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Abstract. We give the first example of a smooth family of real and complex

maps having sensitive dependence of geometric Gibbs states at positive tem-

perature. This family consists of quadratic-like maps that are non-uniformly

hyperbolic in a strong sense. We show that for a dense set of maps in the fam-

ily the geometric Gibbs states do not converge at positive temperature. These

are the first examples of non-convergence at positive temperature in statistical

mechanics or the thermodynamic formalism, and answers a question of van

Enter and Ruszel. We also show that this phenomenon is robust: There is an

open set of analytic 2-parameter families of quadratic-like maps that exhibit

sensitive dependence of geometric Gibbs states at positive temperature.

1. Introduction

The main problem in statistical mechanics and the thermodynamic formalism is
to describe the set of Gibbs states for a given interaction or potential. When the
interaction or potential depends on some parameters, one is interested in knowing
how the set of Gibbs states changes as a function of these parameters. In several
natural models in statistical mechanics, Gibbs states depend continuously (in the
weak* topology) on the temperature, even if the number of Gibbs states changes
with the temperature, see for instance [ADCS15] and references therein. In the
thermodynamic formalism, it is known that if the dynamical system has sufficient
expansion and the potential is sufficiently regular then in good situations for every
value of the temperature there is a unique Gibbs state that varies continuously with
the potential, see for example [Bow75, BCFT17, Cli18, Klo17, LRL14a, LRL14b,
Prz18, PRL11, PR14, VV10] and references therein.

In this article we study the temperature dependence of Gibbs states at posi-
tive temperature of smooth maps for the corresponding geometric potentials. The
geometric potential is completely determined by the map. It arises naturally in
several important problems, like in the construction of physical measures, as in the
pioneering work of Sinăı [Sin72], Ruelle [Rue76], and Bowen [Bow75]. The pressure
of the geometric potential is connected, among other things, to several multifractal
spectra, and large deviations rate functions, see for example [BMS03, Lemma 2],
[CRT16, GPR10, GPR16], [KN92, Theorems 1.2 and 1.3], [PRL11, Appendix B],
[OW17] and references therein.

The presence of a critical point may prevent the system to have geometric Gibbs
states. For example, in [CRL13] and [CRL15a] we constructed examples of Collet-
Eckmann maps in the quadratic family, such that for every temperature above
a critical value there a unique geometric Gibbs state, and for every temperature
smaller than the critical value there is no geometric Gibbs state. However, in those
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examples the geometric Gibbs states converge to a limit measure as the temperature
drops to the critical value.

The main result of this article shows that there are analytic families of quadratic-
like maps for which an arbitrarily small perturbation of the parameter can have a
large effect on the positive-temperature geometric Gibbs states. Furthermore, this
phenomenon is robust: There is an open set of analytic 2-parameter families of
quadratic-like maps that exhibit “sensitive dependence” of geometric Gibbs states.
In particular, this provides the first example in statistical mechanics and the ther-
modynamic formalism of non-convergence of Gibbs states at positive temperature,
thus answering a question raised by van Enter and Ruszel in [vER07]. Analo-
gous examples at zero temperature were given in [CR17], see also [BGT18, CH10,
CRL15b, vER07] for examples of non-convergence in a symbolic setting.

To state our results more precisely, we recall the concept of quadratic-like maps
of Douady and Hubbard [DH85]. Given simply connected subsets U and V of C
satisfying cl(U) ⊂ V , a holomorphic map f : U → V is a quadratic-like map if it
is proper of degree 2. Such a map has a unique point at which the derivative Df
vanishes; it is the critical point of f . The filled-in Julia set of a quadratic-like
map f : U → V is

K(f) := {z ∈ U | for every integer n ≥ 1, fn(z) ∈ U}.

The Julia set J(f) of f is the boundary of K(f), and it coincides with the closure
of the repelling periodic points of f .

Given a quadratic-like map f , denote by Mf the space of all probability measures
on J(f) that are invariant by f . For µ in Mf denote by hµ(f) the measure-theoretic
entropy of µ, and for each t in R put

Pf (t) := sup

{
hµ(f)− t

∫
log |Df | dµ | µ ∈ Mf

}
.

It is the pressure of f |J(f) for the potential −t log |Df |. A measure µ realizing the
supremum above is an equilibrium state of f |J(f) for the potential −t log |Df | or a
geometric Gibbs state.

A quadratic-like map f : U → V is real if U , V , and f are all invariant under
complex conjugation. Note that the critical point of such a map is real. A real
quadratic-like map with critical point c is essentially topologically exact∗ if f2(c)
is defined and is different from f(c), if f maps the interval I(f) bounded by f(c)
and f2(c) to itself, and if f |I(f) is topologically exact. For such a map f we consider
both the interval map f |I(f) and the complex map f acting on its Julia set J(f).

Let f be a real quadratic-like map that is essentially topologically exact. Denote
by M R

f the space of all probability measures on I(f) that are invariant by f . For µ

in M R

f we denote by hµ(f) the measure-theoretic entropy of µ, and for each t in R

we put

PR

f (t) := sup

{
hµ(f)− t

∫
log |Df | dµ | µ ∈ M

R

f

}
.

It is the pressure of f |I(f) for the potential −t log |Df |. A measure µ realizing the
supremum above is an equilibrium state of f |I(f) for the potential −t log |Df | or a
geometric Gibbs state.

