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The kind of causal inference seen in natural
human thought can be “algorithmitized” to help
produce human-level machine intelligence.

| BY JUDEA PEARL

The Seven
Tools of
Causal

Inference,

with Reflections
on Machine
Learning

THE DRAMATIC SUCCESS 1n machine learning has led to
an explosion of artificial intelligence (AI) applications
and increasing expectations for autonomous systems
that exhibit human-level intelligence. These expectations
have, however, met with fundamental obstacles that
cut across many application areas. One such obstacle
is adaptability, or robustness. Machine learning
researchers have noted current systems lack the ability
to recognize or react to new circumstances they have
not been specifically programmed or trained for.
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Intensive theoretical and experimental
efforts toward “transfer learning,” “do-
main adaptation,” and “lifelong learn-
ing”™* are reflective of this obstacle.
Another obstacle is “explainability,”
or that “machine learning models re-
main mostly black boxes”* unable to
explain the reasons behind their pre-
dictions or recommendations, thus
eroding users’ trust and impeding di-
agnosis and repair; see Hutson® and
Marcus." A third obstacle concerns the
lack of understanding of cause-effect
connections. This hallmark of human
cognition'®® is, in my view, a neces-
sary (though not sufficient) ingredient
for achieving human-level intelligence.
This ingredient should allow computer
systems to choreograph a parsimoni-
ous and modular representation of
their environment, interrogate that rep-
resentation, distort it through acts of
imagination, and finally answer “What
if?” kinds of questions. Examples in-
clude interventional questions: “What
if I make it happen?” and retrospective
or explanatory questions: “What if I had
acted differently?” or “What if my flight
had not been late?” Such questions can-
not be articulated, let alone answered by
systems that operate in purely statistical
mode, as do most learning machines to-
day. In this article, I show that all three
obstacles can be overcome using causal
modeling tools, in particular, causal di-
agrams and their associated logic. Cen-
tral to the development of these tools
are advances in graphical and structural
models that have made counterfactuals
computationally manageable and thus
rendered causal reasoning aviable com-

key insights

m Data science is a two-body problem,
connecting data and reality, including the
forces behind the data.

m Data science is the art of interpreting
reality in the light of data, not a mirror
through which data sees itself from
different angles.

m The ladder of causation is the double
helix of causal thinking, defining what can
and cannot be learned about actions and
about worlds that could have been.
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ponent in support of strong Al.

In the next section, I describe a
three-level hierarchy that restricts and
governs inferences in causal reason-
ing. The final section summarizes how
traditional impediments are circum-
vented through modern tools of causal
inference. In particular, I present seven
tasks that are beyond the reach of “as-
sociational” learning systems and have
been (and can be) accomplished only
through the tools of causal modeling.

The Three-Level Causal Hierarchy
A useful insight brought to light
through the theory of causal models is
the classification of causal information
in terms of the kind of questions each
class is capable of answering. The clas-
sification forms a three-level hierarchy
in the sense that questions at level i (i =
1,2, 3) can be answered only if informa-
tion from levelj (j > i) is available.
Figure 1 outlines the three-level hi-
erarchy, together with the characteris-
tic questions that can be answered at
each level. I call the levels 1. Associa-
tion, 2. Intervention, and 3. Counter-
factual, to match their usage. I call the
first level Association because it in-
vokes purely statistical relationships,
defined by the naked data.* For in-
stance, observing a customer who buys
toothpaste makes it more likely that
this customer will also buy floss; such
associations can be inferred directly
from the observed data using standard
conditional probabilities and condi-
tional expectation.'® Questions at this
layer, because they require no causal
information, are placed at the bottom
level in the hierarchy. Answering them
is the hallmark of current machine
learning methods.* The second level,
Intervention, ranks higher than Asso-
ciation because it involves not just see-
ing what is but changing what we see.
A typical question at this level would
be: What will happen if we double the
price? Such a question cannot be an-
swered from sales data alone, as it in-
volves a change in customers’ choices
in reaction to the new pricing. These
choices may differ substantially from

