∂).
The grading grt induces a grading on tCFK−(K). The differential lowers degree by 1, and the

action of v also lowers degree by 1. The number ΥK(t) ∈ R is defined as the maximal grt-grading
of any homogeneous non-torsion element of tHFK−(K).

We first need to understand the relationship between tCFK−(K) and CFL−(S3,K). We define
the rings

R−t = F2[U, V, v1/n]/(U − v2−t, V − vt)
and

R∞t := F2[U,U−1, V, V −1, v1/n, v−1/n]/(U − v2−t, V − vt).

Lemma 11.1. If K = (K,w, z) is a doubly based knot in S3, there are canonical isomorphisms

CFL−(S3,K)⊗F2[U,V ] R−t ∼= tCFK−(K) and CFL∞(S3,K)⊗F2[U,V,U−1,V −1] R∞t ∼= tCFK∞(K).

Proof. We focus on the first isomorphism, involving the minus flavors. We first describe an isomor-
phism between the ringsR−t and F2[v1/n]. Noting that t = m

n , we define a map from F2[U, V, v1/n]/(U−
v2−t, V − vt) to F2[v1/n] by the formula

U iV jvs 7→ vi(2−t)+jt+s
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and a map in the opposite direction by the formula

vs 7→ vs.

To define maps between the chain complexes, we use the above maps on rings, extended over linear
combinations of intersection points. That these maps are chain maps is immediate. It is also clear
that these two maps are inverses of each other.

Essentially the same argument works for the ∞ flavors of the complexes. �

Phrased another way, R−t is isomorphic to F2[v1/n] with a module action of F2[U, V ] declared.
As a consequence, if (W,F) : (S3,K1)→ (S3,K2) is a link cobordism and s ∈ Spinc(W ), then the

link cobordism map FW,F,s induces a map

tFW,F,s : tCFK−(K1)→ tCFK−(K2).

Lemma 11.2. Suppose that (W,F) is a decorated knot cobordism from (S3,K1) to (S3,K2) and
s ∈ Spinc(W ). Then the map tFW,F,s : tHFK−(K1) → tHFK−(K2) maps non-torsion elements to
non-torsion elements if and only if the induced map FW,F,s : HFL∞(S3,K1)→ HFL∞(S3,K2) is an
isomorphism.

Proof. SinceHFL∞(S3,Ki) ∼= F2[U, V, U−1, V −1] and the map FW,F,s is graded and F2[U, V, U−1, V −1]-
equivariant, it follows that FW,F,s is an isomorphism on HFL∞ if and only if it is nonzero.

Similarly, the map tFW,F,s maps non-torsion elements of tHFK−(K1) to non-torsion elements of

tHFK−(K2) if and only if the induced map on tHFK∞ is non-zero.
Hence it is sufficient to show that the map FW,F,s is non-zero on HFL∞ if and only if tFW,F,s is

non-zero on tHFK∞.
Using the grw and grz gradings, we can canonically identify HFL∞(S3,Ki) as F2[U, V, U−1, V −1].

Similarly, we can canonically identify tHFK∞(Ki) with F2[v−1/n, v1/n]. Since the maps FW,F,s and
tFW,F,s are graded, under the above identifications, they must be equal to multiplication by c ·U iV j
and c′ · v`, respectively, for i, j ∈ Z, ` ∈ R and c, c′ ∈ F2. We have a commutative diagram

HFL∞(S3,K1) HFL∞(S3,K2)

tHFK∞(K1) tHFK∞(K2).

FW,F,s

tFW,F,s

Since the two vertical arrows are non-zero (they are the natural maps from F2[U, V, U−1, V −1] to
F2[U, V, U−1, V −1]⊗R∞t ), and the top horizontal arrow is identified with multiplication by c ·U iV j
and the bottom arrow is identified with multiplication by c′ · v`, we conclude that c = c′ and
` = i(2− t) + jt. In particular, the map FW,F,s is nonzero if and only if c = 1, which occurs if and
only if c′ = 1, which occurs if and only if tFW,F,s is nonzero, completing the proof. �

If (W,F) is a link cobordism, the grt-grading change of the map tFW,F,s can be computed using
the grw- and grz-grading change formula from Theorem 1.4. If x is a homogeneously graded element,
then

grt(FW,F,s(x))− grt(x)

=
c1(s)2 − 2χ(W )− 3σ(W )

4
+ t ·

(
−〈c1(s), Σ̂〉+ [Σ̂] · [Σ̂]

2

)
+

(
1− t

2

)
· χ̃(Σw) +

t

2
· χ̃(Σz).

