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LINK COBORDISMS AND ABSOLUTE GRADINGS ON LINK FLOER
HOMOLOGY

IAN ZEMKE

ABSTRACT. We show that the link cobordism maps defined by the author are graded and satisfy
a grading change formula. Using the grading change formula, we prove a new bound for Y g (¢) for
knot cobordisms in negative definite 4-manifolds. As another application, we show that the link
cobordism maps associated to a connected, closed surface in S* are determined by the genus of the
surface. We also prove a new adjunction relation and adjunction inequality for the link cobordism
maps. Along the way, we see how many known results in Heegaard Floer homology can be proven
using basic properties of the link cobordism maps, together with the grading change formula.
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Ozsvéth and Szabé [OS03a] define a homomorphism 7 from the smooth concordance group to Z,
which satisfies

(1.1)

[7(K)| < g4(K),

where g4(K) denotes the smooth 4-ball genus. More generally if (W,X): (S3, K1) — (53, K3) is an
oriented knot cobordism with by (W) = b3 (W) = 0, they proved that

(1.2)

=] + 3] - [=)]
2

T(Ky) < 7(K1) - | +9(%)

where |[X]| denotes the integer obtained by factoring [X] € Ho(W,0W;Z) into Ha(W;Z) and setting

In the above expression, Char(Qw ) denotes the set of characteristic vectors of H2(W;Z)/ Tors.

Y| = C,[X]).
(2] CECI&%}((QW)< (%])
C?=—by(W)
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Another set of concordance invariants from Heegaard Floer homology are Rasmussen’s local h-
invariants [Ras03]. If k is a nonnegative integer, Rasmussen defines a nonnegative integer invariant
Vi (K), and proves that

(1.3) Vi(K) < {M)ﬂ :

2

whenever k < g4(K) [Ras04, Theorem 2.3].

The original proofs of Equation (1.2) by Ozsvéth and Szabé and Equation (1.3) by Rasmussen
used the behavior of Heegaard Floer homology with respect to surgeries on a 3-manifold.

There are several notable examples of geometric results which have been proven using maps in-
duced by link cobordisms. Sarkar gave a combinatorial proof of Equation (1.1) using maps associated
to link cobordisms defined using grid diagrams [Sarllal], though the proof does not extend to prove
the full version of the bound in Equation (1.2). Rasmussen [Rasl0] gave a proof of the Milnor
conjecture using the s-invariant and cobordism maps defined on Khovanov homology.

The motivation of the present paper is to extend the tools of link Floer homology to prove
geometric results using the link cobordism maps from [Zem16]. As an example, we will show how
Equations (1.2) and (1.3) can be proven using link cobordism techniques; See Theorems 10.1 and
10.2. In the rest of the paper, we apply our techniques to derive new geometric applications of link
Floer homology.

1.1. A bound on Tk(t). Using the techniques we develop in this paper, we prove a new bound
on Ozsvath, Stipsicz and Szabd’s concordance invariant Y g (¢) [OSS17], which is analogous to the
bound on 7(K) in Equation (1.2).

For a fixed knot K, the invariant Yk (t) is a piecewise linear function from [0, 2] to R. The maps
YTk (t) determine a homomorphism from the concordance group to the group of piecewise linear
functions from [0, 2] to R.

Suppose W is a compact, oriented 4-manifold with boundary equal to two rational homology
spheres. If [3] € Hy(W,0W;Z) is a class whose image in Hy(OW;Z) vanishes, then [X] determines
a unique element of Hy(W';Z)/ Tors, for which we also write [£]. We define the quantity

Mgy (1) = _max C2 +b(W) — Ztﬁ (=) +2¢(=] - [

Although the expression for Ms)(t) looks unmotivated, we note that if rank(H?*(W;Z)) = 1,
Qw = (1) and PD[X] =n - E for a generator E € H*(W;Z) and integer n > 0, then

Mis)(t) =Y, ., (1),

where T, ,+1 denotes the (n,n + 1)-torus knot; See Lemma 11.7.
We now state our result about the invariant Y g (t):

Theorem 1.1. If (W, %): (S3, K1) — (S®, K3) is an oriented knot cobordism with by (W) = by (W) =
0, then

Trx (1) 2 Ty (8) + Misy () + 9(2) - (|t = 1[ = 1).

The bound in Theorem 1.1 is sharp in the following sense: for any positive torus knot T, j, there
is a knot cobordism (W, ) from the unknot to T, , with g(X) = by (W) = b3 (W) = 0, such that

TTa,b (t) = M[E] (t)

See Proposition 11.6.
For small ¢, the function YT (t) satisfies T (t) = —7(K) - t. Correspondingly, for small ¢, our

bound reads
Thot)> Ty (8) 1 (“E”*f“z] - g<z>) ,

reflecting Ozsvath and Szabé’s bound on 7 in Equation (1.2).
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1.2. Alexander and Maslov grading change formulas. Theorem 1.1 follows from a much more
general formula for the grading change associated to the link cobordism maps from [Zem16], as well
as some properties of the link cobordism maps. In this section, we describe a general result about
the link cobordism map grading changes.

Before we state our grading formula, we recall the setup of link Floer homology.

Definition 1.2. An oriented multi-based link 1. = (L,w,z) in Y3 is an oriented link L with two
disjoint collections of basepoints w = {w1,...,w,} and z = {z1,...,2,}, such that as one traverses
L, the basepoints alternate between w and z. Furthermore, each component of L has a positive

(necessarily even) number of basepoints, and each component of Y contains at least one component
of L.

Suppose L is a multi-based link in Y2, and s is a Spin® structure on Y. There are several algebraic
variations of link Floer homology. The most general construction is a curved chain complex

CFL®(Y, L, s)

over the ring
Fo[Uw, Vo] :=Fa[Uwys- s Uy s Vagy oo, V2 |-

The curved chain complex CFL™ (Y, L, s) also has a filtration indexed by Z™ @® Z?*. The construction
is outlined in Section 2.

To simplify the notation in the introduction, we describe a slight algebraic simplification. There
is a natural ring homomorphism

o:FoUpyy-- s Uppy Vayy ooy Vo, | = FoU, V],

defined by sending each U,,, to U, and each V,, to V. The map o gives an action of Fy[Uy, V] on
F5[U, V], allowing us to define the complex

CFL™(Y,L%,5) := CFLZ(Y, L, 5) ®r,[v,,,v,) F2[U, V].

which is a module over Fo[U, V] and has a filtration indexed by Z @ Z. The simplification obtained
by taking the tensor product using the homomorphism ¢ is an example of a more general operation
called coloring a chain complex; See Section 2.2.

In [Zem16], the author described a TQFT for the complexes CFL™(Y,L7,s), modeled on the
TQFT for the hat version ﬁF\L(Y, L) constructed by Juhdsz [Juh16]. The following is an adaptation
of Juh&sz’s notion of a decorated link cobordism:

Definition 1.3. We say a pair (W, F) is a decorated link cobordism between two 3-manifolds with
multi-based links, and write

(W, F): (Y1,L1) — (Y2, La),
if the following are satisfied:

(1) W is a 4-dimensional cobordism from Y7 to Ya.

(2) F = (%, .A) consists of an oriented surface ¥ with a properly embedded 1-manifold .4, whose
complement in ¥ consists of two disjoint subsurfaces, ¥y, and ¥,. The intersection of the
closures of Xy, and X, is A.

(3) 0¥ = —L; U Lo.

(4) Each component of L; \ A contains exactly one basepoint.

(5) The w basepoints are all in 3, and the z basepoints are all in %,.

In [Zeml16], to a decorated link cobordism (W, F): (Y,L;) — (Y,Ls), the author associates a
Z @ Z-filtered homomorphism of Fo[U, V]-modules

FW>~7:75: C‘FEOO(Yl7L(1775|Y1) — CF‘COO(YQ’Lg’5|Y2)’

which is an invariant up to Fo[U, V]-equivariant, Z @& Z-filtered chain homotopy.



4 IAN ZEMKE

Adapting the construction of Alexander and Maslov gradings from [OS08], if ¢1(s) is torsion and
L is null-homologous, there are three gradings on CFL™(Y,L7,s). There are two Maslov gradings,
gr,, and gr,, as well as an Alexander grading A. The three gradings are related by the formula

(1.4) A= %(grw —8r,)-

More generally, the Alexander grading can be defined even when ¢;(s) is non-torsion, though it
will depend on a choice of Seifert surface S for L; See Theorem 2.13. In this more general situation,
we will write Ag for the Alexander grading, for the choice of Seifert surface S.

We will prove the following grading change formula:

Theorem 1.4. Suppose that (W, F): (Y1,L1) — (Ya,Ls) is a decorated link cobordism, with type-w
and type-z subsurfaces Yy and ¥,.

(1) If c1(slyy) and c1(sl|y,) are torsion, then Fy r s is a graded with respect to gry,, and satisfies
() = 24(W) — 30(W)

gt (P (X)) = 1 (%) = y + X(Sw),

w

where

R(w) = X(w) = 3 (w0l + [wal).

(2) If c1(sly, — PD[L41]) and ci(s|y, — PD[L3]) are torsion, then the map Fw,r s is graded with
respect to gr,, and satisfies
ci1(s — PD[Y))? — 2x(W) — 30(W)
4
(8) If Ly and Lo are null-homologous, and S1 and Sy are Seifert surfaces of L1 and Lo, respec-
tively, then the map Fy r s is graded with respect to the Alezander grading, and satisfies
(c1(8),2) =[] 18] | X(Bw) = x(%a)

As,(Fw,rs(x)) — Ag, (x) = 5 + 5 ,

gr, (Fw, 7 s(%)) — gr,(x) = +X(%).

where ¥ = (—=S;) U U S,.

We also prove a more general version of Theorem 1.4 for the Alexander multi-grading; see Theo-
rem 2.14.

Theorem 1.4 will follow from a description of the absolute Maslov and Alexander gradings in
terms of surgery presentations of the link complement; See Theorem 2.13. Our description of the
absolute gradings is modeled on the description of absolute gradings on HF~ (Y, s) by Ozsvéath and
Szabé6 [OS06].

We note that in [JM16] and [JM18], Juhdsz and Marengon compute the Alexander and Maslov
grading changes for Juhdsz’s link cobordism maps on HFL when the underlying 4-manifold is [0, 1] x
3. Their formula for the grading changes agree with the ones from Theorem 1.4 (though in their
case, the only non-zero terms involve the Euler characteristic of the subsurfaces).

1.3. Adjunction relations and link Floer homology. We will show that the techniques devel-
oped in this paper naturally give simple proofs of some known adjunction relations and inequalities
on the 3- and 4-manifold invariants constructed by Ozsvath and Szab6. We then prove several new
adjunction relations and inequalities for the link cobordism maps.

In addition to link Floer homology, Ozsvéth and Szabé [0S04d] described an invariant CF™ (Y, s)
of a closed 3-manifold Y equipped with a Spin® structure s. For our purposes, the invariant CF~ (Y, s)
is a free, finitely generated chain complex over Fo[U]. If W: Y] — Y5 is a cobordism of connected
3-manifolds and s € Spin®(W), they describe a map [OS06]

(1.5) Fyw,s: A (Hy(W; Z)/ Tors) @g,ju) CF~ (Y1,8ly,) = CF™ (Y2, 8]v,),

well defined up to Fo[U]-equivariant chain homotopy. We note that technically the maps Fyy, s depend
on a choice of path from Y; to Y3, though we suppress this dependency from the introduction;
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See Section 9, and more generally [Zem15], for more on the dependency of Ozsvath and Szabd’s
cobordism maps on the choice of path.

In Section 12, we show that our results about link cobordisms can be used to prove several familiar
adjunction relations from Heegaard Floer homology. First, if ¥ is an oriented, connected surface
with exactly one boundary component, there is a distinguished element

(%) € Fo[U] @r, A" (H1(%;F2)),

constructed by picking a collection of 2g simple closed curves Aq,..., Ay, Bi,..., By on ¥ such that
the geometric intersection number |A; N Bj| is 0;;. The element £(X) is defined as
9(x)
)= [[W+AiAB)).
i=1

The element £(X) is in fact independent of the choice of basis, and is fixed by the mapping class
group of X; See Proposition 9.2.
We prove the following result about the cobordism maps on CF ™ :

Theorem 1.5. Suppose that F = (X, A) is an oriented, closed, decorated surface inside of the
cobordism W: Yy — Yo, Write Xy, and X, for the type-w and type-z subsurfaces of F. Suppose A
consists of a simple closed curve, the surfaces ¥y, and %, are connected, and

(c1(s), [X]) — [E] - [X] + 29(22) — 29(Ew) = 0.
Then

Fws(§(Xw) ® =) = Fws—ppiy) (E(X2) ® —),
as maps on CF™ .

When ¢(X) = g(2,) and g(Xw) = 0, Theorem 1.5 is well known in the Seiberg-Witten setting
[OS00b, Theorem 1.3] [FS95, Lemma 5.2], and essentially well known in the Heegaard Floer setting
[0S04a, Theorem 3.1].

We also prove a generalization of Theorem 1.5 which holds for the link cobordism maps; See
Theorem 12.5.

Theorem 1.5 is a very powerful relation satisfied by the Heegaard Floer cobordism maps. For
example, it implies Ozsvdth and Szabd’s adjunction inequality for HFT [0S04c, Theorem 7.1],
which states that if W:Y; — Y5 is a cobordism which contains a smoothly embedded surface X
with g(¥) > 0 and [¥] - [¥] > 0, and the induced map Fyys: HF " (Y1,sly,) — HFT(Ya,sly,) is
non-trivial, then
(1.6) [{e1(s), D) + [X] - [X] < 29(%) — 2
See Corollary 12.4.

By using Theorem 12.5, our refinement of Theorem 1.5 for the link cobordism maps, we will prove
an adjunction inequality for the link cobordism maps which is analogous to Equation (1.6).

If L is a link in Y, we define CFL™ (Y,L,s) to be the F3[U]-module obtained by setting V' =0 in
the chain complex CFL™ (Y,L7,s) (which we recall is a chain complex over Fy[U, V1), i.e.,

CFL™(Y,L,s) := CFL™ (Y,L7,5) ®r,u,v) F2[U,V]/(V).
Our link Floer homology adjunction inequality states the following;:
Theorem 1.6. Suppose that (W, F): (Y1,L1) = (Y2,Ls) is a link cobordism with by(W) = 0, such
that Ly and Lo are null-homologous in Y1 and Yo, respectively, and suppose that the induced map
FW,]-',ﬁ : CFLi(Yl,Ll,E‘Yl) — CFL™ (YQ, ]L2,5|y2)

is not Fa[U]-equivariantly chain homotopic to the zero map. If ¥ is a closed, oriented surface in the
complement of F with g(X) > 0, then

(ex(s), [S])] + [2] - 5] < 29(5) — 2.

Several examples of Theorem 1.6 are described in Section 12.3.
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1.4. Computations of the link cobordism maps. Using techniques of this paper, we compute
the maps Fyy 7 in certain special cases. Our first computational result is the induced map on
HFL™ when by (W) = b3 (W) = 0 and when the dividing set is relatively simple:

Theorem 1.7. Suppose that (W, F): (S3,K;) — (S3,Kg) is a knot cobordism between two doubly
based knots with by (W) = by (W) = 0. Suppose that the decorated surface F = (X,.A) is connected,
and A consists of a pair of arcs, both running from Ky to Ko, and Xy and %, are both connected.
Then the induced map on homology

Fyw.r.s: HFL™(S?, Ky) — HFL™(S?,Ky)
is an isomorphism. In fact, under the canonical identification HFL> (S, K;) = Fo[U, V, UL, V1],
it is the map
1 U D2y —d/2

where

dy = ci(s)” — QX(Y) SO 29(3w)

and

4, — (s = PDIS])? 230 oy,

S it

FIGURE 1.1. An example of the dividing sets considered in Theorems 1.7
and 1.8. Here A consists of two arcs, and ¥ \ A consists of two connected compo-
nents, Yy and Y.

More generally, we will prove that if (W, F) is a decorated link cobordism between two knots in
S3, then the induced maps Fyy 7, on HFL™ can always be computed in terms of the cobordism
maps on HF; see Theorem 9.9.

As a consequence of Theorem 1.7, we will compute the maps associated to closed surfaces in S?,
with simple decoration:

Theorem 1.8. Suppose that F = (X, .A) is a closed, oriented, decorated surface in S* such that A
consists of a single closed curve which divides ¥ into two connected subsurfaces, Yy and X,. The
link cobordism map

Fyi r.0y: CFL™ (&) - CFL™(2)
is equal to the map

1~ UQ(EW)VQ(ZZ)7
under the canonical identification CFL™ (@) = Fy[U, V, UL, V1.
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1.5. Translating between common conventions. We note that for technical reasons, some of
our conventions differ slightly from more common conventions in the literature, so we now provide
a brief guide to help translate between various conventions.

If K = (K, w, z) is a doubly based knot in an integer homology sphere Y, it is more common to use
a different version of the full link Floer complex than the complex CFL>(S?, K, s) considered in this
paper. Instead, one often considers a Z @ Z-filtered chain complex CFK (Y, K) over Fo[U, U™},
defined by Ozsvath and Szab6 [OS04b]. Using Ozsvath and Szabd’s notation, CFK> (Y, K) is
generated over Fy by elements of the form [x, 4, j] where A(x) —j+i=0.

In the terminology of this paper, [x,1,j] corresponds to the element U ¢V =/ . x. In particular,
using our description of the Alexander grading, one has

CFKOO(K K) = C.FCOO(K K,Eo)o,

where CFL™ (Y, K, s0)o denotes the homogeneous subset of zero Alexander grading. Recalling from
Equation (1.4) that A = (gr,, —gr,), it follows that the two Maslov gradings gr,, and gr, coincide
on CFL™(Y,K,s0)g = CFK>(Y, K), reflecting the usual convention that CFK° has a single Maslov
grading.

The action of U on CFK (Y, K) is normally described by the formula U - [x, 1, j] = [x,i— 1,7 —1],
and hence corresponds in our notation to the action of UV on CFL™ (Y, K, sp). To disambiguate the
notation, we will often write U for the product UV, which we think of as the standard action of U
on CFK®.

The Z & Z filtrations are similarly translated between CFK and CFL>. One normally defines
a subset C(; ;)(Y, K) € CFK™(Y, K) generated over Fy by elements [x,4’, /] with i <i and j' <.
The chain complex CFL™ (Y, K,s) also has a Z @ Z-filtration, given by filtering over powers of the
variables. If 4,7 € Z, then we define a subset G; j)(Y,K,s) C CFL™(Y,K,s) generated over Fo by
monomials of the form U? V7' . x where ' > i and j' > j. The correspondence between the two
Z.® Z filtrations is that C; ;) (Y, K) € CFK™ (Y, K) is equal to G_; _;(Y,K,s)N CFK>™ (Y, K), i.e.,
the subset of G_; _;)(Y,K,s) in Alexander grading zero.

Next, we note that if (W,F) is a decorated link cobordism from (53 K;) to (S3,Ks), then
Fw 7 may not send CFK*(S3, K1) to CFK™(S3, K>), since the Alexander grading change may
be nonzero. Instead, Fiy, r s will send CFK*(S3, K1) to CFK*(S3, K3){k} for some shift k € Z in
the Alexander grading (i.e. the cobordism map sends monomials U'V7 - x with A(x) + (j —i) = 0
to sums of monomials of the form U? V7' .y with A(y) + (j/ — ') = k). See Theorem 10.2 for a
concrete example of this phenomenon in action.

Finally, we discuss the equivalence of our grading conventions with those in the literature. In
Proposition 8.1, we show that our Alexander multi-grading coincides with the description due to
Ozsvéth and Szab6 [OS04b] [OS08]. For the Maslov grading, one must be somewhat careful, since
there are two natural normalization conventions. The first is the invariance convention, which is
normalized by requiring that the relatively graded Fo-module

[w|-1
HF(S*,w) = ) ((Fz),% o (FQ)%)
i=1
have top degree generator in grading 0, regardless of how many basepoints are in w. There is another
natural convention, the cobordism convention, which is normalized by setting the Maslov grading of
the top degree element of flf(S‘g, w) to be (|w| — 1). This is the convention that we take, since it
is the most natural from the perspective of the grading change formulas. We note that when K is a

doubly based knot in S3, the two conventions coincide, and our absolute Maslov gradings coincide
with those from [0S04b] and [OS08].

1.6. Organization. In Section 2 we provide some background on link Floer homology, define some
technical notions about indexings and colorings of links, and state our most general grading formulas.
In Section 3 we describe some technical results concerning Heegaard triples and link cobordisms.
Section 4 describes a relative version of Kirby calculus for link complements. In Section 5 we describe
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the relative gradings, and state the definition of the absolute gradings in terms of Kirby diagrams.
In Section 6 we prove invariance of the absolute gradings. In Section 7 we prove the grading change
formulas for the link cobordism maps. In Section 8, we prove that our construction is equivalent to
Ozsvéath and Szabd’s construction for links in S3. In Section 9 we prove some computational results
about the link cobordism maps, which are useful for proving bounds. In Section 10, we show how
the link cobordisms give conceptually simple proofs of well known bounds on 7 and Vj. Section 11
covers our bound on Yk (t). In Section 12 we prove the adjunction relations and inequalities.

1.7. Acknowledgments. I would like to thank Kristen Hendricks, Jen Hom, Andras Juhész, David
Krcatovich, Robert Lipshitz, Ciprian Manolescu, Marco Marengon and Peter Ozsvath for helpful
conversations and suggestions. I would also like to thank the two anonymous referees for their careful
readings and very helpful suggestions.

2. PRELIMINARIES AND STATEMENT OF THE FULL GRADING THEOREM

In this section we describe background material on the link Floer complexes, focusing on the
terminology necessary to state the Alexander multi-grading formula.

2.1. Link Floer homology. Knot Floer homology was originally constructed by Ozsvath and
Szabé [0S04b], and independently by Rasmussen [Ras03]. Link Floer homology is a generalization
to links, constructed by Ozsvéth and Szabd [OS08]. In this section, we recall the basic construction
of link Floer homology, focusing on the curved variation considered in [Zem16].

To an oriented multi-based link I in Y, one can construct a multi-pointed Heegaard diagram
H = (3, a,3,w,z). We consider the two tori T, Tg C Sym"(X), defined as the Cartesian products

To=01 X - Xa, and Tg=p1 X X Br,
where n = |a] = |8 = g(2) + |[w| — 1 = g(¥) + |z| — 1. Ozsvath and Szabé define a map
sw: To NTp — Spin“(Y)

in [OS04d, Section 2.6]. Recall that if w = {w1,...,wn,} and z = {z1,...,2,}, we write Fa[Uy, V]
for the polynomial ring Fo[Uy,, ..., Uw,s Vays oo, Vo)

If s € Spin®(Y’), then under appropriate admissibility assumptions on the diagram #, we de-
fine CFL™ (H,s) to be the free F3[Us, V,]-module generated by intersection points x € T, N Tg
with sw(x) = 5. We define CFL™(H,s) to be the free Fa[Uy, Uyt, Vi, V, t]-module generated by
intersection points x € T, N Tg with sw(x) = 5.

Both CFL™ (H,s) and CFL™(H,s) have a filtration which is indexed by Z% @ ZZ, i.e., the set of
pairs (I,J) where I: w — Z and J: z — Z are functions. We now describe the filtration in detail.

If (I,J) € Z% @ 7Z*%, we write ULV,” for the monomial U{u(lwl) . ~~Uqu(nw")VZ{(zl) . ~VZJ(Z”). Given

n

(I,J) € Z% @© 27, we define G(;,;)(H,s) € CFL™(H,s) to be the F3[Uw, V,]-submodule
Ga,0)(H,s) = SpanFQ{UvI‘,’sz/ -x:I'>Tand J > J}.

Note that with this notation, CFL™ (H,5)(H,s) = G(o,0)(H,s) where (0,0) denotes the zero map
from w U z to Z.

After choosing a generic 1-parameter family of almost complex structures on Sym™ (%), we can
define an endomorphism 9 of CFL™ (H,s) by counting holomorphic disks via the formula

(2.1) ax)= > #M@) U@ U Oy @y @)y

peE™(X,y)
w(g)=1

Because boundary degenerations appear in the ends of the moduli spaces of Maslov index 2 holo-
morphic curves, the map 0 does not square to zero for a general link. Instead, according to
[Zem17, Lemma 2.1], we have that

82 :ded,
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where wy, € Fy[Uy, V] denotes the scalar

WL = Z (ka,l ‘/ZK,I + ‘/jZK,lU'LUK,Q + UwK,zv;’K,Q +ee VZK,nK U'UJK,I)‘
KeC(L)

In the above expression, wi 1, 2K,1, - - -, WKk ngk, 2K,nx denote the basepoints on the link component
K € C(L), in the order that they appear. In general, the curvature constant wy, may be non-zero,
though we note that if each link component has exactly two basepoints, then wy, = 0.

An important property of Heegaard Floer homology is that it is natural with respect to the choice
of Heegaard diagram. We will need the following result:

Proposition 2.1. If H and H' are two strongly s-admissible diagrams for the pair (Y,1L), then there
s a map

Dy C]'—EOO(H,E) — CFL™ (7‘[/,5),

which is filtered, and Fa[Uy, Vy]-equivariant. The map ®3 3 is a chain homotopy equivalence, and
further, it is well defined up to filtered, Fo[Uyw, Vz]-equivariant chain homotopy.

A summary of the proof can be found in [Zem16, Proposition 3.5], though most of the details are
due to other mathematicians, notably Ozsvéth, Szabd, Juhdsz and Thurston. See [JT12] for more
on the question of naturality.

We define CFL*(Y,LL,s) to be the collection of all of the complexes CFL™(H,s), together with
the transition maps ®#_.%/. We call the object CFL>(Y,L,s) the transitive chain homotopy type.
There is an obvious notion of morphism between transitive chain homotopy type invariants.

2.2. Link cobordisms, colorings, and functoriality. In this section, we state the main result
from [Zem16], concerning the functoriality of link Floer homology.

There is an algebraic modification that one must do to the complexes to achieve functoriality,
which we call coloring the chain complexes.

Definition 2.2. If L = (L, w, z) is a multi-based link in Y, a coloring of L is a function o: wUz — P
where P is a finite set.

We call P the set of colors, and we note that the set P is part of the data of a coloring. We write
L7 for a multi-based link L. equipped with a coloring o.
If P={p1,...,pn} is a set of colors, we define the ring Rp to be

Rp =Fo[Xp,,. ..., X} ],

the free polynomial ring generated by the formal variables X, ,..., X, . We define the ring R¥ by
adjoining the multiplicative inverses of the variables X,,,..., X, .

A coloring o: w Uz — P gives the ring R¥ the structure of an Fy[Uy, V,]-module. This allows
us to form the complex

CFL™® (Y, LU,E) = CFL™ (Y,L,ﬁ) OF 3 [Uw, Va] Rp.

The module CFL>(Y,IL?, 5) has a natural filtration by ZF, defined by filtering by powers of the
variables, similar to the filtration defined on the uncolored modules described in Section 2.1.

To define functorial cobordism maps, we need the following notion of a coloring for a decorated
link cobordism:

Definition 2.3. Suppose that F = (X, .A) is a surface with divides. A coloring of F is a map
o: C(2\ A) = P, where P is a finite set of colors.

We will write F7 for a decorated surface F equipped with a coloring o. If (W,F): (Y1,Ly) —
(Y3,Ls) is a decorated link cobordism (see Definition 1.3), then a coloring ¢ of F naturally induces
colorings of IL; and Lo, for which we write oy, .

The following is the main result of [Zem16]:
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Theorem 2.4 ([Zeml6, Theorem A)). If (W,F) is a decorated link cobordism equipped with a
coloring o, there are Spin® functorial chain maps

FW,J:”J : CFZ:OO(YM ]]-‘(171 75|Y1) - C‘Fcoo(yéa L5275|Y2)a
where o; = o|,. Furthermore, the maps Fyy ro s are R -equivariant, ZF -filtered, and are invariants
up to R -equivariant, ZF -filtered chain homotopy.

2.3. Indexings of links and compatible colorings. In this section we describe some notions
which are necessary for defining the Alexander multi-grading. As motivation, for an ¢-component
link in L C S3, the group ﬁF\L(L) has an ¢-component Alexander multi-grading. To obtain an
Alexander multi-grading formula defined on CFL>(Y,L,s) for the link cobordism maps, we need
to collapse certain indices of the Alexander multi-grading. We encode this notion in an indezxing
of a link or link cobordism (Definition (2.5)). Since the actions of the Uy and V, have different
gradings in different components of the Alexander multi-grading, we need to consider colorings
which respect the indexing; These are indezed colorings (Definition (2.6)). Finally, since the Uy, and
V, variables behave differently with respect to the gradings, we also need to consider colorings which
don’t identify any of the U,, variables with any of the V, variables; These are the type-partitioned
colorings (Definition (2.7)).
We begin with the formal definitions:

Definition 2.5. If A is a topological space, an indexing of A by a finite set J is a locally constant
map J: A — J.