a Other terms used in connection with this
layer include “model-free,” “model-blind,”
“black-box,” and “data-centric”; Darwiche®
used “function-fitting,” as it amounts to fit-
ting data by a complex function defined by a
neural network architecture.
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those taken in previous price-raising
situations—unless we replicate pre-
cisely the market conditions that ex-
isted when the price reached double
its current value. Finally, the top level
invokes Counterfactuals, a mode of
reasoning that goes back to the philos-
ophers David Hume and John Stuart
Mill and that has been given comput-
er-friendly semantics in the past two
decades."'® A typical question in the
counterfactual category is: “What if I
had acted differently?” thus necessi-
tating retrospective reasoning.

I place Counterfactuals at the top
of the hierarchy because they sub-
sume interventional and association-
al questions. If we have a model that
can answer counterfactual queries,
we can also answer questions about
interventions and observations. For
example, the interventional question:
What will happen if we double the
price? can be answered by asking the
counterfactual question: What would
happen had the price been twice its
current value? Likewise, association-
al questions can be answered once
we answer interventional questions;
we simply ignore the action part and
let observations take over. The trans-
lation does not work in the opposite
direction. Interventional questions
cannot be answered from purely ob-
servational information, from statis-
tical data alone. No counterfactual
question involving retrospection can
be answered from purely interven-
tional information, as with that ac-
quired from controlled experiments;
we cannot re-run an experiment on
human subjects who were treated
with a drug and see how they might
behave had they not been given the
drug. The hierarchy is therefore di-
rectional, with the top level being the
most powerful one.

Counterfactuals are the building
blocks of scientific thinking, as well
as of legal and moral reasoning. For
example, in civil court, a defendant is
considered responsible for an injury
if, but for the defendant’s action, it is
more likely than not the injury would
not have occurred. The computational
meaning of “but for” calls for com-
paring the real world to an alternative
world in which the defendant’s action
did not take place.

Each layer in the hierarchy has a
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syntactic signature that characterizes
the sentences admitted into that layer.
For example, the Association layer is
characterized by conditional prob-
ability sentences, as in P(y|x) = p, stating
that: The probability of event Y =y, given
that we observed event X = x is equal to
p. In large systems, such evidentiary
sentences can be computed efficiently
through Bayesian networks or any num-
ber of machine learning techniques.

At the Intervention layer, we deal
with sentences of the type P(y|do(x), 2)
that denote “The probability of event Y
=y, given that we intervene and set the
value of X to x and subsequently observe
event Z = z. Such expressions can be es-
timated experimentally from random-
ized trials or analytically using causal
Bayesian networks.'® A child learns the
effects of interventions through playful
manipulation of the environment (usu-
ally in a deterministic playground),
and AI planners obtain interventional
knowledge by exercising admissible
sets of actions. Interventional expres-
sions cannot be inferred from passive
observations alone, regardless of how
big the data.

Finally, at the Counterfactual level,
we deal with expressions of the type
P(yx |x',y’) that stand for “The probabil-
ity that event Y = y would be observed
had X been x, given that we actually
observed X to be x’ and Y to be y'.” For
example, the probability that Joe’s sal-
ary would be y had he finished college,
given that his actual salary is ' and that
he had only two years of college.” Such
sentences can be computed only when
the model is based on functional rela-
tions or structural.™

This three-level hierarchy, and the
formal restrictions it entails, explains
why machine learning systems, based
only on associations, are prevented
from reasoning about (novel) actions,
experiments, and causal explanations.®

b One could be tempted to argue that deep
learning is not merely “curve fitting” because
itattempts to minimize “overfit,” through, say,
sample-splitting cross-validation, as opposed
to maximizing “fit.” Unfortunately, the theo-
retical barriers that separate the three layers in
the hierarchy tell us the nature of our objective
function does not matter. As long as our sys-
tem optimizes some property of the observed
data, however noble or sophisticated, while
making no reference to the world outside the
data, we are back to level-1 of the hierarchy,
with all the limitations this level entails.