(11.1)

We now proceed to prove Theorem 1.1. Recall from the introduction that if W : S3 → S3 is
a cobordism and [Σ] ∈ H2(W,∂W ;Z) is a class, we can uniquely pull back [Σ] to an element of
H2(W ;Z), for which we will also write Σ. We define the quantity

M[Σ](t) := max
C∈Char(QW )

C2 + b2(W )− 2t · 〈C, [Σ]〉+ 2t · [Σ] · [Σ]

4
,
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Theorem 1.1. Suppose that (W,Σ): (S3,K1) → (S3,K2) is an oriented knot cobordism with
b+2 (W ) = b1(W ) = 0. Then

ΥK2
(t) ≥ ΥK1

(t) +M[Σ](t) + g(Σ) · (|t− 1| − 1).

Proof. We form the surface with divides F by decorating Σ with two parallel arcs, both running
from K1 to K2, so that both Σw and Σz are connected and

g(Σw) = 0 and g(Σz) = g(Σ).

By Part (3) of Theorem 9.9, the induced map FW,F,s from HFL∞(S3,K1) to HFL∞(S3,K2) can be

identified with multiplication by U−d1/2V −d2/2, where d1 is the change in grw grading, and d2 is
the change in grz grading. In particular, the map FW,F,s is nonzero on HFL∞. By Lemma 11.2,

the induced map tFW,F,s sends non-torsion elements of tHFK−(K1) to non-torsion elements of

tHFK−(K2). Using the formula from Equation (11.1) for the change in the grt grading, we conclude
that

ΥK2(t) ≥ ΥK1(t) +Gs(t)− t · g(Σ),

where

Gs(t) :=
c1(s)2 − 2χ(W )− 3σ(W )

4
+ t ·

(
−〈c1(s), Σ̂〉+ [Σ̂] · [Σ̂]

2

)
.

Using the fact that b1(W ) = b+2 (W ) = 0, we compute

Gs(t) =
c1(s)2 + b2(W )− 2t · 〈c1(s), [Σ]〉+ 2t · [Σ] · [Σ]

4
.

Taking the maximum over all s ∈ Spinc(W ), we obtain that

(11.2) ΥK2
(t) ≥ ΥK1

(t) +M[Σ](t)− t · g(Σ).

An easy computation shows that Gs(t) = Gs+PD[Σ](2− t), so

M[Σ](t) = M[Σ](2− t).

On the other hand ΥKi(t) = ΥKi(2 − t) by [OSS17, Proposition 1.2], so from Equation (11.2) we
obtain

(11.3) ΥK2
(t) ≥ ΥK1

(t) +M[Σ](t)− (2− t) · g(Σ).

Combining Equation (11.2) and (11.3) yields the theorem statement.
�

Remark 11.3. One could hope to refine the above bound even further, by considering different
surfaces with divides and trying to optimize the expression

(11.4)

(
1− t

2

)
· χ̃(Σw) +

t

2
· χ̃(Σz).

It is straightforward to see that if we restrict to dividing sets on Σ consisting of two arcs and Σw and
Σz are both connected, then the expression in Equation (11.4) is maximized when g(Σw) = g(Σ) or
when g(Σz) = g(Σ), depending on the value of t. Furthermore, the maximum value is g(Σ)·(|t−1|−1).

One could investigate more complicated dividing sets as well, though using Part (1) of Theorem 9.9
we see that the induced map FW,F,s will be an isomorphism on HFL∞ if and only if the graph
cobordism FBW,Γw,s

is an isomorphism on HF∞, for a ribbon 1-skeleton Γw of Σw. However, noting
that Φw = 0 on HF∞ for a singly based 3-manifold, it is not hard to use Proposition 9.5 to show
that if b1(W ) = 0, then map FBW,Γw,s

: HF∞(S3, w1)→ HF∞(S3, w2) is non-vanishing if and only if

Σw is connected and has exactly one boundary component (note that this condition is symmetric
between Σw and Σz, since Σw is connected and has exactly one boundary component if and only if
Σz is connected and has exactly one boundary component).
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11.1. Additional examples of the bound. In this section, we describe how several properties of
ΥK(t) from [OSS17] which are simple corollaries from Theorem 2.13.

Corollary 11.4 ([OSS17, Theorem 1.11]). If (W,Σ): (S3,K1) → (S3,K2) is an oriented knot
cobordism, and W is a rational homology cobordism, then

|ΥK2(t)−ΥK1(t)| ≤ t · g(Σ).