∗In §3.1 we extend the definition of essentially topologically exact map to certain quadratic-like
maps that are not necessarily real.
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Definition 1.1 (Sensitive dependence of positive-temperature Gibbs states). Let Λ
be a topological space and (fλ)λ∈Λ a continuous family of real or complex quadratic-
like maps. The family (fλ)λ∈Λ has sensitive dependence of positive-temperature
geometric Gibbs states, if there are a parameter λ0 and a positive number t∗,0
such that for every increasing sequence of positive number (δℓ)ℓ∈N converging to 1
as ℓ → +∞, there are a parameter λ in Λ arbitrarily close to λ0 and a positive
number t∗ arbitrarily close to t∗,0 such that the following property holds: For
each β ∈ (0, t∗) there is a unique equilibrium state ρRβ(λ) of f |I(fλ) (resp. ρβ(λ)

of f |J(fλ)) for the potential −β log |Dfλ| and if we put for every ℓ ∈ N, βℓ := t∗ · δℓ,

then the sequence of equilibrium states
(
ρRβℓ

(λ)
)
ℓ∈N

(resp. (ρβℓ
(λ))ℓ∈N

) does not

converge.

We note that in the above situation the map f |I(fλ) (resp. f |J(fλ)) must have
a “phase transition” at t = t∗ in the statistical mechanics sense, see [PR14, Theo-
rem A] for the real case, and [PRL11, Main Theorem] for the complex case. Recall
that for a real number t∗, the map f |I(f) (resp. f |J(f)) has a phase transition

at t = t∗, if the geometric pressure function PR

f (resp. Pf ) is not real analytic
at t = t∗.

Our main results are stated as Theorems A and B in §3.4. The following is a
simple consequence of these results that is easier to state.

Sensitive Dependence at Positive Temperature. There is an open subset Λ0

of C intersecting R, a holomorphic family of quadratic-like maps (f̂λ)λ∈Λ0
and a

compact subset Λ of Λ0 ∩ R such that the following properties hold. For every

real parameter λ in Λ the map f̂λ is real, and the family of real (resp. complex)

maps (f̂λ)λ∈Λ has sensitive dependence of positive-temperature geometric Gibbs
states. Moreover, this sensitive dependence occurs at every parameter in Λ, in
the sense that every parameter can be considered as λ0 in Definition 1.1.

The family of quadratic-like maps (f̂λ)λ∈Λ0
that we use to prove the Sensitive

Dependence at Positive Temperature is given explicitly in [CR17, §3.3]. The maps

in the subfamily (f̂λ)λ∈Λ are transitive and non-uniformly hyperbolic in a strong
sense. For example, they satisfy the Collet-Eckmann condition with uniform con-
stants, and moreover they have uniform “goodness constants” in the sense of [BBS15,
Definition 2.2], cf. Proposition A.4. So, the lack of expansion is not responsible for
the sensitive dependence of positive-temperature geometric Gibbs states.

We prove that as the temperature drops to 1/t∗ the geometric Gibbs states

of f̂λ|I(f̂λ) (resp. f̂λ|J(f̂λ)) oscillate between 2 periodic measures. So, at certain

temperatures the geometric Gibbs state is close to one of these periodic measures,
and at other temperatures it is close to the other periodic measure, see Theorem B
in §3.4.

The conclusions of the Sensitive Dependence at Positive Temperature hold for
an open set of holomorphic 2-parameter families of quadratic-like maps, see [CR17,
Remark 3.4]. Thus, for quadratic-like maps, the sensitive dependence of positive-
temperature Gibbs states is a robust phenomenon for 2-parameter families.

Note that the Sensitive Dependence at Positive Temperature does not say any-

thing about the behavior of the geometric Gibbs states of f̂λ0
|I(f̂λ0

) or f̂λ0
|J(f̂λ0

) for

temperatures above 1/t∗,0. As explained in [CR17, Remark 3.5], our results show

that the parameter λ0 can be chosen so that the geometric Gibbs states of f̂λ0
|I(f̂λ0

)
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(resp. f̂λ0
|J(f̂λ0

)) converge as the temperature drops to 1/t∗,0, and that λ0 can be

chosen so that they do not converge.
As a direct consequence of Theorem A in §3.4 we have that for every λ in Λ the

map f̂λ has a phase transition for both pressure functions PR

f̂λ
(t) and Pf̂λ

(t). More

precisely, we have the following. For a quadratic-like map f with critical point c,
put

χcrit(f) := lim inf
n→+∞

1

n
log |Dfn(f(c))|.

High-Order Phase Transitions Theorem. Let Λ0, Λ, and (f̂λ)λ∈Λ0
be as in

the statement of the Sensitive Dependence at Positive Temperature. Then there
are positive constants A+, A−, B+, and B− and a real analytic function t∗ : Λ0 →
(0,+∞) such that for every λ in Λ, we have for every t ≥ t∗(λ)

PR

f̂λ
(t) = Pf̂λ

(t) = −t
χcrit(f̂λ)

2
,

and for every t in (0, t∗(λ)) close to t∗(λ), we have

− t
χcrit(f̂λ)

2
+ 2

−
(

A−√
t∗(λ)−t

+B−
)3

≤ PR

f̂λ
(t) ≤ Pf̂λ

(t)

≤ −t
χcrit(f̂λ)

2
+ 2

−
(

A+√
t∗(λ)−t

−B+

)3

.