Questions Answered
with a Causal Model
Consider the following five questions:

» How effective is a given treatment
in preventing a disease?;

» Was it the new tax break that
caused our sales to go up?;

» What annual health-care costs are
attributed to obesity?;

» Can hiring records prove an em-
ployer guilty of sex discrimination?;
and

»I am about to quit my job, but
should I?

The common feature of these ques-
tions concerns cause-and-effect rela-
tionships. We recognize them through
such words as “preventing,” “cause,”
“attributed to,” “discrimination,” and
“should I.” Such words are common

in everyday language, and modern so-
ciety constantly demands answers to
such questions. Yet, until very recently,
science gave us no means even to ar-
ticulate them, let alone answer them.
Unlike the rules of geometry, mechan-
ics, optics, or probabilities, the rules of
cause and effect have been denied the
benefits of mathematical analysis.

To appreciate the extent of this de-
nial readers would likely be stunned
to learn that only a few decades ago
scientists were unable to write down
a mathematical equation for the ob-
vious fact that “Mud does not cause
rain.” Even today, only the top echelon
of the scientific community can write
such an equation and formally distin-
guish “mud causes rain” from “rain
causes mud.”

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information

from level i or higher is available.

Level (Symbol) Typical Activity Typical Questions Examples
1. Association Seeing What is? How would What does a symptom
P(ylx) seeing X change my tell me about a disease?
belief inY? What does a survey tell
us about the election
results?
2. Intervention Doing, What if? What if I do X? What if I take aspirin,

P(yldo(x), z) Intervening

will my headache be
cured? What if we ban
cigarettes?

3. Counterfactuals
Ply,Ix, y')

Imagining,
Retrospection

Why? Was it X that
caused Y? What if I had
acted differently?

Was it the aspirin that
stopped my headache?
Would Kennedy be alive
had Oswald not shot
him? What if I had not
been smoking the past
two years?

Figure 2. How the SCM “inference engine” combines data with a causal model (or assump-

tions) to produce answers to queries of interest.

Inputs Outputs
Estimand
Query ] (Recipe for — F
/ answering the query)
Assumptions Estimate E
(Graphical model) (Answer to query) 5
Data = Fit Indices —>F
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These impediments have changed
dramatically in the past three de-
cades; for example, a mathemati-
cal language has been developed for
managing causes and effects, ac-
companied by a set of tools that turn
causal analysis into a mathematical
game, like solving algebraic equa-
tions or finding proofs in high-school
geometry. These tools permit scien-
tists to express causal questions for-
mally, codify their existing knowledge
in both diagrammatic and algebraic
forms, and then leverage data to esti-
mate the answers. Moreover, the the-
ory warns them when the state of ex-
isting knowledge or the available data
is insufficient to answer their ques-
tions and then suggests additional
sources of knowledge or data to make
the questions answerable.

The development of the tools has
had a transformative impact on all da-
ta-intensive sciences, especially social
science and epidemiology, in which
causal diagrams have become a second
language.'** In these disciplines, caus-
al diagrams have helped scientists ex-
tract causal relations from associations
and deconstruct paradoxes that have
baffled researchers for decades.?*

I call the mathematical framework
that led to this transformation “struc-
tural causal models” (SCM), which con-
sists of three parts: graphical models,
structural equations, and counterfac-
tual and interventional logic. Graphi-
cal models serve as a language for
representing what agents know about
the world. Counterfactuals help them
articulate what they wish to know. And
structural equations serve to tie the two
together in a solid semantics.

Figure 2 illustrates the operation
of SCM in the form of an inference
engine. The engine accepts three in-
puts—Assumptions, Queries, and
Data—and produces three outputs—
Estimand, Estimate, and Fit indices.