Proof. This follows immediately from Theorem 1.1. �

Corollary 11.5 ([OSS17, Proposition 1.10]). If K− and K+ are knots in S3, which differ by a
crossing change, then

ΥK+
(t) ≤ ΥK−(t) ≤ ΥK+

(t) + 1− |t− 1|.

Proof. Suppose that K− and K+ are two knots which differ by a crossing change (and K− has
the negative crossing and K+ has the positive crossing). We can construct a negative definite link
cobordism (W1,Σ1) from (S3,K−) to (S3,K+) and also a negative definite link cobordism (W2,Σ2)
from (S3,K+) to (S3,K−). Each is formed by adding a 2-handle with framing −1, around the
crossing, as shown in Figure 11.1.

A generator Ei of H2(Wi;Z) is given by taking a Seifert disk of the unknot, and capping with
the core of the 2-handle. Hence the homology class of the surface Σi in Wi can be computed from
the intersection number of the knot K± on the incoming end of Wi with the Seifert disk for the −1
framed unknot.

K−K+

−1W1 =

W2 = −1

Figure 11.1. The knot cobordism (W1,Σ1) from (S3,K+) to (S3,K−), and
the knot cobordism (W2,Σ2), in the opposite direction.

After orienting E appropriately, we can take [Σ1] = 2 · E and [Σ2] = 0. Hence

M[Σ2](t) = 0 and M[Σ1](t) = −(1− |t− 1|).
Applying Theorem 1.1, we see

ΥK+
(t) ≤ ΥK−(t) ≤ ΥK+

(t) + 1− |t− 1|.
�

11.2. Positive torus knots. We show that the bound from Theorem 1.1 is sharp for torus knots,
in the following sense:

Proposition 11.6. Given any positive torus knot Ta,b, there is a knot cobordism (W,Σ): (S3, U)→
(S3, Ta,b) with g(Σ) = b1(W ) = b+2 (W ) = 0 and

ΥTa,b(t) = M[Σ](t).

Before we prove Proposition 11.6, it is convenient for us to consider the torus knot Tn,n+1. Given
an integer n, we define the quantity

(11.5) mn(t) := max
c∈2Z+1

−c2 + 1 + 2tcn− 2tn2

4
.
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Lemma 11.7. We have ΥTn,n+1(t) = mn(t).

Proof. We use the computation of Tn,n+1 due to Ozsváth, Stipsicz and Szabó [OSS17, Proposition 5],
which states that if t ∈

[
2i
n ,

2i+2
n

]
, then

(11.6) ΥTn,n+1(t) = −i(i+ 1)− 1

2
n(n− 1− 2i)t.

Although one can directly compare this expression with mn(t), we also note that there is a negative
definite knot cobordism (W,Σ) from (S3, Tn,1) (the unknot) to (S3, Tn,n+1) which is obtained by
embedding Tn,1 on a standard torus T 2 ⊆ S3, and performing −1 surgery on the core of one of the
two handlebody components of S3 \ T 2. Theorem 1.1 implies

(11.7) ΥTn,n+1
(t) ≥M[Σ](t) = mn(t).

On the other hand, if t ∈
[

2i
n ,

2i+2
n

]
, we plug c = 2n + 1 into the expression for mn(t) in Equa-

tion (11.5), and after an easy algebraic manipulation, we obtain

(11.8) mn(t) ≥ −i(i+ 1)− 1

2
n(n− 1− 2i)t.

Combining Equations (11.6), (11.7) and (11.8), we obtain the equality mn(t) = ΥTn,n+1
(t).

�

Proof of Proposition 11.6. Suppose that (a, b) is a pair of positive, relatively prime integers. Using
the Euclidean algorithm, we can find a sequence {(ai, bi)}ni=1 such that

(1) (a1, b1) = (1, 1),
(2) (an, bn) = (a, b), and
(3) (ai+1, bi+1) = (ai + bi, bi) or (ai+1, bi+1) = (ai, bi + ai).

According to Feller and Krcatovich’s recursive formula [FK17, Proposition 6], we have

(11.9) ΥTai+1,bi+1
(t) = ΥTai,bi

(t) + ΥTbi,bi+1
(t) or ΥTai+1,bi+1

(t) = ΥTai,bi
(t) + ΥTai,ai+1

(t)

depending on whether (ai+1, bi+1) = (ai + bi, bi) or (ai+1, bi+1) = (ai, bi + ai) (respectively).
On the other hand, there is a negative definite knot cobordism (Wi,Σi) from (S3, Tai,bi) to

(S3, Tai+1,bi+1). The surface Σi is an annulus. Viewing the torus knots as being embedded on a
standard torus T 2 in S3, the cobordism Wi is obtained by performing −1 surgery on an unknot
which is the core of one of the two solid tori forming S3 \ T 2.