In particular, both PR

f̂λ
and Pf̂λ

are of class C2 at t = t∗, but neither of these

functions is real analytic at t = t∗(λ).

These phase transitions resemble a Kosterlitz-Thouless singularity, see for exam-
ple [Her07, §6] for background. In fact, near the critical parameter the geometric
pressure function behaves as x 7→ exp(−|x|−3/2) near x = 0. The phase transitions
in [CRL15a, Main Theorem] are similar, but different: The geometric pressure
function behaves as x 7→ exp(−x−2) near x = 0.

The phase transitions in the theorem above are of “freezing type”, in the sense
that after the phase transition the pressure is affine and equal to its asymptote. Two
recent examples of freezing phase transitions in a symbolic setting are in [BL13,
BL15]. The authors prove that above a critical temperature there is a unique
Gibbs state with full support and that below the critical temperature the unique
Gibbs state is the unique shift-invariant measure of a substitution subshift, like
the Thue-Morse subshift. In contrast, in the theorem above for every λ in Λ

and t ≥ t∗(λ) there are no geometric Gibbs state of f̂λ|I(f̂λ) (resp. f̂λ|J(f̂λ)) for

the potential −t log |Df̂λ|, see Theorem A in §3. Note in particular that, as tem-
perature drops to 1/t∗(λ), none of the accumulation measures of the geometric
Gibbs states is a Gibbs state. See [BTT17, CRL13, DGR14, Vel17] and references
therein for other examples of phase transitions in the thermodynamic formalism.

1.1. Organization. After recalling some basic notions of the quadratic family
in §2, in §3 we state Theorems A and B, and prove the Sensitive Dependence
at Positive Temperature assuming these results. To state Theorems A and B, we
recall in §3.1 the notion of “uniform families” of quadratic-like maps introduced
in [CR17], some general facts about conformal measures in §3.2, and in §3.3 the
inducing scheme that was first introduced in [CRL13].
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The proof of Theorems A and B are given in §4. After describing the subfamily of
maps in §4.1, we give the proof of Theorem A in §4.2. It relies on several results and
concepts from [CR17], including the Geometric Peierls Condition, that we briefly
summarize in Appendix A for the reader’s convenience. These results are used to
estimate the pressure and conformal measures in terms of the postcritical series.
The proof of Theorem B is given in §4.3. Roughly speaking, the most difficult part
is to estimate the postcritical series by a certain numerical series. The necessary
estimates of the numerical series, in Appendix B, are given in an abstract setting
that is independent of the rest of the paper.

1.2. Notes and references. The proofs of Theorems A and B rely strongly on
estimates for the pressure functions and conformal measures for quasi-quadratic
maps satisfying the Geometric Peierls Condition proved in [CR17]. See Appendix A
for the definition of this concept. Indeed, we use the same family of quasi-quadratic

maps (f̂λ)λ∈Λ0 as in [CR17] but here we choose a different set of parameters. That
is, we choose a different subset Λ of Λ0.

1.3. Acknowledgments. We would like to thank the referees for the comments
and pointers to the literature.

The first named author acknowledges partial support from FONDECYT grant
1161221, and would like to thank the University of Rochester for its hospitality. The
second named author acknowledges partial support from NSF grant DMS-1700291,
and would like to thank Universidad Andrés Bello for its hospitality.

2. Preliminaries

The main objective of this section is to recall the definition of Yoccoz puzzle
pieces in §2.4 and to introduce a subset of parameters of the quadratic family
in §2.6 that possesses the combinatorics needed for our results.

We use N to denote the set of integers that are greater than or equal to 1
and N0 := N ∪ {0}. For a Borel measure ρ on C, denote by supp(ρ) its support.
Given an open subset G of C and a map f : G → C that is a biholomorphism onto
its image, the distortion of f on a subset C of G is

sup
x,y∈C

|Df(x)|

|Df(y)|
.

2.1. Quadratic polynomials, Green’s functions, and Böttcher coordinates.

In this subsection and the next we recall some basic facts about the dynamics of
complex quadratic polynomials, see for instance [CG93] or [Mil06] for references.

For c in C we denote by fc the complex quadratic polynomial

fc(z) = z2 + c,

and by Kc the filled Julia set of fc; that is, the set of all points z in C whose
forward orbit under fc is bounded in C. The set Kc is compact and its complement
is the connected set consisting of all points whose orbit converges to infinity in the
Riemann sphere. Furthermore, we have f−1

c (Kc) = Kc and fc(Kc) = Kc. The
boundary Jc of Kc is the Julia set of fc.
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For a parameter c in C, the Green’s function of Kc is the function Gc : C →
[0,+∞) that is identically 0 on Kc, and that for z outside Kc is given by the limit,

(2.1) Gc(z) = lim
n→+∞

1

2n
log |fn

c (z)| > 0.

The function Gc is continuous, subharmonic, satisfies Gc ◦ fc = 2Gc on C, and it is
harmonic and strictly positive outside Kc. On the other hand, the critical values
of Gc are bounded from above by Gc(0), and the open set

Uc := {z ∈ C | Gc(z) > Gc(0)}

is homeomorphic to a punctured disk. Notice that Gc(c) = 2Gc(0), thus Uc con-
tains c if 0 /∈ Kc.

By Böttcher’s Theorem there is a unique conformal representation

ϕc : Uc → {z ∈ C | |z| > exp(Gc(0))},

and this map conjugates fc to z 7→ z2. It is called the Böttcher coordinate of fc
and satisfies Gc = log |ϕc|.