Whenever A is a finite set, we implicitly give A the discrete topology, so an indexing of A by J is
the same as a map from A to J.

If A is indexed over J, we say that the map J: A — J is the index assignment, and the set J is
the index set. If A is indexed over J and j € J, we write A; for

Aj = J7H9).

Definition 2.6. If L is a multi-based link, an indexed coloring of L is a pair (o, J) consisting of
a coloring o: w Uz — P together with an indexing J: P — J, such that (J o o)(p) = (J o 0)(p’)
whenever p,p’ € w U z are basepoints on the same component of L.

If (o,J) is an indexed coloring of L, then there is an induced indexing of L. Abusing notation
slightly, we will also write J: L — J for the induced indexing.

Definition 2.7. A type-partitioned coloring of a multi-based link L. = (L, w, z) is a coloring ¢: w U
z — P such that the following hold:

(1) P is partitioned as P = Py, U P,.

(2) o(w) C Py, and o(z) C P,.

An indexed, or type-partitioned coloring of a surface with divides is defined similarly.

Ezample 2.8. For any multi-based link I = (L, w, z), there are two type-partitioned, indexed color-
ings (o, J) to keep in mind:

(1) J ={*} and P = {U,V}. The map J: P — J is constant. The map o sends any basepoint
in w to the element U € P, and similarly sends any basepoint in z to V. Abusing notation
slightly, we identify the ring Rp with Fo[U, V].

(2) J=C(L) and P =wUz. The map o: wUz — P is the identity, and J: P — C(L) is the
natural map. The ring Rp can be identified with Fa[Us,, V5].

2.4. J-null-homologous links and generalized Seifert surfaces.

Definition 2.9. Suppose that L is an oriented link in Y which is indexed over J. We say that L is
J-null-homologous if

[L]] =0€ HI(Y,Z)7
for each j € J.
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In this paper, we will use the following notion of a Seifert surface:

Definition 2.10. If L is an oriented link in Y, a generalized Seifert surface of L is an integral
2-chain S in Y with boundary 95 = —L.

We will need the following notion of a Seifert surface which is indexed by J:

Definition 2.11. Suppose L is an oriented link which is indexed by J. A generalized J-Seifert
surface S = {S;};ey is a collection of integral 2-chains S; with

0S; = —L;.

Remark 2.12. If L is a J-null-homologous link, it is possible to pick a generalized J-Seifert surface
(S;)jer so that each S; is an embedded surface. It is not always possible to pick a generalized
J-Seifert surface {S;} ey so that the union is an embedded Seifert surface for L, since, for example,
S; and S; will be forced to intersect if ¢k(L;, L;) # 0, for distinct ¢,j € J. For the purposes of
this paper, it is only necessary to work with integral 2-chains, instead of embedded Seifert surfaces,
since our description of the Alexander grading only uses S to build an integral homology class; see
Equation (5.21).

2.5. Statements of the grading theorems. Having established the necessary notation, we now
state the main technical results of this paper, generalizing Theorem 1.4 in the introduction.

Our first theorem concerns the existence of distinguished absolute gradings on link Floer homology.
Using surgery presentations of link complements, we will prove the following:

Theorem 2.13. Suppose that L = (L, w,z) is a multi-based link in' Y, and s € Spin°(Y).

(a) Suppose (0,]) is a type-partitioned, indexed coloring of L, L is J-null-homologous, and that
S is a generalized J-Seifert surface of L. Then the chain complex CFL™(Y,L7,s) admits an
absolute Alexander multi-grading As which takes values in Q'. The multi-grading is additive
with respect to collapsing indices.

(b) The component (As); of the Alezander multi-grading takes values in Z + 3¢k(L \ L;, L;),
where lk(L\ Lj, L;) denotes #((L\ L;) NS;).

(c) If (0,]) is a type-partitioned, indexed coloring of L, L is J-null-homologous, and s is torsion,
then the multi-grading Ag is independent of S. More generally if S and S’ are two choices
of generalized J-Seifert surfaces, then

(e1(6), [ U—5;)

5 .

(d) If o is a type-partitioned coloring of L, and c1(s) is torsion, then there is a distinguished
absolute Maslov grading gry, on CFL™(Y,L%,s). If c1(s — PD[L]) is torsion, then there is
an absolute Maslov grading gr,.

(e) If o is a type partitioned coloring, [L] =0 € H1(Y;Z) and s is torsion, then gry,, gr, and
the collapsed Alexander grading A are all defined, and A = %(grw —gr,).

Agr(x); — As(x); =

Theorem 2.13 is perhaps not of particular interest on its own, since Ozsvath and Szabé described
absolute lifts of the Alexander multi-grading for links in integer homology spheres using a conju-
gation symmetry of the link Floer complexes, similar to the symmetry property of the Alexander
polynomial. We will show that the Alexander gradings induced by surgery descriptions of the link
complement in Theorem 2.13 agree with the gradings defined by Ozsvath and Szabd; See Proposi-
tion 8.

In Theorem 1.4 of the introduction, we stated our grading change formula for the Maslov and
collapsed Alexander gradings, for link cobordisms which are given a coloring with exactly two colors.
In this case, the ring Rp is isomorphic to F1[U,V]. We will prove the following refinement of
Theorem 1.4:

Theorem 2.14. Suppose that (W, F): (Y1,L1) = (Ya2,L2) is a decorated link cobordism.

(1) If o is an arbitrary, type-partitioned coloring of F, then the maps Fy, ro o satisfy the state-
ment of Parts (1) and (2) of Theorem 1.4.
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(2) If (0,]) is a type-partitioned, indexed coloring of F, and Ly and La are J-null-homologous
with generalized J-Seifert surfaces S1 and Sy, then

ASQ (FW7_7-‘075(X))]' o A51 (X)j _ <Cl(5)7 [EJDQ_ [E] i [EJ] + X((E])W) 2_ X((E])Z)’

where 33; denotes (—S1); UX; U (Ss);, and [2] = Zjej[f]j],

3. HEEGAARD TRIPLES AND LINK COBORDISMS
In this section we study multi-pointed Heegaard triples and Spin® structures on 3- and 4-manifolds.
3.1. Doubly multi-pointed Heegaard triples. In this section, we study the following objects:

Definition 3.1. We say that a Heegaard triple (3, ¢, 3,7, w, 2) equipped with two collections of
basepoints, w and z, is a doubly multi-pointed Heegaard triple if each component of ¥\ 7 has exactly
one w basepoint, and exactly one z basepoint, for each 7 € {e, 3,7}

If (3, «, 3,7) is a Heegaard triple, then by adapting the construction from [0S04d, Section 8.1],
we can construct a 4-manifold Xz, via the formula

(3.1) Xopy = (A X D) U (eq x Usy) U(eg x Ug) U (ey x Uy))/ ~,
In the above expression, A denotes a triangle with edges e, eg and e, in clockwise order. Also, if

7 € {o, 5,7}, then U, denotes the genus g(3) handlebody with OU, = ¥ which has 7 as a set of
compressing curves. The 4-manifold X, has boundary

6Xa57 = 7Yaﬁ (] 7Y5fy [ Yafy.

If (3, a,8,7,w,2) is a doubly multi-pointed Heegaard triple, then there is a properly embedded

surface
Eaﬁv - Xaﬁvv

which is well defined up to isotopy. It is constructed as follows. Let f., fs and f, denote Morse
functions on U,, Ug and U, which induce the curves o, 3 and v on X, and which have X as a level
set. For 7 € {a, 3,7}, let A, C U, denote the union of the flowlines of V f, which terminate at a
point in w U z. Note that A, is a properly embedded 1-manifold in U,.

The surface ¥+ is defined as the union

Yagy = (A X (—wUz)) U (eq X Aa) U (eg X Ag) U (ey x A,).
For 7,0 € {a, 3,7} there is an oriented link L., C Y;,, defined as

L., :=A UA,.

The link L., can be naturally oriented by requiring that the intersections with 3 are negative at
the w basepoints, and positive at the z basepoints (note that X is oriented as OU, inside of Y;,).
We include a picture in Figure 3.1.

Using the outward normal first convention for the boundary orientation, we have that

82a57 = —Laﬁ L —LB,Y [ LCW.

If (X,a,8,7,w,2) is a Heegaard triple, we will write P, for the set of integral 2-chains on X
which have boundary equal to a linear combination of the o, 3 and « curves. Elements of P,z are
referred to as triply periodic domains. There is a map

H: ,Paﬁfy — HQ(XQB,Y;Z),

described in [OS06, pg. 9]. The map H is defined by taking a domain D € P,g, and including it
into ¥ x {pt} C Xopy. We then extend the 2-chain outward towards the boundary of A, and then
cap off with disks in Uy, U and U, to get a closed 2-chain H(D) € Ho(Xop;Z).

Note that the 2-chains H(D) and X, intersect only at {pt} x (w U z), and the multiplicity of
the intersection points is given by the multiplicity of the domain D at the basepoints. Hence

(3-2) (PDIH(D)], [Bap,y]) = #(H(D) N Zapy) = (12 — nw) (D).
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FIGURE 3.1. A schematic of the surface ¥,3, inside of X,3,. Orientations
are shown.

More generally, if J: .5, — J is an indexing, then the analogous equation for (PD[H (D)), [(Zas+);])
holds if we sum over only the basepoints mapped to j € J by J.

3.2. Heegaard triples subordinate to bouquets and bands. Suppose that L = (L, w,z) is
a multi-based link in Y. Let L, denote the arcs of L\ (w U z) which go from w basepoints to z
basepoints. Let Lg denote the arcs of L \ (w U z) which go from z basepoints to w basepoints.

Definition 3.2. A S-bouquet B? for a framed link S; in Y\ L is a collection of arcs which connect
links in S; to the interior of Lg. We assume that there is exactly one arc per component of S;, and
each arc has one endpoint on S; and one endpoint in Lg.

An a-bouquet can be defined analogously. We will use 8-bouquets to define the grading, but we
will show in Section 8.1 that either a-bouquets or S-bouquets can be used.

Given a B-bouquet B? for a framed link S; C Y'\ L, we can consider the sutured manifold Y (LUB?)
obtained by removing a regular neighborhood of LUB?, and adding meridional sutures corresponding
to the basepoints w and z. As an adaptation of [OS06, Definition 4.2] and [Juh16, Definition 6.3],
we make the following definition:

Definition 3.3. Suppose that L = (L, w,z) is a multi-based link in Y, and that S; C Y \ L is
a framed 1-dimensional link. Write {1,...,¢; for the connected components of S;. We say that
a triple (X, a1, ., an, B1y- -5 By B - -, Bh, W, z) is subordinate to the B-bouquet B for a framed
1-dimensional link S; C Y\ L if the following hold:
(1) ¥ CY is an embedded Heegaard surface such that XN L =w U z.
(2) After removing neighborhoods of w and z from the surface X, the diagram
(Z,0a1,.-,0n, Brtts-- - Pn, W, z) induces a sutured diagram for Y (L U B?).
(3) For i € {1,...,k}, the curve f; is a meridian of ¢;. Hence (X, a1,...,an,f1,...,5n, W,2) is
a diagram for (Y,L).
(4) Fori € {k+1,...,n}, the curve §; is a small Hamiltonian translate of 3;, and |3;NJ}| = 20;;.
(5) For i € {1,...,k}, the curve 8, is a longitude of the link component that §; is a meridian
of. Furthermore, for ¢ € {1,...,k}, the curves 8; and S/ intersect in a single point.

To prove invariance of our gradings, we will need the following result about connecting two Hee-
gaard triples subordinate to a fixed bouquet:

Lemma 3.4. Suppose that L is a multi-based link in Y, and Sy is a framed 1-dimensional link in
the complement of L, and Sy has components {1, ..., L. Any two Heegaard triples subordinate to a
fized B-bouquet BP for Sy can be connected via a sequence of the following moves:

(1) An isotopy or handleslide amongst the o curves.
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(2) An isotopy or handleslide amongst the curves {Bri1,- .., Bn}, while performing the analogous
isotopy or handleslide of the curve {B;_,..., 0B}

(8) Anindex 1/2-stabilization or destabilization, i.e., taking the connected sum of T with a triple
(T2, g, Bo, BY) where By and By are small Hamiltonian isotopies of each other, intersecting
at two points, and |ag N Bo| = |ag N BY| = 1.

(4) Fori e {1,...,k}, an isotopy of B;, or a handleslide of B; across a B; with j € {k+1,...,n}.

(5) Fori € {1,...,k}, an isotopy of B}, or a handleslide of B; across a B; with j € {k+1,...,n}.

(6) An isotopy of the surface ¥ inside of Y, through surfaces whose intersection with L U B is
exactly w U z.

Proof. This can be proven by adapting [0OS06, Lemma 4.5] or [Juh16, Lemma 6.5]. O
The maps from [Zem16] use the following notion of bands:

Definition 3.5. An oriented a-band B is an embedded rectangle in Y such that B N L consists of
two opposite sides of B, and each component of BN L is contained in a distinct component of L,
where L, denotes the subset of L\ (w U z) consisting of arcs which go from w to z.

We note that L, can be equivalently described as the subset of L \ (w U z) consisting of arcs
contained in the a-handlebody of Y, for any Heegaard diagram of (Y,L). Given a a-band, we can
form the multi-based link L(B) in Y.

Analogous to a Heegaard triple subordinate to a 8-bouquet of a framed link in Y\ L, we need use
the following notion of a Heegaard triple which is adapted to an a-band:

Definition 3.6 ([Zem16, Definition 6.2]). We say a triple (3, &4, ..., a0, a1,...,0n,01,...,Bn, W,2)
is subordinate to the a-band B if the following hold:

(1) ¥ CY is an embedded Heegaard surface such that XN L =w U z.
(2) After removing neighborhoods of the w and z basepoints from

(270[1,...7Otn,1,51,...7ﬁn7W7Z),

we obtain a sutured Heegaard diagram for the sutured manifold Y\ N(LUB) (with meridional
sutures induced by the basepoints).

(3) of,...,al,_; are small Hamiltonian isotopies of the curves aq,...,apn_1.

(4) The curve o, bounds a compressing disk in the complement of L, and the curve o/, bounds
a compressing disk in the complement of L(B). Furthermore, |/, N ay,| = 2.

If S; is an ¢-component link, we write W (Y, S;) for following 4-dimensional 2-handle cobordism:

4
W(Y,S1) :=([0,1] x Y)U (]_[ D? x D2> U ([1,2] x Y (Sy)).

We define the properly embedded surface X(S;) C W(Y,S;) as
%(Sy1) :=10,2] x L.
We write W(Y, L, S;) for the link cobordism
W(Y, L,Sy) == (W(Y,51),5(51)): (Y, L) = (Y, L).
Similarly, if B is an oriented band for the link L C Y, there is a well defined link cobordism
W(Y, L, B) = ([0,2] x Y, %(B)),
where X(B) is the surface
X(B):=([0,1] x L) U ({1} x B) U ([1,2] x L).

The following observation will be extremely important (compare [OS06, Proposition 4.3] and
[Juh16, Proposition 6.6]):

Lemma 3.7. Let (Y,L) be a 3-manifold containing a multi-based link.



LINK COBORDISMS AND ABSOLUTE GRADINGS ON LINK FLOER HOMOLOGY 15

(1) Suppose S C Y \ L is an {-component framed 1-dimensional link and (3, o, 3,8, w,z) is
subordinate to a B-bouquet of S1. Then there is an embedding of link cobordisms

(Xapprs Zappr) = W(Y, L,S1),

which is well defined up to isotopy. The complement of Xnpp in W(Y,S1) consists of a
4-dimensional 1-handlebody of genus g(X) — £. Furthermore Xopp intersects Yap in o |w|-
component unlink.

(2) Suppose B is an a-band for L inY, and (¥, o', 0, B, w,2z) is a Heegaard triple subordinate
to B. Then there is an embedding of link cobordisms

(Xa’aﬁa Ea’aB) — W(YvLa B)7

which is well defined up to isotopy. Furthermore, the complement of Xoap in [0,2] X Y
consists of a 4-dimensional 1-handlebody of genus g(X). The surface Xoiqp intersects Yorq
in a |w| —1 component unlink.

Proof. Let us consider Part (1), when (2, ¢, 3, 3', w, z) is subordinate to a bouquet of a framed link
Si. First, recall that by assumption (¥, a, 3, w,z) is an embedded Heegaard diagram for (Y,L).

Consider
¢

Hgp = ([1 —¢,1] x Ug) U (]_[ D? x D2> CW(Y,Sy).
i=1
We note that [1 —¢, 1] x Ug is a 4-dimensional 1-handlebody of genus g(X), and we can view Hgg' as
being obtained by attaching ¢ 2-handles, which each cancel one of the 1-handles forming [1—¢, 1] x Ug.
Hence Hgg: is a 4-dimensional 1-handlebody of genus g(X) — ¢.

We now claim that X35 and W(Y,S1) \int(Hgg ) are diffeomorphic, via a diffeomorphism which
is well defined up to isotopy. It is convenient to thicken the Heegaard surface and view Y as
Ua U ([-1,1] x ) UUps. Similarly, it is convenient to also fatten the vertices of the triangle A in
the construction of X,gg and view A as a hexagon, with sides that alternate between being in the
interior of X,gg/, and being on the boundary. We can write

W(Y,S1) \ int(Hgz) = ([0,2] x [~1,1] x £) U ([0,2] x Ua) U ([0,1 — €] x Us) U ([1,2] x Ug).

Up to rounding corners, this is canonically diffeomorphic to the 4-manifold X,s/ defined in Equa-
tion (3.1), as long as we identify [0,2] x [—1,1] x ¥ with A x 3. Furthermore, the surface X545 is
mapped into [0,2] x L, by construction.

The argument for Part (2), where (X, o/, a, 3, w, z) is subordinate to an a-band, is a straightfor-
ward adaptation. (|

3.3. Heegaard triples and Spin® structures. In this section we discuss Spin® structures on 3-
and 4-manifolds.

Heegaard Floer homology uses Turaev’s interpretation of Spin® structures on 3-manifolds as ho-
mology classes of non-vanishing vector fields. Two non-vanishing vector fields on Y are said to be
homologous if they are homotopic on the complement of a set of 3-balls.

If Y is a closed 3-manifold, Spin®(Y") has an affine action of H;(Y;Z). The action has a convenient
description in terms of vector fields, referred to as Reeb surgery [Nic03, Section 3.2], which we describe
presently. Suppose v is a non-vanishing vector field on Y3, and v C Y is an oriented, simple closed
curve. We can homotope v so that v|, = —y'. View a neighborhood of v as S' x D?, and assume
that v = 9/00 on this neighborhood. Viewing D? as the unit complex disk, let [0,1] € D? denote
a radius of D?, and pick a non-vanishing vector field v(v) on [0, 1] so that (v())(1) = v(1) = 9/90
and (v(7))(0) = —9/99. We can extend v(y) over D? by requiring it to be invariant under the
action of rotation on D?. Next, we extend v(7y) over S x D? by requiring v(y) to be invariant under
the action of S'. We extend v(y) to all of Y by setting it equal to v, outside of S! x D?. This is
illustrated schematically in Figure 3.2.

If s(v) denotes the Spin® structure induced by v, we claim that

(3.3) s(v(7)) = s(v) + PD[].



16 IAN ZEMKE

FIGURE 3.2. Reeb surgery of a non-vanishing vector field v along a curve
7. On the left, v is shown in a regular neighborhood of 7. We assume that v|, = —v'.
On the right is v(7y), the result of Reeb surgery.

To establish Equation (3.3), one considers the set of relative Spin® structures on a solid torus N,
which we identify with homology classes of non-vanishing vector fields on N which agree with some
fixed vector field vy on ON. The set Spin®(N,dN) is an affine space over H2(N,0N;Z) = H,(N;Z).
If 75 is a fixed trivialization of vy on ON, then the relative Chern class

c1(s(v),70) := c1 (v, 10) € H*(N,0N;Z)
gives a way of distinguishing relative Spin® structures. Abstractly, one knows that
c1(s + [v],70) = c1(s,m0) + 2PD[y].

If D C N is a disk such that (PD[v],[D,0D]) = 1, then Equation (3.3) can be verified directly by
computing

(3-4) {e1(v(7)™,70), [D,dD]) — (e1(v*,70), [D, D)) = 2(PD]y], [D, D)),

as follows. We pick 7y to be the planar trivialization induced by D. The 2-plane field v+ has a
non-vanishing section whose restriction to dD is constant with respect to 1o, so (c1 (v, 1), [D, dD])
vanishes. A non-vanishing section 1 of v(y)* can be constructed by picking a non-vanishing section
along [0,1] C D, and then using the action of S* on D (i.e. rotation) simultaneously with the action
of ST on the fibers of v(y)* to extend 7 over all of D. The section n induces a map from 9D to
the unit sphere bundle of v(y)*|sp, and the trivialization 7y gives a well defined degree of this map.
Noting that the orientation of T'D is opposite to the orientation of v+ along 0D, the degree is —2.
The evaluation of ¢1(v(y)t, 79) can be computed by using 7y to glue an oriented 2-plane bundle over
a disk b, with constant fiber, to the 2-plane bundle v+ — D, and then extending 1 to a generic
section over D U D. The value (¢1(v(y)",70), [D,dD]) is the algebraic intersection number of 7 on
D U D with the zero section, which is equal to the degree of the induced map from dD to the unit
sphere bundle of v(y)*. The degree of this map over dD is +2, since &D has the opposite orientation
as 0D. Hence {c1(v(y)*,70), [D,0D]) = +2, establishing Equation (3.4).

In [0S04d, Section 2.6], to a Heegaard diagram (3, o, 3, w) for Y, Ozsvéath and Szabd associate
a map

Sw: To NTg — Spin“(Y).

One starts with the upward gradient vector field for a Morse function inducing the Heegaard diagram.
In a neighborhood of the flowlines passing through w, as well as the flowlines passing through the
intersection points of x € T, N Tg, one modifies the gradient vector field so that it is non-vanishing
(which can be done since the chosen flowlines connect critical points of opposite parities). The
construction of sy, has the following dependence on the basepoints (compare [0S04d, Lemma 2.19]):

Lemma 3.8. If H = (X, o, 8,w,z) is a diagram for (Y,L), and x € T, N Tga, then
Sw(x) — 8,(x) = PDI[L].

Proof. Write Ay, and A, for the flowlines passing through w and z, respectively. Note Ay UA, = L,
and that sy (x) and s,(x) differ only on a neighborhood of L. Let us consider the disk D := N(A,)N
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Y. As we described above, the set Spin®(N(L),0N(L)) is an affine space over Hy(N(L);Z) & Z,
and the difference between two Spin® structures can be computed by evaluating their relative Chern
classes on [D, dD]. Note that our orientation convention is that L goes from z to w in the handlebody
Ug, and furthermore, the Morse function defining the diagram (X, o, 8, w, z) obtains its maximum
on Ug. The vector field corresponding to sy (x) naturally has L as an orbit, while the vector field for
5,(x) naturally has —L as an orbit. We can pick the vector fields for sy (x) and s,(x) so that on D,
5w (x) agrees with the Reeb surgery of s,(x) on L. The proof then follows from Equation (3.4), which
implies that the homology class of sy (x) is equal to the Reeb surgery of s,(x) on L, completing the
proof. O

Analogous to Turaev’s description of a 3-dimensional Spin® structure as a homology class of non-
vanishing vector fields, there is an interpretation of Spin® structures on a 4-manifold W in terms
of homotopy classes of almost complex structures on the 2-skeleton of W, which extend over the
3-skeleton; See [0S04d, Section 8.1.4] and [Gom97, pg. 49]. Similar to Reeb surgery in 3-dimensions,
if ¥ is a properly embedded surface in W, then the action of PD[X] € H?(W;Z) can be described
geometrically by modifying an almost complex structure in a neighborhood of 3. Rather than give
a general description, we will focus on a particular example arising from Heegaard triples, though
it is straightforward to extend our result to the general case.

To a Heegaard triple (X, a, 3,7, w), in [0S04d, Section 8] Ozsvath and Szabé associate a map

Sw: m2(X,y,2z) = Spin“(Xagy).
Similar to Lemma 3.8, the map sy, has an important dependence on the basepoints w:

Lemma 3.9. If (X, a, 3,7, wW,2) is a doubly multi-pointed Heegaard triple, then

sw(t) —5,(¢) = PD[ZOlﬂ’Y]'

Proof. We briefly recall how the maps sy and s, are defined. To a homology class of triangles
1, Ozsvath and Szabd associate a real, oriented 2-plane field on the complement of a collection of
4-balls in X,5,. We will write &, and &, for the oriented 2-plane fields associated to sw (7)) and
54(1). We recall the construction.

One starts with a partially defined oriented 2-plane field . On e, X Uy, & is defined on the
complement of e, x Crit(fa) to be {0} @ ker(df,) = {0} ® (Vf,)*. On eg x Ug and e, x Us, & is
defined similarly. The 2-plane field &; is defined on all of A x X to be {0} & T'X.

If ¢ € m3(x,y,2) is a homology class and u: A — Sym"(X) is a topological representative, we
define the immersed surface S,, C A x ¥ as the set of points (x,0) such that o € u(z). One extends
Sy into e, x U, by extending the image of u radially over a set of compressing disks of U, which
have boundary . The immersed surface S, is extended similarly into eg x Ug and e, x U,.

Next, we define the surface Sy, by extending A x w into e, x U, with the product of e, and the
flowlines of V f, passing through w. The surface Sy, is similarly extended into eg x Ug and e, x Us,.
A surface S, is defined similarly. Note that Sy, U S, = Xag,.

Ozsvath and Szabé describe a codimension 1 singular foliation F' on X,g, [0S04d, Figure 5]. The
intersection of each leaf of F' with X3, induces a codimension 1 singular foliation Fy on X,g,. Let
I' € ¥,y denote the union of the singular leaves of Fx. The foliation Fy is schematically shown in
Figure 3.3.

Let Byrep € A x X denote a neighborhood of the set of points (z,0) € S, N (A x X) where
u(z) € Sym"(X) has a repeated entry. Define I'y, :=T'N Sy and I', :=T'NS,. Let By w C (A x X)
denote a neighborhood of the set of points (z,0) € S, N (A x ) where u(z) N'w # &. Define B, ,
similarly. By choosing the map u generically, we may assume that By ;ep N Byw = @. Furthermore,
by picking v and N(I') appropriately, we may assume that B, w C N(I'y) and B, , C N(T',).

The 2-plane field &y is defined in the complement of N (I'y )UB,, rep- It is constructed by extending
the non-singular 2-plane field &o|x,, \n(s,uUs,) over all of X,y \ N(I'w U By rep). See [0S04d,
Section 8.1.4] for a precise description of the extension to Xogy \ N(I'w U By rep). The 2-plane field
&, is constructed analogously.



18 IAN ZEMKE
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FIGURE 3.3. The codimension 1 singular foliation Iy on X,s,. The union
of the singular leaves I" is shown bold.

_LB,'Y - (

Note that & and &, are both defined on the complement of N(I') U By, yep, and they differ only
in a neighborhood of ¥,5+ \ N(I').
Let us write

Xo:=Xop, \N(I) and % := S, \ N(I).

Note that Xg is a disjoint union of properly embedded annuli in Xy, each with one end on ON(T")
and one end on 0X,g. The singular foliation Fx; restricts to a non-singular, codimension 1 foliation
on each connected component of ¥y, and furthermore, each leaf is a simple closed curve, which is
homologically essential in .

Since I' is a 1-dimensional cell complex, the map Spin®(X,g,) — Spin®(Xy) is an isomorphism.
Hence it is sufficient to show that

(3.5) (5w (¥) = 82(¢))|x, = PD[Xo].

Suppose that £ is a leaf of F' which is contained in Xy. Note that £ can be identified with either
Y.g, Ya, or Y,,. Similarly the corresponding leaf /s, = £ N X,3, C Fx can be identified with one of
the links Log, Lgy or L.

The foliations F' and Fy are not orientable. Nonetheless, the non-singular leaves are canonically
oriented, since if ¢ is a non-singular leaf of F', and {5, C / is the corresponding leaf of Fy;, then the
pair (¢, /x) is canonically identified with one of the boundary components of (Xag+, ¥asy) which we
give the boundary orientation.

Now suppose that (¢,¢x) is a nested pair of leaves of F' and Fx. Note that &y|¢ and &,|¢ are
subbundles of T¥. Let vy and v, denote the orthogonal complements of & and &, inside of T/.

Note that using the outward normal first boundary orientation convention, it is easily checked
that

(3.6) vy = —Tls, vw = Ty, () =-T%y and  (&w)T =T%,.

On /, the oriented 1-plane bundles vy, and v, differ only in a neighborhood of /y;, and there they differ
exactly the same as the vector fields built using the 3-dimensional Spin® structure maps considered
in Lemma 3.8. Hence, by Lemma 3.8, we can take vy, to be obtained from v, by Reeb surgery (see
Figure 3.2) on /5.