We note that if (ai+1, bi+1) = (ai + bi, bi) then M[Σi] = ΥTbi,bi+1
(t) by Lemma 11.7, since [Σi] =

bi · E, for a generator E of H2(Wi;Z). Similarly, if (ai+1, bi+1) = (ai, ai + bi), then M[Σi](t) =
ΥTai,ai+1

(t). In both cases, Equation (11.9) implies that

ΥTai+1,bi+1
(t) = ΥTai,bi

+M[Σi](t).

Hence

ΥTan,bn
(t) = M[Σn](t) + · · ·+M[Σ1](t) = M[Σ](t),

where (W,Σ) denotes the composition of all of the (Wi,Σi), completing the proof. �

Remark 11.8. We can give a more concrete description of the expression M[Σ](t) when Σ is a surface

inside a cobordism W : S3 → S3 satisfying b+2 (W ) = b1(W ) = 0. Using Donaldson’s diagonalizability
theorem, we can pick an orthonormal basis e1, . . . , en of H2(W ;Z), and write PD [Σ] = a1 · en +
· · ·+ an · en. The set of characteristic elements C of QW can be identified with the set of elements
of the form c1 · e1 + · · ·+ cn · en where ci ∈ 2Z + 1. Then

M[Σ](t) = max
(c1,...,cn)∈(2Z+1)n

n∑
i=1

−c2i + 1 + 2tciai − 2ta2
i

4
.
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Since each ci is involved in exactly one summand, we can commute the maximization and the
summation to see that

M[Σ](t) =

n∑
i=1

mai(t).

12. Adjunction relations and inequalities

As another application of our grading formula, we prove several adjunction relations for Heegaard
Floer homology and link Floer homology. The version we prove for Heegaard Floer homology is a
generalization of [OS04a, Theorem 3.1]. The version we prove for the link cobordism maps is new.

12.1. The standard adjunction relation for Heegaard Floer homology. In this section, we
prove the following using the link cobordism maps:

Theorem 1.5. Suppose that F = (Σ,A) is an oriented, closed, decorated surface inside of a cobor-
dism W : Y1 → Y2, with W , Y1 and Y2 connected. Write Σw and Σz for the type-w and type-z
subsurfaces of F . Suppose A consists of a simple closed curve, the subsurfaces Σw and Σz are both
connected, and

〈c1(s), [Σ]〉 − [Σ] · [Σ] + 2g(Σz)− 2g(Σw) = 0.

Then

FW,c,s(ι∗ξ(Σw)⊗−) ' FW,c,s−PD[Σ](ι∗ξ(Σz)⊗−),

as maps on CF−, where c is any path from Y1 to Y2.

Remark 12.1. When g(Σ) = g(Σz) > 0 and g(Σw) = 0, we recover [OS04a, Proposition 3.1]. This
case is also an analog of the adjunction relation for the Seiberg–Witten invariant [OS00b, Theorem
1.3]. If Σ has genus zero, then an analogous result was proven by Fintushel and Stern [FS95, Lemma
5.2] for the Seiberg–Witten invariant.

Remark 12.2. Theorem 1.5 also holds for ĈF , CF∞ and CF +, since the chain homotopy between

FW,c,s(ξ(Σw) ⊗ −) and FW,c,s−PD[Σ](ξ(Σz) ⊗ −) can be taken to be U -equivariant, and ĈF , CF∞

and CF + can all be obtained algebraically from CF− via a tensor product, or a quotient of a tensor
product.

Proof of Theorem 1.5. We perform an isotopy of F so that it intersects ∂W along two embedded
disks, D1 and D2, in Y1 and Y2, and each Di intersects A in a single arc. Write F0 for the resulting,
properly embedded, decorated surface in W obtained by removing these two disks from F . Let c
denote one of the two dividing arcs on F0. By choosing the isotopy of F inside of W appropriately,
we can achieve any embedded path c from Y1 to Y2.

