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Abstract—Generating 3D digital representations of plants is
indispensable for researchers to gain a detailed understanding
of plant dynamics. Emerging high-throughput plant phenotyp-
ing techniques can capture plant point clouds that, however,
often contain imperfections and make it a changeling task to
generate accurate 3D reconstructions. We present an end-to-
end pipeline to reconstruct surfaces from point clouds of maize
and rice plants. In particular, we propose a two-step clustering
approach to accurately segment the points of each individual
plant component according to maize and rice properties. We
further employ surface fitting and edge fitting to ensure the
smoothness of resulting surfaces. Realistic visualization results
are obtained through post-processing, including texturing and
lighting. Our experimental study has explored the parameter
space and demonstrated the effectiveness of our pipeline for high-
throughput plant phenotyping.

Index Terms—3D reconstruction, high-throughput plant phe-
notyping, point cloud.

I. INTRODUCTION

Capturing the dynamics of plant growth is a necessity for
plant biologists to gain new insights into complex relationships
between genes and phenotypes of plant organization under
different environmental stresses [4]. During the process from
a small seed to a full-grown plant with many leaves, the
3D structure of a plant exhibits dramatic changes. High-
throughput plant phenotyping becomes indispensable to quan-
tify the dynamics of high spatial or temporal resolutions with
accurate 3D representations [9].

High-throughput phenotyping generally mainly employs
two types of approaches to obtain 3D information of objects.
The first type are active approaches that use active sensors,
e.g., LIDAR (Light Detection and Ranging) [25], [28], to
directly capture 3D structural information by generating dis-
cretized 3D point clouds [13]. The second type are passive
approaches that use passive sensors, e.g., regular cameras, to
take 2D images from multiple views of an object and generate
3D point clouds from these 2D images [24]. 3D reconstruction,
converting a point cloud to a geometry that is represented
by triangles [23], [28], is then typically applied to facilitate
researchers to gain a better understanding of the 3D structures
of target objects.

Compared to traditional application domains (e.g., 3D mod-
eling in movies and games), high-throughput plant phenotyp-
ing has imposed new challenges in 3D reconstruction:
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First, due to the subtle and complex structure of a plant and
the resolution limit of imaging devices, a resulting 3D point
cloud often contains various imperfections, such as severe
noises and missing points [17].

Second, a plant researcher usually desires to obtain accurate
3D digital descriptions that can capture subtle features (e.g.,
most dynamically changed areas on a leaf) during a plant
growth process, and such high accurate descriptions typically
are not demanded in most movie or game scenes where
visually appealing 3D approximations could suffice.

Third, most existing high-throughput plant platforms need
to move either plants or imaging devices to capture the entire
plant structure from different views [12], [16], and thereby
are hard to guarantee stabilized imaging conditions during
motions. In particular, unlike rigid objects, plant leaves can
be easily vibrated to incur blurred or noised imaging results.
This issue can be exacerbated with an increased movement
speed in order to get a higher throughput.

In this paper, we present a pipeline to reconstruct the
3D geometries of plants from their 3D point clouds. We
holistically address the key steps from noise reduction to
plant structure reconstruction. In particular, we develop a 3D
reconstruction method for plant leaves by leveraging certain
natural properties of leaves to address the imperfections in
their 3D point clouds. Post-processing, such as texturing
and lighting, has been applied to resulting 3D geometries to
enhance reconstruction results. We target specific plants (i.e.,
maize and rice) in this work, and our developed techniques
can be potentially applied to other plants. Our approach can
greatly facilitate researchers in studying 3D plant structures
and capturing detailed features from high-throughput plant
phenotyping.

II. RELATED WORK

Extensive research work has been conducted for 3D re-
construction from point clouds. Berger et al. presented a
comprehensive survey of the techniques [2]. In the plant
science community, these techniques have been exploited to
quantify the structural properties of different plants and their
components [1], [3], [29]. In the computer vision and graphics
communities, several approaches have been proposed for plant
reconstruction and modeling. For example, Ijiri et al. [14] used
simple primitives to approximate flower components via X-ray
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Fig. 1. The main steps of our pipeline.