Together with their orthogonal complements, the oriented 2-plane fields & and &, determine
almost complex structures Jy and J, on T Xy, up to homotopy. We will show that

(37) (TX07 JW) g (TXO7 Jz) ®(C L;

where L is a complex line bundle on Xy with ¢;(L) = PD[3¢]. Note that this will imply Equa-
tion (3.5), and complete the proof.
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Our strategy for showing Equation (3.7) is to find a complex 1-plane subbundle {w C (T Xy, Jw)
such that

(3.8) (w=&@cL and (el ocl,

for a line bundle L — X with ¢; (L) = PD[Xg]. Note Equation (3.8) will imply Equation (3.7).

We can trivialize N(3g) as X x D?, viewing D? as the unit complex disk. By construction, &,
and &, are both invariant under the S! action on D?, and also constant on the X, factor, under this
trivialization of N(X).

We now describe our choice of (w C (T Xy, Jw). Write [0,1] € D? for a radius. Let Gy, denote the
CP'-bundle over X, whose fiber over p € X is the set of complex lines in (TpXo, Jw). We define
a bundle G, similarly. Pick py € X, and let v: {po} x [0,1] — G denote a section of the bundle
Gwl{po}yx[0,1] Which satisfies

Y(P0,0) = (€x)po.0)  and  ¥(Po, 1) = (bw)(po,1)-

Since the subspace §$|(p0,0) is fixed by the rotation action on D?, we can construct a complex 1-plane
subbundle (w of (T'Xo|{py}x D2, Jw) by declaring it to be equal to v on {po} x [0,1] and also to be
invariant under the S'-action on D?. Next, we extend (y to all of ¥g x D? by declaring it to be
constant on the ¢ factor of g x D?. Since (y agrees with &, on N (), we can extend (y, to all
of Xy by declaring it to be &, outside of N(Xg).

We now describe the complex line bundle L — X, which will feature in Equation (3.8). We will
define L to be an oriented, real 2-plane subbundle of C & C — X, where C denotes the trivial
complex line bundle. By trivializing Ty as an oriented 2-plane bundle, we can write

(3.9) TN(Zo) =TSy TD*=CoC.

By Equation (3.6), the 2-plane field (;, has constant fiber —{0} @& C along ON(X¢), under this
trivialization. We define the fiber of L over z to be the fiber of (w over z, when x € N(¥g), and we
define the fiber of L over z to be —{0} @ C for z ¢ N (). We define L+ to be the real orthogonal
complement of L inside of C ® C — Xj.

We now show that

(3.10) w =& Q¢ L and (el oc Lt

To establish Equation (3.10), note that on N (%), & can be identified with —7T'D = —{0} @ C under
the trivialization in Equation (3.9). Outside of N(Xg), the bundle L is identified with —{0} & C.
Hence we can define a bundle isomorphism &, ®c L — (w via the formula

Z-(w), ifxe N(X)
(3.11) (z @ W), {w (2)e it 2 & N(So).

In Equation (3.11), ¢’ denotes multiplication with respect to the homotopically unique complex
structure on (y, induced from its orientation. This not the same as the complex structure of C & C.
A bundle isomorphism & ®@c L+ — (& is defined similarly, establishing Equation (3.10).

Finally, it remains to show

(3.12) c1(L) = ¢1(L*) = PD[Z],

which also implies L = L' as complex line bundles. Viewing S? as the quotient D?/0D?, we note
that L and L+ are isomorphic to the pullbacks of two complex line bundles over S? under a map
7: Xo — S%. Writing p for the point [0D?] in S? = D?/0D?, the map 7 is given by 7(z) = p if
r & N(X), and 7(z,w) = w if (z,w) € N(Xg) = Xg x D2. Write Ly and Lg for these two complex
line bundles, over S?. Note that 7*(PD]p]) = PD[%o], so it is sufficient to show that

(3.13) e1(Lo) = e1 (L) = PD[pl.

Equation (3.13) can be established by the following direct computation. For the computation, it
is easier to view S? as the union of D? and another disk D?, whose center is the point p. Over D?,
we define the fibers of the bundles L and Ly to be —{0} & C and —C @ {0}, respectively. To prove
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Equation (3.13), we will prove that a generic section of each of Ly and Lg intersects the zero section
once, algebraically, with positive sign.

Let p?: D? — D? denote the diffeomorphism obtained by multiplication by . We will write p?
for the bundle automorphism of the trivial bundle C & C — D?, which covers the diffeomorphism
p’: D? — D? and is defined by the formula

0

pZ((va)Z) = (’U7ei : w)e“’-z-

On [0,1] € D? we pick any nonvanishing section v of Ly. We can extend v to a non-vanishing
section on all of D? using the formula

v(re) = pl(v(r)).

Since v(0) € C & {0}, which is fixed by the action of p?, the vector field v is well defined when 7 = 0.
The bundle Ly has fiber —{0} @ C, along dD?, and hence the vector field v determines a map from
0D? to S' with respect to this trivialization. The map induced by v is of degree —1, with respect
to the complex orientation of Ly. If we extend v generically over D2, then the index of v over D?
is the same as the oriented intersection of a generic perturbation of v with the zero section. The
index of v over D? is +1, since it is the same as the degree of v as a map from dD? to S!, and the
orientation of dD? is opposite to dD?. Hence ¢;(Lg) = PD[p).

We can analyze Lg similarly. We let ¥: [0,1] — Lg be a nonvanishing section. Since the fiber
over 0 of Ly is {0} @ C, we can define an extension of ¥ to all of D? via the formula

Brei®) = 0 - (1)),
Multiplication is with respect to the complex structure of Lg-. The bundle L has constant fiber
—{0} ® C on dD?, and with respect to the induced trivialization of L on dD?, the degree of the
induced map from 9D? to S! is —1. As with Lo, this implies that ¢;(Lg-) = PD|p]. Equation (3.13)

follows, and hence so does Equation (3.12).
Combining Equations (3.10) and (3.12) implies Equation (3.7) and completes the proof. O

4. KIRBY CALCULUS FOR MANIFOLDS WITH BOUNDARY

Our strategy for constructing an absolute grading on CFL> will parallel the construction of the
absolute Q-gradings on the groups HF*(Y,s) in [OS06]. W define a notion of Kirby diagram for a
3-manifold Y with an embedded link L, by presenting the link complement Y\ N(L) as surgery on
the standard unlink complement S\ N(U). We then consider a Kirby calculus argument for how
to relate two such presentations.

It will be useful for our purposes to first define a more general notion of surgery presentations,
not specific to link complements:

Definition 4.1. If M and M’ are oriented 3-manifolds with boundary and ¢: OM — OM' is a
fixed, orientation preserving diffeomorphism, we say that a pair (Si, f) is a parametrized surgery
presentation for (M, M’ ¢) if S; C int M is a framed link and f: M(S;) — M’ is a diffeomorphism
which extends ¢.

It is well known that if M and M’ are connected, oriented 3-manifolds and ¢: OM — OM’ is
an orientation preserving diffeomorphism, then there exists a parametrized surgery presentation of
(M, M’,¢). This can be seen by the following argument (cf. [Rob97]). Using the diffeomorphism
¢, we form the closed, oriented three manifold —M U (OM x [0,1]) U M’. This bounds a compact
oriented 4-dimensional manifold W. We can view such a manifold as a cobordism of manifolds with
boundary from M to M’. We think of M and M’ as the “horizontal” parts of 9W and [0, 1] x OM as
the “vertical” part of the boundary. We can find a Morse function which is 0 on M, ¢t on {t} x OM
and 1 on M’, which has only index 1, 2, and 3 critical points. By changing the 4-manifold, we can
replace index 1 and 3 critical points with index 2 critical points, to get a cobordism from M to
M’ which has a Morse function with only index 2 critical points. If we take a gradient like vector
field on W which is /0t on [0,1] x M, then the descending manifolds from the index 2 critical
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points yield a framed link S; in M, and the Morse function and gradient like vector field determine
a diffeomorphism f: M(S;) — M’ which is well defined up to isotopy and extends ¢.

Using our terminology, Kirby’s calculus of links [Kir78] gives a set of moves which can relate
any two parametrized surgery presentations of triples (M, M’ ¢) = (S3,Y, @), when Y is a closed,
oriented 3-manifold. The moves are blow-ups, blow-downs, handleslides, and isotopies of f or S;. In
[FR79], Fenn and Rourke extended the calculus to the case that M is an arbitrary, closed, oriented
3-manifold, though an extra move is required, which is supported in a solid torus; See Figure 4.1.
In [Rob97], Roberts extends the calculus to arbitrary 3-tuples (M, M, ¢).

Keeping track of the parametrization f: M(S;) — M’ in the definition of a parametrized surgery
decomposition is important for our purposes. A Kirby move between two framed links S; and S} in
M canonically yields a diffecomorphism M (S;) — M(S}) as we describe in the following paragraph.
In particular, if (Sy, f) is parametrized surgery data, and S is the result of one of the above moves
on Sy, then there is a diffeomorphism f’: M(S}) — M’ which is canonically induced, and is well
defined up to isotopy.

We now illustrate the canonical diffeomorphism from M(S;) to M(S}) resulting from a Kirby
move; See [GS99, pg. 160]. Suppose that S; and S| are two framed links in M and S} =S; U {U},
where U is a 1 framed unknot which is contained in a 3-ball in M \ S;. The manifolds M (S;) \ B
and M (S}) \ B(U) are canonically diffeomorphic, via the identity map. Noting that B and B(U)
are both 3-balls with an identification of their boundaries, the diffeomorphism can be extended over
B. Furthermore, the extension is unique up to isotopy, since MCG(B3, S?) = {x}.

Similarly, consider the case that S| C M is obtained from S; via a handleslide. Let H C S3(S;)
and H' C S3(S}) denote the genus 2 handlebodies which contain the support of the handleslide. The
manifolds S3(S;)\ H and S3(S})\ H' are canonically diffeomorphic (via the identity map, and clearly
this diffeomorphism extends over H). Since MCG(H,,0H,) = {*} for the genus g handlebody Hy,
the extension is unique, up to isotopy.

As a specific example, a diffeomorphism v : M — M which is the identity on M may be presented
as a sequence of Kirby moves on framed links in M, starting and ending at the empty link in int(M).

We state the following version of the main result from [Rob97]:

Theorem 4.2. Any two parametrized surgery presentations of a triple (M, M', ¢) can be connected
by a sequence of the following moves:

(Move Oq): Isotopies of f or Sy which fix OM.

(Move O1): Handleslides of link components amongst each other.

(Move Os): Blow-ups or blow-downs along a +1 framed unknot in int(M).

(Move Oz): Addition or removal to Sy of a two component link K U ug inside of a solid torus
which is disjoint from Sy, where K is a core of the solid torus, and px is a meridian
of K. Furthermore, K can be given arbitrary framing, though px must be given the
Seifert framing. See Figure 4.1.

- -~

FIGURE 4.1. Move O3 The move takes place in a solid torus in M. The framing
on K can be arbitrary, but the framing on pg is the Seifert framing.

We note that in [Rob97], the moves between framed links are presented without explicitly referenc-
ing diffeomorphism f, though for our purposes, it is important to keep track of the diffeomorphism
f-

We now consider the implications of Theorem 4.2 when M and M’ are link complements.
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Let U denote a fixed, oriented, f-component unlink in S3. Suppose that L is an f~component link
in a 3-manifold Y. Define

Y, :=Y\N(L) and S} :=S5\N().

Let ¢g: U — L be a fixed, orientation preserving diffeomorphism of compact 1-manifolds. Together
with a choice of framing A of L, ¢y determines a diffeomorphism

(4.1) ox: 0(S5) = O(YL),
well defined up to isotopy.

Definition 4.3. We call a tuple P = (¢g, A, S1, f) a parametrized Kirby diagram for an oriented link
L in Y, if the following are satisfied:

(1) ¢o: U — L is an orientation preserving diffeomorphism of 1-manifolds.

(2) Ais a framing of L.

(3) Sy is a framed link in S3.

(4) f: S$(S1) — Yy is a diffeomorphism such that flasz 1s isotopic to the diffeomorphism ¢y
from Equation (4.1).

We now describe a new move, L3, which we will be a convenient alternative to Move O3 when we
are working with parametrized Kirby diagrams for links. Given a link L in Y, with framing A, the
move L3 consists of performing +1 surgery on a knot K which is a meridian of a component of U,
as in Figure 4.2. Suppose P = (¢, A, Sy, f) is a choice of parametrized Kirby diagram for (Y,L).
The parametrizing diffeomorphism f: S3(S;) — Y7 induces a diffeomorphism from S3(S; U {K})
to Y1 (f(K)). Furthermore, there is a canonical diffeomorphism from Y7, (f(K)) to Yz, which is the
identity outside of a solid torus containing K whose boundary intersects dYr in an annulus. By
composing the two maps, we obtain a diffeomorphism

fre: SE(S1U{K}) — Y7,

well defined up to isotopy.

On 953, the map fx no longer restricts to ¢y, but instead ¢/, where X is a new framing which
differs by F1 on the component that K encircled.

After performing Move L3, we get a new parametrized Kirby diagram Px = (¢o, \',S1 U K, fK)
for (Y,LL).

U U
11

<L > T\ >

K

FIGURE 4.2. The move L3 between two parametrized Kirby diagrams for
a link. The solid tube denotes a boundary component of S7;. The knot K is a new
component in the framed link S;.

We now reformulate Theorem 4.2 to describe a sufficient set of moves between any two parametrized
Kirby diagrams of a link:

Proposition 4.4. Suppose Y is a 3-manifold containing an oriented link L with £ components. Let
U denote a fized (-component unlink in S3. Any two parametrized Kirby diagrams for (Y, L) can be
connected by a sequence of the following moves:

(Move Ly): An isotopy of f or Sy which fizes dS}, pointwise.

(Move L1): A handleslide amongst the components of Sy.
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(Move Ls): A blow-up or blow-down along a +1 framed unknot which is contained in a 3-ball in
S\ (UUSy).

(Move L3): A blow-up or blow-down along a £1 framed unknot which is a meridian of a single
component of U, and is unlinked from all other components of U and S;.

(Move L4): If 1o: U — U is an orientation preserving diffeomorphism, and 1: (S3,U) — (S3,U)
is an orientation preserving extension, we replace P = (¢o, A\, S1, f) with P’ = (¢ o
Yo A U(S1), f o (¥5) 1), where 511 S3(S1) — SP((S1)) is the diffeomorphism
induced by 1.

Proof. For fixed ¢g and A\, Theorem 4.2 implies that Moves Ly, £1, Lo and O3 suffice.

We first claim that for fixed ¢¢ and A, it is sufficient to use only instances of Move O3 where K is
a meridian of a single component of U, and is unlinked from all other components of S; and U. Let
us write O for an instance of Move O3 with this configuration. Move Of is shown in Figure 4.3.

U U
o A\

FIGURE 4.3. The move OY. It is a special instance of Move Os.

We will show that an arbitrary instance of Move O3, performed along a knot K and its meridian
[k, can instead be written as a composition of Moves Lo, L1, L2 and OJ. Let ®x 0, denote the
diffeomorphism from S3(S1) to S§(S1 U K U uk) which is the identity outside of a solid torus
containing K and pg. The knot K can be transformed into a meridian of a component of U via
a sequence of crossing changes of K with components of S1, with U, or with itself. Hence we will
show that if K’ is obtained from K by changing a crossing of K with S1, U, or itself, then Move Os,
applied along K, can be written as a composition of Move O3, applied along K’, as well as some
combination of Moves Lg, L1, L2 and 0.

First, suppose that K’ is obtained from K by either a crossing change of K with itself, or a
crossing change of K with another component of S;. The link S; U K’/ U g can be obtained from
S; UK U uk by handlesliding a link component across pg (if the crossing change is of K with itself,
then K is handleslid across pg; if the crossing change is of K with another component of S;, then
the other component is handleslid across ) followed by an isotopy. Let ®p: S5 (S1 UK U uk) —
S3(S1UK'U k) denote the diffeomorphism resulting from the composition of this handleslide and
isotopy. We will show that

(4.2) Qg o Pk o, ~ Prr,0;,

where ~ denotes isotopy. Suppose that K’ is obtained by changing a crossing of K with Ky C S;.
We will handleslide K across pug. Let a be the handleslide arc connecting Ky and pg, and let D
denote a Seifert disk of ux. Let N C S7 denote a regular neighborhood of K Ua U Ky U D; see
Figure 4.4. We note N is a genus 2 handlebody. Note that &5 and P o, 0 @;(TOS both restrict to
diffeomorphisms between the surgered 3-manifolds N (KoUK U pg) and N(KoU K’ U pgr), (which
are both themselves genus 2 handlebodies), and ®z and i o, © ‘I>1_(,103 agree on ON (KoUK Upug),
we conclude that &g and Pgr o, © <I>I_<b3 must be isotopic since MCG(H,,0H,) = {*}, where
H, denotes a genus g handlebody. Hence Equation (4.2) holds. An analogous argument holds for
changing a crossing of K with itself. Let D be a Seifert disk of ux (which intersects K at a single
point), and let a be an arc from px to K. Let N denote a regular neighborhood of K Ua U D.
Noting that N is a genus two handlebody, since @ and ®x/ o, © @;(7103 differ only inside of N, it
follows that they must be isotopic. A similar argument establishes Equation (4.2) in the the case
that K’ is obtained by changing a crossing of K with itself.
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FIGURE 4.4. Move O3, applied along K, is equal to a composition of
Move O3, applied along K’', and a handleslide. The region shown is the
genus 2 handlebody N. The diffeomorphisms 5 and ®x/ o, 0 ¢I_<}Og are equal
outside of N, and hence are isotopic.

Next, we consider the case that K C S5 \'S; is a knot and K’ is the result of changing a crossing
of K with U. We wish to show that Move O3, performed along K, can be written as a composition
of Move O3, performed on K’, as well as Moves Lo, £1, L2 and O). The procedure for doing this
is shown in Figure 4.5. We perform Move OJ on a meridian of U, then perform a sequence of han-
dleslides, and then perform the inverse of Move OJ. As before, the parameterizing diffeomorphism
resulting from applying Move O3 along K is isotopic to the parametrized diffeomorphism resulting
from applying Move O3 along K’, and then applying a sequence of Moves Lg, £; and O3, since they
can be shown to agree outside of a genus two handlebody.

U U
AT
o8 NG

<

FIGURE 4.5. Writing an instance of Move O3 along a knot K’ in terms of
Move O3 on K as well as Moves Ly, L1, L2 and OY.

In such manner, by performing a sequence of crossing changes, we may reduce K to a meridian of
a single component of U. Hence we can write an arbitrary O3 move on a knot K as a composition
of the Moves Ly, L1, L2 and OY.

Next, we note that using a standard trick, Move OJ can be written as a composition of two L3
moves and possibly moves £; and L3, depending on the framing of the knot K in the O move;
see [FR79, Figure 13]. In detail, note that by handlesliding K over ux, we can assume that K has
framing 0 or 1. If K has framing 1, then handlesliding px over K leaves two meridians of U, one
with framing +1 and the other with framing —1 (i.e. two applications of Move L3). If K is instead
given framing 0, then we blow-up along a —1 framed unknot Ky (as in Move L), and slide both K
and px over Ky. This leaves K and px both with framing —1. We then slide Ky over pg, which
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leaves K with framing —1, Ky with framing 0, and pg with framing —1. Furthermore, pyx is now
unlinked with K and Ky, and Ky is now a meridian of K. Sliding Ky over K and blowing down
along py yields two meridians of U, one with framing +1 and the other with framing —1.

We note also that a single instance of £3 changes the framing of one component of L by =+1.
Hence for fixed ¢g, by applying L3 some number of times, any framing A can be achieved.

We finally show that any ¢¢: U — L can be achieved. We note that any two ¢y maps differ by
pre-composition with an orientation preserving diffeomorphism vy from U to itself, and any such
diffeomorphism extends to an orientation preserving diffeomorphism v of (S, U) with itself. Writing
1 also for the induced automorphism of Sj;, there is an induced diffeomorphism

s SE(S1) = S (¥(S)).

Hence, via tautology, we get an induced parametrized Kirby decomposition

P = (¢o oty ", A\ ¥(S1), fo (v5)7H).

Hence Move L4 can be used to move between any two ¢y maps. O

5. DEFINITION OF THE GRADINGS

In this section, we give the definition of the Alexander and Maslov gradings. In Section 5.1, we
describe the relative versions of the gradings. In Section 5.5, we define the absolute gradings.

5.1. Relative gradings. We begin with the relative Maslov gradings. For our purposes, it is
convenient to describe two Maslov gradings, gr,, and gr,. The relative grading gr,, is defined on
generators by

(5.1) gry(x,y) = p(¢) =2 Y nu(9),

for any disk ¢ € ma(x,y). By [0S04c, Proposition 7.5], if ¢ € ma(x,x) is a class, then

(5.2) (er(sw X)), H(O)) = i(d) =2 3 mu(9),
wewW

where H denotes the map H: m3(x,x) — Ha(Y';Z) obtained by capping the domain of ¢ (viewed as
a 2-chain in ¥ with boundary an integral sum of & and 3 curves) with a sum of compressing disks
in U, and Ug which are attached along the v and 3 curves. In particular, if ¢1(s) is torsion, then
the quantity gr,, (x,y) defined in Equation (5.1) is independent of the choice of ¢.

We extend gr,, to CFL®(Y,L,s) by declaring all U,, variables to have grading —2, and all V,
variables to have grading 0.

Analogously, we can define the relative grading gr, via the formula

(5.3) gr,(x,y) = p(¢) = 2> n(9),

z€z

for a disk ¢ € ma(x,y). We extend gr, to all of CFL™(Y,L,s), by declaring all Uy, variables to be
0 graded, and all V,, variables to be —2 graded. By Equation (5.2), gr,(x,y) is independent of the
choice of ¢ when c;(s,(x)) = ¢1(s — PD[L]) is torsion.

Remark 5.1. If ¢1(s) (resp. ¢1(s — PDI[L])) is torsion, then gr,, (resp. gr,) will also determine a well
defined relative grading on CFL™ (Y, L7, s) whenever o is a type-partitioned coloring.

We now describe the relative Alexander multi-gradings. Suppose that J: L — J is an indexing of L,
and L is J-null-homologous. The Alexander multi-grading is a relative Z? grading on CFL>(Y,L, 5).
Given a homology class ¢ € m3(x,y) and an index j € J, we define

nZ(¢)j = Z n.(¢), and nW(¢>j = Z N (P).

zZ€z wew
J(2)=j J(w)=j

The relative multi-grading is defined by the equation
(5.4) Ax,y); = (nz — nw);(9),
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for any class ¢ € m(x,y).

We extend the grading in Equation (5.4) to CFL™ (Y, L, s) by declaring V. to have grading +1 in
index grading J(z), and U, to have grading —1 in index J(w). As a concrete example, this implies
that A(V, - x,x); = 11if J(2) = j.

To see that Equation (5.4) is independent of the choice of class ¢ € ma(x,y), it is sufficient to show
that the expression (n, — nw);(¢) vanishes for any element ¢ € ma(x,x). Writing H: ma(x,x) —
Hy(Y;Z) for the map obtained by capping off a periodic domain, a simple computation shows that
if ¢ € ma(x,x), then

(5.5) (nz —nw);(¢) = #(H(¢) N T~1(5)),

where #(H (¢)NJ~1(j)) denotes the oriented intersection number. If L is J-null-homologous, then by
definition L; := J~1(j) is null-homologous, so the expression on the right hand side of Equation (5.5)
vanishes.

Remark 5.2. Suppose L = (L,w,z) is alink in Y. If (0, J) is a type-partitioned, indexed coloring of
L, with index set J, and L is J-null-homologous, then the complex CFL*(Y,LL?, s) has a well defined
7Z3-valued relative Alexander grading. The type-partitioned requirement on the coloring assures that
none of the U, variables are identified with one of the V, variables. Requiring that the coloring be
indexed ensures that if two variables are identified, then their corresponding link components are
assigned the same index by J.

Remark 5.3. Tt is straightforward to compute that the differential 9 on CFL™ lowers gr,, and gr,
by 1, and preserves A;, whenever they are defined.

We now show that the relatively graded isomorphism type of CFL® is an invariant:

Lemma 5.4. Suppose L is a multi-based link in'Y, with a type-partitioned, indexed coloring (o, J)
with indexing set J, and L is J-null-homologous. If (H,Js) and (H',J.) are two choices of diagrams
and almost complex structures for (Y,LL), then the transition map

P, 7)) CFLT. (M, 0,8) — CFLT (', 0, 5)

preserves the relative Alexander multi-grading over Z*. Similarly, assuming instead that the coloring
is type-partitioned and c1(s) (resp. ca(s—PD[L])) is torsion, the transition map preserves the relative

gry, (resp. gr,) grading.

Proof. To verify the claim, one must prove that the relative gradings are preserved by the transition
maps associated to the following Heegaard moves: isotopies and handleslides of the - and 3 curves,
index 1/2-(de)stabilizations, isotopies of the Heegaard surface inside Y, and changes of the almost
complex structure.

We will focus on showing that the transition map associated to a handleslide or isotopy of the a
curves preserves the relative Alexander multi-grading. The transition maps associated to an isotopy
or handleslide of the o curves can be computed by counting holomorphic triangles. Furthermore,
an arbitrary isotopy or handleslide of the «x curves can be computed as a sequence of holomorphic
triangle maps, such that in each Heegaard triple (X, &', o, 3, w, z), the sets o and « satisfy o N
a;| = 24;;, and there is a unique intersection point @:,a € T, N T, which is the highest gr, and
gr, graded intersection point.

Suppose that x,x’ € T, N Ty are two intersection points with sy (x) = sw(x’') = s, and ¢ €
m(0F, ,x,y) and ¥ € (07, ,x',y’) are two homology classes of triangles which are counted by
the map @g—m’_ The triangle classes ¢ and ¢’ both represent the restriction of s to Xy, under
the inclusion Xq/q3 < [0,1] x Y from Lemma 3.7. By [0S04d, Proposition 8.5], it follows that there
are homology classes

¢o¢’o¢ S 71—2(@2;’@7 el_/a)v ¢o¢,8 S 7T2(X,7X) and (ba’ﬁ S W?(Y&Y/)
such that
1/}/ = l/J + ¢a’o¢ + ¢a/3 + d’(x’ﬁ-
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Hence
A(vaéw(¢)vznz(¢) -y, UVT;W(W)Van(dJ’) . yl)j _ (nz - nw)j(¢a’5 Tqp— w/)
(5.6) = (ng — nW)j(fﬁbaﬁ) — (ng — nW)j(¢a/a)
= A(x,x)j,

since (nz — nw);(¢ara) = A(@l_’oﬂ @:’a) =0

Invariance from the Alexander gradings under moves of the 8 curves is handled similarly. In-
variance of the relative Alexander grading under index 1/2 stabilization can be handled as follows.
Suppose that H' = (S#T? a U {ag},B U {Bo},w,z) is obtained from H = (¥,e,3,w,z) by a
stabilization, and let ¢ € g N By denote the new intersection point. If x € T, N Ty, the transition
map @ 5,y (3,s0) sends x to x x {c}, for an appropriately stretched Ji. If ¢ € ma(x,x’) is a class
of disks on H, then we can construct a class ¢’ € ma(x x {c},x’ x {c¢}) which agrees with ¢ outside
of T2, and has constant multiplicity in T?. We note that

(5.7) A(x x {ch,x" x {c})j = (nz = nw);(¢') = (nz — nw);(¢) = A(x,x');.
Invariance of the relative Alexander grading under isotopies of the Heegaard surface inside of Y is
a tautology.

Invariance of the relative Alexander multi-graded chain homotopy type from the choice of almost
complex structure is proven similarly to invariance under moves of the a and 3 curves, since the
transition map

(I)JS_>J; : CFELC;j (H,ﬁ) — C}—Z?J? (H,S)

can be computed by counting index 0 holomorphic disks in Sym™(X), for path of paths of almost
complex structures on Sym"(X), connecting Js and J..

Invariance of the Maslov grading from moves of the a and B curves follows by adapting Equa-
tion (5.6) using the definition of the relative Maslov gradings, the fact that the transition maps count
holomorphic triangles of Maslov index 0, and that the Maslov index is additive under juxtaposition
of triangle and disk classes. Invariance of the Maslov index under index 1/2 stabilization follows by

adapting Equation (5.7), noting that p(¢’) = u(9), nw(@') = nw (@) and ng,(¢') = n,(@). O

5.2. Two simple examples. We briefly give two examples, illustrating the gradings when some
components of L have non-trivial homology class.

Ezample 5.5. Consider Y = S! x §% with K = S x {pt}. A Heegaard diagram is shown in

Figure 5.1. For s the torsion Spin® structure, we see that
CFL™(Y,L,s) = (FQ[U, V] 2wy, V]) .

The homology is Fo[U,V]/(1 4+ V). The grading gr,, is defined, but gr, cannot be defined since V'
acts by the identity on homology. Note that s — PD[K] is not torsion.

T

FIGURE 5.1. Two diagrams for S! x S2, for knots or links with components
which are not null-homologous. On the left is the knot K = S x {p} and on
the right is K = S x {p1,p2}. All intersection points are mapped to the torsion
Spin® structure by sy .
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Ezample 5.6. Consider Y = S! x §% and L = S* x {p1,p2}. We place two basepoints on each
component of L, and orient the two components to intersect the sphere {pt} x S? with opposite sign.
A diagram is shown on the right side of Figure 5.1. The intersection points represent the torsion
Spin® structure with respect to sy. It is easy to see that the collapsed Alexander grading can be
defined, but a two component Alexander grading cannot be defined.