We now apply Proposition 9.7. Since

∆A =
〈c1(s), [Σ]〉 − [Σ] · [Σ]

2
+ g(Σz)− g(Σw) = 0,

we conclude that

(12.1) FW,c,s(ι∗ξ(Σw)⊗−)|F2[U,V ] ' FW,c,s−PD[Σ](ι∗ξ(Σz)⊗−)|F2[U,V ],

as maps between CFL−(Y1,U1, s|Y1
) and CFL−(Y2,U2, s|Y2

), where |F2[U,V ] is the operation defined

in Section 9.3, which amounts to replacing each instance of Û with UV . If we restrict the maps
in Equation (12.1) to the zero Alexander graded subsets of CFL−(Yi,Ui, s|Yi) (with respect to the
gradings AD1

and AD2
), which are canonically identified with CF−(Yi, wi, s|Yi), we obtain the

relation

FW,c,s(ι∗ξ(Σw)⊗−) ' FW,c,s−PD[Σ](ι∗ξ(Σz)⊗−),

completing the proof. �
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Remark 12.3. More generally, one could put more exotic sets of divides on Σ and consider the
U = 1 and V = 1 reductions of the associated link cobordism maps, and try to recover the higher
type adjunction relations from [OS00a], which Ozsváth and Szabó proved for the Seiberg–Witten
invariant.

We note that applying Theorem 1.5 to the identity cobordism recovers Ozsváth and Szabó’s
adjunction inequality for HF +(Y, s) [OS04c, Theorem 7.1]:

Corollary 12.4. If Σ is a closed, oriented surface in Y with g(Σ) > 0 and HF +(Y, s) 6= 0, then

|〈c1(s),Σ〉| ≤ 2g(Σ)− 2.

Proof. Suppose Σ is a closed, oriented surface in Y which violates the inequality. We can reverse
the orientation of Σ if necessary, and add null-homologous handles so that

(12.2) 〈c1(s),Σ〉 = −2g(Σ)

(note that 〈c1(s),Σ〉 is always even, since W = [0, 1] × Y ). Decorating Σ with a single dividing
curve so that g(Σz) = g(Σ) and g(Σw) = 0 and then applying Theorem 1.5 to the cobordism
W = [0, 1]× Y , we obtain the relation that

FW,s ' [ι∗(ξ(Σ))] · FW,s−PD[Σ].

Since [Σ] = 0 ∈ H2(W,∂W ;Z) ∼= H2(W ;Z), it follows that s − PD [Σ] = s on W , so FW,s−PD[Σ] =
FW,s = idHF+(Y,s). Hence

idHF+(Y,s) = [ι∗(ξ(Σ))].

On the other hand, s must be non-torsion for Equation (12.2) to be satisfied, so Un ·HF +(Y, s) = 0
for sufficiently large n [OS04a, Lemma 2.3]. We also have that Aγ ◦ Aγ = 0 for any γ ∈ H1(Y ;Z),
and also Aγ1 ◦Aγ2 = Aγ2 ◦Aγ1 [OS04d, Section 4.2.5]. Hence, if n is sufficiently large, the action of

[ι∗(ξ(Σ))]n will be zero on HF +(Y, s). Hence id = idn = [ι∗(ξ(Σ))]n = 0 as maps on HF +(Y, s), so
HF +(Y, s) must vanish. �

12.2. An adjunction relation for the link cobordism maps. In this section, we describe a
generalization of Theorem 1.5 for closed surfaces in the complement of a link cobordism. Before we
state the theorem, we need to recall some additional facts about link Floer homology.

Firstly, similar to the 3-manifold invariants, there is a homotopy action of Λ∗(H1(Y ;Z)/Tors)
on CFL−(Y,L, s). Its description is essentially the same as the action of Λ∗(H1(Y ;Z)/Tors) on
CF−(Y,w, s). Given a Heegaard diagram (Σ,α,β,w, z) for (Y,L), and an element h ∈ H1(Y ;Z),
we pick a representative γ of h, which is an immersed, closed curve on the Heegaard surface Σ. The
endomorphism Ah is defined via the formula

(12.3) Ah(x) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

a(φ, γ) · M̂(φ)Unw(φ)V nz(φ) · y.

The quantity a(φ, γ) is defined as the sum of the changes of the multiplicities of φ across each α
curve, as one traverses γ on Σ. Since a(P, γ) = 0 for any periodic class P with boundary only
on the α or only on the β curves, a straightforward count of the ends of index 2 moduli spaces
shows that Ah is a chain map. Adapting the arguments from [OS04d, Section 4.2.5] shows that
Ah is independent of the representative curve γ and is well defined on the level of transitive chain
homotopy type invariants. Some additional details can be found in [Zem15, Section 5] about the
homology action in the context of multi-pointed Heegaard Floer complexes.