Computed Tomography. Livny et al. [19] used a lobe-based
representation to approximate the geometry of tree data.

As a plant can contain many parts (e.g., leaves and stalks)
with distinct geometry properties, the whole point cloud of a
plant usually cannot be reconstructed into a single geometry.
Instead, the points that belong to each component should be
segmented first, and then are tackled individually by 3D re-
construction algorithms. Therefore, the classification of points
is a critical step in reconstructing plant or plant-like structures.
Quan et al. [23] treated a point cloud of a plant as a graph
and used a graph cut algorithm to cluster the leaves. Liu et
al. [18] used a Gauss map to classify the surface types from a
point cloud of a facility with pipelines. They showed that the
surfaces can be classified by identifying the rings or patches
in a Gauss map when the types of surfaces are limited in
a point cloud. However, for plants, the surface of an actual
leaf is not flat. For example, a maize leaf is wavy along the
edges. Thus, if the normals of a plant point cloud are projected
onto a unit spherical surface, the points on the surface will
be scattered, which makes the Gauss map less effective for
clustering points. Li et al. [17] determined the label of a point
to a certain group by designing and minimizing an energy
function. Their approach can extract and track the topological
events like budding and bifurcation during the growth of
certain plant species (e.g., Dishlia) from time-varying 3D point
clouds. Schnabel et al. [26] used the RANSAC algorithm to
extract shapes by randomly selecting minimal points from
data and constructing corresponding models. However, the
RANSAC algorithm may take many iterations and incur high
computation costs, as it is based on a random search. In
addition, it can produce false models if the point cloud has
a lot of noises.

After different components have been identified from the
3D point cloud of a plant, the structure of each component
can be reconstructed. Surface fitting is used to find the
triangular mesh that can represent the point cloud and the
corresponding object. Several methods are commonly used.
Marching cubes [20] has been used for surface reconstruction
in which a tangent plane at each sample is estimated using
the k-nearest neighbors, and then the distance to the plane is
used to compute a signed distance function. Poisson surface
reconstruction is a well-known technique for creating water-
tight surfaces from oriented point clouds with normals [15].
Moving Least Squares (MLS) [11], [21] has been used to find
a smooth surface, a polynomial approximation of the local
neighborhood, from a local planar parametrization. B-spline
surface reconstruction, which describes the surface with B-
spline functions, is also available for point clouds [7].
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However, it is challenging to directly apply these methods
to plant data to generate appropriate reconstruction results.
The point cloud of a plant can contain a relatively high
amount of noise, which can incur significant interference for
3D reconstruction processes. In particular, leaves of certain
plants (e.g., maize and rice) can be characterized by their long
and narrow structures, incurring a less accurate estimation of
the surface in a small local region of a leaf.

III. OUR APPROACH

We develop an end-to-end pipeline to reconstruct the 3D
geometry of a plant from its 3D point cloud. The pipeline
consists of three main steps: data acquisition and prepro-
cessing, leaf clustering and segmentation, and 3D model
reconstruction. Figure 1 summarizes the main steps.

« First, we collect the point cloud of a plant by either active
approaches or passive approaches. We apply the pre-
processing operations to remove the background points
and reduce the noises in the original point cloud.

o Next, we segment the 3D data points into individual
leaves through a two-step clustering approach. Different
clusters belong to the same leaf are detected and merged.

o Finally, we reconstruct the surface of each leaf using
surface and curve fitting techniques and combine all
the models of leaves together. We apply certain post-
processing (e.g., adding the textures of leaves and the
models of stalks and pots) and enhance the final model
of the plant to resemble the appearance of a real plant.

A. Pre-processing

1) Point Could Generation: In this work, we target maize
and rice plants. We place the plant on a rotary table and the
table can be rotated 360 degrees. We use two methods to
generate the point clouds of plants.

In the first method, we use a line laser scanner to vertically
scan a plant during its rotation to directly obtain the 3D point
cloud of the plant [28]. The resolution of the points is ap-
proximately 5 millimeters. We aggregate the depth information
collected to get the 3D point cloud.