5.3. Absolute gradings on CFL™ for unlinks in (S x §2)#F. As a step toward describing the
absolute gradings in general, we fix the absolute gradings for unlinks in (S x §2)#*.

Lemma 5.7. Suppose U is a multi-based unlink in (S* x S?)#*  with an arbitrary configuration of
basepoints. The Fo-module I?]FL((S1 x S2)#k U, s0) has rank 2/WIHE=1 " Eurthermore, ITFTL((S1 X
S2)#k U, s0) has a top degree generator with respect to each of the gradings gry, and gr,, for which
we write OV or ©7.

Proof. By Lemma 5.4, the relatively graded isomorphism type of the group ﬁF\L((S1 x §2)#k U, 50)
is an invariant, so we need only check the claim for a particular diagram.

We start with the case that each component of U contains exactly two basepoints. In this case, we
can pick a diagram H = (X, «, 3, w,z) where the a curves are small Hamiltonian translates of the
B curves, and the w and z basepoints come in pairs of adjacent basepoints on X\ (U 3). For such
a diagram, the holomorphic disks which do not pass over any of the basepoints come in canceling
pairs, and there is an isomorphism of groups

k+|U|—1
CFL(H,s0) = HFL(H, s0) : ® v,

where V' is a 2-dimensional vector space over Fy with two generators which have relative (gr,,, gr,)-
bigrading which differ by (1,1). Hence ﬁF\L(H,so) has an element T = O% = ©% which is
maximally graded with respect to both gr,, and gr,. This verifies the claim when U has exactly two
basepoints.

To verify the claim when U has more than two basepoints, we proceed by induction. Supposing
the claim holds for an unlink U with some configuration of basepoints, we will show that it also
holds for the link U’ obtained by adding two extra basepoints to U. Adding two basepoints can
be achieved by the quasi-stabilization operation [MO10, Section 6]. We will consider the quasi-
stabilization operation in more detail later; See Figure 7.2 for a Heegaard diagrammatic description.
If H is a diagram for U, and H' is a quasi-stabilization, then there is a relatively graded isomorphism

(5.8) CFL(M',s0) = CFL(H,s) ®g, V',
where V' is 2-dimensional vector space whose generators have (gr,,,er,) bi-grading (7 —%) and

(—%, %) By [Zeml7, Proposition 5.3], for an appropriate choice of almost complex structures,
the isomorphism in Equation (5.8) is an isomorphism of chain complexes (viewing V' as having
vanishing differential). In particular, if HFL(H,so) has distinguished generators OV and %, then

so does ﬁF\L(’H’,sO), completing the proof. O

Lemma 5.7 allows us to declare absolute lifts of the Maslov gradings on @((51 x SH)#k U, 5)
by setting

(5.9) G (O) = 81,(6°) = L (k+ [w| ~ 1) = (K + |a] — 1),

The declaration in Equation (5.9) specifies the gradings gr,, and gr, uniquely on all intersection
points representing so. We extend these to CFL™ by declaring the Us, variables to have (gr,,, gr,)
bi-grading (—2,0), and declaring the V, variables to have (gr,,, gr,) bi-grading (0, —2).

In a similar manner, we can declare an absolute lift of the Alexander multi-grading. We index
the link U = (U, w, z) using its set of components, i.e., we set Jo = C'(U) and let Jy: U — Jy be the
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natural map. If K is a component of U, we write ngx for one half the total number of basepoints on
K (i.e. the number of w basepoints on K, or the number of z basepoints). We set

(5.10) AOY)k = %(n;{ —1).
It is straightforward to see that Equation (5.10) implies
AO%)k = —%(nK —1).
Writing A for the collapsed Alexander grading, it is straightforward to see that
(5.11) A= (@, - r,),

For an arbitrary indexing J: U — J, we define the Alexander grading over J by collapsing the
Alexander grading which is indexed over Jy, i.e., for j € J we define

Ax)j = > Ax)k.

KCJ~1()

5.4. Transitive systems of gradings. Since there are many different diagrams for a pair (Y, L),
we cannot specify the objects CFL™ (Y, L7, s) as concrete chain complexes. Instead, using naturality
(see Proposition 2.1) they are transitive systems in the category of R p-equivariant, ZF-filtered chain
complexes. Hence, to define the notion of a grading on CFL* (Y, L7, s), we need an analogous notion
of a transitive system of gradings.

If (0, J) is a type-partitioned, indexed coloring of the link L. in ¥, which is J-null-homologous and
H is a diagram for (Y,L), we define A(#,o,.J,5) to be the set of absolute lifts to Q' of the relative
Alexander gradings on CFL*(H,0,s), described in Section 5.1. The set A(H,o,J,s) is an affine
space over Q7.

Similarly, if o is a type partitioned coloring of L, we define Gy (H, 0,s) and G,(H, 0,s) to be the
set of absolute lifts to Q of the relative gradings gr,, and gr,. The sets Gy (H,0,s) and G,(H, o,5)
are affine spaces over QY.

In this section, we prove the following naturality result for gradings:

Proposition 5.8. Suppose that L is a multi-based link in'Y , with a type-partitioned, indexed coloring
(0,J), and L is J-null-homologous. If H and H' are two admissible diagrams, then there is a
well defined transition map Fy_q0: A(H,0,J,5) — A(H',0,J,s). Furthermore, the following are
satisfied:

(1) Fry_y =id.

(2) Frrsar 0 By = Frsnpr.

(3) (From (A)(@uow (x)) = Ax).

Similarly, if o is a type-partitioned coloring of L, and c¢1(s) (resp. ¢1(s — PD[L))) is torsion, then

there are well defined transition maps Fy 30 Gw(H, 0,8) = Gw(H',0,5) (resp. Fyq: Go(H,0,5) —
GL(H',0,5)), satisfying the same azioms.

Note that Proposition 5.8 implies that we can view the sets A(H, o, J, s) as fitting into a transitive
system indexed by the set of admissible diagrams of (Y,1L). We define A(Y,LL("/) 5) as the transitive
limit, i.e., the set of tuples

(A’H)"HGD(Y,]L,S) S H A(,Ha g, va)
HED(Y,L,s)
satisfying Fy 3 (Ay) = Agp for all H and H’', where D(Y,L,s) denotes the set of admissible
diagrams. We define the transitive limits G (Y,L%,s) and G,(Y,L7,s) similarly.

The rest of the section is devoted to proving Proposition 5.8. First, we define the maps Fy .3/
when H’ and H differ by an elementary Heegaard move, and then we verify that there is no mon-
odromy around loops in the space of Heegaard diagrams, adapting the strategy of [JT12] for the
transition maps on the Heegaard Floer complexes.
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Suppose that H' = (X, o/, 8,w,z) and H = (X, ¢, B, w, z) are related by a handleslide or isotopy
of the a curves, and the triple (X, o/, a0, 3, w,z) is admissible. In this case, we write Fy_3/ =
Fﬁaﬁa/ for the map

F§~%:  A(H,0,J,5) = A(H',0, J,5),

defined as follows. First note that the indexing J of L induces an indexing of the unlink L,/ C Yy/q.
If Ae A(H,0,J,s), we define

(5.12) Fg=* (A)(y); == Ax); + A(©); + (nw — 1) (1),

for any homology class of triangles ¢ € m2(0,x,y) with sy, (V) = ¢*(s) where t.: Xorap — [0,1] XY
denotes the inclusion from Lemma 3.7. The grading F, g‘_""/ (A) is independent of the choice of the
intersection points x and O, since splicing in homology classes of disks into the ends of 1 does
not affect Equation (5.12). Similarly, the grading is independent of the homology class v, since by
[0S04d, Proposition 8.5] any other homology class also representing s can be obtained from v by
splicing in homology classes of disks on the diagrams (3, o/, o), (X, ¢, 3), and (2, &, 3).
Analogously, if 3’ differs from 3 by a sequence of handleslides or isotopies, and (2, , 3, 3, w, z)

is admissible, we define the transition map F Gop Via the formula

—

Fg 5 (A)(y); = AX); + A(O); + (nw — 12); (1),

for a choice of ¥ € m3(x,0,y).
Similarly, if H' = (X,a/,8,w,z) and H = (X, o, B, w, z) are related by a handleslide or isotopy
of the a curves, then we define maps

F§7%: Gw(H,0,5) = Gw(H',0,5)  and  F§7%:G,(H,0,5) = G,(H,0,5),
whenever (%, e/, a, 3, w,z) is admissible, as follows. If g € Gw(H,0,s) and ¢ € m(0,x,y) we
define

(5.13) FE7 (9)(y) = 9(x) + 81 (0) — 5 (k + [w| = 1) = u(t)) + 2n (),

1

2
for any choice of x € T, N Ty and homology class of triangles ¢ € (0, x,y). In Equation (5.13),
gr,, denotes the absolute grading described in Section 5.3.

By replacing each instance of w with z, we obtain the analogous map from G,(H,o,s) to
GL(H',0,s).

By adapting the argument given above for the Alexander grading, it is straightforward to see that
the grading defined in Equation (5.13) does not depend on the choice of 9, x or ©.

Next, we suppose that H’ is a stabilization of H. If x is an intersection point of H, then we let
x X {c} denote the product of x with the intersection point of the new a and 3 curves on H'. We
define

Fyoa (A)(x x {c}); = A(x);.
We define the destabilization map F3_,3 as the inverse of Fy_,%/. An analogous transition map
for the gr,, and gr, gradings is defined similarly.
Finally, if H' = (X',a’,3',w,z) is obtained by an isotopy of the diagram H = (3, o, 3, W, 2)
within Y, we define the map F_,4 via tautology.

Lemma 5.9. Suppose that U is a multi-based link in (St x S2)#*  with any configuration of base-
points, and H and H' are two diagrams for ((S* x S2)#* U). If Ay, € A(H1,s0) and Ay, €
A(Ho,89) denote the two gradings defined in Section 5.3, and Fyy, 3, denotes the transition map
(defined using any sequence of elementary Heegaard moves), then

F?-l1*>7'12 (ng) = *’ZHQ'

The same statement holds for the Maslov gradings.
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Proof. We recall the absolute Alexander grading for unlinks in (S* x $2)#* in Section 5.3 was defined
by fixing the grading of the distinguished elements O% and ©%. By Lemma 5.4, the maps @3, 7,
preserve the relatively graded chain homotopy type of CFL, and hence must satisfy

(5'14) (DHI_)HZ (@zl) = zy

and similarly for ©%. Next, we note that Part (3) of Proposition 5.8 is a tautology, and can be
verified for each individual Heegaard move. Hence it follows that

By, (A3,)(03,)5 = Pyt (An, ) (P 521, (O3, )5
= An, (03,);-
Hence it follows that Fyp, 3, (ﬁ;{l) = ;{7.[2, completing the proof. |
We have the following:

Lemma 5.10. Suppose that L is a multi-based link in Y. The following statements hold for the
transition maps on the sets of Alexander, gr,, and gr, gradings, whenever they are defined:

(1) Suppose that (X,a", o, a0, B, w,z) is an admissible quadruple and o, &' and o are all

related to each other by a sequence of handleslides and isotopies. Then
Fg*}a,/: Ba/*}a,,OFg%a/'

A similar statement holds for an admissible quadruple (3, ., 3,8 ,8",w,z), where 3, 3
and B" are related by a sequence of handleslides and isotopies.

(2) Suppose (X,a,a,3,w,z) is an admissible Heegaard triple and o is related to o by a
sequence of handleslides and isotopies, and suppose (E,d/,d,ﬁ,w,z) 18 a triple obtained
by stabilizing (3, &, ¢, B, w,z) at a point in X\ (&’ UaUB). Writing Fs for the transition
map associated to stabilization, we have

FsoFg™e = Fg_“i/ o Fs.
(3) Suppose (¥, a, B,w,z) is an admissible diagram for (Y,L) and ¢: (X,wUz) = (X, wU z)
18 a diffeomorphism which is isotopic to idys;, relative to w U z. Then

a—¢(a) o o
Foay o Fghe8) = O+

(4) Suppose that (2, a’, c, 3,8, w,z) is an admissible quadruple, such that o’ is related to c by
a sequence of handleslides and isotopies, and 3' is related to B by a sequence of handleslides

or isotopies. Then
a—a’

oS g = Fgl g0
(5) If S and S’ are two disjoint stabilizations, then
FsoFg = Fgr o Fg.
(6) If S is a stabilization, and ¢: (Y, L) — (Y, L) is a diffeomorphism fizing w Uz, then
¢x 0 Fs = Fy(s) © Pu.

Proof. We consider Claim (1), focusing on Alexander gradings. Suppose that A € A(X, o, 8,0, J, 5),
and Yarg € T o QTB. Pick intersection points Oy € ToNT o, Opra € TorNT ey, Oprrg € TarNT 4,
Xog € Toa NTp and xop € Ty N Ta, such that Opra, Oaa and Oyrq represent the torsion
Spin© structures. Pick homology classes of triangles ¥aa/a € m2(Onrars Owa, Oura), Yarras €
7T2(®a”aaxa6aya”6)’ and Yaap € 72<@a’avxaﬁaxa’ﬁ)a and Yorarp € 772(®a”a’axa’,8aya//,@>7 such
that

(515) wa”aﬁ + ¢a”(ﬂa = 7/}0/043 + wa”a’B-
By definition,

(5.16) Fg7 (A)(Yarp)i = Axap)j + AOara); + (mw = n3)j (Yarap)

Faaa’

B
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and
(Fg 7 oFg7* ) (A)(Yarp)i

=A(Xap)j + AOaa)j + A(Oarar)j + (w = 12)j(Varars + Yarap)-
Equation (5.17) minus Equation (5.16) is

(5.17)

(5.18) — AOnra); + AOwa)i + AOarar)j + (Nw — 12)j (Yarara)-
Note that the expression in Equation (5.18) is equal to
(5.19) F& 2 (A)(Oura)j — A(Oarra);.

By Lemma 5.9, the grading A on unknots in (S! x S2)#* is a transitive grading, and hence
Equation (5.19) must vanish. It follows that Equation (5.18) vanishes as well, establishing Claim (1)
for the Alexander multi-grading.

The proof of Claim (1) for Maslov gradings, as well as the proofs of Claims (2)—(6), are straight-
forward modifications of the above argument. O

There is an important class of loops in the set of Heegaard diagrams, called simple handleswaps.
We refer the reader to [JT12, Definition 2.31] for a precise description. We state the following version
of handleswap invariance for gradings (compare [JT12, Proposition 9.25]):

Lemma 5.11. If H; 5 Hs ER Hs 2> Hy is a simple handleswap, then
FyoFyoF, =id,
as maps on the set of Alexander gradings or Maslov gradings on H;.

Proof. The maps F, and Fy are maps induced by handleslides of the o and 8 curves, respectively.
The map F, is induced by a diffeomorphism. In our context, the maps F. and F, are computed
by picking any homology class of triangles. Hence the argument can be proven by adapting the
standard proof of handleswap invariance [JT12, Proposition 9.25], noting that in our context, we
just need to check the claim for any two homology classes of triangles (one to compute F, and one
to compute F). O

We now prove that the maps Fy 3 give each of A(H,0,J,5), Gw(H,0,5) and G,(H,0,s) the
structure of a transitive system.

Proof of Proposition 5.8. It is sufficient to verify that the sets of gradings together with the transi-
tion maps we’ve defined satisfy the axioms of a strong Heegaard invariant [JT12, Definition 2.33].
Lemmas 5.10 and 5.11 imply that the sets of gradings, together with the transition maps we previ-
ously associated to elementary Heegaard moves, satisfy the axioms of [JT12, Definition 2.33]. Hence,
by [JT12, Theorem 2.38], the map Fy .4, defined using elementary moves between Heegaard dia-
grams, does not depend on the choice of elementary Heegaard moves between H and H'.

Finally, it remains to show Claim (3), i.e., that

(5.20) (Frow (A)(Prowr (%)) = A(x).
Equation (5.20) can be checked for each elementary Heegaard move, and is a tautology from the
definitions. 0

5.5. Definition of the absolute gradings. In this section, we give the definition of the absolute
gradings. In Section 6, we prove that these gradings are well defined.

Pick a parametrized Kirby diagram P = (¢g, A, Sy, f) for (Y, L). The parametrized Kirby diagram
specifies an unlink U in S3, as well as a framed link S; C S\ U, and a diffeomorphism f between
S$3(S1) and Y, which maps U to L. Abusing notation slightly, let us write w and z for the basepoints
on U obtained by pulling back w Uz C L under f . Let U denote the multi-based link

U:=(U,w,z).
We pick a B-bouquet B for Sy, as well as a Heegaard triple T = (X, a, 3, 3', w, z) subordinate to B.
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Note that by definition (X, a, 3, w,z) is a diagram for (S, U), and (%, , 3, w,2) is a diagram
for (Y,L). The diagram (¥, 3,3, w, z) is a diagram for an unlink Ugg in (S x S2)#* with exactly
two basepoints per link component.

Suppose that (o, J) is a type-partitioned, indexed coloring of L, with index set J, and suppose
that L is J-null-homologous. Let S = (S;);je; be a generalized J-Seifert surface of L. Note that
(0,J) induces a type-partitioned, indexed coloring of both U and Ugg:, for which we will also write
(o,J).

Write W (S3,S;) for the 2-handle cobordism from S to Y obtained by attaching 2-handles to
[0,1] x S along {1} x S;. Let ¥; denote the surface [0,1] x U; € W(S?,S;), and let ¥; denote
the integral 2-cycle obtained by capping off ¥; with {1} x f~1(S;) C {1} x S3(S;), as well as an
arbitrary Seifert surface of U; in {0} x S3. Let [%2] denote the integral 2-cycle [3] := >jel [f]]]

If y € T, N Ty is an intersection point with sy (y) = s and j € J, we pick intersection points
x€T,NTg and © € Tg N Tgs, as well as a homology class of triangles 1) € m2(x,0,y), and set
(621 As(y); = AG), + A©), + (s — ), () + ol B [P B

As defined above, the grading Ag is an element of A(H,0,J,5), where H = (X, a, 8, w,2).
However, there is a canonical isomorphism A(H, o, J,s) — A(K]L("’J),s), so there is an induced
transitive grading in A(Y,L(%”) s). Well definedness of Ag amounts to showing that the induced
element Ag in A(Y,L(%) s) is independent from the choice of x, ©, 1, T and P. This will be
addressed in Section 6.

We define the absolute Maslov gradings in a similar fashion. Assuming that o is a type-partitioned
coloring of L, and ¢;(sw(y)) is torsion, we define

B () =t (%) + 814, (60) — 3 (k + [w] — 1) = (0) + 20 (1)

c1(sw(¥))? — 2x(W(S°,81)) — 30(W(S?,S1))
1 .
We define gr, similarly, by replacing each instance of ny, gry, or sy in Equation (5.22) with ng, gr,
or §,, respectively.
Note that we can immediately prove Part (b) of Theorem 2.13, that the Alexander grading (Ag);
takes values in Z + 2¢k(L\ L;, L;):

(5.22)

+

Proof of Part (b) of Theorem 2.13. Since ¢ (Sw(¢))) is a characteristic vector of Qy, it follows that
(c1(5w(®)), [%5]) — [%;] - [£;] is an even integer. Hence, modulo Z, the expression in Equation (5.21)
is equal to

1 A N ~
(5.23) s (B\E]- ).
Since the link cobordism surfaces ¥; and X; are disjoint whenever ¢ # j, it is straightforward to
see that the expression in Equation (5.23) is :I:%#((L \ L;) N'S;), which is, by definition, %Ek(L \
Ly, Lj). O

5.6. Rationally null-homologous links and relative cyclic gradings. There are several addi-
tional situations where one can define versions of the Alexander and Maslov gradings.

The first is when L is rationally null-homologous, i.e., [L] = 0 € H1(Y;Q). In this case, Equa-
tion (5.5) implies that the relative Alexander grading is still well defined. In fact, by picking a
rational 2-chain S with boundary — L, the techniques of this paper still give a well defined Q-valued
Alexander grading Ag. We will focus on integrally null-homologous links, for notational simplicity.

More generally, if ¢1(s) is non-torsion, then Equation (5.2) implies that there is a Z/0(s)Z valued
relative Maslov grading gr,,, where

o(s) = ged  {c1(s), ).
¢EH,(Y3Z)

Similarly, there is a Z/d(s — PD[L])Z valued relative Maslov grading gr,.
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Similarly, by examining Equation (5.5) we see that when L # 0 € H;(Y; Q) there is still a Z/0(L)Z
valued relative Alexander grading, where

o(L):= ged (PD[L],E).
§EH(Y5Z)

The techniques of this paper do not give lifts the relative cyclic gradings to absolute cyclic gradings.

6. INVARIANCE OF THE ABSOLUTE GRADINGS

In this section, we prove that the absolute lifts of the Alexander and Maslov gradings defined in
Section 5.5 do not depend on the choices made in the construction.

6.1. Invariance of the absolute Alexander grading.

Lemma 6.1. Suppose that (Y,1L) is a multi-based link, and P is a parametrized Kirby decomposition
with framed link Sy, B® is a B-bouquet for Sy, and T = (X,a,B,8',w,2z) is a Heegaard triple
subordinate to B®. If y € T, NTg, the expression for As(y); in Equation (5.21) is independent of
the choice of x € To NTy, © € TgNTy and Y € ma(x,0,y).

Proof. We first show that Ag is independent of the triangle 1), for fixed x and ©. If ¢, ¢’ € ma(x,0,y)
are two homology classes, we can write

V=19 +P,
for a triply periodic domain P. By [0S04d, Proposition 8.5],

sw(¥') = sw(¥) + . PD[H(P)],
where H(P) is the integral 2-cycle obtained by capping off the triply periodic domain P, and
Ge: H*(Xapp, 0Xapp; L) — H*(Xappr; L)

is the map in the long exact sequence of cohomology.

Let A(gx,@,w) denote the grading defined with x, © and 1, and let A(Sx’e’w/) denote the grading
defined with x, © and v’. We compute

x,0,7)’
AFO ) (y),

{er(sw (1)), [55]) = 5] - [5)]
2

=A(x); + A(©); + (nw — 112); () +
(c1(sw(®)) + 2. PDIH(P)], [S5]) — [£] - [£5]
2

=A(x); + A(O); + (N — 112); (1) + (N — 1) (P) +
(1 (sw (@), [55]) = 3] - [3]

:E(x)j + Z(G)j + (nw — n2); () +

2
+ (nw — n2);(P) + (¢ PDIH(P)], 5;)
=AM y);

(nw = n2);(P) + (¢ PDIH(P)], 5;)
=(nw — 12);(P) + (PD[H(P)], ;)
=(nw — 12);(P) + (PD[H(P)], (Saps');)
=0

by Equation (3.2).
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The independence of Ag(y); from x and © is handled similarly. If x’ is another choice of inter-
section point in T, N Tgs, then we pick a homology class ¢ € ma(x/,x). We compute directly from
the definition that

x',0, x,0,
AT O (y); — AT (y);

:Z(x’)j — E(X)j + (7’Lw — nz)j<¢)
=0

since A(x') j— /T(x)j = (nz — Nw);j(¢), by definition. Independence from © is proven analogously.
O

Next, for fixed P and B?, we consider the dependence on the triple 7 subordinate to B5:

Lemma 6.2. For fired parametrized Kirby diagram P with framed link S1, and fized 3-bouquet B
forSy, the Alezander grading Ag defined in Equation (5.21) is independent of the choice of Heegaard
triple T = (%, o0, B, 3, w, z) subordinate to BP.

Proof. Suppose T1 = (X1, a1, 8,8, w,z) and T = (X2, e, Bo, B4, W, z) are two triples subordinate
to BP. Let Ag 7, denote the grading defined with the triple 77, and let Ag 7, be the grading defined
with 75. Write H; = (21, a, 81, w,2) and Hy = (X2, a, B35, W, z). By definition, we need to show
that

(61) AS,7~2 = F';'Ll‘)HQ (Asyﬂ)a

where Fy, 9, is the transition map on sets of Alexander gradings defined in Section 5.4.
Any two triples subordinate to B can be connected by a sequence of the six moves of Lemma 3.4,
so it is sufficient to prove Equation (6.1) when 7; and T3 differ by one of the moves on the list.
We consider Move (1) first, when 7z is obtained from 7; by a handleslide or isotopy of the «
curves. In this case, let us write 71 = (X, a,3,8') and T5 = (%, ', 3, 3").
Suppose that y, 5 € Tor N Tp. We make choices of the following:
(1) Xa'p € T ﬂTﬁ.
(2) ©gp € TgNTg, representing the torsion Spin® structure.
(3) Yarpp € 772(Xo¢’5’ @Bﬂ’v ya'B’)‘
(4) Yop € Ta NTp such that sy (y,s) = 5w(Yars) € Spin(Y).
(5) Yapp € T2(Xap, Oppr, Yap)-
(6) B4 € Tor NT,, representing the torsion Spin® structure.
It follows from [OS04d, Proposition 8.5] that by adding triply periodic domains into ¥,/ g5 and
Yapp’, WE can assume

(6.2) Sw(Yarpp) = Sw(Vapp)

under the canonical inclusions of X,/ gp and X,gs into W(S3,S;) from Lemma 3.7.

Similar to the map from homology classes of triangles to Spin® structures discussed in Section 3,

there is a Spin® map on quadrilateral classes
Sw - 772(90/0“ Xaf, @ﬁg/, yo/ﬂ’) — SpinC(Xo/(,ﬁgz).

We note that after filling in Y, with 3-handle and 4-handles, the manifolds X, og and X,/ be-
come [0,1]xS? and [0, 1] xY® respectively. Hence we can find triangle classes to/as € m2(On/a, Xas: Xa’3)
and Yarap € T2(Oaas Yaprs Yarp) such that

Sw(Varap + Vaspr) = Sw(Vaps + Yarap) € SPin® (Xaraps) = Spin(W(S%,S1)).
By [0S04d, Section 8.1.5], it follows that the quadrilateral class ¥/ +%agp can be obtained from
Yargpr + Varap by splicing homology classes of disks into the four ends. By splicing these four disk
classes into the triangle classes 1o/ and Yo/, We may simply assume that
(6.3) Yarap + VYapp = Yarpp + Yaraps

as homology classes of quadrilaterals.
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By expanding out the definitions of the gradings, and simplifying slightly using Equation (6.3),
we obtain the equality
A5 (Yarp )i = Fry 1 (A1) Yarp )i
(6.4) =A(Xap)j — AXap)j — A(Oara)j — (Nw = 12)(Varap)

{e1(Sw (Parper), [25]) = (2] [25]  {erlsw(aps)), [55]) — [5] [55]
2 2

+

The expression
A(Xa’ﬁ)j - A(Xaﬁ)j - A(ea’a)j — (nw — TLZ)j (¢a’a,@)7

in Equation (6.4) vanishes because it is equal to Z(xalg)j - Fg‘ﬁal (A) (xa/);, which vanishes by
Lemma 5.9.

By Equation (6.2), the two summands involving Chern classes and self intersection numbers also
vanish. Hence the entirety of Equation (6.4) vanishes.

Invariance from Moves (2), (4) and (5) also amount to proving invariance from a sequence of
isotopies or handleslides of some of the attaching curves, and are proven similarly to Move (1).
Invariance under Move (3), (de)stabilization, is an easy computation. Finally, invariance under
Move (6), isotopies of the Heegaard surface ¥ within S2, is a tautology.

O

Next, we address independence from the B-bouquet B7:

Lemma 6.3. For a fized parametrized Kirby diagram for (Y,1L), the Alexander multi-grading Ag is
invariant from the B-bouquet B® for the framed link S; of P.

Proof. This follows from an adaptation of the original argument that the 2-handle maps are invariant
of the choice of S-bouquet [0S06, Lemma 4.8]. As argued therein, if Bl’B and Bg are two bouquets
which differ by replacing a single arc with another, then Heegaard triples 7; = (3, o, B4, 37, W, 2)
and (X, a, B, 85, W, z) can be constructed so that B3, is obtained from B3, via a sequence of han-
dleslides and isotopies, and 35 is obtained from 3] via a sequence of handleslides and isotopies.
Adapting the argument from Lemma 6.2 for associativity on the level of homology classes yields the
statement. ]

Lemma 6.4. The Alexander multi-grading is invariant under Move L1, handleslides amongst the
components of S1.

Proof. This follows by adapting the proof of invariance of the 2-handle maps from handleslides
[0S06, Lemma 4.14]. Handlesliding a component of S; across another can be realized as a sequence
of several handles of the B3 curves over each other, and several handleslides of the 8’ curves over
each other. An argument using associativity on the level of homology classes as in Lemma 6.2 shows
invariance. |

We now consider Move Lo, invariance under blowing-up or down:

Lemma 6.5. Suppose that K is an unknot in S® which is contained in a ball which is disjoint
from Sy and U. Suppose that P = (pg, A, S1, f) is a parametrized Kirby diagram for (Y,1L) and let
P’ = (¢o, \,S1 U{K}, fi) denote the parametrized Kirby diagram obtained by adding K to Sy with
framing £1, and let fx be the induced diffeomorphism. The gradings Asp and Agp agree.