2.2. External rays and equipotentials. Let c be in C. For v > 0 the equipo-
tential v of fc is by definition G−1

c (v). A Green’s line of Gc is a smooth curve on
the complement of Kc in C that is orthogonal to the equipotentials of Gc and that
is maximal with this property. Given t in R/Z, the external ray of angle t of fc,
denoted by Rc(t), is the Green’s line of Gc containing

{ϕ−1
c (r exp(2πit)) | exp(Gc(0)) < r < +∞}.

By the identity Gc ◦ fc = 2Gc, for each v > 0 and each t in R/Z the map fc maps
the equipotential v to the equipotential 2v and maps Rc(t) to Rc(2t). For t in R/Z
the external ray Rc(t) lands at a point z, if Gc : Rc(t) → (0,+∞) is a bijection
and if Gc|

−1
Rc(t)

(v) converges to z as v converges to 0 in (0,+∞). By the continuity

of Gc, every landing point is in Jc = ∂Kc.
The Mandelbrot set M is the subset of C of those parameters c for which Kc is

connected. The function

Φ : C \M → C \ cl(D)
c 7→ Φ(c) := ϕc(c)

is a conformal representation, see [DH84, VIII, Théorème 1]. For v > 0 the equipo-
tential v of M is by definition

E(v) := Φ−1({z ∈ C | |z| = v}).

On the other hand, for t in R/Z the set

R(t) := Φ−1({r exp(2πit) | r > 1})

is called the external ray of angle t of M. We say that R(t) lands at a point z in C,
if Φ−1(r exp(2πit)) converges to z as r ց 1. When this happens z belongs to ∂M.
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2.3. The wake 1/2. In this subsection we recall a few facts that can be found for
example in [DH84] or [Mil00].

The external rays R(1/3) and R(2/3) of M land at the parameter c = −3/4, and
these are the only external rays of M that land at this point, see for example [Mil00,
Theorem 1.2]. In particular, the complement in C of the set

R(1/3) ∪R(2/3) ∪ {−3/4}

has 2 connected components; we denote by W the connected component containing
the point c = −2 of M.

For each parameter c in W the map fc has 2 distinct fixed points; one of the
them is the landing point of the external ray Rc(0) and it is denoted by β(c); the
other one is denoted by α(c). The only external ray landing at β(c) is Rc(0), and
the only external ray landing at −β(c) is Rc(1/2).

Moreover, for every parameter c in W the only external rays of fc landing at α(c)
are Rc(1/3) and Rc(2/3), see for example [Mil00, Theorem 1.2]. The complement
of Rc(1/3) ∪ Rc(2/3) ∪ {α(c)} in C has 2 connected components; one contain-
ing −β(c) and z = c, and the other one containing β(c) and z = 0. On the other
hand, the point α(c) has 2 preimages by fc: Itself and α̃(c) := −α(c). The only
external rays landing at α̃(c) are Rc(1/6) and Rc(5/6).

2.4. Yoccoz puzzles and para-puzzle. In this subsection we recall the defini-
tions of Yoccoz puzzles and para-puzzle. We follow [Roe00].

Definition 2.1 (Yoccoz puzzles). Fix c in W and consider the open region X◦
c :=

{z ∈ C | Gc(z) < 1}. The Yoccoz puzzle of fc is given by the following sequence of
graphs (Ic,n)

+∞
n=0 defined for n = 0 by:

Ic,0 := ∂X◦
c ∪ (X◦

c ∩ cl(Rc(1/3)) ∩ cl(Rc(2/3))),

and for n ≥ 1 by Ic,n := f−n
c (Ic,0). The puzzle pieces of depth n are the connected

components of f−n
c (X◦

c ) \ Ic,n. The puzzle piece of depth n containing a point z is
denoted by Pc,n(z).

Note that for a real parameter c, every puzzle piece intersecting the real line is
invariant under complex conjugation. Since puzzle pieces are simply-connected, it
follows that the intersection of such a puzzle piece with R is an interval.

Definition 2.2 (Yoccoz para-puzzle†). Given an integer n ≥ 0, put

Jn := {t ∈ [1/3, 2/3] | 2nt (mod 1) ∈ {1/3, 2/3}},

let Xn be the intersection of W with the open region in the parameter plane bounded
by the equipotential E(2−n) of M, and put

In := ∂Xn ∪

(
Xn ∩

⋃

t∈Jn

cl(R(t))

)
.

Then the Yoccoz para-puzzle of W is the sequence of graphs (In)
+∞
n=0. The para-

puzzle pieces of depth n are the connected components of Xn \ In. The para-puzzle
piece of depth n containing a parameter c is denoted by Pn(c).

†In contrast to [Roe00], we only consider the para-puzzle in the wake W.
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Observe that there is only 1 para-puzzle piece of depth 0, and only 1 para-
puzzle piece of depth 1; they are bounded by the same external rays but different
equipotentials. Both of them contain c = −2.