Figure 3. Graphical model depicting
causal assumptions about three variables;
the task is to estimate the causal effect

of X on Y from non-experimental data on

[Xv Y, z}-
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The Estimand (E;) is a mathematical
formula that, based on the Assump-
tions, provides a recipe for answering
the Query from any hypothetical data,
whenever it is available. After receiving
the data, the engine uses the Estimand
to produce an actual Estimate (E;) for
the answer, along with statistical es-
timates of the confidence in that an-
swer, reflecting the limited size of the
dataset, as well as possible measure-
ment errors or missing data. Finally,
the engine produces a list of “fit indi-
ces” that measure how compatible the
data is with the Assumptions conveyed
by the model.

To exemplify these operations, as-
sume our Query stands for the causal
effect of X (taking a drug) on Y (re-
covery), written as Q = P(Y|do(X)).
Let the modeling assumptions be
encoded (see Figure 3), where Z is a
third variable (say, Gender) affecting
both X and Y. Finally, let the data be
sampled at random from a joint dis-
tribution P(X, Y, Z). The Estimand
(Es) derived by the engine (automati-
cally using Tool 2, as discussed in
the next section) will be the formula
Es=3z P(Y|X, Z)P(Z), which defines a
procedure of estimation. It calls for
estimating the gender-specific con-
ditional distributions P(Y|X, Z) for
males and females, weighing them by
the probability P(Z) of membership
in each gender, then taking the aver-
age. Note the Estimand E;s defines a
property of P(X,Y, Z) that, if properly
estimated, would provide a correct
answer to our Query. The answer it-
self, the Estimate E, can be produced
through any number of techniques
that produce a consistent estimate
of ES from finite samples of P(X,Y, Z).
For example, the sample average (of
Y) over all cases satisfying the speci-
fied X and Z conditions would be a
consistent estimate. But more-effi-
cient estimation techniques can be
devised to overcome data sparsity.*®
This task of estimating statistical re-
lationships from sparse data is where
deep learning techniques excel, and
where they are often employed.**

Finally, the FitIndex for our example
in Figure 3 will be NULL; that is, after
examining the structure of the graph in
Figure 3, the engine should conclude
(using Tool 1, as discussed in the next
section) that the assumptions encoded
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lack testable implications. Therefore,
the veracity of the resultant estimate
must lean entirely on the assumptions
encoded in the arrows of Figure 3, so
neither refutation nor corroboration
can be obtained from the data.

The same procedure applies to
more sophisticated queries, as in, say,
the counterfactual query Q = P(y, |x',)")
discussed earlier. We may also permit
some of the data to arrive from con-
trolled experiments that would take
the form P(V|do(W)) in case W is the
controlled variable. The role of the Es-
timand would remain that of convert-
ing the Query into the syntactic form
involving the available data and then
guiding the choice of the estimation
technique to ensure unbiased esti-
mates. The conversion task is not al-
ways feasible, in which case the Query
is declared “non-identifiable,” and the
engine should exit with FAILURE. For-
tunately, efficient and complete algo-
rithms have been developed to decide
identifiability and produce Estimands
for a variety of counterfactual queries
and a variety of data types.*?%*

I next provide a bird’s-eye view of
seven tasks accomplished through the
SCM framework and the tools used in
each task and discuss the unique con-
tribution each tool brings to the art of
automated reasoning.

Tool 1. Encoding causal assump-
tions: Transparency and testability.
The task of encoding assumptions in
a compact and usable form is not a
trivial matter once an analyst takes
seriously the requirement of transpar-
ency and testability.? Transparency en-
ables analysts to discern whether the
assumptions encoded are plausible
(on scientific grounds) or whether ad-
ditional assumptions are warranted.
Testability permits us (whether analyst
or machine) to determine whether the
assumptions encoded are compatible

¢ The assumptions encoded in Figure 3 are con-
veyed by its missing arrows. For example, Y
does not influence X or Z, X does not influence
Z, and, most important, Z is the only variable
affecting both X and Y. That these assump-
tions lack testable implications can be con-
cluded directly from the fact that the graph is
complete; that is, there exists an edge connect-
ing every pair of nodes.

d Economists, for example, having chosen al-
gebraic over graphical representations, are
deprived of elementary testability-detect-
ing features.?
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with the available data and, if not, iden-
tify those that need repair.