Proof. The proof is similar to the standard proof of the blow-up formula [OS06, Section 6]. If T
is subordinate to a bouquet for S;, then we can construct a triple 7+ which is subordinate to a
bouquet for S; U {K} by taking the connected sum of 7 with one of the two diagrams shown in
Figure 6.1, depending on whether we are taking a positive or negative blow-up.

For both positive and negative blow-ups, if 1 is a class of triangles on (X, , 3,3, w, z), we can
make 1 have multiplicity 0 at the connected sum point by splicing ¢ with the class k - [X] (where
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FIGURE 6.1. A Heegaard triple for surgery after a blow-up (Move £;).
Taking connected sum of a surgery triple with one of the two triples shown above,
at the dashed circle shown, results in a surgery triple for blowing up away from X.
Multiplicities of a homology triangles are shown.

Y. denotes the Heegaard surface). We can construct a homology class of triangles 1)+ by taking the
product of ¥ and the triangle class shown in Figure 6.1. We note that

(6.5) sw(t) = sw(t)#s’
for some s’ in Spin°(CP?) or Spinc(@Q). Equation (6.5) implies that
{er(sw(¥)), [£50) = (erlsw (), [£5])-

Furthermore, [2]-[33;] is easily seen to be unchanged, since the blow-up occurs away from [0, 1] x U C
W(S3,S1). Since (nw — n,); (1) is also unchanged, it follows that Equation (5.21) is unchanged, so
Agp and Agp agree. O

We now consider Move L3, when the new component is given framing —1:

Lemma 6.6. Suppose that P = (¢g, \,S1, f) is a parametrized Kirby diagram for (Y,L) and that
K C S3\ N(U) is a meridian of a single component of U, as in Move L3, and suppose K is given
framing —1. Let P’ = (¢, N',S1 U{K}, fx) where fi is the induced diffeomorphism, and X' is the
new framing on L. The gradings Asp and Agp agree.

Proof. Given a Heegaard triple 7 subordinate to a bouquet for S;, we can construct a Heegaard
triple 7T subordinate to a bouquet for S; U{ K} by taking the connected sum of the genus 1 Heegaard
triple on the right side of Figure 6.1 with 7, near a basepoint z on the link component which K is
a meridian of, and then moving z into the position shown in Figure 6.2. Let j € J denote the index
j=J(z).

We note that a there is a diffeomorphism between W (S3,S; U{K}) and W (S3, Sl)#@2 which is
the identity outside of [0,1] x B C W (S3,S;) for a ball B C S containing K. Under this connected
sum decomposition, we can describe Ho(W(S3,S; U {K});Z) as Ha(W(S3,S1);Z) @ Z where the
new copy of Z is generated by an embedded sphere E in W(S®,S; U {K}) formed by taking a
Seifert disk for K in S x {1} and gluing on the core of the 2-handle attached along K. Let %;
denote the link cobordism surface [0,1] x U; € W(S%,S;) and let X denote the analogous surface
in W(S3, Sl U {K})

We can view the original link cobordism surface X; as a surface in W (S3,S;U{K}) = W (52, Sl)#@Q,
by first pushing >; outside of the connected sum region before we take the connected sum. We note

that, by inspection, the class E is equal to H(P), the homology class obtained by capping off the
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FIGURE 6.2. The Heegaard triple 7 for surgery on S; U{K} where K has
framing —1. This corresponds to Move £3. On the left is the homology class 1},
and a dual spider, with arcs a, b and &’. On the right is the triply periodic domain
P with H(P) € Hs (@2; 7Z) a generator. Also on the right are the translates 9/,P,
8’Bf and 5’ﬂ,f.

triply periodic domain P shown in Figure 6.2. Note that clearly

(6.6) ] =[] +a-E,
for some a € Z. In fact, we can compute that a = —1 by applying Equation (3.2) to the triply
periodic domain P in Figure 6.2:

1= (ny — nw);(P) = #(£; N H(P)) =[S + aH(P)] - [H(P)] = —a.

Now let ¢ € ma(x,0,y) be any homology class of triangles on 7, such that © represents the
torsion Spin® structure. By splicing in the class of the Heegaard surface to 1, we can assume that
nz(y) = 0.

We construct a class ¥} € ma(X X Zags,, © X O505,, Y X yaogé), by taking the product of ¢ and the
small triangle class shown in Figure 6.2.

We now compute (c1 (5w (%)), H(P)). According to [0S06, Proposition 6.3], we have

(6.7) (c1(sw(¥7), H(P)) = e(P) + #(9P) — 2nw(P) + 20 (41, P),

where e(P) = 0 denotes the Euler measure, #90P = 3 is the number of boundary components of P,
and o (11, P) is the dual spider number [OS06, Section 6.1]. We recall briefly the construction of the
dual spider number o (¥, P). Let u: A — Sym"™(X7+) denote a topological representative of the
class wf. Let x € A be a generic point, and let a, b and b’ be three paths in A from z to the ay,
Bo and B, boundaries of A, respectively. Perturbing u slightly if necessary, we can view u(x) as an
n-tuple of points on X, and u(a), u(b) and u(b') as integral 1-chains on 3. The dual spider number
is defined as

(6.8) o], P) = nu(a)(P) + #(ula) N 9, P) + #(u(b) N0 P) + #(u(t) N 9 P),

where 0.P denotes the translation of the boundary component d,P of P, in the direction of the
inward normal vector field, according to the periodic domain P.

Using Equation (6.8), we compute o (1)) ,P) =1 —1—1—1 = —2. Computing the remainder of
the terms in Equation (6.7), we see

(c1(sw(¥y)), H(P)) = —1.
We note
na(Uf); =nw(¥);  and g (Yy); = na(1); +1.
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Using v to compute the Alexander grading Agsp, and using 1/)1+ to compute the Alexander grading
Agpr, we see that the difference between the expressions defining Ag p/ (¥ X Ya, 5[’)) j and Agp(y) is

(e1(sw(¥y)), —H(P)) — [=H(P)| - [-H(P)]

5 —n,(v) =0.
In a similar way to Lemma 6.5, it is straightforward to see that the other components of the
Alexander grading are unchanged, completing the proof. O

We now consider Move L3, when the new link component is given framing +1:

Lemma 6.7. Suppose that P = (¢o, A, S1, f) is a parametrized Kirby diagram for (Y,1L) and suppose
that K is a meridian of a single component of U, as in Move L3, and suppose K is given framing
+1. Let P! = (¢o, N,S1 U{K}, fi), where fi is the induced diffeomorphism, and N is the new
framing on L. The two gradings Agp and Agsp agree.

Proof. The proof is similar to the proof of Lemma 6.6. Let 7T be a triple subordinate to a bouquet
for S; U {K}, constructed as in the proof of Lemma 6.6; See Figure 6.3. Let j denote the index
of the grading that K is assigned to. Let 1", and P be the homology class of triangles and triply
periodic domain shown in Figure 6.3.

N AR 1]
i Bo i 1 Bo i
; ol ;
A Aoa i A
i L0 ap
: / :—1 : ﬁ //A
| Y R Pmmm el e PR & e = = B e LT

FIGURE 6.3. The Heegaard triple 7 for surgery on S; U{K} where K has
framing +1. This corresponds to Move £3. On the left is the homology class 97,
and a dual spider, with arcs a, b and &’. On the right is the triply periodic domain
P with H(P) € Hy(CP?;7Z) a generator. Also on the right are the translates &, P,
d5P and 95, P.

Let X denote the surface [0,1] x U; € W(5%,S; U {K}) and let ¥; denote the surface [0,1] x
U; C W(S3,S1), which we can also view as being a surface in W(S3,S; U {K}). Let i?; and 3;
denote the integral 2-cycles obtained by capping off Z;» and ¥;. As in Lemma 6.6, we can write
[f];] = [%;] + aH(P). Arguing as before,

1= (ng — nw);(P) = #(X; N H(P)) = a[H(P)] - [H(P)] = a,
implying that [¥] = [¥;] + H(P). Computing using Equations (6.7) and (6.8) we have
o, P)=-2 and (a(sw(¥D))), H(P)) = -L
Furthermore

nw(wi_1)j = nw (1), and nzw)tl)j =n,(¥); — 1.
Hence, the difference between Asp/(y X Ya,p,); and Asp(y); is

(e1(sw(¥™y)), H(P)) — [H(P)] - [H(P)]
2

—na(P1); + na(y); = 0.
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Furthermore, arguing analogously to Lemma 6.6, the Alexander grading is also unchanged in the
components other than j. O

We now consider Move L4, corresponding to changing the identification ¢y of U with L.

Lemma 6.8. Suppose that P = (¢o, \,S1, f) is a parametrized Kirby diagram of (Y,L) and that
to: U — U is a diffeomorphism, which is extended by : (S®,U) — (S3,U), and ¢ is orientation
preserving for both S* and U. Then Asp and Aspr agree, where P’ = (doothy *, A, 10(S1), fo(¢51) 7).

Proof. The proof is essentially a tautology. We take a triple 7 = (%, a, 3,3, w,z) subordinate
to a B-bouquet of S;. The triple ¥, T = (Y(X), ¥ (), ¥(B),v(B'),w,z) is subordinate to a j3-
bouquet for ¥(S;). Note that the resulting Heegaard surface for (Y,L) from both the pairs (P, T)
and (P, T) is (f(2), f(a), f(B),w,z). In particular, the pairs (P,7) and (P’',4.7T) define an
absolute grading on the same chain complex. Furthermore,the expression defining the Alexander
grading in Equation (5.21) is unchanged, since we can simply push forward a triangle class on T
under the diffeomorphism v to get a triangle class on ¥(T). d

Combining the results of this section, we can prove part (a) of Theorem 2.13:

Theorem 2.13 Part (a). Suppose that L is a multi-based link in'Y, and (0,]) is a type-partitioned,
indezxed coloring of L, L is J-null-homologous, and that S is a generalized J-Seifert surface of L.
Then the chain complex CFL™(Y,L°,s) admits an absolute Alexander multi-grading Ag which takes
values in QY. The multi-grading is additive with respect to collapsing indices.

Proof. A-priori, the grading Ag depends on the choice of parametrized Kirby decomposition P and
Heegaard triple 7. By Lemma 6.2 the grading is independent of the choice of Heegaard triple T,
subordinate to a fixed bouquet of the framed link S; of P. By Lemma 6.3, the grading is independent
of the choice of bouquet subordinate to S;. Hence the grading Ag depends at most on the P (and
Y, L and S).

By Proposition 4.4, any two choices of P can be connected by Moves Ly, L1, Lo, L3 and Ly4.
Invariance from Move L (isotopies of f or Sy, fixing 9(S5(S1))) is automatic, using naturality of
Heegaard Floer homology. Invariance under Move £ follows from Lemma 6.4. Invariance from
Move Lo follows from Lemma 6.5. Invariance from Move L3 follows from Lemmas 6.6 and 6.7.
Finally, invariance from Move L4 follows from Lemma 6.8.

The final claim, that the Alexander grading is additive with respect to collapsing components
of the index set J, is straightforward, since each summand in the expression in Equation (5.21) is
additive under collapsing gradings. O

6.2. Dependence on the Seifert surface S. We now prove part (¢) of Theorem 2.13:

Theorem 2.13 Part (¢). If S and S’ are two generalized J-Seifert surfaces for a J-null-homologous
link L, and s € Spin“(Y'), then

{e1(s), [S5U =5;])
5 :

(As)j — (As); =

In particular, if c¢1(s) is torsion, then the absolute Alexander grading does not depend on the choice
of generalized J-Seifert surface.

Proof. Let S and S’ be two choices of generalized J-Seifert surfaces. Pick a parametrized Kirby
diagram of (Y;L) with framed 1-dimensional link S;, and pick a Heegaard triple subordinate to a (-
bouquet of S;. Let 33 C W(S3,S;) denote the surface [0, 1] x U; and let 32; and f]; denote the closed
2-chain obtained by capping ¥ with a Seifert surface of U in {0} x S3, and S; or S%, respectively,

in Y. Write [Fj] = [S} U —S;]. As elements of Hy(W(S%,S1);Z), we have [i;] = [3] + [F}]. Let

[32], [£] and [F] denote the sum over j € J of the classes [¥;], [27], and [F}] respectively. Using the
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definition of the absolute grading in Equation (5.21), we see

(Ag); — (Ag); = (2GL 1D = B 5] (er(s), [S5]) — 5] - [55]

2 2
_ lal), (] | —[F](355] - (][] = [F] - [F]
2 2
_(ab),R)
2 )
since [F] and [F}] are in the image of the inclusion map Ho(OW (S3,S1);Z) — Ha(W(S3,S1);Z),
and hence the intersection number of either with anything in Ho (W (S3,S1);Z) vanishes. O

We illustrate Part (c) of Theorem 2.13 when ¢ (s) is torsion with the following example:

Example 6.9. Consider an unknot U in S' x S? with two basepoints. For convenience, we view
U as being embedded in {pt} x S?, so that there are two distinguished Seifert disks, D; and Da,
for U. Note that Dy U (—D;) = {pt} x S2. In Figure 6.4, two diagrams H; = (3, q, 8, w, z) and
Ho = (X, ¢, B,w, z) are shown. We can assume that D; and Dy intersect ¥ in an embedded arc,
connecting w to z. Furthermore, we assume that D; is disjoint from o U 8, and D5 is disjoint from
o' Up.

r---7 ===
b i
i i
W A
A
[pup— _———
B ———E———
- ’
Fg=e

FIGURE 6.4. Two diagrams H; and H for (S' x $2,U). In both diagrams,
Sy (2) is non-torsion for any intersection point z. The two Seifert disks, D; and
D5, can be picking a path between the basepoints the two diagrams. Pushing this
arc into the handlebodies sweeps out a half disk. The orientation of the Heegaard
surface is clockwise with respect to the page.

It is straightforward to see from the definition of the grading that Ap, = 0 on C/'F\L(’Hl) and
Ap, =0 on CFL(Hs). As transitive gradings, however, we claim that
ADz - ADl = %(Cl(s’w('r))a [D2 U _D1]> = _17
where & € oM 3 is either intersection point.

Note that to compare Ap, and Ap,, we need to use the transition maps on sets of Alexander
gradings. Using the triangle class shown in Figure 6.4, we compute

5™ (Ap,)(y) = Ap, (x) + (m — 1) () = 1,

for some (and hence any) choice of z € N B and y € o/ N B. Hence, as transitive gradings, we have

(6.9) Ap, — Ap, = —1.
On the other hand, from our orientation conventions (recall that we are using the outward normal
first convention for the boundary orientation, Seifert surfaces are oriented so that S = —L and

that in the handlebody Ug the knot goes from z to w), we have that
H(P) = [D2 U (=D1)],
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where P is the periodic domain on (X, a, 8, w, z) which has multiplicity +1 in the bigon containing
w and z, multiplicity —1 in the empty bigon, and multiplicity 0 elsewhere. Using Equation (5.2),
we see that

(6.10) (c1(sw(2)), H(P)) = =2,

for any intersection point x € o N S.
We finally remark that Equations (6.9) and (6.10) are in accordance with Part (¢) of Theorem 2.13.

6.3. Invariance of the absolute Maslov gradings. In this section, we prove Parts (d) and (e)
of Theorem 2.13, and sketch the proof of the well-definedness of the two absolute Maslov gradings,
gr,, and gr,. The proof of well-definedness of gr,, and gr, is mostly analogous to the proof of the
analogous result for the absolute grading on HF ™~ from [OS06], as well as the proof of Part a of
Theorem 2.13 from Section 6.1. Hence we only sketch the details the proof of invariance. A helpful
formula is the following:

Lemma 6.10. Suppose that P is triply periodic domain and ¥ is a homology class of triangles on
the Heegaard triple (¥, o, 8,7, w,z). Then

(W +P) - () = 2y (P) + LWL P calowl)),

The proof of Lemma 6.10 can be found in [Sarllb, Section 5.1].
We now prove part (d) of Theorem 2.13, which we rephrase as follows:

Theorem 2.13 Part (d). If ci(s) is torsion, the absolute grading gry, defined in Equation (5.22) is
a well defined transitive grading, and is independent of the intersection points x and O, the homology
class 1, the Heegaard triple T, and the parametrized Kirby diagram P. Similarly, when c¢i(s— PD[L))
is torsion, the grading gr, is well defined.

Proof. Most of the proof proceeds as in the proof of Part (a) of Theorem 2.13. The only major
difference is in the proof that the formula from Equation (5.22) is independent from the homology
class ¥ and intersection points x and ©. Independence of the absolute grading from x and © can
be proven by splicing in disks on those ends and seeing that the formula does not change. Next, to
see that the formula is invariant under the choice of 1, we note that any two homology classes of
triangles with the same endpoints differ by a triply periodic domain. Suppose 1 is a homology class
of triangles and P is a triple periodic domain. Letting gr¥ (y) and gr¥*”(y) denote the gradings,
computed with the classes ¢ or ¥ + P, respectively, we observe that the difference is

c1(sw(¥ +P))? — c1(sw(¥))?
4 )

gt P (y) — gri(y) = —p( + P) + p(@) + 2nw(P) +

which is zero by Sarkar’s formula from Lemma 6.10.

Independence from the choice of Heegaard triple 7 and bouquet B? can be proven by adapting
Lemmas 6.2 and 6.3. Independence from the parametrized Kirby diagram follows by adapting
Lemmas 6.4, 6.5, 6.6, 6.7 and 6.8. (]

The following is part (e) of Theorem 2.13:
Theorem 2.13 Part (¢). The absolute Maslov and collapsed Alexander gradings satisfy

1
A= §(grw _grz)‘

Proof. We pick a parametrized Kirby diagram and associated Heegaard triple T = (2, , 3, 3', w, z)
for (Y,L). We compute 5 times the difference between the expressions defining gr,, (x) and gr,(x) in

Equation (5.22). By Equation (5.11), the formula A = 1(gry —8r,) holds for the gradings associated
to unlinks in (S* x $?)#*. By Lemma 3.9,

sw() —5,(¢) = PD[Eaﬁﬁ/]~
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Under the inclusion t.: Xapg — W(Y,S1), we have that PD[X,sp/| = ¢*PD[X]. Noting that

ea(ewlO)” a6 W _ (., (4)) U PDIS] ~ PDIS]U PDIS) = {es(sw (), 181) ~ 5] 15,

we see that the expression defining %(grw(x) — gr,(x)) becomes exactly the expression defining
A(x). O

7. LINK COBORDISMS AND ABSOLUTE GRADINGS

In this section we prove the grading formulas for link cobordisms stated in Theorems 1.4 and
2.14. In Section 7.1 we outline the construction of cobordism maps from [Zem16]. In Section 7.2 we
compute the grading change associated to each elementary link cobordism, and in Section 7.3 we
prove the general grading formula.

7.1. Overview of the link cobordism maps. Before we prove Theorem 2.14, we need to give a
brief summary of the construction of the link cobordism maps from [Zem16]. The maps are defined
as a composition of maps for elementary link cobordisms of the following form:

(1) 0- and 4-handles, which contain a standardly embedded disk with a dividing set consisting
of a single arc.

(2) Cobordisms obtained by attach a 1-handle or 3-handle to Y\ L.

(3) Cobordisms obtained by attaching a collection of 2-handles along a framed 1-dimensional
link in Y\ L.

(4) Elementary saddle link cobordisms in [0,1] x Y (see Figure 7.1).

(5) Cylindrical link cobordisms that add a pair of adjacent basepoints to a link (see Figure 7.3).

We now briefly describe the maps associated to each of the five elementary link cobordisms. We
refer the reader to [Zem16] for further details.

We begin with the 0-handle and 4-handle maps. A 0-handle cobordism is a decorated link
cobordism (W, F) from (Y,L) to (Y U S3, L U TU), where U is a doubly based unknot in S%, W =
([0,1] x Y) U B* and F consists of the surface ([0,1] x L) U D?, where D? C B* is a standardly
embedded slice disk of an unknot. A 4-handle cobordism is defined analogously. We let (52, w, z) be
the Heegaard diagram for (S, U) with no a or 3 curves. On the level of diagrams, if (X, a, 3, w, z)
is a diagram for (Y, L), then (XUS? o, B8, wU{w},zU{z}) is a diagram for (Y US3 LUU). Noting
that the tori T, and Ty coincide between the two diagrams, we define the 0-handle and 4-handle
maps as the identity on the level of intersection points, with respect to these diagrams.

The 1-handle and 3-handle maps are defined similarly to the constructions in [OS06] and [Juh16].
Given a pair of points Sp = {p1,p2} in Y\ L (thought of as a 0-sphere), we pick a Heegaard diagram
(3, o, B,w, z) such that p1,ps € ¥\ (U B). A Heegaard diagram for the surgered manifold Y (Sp)
can be obtained by removing two small disks centered at p; and ps, and connecting the resulting
boundary components with an annulus A. Inside of A, we add two new curves, «g and Sy, which are
both homologically essential in A, and intersect in a pair of points {#%,0~}. The points 61 and 0~
are distinguished by the relative Maslov grading. The 1-handle map is then defined by the formula

FYJL’SO’E (X) =X 9+7

extended equivariantly over the ring R%. The 3-handle map is defined similarly, and is the dual of
the 1-handle map.

The 2-handle maps are defined similarly to [0S06]. If Sy is a framed 1-dimensional link in Y\ L,
and s € Spin“(W(Y,S1)), then the 2-handle map Fy s, s is defined by picking a S-bouquet in Y’
for Sy, as well as a Heegaard triple 7 = (X, a, 3, 3', w, z) which is subordinate to S;. In this case,
the Floer homology HFL™ (X, 3,3, w, 2z, 0,50) has a distinguished element 9;;5,, for any coloring o
of w U z. The 2-handle map is then defined by counting holomorphic triangles via the formula

Fyis,s(x):= Y > #ME) UV oy,
YETaNTsr yems(x,07 ,.y)
p()=0

sw(P)=s
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Next we discuss the band maps. The band maps are described in detail in [Zem16, Section 6].
We refer the reader back to Definitions 3.5 and 3.6 for the definition of an oriented a-band, and the
definition of a Heegaard triple subordinate to an a-band. If (X, e/, o, 3, w, z) is subordinate to an
a-band, then (X, &/, o, w, z) represents an unlink U/, in (S x $2)#*. Furthermore, all components
of Uy o have exactly two basepoints, except for one component, which has four.

According to [Zem16, Lemma 3.7], there are two distinguished elements

/}!F — /
;‘Ca?@z’a € ‘C (Z,a ,a,W,Z,U,E()),

for an appropriate coloring o. The element ©Y),  is a generator of the top gr,, graded subset of

HFL™ (3, &, o, w,2,0,50), while ©2,  is a generator of the top gr, graded subset.

There are two band maps
(7.1) Fg Fg: CFL”(Y,L%,s) — CFL™(Y,L(B)’,s),
defined by counting holomorphic triangles via the formulas

Fg (x) :== Fpap,s(0%, ®x) and FE(x) :=Forap,s(O%, ®x).

The map F} is the map induced by a decorated saddle cobordism inside of [0,1] x Y, where all
divides go from {0} x L to {1} x L(B). Furthermore, if f denotes the Morse function (¢,y) — ¢,
then f restricts to the link cobordism surface to be Morse and have a single critical point, which is
of index 1, and occurs inside of Xy,. Furthermore, f restricts to a Morse function on the dividing
set with no critical points. The map F'g corresponds to a similar decorated saddle cobordism, where
the index 1 critical point occurs inside of ¥,. These are illustrated in Figure 7.1.

The requirement on the coloring o for one of the band maps in Equation (7.1) to be defined

corresponds exactly to the requirement that ¢ is induced by the appropriate decorated link cobordism
from Figure 7.1.

(Y, L(B))

FIGURE 7.1. Decorated link cobordisms corresponding to F% and F. The
underlying 4-manifold is [0, 1] x Y. Outside of the region shown, all of the dividing
arcs are of the form [0, 1] x {p}, for a point p € L\ (w U z).

Finally, we need to describe the cobordism maps which add or remove an adjacent pair of base-
points on the link. These are the quasi-stabilization maps, and are described in the context of the
link Floer TQFT in [Zem16, Section 4]. Suppose that H = (X, o, 3, w,z) is a diagram for L and
that C' is a component of L \ (w U z) which is contained in the a handlebody U,. Suppose that
0C = {w',2'}. Let w and z be two new basepoints, contained in C. Let L _ denote the link
(L,wU{w},zU{z}). We can form a diagram H* for (Y, ), as follows. Let A C ¥\ a be the
connected component containing w’ and z’. Let o, be a simple closed curve in A which divides A
into two components, one of which contains w’, and the other contains 2’. We then pick an arbitrary
point on a, (away from the B curves), and add a very small 3y curve, which intersects a; in two
points, and bounds a small disk. The disk bounded by Sy is split into two bigons by as. In one
bigon, we put w, and in the other, we put z. The curves ay and [y intersect in two points, which
are distinguished by their gr,, and gr, gradings. Let us write 8% for the top gr,, graded intersection
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point, and 6% for the top gr, graded intersection point. The curves as, By, and the intersection
points 8% and 6% are shown in Figure 7.2.

FIGURE 7.2. A local picture of a quasi-stabilized Heegaard diagram.

For appropriately chosen colorings ¢ and ¢, there are two positive quasi-stabilization maps

’

(7.2) S{Eyz, TJ’Z: CFL>®(Y,L%,s) — CFL™(Y, (Li}z)" ,5),
defined by the formulas
(7.3) S (x) =x@0% and T .(x) =x® 67,

extended linearly over the ring R%.
There are also two negative quasi-stabilization maps, with the opposite domain and codomain as
S+ and T _, defined via the formulas

(74)  8,.x®@0")=0, 5, .x0f)=x, T, (x@0")=x and T, .(x®6%)=0.

The quasi-stabilization maps correspond to the decorated link cobordisms shown in Figure 7.3. The
requirement on the colorings o and ¢’ in Equation (7.2) corresponds exactly to o and ¢’ being induced
by a coloring of the associated decorated link cobordism in Figure 7.3. See [Zem16, Corollary 4.4]
for more on the coloring requirements and the quasi-stabilization maps.

FiGURE 7.3. Decorated link cobordisms for the quasi-stabilization maps
St .y Su.s T . and T, .. The underlying 4-manifolds are [0,1] x Y.

w,z w,z"? w,z

7.2. Grading changes of elementary link cobordism maps. In this section, we compute the
grading changes induced by the link cobordism maps for elementary link cobordisms.
We begin with the quasi-stabilization maps:

Lemma 7.1. The quasi-stabilization maps are graded and satisfy
As(S5,.(x)); — As(x); = 36(J(K).j)  and  As(T; . (x)); — As(x); = —36(J(K), ),
for o € {+,—}, and where K denotes the component of L which contains w and z. Furthermore,
8l (55,2 (%)) — gry (%) = g1, (T} . (%)) — gr,(x) = +3

and
ng(Sﬁ’aZ(X)) - ng(x) = grw(Tsj,z(X)) - gI‘w(X) = _%
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Proof. We will focus on the Alexander grading formula, since the proof of the Maslov grading formula
is similar.

We start with a parametrized Kirby diagram P = (¢g, A, Sy, f) for (Y,L) and a Heegaard triple
T = (%, a,8,8,w,z) subordinate to a S-bouquet of S;. We can quasi-stabilize T to get a triple
T+ =, aUf{as}, BU{Bo}, B U{B}, wu{w},zU{z}) which is subordinate to the same S-bouquet
for S;. In T, the curves By and () both bound small disks, and intersect each other in two points,
9;0 Y and 950 By The configuration is shown in Figure 7.3.

Stcl)ppose Yap € Ta NTg. Pick xap € To NTp, Opg € Tg N Ty, and a homology class ¢ €
Up) (Xaﬁv 65[3’, yaﬁ’)‘

To compute the Alexander grading of Sj)ﬁz(yaﬁ/) =Yap X 0% gyr We will use the homology class
Yt € ma(xap X 0% 5, Oppr X Ggoﬁé,yaﬁ, X 0;"5%) shown in Figure 7.4. The homology class ™

is formed by taking a class ¢ € ma(Xap, Oppr,¥ap ), and adjoining a small triangle in the quasi-
stabilization region.

+
95056

ﬁO ‘-—\\\\Bé
\

0z \6* Qg

9505()

FIGURE 7.4. The quasi-stabilization region of the triple 7+, and the tri-
angle class ¥T. The subscripts on the intersection points labeled % and 6% have
been suppressed.