Fix a parameter c in P0(−2). There are precisely 2 puzzle pieces of depth 0:
Pc,0(β(c)) and Pc,0(−β(c)). Each of them is bounded by the equipotential 1 and by
the closures of the external rays landing at α(c). Furthermore, the critical value c
of fc is contained in Pc,0(−β(c)) and the critical point in Pc,0(β(c)). It follows that
the set f−1

c (Pc,0(β(c))) is the disjoint union of Pc,1(−β(c)) and Pc,1(β(c)), so fc
maps each of the sets Pc,1(−β(c)) and Pc,1(β(c)) biholomorphically to Pc,0(β(c)).
Moreover, there are precisely 3 puzzle pieces of depth 1:

Pc,1(−β(c)), Pc,1(0) and Pc,1(β(c));

Pc,1(−β(c)) is bounded by the equipotential 1/2 and by the closures of the external
rays that land at α(c); Pc,1(β(c)) is bounded by the equipotential 1/2 and by
the closures of the external rays that land at α̃(c); and Pc,1(0) is bounded by
the equipotential 1/2 and by the closures of the external rays that land at α(c)
and at α̃(c). In particular, the closure of Pc,1(β(c)) is contained in Pc,0(β(c)).
It follows from this that for each integer n ≥ 1 the map fn

c maps Pc,n(−β(c))
biholomorphically to Pc,0(β(c)).

The following lemma proved in [CRL13, Lemma 3.3] is useful for the description
of the parameter introduced in §2.6.

Lemma 2.3. For each integer n ≥ 1, the following properties hold.

1. The para-puzzle piece Pn(−2) contains the closure of Pn+1(−2).
2. For each parameter c in Pn(−2) the critical value c of fc is in Pc,n(−β(c)).

2.5. The uniformly expanding Cantor set. For a parameter c in P3(−2), the
maximal invariant set Λc of f3

c in Pc,1(0) plays an important role in the definition
of the combinatorics of the quadratic-like maps used in the proof of Theorem B.
We recall here its definition using certain puzzle pieces that we also use in the next
section.

Fix c in P3(−2). There are precisely 2 connected components of f−3
c (Pc,1(0))

contained in Pc,1(0) that we denote by Yc and Ỹc. The closures of these sets are

disjoint and contained in Pc,1(0). The sets Yc and Ỹc are distinguished by the
fact that Yc contains in its boundary the common landing point of the external

rays Rc(7/24) and Rc(17/24), denoted γ(c), and that Ỹc contains in its boundary
the common landing point of the external rays Rc(5/24) and Rc(19/24). The

map f3
c maps each of the sets Yc and Ỹc biholomorphically to Pc,1(0). Thus, if we

put

gc : Yc ∪ Ỹc → Pc,1(0)
z 7→ gc(z) := f3

c (z),

then

Λc =
⋂

n∈N

g−n
c (cl(Pc,1(0))).

2.6. Parameters. The combinatorics of the quadratic-like maps that we use to
prove Theorem B are modeled from a subset of the quadratic family introduced
in [CRL13, Proposition 3.1]. In this subsection we recall the definition of this
parameter set.
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Given an integer n ≥ 3, let Kn be the set of all those real parameters c < 0 such
that

fc(c) > f2
c (c) > · · · > fn−1

c (c) > 0 and fn
c (c) ∈ Λc.

Note that for a parameter c in Kn, the critical point of fc cannot be asymptotic to a
non-repelling periodic point. This implies that all the periodic points of fc in C are
hyperbolic repelling and therefore that Kc = Jc, see [Mil06]. On the other hand, we
have fc(c) > c and the interval Ic = [c, fc(c)] is invariant by fc. This implies that Ic
is contained in Jc and hence that for every real number t we have PR

c (t) ≤ Pc(t).
Note also that fc|Ic is not renormalizable, so fc is topologically exact on Ic, see for
example [dMvS93, Theorem III.4.1].

Since for c in Kn the critical point of fc is not periodic, for every integer k ≥ 0 we
have fn+3k

c (c) 6= 0. Thus, we can define the sequence ι(c) in {0, 1}N0 for each k ≥ 0
by

ι(c)k :=

{
0 if fn+3k

c (c) ∈ Yc;

1 if fn+3k
c (c) ∈ Ỹc.

The following proposition without the statement about the homeomorphism was
proved in [CRL13, Proposition 3.1]. For the proof of the homeomorphism property
see [CR17, Proposition 2.3].

Proposition 2.4. For each integer n ≥ 3, the set Kn is a compact subset of

Pn(−2) ∩ (−2,−3/4),

and the function ι : Kn → {0, 1}N0 is homeomorphism. Finally, for each δ > 0
there is n0 ≥ 3 such that for each integer n ≥ n0 the set Kn is contained in the
interval (−2,−2 + δ).

3. Main results

In this section we state Theorem B, and prove the Sensitive Dependence at
Positive Temperature assuming this result. We also state a more precise version of
the High-Order Phase Transitions Theorem as Theorem A.

In §3.1 we recall some generalities about uniform families of quadratic-like maps.
In §3.2 we recall a general result about conformal measures and in §3.3 the inducing
scheme that we use to estimate the pressure function and the conformal measures.
Then, we state Theorems A and B in §3.4, and we assume this last result in §3.5
to prove the Sensitive Dependence at Positive Temperature.

3.1. Uniform families of quadratic-like maps. A quadratic-like map f : U →
V is normalized, if its unique critical point is 0, and if D2f(0) = 2. For such a
map f there is a holomorphic function Rf : U → C such that for w in U we have

f(w) = f(0) + w2 + w3Rf (w).