In the second method, we use the 2D images taken by the
LemnaTec high-throughput plant phenotyping system located
at the University of Nebraska-Lincoln’s Greenhouse Innova-
tion Center. Specifically, we use the images of plants taken by
one camera from a side view and at every 72 degrees during
the rotation. We employ the structure-from-motion (SFM)
technique [22], [27] to reconstruct the 3D point cloud from
these 2D images.



(a)

Fig. 2. Pre-processing a point cloud of a maize plant: (a) the original point
cloud containing a plant (in the middle) and its background, (b) the point
cloud after background removal, and (c) the point cloud after noise reduction.

2) Background Removal: A point cloud often contains a
part of the environment (e.g., the ceiling or walls of a room),
which is called the background. The background is usually
very distinctive from the points of a plant in terms of their
depth values, and thus can be relatively easily filtered out
according to a depth range of the point cloud around its center.
Figure 2(a) shows an example of a point cloud containing both
a plant and the ambient background, and Figure 2(b) shows
the result after background removal.

3) Noise Reduction: Because of the resolution limit of the
devices (i.e., laser scanners and cameras) and the fine structure
of a plant, the resulting point cloud can often contain a
relatively high level of noise. In particular, there are significant
noisy outliers near the edge of each leaf. These points will
impair the quality of reconstruction. For example, clustering
methods may not be directly applied to a point cloud with
many outliers to generate optimal results.

We notice that the density of noisy points is typically lower
than the density of plant points. We compute the density of a
point p;, D(p;), in a point cloud P by finding the number of
points within a spherical kernel %k centered at p;:

1
Dpi) == >_ o(lps.psl) M
7 p;EP
where  is the radius of k, ||| denotes the Euclidean distance

between two points, and J is a distance weight metric defined
as:

L, ifllpipill <
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A point whose density is lower than a threshold d is considered
as outliers and thus is removed from the point cloud. Given a
point p; and the point cloud center ¢, we set the threshold d
to be inversely proportional to the distance between p; and c:

d=k/(1+picll) 3)

where k is a predefined coefficient. This is because the density
and the noise level are higher for regions closer to the center.

After noise reduction, the plant structure becomes more
clear in the point cloud, as shown in Figure 2(c). However, this
may also incur a new problem where the points belonging to
the same leaf (particularly with a thin structure) can become
discontinuous, as some points at the intermediate positions
along the leaf can be filtered out as noisy outliers.

4287

==Smoothed Curve

f

‘ \l, i § I'M ‘
\ "\ / |
|

d

Ll

_

I 'P.‘M‘ﬂ_

)
2
h L, N

Fig. 3. A histogram of 6 values.

B. Clustering and Segmentation

In order to correctly segment the points of a leaf into one
group, we employ a two-step clustering approach based on the
leaf shape. First, we cluster the points according to the angles
in their cylindrical projections by leveraging the symmetrical
property of maize or rice plants. Second, we further cluster
the points according to their shape connectivity. Third, we
detect the clusters that belong to the same leaf and combine
their partial point clouds. In this way, we can improve the
segmentation of a point cloud, and make each segmentation
correspond to an individual plant component (e.g., a leaf or a
stalk).

1) Angle-based Clustering: In general, the leaves of a
maize or rice plant grow up roughly around a vertical axis
at its center. This is a unique property that allows us to first
segment the points of different leaves according to their angles
with respect to the central axis. To this end, we transform the
points from their original Cartesian coordinates (x,y,z) to
the cylindrical coordinates (r, 6, z), where 6 and r denote the
azimuthal coordinate and the radial coordinate, respectively.

We classify the points by analyzing the distribution of 6
values. Figure 3 shows an example of the histogram of 8 values
of the leaves of a plant. We first construct a fitted histogram
curve (i.e., the red smoothed curve in Figure 3) and compute
the local extrema of this curve to detect the peaks. The peaks
in the histogram correspond to the main directions of leaves.
For example, there are several peaks (i.e., the green triangles)
detected in Figure 3. Second, we compute the width of each
peak as the distance between the borders (i.e., the purple lines).
A border is the horizontal position of the lowest valley between
two neighboring peaks. The range between two neighboring
borders is used as the range of the peak fall between these
two borders. Another possible way to determine the width of
a peak is to use fuzzy sets [30], where all the bins that fall
between the extension of the two slopes of a peak are assigned
to that peak. In this way, some bins can be assigned to two or
more peaks, and should be recorded and treated in a different
way in later steps. In our study, we use the former method to
define the peak width.