By explicit examination of the formula defining the Alexander grading in Equation (5.21), we
compute

A(S;)L,Z(Yaﬁ/))j - A(Yaﬂ’)j
:A(yaﬁ’ X 92’556)? - A(yaﬁ/)j

(7.5) =A(Xap ¥ 0% 5,); — Al%ap); + A(Opg x O4o5)i — AlOsp);
+ (nwu{w} - an{Z})j (¢+) - (nW - nz)j (w)

=A(xap % O 5,); — AXap)j + A(Oppr x 0} 5); — A(Opgr);.
However by the definition of A from Section 5.3, the last line of Equation (7.5) is +% if J maps w
and z to j, and 0 otherwise.
The above argument can be modified to compute the grading changes of the other quasi-stabilization
maps S, ., T, and T,, .. The Maslov grading formulas are proven using a similar argument. [

We now consider the grading changes associated to the band maps. Suppose that L is a link,
J: L — J is an indexing and S is a generalized J-Seifert surface. If B is an oriented band, whose
ends are on components of L which are given the same index by J, then S U B is a generalized
J-Seifert surface for L(B). Note that S U B may not be an embedded Seifert surface, though that’s
not a requirement for a generalized J-Seifert surface (see Definition 2.11).

Lemma 7.2. Suppose that (Y,L) is a multi-based link with an indexed, type-partitioned coloring
(0,J), with index set J, and B is an a-band for L in Y. If (0,J) is compatible with one of the
decorated link cobordisms shown in Figure 7.1, then the maps FYY and F'g are graded with respect to
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the Alexander multi-grading over J, and satisfy

Asup(FB(x)); — As(x); = 4%5(]} jo)  and  Asup(FE(x)); — As(x); = —%5(3',]'0),

where jo denotes the index assigned to the link components that B is attached to. If o is a type-
partitioned coloring of I which is compatible with the appropriate decorated link cobordism in Fig-
ure 7.1, then the band maps are graded with respect to the Maslov gradings, and satisfy

8w (F5 (%)) — gy (x) = gr,(Fg (x)) — gr,(x) = 0,
and
8w (FE (X)) — gry (%) = gr,(F5(x)) — gr,(x) = —1.

Proof. We will focus on the Alexander grading change of F5.

First, in general, if (X, &', a, 3, w, z) is any triple subordinate to a band B attached to L in Y, and
Yap € TaNTp and y, 45 € Tor NTp are intersection points representing the same Spin® structure in
Y, then there is a homology class Ya/ap € T2(OY o) Yas Yars) Dy [0S04d, Proposition 8.5]. Recalling
from Lemma 3.7 that X,/ as becomes [0,1] x Y after filling Y,/ with 3- and 4-handles, any other
triangle in mo(OY,,, Yap,Yarp) can be obtained by splicing disks into the ends of 14/a5. Hence, it
follows that the quantity

(7.6) AsuB(Yarp)i + Nz — nw)j(Varap) — As(Yap)i

is independent of the intersection points y, g, y,s and the triangle 14/q5. Furthermore, any two
Heegaard triples subordinate to B can related by a set of moves similar to those in Lemma 3.4 (see
[Zem16, Lemma 6.3]) and hence an associativity argument like the one in Lemma 6.2 implies that
the quantity in Equation (7.6) is independent of the Heegaard triple (X, &/, o, 3, w, z) subordinate
to B.

We now claim that we can choose a parametrized Kirby diagram P so that the set L,z U By can
be isotoped into a plane in S3. To construct such a P, we work backwards, and start with an unlink
U embedded in a plane in S3, and define By to be a planar band connecting or separating two
components of U. We let Sf 5 denote S\ (N(U) U N(By)), and Yzup denote Y \ N(L U B).
The 3-manifolds S[?’]U B, and Yrup each have one genus 2 boundary component, as well as the same
number of torus boundary components. Let D and D’ denote two compressing disks in N(L U B)
which are disjoint from L and L(B), respectively. Let Dy and Dj denote analogous compressing
disks in N(U U By). We pick a diffeomorphism

¢: asguBo — aYLuB

which maps meridians of U to meridians of L, and sends 9D to 0Dy and sends 0D’ to dD. We
now pick a parametrized surgery datum (Definition 4.1) for the pair (S3, By> YLUB; @), which then
induces a parametrized Kirby diagram P with the stated properties.
Using the parametrized Kirby diagram P constructed in the previous paragraph, we construct a
Heegaard quadruple (X, o/, o, 3, 3', w, z) such that
(1) (%, a,B,8',w,z) is subordinate to the framed link S; C S3\ U.
(2) (Z,a, a0, B, w,z) is subordinate to the band B C Y.

Since B is contained in the a-handlebody, there is an induced band By for the link L,g inside of
Yop & Yop =2 53 We note that Log(Bo) = Log. Furthermore, the triple (¥, o/, a, 3, w,z) is
subordinate to the band By.

Let yop € Toa NTgr, OF,, € Tar N Ty, and let Yarap € T2(OF s Yap s Yarp) be any homology
class of triangles (such as one which might be counted by the map F}). Next, pick intersection
points X453 € To N Ty and Ogg € Tg N Ty with 54 (Opgp) torsion, as well as a class apg €
m2(Xap, ©pp', Yap)-

Arguing as in Lemma 6.2, we can find an intersection point x5 € To» NTg, as well as homology
classes Yqa/ag € WQ(@X(X,XQ[Q,XQ/@*) and Yo/ gg € WQ(XQ//@, @ﬂﬁ’vyo/ﬁ’) such that

(77) 77[}(1/046 + d)a’ﬁﬁ' = wa’aﬂ’ + waﬂﬁ/'
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We note that (2, o/, 3, 8', w, z) is a Heegaard triple subordinate to the framed link Sy, and (X, o', 3, w, z)
is a diagram for a multi-based unlink in S®. Hence (3, a/,3,8',w,z) can be used to compute the
Alexander grading of the intersection point y g

Arguing as in Lemma 6.2, using the definition of the Alexander grading, we compute that

ASUB(yO/B’)j - AS(yaﬁ’)j :‘Z(Xa/ﬂ)j + g(eﬁﬁ’)j + (nw — nz)j(wa’ﬁﬁ’)
— AXap)j = AOps)j — (Nw = 12) (Vaps)-
Combining Equations (7.7) and (7.8) and rearranging, we see that

(7.9) AsuB(Yarp )i + (2 — nw)j(Warap) — As(Yars); = AXarp)j + (na = 1w)j (Parap) — A(Xap);-

We note that quantity on the left side of Equation (7.9) is exactly the formal grading change of the
map Fg.

Next, we note that the quantity on the right side of Equation (7.9) is exactly the formal Alexander
grading change of the map F7 , for the band By attached to U C S3.

As we argued earlier, the formal grading change of I3 is independent of the choice of homology
class of triangle, as well as the Heegaard triple subordinate to By, and hence we can pick any
convenient Heegaard triple and compute the grading change for any convenient homology class of
triangle. We perform the model computation in Figure 7.5. We can pick a triple (3, o/, o, 3, w, z)
subordinate to the band By such there is an annular subregion which appears as in Figure 7.5, and
outside the annular region, the a’ curves are all small Hamiltonian isotopies of the o curves. We
pick a triangle class ¢ € (O, ONs: @fy",ﬁ). Outside of the annular region shown in Figure 7.5,
we can assume that the class 1 consists of only small triangles, and inside the annular region, we
assume that the class 1 is one of the two shown in Figure 7.5, depending on whether By splits a
component of U into two components, or connects two components. It is straightforward to compute
in both cases, using Figure 7.5 and the definition of the Alexander grading A for unlinks in S2 from
Section 5.3, that

(7.10) AO¥5); + (g — nw); (1) — A(OF,); = %5(.7',3'0)-

As we described previously, Equation (7.10) is equal to the right hand side of Equation (7.9), and the
left hand side of Equation (7.9) is exactly the formal Alexander grading change of F%, establishing
the grading formula for F'5.

A symmetrical argument can be used to compute the Alexander grading change of the band maps
FY¥ . Finally, we note that a simple modification of the above argument can be used to compute the
Maslov grading changes.

(7.8)

]

7.3. Proof of Theorem 2.14. We can now prove our main grading theorem:

Proof of Theorem 2.14. Firstly, it is straightforward to check that each of the formulas we’ve de-
scribed for the Alexander and Maslov gradings are additive under composition of cobordism. Hence,
it is sufficient to check the grading change formulas for the elementary cobordisms in Section 7.1.

We will focus on proving the theorem for the Alexander grading, since the proof of the Maslov
grading formulas is an easy modification.

We begin with the 0-handle and 4-handle maps. Clearly the 0-handle and 4-handle maps induce
grading change zero. To verify our grading formula, note that the link cobordism surface consists of
a cylindrical decorated link cobordism inside of [0, 1] x Y, together with a disk in B* which is split
into two components by its single dividing arc. It is straightforward to compute that the expected
Alexander grading change in the theorem statement is also 0, agreeing with the actual grading
change.

Next, we consider 1-handle and 3-handle cobordisms. For simplicity, we will focus on the 1-handle
maps, since the 3-handle maps are dual to the 1-handle maps. For a 1-handle which connects two
components (Y7,1L;) and (Y3, Ly), we can obtain a parametrized Kirby diagram P for (Y1 #Y5, L1 ULs)
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FIGURE 7.5. A model computation to compute the grading change of the
band map F7 . The left side corresponds to the case that By is connecting to
components of L, and the right side corresponds to the case that By is splitting a
component of L into two components.

by taking the connected sum of a parametrized Kirby diagram P for (¥7,L1), and a parametrized
Kirby diagram Py for (Y3,1L5). A Heegaard triple 7 for P can be obtained by taking the connected
sum of a triple 7; = (X1, a1, 8y, 8}) for P; and a triple T = (X2, e, B35, 35) for Py. In the connected
sum annulus, we add three new curves to the Heegaard triple, c, 8o and 3, which are homologically
essential in the annulus and such that ag N By, Bo N B and ap N B each consists of exactly two
points. We will write 9;} 5, and 0o 5o for the two points of g N By, and similarly for Sy N 3} and
ap N Bf. We pick classes Varp ] € 7T2(Xa1/31,@ﬁ1ﬂ17ym/3;) and Ya,p,6, € Wg(Xazgz,@,@Zﬂé,yazﬁé),
assuming Opg, 3; and Opg, s, represent the torsion Spin® structure. For convenience, we can assume
Ya,p,p; and Ya,p,s, have zero multiplicity at the connected sum points. We construct a triangle
class

+ + + +
(CRINS 7T2(Xa151 X eaoﬂo x Xa25276515{ X eﬁoﬁ(’) x 6525573’&1,3{ x eagﬂé X yazBé)

on 7T by taking the connected sum of v, 5, g and Yq,p,5, and inserting a small triangle class in

the connected sum region. A straightforward computation using ¥, ¢4, s, g and Ya,p,p, shows
that

As108: (Vaupy X 00 X Yanpy)i = Asi (Var )i + Ase (Vaupy)i
whenever S; and S are generalized J-Seifert surfaces of L1 and Ly in Y7 and Y5, respectively. It
follows that the 1-handle maps are O-graded with respect to the Alexander grading, agreeing with
the formula in the theorem statement. A similar argument works for the 3-handle maps, when a
3-handle splits a component of Y into two components.

For a 1-handle which is attached with both feet on a single component of Y, we argue as follows.
If P is a parametrized Kirby diagram for (Y,L), with framed link S;, then a parametrized Kirby
diagram P’ for (Y#(S* x S2),L) can be obtained by adding a 0-framed unknot to S;, which is
unlinked from S;UU. If T = (3, o, B3, B, w, z) is a surgery triple for P, a surgery triple for P’ can be
obtained by taking the connected sum of a genus one Heegaard triple (12, ag, Bo, 3f), where 3y and
B, are small Hamiltonian isotopies of each other, intersecting twice, and «q is a curve on T2 which
intersects each of By and 3 exactly once. An easy computation shows that if Yap € Ta NTg, and
S is a generalized J-Seifert surface for L in Y, then

As(Yap X %/)j = As(Yap)is

showing that the 1-handle maps induce Alexander grading change 0, agreeing with the formula from
the theorem statement.

We now consider the 2-handle maps. The fact that the 2-handle maps induce the stated grading
change is essentially a tautology, and follows from an associativity argument similar to the proof of
Lemma 7.2.
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Finally, the quasi-stabilization and band maps have the expected Alexander grading changes by
Lemmas 7.1 and 7.2 (note that the corresponding decorated link cobordisms are shown in Figures 7.1
and 7.3).

Having established the Alexander grading change for each elementary link cobordism, the grad-
ing change follows for a general link cobordism. The formula for the Maslov grading change is a
straightforward modification. O

8. EQUIVALENCE WITH OZSVATH AND SZABO’S CONSTRUCTION
In this section, we prove the following:

Proposition 8.1. IfLL is a multi-based link in S, and each component of L has exactly two base-
points, then the Alexander multi-grading A defined in Section 5.5 coincides with the Alexander
multi-grading defined by Ozsvdth and Szabd in [OS08].

We warn the reader that Proposition 8.1 is stated only for the Alexander multi-grading, and not
the Maslov gradings. For links in S3, there is a canonical choice of absolute Alexander grading,
characterized by a conjugation symmetry property. For the Maslov gradings, there are several
natural normalization conventions, depending on ones perspective. Nonetheless, for doubly based
knots in S3, the Maslov grading gr,, coincides with Ozsvath and Szabé’s homological grading; See
Section 1.5.

8.1. Gradings using a-bouquets. We defined the absolute grading in Section 5.5 using S-bouquets
of framed links in S2, but it will be useful to know that a-bouquets can be used as well. We will write
A¢ for the gradings defined using a-bouquets, and Ag for the gradings defined using [S-bouquets.

Similarly there are Maslov gradings grl, gri , grd and grf?.

Lemma 8.2. The absolute gradings satisfy
grd = grf grd = grb and o =A%

Proof. We focus on the equality for the Alexander gradings; the equality for the Maslov gradings
can be proven similarly.
The key idea is that given a framed link S; in Y \ L, we can define two “cobordism maps”

(8.1) FYys s, Fyrs ss: AY,Ls) =AY (S),L,s),

whenever s € Spin®(Y) and " € Spin®(Y (S;)) are Spin® structures which have a common extension
over the 2-handle cobordism W (Y,S;), and S and S’ are generalized J-Seifert surfaces in Y and
Y (Sy).

To define the map FQL’ShS’S,, we pick a 3-bouquet B? for Sy, as well as a triple T = (3, o, 3, 8, W, z)
which is subordinate to B?. We pick a homology class 1) € m(x,0,y) where 5y (X) = 5, 5y (y) = &
and 54,(0) is torsion. If A € A(Y,L(%?) 5), we define

T {ea(s), [£5]) — [ - [35)]
FY 1559 () = AX); + AO); + (nw —na); (1) + 25 :
where f]j is formed by capping off the surface [0,1] x L; € W(Y,S;) with S; and —S}. A map
Fy1 s,.5.5 1s defined analogously, using a-bouquets.

The proofs of Lemmas 6.1, 6.2 and 6.3 adapt to show invariance of the maps Fy ¢ ¢ and F{EL S5
from the choice of bouquet and Heegaard triple.

Furthermore, we claim that the cobordism maps on gradings satisfy the following “composition
law”:

(8.2) Fio o ss(A2) =A%  and  Fpg ge(A2) = A3,
Equation (8.2) is proven similar to the standard composition for the link cobordism maps. If P is a

parametrized Kirby diagram for (Y,1LL), with framed link S§ C S3\U, one takes a Heegaard quadruple
(2,a,8,8,8",w,z) such that (X, ar, 3, 3) is subordinate to a bouquet of S}, and (£, , 3, 3") is
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subordinate to a bouquet for S; C Y, and (3, e, 3, 3") is subordinate to a bouquet for SjUS; C
3. Using an associativity argument like the one in Lemma 6.2, it is straightforward to establish
Equation (8.2).

If S; and S| are two framed links in Y, then adapting the associativity argument from Lemma 6.2
also shows that

B a _ pa B
(8.3) Fy(sl))hslps,,ﬁ, o Fyy s, 5,50 = FY(S/I),L,Sl,S”’,S’ © FY,L,S’l,S,S”/

whenever S” and S" are generalized J-Seifert surfaces for L inside of Y (S1) and Y (S)), respectively
(compare [OS06, Lemma 5.2]).

If U is an unlink in any (S* x $2)#* we will write (abusing notation slightly) Sy for any Seifert
surface for U. Recall that A denotes the Alexander grading on the link Floer homology of the unlink
in (S! x $2)#*  which we declared in Section 5.3. We note that it is easy to compute from the
definition that

(8.4) A=Ag = A3,

We pick a parametrized Kirby diagram P of (Y, L), with framed link S; € S3\ U, and a diffeo-
morphism between (S3(S1),U) and (Y, L). Let S} denote the framed link consisting of a 0-framed
meridian for each component of S;.

By Equation (8.2), we have

A B B _ B B
(8.5) A= (FypLg; 5.5 °Fssus,,50.9)A) = FyLg s.5,(As),

where U denotes the unlink U in S3, decorated with the basepoints from L induced by P

Since the “cobordism maps” on the set of Alexander gradings are isomorphisms of affine sets over
@7, to establish that Ag = A%, it is sufficient to show that they have the same evaluation under any
2-handle cobordism map. Hence, by Equation (8.5), it is sufficient to show that

(8.6) A=F g g6,(A%).
Importantly, we note that since S C S consists of O-framed unknots which are unlinked from U,
the pair (53(S}),U) is an unlink in (S* x $2)#/81]. Hence, by Equation (8.4)
FgS,U,S’l,SO,SO (4) = Fge',U,S’l,So,So (4) = A.

Hence we compute that

F@,L,S;,S,SO(Ag) = (Fg,m,s;,s,so o ng,m,sl,so’s)(A) (Equation (8.2))
= (Fdas) 161 50.50 © Foo,0.8, 50,50) (A) (Equation (8.3))
= Fg3(81),L,Sl,So,So (Z) (Equation (8.4))
= 4, (Equation (8.2))
completing the proof. |

8.2. Conjugation symmetry. As a step towards proving the equivalence of our construction with
Ozsvath and Szabd’s, we will analyze the interaction of our gradings with the conjugation action on
link Floer homology.

If L = (L, p,q) is a multi-based link, then we let L. = (L, q, p) denote the same link, but with the
designation of the basepoints as type-w or type-z switched. There is a natural conjugation action
on Spin“(Y). If s € Spin°(Y’) corresponds to the vector field v, then the conjugate Spin® structure
5 corresponds to the vector field —uv.

We now describe the conjugation action 7 on CFL. Given a Heegaard diagram H = (X, a0, 3,p,q)
for L = (L,p,q), we consider the conjugate diagram H = (-3, 3,a,q,p) for (Y,L). There is
a natural correspondence between the intersection points on H and H. We note however, that
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sy p(x) = 5g,p(n(x))7 by explicit examination of the vector fields constructed by Ozsvath and
Szabé in [0S04d]. On the other hand,

(8.7) 577,4(1(x)) = $3,p(x) + PD[L],

from Lemma 3.8. By Equation (8.7), we see that 5 maps CFL(Y,L,s) to CFL(Y,L,5 + PD[L)).
By extending 7 linearly over the ring Fo[Up, Vq], the map 7 induces an equivariant, filtered chain
homotopy equivalence
CFL>®(Y,L,s) — CFL=(Y,L,5 + PD[L]).
In this section, we prove the following:

Proposition 8.3. Suppose that L = (L, p,q) is a multi-link in' Y with an indezed, type partitioned
coloring (o, J), and L is J-null-homologous. If S is a choice of generalized J-Seifert surface for L,
then the map n: CFL™(Y,L,s) — CFL>(Y,L,5) satisfies

As(n(x)) = —As(x),

for homogeneously graded x. If in addition c1(s) is torsion, then
gry (n(x)) =gr(x)  and  gr,(n(x)) = gry,(x).

Proof. Tt is sufficient to show the claim for C/'F\'L, since the map 7 is Fo[Up, Vg]-equivariant.

We take a parametrized Kirby diagram P = (¢g, A, Sy, f) and a surgery triple T = (£, 0, 3,3, p, q),
which is subordinate to a S-bouquet for S;. If y € T, NTg/, and ¢ € m(x,0,y) is a homology
class of triangles, then the absolute Alexander grading Ag on C/'FTL(Z7 a,3,w,z) is defined by the
formula

As(y); = ), + A(©); + (np(1) — nq(u); + {2 = (5[5

We can form the conjugate triple T = (-3, BI, B,@,q,p) of T. The 3-bouquet for S; now becomes
an a-bouquet for S, and T is now subordinate to this a-bouquet for the same framed link S; in
S3\U.

Using Lemma 8.2, we can use 7 to compute the grading of 7(y). Notice that there is a canonical,
orientation preserving diffeomorphism

(8.8) Xappr = XB/EE.
The identification in Equation (8.8) respects the embedding of both X35 and XE’BE into the 2-
handle cobordism W (S3,S;) from Lemma 3.7. The diffeomorphism from Equation (8.8) restricts to
an orientation preserving diffeomorphism

Taps =2

B'Ba
The homology class 9 induces a class 1 on the conjugate Heegaard triple.

The Alexander grading of 7(y) can be computed using the triple 7 and the triangle class ¢, and
indeed we see that

A1) = A1(); + A0(©)); + (na(D) — (@) + {29 @D ) = [ B3],

We will show that A(n(y)); = —A(y);-
First observe that

(8.9) Ax)); = -Ax);  and  An(0)); = —A(©);,

using the definition of A from Section 5.3 and an easy model computation.
Note that the roles of p and q as type-w and type-z is reversed in 7. Correspondingly

(8.10) (nq(¥) —np(¥)); = —(np(¥) — nq(a))j-

We now consider the homological terms involving the homology class of the surface ¥,35 appear-

ing in the formula for the grading. We note that sp(¢)) = sp(¢). Similarly sq(¢) = §p(¢)+PD[X55]
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by Lemma 3.9. Note that after filling in (Ysp/, Lgg:) with 3-handles and 4-handles containing stan-
dardly embedded slice disks of Lgg/, the pair (X,gs/, Xapp) becomes (W (S3,S1),¥) by Lemma 3.7.
Hence we compute

{e1(sq(¥)), [551) = 5]+ [55]

{cr(sp($) + PDIZ]), [£5]) — [£] - [5)]
—(e1(sp(¥)), [£5]) +2(PD[E], [£5]) — [£] - [£)]
—({e(sp (), [55]) — [8] - [£5))-

Combining Equations (8.9), (8.10) and (8.11), we see that each summand of A(y); is changed to
its negative in A(n(y)),, from which we conclude that A(n(y)); = —A(y);.
The claim about the Maslov gradings is proven similarly. O

(8.11)

8.3. Proof of the equivalence. We can now prove that our gradings coincide with Ozsvath and
Szabd’s:

Proof of Proposition 8.1. By Proposition 8.3, the map 7 induces an isomorphism
(8.12) HFL(S3,L), = HFL(S®,L)_,,

where s € QF denotes our Alexander multi-grading. Since L and L are isotopic links inside of S®
(they are related by a half twist on each link component), ﬁF\L(S 3 L) and ﬁF\L(Sg’, L) are isomorphic
as multi-graded groups. By [OS08, Equation 25], the gradings defined by Ozsvéth and Szabé also
satisfy Equation (8.12). Since the hat version of link Floer homology groups for links in S3 are
non-vanishing and finitely generated over Fy, it is straightforward to see that our definition of the
Alexander multi-gradings must coincide with theirs. O

9. COMPUTATIONS OF THE LINK COBORDISM MAPS

In this section, we perform some computations of the link cobordism maps in certain special cases.
We focus on computing the map when F is obtained by puncturing a closed surface, or computing
the induced map on HFL™ for more general link cobordisms.

A key computational tool is [Zem16, Theorem C], stated below as Theorem 9.4, which computes
the map induced by a decorated link cobordism when we algebraically forget about either the w
basepoints, or the z basepoints.

Throughout this section, we will focus on colorings of links o: w Uz — P where P has exactly
two colors, and all w basepoints are assigned the variable U, and all z basepoints are assigned the
variable V. For such colorings, we write R~ for the ring

R™ :=Rp =F[U,V].
For notational simplicity, we omit the coloring ¢ from the notation in this section.

9.1. A distinguished element of Fy[U] ® A*(H;(X;F2)). In this section we describe a distin-
guished element of Fo[U] ®p, A*(H1(X;Fg)), which appears frequently in our computations, and is
a familiar expression from Seiberg—Witten theory.

Definition 9.1. Suppose ¥ is an oriented surface of genus g, with either zero or one boundary
component. We say a collection of simple closed curves Ay, ..., Ay, By,..., By on X form a geometric
symplectic basis of Hy(3;Z) if the following hold:

(1) {[A1],...,[Ag],[B1],...,[By]} is a basis of Hy(%;Z).

(2) The geometric intersection number of A; and By is d; ;.

Given an oriented, connected surface with zero or one boundary component, we consider the
element
9(%)
(9.1) £) = [T W +14] A [B))) € Fo[U] @, A" (H(S;F2)).

j=1
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Although the element £(X) is defined by picking a geometric symplectic basis, we in fact have the
following:

Proposition 9.2. The element £(X) is independent of the choice of geometric symplectic basis of
H,(X;Z). Furthermore, the action of MCG(X) on Fo|U] @ A*(H;(%;F2)) fizes £(X).

Proof. If 8% # @, let 3 denote the surface obtained by capping off the boundary of ¥ with a disk.
Since Hi(X;7Z) — Hy(3;Z) is an isomorphism, it is sufficient to show the analogous statement for
the element &(3) € Fo[U] @ A*(H,(%;Fy)), defined using a geometric symplectic basis of H; (3; Z).

Suppose that {[A1],...,[Ag], [Bi],...,[Bg]} and {[A%], ..., [A}], [Bi],...,[B;]} are two choices of
geometric symplectic bases. We can pick a single automorphism ¢ of ¥ such that for alli € {1,..., g}
we have ¢(F;) = F!, where F; and F] are the punctured tori

Furthermore, we can arrange that ¢(A;) = A} and ¢(B;) = B} (up to orientation reversal). Hence, it
is sufficient to show that 5(2), computed with the basis A1,..., Ay, B1,..., By, is fixed by MCG(XAJ).
According to [Lic64], the group MCG(f]) is generated by Dehn twists along the curves ay,...,aq,
bi,...,bg, c1,...,c4—1 shown in Figure 9.1. We can assume a; = A; and b; = B;.

FIGURE 9.1. Generators of MCG(3).

We now consider invariance of £(£) under Dehn twists along a;. The only curve in our basis which
is changed by a Dehn twist along a; is B;. A Dehn twist along a; sends the class [B;] to [B;] + [4].

This does not change the element & (f]), since
U+ [AJ([Ai] + [Bi]) = U + [Ai][Bi].

Invariance under Dehn twists along a curve b; is similar.
We finally consider a Dehn twist along a curve ¢;, which we note intersects both B; and B;1,
and none of the other A; or B; curves. A Dehn twist along ¢; sends the homology class [B;]

[B;] to
[Bi] + [Ai] + [Ai1] and sends [Bit1] to [Biy1] + [Ai] + [Aiz1]. To show invariance of £(2), we
compute

(U +[A)([Bi] + [Ad] + [Ai1])) (U + [Aia) ([Bisa] + [Ai] + [Aira]))
=U” + ([AJ)[Bi] + [Ai+1][Bi+1])U + [AJ][Bi][Ai41][Bit]

=U + [A][B]))(U + [Ais1][Bit1])-

+
_|_

It follows that £(3) is preserved by the action of MCG(3), and hence is independent of the choice
of geometric symplectic basis. As we remarked earlier, this implies that £(X) is also independent of
the choice of geometric symplectic basis, and consequently is fixed by the action of MCG(X). ]

9.2. The algebraic reductions of the link cobordism maps. We recall that if (X, o, 3, w) is
a multi-pointed Heegaard diagram for (Y, w), the module CF~ (Y, w,s) is the free F5[U]-module
generated by intersection points x € T, N Tg. By counting holomorphic curves, one can define a
differential on CF~ (Y, w,s), similar to the expression which appears in Equation (2.1).

For links equipped with a coloring with exactly two colors, such that the w basepoints are given
the same color, and the z basepoints are given the other, we can recover CF~ from CFL™ via either
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of the two natural isomorphisms
CFL™(Y,L,s) ®g- R™/(V —=1) = CF (Y, w,s) and

©:2) CFL™(Y,L,s) ®r- R™/(U — 1) = CF~(Y, 2,5 — PD[L)).

As a general algebraic fact, if F': M7 — M> is a map of R-modules, and N is an R-module, there
is an induced map F ® idy: M1 ®g N — M, ®r N. Hence, given a decorated link cobordism
(W, F): (Y1,L1) — (Y2,Ls), we obtain two maps:

Fw,rslv=1: CF~ (Y1,w1,8|y,) = CF~ (Y2, w2,5|y,)
and
FW7]:,5|U:1Z CFi(Yl,Zl,ﬁ‘yl — PD[Ll]) — CFi(Y‘Q,z275|Y2 — PD[LQ])

In [Zem15], the author constructs a “graph TQFT” for CF~. The objects of the associated
cobordism category are closed 3-manifolds with collections of basepoints. A cobordism from (Y7, w1)
to (Y2, ws) consists of a pair (W,T') such that W is a compact, oriented 4-manifold with OW =
—Y; UYs, and I' C W is a finite, embedded graph satisfying the following:

(2) Each basepoint in w; has valence 1 in T".
(3) T is decorated which a choice of cyclic ordering at each of its vertices.