Given a surface Σ with zero or one boundary components, as well as an element T in an algebra
R over F2, we define the element

ξT (Σ) ∈ R⊗F2
Λ∗(H1(Σ;F2)),

by picking a geometric symplectic basis of H1(Σ;F2) and using the same formula as Equation (9.1),
with the element T in place of U .
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The action of Λ∗(H1(Y ;Z)/Tors) on CFL−(Y,L, s) can be incorporated into the link cobordism
maps, in the sense that if (W,F) : (Y1,L1) → (Y2,L2) is a decorated link cobordism, then the
cobordism maps from [Zem16] induce maps

FW,F,s : Λ∗(H1(W ;Z)/Tors)⊗F2 CFL
−(Y1,L1, s|Y1)→ CFL−(Y2,L2, s|Y2).

We can now state our adjunction relation for the link cobordism maps:

Theorem 12.5. Suppose that (W,F) : (Y1,L1) → (Y2,L2) is a decorated link cobordism, such that
L1 and L2 are null-homologous and S = (Σ,A) is a closed, decorated surface in the complement of
F , such that A consists of a single closed curve, dividing Σ into two connected components, Σw and
Σz. If

〈c1(s), [Σ]〉 − [Σ] · [Σ] + 2g(Σz)− 2g(Σw) = 0,

then

FW,F,s(ι∗ξUV (Σw)⊗−) ' FW,F,s−PD[Σ](ι∗ξUV (Σz)⊗−).

Proof. The proof is similar to our proof of Theorem 1.5.
We pick two disks, D1 and D2, in S, which intersect A along two arcs, then we isotope Σ so that

Σ∩Yi = Di. Let S0 denote the decorated surface obtained by removing D1 and D2 from S, after we
perform the isotopy. Let U1 and U2 denote the unknots ∂D1 and ∂D2, in Y1 and Y2, respectively,
each decorated with two basepoints.

Let σ denote a coloring of F which maps the type-w subsurface to the variable U , and the type-z
subsurface to V . Let σ̂ denote an extension of σ to the decorated surface F ∪ S0, which assigns Σw

the variable U ′, and Σz the variable V ′. We assume σ̂ has a codomain P with |P | = 4, so that we
can identify the ring R−P with F2[U, V, U ′, V ′].

We pick Seifert surfaces S1 and S2 for L1 and L2, and consider the link cobordism map

FW,(F∪S0)σ̂,s : CFL−(Y1, (L1 ∪ U1)σ̂, s|Y1)→ CFL−(Y2, (L2 ∪ U2)σ̂, s|Y2).

We give F and S0 an indexing J : F ∪ S0 → {1, 2} which sends F to 1 and S0 to 2. The indexing
J induces a two component Alexander grading A = (A1, A2), where A1 corresponds to the links
L1 and L2, with Seifert surfaces S1 and S2, while A2 corresponds to the unknots U1 and U2, with
Seifert surfaces D1 and D2. The map FW,(F∪S0)σ̂,s is bi-graded with respect to A. Furthermore,
FW,(F∪S0)σ̂,s induces an A2 grading change of

∆A2 =
〈c1(s), [Σ]〉 − ([Σ] + [F̂ ]) · [Σ]

2
+ g(Σz)− g(Σw)

=
〈c1(s), [Σ]〉 − [Σ] · [Σ]

2
+ g(Σz)− g(Σw)

= 0.

We now claim that

(12.4) FW,(F∪S′0)σ̂,s(ξU ′V ′(Σw)⊗−) ' FW,(F∪S′0)σ̂,s−PD[Σ](ξU ′V ′(Σz)⊗−),

where S ′0 is a properly embedded, decorated annulus in W , with boundary −U1tU2, which is disjoint
from F , and is obtained by adding a tube along one of the dividing arcs of S0, and decorating it
with two parallel dividing arcs, running from U1 to U2.