According to the position and the width of a peak, we can
easily find the points covered by the peak and correspond them



approximately to one direction. Figure 5(a) shows an example
of the angle-based clustering result. As only the histogram of
0 has been computed and analyzed, the angle-based clustering
allows us to quickly identify the leaves of the major directions
at a comparably low computational cost.

However, due to the fact that the points belonging to two
neighboring leaves may have the same angles in the cylindrical
coordinates, these points may be in the same bin of the
histogram (e.g., the blue clusters in Figure 5(a)). This problem
is commonly referred as aliasing in signal processing. We
address this problem to refine the angle-based clustering result
using a shape-based clustering method.

2) Shape-based Clustering: Ideally, the points of each peak
can be isolated based on their distributions in the histogram.
Due to aliasing, there may be more that one leaf corresponding
to the points of each peak, and these leaves are spatially
disconnected. Intuitively, these points can be further separated
or clustered using more spatial information. However, not all
clustering methods can be applied here. For example, the k-
means clustering method calculates the distances of the points
to the center in each cluster and tends to group the points in
a circular or spherical cluster. As a leaf typically has a long
surface, the k-means clustering may produce many clusters
from the points of even one leaf. Therefore, a shape-based
clustering method is more suitable in this case. We choose
DBSCAN [8] in our study.

In DBSCAN, a seed point is usually randomly selected to
initialize the clustering process. It is desired that the point is
close to the center of an actual cluster, which can enhance
the clustering quality. However, in practice, it is difficult to
select such a seed point from a large-scale point cloud. In
particular, if the point falls on the overlapping edges of two
clusters, undesirable results that falsely classify the points can
be generated. To avoid this problem caused by randomization,
we select a point within the bin of a peak in the histogram
as the seed point. This is because the points of a peak most
likely correspond to the center of a cluster (i.e., the central
line of a leaf), and using such a seed point can facilitate us to
classify the points of a leaf. If all the peak points have been
used in clustering and there are still points unclassified, we
then randomly choose a remaining point as a seed point to
continue the clustering.

Figure 5(b) shows an example of the DBSCAN clustering
result. We can clearly see that DBSCAN can successfully
separate the unsegmented points of multiple leaves generated
in the angle-based clustering. In addition, we apply DBSCAN
on each cluster generated in the angle-based clustering, rather
than the entire point cloud, and thereby can significantly lower
the computational cost.

3) Shaped-based Refinement: Due to the point loss in the
noise removal step, it is possible that one leaf, particularly a
thin and long leaf, may be segmented into multiple clusters,
e.g., the clusters in the blue circle of Figure 5(b). We com-
bine the clusters that belong to one leaf together using two
conditions. First, we call two clusters C; and C; neighboring
clusters if they are close to each other in terms of the 6
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Fig. 4. Using regression volumes to determine the combination of two
candidate clusters C'; and Cj.

values. If two clusters belong to one leaf, they should form a
neighboring cluster in the 2D histogram. Therefore, we only
need to check if two neighboring clusters can form a single
leaf. Second, for the two neighboring clusters, if their radial
ranges overlap, they should not be combined into one cluster
or be regarded as a single leaf. This is because each leaf grows
in only one direction, and the radial range of one cluster should
not overlap with the range of the other cluster if both of them
belong to the same leaf.