Note that f is uniquely determined by its critical value f(0), and the function Rf .
By the straightening theorem of Douady and Hubbard [DH85], for every quadratic-

like map f : U → V there is c in C and a quasi-conformal homeomorphism h : C → C

that conjugates the quadratic polynomial fc to f on a neighborhood of Jc. In the
case f is real, c is real, and h can be chosen so that it commutes with the complex
conjugation. In all the cases, the quasi-conformal homeomorphism h can be chosen
to be holomorphic on a neighborhood of infinity, and tangent to the identity there.
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Put
X := {c ∈ C | Gc(c) ≤ 1} and X̂ := {c ∈ C | Gc(c) ≤ 2},

and for c in C, put

Xc := {z ∈ C | Gc(z) ≤ 1} and X̂c := {z ∈ C | Gc(z) ≤ 2}.

Note that Xc is contained in the interior of X̂c, and that

X = {c ∈ C | c ∈ Xc} and X̂ = {c ∈ C | c ∈ X̂c}.

Definition 3.1 (Uniform family of quadratic-like maps). A family F of normalized
quadratic-like maps is uniform, if there are constants K ≥ 1 and R > 0, such that
for each f in F there are c(f) in X and a K-quasi-conformal homeomorphism hf

of C satisfying the following properties.

1. The homeomorphism hf conjugates fc(f) on X̂c(f) to f on hf (X̂c(f)). Fur-
thermore, if f is real, then hf commutes with the complex conjugation.

2. The set X̂c(f) is contained in B(0, R), and the homeomorphism hf is holo-
morphic on C \ cl(B(0, R)), and it is tangent to the identity at infinity.

Note that property 1 implies that hf (0) = 0.
Let F be a uniform family of quadratic-like maps. For each f in F put

Xf := hf (Xc(f)) and X̂f := hf (X̂c(f)).

By the definition of uniform family, the puzzle pieces of fc(f) can be push-forward
to Xf by hf . We call to these sets the puzzle pieces of f . We say that a puzzle piece
of f has depth n if it is the push-forward of a puzzle piece of c(f) with depth n.
The puzzle piece of depth n of f containing w is denoted Pf,n(w). Thus, we have

Pf,n(w) := hf (Pc(f),n(h
−1
f (w))).

Set
β(f) := hf (β(c(f))) and β̃(f) := hf (−β(c(f))).

For every integer n ≥ 0, put

Pn(F ) := {f ∈ F | c(f) ∈ Pn(−2)},

and for n ≥ 3, put
Kn(F ) := {f ∈ F | c(f) ∈ Kn}.

Moreover, for f in P3(F ) put

Yf := hf (Yc(f)), and Ỹf := hf (Ỹc(f)),

and let gf : hf (Yc(f)∪Ỹc(f)) → Pf,1(0) be defined by gf := h−1
f ◦gc(f)◦hf . Moreover,

let p(f) and p+(f) be the unique fixed point of gf in Yf and Ỹf , respectively, and

denote by p−(f) the unique fixed point of g2f in Ỹf that is different from p+(f); it
is a periodic point of gf of minimal period 2. Furthermore, denote by

O+(f) :=
{
f j(p+(f)) | j ∈ {0, 1, 2}

}
and O−(f) :=

{
f j(p−(f)) | j ∈ {0, 1, . . . , 5}

}

the orbits of p+(f) and p−(f) under f , respectively.
For each integer n ≥ 5, and each f in Kn(F ), put ι(f) := ι(c(f)), see §2.6, and

note that for every integer j ≥ 0 we have

ι(f)j :=

{
0 if fn+1+3j(0) ∈ Yf ;

1 if fn+1+3j(0) ∈ Ỹf .
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Finally, for every f in F such that c(f) is real and belongs to [−2, 0), de-
note by I(f) the image under hf of the interval [c(f), fc(f)(c(f))]. Observe that
f(I(f)) = I(f). A quadratic-like map f in F is essentially topologically exact
if c(f) is in [−2, 0), and if f |I(f) is topologically exact. For such a map f we con-
sider both, the map f |I(f), and the complex map f acting on its Julia set J(f). We

also define M R

f , PR

f , and equilibrium states or Geometric Gibbs states of f |I(f) as
in the introduction. In the case f is real, the definitions above coincide with those
in the introduction.

3.2. Conformal measures. Throughout this section we fix a uniform family of
quadratic-like maps F .

Let n ≥ 4 be an integer and f in Kn(F ). Given t > 0 and a real number p,
a measure µ is (t, p)-conformal for f |I(f) (resp. f), if for every subset U of I(f)
(resp. J(f)) on which f |I(f) (resp. f) is injective we have

µ(f |I(f)(U)) = exp(p)

∫

U

|Df |t dµ

(
resp. µ(f(U)) = exp(p)

∫

U

|Df |t dµ

)
.

In the case where PR

f (t) = 0 (resp. PC

f (t) = 0), a (t, 0)-conformal measure is simply
called conformal.

On the other hand, the conical or radial Julia set of f |I(f) (resp. f) is the set
of all points x in I(f) (resp. J(f)) for which the following property holds: There
exists r > 0 and an unbounded sequence of positive integers (nj)

+∞
j=1, such that for

every j the map f |
nj

I(f) (resp. fnj ) maps a neighborhood of x in I(f) (resp. J(f))

diffeomorphically to B(fnj (x), r).
In the case where f is a real quadratic map, the following is [CRL15a, Proposi-

tion 5.1]. The proof applies without change to quadratic-like maps in Kn(F ).