To prove Equation (12.4), we adapt the proof of Proposition 9.7. We consider the U ′ = 1 and
V ′ = 1 reductions of the map FW,(F∪S0)σ̂,s, which by a natural extension of Theorem 9.4, one can
identify as the map induced by a cobordism W containing the decorated surface F as well as a
ribbon graph. The cobordism with decorated surface and graph connects two 3-manifolds which
contain multi-based links as well as free basepoints. If cw (resp. cz) is a path in W connecting the
w basepoints (resp. z basepoints) of U1 and U2, constructed as in the statement of Lemma 9.6, then
by adapting the proof thereof, we see that

FW,(F∪S0)σ̂,s|V ′=1 ' FW,Fσ∪cw,s(ξU ′(Σw)⊗−)

and FW,(F∪S0)σ̂,s|U ′=1 ' FW,Fσ∪cz,s−PD[Σ](ξV ′(Σz)⊗−).
(12.5)
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By identifying wi and zi with a single point pi ∈ Yi, we can view the two reductions of FW,(F∪S0)σ̂,s

as having a single domain and range, namely CFL−(Y1,Lσ1 ∪{p1}, s|Y1) and CFL−(Y2,Lσ2 ∪{p2}, s|Y2),

both of which we view as modules over the ring F2[U, V, Û ]. Note that when we identify wi and zi
with the point pi, we can pick cw and cz to be isotopic relative to their endpoints. We write c for
the common path from p1 to p2.

We can view Û as acting on F2[U ′, V ′] as the product U ′V ′. Since ∆A2 = 0, by adapting the
proof of Proposition 9.7, it follows that

(12.6) FW,(F∪S0)σ̂,s ' (FW,(F∪S0)σ̂,s|V ′=1)|F2[U ′,V ′] ' (FW,(F∪S0)σ̂,s|U ′=1)|F2[U ′,V ′].

Combining Equations (12.5) and (12.6) shows that

(12.7) FW,Fσ∪c,s(ξÛ (Σw)⊗−)|F2[U ′,V ′] ' FW,Fσ∪c,s−PD[Σ](ξÛ (Σz)⊗−)|F2[U ′,V ′].

The notation |F2[U ′,V ′] is described in Section 9.3, and amounts to replacing each instance of Û with
U ′V ′. Finally, we replace the path c with a properly embedded annulus S ′0 contained in a small
neighborhood of c, which we decorate with two dividing arcs running from Y1 to Y2. The effect on the
cobordism maps is simply to replace any single basepoint p on a Heegaard diagram or triple (with p
corresponding to a point on c) with a pair of basepoints w and z, which are immediately adjacent on

the Heegaard diagram or triple. It follows that the algebraic extension operation |F2[U ′,V ′] amounts
to just replacing the path c with the annulus S ′0. In light of this, Equation (12.4) follows from
Equation (12.7).

Note that the relation in Equation (12.4) persists when we set U = U ′ and V = V ′, since the
chain homotopy is R−P -equivariant.

We now construct two cobordisms ([0, 1]×Y1,F ′1) and ([0, 1]×Y2,F ′2), such that the following are
satisfied:

(1) The cobordism ([0, 1] × Y1,F ′1) : (Y1,L1) → (Y2,L1 ∪ U1) splits an unknot off of L1, which
becomes U1.

(2) The cobordism ([0, 1]× Y2,F ′2) : (Y2,L2 ∪ U2)→ (Y2,L2) caps off U2 with the disk D2.

Note that the composition

([0, 1]× Y2,F ′2) ◦ (W,F ∪ S ′0) ◦ ([0, 1]× Y1,F ′1)

is diffeomorphic to (W,F). Pre- and post-composing both sides of Equation (12.4) with the maps
for ([0, 1]×Y2,F ′2) and ([0, 1]×Y1,F ′1), after having set U = U ′ and V = V ′, we obtain the theorem
statement. �

12.3. An adjunction inequality for the link cobordism maps. In this section, we use Theo-
rem 12.5 to prove an adjunction inequality for the link cobordism maps. As in the previous section,
we work over the ring R− := F2[U, V ]. The adjunction inequality we state concerns the version of
link Floer homology

CFL−(Y,L, s) := CFL−(Y,L, s)⊗R− R−/(V ).

Theorem 1.6. Suppose that (W,F) : (Y1,L1)→ (Y2,L2) is a link cobordism with b1(W ) = 0, such
that L1 and L2 are null-homologous in Y1 and Y2, respectively. Suppose that the induced map

FW,F,s : CFL−(Y1,L1, s|Y1
)→ CFL−(Y2,L2, s|Y2

)

is not F2[U ]-equivariantly chain homotopic to the zero map. If Σ is a closed, oriented surface in the
complement of F such that g(Σ) > 0, then

|〈c1(s), [Σ]〉|+ [Σ] · [Σ] ≤ 2g(Σ)− 2.