We use these two conditions to find the clusters that poten-
tially belong to the same leaf. We further need to determine
if these clusters can be actually combined using a heuristic
metric. For two candidate clusters C; and C;, we construct
their individual regression volumes V; and V;. We note that
each regression volume may not contain all the point of a
cluster. We count the point numbers within V; and V; as N;
and N;, respectively. Then, we construct a regression volume
V. of the union C. = C;|JC};, and count the point number
within V; as N.. If N./(N;+N;) > e, where e is a predefined
threshold, we consider that the combination of V; and V;
largely match with V., and thereby determine that C; and C;
can be combined, as shown in Figure 4(a). Otherwise, C; and
C; belong to different leaves, and should not be combined,
as shown in Figure 4(b). We set e = 0.9, which gives us
appropriate results in our study.

To construct a regression volume V; of a point cluster C;,
we first project all the points of C; into the r-z plane. Second,
we fit a quadratic curve f; for all the points of Cj; in the r-z
plane using the least square method. Then, we compute the
median value 6,, for the § values of points in C;. Finally, we
construct V; as

|fi(r) — 2] < 6.

4
10— 0, < 6o @

Vi(r, 0, z) z{

where J, denotes the range of V; in the r-z plane, and dy
denotes the range of V; in the -0 plane. We set §, = 5 and
dp = 15° in our study.

Using this method, we can effectively detect and combine
the clusters of the same leaf. Figure 5(c) shows an example,
where the two circled clusters are merged as a single cluster
using our refinement method, where these two clusters are
separated in the previous angle-based clustering and the shape-
based clustering, as shown in Figure 5(a) and (b).
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Fig. 5. An example of our clustering results in the space of r, 6, and z. (a) We use the angle-based clustering to obtain the initial segmentation of the point
cloud. However, due to the aliasing problem, the points of two nearby leaves may be clustered together (e.g., the circled blue clusters). (b) We further apply
the shape-based clustering to separate these points. (c) We detect and combine the clusters that belong to the same leaf (e.g., the circled green cluster).
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Fig. 6. Transform a leaf from its original x, y, z coordinate system into a new
l, s, z coordinate system, where the [ and s axes are in the z-y plane. The
point cloud of the leaf is projected into the I-s plane. Then, we detect the 2D
edge points in the [-s plane. For an edge point, we can find its corresponding
3D point in the [, s, z coordinate system. We use these 3D edge points to
form two 3D curves f/™¢™ and 0% to fit the 3D edges of the leaf.
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C. Surface Reconstruction

Once the points of a leaf are segmented from the entire
point cloud, we reconstruct a surface to fit these points using
the Cartesian coordinates. The points on the leaf surface and
the edges are tackled in different ways.

1) Surface Fitting: Least squares methods are a classic
tool for surface fitting. However, a direct application of
least squares tends to generate a smooth surface that can
lose certain local details of the leaf. A method using local
information is more suitable to reconstruct the leaf surface
and capture local details. Moving least squares (MLS) [11]
is widely used to generate a surface for data points. Instead
of constructing a global approximation, MLS constructs and
evaluates a local polynomial continuously over the entire
domain. MLS can be viewed as a local regression method.
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Fig. 7. The edge points are found using a moving strip along the long axis
L of a leaf.

We use a local regression method called locally estimated
scatterplot smoothing (LOESS) [5], which is similar to MLS.
LOESS can reconstruct a continuous surface even with the
presence of the discontinuity of leaf points.

2) Edge Fitting: Although surface fitting can generate a
smooth surface for a leaf, it can result in very serrated lines
for the edges. To construct the edges of a leaf, we first detect
the 3D edge points and then use smooth 3D splines to fit the
edges.

It is difficult to directly detect the 3D points of the edges
of a leaf due to the noises along the edges. In this work, we
leverage the symmetrical property of a maize or rice leaf to
obtain the informative 2D projection of the point cloud of the
leaf. Then, we find the 2D edge points and their corresponding
3D points to fit the 3D edges of the leaf. Figure 6 illustrates the
process. We first transform the point cloud of a leaf from its
original x, y, z coordinate system into a new [, s, z coordinate
system using the principal component analysis (PCA) method.
We first project all the points of the leaf into the z-y plane.
For the projected 2D points of the leaf, we define the long axis
[ of the leaf as the line from the leaf base to the leaf tip. The
short axis s is defined as an axis perpendicular to [ in the 2D
plane. We use the classic PCA method to find these two axes.
If A\; and A, are the two eigenvalues of the covariance matrix
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of all the points in the 2D plane and Ay > Ao, the eigenvector
vy corresponding to A; is used as [, and vy corresponding to
Ao is used as s. We project all the points onto ! and select the
point with the smallest projected value as the origin o in the
2D plane. We use the original z axis as the third axis in the
new coordinate system. Given the structure of a maize or rice
leaf, the most informative 2D projection of the point cloud
can be obtained in the [-s plane.