Proposition 3.2 ([CRL15a], Proposition 5.1). Let n ≥ 4 be an integer, f a
map in Kn(F ), and let t > 0 and p in R be given. Then there is at most one
(t, p)-conformal probability measure of f |I(f) (resp. f) supported on I(f) (resp. J(f)).

If such a measure µ exists, then p ≥ PR

f (t) (resp. p ≥ PC

f (t)), and µ is either
supported on the backward orbit of z = 0 and dissipative, or µ is nonatomic and
supported on the conical Julia set of f |I(f) (resp. f). Furthermore, the former case
holds precisely when the following series converges:

(3.1)

+∞∑

j=1

exp(−jp)
∑

y∈f |−j

I(f)
(0)

|Df j(y)|−t


resp.

+∞∑

j=1

exp(−jp)
∑

y∈f−j(0)

|Df j(y)|−t


 .

3.3. Inducing scheme and conformal measures. Throughout this subsection
we fix a uniform family of quadratic-like maps F . In this subsection we introduce
the inducing scheme to estimate the geometric pressure function for maps in Kn(F ).

Let n ≥ 5 be an integer and f in Kn(F ). Put

Vf := Pf,n+1(0) = f−1(Pf,n(β̃(f)))

and
Df := {z ∈ Vf | fm(z) ∈ Vf for some m ≥ 1}.
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For w in Df put mf (w) := min{m ∈ N | fm(w) ∈ Vf}, and call it the first return
time of w to Vf . The first return map to Vf is defined by

Ff : Df → Vf

w 7→ Ff (w) := fmf (w)(w).

It is easy to see that Df is a disjoint union of puzzle pieces; so each connected
component of Df is a puzzle piece. Note furthermore that in each of these puzzle
pieces W , the return time function mf is constant; denote the common value of mf

on W by mf (W ).

Throughout the rest of this subsection we put V̂f := Pf,4(0).

Lemma 3.3 (Uniform distortion bound, [CR17], Lemma 5.1). There is a con-
stant Ξ1 > 1 such that for each integer n ≥ 5 and each f in Kn(F ) the following
property holds: For every connected component W of Df the map Ff |W is univa-
lent and its distortion is bounded by Ξ1. Furthermore, the inverse of Ff |W admits

a univalent extension to V̂f taking images in Vf . In particular, Ff is uniformly

expanding with respect to the hyperbolic metric on V̂f .

Denote by Df the collection of connected components of Df and if c(f) is real
denote by D

R

f the sub-collection of Df of those sets intersecting I(f). For each W

in Df denote by φW : V̂f → Vf the extension of f |−1
W given by Lemma 3.3. Given

an integer ℓ ≥ 1 we denote by Ef,ℓ (resp. ER

f,ℓ) the set of all words of length ℓ in

the alphabet Df (resp. D
R

f ). Again by Lemma 3.3, for each integer ℓ ≥ 1 and each
word W1 · · ·Wℓ in Ef,ℓ the composition

φW1···Wℓ
= φW1 ◦ · · · ◦ φWℓ

is defined on V̂f . We also put

mf (W1 · · ·Wℓ) = mf (W1) + · · ·+mf (Wℓ).

For t, p in R and an integer ℓ ≥ 1 put

Zℓ(t, p) :=
∑

W∈Ef,ℓ

exp(−mf (W )p)
(
sup{|DφW (z)| | z ∈ Vf}

)t

and

ZR

ℓ (t, p) :=
∑

W∈ER

f,ℓ

exp(−mf (W )p)
(
sup{|DφW (z)| | z ∈ Vf}

)t
.

For a fixed t and p in R the sequence
(
1

ℓ
logZℓ(t, p)

)+∞

ℓ=1

(
resp.

(
1

ℓ
logZR

ℓ (t, p)

)+∞

ℓ=1

)

converges to the pressure function of Ff (resp. Ff |Df∩I(f)) for the potential −t log |DFf |−

pmf ; we denote it by Pf (t, p) (resp. PR

f (t, p)). On the set where it is finite, the

function Pf (resp. PR

f ) so defined is strictly decreasing in each of its variables.
Given t > 0 and p in R, a finite measure µ̃ on C that is supported on the maximal

invariant set of Ff |Df∩R (resp. Ff ) is (t, p)-conformal for Ff , if for every W in D
R

f

(resp. Df ), and every Borel subset U of W ∩ R (resp. W ), we have

µ̃(Ff (U)) = exp(pmf (W ))

∫

U

|DFf |
t dµ̃.
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Note that in this case we have

(3.2) exp(−pmf (W )) inf
z∈W

|DFf (z)|
−t ≤ µ̃(W )

≤ exp(−pmf (W )) sup
z∈W

|DFf (z)|
−t.

Proposition 3.4 ([CR17], Proposition 5.2). Let n ≥ 5 be an integer, f in Kn(F ),
and t > 0 such that

(3.3) P
R

f (t, P
R

f (t)) = 0 (resp. Pf (t, Pf (t)) = 0) .

Then there is a (t, PR

f (t))-conformal (resp. (t, Pf (t))-conformal) probability mea-
sure µ̃ for Ff , and there is a probability measure ρ̃ that is invariant by Ff , absolutely
continuous with respect to µ̃, and whose density satisfies

(3.4) Ξ−t
1 ≤

dρ̃

dµ̃
≤ Ξt

1.