Proof. Suppose that Σ is a surface with |〈c1(s), [Σ]〉|+[Σ]·[Σ] ≥ 2g(Σ) (note that |〈c1(s), [Σ]〉|+[Σ]·[Σ]
is always even since c1(s) is a characteristic vector of QW ). By reversing the orientation of Σ if
necessary, we may assume that |〈c1(s), [Σ]〉| = −〈c1(s), [Σ]〉, so that

−〈c1(s), [Σ]〉+ [Σ] · [Σ] ≥ 2g(Σ).
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By taking the connected sum of Σ with null-homologous tori to raise the genus, if necessary, we
may assume that

−〈c1(s), [Σ]〉+ [Σ] · [Σ] = 2g(Σ).

We now decorate Σ with a dividing set consisting of a single closed curve, dividing Σ into two
components, such that Σw is a disk, and Σz is a connected surface of genus g(Σ). Since

〈c1(s), [Σ]〉 − [Σ] · [Σ] + 2g(Σz)− 2g(Σw) = 0

we can apply Theorem 12.5 to see that

(12.8) FW,F,s(−) ' FW,F,s−PD[Σ](ι∗ξUV (Σz)⊗−).

Since b1(W ) = 0, the element ι∗ξUV (Σz) is simply (UV )g(Σz) = (UV )g(Σ). Since V = 0 on CFL−,
we obtain immediately from Equation (12.8) that FW,F,s is F2[U ]-equivalently chain homotopic to

0 on CFL−, completing the proof. �

We now describe two examples of Theorem 12.5.

Example 12.6. Suppose that L is a multi-based link in S3, and (W,F) : (S3,L)→ (S3,L) is the link
cobordism obtained by performing −1 surgery on an unknot U ⊆ S3 which is unlinked from L. Let
E ⊆ W denote an exceptional sphere which is disjoint from F . Write s+

k for the Spinc structure

with 〈c1(s+
k ), E〉 = 2k+1, for k ≥ 0. Let s−k be the Spinc structure with 〈c1(s−k ), E〉 = −(2k−1), for

k ≥ 0. Theorem 1.6 implies that FW,F,s±k
' 0 on CFL− unless k = 0. Indeed using Theorem 12.5,

for appropriate stabilizations of E, we obtain the relations

FW,F,s+k
' (UV )k · FW,F,s+k−1

' · · · ' (UV )k(k+1)/2 · FW,F,s+0 ,

on CFL−(S3,L, s0). A similar relation holds for a Spinc structure s−k with k ≥ 1. In analogy to the

standard blow-up formula [OS06, Theorem 1.4], we expect FW,F,s+k
' (UV )k(k+1)/2 · idCFL−(S3,L),

however for the sake of brevity, we will not endeavor to write down a proof.

Example 12.7. Let (W2,F) : (S3,K+) → (S3,K−) denote a decorated version of the 2-handle knot
cobordism (W2,Σ2) shown in Figure 11.1, which changes a positive crossing to a negative one. The
4-manifold W2 is obtained by attaching a 2-handle to an unknot with framing −1 which is linked
with K+. Define the Spinc structures s±k ∈ Spinc(W2) as in Example 12.6. There is an embedded
torus T in the complement of F which is a generator of H2(W2;Z), and satisfies

|〈c1(s±k ), T 〉|+ [T ] · [T ] = 2k.

The torus T is shown in Figure 12.1. By Theorem 1.6, it follows that whenever k > 0, the map

FW,F,s±k
vanishes on HFK− and ĤFK by Theorem 1.6.

We note in [OS04b, Theorem 8.2], Ozsváth and Szabó give a proof of the Skein exact triangle

for knot Floer homology, by adapting the proof of the standard surgery exact triangle for ĤF
[OS04c, Theorem 9.16]. The map F :=

∑
s∈Spinc(W2) FW2,F,s is one of the maps in their Skein exact

sequence for ĤFK . We note that in the statement of [OS04b, Theorem 8.2], the map F is not
known to be a graded map with respect to the Maslov grading. Theorem 1.6 shows F in fact does
preserve the Maslov grading, since the only Spinc structures with non-trivial contribution are s+

0

and s−0 .
This is in contrast to [OS07], where Ozsváth and Szabó give a proof of the Skein exact triangle,

where all three maps in the triangle are graded. The proof they give is not an adaptation of the
surgery exact sequence, but instead is a careful examination of certain specially constructed Heegaard
diagrams.
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K+
T

U

Figure 12.1. The embedded torus T in W2 \ Σ2. The exterior circle is the
unknot U which we perform −1 surgery on to obtain (S3,K−). The gray region
shown is a punctured torus in S3, with boundary on the unknot U . By attaching
the core of the 2-handle which is attached along U , we obtain a torus with self
intersection −1.
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