Second, we find the 2D edge points in the [-s plane. As
shown in Figure 7, we move a small strip along [. At any 2D
position ¢(l4,0) on the [ axis, the strip is parallel to the s
axis and is centered at g. We denote the width of the strip as
h. We find the range [s]""", s"**] to contain most the points
inside the strip and exclude some outlier points along the s
axis. We set 5" = m — 20 and s]'** = m + 20, where
m and o are the mean and the standard deviation of the s
values of the points inside the strip, respectively. We use the
two 2D points (Ig, s7") and (Ig, s;***) to represent the 2D
edge points within the strip.

Then, we aim to find the corresponding 3D edge points
of (lg,s7"™) and (lg, sq***). For (Ig, s7"™), we compute the
average z value, zg“f, of all the points within a small circle
w centered at (Ig, sg’“’f), and thereby obtain its corresponding
3D edge point (Ig, 5", z7"""). The radius of w is set to h/2.
Similarly, we find another 3D edge point (I, s;**", 2*%).
We find all the 3D edge points using this moving strip. We
empirically set h as 2% of the total length of the points along
the [ axis.

After we find all the 3D edge points, we use smoothing
splines [6] to fit the edges. We generate two curves 77" and

lsz 5
[ corresponding to the 3D point sets of (I, sy"*", zg*")

and (lg, 5", 2"%%), as shown in Figure 6. Figure 8 shows
an example of smooth edge fitting, where the blue and orange
lines correspond to the original detected edges with serrated
shapes, and the yellow and purple lines correspond to the
smooth fitted edges. Note that the [, s, z coordinate system
is constructed from the z, y, z coordinate system using the
PCA method. We can easily transform these two curves f{7"
and fj"* back to the z, y, z coordinate system as ;’;Z" and
zye s Tespectively.

3) Mesh Generation: After surface fitting, we discretize the
surface functions to a 3D triangular mesh. We first use the
Delaunay triangulation algorithm [10] to generate a triangular

mesh in the z-y plane. Then, for each vertex of a triangle,
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Fig. 9. A comparison of histogram shapes using different numbers of bins:
(a) N =50, (b) N =100, (c) N =200, and (d) N = 500.
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we use its # and y values to compute its z value through the
functions of the fitted surface. In this way, we can generate a
3D triangle mesh from the fitted surface.

IV. RESULTS AND DISCUSSION
A. Number of Bins

In this work, the histogram of the # values is an important
guide in how the point cloud should be divided. An appropriate
choice of the number of bins determines if the peaks can be
successfully detected or not. We experiment the number of
bins N as 50, 100, 200, and 500, and compare the histogram
results in Figure 9 (a), (b), (c) and (d), respectively. We can
see that a small N cannot represent the histogram in a smooth
shape, while a very large N can cause high pulses in the
histogram. We found that N = 200 is a suitable choice for
the histogram and have used it in our study.

B. Histogram Curve

The number of peaks that can be detected in the histogram
of the 6 values is mainly determined by three factors: the
smoothness of the fitted histogram curve used to detect the
peaks, the minimum distance between peaks, and the minimum
height of a peak. Figure 10 compares the effects of these
factors. Figure 10(a) shows the original histogram curve that
may not be smooth and can contain many peaks. Not all
these peaks correspond to actual leaves. For example, in
Figure 10(a), several peaks (within an orange circle) appear at
the low-count bins that are likely generated by noise. These
false peaks can be partially removed by setting the minimum
height minHeight of the peak and the minimum distance
minDistance between the peaks, as shown in Figure 10(b).
But there are still false peaks found on the histogram curve
(e.g., the ones in the magenta circle of Figure 10(b)).