Given a ribbon graph cobordism (W,I"): (Y1,w;) — (Y2, wa), there are two maps
FVJL[‘/,F,sv FV%I‘,s: CF—(Y17W175|Y1) - CF—(Y27W275|Y2)'

The construction from [Zem15] corresponds to the type-A maps. The type-B maps are a simple
variation, which are described in [HMZ18, Section 3].
The type-A maps and the type-B maps satisfy the relation

(9.3) Fiyre =~ Flis

where T is the graph obtained by reversing the cyclic orders of I' [HMZ18, Lemma 5.9].
To relate the link cobordism maps to the graph cobordism maps, we need the following notion:

Definition 9.3. Suppose (W, F): (Y1,L1) — (Y2,L2) is a decorated link cobordism with type-w
subsurface ¥y,. If I' C W is a ribbon graph, we say that I' is a ribbon I-skeleton of ¥, if the
following hold:

(1) T C Xy

2) TNY; =w,.
(3) X is a regular neighborhood of T" inside of ¥.
(4) The ribbon structure of I' is compatible with the orientation of ¥.

The following general reduction theorem is proven in [Zem16]:

Theorem 9.4 ([Zem16, Theorem C]). If (W, F) is a decorated link cobordism, and T'v, C Xy and
', C X, are ribbon 1-skeleta, then

~ B ~ A
Fwrslv=1 2 Fyr,, and  Fwrslv=1 = Fyr, o pps)-

We now describe the maps induced by several simple graph cobordism, based on several compu-
tations from [Zem18].

Appearing in our formulas are two natural endomorphisms of CF~ (Y, w,s). The first endomor-
phism is the action of A*(H1(Y;Z)/ Tors), described by Ozsvath and Szabé [0S04d, Section 4.2.5].
If v is a closed loop in Y, we will write A for the map

Ax) = D a(y, 9)#M() U™ -y,

pET2(X,y)
w(e)=1

where a(v, ¢) denotes the intersection number of ¢ with v (appropriately interpreted).
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The second endomorphism is the map ®,,, defined via the formula

Bu(x)i=U" Y nu(9)#M(e) - U™ -y
pEm2(x,y)
m(p)=1
The map ®,, is considered in [Zem15].
We consider the four ribbon graph cobordisms ([0, 1] X Y,T;) shown in Figure 9.2. The homology
classes of various loops in the graphs are labeled.

([0,1] x ¥, Ty) ([0,1] x Y, T) ([0,1] x Y, Ts) ([0,1] x Y, T'y)

FIGURE 9.2. The graph cobordisms ([0,1] x Y, T;) for ¢ € {1,2,3,4} consid-
ered in Proposition 9.5.

Proposition 9.5. The graph cobordism maps for ([0,1] x Y,T';) satisfy

(1) F[O,I]XY,Fl,s =~ A'y-

(2) F[O,I]XY,F2,5 ~ U+ A’n A'yz-
(3) Floa)xy,rs,s = Ay +UDy,.
(4) Floa)xy,ra,s =~ Pu.

The above relations hold for both the type-A and B versions of the graph cobordism maps.

Proof. The computation of the maps for I'y and T's is performed in [Zem18, Proposition 4.6]. We
note that [Zem18, Proposition 4.6] is stated only in the case that [y1] = [y2] = 0 € H1(Y;Z) (so
that the induced map is the action of U). Nonetheless, the proof given in [Zem18] demonstrates
the stated formula for general 71 and -9, and then specializes to the case that [y;] = [y2] = 0. The
computation of the map for I'y is performed in [Zem18, Lemma 4.5].

The computation of the cobordism map for I's follows from the computation of the map for I'y,
and T'y, using the vertex breaking relation, which describes the effect of changing the relative order
of two edges adjacent to a vertex in the graph. The relation is shown in Figure 9.3, and is proven in
[Zem18, Lemma 4.4]. To obtain the stated formula for the graph cobordism map for I's, we apply
the vertex breaking relation at the valence 4 vertex, showing that the induced map is a sum of a
graph cobordism for the graph I'y, as well as U times the graph cobordism map for I'4.

Finally, we briefly describe why the type-A and B maps coincide for the graphs I'y, I's, I's and
Ty. For a rigorous proof, we refer the reader to the proof of [Zem18, Proposition 4.6], where the
claim is proven for I'y and I's. The proof therein extends easily to I's. We note that Equation (9.3)
implies that switching from type-A to type-B corresponds to reversing the cyclic orders (immediately
implying that the type-A and B maps agree for I'y). Hence, on a more conceptual level, one can
use several applications of the vertex breaking relation in Figure 9.3 to relate the type-A the graph
cobordism map for I'; to the type-A graph cobordism map for T';, for i € {1,2,3,4}, though we leave
this exercise to the reader. ]

The graph cobordism computations from Proposition 9.5 provide a useful description of certain
reductions of the link cobordism maps:

Lemma 9.6. Suppose that (W, F): (Y1,K1) — (Y2,Ks) is a decorated knot cobordism, such that F
is a connected, decorated surface whose dividing set consists of exactly two arcs, a1 and az, which
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FI1cURE 9.3. The vertex breaking relation. The vertex breaking relation illus-
trates the effect of changing the relative ordering of two edges adjacent at a vertex
vg. Note that the embedding of the actual edges at a vertex does not effect the
induced map, though it makes it clearer to switch the embedding between the first
and second pictures.

divide F into two connected components. Then
Fwrslv=1(=) = Fw,c, s (t:{(Ew) @ —) and  Fwrslu=1(=) = Fw,, s— ppiz)(tx§(32) ® —),

where ¢y and ¢, denote any choice of paths in W formed by concatenating either of the arcs, ay or
asz, with subarcs of Xw NK; or ¥, NK;, respectively. Here v: ¥ — W denotes inclusion.

Proof. From Theorem 9.4 we know that

(9.4) Fwrslv=1 = Fyr, o

where Iy, is a ribbon 1-skeleton of the type-w subsurface ¥, of F. We will use the graph cobordism
computations from Proposition 9.5. The key observation is that a ribbon 1-skeleton for ¥, can be
constructed from choice of geometric symplectic basis of Hq(Xw;Z), as well as an additional arc,
which will be the path cy. Let ¢y be one of the two embedded paths on ¥, which connect the
two w basepoints and run parallel to 9¥y. Suppose Ai,..., Ay, Bi,...,By is a symplectic basis
of H1(Xw;Z). We can now construct a ribbon 1-skeleton for ¥y, by isotoping each A; so that it
intersects ¢y non-transversally at a single point. This procedure is shown in Figure 9.4. Write I'y,
for the ribbon 1-skeleton formed via this procedure.

. N
- Cw
D[ )
—
.. .

FIGURE 9.4. Constructing a ribbon 1-skeleton of ¥, from a geometric
symplectic basis of H;(Xw;Z), and the additional arc cy. On the left are the
curves in the symplectic basis. The two solid dots are the w basepoints. On the
right, a ribbon 1-skeleton has been constructed, using the symplectic basis and the
arc c¢yw. The dividing arcs of F, labeled a; and ag, are shown in red on the left side.

We can now use Proposition 9.5 to compute the graph cobordism map Fv%rw.y We decompose
the 4-manifold W into a sequence of handle attachments, so that the 1-handles occur before the 2-
handles, which occur before the 3-handles. It is straightforward to arrange that all of the loops of 'y,
occur in a product cobordism [0,1] x Y € W which occurs between the 1-handles and the 2-handles.
Furthermore, since W is a 4-manifold, it is straightforward to arrange I'y, N ([0,1] x Y) so that it
is a composition of graph cobordisms, each with two loops, and with the same configuration as the
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graph cobordism ([0, 1] x Y, T'5), shown in Figure 9.2. Using the computation from Proposition 9.5,
combined with the composition law, it follows that

(9-5) Ffry,s(=) = Five,.s(€(Ew) ® -).
Combining Equation (9.4) and (9.5) implies the stated formula for the V' = 1 reduction of Fyy, r s.
A similar argument works for the U = 1 reduction. |

9.3. The cobordism maps for closed surfaces. In this section, we compute the cobordism maps
for link cobordism obtained by puncturing a closed, decorated surface inside of a 4-manifold W with
5‘W = 7Y1 (] Y2.

Suppose that F is a closed, decorated surface in a cobordism W: Y; — Y. Suppose furthermore
that W, Y7 and Y, are nonempty and connected. Let D; and Dy be two embedded disks in F,
which each intersect the dividing set of F in a single arc. Let Fy be a properly embedded decorated
surface in W, obtained by isotoping F so that it intersects Y; along D;, and then removing D; and
Dy from F. Let U; denote the decorated unknot in Y; obtained by adding two basepoints to dD; in
such a way that (W, Fo) becomes a decorated link cobordism from (Y1, Uy) to (Y2, Ua).

Let F5[U] denote the free polynomial ring in the variable U. We give the ring F,[U, V] an action
of Fo[U] by declaring U to act by UV.

If U is an unknot in Y with exactly two basepoints, w and z, as well as a distinguished Seifert
disk D, then we can restrict attention to diagrams H for (Y,U), where the disk D intersects the
Heegaard surface in an arc connecting w and z which is disjoint from the o and 3 curves on H. If
p denotes the center of D, then by viewing CF~ (Y, p,s) as an Fy [U]—module7 we obtain a canonical
isomorphism

CFL™(Y,U,s) = CF (Y, p,5) @, F2[U, V].
In particular, if (W,T'): (Y1,p1) = (Y2,p2) is a graph cobordism, the graph cobordism map Fyyr s
determines a map from CFL™ (Y3, Uy,s|y,) to CFL™ (Ya, Uy, 5|y, ), for which we write Fyyp|™V].
To be explicit, if the expression Fyyr.o(x) contains the summand U -y, then Fyypo™VV](x)
contains the summand UV -y

Proposition 9.7. Suppose that F = (X, .A) is a closed, decorated surface inside of the cobordism
W: Y1 =Y, and let (W, Fy) denote the decorated link cobordism obtained by isotoping F so that it
intersects Y1 and Yo in two disks, and then removing those two disks, as described above. Let AA
denote the quantity

2 2

(1) In general,

VAALFE L [P0V if AA>0,
FW}-O s =~ _AA W.lw, ]Fz[UV] . AA <
U : FW,FZ.,sfPD[E]‘ ’ if <0,
where 'y, C X and I'y, C X, are ribbon 1-skeleta.

(2) If ¥ is connected and A consists of a single closed curve a, dividing X into two connected
components, then

o VA Fwea(ng(Sw) @ <)) if AA>0
W,Fo,s = y-AA 'FW,c,sfPD[Z](L*g(Zz) ® _)|1F2[U,V] if AA<O,
where ¢ is one of the two dividing arcs in Fy, viewed as a path from Y1 to Ys.
Proof. We consider Claim (1) first. Let D; and D5 denote the two disks of X, which are pushed
into Y7 and Y3, and let U; and U, denote 0Dy and 0D,. We pick Heegaard diagrams H; =
(X1, 1,8, w1,21) and Ho = (X2, g, By, wa, 22) such that the disk D; intersects X, along an arc

connecting w; and z; which is disjoint from a; and 3;. On this diagram, the Alexander grading on
CFL™ (Y;,U;, 5]y, ) with respect to the Seifert disk D; is given by

Ap,(U™V™ - x) = (n —m).
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In particular, the map Fyy, r s is determined entirely by the reduction Fyy, r s|v=1 and the Alexander
grading change AA. If AA > 0, then Fyy £ s can be recovered from its V' = 1 reduction by correcting
powers of V via the formula

(9.6) e = VA (F ely=n) 20V,

Note that AA must be nonnegative for Equation (9.6) to be satisfied, since otherwise the right hand
side is not well defined up to filtered, equivariant chain homotopy.

If AA <0, a similar argument shows that
(9.7) Fyw,ry s = U2 (Fiv 7 slu=1)| 0V,

Combining Equations (9.6) and (9.7) with Theorem 9.4 concludes the proof of Claim (1).
Claim (2) follows from Claim (1), together with Lemma 9.6. O

9.4. The cobordism maps on HFL™. In this section we compute the maps associated to knot
cobordisms on the level of HFL™ when the dividing set is relatively simple, focusing on the case
that the 4-manifold is negative definite.

When L is not an unlink, there is in general no way to recover the Z & Z-filtered complex
CFL>®(Y,L,s) from CF*(Y,w,s), however we can recover HFL>™(Y,L,s) from HF*(Y,w,s), as
we now describe.

As a general algebraic principle, if R and Ry are two unital rings such that Ry has an action of
R, and N is an R-module, then there is a natural map

N — N ®gr Ry,
which is simply n — n ® 1pg,.
Hence, using the isomorphisms in Equation (9.2), we obtain chain maps
(9.8) Ry:CFL™(Y,L,s) » CF>*(Y,w,s) and R,:CFL”(Y,L,s) —» CF*>(Y,z,s — PD[L]),

by mapping V to 1, or mapping U to 1, respectively.

Suppose L is a null-homologous link in Y, and s € Spin®(Y) is torsion. We can decompose
CFL™(Y,L,s) as a direct sum over (collapsed) Alexander gradings

CFL>(Y,L,s) = @) CFL>(Y,L,s);.
i€z

Note that the direct sum is not of Fo[U, V, U=, V~1]-modules, but instead of Fo[U, U ~1]-modules.

We define maps

(Rw)i: CFL™(Y,L,s); —» CF>(Y,w,s) and (Rz)i: CFL(Y,L,s); —» CF*(Y,z,s),

as the restriction of the reduction maps Ry, and R, from Equation (9.8) to CFL™ (Y, L, s);.

Lemma 9.8. Suppose that L is a null-homologous link in Y. The map
(Rw)i: CFL>®(Y,L,s); = CF>(Y,w,s),
is an isomorphism of chain complezes over IFQ[U, U’l],

Proof. Suppose H = (X, o, 3, w, z) is a fixed diagram of (Y,1L). We define an inverse (Qw); of (Rw):
via the formula

(Qu)i(U7 %) = U7V 7HA6) - x.
It is straightforward to see that (Qw); is a chain map, and that (Ryw); and (Qw); are inverses of
each other. O

Note that the map (Qw); in Lemma 9.8 does not necessarily respect the Z @ Z-filtration on
CFL>™(Y,L,s).
Using Lemma 9.8, we can define a chain isomorphism
Ry, : CFL®(Y,L,s) — €D CF> (Y, w,s),
iz
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by taking the direct sum of all the (Ryw);. The map R, intertwines the action of V on CFL*(Y, L, s)

with the endomorphism of @, , CF* (Y, w,s) which shifts the index ¢ by +1.

Theorem 9.9. Suppose that (W, F): (Y1,K;1) — (Yo, K2) is a knot cobordism. Write F = (3, A).
(1) If T'w and T, are ribbon 1-skeleta of ¥y and ¥, then

Fwrs=V2 Ry o Fir, o Rw

and
Fwres=U2"R;'o FI;IA/,FZ,spr[Z] °R,
as maps from HFL™(Y1,Ky,sly,) to HFL™ (Y2, Ka, sy, ). Here
(ex(5), %) ~ 515 x(Z) — x(Za)
2 2

denotes the Alexander grading change.

(2) Suppose further that each K; is a null-homologous knot with two basepoints and A consists
of two arcs running from Ky to Ky (necessarily implying that 3, Xy and X, are connected).
If Y1 and Y, are rational homology 3-spheres and by (W) = by (W) = 0, then the induced

map on homology
Fw,r s HFL™ (Y1, Ky, 8]y, ) — HFL™S (Y2, Ko, 5]y,)

18 an isomorphism.
(3) If (W, F): (S3,K;) — (S3,Ky) is a knot cobordism such that F is decorated as in Part (2)
and by (W) = b3 (W) = 0, then under canonical the identification

HFL™®(S3,K;) 2 R™ =F,[U, UV, V1]
given by the gradings, the map Fw r s is equal to the map

1 U=hi2y=h/2,

AA =

where
di = ci(s)® — QX(Y) S 29(Zw)

and
4, _ (s = PDIS])? 2300 oy,

Proof. We consider Claim (1) first. It follows from Theorem 9.4 and the Alexander grading formula
that

(Rw)itaa o (Fwrs)i = Fiyr, o © (Rw)i,
where (Fy,7); denotes Fiy r s restricted to the i'" Alexander grading. Noting that (Ry)itaa =
(Ry)i o V™24 we obtain the formula

(Fw,rs)i = VA (Rw); ' o i, o © (Rw)s

Taking the direct sum over Alexander gradings yields the first formula in Claim (1). This strategy
also adapts to prove the stated formula for R, and Fﬁ‘, T,.s—PD[5] 85 well.
We now consider Claim (2). By Lemma 9.6

Fwrslv=t = Fw,c, s (18 (Ew) ® —),

for some path cy, from Y7 to Y2. According to the proof of [0OS03b, Theorem 9.6], the map Fyw ., s
is an isomorphism on HF for all s € Spin®(W). Since by (W) = 0, the actions of the elements in
A*(H1(W;Z)/ Tors) in the formula for {(3y ) vanish, and hence

FW,cw,s(L*g(Ew) oy *) = Ug(Zw) : FW,CW,5(7)~

Since the reduction maps Ry, are isomorphisms on homology by Lemma 9.8, by applying Claim (1)
we conclude that Fyy r  is an isomorphism on HFL™, since it is a composition of isomorphisms.
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Finally, we note that Claim (3) follows from Claim (2), as well as our grading formula from
Theorem 1.4, since the map 1 — U~4/2V~92/2 i5 the unique map from R to R which is an
isomorphism of groups, and induces the correct grading change. O

Corollary 1.8. Suppose that ¥ C S* is a closed, oriented and connected surface, and A is a simple
closed curve on 3 which divides ¥ into two connected subsurfaces, Xw and X,. The link cobordism
map
Fgi o : CFL™ (@) — CFL™ (@)
is equal to the map
1 UIEW)9(Ea)

under the canonical identification of CFL™ (&) = Fy[U, V.

In particular the map for the link cobordism obtained by puncturing a 2-knot in any homotopy
S% is the identity map.

Remark 9.10. Combining Corollary 1.8 with the composition law, we can compute the effect of
taking the connected sum of a link cobordism (W, ) with an oriented surface ¥ contained in a ball
in W which is disjoint from F. If we add X to a type-w region, then the effect is to multiply Fiy, s
by UY®) . If we add ¥ to a type-z region, then the effect is to multiply Fw s by V),

10. LINK COBORDISM PROOFS OF BOUNDS ON 7(K) AND V. (K)

In this section, we show that the link cobordism maps give simple proofs on the bounds on 7(K)
and V4 (K) stated in the introduction.
Let CFK™ (K) denote the module

CFK~(K) := CFL™ (S* K, s0) @p,[v,v] F2[U, V]/(V),

ie., CFK™ (K) is the free Fy[U]-module generated by intersection points x € T, N Tp, and the
differential counts disks ¢ with n,(¢) = 0. We let HFK ™~ (K) denote the homology of CFK ™ (K).
We note that HFK ™~ (K) is isomorphic to Fo[U] @ T for some torsion Fa[U]-module T

We note that by [OST06, Lemma A.2],

7(K) = —max{A(x) : x € HFK ™~ (K) is homogeneous and non-torsion}.

Similarly, there is an oo flavor of CFK ™ (K). To avoid confusion with the bifiltered CFK*(K),
which is the zero Alexander graded part of CFL™>(S3,K), we will write U~ CFK ~ (K for the module
CFL™ (S?, K)®p,v,vF2[U, U1, V]/(V), and HFK*(K) for the homology group H,(U~'CFK ~ (K)).
We note that

HFK*(K) = Fy[U, U 1.

There is a natural map HFK ™ (K) — HFK®(K). An element x € HFK ™~ (K) is non-torsion if and
only if its image in HFK°(K) is non-vanishing.

Suppose that W is an oriented 4-manifold with boundary equal to two rational homology spheres,
and by (W) = by (W) = 0. If [Z] € Ho(W,0W;Z) is a class whose image in H;(OW;Z) vanishes,
then we can uniquely pull [¥] back to a class in Hy(W;Z)/ Tors. With this in mind, we define

S| = a 5|, H).
12)]=  gmax (2] H)
C?=—by (W)

If OW = S 1S3, we can use Donaldson’s diagonalization theorem to pick an orthonormal basis

e1,...,ep of H*(W;Z)/ Tors, and write PD[X] = sy - e1 + -+ + 8p - €. In this case, we have

]| = [s1] + -+ + |s].

We now give our link cobordism proof of Ozsvath and Szabd’s bound:
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Theorem 10.1 ([0S03a, Theorem 1.1]). Suppose that (W, %): (83, K1) — (S®, K3) is an oriented
knot cobordism with by (W) = by (W) = 0. Then

(=] + (2] - [=]
2

Proof. Let Ky and Ky denote K7 and Ks decorated with two basepoints. Construct a decorated link
cobordism (W, F): (S3,K;) — (S3,Kz) by letting F be obtained by adding two parallel dividing
arcs to X, so that ¥, is a disk, and X, is a genus g(¥) surface with one boundary component. We
have a commutative diagram

T(Ky) < 7(K1) - +9(%).

HFL™(S3, K1) 78 HFL— (53, Ky)

(10.1) l l

HFK (K1) %% HFK~(K,),

induced by the natural maps CFL™(S3,K;) — CFK ™ (K;). There is a similar commutative diagram
involving HFL> and HFK.

By Part (3) of Theorem 9.9, the map Fyy r  on HFL™ will be multiplication by U~%/2y —d2/2,
where

g = c1(5)% + ba(W) c1(s — PD[X))? + by(W)
1= e .
4 4
From Equation (10.1) and its analog for HFL> and HFK >, the map Fy, r s will be an isomorphism
on HFK® if and only if ¢1(s — PD[X])? + ba(W) = 0. Using Theorem 1.4, the Alexander grading
change of Fyy r s is (after manipulating the expression slightly)
ci(s — PDIX]), [E) + 2] - [2
(e = PDID.E) + D) (5) _

Since Fyy, r s maps non-torsion elements of HFK ™ (K1) to non-torsion elements of HFK ™~ (K3) when
ds = 0, it follows that

—2¢9(%) and dy =

{er(s — PDIX]), [3]) + [¥] - [¥]

(10.2) T(K2) < 7(Ky) — 5 + 9(2),
for any s with ¢1(s — PD[%])? + b2(W) = 0. Minimizing Equation (10.2) over such Spin® structures,
we obtained the bound in the theorem statement. O

Next, we consider Rasmussen’s local h-invariants, and the bounds on the slice genus. Recall that
the standard, Z @ Z filtered, full knot Floer complex CFK®(K) is isomorphic to the subset of
CFL>®(S%,K) in zero Alexander grading. Given an integer k > 0, we define the sub-complex of
CFL>(S3,K)

Ap(K) = Spang, {U'V? - x: A(x)+j—i=0, i>0, j>—k}.
Writing U for the product UV, A, (K) is a Fa[U]-module. The invariant Vi (K) is defined as

1
(10.3) Vi(K) = ~3 max{gr(z) : « € H,(A;(K)) is homogeneous and non-torsion}.

In the above expression, gr denotes either gr,, or gr,; they are equal when A = 0.

We note that Rasmussen’s original definition [Ras03, Definition 7.1] for V}, was in terms of the
d-invariants of large surgeries on K, though using the large surgery formula [OS04b, Section 4],
Equation (10.3) is equivalent.

We now give a simple proof of Rasmussen’s bound:

Theorem 10.2 ([Ras04, Theorem 2.3]). If K is a knot in S3, then
K) —
) < |20 =R
for any 0 < k < g4(K).
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Proof. Suppose that X is a surface in B* with 0¥ = K. After puncturing (B*,¥) along ¥, we
obtain a genus g knot cobordism ([0, 1] x S3, %) from (S3,U) to (83, K). By stabilizing X with a
null-homologous torus, if necessary, we may assume that g(Xg) — k is even. We decorate Xg with a
dividing set A consisting of two arcs, both running from U to K, which divide 3y into two connected
components, Yy and Y,, such that

I N R g
2 2
Let (W, F) denote ([0, 1]x.S2, (29, .A)). On HFL>®, the map Fyy, 7, is multiplication by U9w)19(¥2)
by Part (3) of Theorem 9.9, and it changes Alexander grading by ¢(2,) — ¢(Xw) = k. The map
Fw.r.s does not map Ay (U) = Fy[U] into Ay (K), instead Fy r o maps Fo[U] into the subset
of CFL™(S3,K) of Alexander grading +k. The subset of CFL™ (S, K) in Alexander grading k is
canonically isomorphic as an ]F[U}—module to A, (K); the isomorphism is given by the action of
V=F. Hence V=F . Fiy r4(1) is an element of H.(A, (K)) which is non-torsion. Furthermore,
V=F. Fy 7 (1) has Maslov grading —(g(X) — k) since the gr-grading change of V=% - Fyy ¢ is
—(9(¥) — k), and gry, = gr, on A, (K). It follows that
v < -8
completing the proof. O

11. t~-MODIFIED KNOT FLOER HOMOLOGY AND A BOUND ON THE Y (f) INVARIANT

In [OSS17], Ozsvath, Stipsicz and Szabé define a homomorphism from the smooth concordance
group to the group of piecewise linear functions from [0, 2] to R. In this section, we prove our bound
on Yk (t), Theorem 1.1.

We recall the construction of Yy (t). Suppose that K C S® is an oriented knot, and H =
(2, a, B,w, 2) is a diagram for (5%, K,w,z). If t € [0,2], we define the t-grading on intersection
points x € T, NTg by

) = (1 5 ) )+ G en (),

If t = 2, with m and n relatively prime, tCFK™ (K) is the free Iy [v'/™-module generated by
intersection points x € T, N Tg. The module tCFK ™ (K) has an endomorphism

M= Y Y #EA) v ey,
y€TaNTg pema(x,y)
u(e)=1

which squares to zero. The module tHFK ™ (K) is defined as the homology of (tCFK ™ (K), 9).

The grading gr, induces a grading on tCFK ™ (K). The differential lowers degree by 1, and the
action of v also lowers degree by 1. The number YT (t) € R is defined as the maximal gr,-grading
of any homogeneous non-torsion element of tHFK ™ (K).

We first need to understand the relationship between tCFK ~(K) and CFL™ (S3,K). We define
the rings

Ry =FL[U, V, 0 /")) (U — 0>,V — o)
and
RX = TFo[U, ULV, VL ot/ o= Vn) /(U — 0?8V —0b).

Lemma 11.1. If K = (K, w, z) is a doubly based knot in S*, there are canonical isomorphisms
CFL™ (5% K) @p,u,v) Ry 2 tCFK~(K) and CFL®(S?,K) ®pyvv,u-1,v-1) ReS = tOFK™(K).

Proof. We focus on the first isomorphism, involving the minus flavors. We first describe an isomor-
phism between the rings R;” and F2[v!/"]. Noting that ¢t = 2, we define a map from F,[U, V, v'/"] /(U —
027tV —ot) to Fa[v'/™] by the formula

Uivj,us — ,Ui(th)+jt+S
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and a map in the opposite direction by the formula
v® = vd.

To define maps between the chain complexes, we use the above maps on rings, extended over linear
combinations of intersection points. That these maps are chain maps is immediate. It is also clear
that these two maps are inverses of each other.

Essentially the same argument works for the co flavors of the complexes. O

Phrased another way, R, is isomorphic to Fa[v'/"] with a module action of F5[U, V] declared.
As a consequence, if (W, F): (S, K;) — (S%,Kz) is a link cobordism and s € Spin®(W), then the
link cobordism map Fyy, 7 s induces a map

tFyw.re: tCFK(K,) — tCFK ™ (K3).

Lemma 11.2. Suppose that (W, F) is a decorated knot cobordism from (S3,K;) to (S3,Ksz) and
s € Spin“(W). Then the map tFw r: tHFK™ (K1) — tHFK ™ (Ks) maps non-torsion elements to
non-torsion elements if and only if the induced map Fy 7 s: HFL™(S3, Ky) — HFL™(53,Ks) is an
isomorphism.

Proof. Since HFL™(S3,K;) 2 Fo[U,V, U1, V=] and the map Fyy 7, is graded and Fo[U, V, U1, V1]
equivariant, it follows that Fyy, r s is an isomorphism on HFL™ if and only if it is nonzero.

Similarly, the map tFw, r s maps non-torsion elements of tHFK ™ (K;) to non-torsion elements of
tHFK ™ (K5) if and only if the induced map on tHFK is non-zero.

Hence it is sufficient to show that the map Fyy r s is non-zero on HFL™ if and only if tFw r s is
non-zero on tHFK™.

Using the gr,, and gr, gradings, we can canonically identify HFL>(S3,K;) as Fo[U, V, U~ V1.
Similarly, we can canonically identify tHFK (K;) with Fo[v=!/" v1/"]. Since the maps Fyy # . and
tFw, r.s are graded, under the above identifications, they must be equal to multiplication by c¢-U i
and ¢ - v, respectively, for i,j € Z, £ € R and ¢, ¢’ € F. We have a commutative diagram

Fw,7,s

HIL® (83, Ky) —255 HFL™(S3,Ky)

| |

tHFK™(K,) 7% (HFK™ (K).