Advances in graphical models have
made compact encoding feasible. Their
transparency stems naturally from the
fact that all assumptions are encoded
qualitatively in graphical form, mirror-
ing the way researchers perceive cause-
effect relationships in the domain;
judgments of counterfactual or statis-
tical dependencies are not required,
since such dependencies can be read
off the structure of the graph.'® Test-
ability is facilitated through a graphical
criterion called d-separation that pro-
vides the fundamental connection be-
tween causes and probabilities. It tells
us, for any given pattern of paths in the
model, what pattern of dependencies
we should expect to find in the data."®

Tool 2. Do-calculus and the control
of confounding. Confounding, or the
presence of unobserved causes of two
or more variables, long considered
the major obstacle to drawing causal
inference from data, has been demys-
tified and “deconfounded” through a
graphical criterion called “backdoor.”
In particular, the task of selecting an
appropriate set of covariates to control
for confounding has been reduced to a
simple “roadblocks” puzzle manage-
able through a simple algorithm.*®

For models where the backdoor
criterion does not hold, a symbolic
engine is available, called “do-calcu-
lus,” that predicts the effect of policy
interventions whenever feasible and
exits with failure whenever predictions
cannot be ascertained on the basis of
the specified assumptions.*!7303

Tool 3. The algorithmitization of
counterfactuals. Counterfactual analy-
sis deals with behavior of specific in-
dividuals identified by a distinct set
of characteristics. For example, given
that Joe’s salary is Y = y, and that he
went X = x years to college, what would
Joe’s salary be had he had one more
year of education?

One of the crowning achievements
of contemporary work on causality
has been to formalize counterfactual
reasoning within the graphical rep-
resentation, the very representation
researchers use to encode scientific
knowledge. Every structural equation
model determines the “truth value” of
every counterfactual sentence. There-
fore, an algorithm can determine if the



probability of the sentence is estima-
ble from experimental or observational
studies, or a combination thereof.'%3°

Of special interest in causal dis-
course are counterfactual questions
concerning “causes of effects,” as op-
posed to “effects of causes.” For exam-
ple, howlikelyitis thatJoe’s swimming
exercise was a necessary (or sufficient)
cause of Joe’s death.”?°

Tool 4. Mediation analysis and the
assessment of direct and indirect ef-
fects. Mediation analysis concerns the
mechanisms that transmit changes
from a cause to its effects. The iden-
tification of such an intermediate
mechanism is essential for generat-
ing explanations, and counterfactual
analysis must be invoked to facilitate
this identification. The logic of coun-
terfactuals and their graphical repre-
sentation have spawned algorithms for
estimating direct and indirect effects
from data or experiments.'*?’3* A typi-
cal query computable through these al-
gorithms is: What fraction of the effect
of X on Yis mediated by variable Z?

Tool 5. Adaptability, external va-
lidity, and sample selection bias. The
validity of every experimental study is
challenged by disparities between the
experimental and the intended imple-
mentational setups. A machine trained
in one environment cannot be ex-
pected to perform well when environ-
mental conditions change, unless the
changes are localized and identified.
This problem, and its various mani-
festations, are well-recognized by Al
researchers, and enterprises (such as
“domain adaptation,” “transfer learn-
ing,” “life-long learning,” and “explain-
able AI”)* are just some of the subtasks
identified by researchers and funding
agencies in an attempt to alleviate the
general problem of robustness. Unfor-
tunately, the problem of robustness,
in its broadest form, requires a causal
model of the environment and cannot
be properly addressed at the level of As-
sociation. Associations alone cannot
identify the mechanisms responsible
for the changes that occurred,” the
reason being that surface changes in
observed associations do not uniquely
identify the underlying mechanism
responsible for the change. The do-
calculus discussed earlier now offers a
complete methodology for overcoming
bias due to environmental changes. It