The problem can be alleviated by further smoothing the
histogram curve. Moving average filter is commonly used
in signal processing, which takes the weighted sum of the
neighboring points of one point and uses the sum as the new
value for the point. Moving average can reduce many false
peaks detected in the histogram curve, as shown in Figure
10(c). However, a false peak (in the cyan circle of Figure
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Fig. 10. The number of peaks (denoted by the green triangles) that can be
found for different curves: (a) the original histogram curve, (b) the original
histogram curve with minHeight = 5 and minDistance = 10, (c) the
curve generated using the moving average filter, and (d) the curve generated
using curve fitting.

10(c)) is found at a place where only one peak should exist.
A spline based curve fitting method, such as smoothing spline,
can be used here to better describe the distribution of peaks
in a histogram curve. The fitted histogram curve using a
smoothing spline is smoother than the ones obtained using
moving average. The peaks can also be correctly found without
any false peaks, as shown in Figure 10(d). Therefore, we
suggest using a histogram curve fitted with smoothing spline
for the task of peak detection.

C. Parameters of DBSCAN

The two key parameters, the search radius R and the
minimum number of points minPoints, largely determine
the effectiveness of DBSCAN. DBSCAN is sensitive to these
parameters such that changing them can generate many dif-
ferent results. Figure 11 shows a comparison of the different
clustering results obtained by changing these two parameters.
The plots in the left column show the effect of changing the
search radius R. When R = 5, all the points can be correctly
clustered, where the points in one cluster belong to only one
leaf, as shown in Figure 11(a). However, in Figure 11(b), when
the radius R is increased to 10, there is a false classification
where the points (within the red circle) that belong to two
leaves are in one cluster. As shown in Figure 11(c), when the
radius R is further increased to 100, the false classification gets
more severe where a cluster (e.g., the one in the red circle)
can contain the points of more than two leaves.

The minimum number of points minPoints for a point
to grow can also affect the clustering result. As shown in
Figure 11(d), when minPoints = 0, many small clusters
are detected. Some of these clusters are from the tips of
leaves and some are from noise (within the red circle). When
minPoints increases to 10 in Figure 11(e), some tiny clusters
will disappear. However, when minPoints is set to a high
value like 100, there points that belong to one leaf will be
cut into many medium clusters, as shown in Figure 11(f).
Although the separated clusters that belong to a leaf can be
combined using our shape-based refinement method, it is still
better to make the clustering results as accurate as possible,
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(© ()
Fig. 11. A comparison of results of using different parameters: (a) R = 5,
minPoints = 50; (b) R = 10, minPoints = 50; (¢c) R = 20,
minPoints = 50; (d) R = 5, minPoints = 0; (¢) R = 5,

minPoints = 10; and (f) R = 5, minPoints = 100.

which can also reduce the computation costs. We used R = 5
and minPoints = 50 for the point cloud in this work.

D. Complexity

The design in our pipeline has considerably lowered the
runtime complexity compared to alternative approaches. In
particular, there are two types of search operations in the
pipeline. One is the search of points that belong to a cluster in
DBSCAN. The other one is the search of clusters in combining
clusters that belong to a leaf.

Given n points, DBSCAN has an average runtime com-
plexity of O(nlogn). As we use the histogram to find peaks
and apply an initial angle-based clustering of the point cloud,
we employ DBSCAN on each cluster from the angle-based
clustering, instead of the whole point cloud. If the point cloud
contains [V, peaks in the histogram, then the average com-
plexity is Ny, x O(5+ log 5+) = O(nlogn) — log Ny * O(n),
which is smaller than the Sriginal complexity O(nlogn) of
DBSCAN.

In the step of shape-based refinement, a direct approach
is to compare any two clusters and see if they can form a
bigger cluster. If there are N, clusters, the complexity of this



approach is O(W) = 2O(N(N.—1)). In our method,
as we only compare neighboring clusters in terms of 6 values,
the complexity is O(N, — 1), which is much smaller than the
original complexity 1O (N.(N, — 1)).