Since the two vertical arrows are non-zero (they are the natural maps from Fo[U, V, U1, V1] to
Fo[U, V,U~1, V-1 ®@R), and the top horizontal arrow is identified with multiplication by c- UV
and the bottom arrow is identified with multiplication by ¢ - v¢, we conclude that ¢ = ¢ and
¢ =1i(2 —t) + jt. In particular, the map Fw, r s is nonzero if and only if ¢ = 1, which occurs if and

only if ¢’ = 1, which occurs if and only if ¢tF'w, 7 5 is nonzero, completing the proof. O

If (W, F) is a link cobordism, the gr,-grading change of the map tFy 5 s can be computed using
the gr,,- and gr,-grading change formula from Theorem 1.4. If x is a homogeneously graded element,
then

gry(Fw,r s(x)) — gry(x)
(111) _ey(s)® =2W) =30(W) |, <—<c1(5),2> + 5] - [ﬂ) N (1 _t
2

~ t
“XXw — - x(Xz).
: ) XE) + 5T
We now proceed to prove Theorem 1.1. Recall from the introduction that if W : 83 — S3 is
a cobordism and [¥] € Ha(W,0W;Z) is a class, we can uniquely pull back [X] to an element of
Hy(W; Z), for which we will also write ¥.. We define the quantity
C? +by(W) — 2t - (C,[2]) +2¢ - [3] - []

M (t) :=
=(*) CGCI}rlla%)((QW) 4 ’
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Theorem 1.1. Suppose that (W,X): (S3, K1) — (S3,Ks) is an oriented knot cobordism with
by (W) = by (W) =0. Then

Trx (1) 2 Ty (8) + My () + 9(2) - (|t = 1[ = 1).

Proof. We form the surface with divides F by decorating 3 with two parallel arcs, both running
from K4 to K>, so that both ¥, and X, are connected and

g(zw) =0 and g(zz) = g(Z)

By Part (3) of Theorem 9.9, the induced map Fyy, z s from HFL™®(S3, K1) to HFL™(S3,Ks) can be
identified with multiplication by U~%/2V~%/2 where d; is the change in gr,, grading, and dy is
the change in gr, grading. In particular, the map Fw r s is nonzero on HFL™. By Lemma 11.2,
the induced map tF'w, r . sends non-torsion elements of tHFK ™ (K7) to non-torsion elements of
tHFK ~ (K3). Using the formula from Equation (11.1) for the change in the gr, grading, we conclude
that

where

Gty o= 18 2X(ZV) ~30(W) <<cl(ﬁ), ) +[5] - [2]) |

Using the fact that by (W) = b3 (W) = 0, we compute
2+ be(W) — 2t~ {c1(s), [X]) + 2t - [X] - [X]

Ga(t) = 20

4
Taking the maximum over all s € Spin®(WW), we obtain that
(11.2) Tr,(t) > T, (t) + Mg (t) —t - g(2).

An easy computation shows that G4(t) = Gs4pp[x)(2 — 1), s0
Misy(t) = Msy(2 —t).

On the other hand Tk, (t) = Tk, (2 — t) by [OSS17, Proposition 1.2], so from Equation (11.2) we
obtain

(11.3) Tr,(t) > Tk, (t) + Mizy(t) — (2 - 1) - g(2).

Combining Equation (11.2) and (11.3) yields the theorem statement.
O

Remark 11.3. One could hope to refine the above bound even further, by considering different
surfaces with divides and trying to optimize the expression

(11.4) (1 - ;) X(Zw) + % “X(22).

It is straightforward to see that if we restrict to dividing sets on 3 consisting of two arcs and Yy, and
3, are both connected, then the expression in Equation (11.4) is maximized when g(X) = g(X) or
when g(X,) = g(¥), depending on the value of t. Furthermore, the maximum value is g(X)-(|t—1|—1).

One could investigate more complicated dividing sets as well, though using Part (1) of Theorem 9.9
we see that the induced map Fy,r s will be an isomorphism on HFL™ if and only if the graph
cobordism FV%’FWJ is an isomorphism on HF°, for a ribbon 1-skeleton I'y, of X,. However, noting
that ®,, = 0 on HF* for a singly based 3-manifold, it is not hard to use Proposition 9.5 to show
that if by (W) = 0, then map Fij . HF®(S®, w1) — HF*(S?,wy) is non-vanishing if and only if
Yw is connected and has exactly one boundary component (note that this condition is symmetric
between Xy, and ¥, since 3, is connected and has exactly one boundary component if and only if
¥, is connected and has exactly one boundary component).
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11.1. Additional examples of the bound. In this section, we describe how several properties of
T (t) from [OSS17] which are simple corollaries from Theorem 2.13.

Corollary 11.4 ([0SS17, Theorem 1.11)). If (W,X): (S3, K1) — (S3,K») is an oriented knot
cobordism, and W is a rational homology cobordism, then

Tk, (t) = T, (B)] < £- g(2).
Proof. This follows immediately from Theorem 1.1. |

Corollary 11.5 ([0OSS17, Proposition 1.10]). If K_ and K, are knots in S®, which differ by a
crossing change, then
TK+(t) < TKi(t) < TK+(t) +1-— |t — 1|.

Proof. Suppose that K_ and K, are two knots which differ by a crossing change (and K_ has
the negative crossing and K has the positive crossing). We can construct a negative definite link
cobordism (W, 3) from (83, K_) to (S, K ) and also a negative definite link cobordism (Wa, 35)
from (53, Ky) to (8%, K_). Each is formed by adding a 2-handle with framing —1, around the
crossing, as shown in Figure 11.1.

A generator E; of Hy(W;;Z) is given by taking a Seifert disk of the unknot, and capping with
the core of the 2-handle. Hence the homology class of the surface 3; in W; can be computed from
the intersection number of the knot K1 on the incoming end of W; with the Seifert disk for the —1

KX
—

FIGURE 11.1. The knot cobordism (W1,%;) from (53, K, ) to (S3,K_), and
the knot cobordism (W5, 3,), in the opposite direction.

After orienting E appropriately, we can take [21] = 2- E and [X3] = 0. Hence
M[EQ](t) =0 and M[gl](t) = —(1 — |t — 1|)
Applying Theorem 1.1, we see
T (t) <Tr (t) <Tg, (t)+1—[t—1].
O

11.2. Positive torus knots. We show that the bound from Theorem 1.1 is sharp for torus knots,
in the following sense:

Proposition 11.6. Given any positive torus knot T, ;, there is a knot cobordism (W,%): (S3,U) —
(S3, T, p) with g(X) = by (W) = b3 (W) =0 and

Tr, ,(t) = Mx(t).

Before we prove Proposition 11.6, it is convenient for us to consider the torus knot T, 1. Given
an integer n, we define the quantity

—c? 4+ 1+ 2ten — 2tn?
(11.5) my(t) == Joax, 1 .
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Lemma 11.7. We have Y, (t) = mu(t).

Proof. We use the computation of T}, ,,+1 due to Ozsvath, Stipsicz and Szabé [OSS17, Proposition 5],
which states that if t € [2 2”'2] , then

n’> n

1
(11.6) Tr, (1) = —ii+1) = 5n(n —1 - 20)t.
Although one can directly compare this expression with m,,(t), we also note that there is a negative
definite knot cobordism (W,¥) from (S3,7T,, 1) (the unknot) to (S3, 7}, ,+1) which is obtained by
embedding 7, ; on a standard torus 72 C S3, and performing —1 surgery on the core of one of the
two handlebody components of S\ T2. Theorem 1.1 implies
(11.7) Y1, .0 () > Mix(t) = mau(t).

n,n+1

On the other hand, if ¢ € [ﬁ 2”'2], we plug ¢ = 2n + 1 into the expression for m,(t) in Equa-

n’> n

tion (11.5), and after an easy algebraic manipulation, we obtain
1
(11.8) mu(t) > —i(i+1) — in(n —1-—2i)t.

Combining Equations (11.6), (11.7) and (11.8), we obtain the equality m,(t) = Y1, .., (t).
|

Proof of Proposition 11.6. Suppose that (a,b) is a pair of positive, relatively prime integers. Using
the Euclidean algorithm, we can find a sequence {(a;, b;)}~, such that

(1) (a1,b1) = (1,1),

(2) (an,bn) = (a,b), and

(3) (@i+1,bi+1) = (a; + i, b;) or (ait1,bit1) = (ai, b; + a;).
According to Feller and Kreatovich’s recursive formula [FK17, Proposition 6], we have

(11'9) TTai+1,bi+1 (t) = TTai,bi (t) + TTbi,biﬁ»l (t) or Tr, (t) = TTa,i,b,i (t) + TTai,ai«l»l (t)

depending on whether (a;y1,b;41) = (a; + b;, b;) or (a;41,bi41) = (a;, b; + a;) (respectively).

On the other hand, there is a negative definite knot cobordism (W;,%;) from (S®,T,, ) to
(83, Tu,,y pisr). The surface ; is an annulus. Viewing the torus knots as being embedded on a
standard torus T2 in S3, the cobordism W; is obtained by performing —1 surgery on an unknot
which is the core of one of the two solid tori forming 53\ T2.

We note that if (a;+1,bi+1) = (@; + bi, b;) then Miz,) = Y, , ., (t) by Lemma 11.7, since [¥;] =
b; - E, for a generator E of Hy(Wi;Z). Similarly, if (air1,biy1) = (ai,a; + b;), then Ms,(t) =

i+1:0i41

Y7, ., 1(t). In both cases, Equation (11.9) implies that
TT“'i+1vb1i+1 (t) = TT‘Li=bi + M[EI](t)
Hence
Tr, ., ()= Mg, @)+ -+ Mz,(t) = Mg(t),
where (W, X) denotes the composition of all of the (W;,%;), completing the proof. a

Remark 11.8. We can give a more concrete description of the expression M[x;(t) when ¥ is a surface
inside a cobordism W : §% — S satisfying b3 (W) = by (W) = 0. Using Donaldson’s diagonalizability
theorem, we can pick an orthonormal basis ey, ...,e, of H*(W;Z), and write PD[YX] = a; - e, +
-++ 4 an - ey. The set of characteristic elements C of Qw can be identified with the set of elements
of the form ¢y - e1 + -+ + ¢, - e, where ¢; € 2Z + 1. Then

max i —cf + 1+ 2tc;a; — 2ta12
cn) €L+ 4

=

Mizy(t) =

(Cl7~~~7
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Since each ¢; is involved in exactly one summand, we can commute the maximization and the
summation to see that

Mig)(t) = Z M, (t)-

12. ADJUNCTION RELATIONS AND INEQUALITIES

As another application of our grading formula, we prove several adjunction relations for Heegaard
Floer homology and link Floer homology. The version we prove for Heegaard Floer homology is a
generalization of [OS04a, Theorem 3.1]. The version we prove for the link cobordism maps is new.

12.1. The standard adjunction relation for Heegaard Floer homology. In this section, we
prove the following using the link cobordism maps:

Theorem 1.5. Suppose that F = (X,.A) is an oriented, closed, decorated surface inside of a cobor-
dism W: Y1 — Yo, with W, Y1 and Yo connected. Write ¥y and %, for the type-w and type-z
subsurfaces of F. Suppose A consists of a simple closed curve, the subsurfaces Xy and 3, are both
connected, and

(c1(s), [X]) — [E] - [B] + 29(32) — 29(Xw) = 0.
Then
FW,C,s(L*g(Ew) ® _) = FW,c,s—PD[E](L*g(EZ) ® _)a

as maps on CF~ | where ¢ is any path from Y1 to Y.

Remark 12.1. When ¢(X) = g(X,) > 0 and g(Zw) = 0, we recover [OS04a, Proposition 3.1]. This
case is also an analog of the adjunction relation for the Seiberg—Witten invariant [OS00b, Theorem
1.3]. If ¥ has genus zero, then an analogous result was proven by Fintushel and Stern [FS95, Lemma
5.2] for the Seiberg—Witten invariant.

Remark 12.2. Theorem 1.5 also holds for E’F, CF* and CF™, since the chain homotopy between
Fw,es({(Ew) ® =) and Fiy,.s—pp[s)(§(X2) ® —) can be taken to be U-equivariant, and CF, CF™
and CF™ can all be obtained algebraically from CF~ via a tensor product, or a quotient of a tensor
product.

Proof of Theorem 1.5. We perform an isotopy of F so that it intersects OW along two embedded
disks, Dy and Ds, in Y7 and Y5, and each D; intersects A in a single arc. Write Fq for the resulting,
properly embedded, decorated surface in W obtained by removing these two disks from F. Let ¢
denote one of the two dividing arcs on Fy. By choosing the isotopy of F inside of W appropriately,
we can achieve any embedded path ¢ from Y7 to Y5.

We now apply Proposition 9.7. Since

WIRCICRL IR R E

+9(32) —9(Xw) =0,
we conclude that
(12'1) FW,c,s (L*g(zw) ® _)|F2[U7V] = FW,C,EfPD[E] (L*f(zz) ® _)‘]F2[U7V]7

as maps between CFL™ (Y1, Uy, s]y,) and CFL™ (Ya, Uy, 5]y, ), where |F2[U:V] is the operation defined
in Section 9.3, which amounts to replacing each instance of U with UV. If we restrict the maps
in Equation (12.1) to the zero Alexander graded subsets of CFL™ (Y;, U;, s|y;) (with respect to the
gradings Ap, and Ap,), which are canonically identified with CF ™ (Y;,w;,sly;), we obtain the
relation

FW,c,s(L*g(Ew) & _) = FW,c,sfPD[E](L*g(ZZ) ® _)a
completing the proof. O
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Remark 12.3. More generally, one could put more exotic sets of divides on ¥ and consider the
U =1 and V =1 reductions of the associated link cobordism maps, and try to recover the higher
type adjunction relations from [OS00a], which Ozsvath and Szabé proved for the Seiberg-Witten
invariant.

We note that applying Theorem 1.5 to the identity cobordism recovers Ozsvath and Szabd’s
adjunction inequality for HFT(Y,s) [0S04c, Theorem 7.1]:

Corollary 12.4. If ¥ is a closed, oriented surface in' Y with g(¥) > 0 and HFt(Y,s) # 0, then
[(c1(s), X)| < 29(%) — 2.

Proof. Suppose X is a closed, oriented surface in Y which violates the inequality. We can reverse
the orientation of ¥ if necessary, and add null-homologous handles so that

(12.2) (c1(5), 5) = —29(5)

(note that (c1(s),X) is always even, since W = [0,1] x Y'). Decorating ¥ with a single dividing
curve so that ¢g(3,) = ¢(¥) and ¢g(2w) = 0 and then applying Theorem 1.5 to the cobordism
W =10,1] x Y, we obtain the relation that

Fyw,s >~ [1.(&(2))] - Fw,s—Pp[s)-

Since [X] = 0 € Ho(W,0W;Z) = H*(W;Z), it follows that s — PD[Y] = s on W, so Fys_pp[s] =
Fws =idgp+(y,s)- Hence
Mdgp+y,s) = [Lx(§(2))]-

On the other hand, s must be non-torsion for Equation (12.2) to be satisfied, so U™ - HF (Y, s) = 0
for sufficiently large n [OS04a, Lemma 2.3]. We also have that A, 0 A, = 0 for any v € H1(Y;Z),
and also A,, 0 A,, = A, 0 A,, [0S04d, Section 4.2.5]. Hence, if n is sufficiently large, the action of
[+ (£(2))]™ will be zero on HF (Y, s). Hence id = id" = [1.(£(X))]” = 0 as maps on HF (Y, s), so
HF™(Y,s) must vanish. O

12.2. An adjunction relation for the link cobordism maps. In this section, we describe a
generalization of Theorem 1.5 for closed surfaces in the complement of a link cobordism. Before we
state the theorem, we need to recall some additional facts about link Floer homology.

Firstly, similar to the 3-manifold invariants, there is a homotopy action of A*(H;(Y';Z)/ Tors)
on CFL™ (Y,L,s). Its description is essentially the same as the action of A*(H;(Y;Z)/ Tors) on
CF~(Y,w,s). Given a Heegaard diagram (3, a, 3, w,z) for (Y,L), and an element h € Hy(Y;Z),
we pick a representative y of h, which is an immersed, closed curve on the Heegaard surface ¥. The
endomorphism Ay, is defined via the formula

(12.3) Ap(x) = Z Z a(¢,7) - M(¢)Un» (@ yn=(@) .y,
yeT,NTg pEm2 (x7y)
n(g)=1

The quantity a(¢,v) is defined as the sum of the changes of the multiplicities of ¢ across each a
curve, as one traverses 7 on %. Since a(P,v) = 0 for any periodic class P with boundary only
on the a or only on the B curves, a straightforward count of the ends of index 2 moduli spaces
shows that Ap, is a chain map. Adapting the arguments from [0S04d, Section 4.2.5] shows that
Aj, is independent of the representative curve v and is well defined on the level of transitive chain
homotopy type invariants. Some additional details can be found in [Zem15, Section 5] about the
homology action in the context of multi-pointed Heegaard Floer complexes.

Given a surface X with zero or one boundary components, as well as an element 7" in an algebra
R over Fy, we define the element

ér(2) € R®r, A" (H1(3;F2)),

by picking a geometric symplectic basis of Hq(3;F3) and using the same formula as Equation (9.1),
with the element T in place of U.
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The action of A*(H1(Y;Z)/ Tors) on CFL™ (Y,L,s) can be incorporated into the link cobordism
maps, in the sense that if (W, F): (Y1,L1) — (Y2,L3) is a decorated link cobordism, then the
cobordism maps from [Zem16] induce maps

FW7]:15: A*(Hl(W, Z)/ TOI‘S) ®]F2 C\/_‘:Ci(yl, L1,5|y1) — CFL™ (YQ, ]]_42,5|Y2).
We can now state our adjunction relation for the link cobordism maps:

Theorem 12.5. Suppose that (W, F): (Y1,1Lq) — (Ya,1s) is a decorated link cobordism, such that
Ly and Ly are null-homologous and S = (X, A) is a closed, decorated surface in the complement of
F, such that A consists of a single closed curve, dividing 3. into two connected components, Yy, and
.. If
(c1(s), [E]) — [E] - [X] + 29(22) — 29(Zw) =0,
then
Fw,rs(t:luv(Bw) ® =) ~ Fyw rs—pps) (t€uv (X2) @ —).

Proof. The proof is similar to our proof of Theorem 1.5.

We pick two disks, D1 and Dy, in S, which intersect A along two arcs, then we isotope 3 so that
¥NY; = D;. Let Sy denote the decorated surface obtained by removing Dy and D5 from S, after we
perform the isotopy. Let U; and Us denote the unknots 0D and dDs, in Y7 and Y, respectively,
each decorated with two basepoints.

Let o denote a coloring of F which maps the type-w subsurface to the variable U, and the type-z
subsurface to V. Let ¢ denote an extension of ¢ to the decorated surface F U Sy, which assigns X,
the variable U’, and ¥, the variable V. We assume 6 has a codomain P with |P| = 4, so that we
can identify the ring Rp with Fo[U, V,U’, V'].

We pick Seifert surfaces S; and Ss for L; and Lo, and consider the link cobordism map

FW,(fUSg)5,5: CFL™ (le7 (Ll @] U1)6,5|y1) — CFL™ (}/27 (LQ @] U2)675|y2).

We give F and Sy an indexing J: F'U Sy — {1,2} which sends F to 1 and Sy to 2. The indexing
J induces a two component Alexander grading A = (A, As), where A; corresponds to the links
L1 and Ly, with Seifert surfaces S7 and Ss, while Ay corresponds to the unknots U; and Us, with
Seifert surfaces Dy and Da. The map Fyy,(rus,)s,s is bi-graded with respect to A. Furthermore,
Fyw,(rus,)s,s induces an Ay grading change of

{er(s), (X)) — (] + [F]) - [3]

AAQ = 9 +Q(Ez) *g(zw)

_ {als), [5]) - [5] - [X] +9(32) — 9(Xw)

2
=0.

‘We now claim that
(12.4) Fy,rusye,s(Euv (Ew) @ =) =~ Fy,(rusy)e s—poiz) (§orv (22) © =),

where S} is a properly embedded, decorated annulus in W, with boundary —U; UUs, which is disjoint
from F, and is obtained by adding a tube along one of the dividing arcs of Sy, and decorating it
with two parallel dividing arcs, running from U; to Us.

To prove Equation (12.4), we adapt the proof of Proposition 9.7. We consider the U’ = 1 and
V" = 1 reductions of the map Fyy, (rus,)?,s» Which by a natural extension of Theorem 9.4, one can
identify as the map induced by a cobordism W containing the decorated surface F as well as a
ribbon graph. The cobordism with decorated surface and graph connects two 3-manifolds which
contain multi-based links as well as free basepoints. If ¢y, (resp. ¢;) is a path in W connecting the
w basepoints (resp. z basepoints) of U; and Us, constructed as in the statement of Lemma 9.6, then
by adapting the proof thereof, we see that

Py, (70s0)7,slvi=1 =~ Fw,Foucy.s(Eur (Bw) ® —)

12.5
(12:5) and  Fy,(rusy)e.slvr=1 = Fw,Fouc, s— o) (§vr (X2) ® —).
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By identifying w; and z; with a single point p; € Y;, we can view the two reductions of Fyy,(rus,)s s
as having a single domain and range, namely CFL™ (Y1, LU{p1 }, 5|y, ) and CFL™ (Y2, L§U{p2}, 5]y, ),
both of which we view as modules over the ring Fo[U, V, U ]. Note that when we identify w; and z;
with the point p;, we can pick ¢y and ¢, to be isotopic relative to their endpoints. We write ¢ for
the common path from p; to ps.

We can view U as acting on Fo[U’, V'] as the product U'V’. Since AA; = 0, by adapting the
proof of Proposition 9.7, it follows that

(12.6) Fw, (rusyr.s = (Fw,(Fusy) s V':1)|F2[U/’V,] = (FW,(]-'USo)&,slU’:l)‘FQ[U/7V/]~
Combining Equations (12.5) and (12.6) shows that
(12.7) Fyw,Foues (€ (Sw) @ )PV Py 7o o pps) (€0(22) @ =)0V,

The notation [F2IV"-V'] is described in Section 9.3, and amounts to replacing each instance of U with
U'V’. Finally, we replace the path ¢ with a properly embedded annulus S} contained in a small
neighborhood of ¢, which we decorate with two dividing arcs running from Y7 to Y5. The effect on the
cobordism maps is simply to replace any single basepoint p on a Heegaard diagram or triple (with p
corresponding to a point on ¢) with a pair of basepoints w and z, which are immediately adjacent on
the Heegaard diagram or triple. It follows that the algebraic extension operation |]F2[U"V,] amounts
to just replacing the path ¢ with the annulus Sj. In light of this, Equation (12.4) follows from
Equation (12.7).
Note that the relation in Equation (12.4) persists when we set U = U’ and V = V’| since the
chain homotopy is Rp-equivariant.
We now construct two cobordisms ([0, 1] x Y1, F7) and ([0, 1] x Y3, F3), such that the following are
satisfied:
(1) The cobordism ([0,1] x Y1, F7): (Y1,L1) — (Y2,L; UUy) splits an unknot off of L, which
becomes Uj.
(2) The cobordism ([0, 1] x Ya, F3): (Y2,La UUs) — (Y2,Ls) caps off Uz with the disk Ds.

Note that the composition
([0’ 1] X Y27}—£) o (VV,IUS(/)) o ([07 1] X Ylv]:{)

is diffeomorphic to (W, F). Pre- and post-composing both sides of Equation (12.4) with the maps
for ([0, 1] x Yo, F3) and ([0, 1] x Y1, F7), after having set U = U’ and V = V', we obtain the theorem
statement. (]

12.3. An adjunction inequality for the link cobordism maps. In this section, we use Theo-
rem 12.5 to prove an adjunction inequality for the link cobordism maps. As in the previous section,
we work over the ring R~ := Fo[U, V]. The adjunction inequality we state concerns the version of
link Floer homology

CFL™(Y,L,s) == CFL™ (Y,L,s) ®r- R™/(V).
Theorem 1.6. Suppose that (W, F): (Y1,L1) = (Y2,L2) is a link cobordism with by(W) = 0, such

that Ly and Lo are null-homologous in Y1 and Ys, respectively. Suppose that the induced map

FW,]:75: CFLi(YhLl,S‘Yl) — CFLi(YQ,L275|Y2)

is not Fo[U]-equivariantly chain homotopic to the zero map. If ¥ is a closed, oriented surface in the
complement of F such that g(X) > 0, then

[(er(s), [EDI+ 2] - [B] < 29(%) — 2.

Proof. Suppose that ¥ is a surface with |{c1 (s), [E])|+[X]-[Z] > 2¢9(2) (note that |{c1(s), [X])|+[Z]-[Z]
is always even since c¢1(s) is a characteristic vector of Q). By reversing the orientation of ¥ if
necessary, we may assume that |(c1(s), [X])| = —(c1(s), [X]), so that

—(ca(e), (X)) + [2] - [%] = 29(%).
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By taking the connected sum of ¥ with null-homologous tori to raise the genus, if necessary, we
may assume that

—(ca(s), [X) + [2] - [5] = 29(%).

We now decorate > with a dividing set consisting of a single closed curve, dividing ¥ into two
components, such that ¥ is a disk, and X, is a connected surface of genus g(X). Since

(cr(s), (X)) — [X] - [X] + 29(%2) — 29(Zw) =0
we can apply Theorem 12.5 to see that
(12.8) Fwrs(—) ~ Fw,rs—ppm (v (E2) @ —).

Since by (W) = 0, the element t,&py (2,) is simply (UV)93=) = (UV)9*), Since V = 0 on CFL™,
we obtain immediately from Equation (12.8) that Fyy r s is Fo[U]-equivalently chain homotopic to
0 on CFL™, completing the proof. O

We now describe two examples of Theorem 12.5.

Ezample 12.6. Suppose that LL is a multi-based link in S3, and (W, F): (S3,L) — (S3,L) is the link
cobordism obtained by performing —1 surgery on an unknot U C S which is unlinked from L. Let
E C W denote an exceptional sphere which is disjoint from F. Write 5',: for the Spin® structure
with (c1(s)), E) = 2k+1, for k > 0. Let s, be the Spin® structure with (c (s, ), E) = —(2k —1), for
k > 0. Theorem 1.6 implies that FW7f75ki ~ (0 on CFL™ unless k = 0. Indeed using Theorem 12.5,
for appropriate stabilizations of E, we obtain the relations

~ k ~ ~ k(k+1)/2
F‘W,]-‘,sk+ - (UV) : F‘W,.7-‘,5k+71 - = (UV) ( )2 FW,]-",sar’
on CFL™(S3,LL,s0). A similar relation holds for a Spin® structure s;; with k¥ > 1. In analogy to the
standard blow-up formula [0S06, Theorem 1.4], we expect Fy 7o (UV)FEFD/2 id o g8 1),
however for the sake of brevity, we will not endeavor to write down a proof.

Ezample 12.7. Let (Wo, F): (83, K;) — (83, K_) denote a decorated version of the 2-handle knot
cobordism (Ws, 33) shown in Figure 11.1, which changes a positive crossing to a negative one. The
4-manifold Wy is obtained by attaching a 2-handle to an unknot with framing —1 which is linked
with K, . Define the Spin® structures ﬁlf € Spin®(W3) as in Example 12.6. There is an embedded
torus T in the complement of F which is a generator of Ha(Wo;Z), and satisfies

(e (si;), T)| + [T) - [T) = 2k.

The torus T is shown in Figure 12.1. By Theorem 1.6, it follows that whenever k > 0, the map
Fy, 7 ,+ vanishes on HFK ™ and HFK by Theorem 1.6.

T o5

We note in [0S04b, Theorem 8.2], Ozsvath and Szabé give a proof of the Skein exact triangle

for knot Floer homology, by adapting the proof of the standard surgery exact triangle for HF
[0S04c, Theorem 9.16]. The map F := ZsESpinc(Wz) Fyw,.F s is one of the maps in their Skein exact

sequence for HFK . We note that in the statement of [0S04b, Theorem 8.2], the map F is not
known to be a graded map with respect to the Maslov grading. Theorem 1.6 shows F' in fact does
preserve the Maslov grading, since the only Spin structures with non-trivial contribution are 5;{
and s; .

This is in contrast to [OS07], where Ozsvath and Szabé give a proof of the Skein exact triangle,
where all three maps in the triangle are graded. The proof they give is not an adaptation of the
surgery exact sequence, but instead is a careful examination of certain specially constructed Heegaard

diagrams.
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FIGURE 12.1. The embedded torus T in W5 \ X,. The exterior circle is the
unknot U which we perform —1 surgery on to obtain (S3, K_). The gray region
shown is a punctured torus in 52, with boundary on the unknot U. By attaching
the core of the 2-handle which is attached along U, we obtain a torus with self
intersection —1.
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