Unlike the rules

of geometry,
mechanics, optics,
or probabilities,
the rules of cause
and effect

have been denied
the benefits

of mathematical
analysis.
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can be used for both for readjusting
learned policies to circumvent envi-
ronmental changes and for controlling
disparities between nonrepresentative
samples and a target population.’ It
can also be used in the context of rein-
forcement learning to evaluate policies
that invoke new actions, beyond those
used in training.*

Tool 6. Recovering from missing
data. Problems due to missing data
plague every branch of experimental
science. Respondents do not answer
every item on a questionnaire, sensors
malfunction as weather conditions
worsen, and patients often drop from
a clinical study for unknown reasons.
The rich literature on this problem is
wedded to a model-free paradigm of
associational analysis and, accord-
ingly, is severely limited to situations
where “missingness” occurs at ran-
dom; that is, independent of values
taken by other variables in the model.®
Using causal models of the missing-
ness process we can now formalize
the conditions under which causal
and probabilistic relationships can be
recovered from incomplete data and,
whenever the conditions are satisfied,
produce a consistent estimate of the
desired relationship.'***

Tool 7. Causal discovery. The d-sep-
aration criterion described earlier en-
ables machines to detect and enumer-
ate the testable implications of a given
causal model. This opens the possibil-
ity of inferring, with mild assumptions,
the set of models that are compatible
with the data and to represent this set
compactly. Systematic searches have
been developed that, in certain circum-
stances, can prune the set of compat-
ible models significantly to the point
where causal queries can be estimated
directly from that set.*#243!

Alternatively, Shimizu et al.*® pro-
posed a method for discovering caus-
al directionality based on functional
decomposition.* The idea is that in a
linear model X — Y with non-Gaussian
noise, P(y) is a convolution of two non-
Gaussian distributions and would be,
figuratively speaking, “more Gaussian”
than P(x). The relation of “more Gauss-
ian than” can be given precise numeri-
cal measure and used to infer direc-
tionality of certain arrows.

Tian and Pearl** developed yet
another method of causal discovery
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based on the detection of “shocks,”
or spontaneous local changes in the
environment that act like “nature’s in-
terventions,” and unveil causal direc-
tionality toward the consequences of
those shocks.

Conclusion

I have argued that causal reasoning is
an indispensable component of hu-
man thought that should be formalized
and algorithmitized toward achieving
human-level machine intelligence. I
have explicated some of the impedi-
ments toward that goal in the form of
athree-level hierarchy and showed that
inference to level 2 and level 3 requires
a causal model of one’s environment.
I have described seven cognitive tasks
that require tools from these two levels
of inference and demonstrated how
they can be accomplished in the SCM
framework.

It is important for researchers to
note that the models used in accom-
plishing these tasks are structural
(or conceptual) and require no com-
mitment to a particular form of the
distributions involved. On the other
hand, the validity of all inferences de-
pends critically on the veracity of the
assumed structure. If the true struc-
ture differs from the one assumed,
and the data fits both equally well,
substantial errors may result that
can sometimes be assessed through a
sensitivity analysis.

It is also important for them to keep
in mind that the theoretical limitations
of model-free machine learning do not
apply to tasks of prediction, diagnosis,
and recognition, where interventions
and counterfactuals assume a second-
ary role.

However, the model-assisted meth-
ods by which these limitations are cir-
cumvented can nevertheless be trans-
ported to other machine learning tasks
where problems of opacity, robust-
ness, explainability, and missing data
are critical. Moreover, given the trans-
formative impact that causal model-
ing has had on the social and health
sciences,'**>** it is only natural to ex-
pect a similar transformation to sweep
through machine learning technology
once it is guided by provisional mod-
els of reality. I expect this symbiosis to
yield systems that communicate with
users in their native language of cause
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and effect and, leveraging this capabil-
ity, to become the dominant paradigm
of next-generation Al
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