E. Reconstruction Results

We compare the reconstructed meshes for all the leaves of
a maize plant using our method and existing approaches. Fig-
ure 12(a) shows the result of the Poisson surface reconstruction
method [15]. We can clearly see the bumpy surface caused
by noises, which are difficult to be tackled only using local
Poisson disks. Figure 12(b) shows the result of the B-spline
surface reconstruction [7], where the surface is much smoother
compared to the Poisson surface. However, this method cannot
obtain appropriate results in the region with high noises.
For example, in the highlighted region in Figure 12(b), the
reconstructed surface is twisted to over-fit the local noisy
point cloud. Our method addresses this issue by applying
local regression, and thereby can significantly improve the
reconstruction result, as shown in Figure 12(c). We note that
edge fitting can further improve the surface reconstruction for
leaves of plants, as shown in the images Figure 12(d).

We further quantitatively evaluate the reconstructed surfaces
using the variance of surface normals. Table I shows the
reconstruction results of eight leaves of a maize plant among
the Poisson method, the B-spline method, and our method
with and without edge fitting. We can clearly see that our
method can generate much smoother leaf surfaces with smaller
normal variances. In particular, when applying edge fitting,
the average variance of our method is only 28.7% and 56.8%
of ones of the Poisson and B-spline methods, respectively.
Figure 13 shows the real maize plant and our reconstructed
leaves. Our method can generate a reconstructed representation
approximating the real plant.

We enhance a final model to resemble the appearance of a
real plant by adding the textures of leaves and stalks, as well
as the pot when the plant grows. Figure 14 shows examples of
maize and rice plants. Our 3D reconstruction results can facil-
itate researchers to gain an intuitive but detailed understanding
of plants, and lead to possible new scientific discoveries.

TABLE 1
A COMPARISON OF THE VARIANCE OF SURFACE NORMALS.

Method Leafl | Leaf2 | Leaf3 | Leaf4 | Leaf5 | Leaf6 | Leaf7 | Leaf8 | Average

Poisson 0.85 0.88 0.91 0.87 0.88 0.86 0.87 0.84 0.87

B-spline 0.21 0.88 0.29 0.48 0.79 0.15 0.15 0.60 0.44
Our method! 0.41 0.31 0.21 0.38 0.26 0.20 0.35 0.17 0.29
Our method 0.33 0.28 0.18 0.26 0.25 0.18 0.33 0.16 0.25

V. CONCLUSION

We present a pipeline to reconstruct surface representations
from point clouds of plants, where the point clouds can be
generated by either active approaches or passive approaches.
After removing background and noises, we design a two-step

'Our method without edge fitting.
2Q0ur method With edge fitting.
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Fig. 12. A comparison of reconstructed meshes for leaves of a maize plant:
(a) Poisson surface reconstruction, (b) B-spline surface reconstruction, (c) our
method without edge fitting, and (d) our method with edge fitting.

(b)

Fig. 13. A comparison of (a) the real plant and (b) the reconstructed leaves.
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(a)

Fig. 14. Rendering of 3D models with texture and lighting enhancements:
(a) a maize plant and (b) a rice plant at three time points.



clustering approach and the refinement process to effectively
and efficiently segment a point cloud into different compo-
nents by leveraging the structural properties of the maize
or rice plant. Then, we reconstruct each component using
surface fitting and edge fitting to ensure the smoothness of
resulting surfaces. The final results, with texture and lighting
enhancement, provide a faithful digital 3D representation of
the original plant in the real world. Our detailed experimental
study has explored the effectiveness of parameter changes
and provided useful guidelines on selecting parameters for
practical usages. Our method significantly enhances the quality
of 3D reconstruction for high-throughput plant phenotyping.
In our study, we leverage the constraints of the maize or rice
plant. However, these constraints do not always hold for plants
with more complex structures. In the future, we would like
to investigate algorithms to automatically characterize plant
structural properties and derive constraints for obtaining more
accurate reconstruction results. In addition, we plan to extend
our current pipeline to tackle time-varying 3D point cloud and
detect important plant dynamics during its process of growth.
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