If in addition

(3.5)
∑

W∈DR

mf (W ) · exp(−mf (W )PR

f (t)) sup
w∈W∩R

|DFf (w)|
−t

(
resp.

∑

W∈D

mf (W ) · exp(−mf (W )Pf (t)) sup
w∈W

|DFf (w)|
−t

)

is finite, then the measure

ρ̂ :=
∑

W∈DR

mf (W )−1∑

j=0

(f j)∗ (ρ̃|W∩R)


resp.

∑

W∈D

mf (W )−1∑

j=0

(f j)∗ (ρ̃t|W )




is finite and the probability measure proportional to ρ̂ is the unique equilibrium state
of f |I(f) (resp. f |J(f)) for the potential −t log |Df |.

3.4. Statements of main results. In this subsection we state Theorems A and B.
These results are based on the notion of “admissible” family of quadratic-like maps
introduced in [CR17], which we recall now. The proofs of both of these theorems
are given in §4.

Given a normalized quadratic-like map f , for each periodic point p of f of pe-
riod m in N, put

χf (p) :=
1

m
log |Dfm(p)|.

Definition 3.5 (Admissible family of quadratic-like maps). A uniform family of
quadratic-like maps F is admissible, if for every sufficiently large integer n ≥ 6 the
following properties hold.

1. If we endow F with the topology of locally uniform convergence, then there
is a continuous function sn : Kn → Kn(F ) such that c ◦ sn is the identity.

2. For every f in sn(Kn), we have

(3.6) χf (p(f)) > χf (p
+(f)) and χf (p

+(f)) = χf (p
−(f)).

Given a uniform family F , for each integer n ≥ 5, each f in Kn(F ) put

(3.7) θ(f) :=

∣∣∣∣
Dgf (p(f))

Dgf (p+(f))

∣∣∣∣
1/2

and t∗(f) :=
log 2

log θ(f)
.
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Note that t∗(f) is a real analytic function of f .
Endow the set {+,−} with the discrete topology, and {+,−}N with the corre-

sponding product topology.

Theorem A (Phase transitions). For every R0 > 0 there is a constant K0 > 1
such that if F0 is an admissible uniform family of quadratic-like maps with con-
stants K0 and R0, then for every sufficiently large integer n there is a continuous
subfamily (fς)ς∈{+,−}N of sn(Kn) such that the following properties hold.

For each ς in {+,−}N the map fς is essentially topologically exact and we have
χcrit(fς) > 0. Moreover, for each positive t < t∗(fς) there is a unique equilibrium

state ρRt (ς) (resp. ρt(ς)) of fς |I(fς) (resp. fς |J(fς)) for the potential −t log |Dfς |.
Furthermore, there are positive numbers q, ξ, Ξ > 2ξ, and ∆ ≥ 1 such that for

every ς in {+,−}N the following property holds. Put

t∗ := t∗(fς) and t0 :=

(
1−

1

400q

)
· t∗

and define the functions δ+, δ−, P+, P− : (t0,+∞) → R, by

δ+(t) :=





2 log 2
3 · 2

−q

(
( t∗(Ξ−2ξ)

q(t∗−t) )
1
2 −1

)3

if t ∈ (t0, t∗);

0 if t ≥ t∗;

δ−(t) :=





log 2
3 · 2

−q

(
( t∗(Ξ+2ξ)

q(t∗−t) )
1
2 +∆

)3

if t ∈ (t0, t∗);

0 if t ≥ t∗;

P+(t) := −t
χcrit(fς)

2
+ δ+(t), and P−(t) := −t

χcrit(fς)

2
+ δ−(t).

Then for t > t0 we have

P−(t) ≤ PR

fς (t) ≤ Pfς (t) ≤ P+(t),

and for t ≥ t∗ there is no equilibrium state of fς |I(fς) (resp. fς |J(fς)) for the poten-

tial −t log |Dfς | and we have

P
R

fς

(
t,−t

χcrit(f)

2

)
≤ Pfς

(
t,−t

χcrit(f)

2

)
< 0.

Finally, for t ≥ t∗ and for p in R the following properties hold:

1. If p ≥ −tχcrit(f)/2, then there is a unique (t, p)-conformal probability mea-
sure for fς |I(fς) (resp. fς) supported on I(fς) (resp. J(fς)). Moreover, this
measure is dissipative, purely atomic, and supported on the backward orbit
of z = 0.

2. If p < −tχcrit(f)/2, then there is no (t, p)-conformal probability measure
for fς |I(fς) (resp. fς) supported on I(fς) (resp. J(fς)).

For proving the High-Order Phase Transitions Theorem, observe that t∗(fς) is

continuous in the compact set {+,−}N.

Theorem B (Sensitive dependence). For every R0 > 0 there is a constant K ′
0 > 1

such that if F0 is an admissible uniform family of quadratic-like maps with con-
stants K ′

0 and R0, then for every sufficiently large integer n there is a continuous
subfamily (fς)ς∈{+,−}N of sn(Kn) satisfying the conclusions of Theorem A and such
that the following property holds:
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There are constants C > 0 and κ > 0, and a strictly increasing sequence of
positive real numbers (τm)m∈N converging to 1 such that for every sequence ς =
(ς(m))m∈N in {+,−}N the following properties hold. Put t∗ := t∗(fς), and let m
and m̂ be integers such that

m̂ ≥ m ≥ 1 and ς(m) = · · · = ς(m̂)

and let t be in [t∗τm, t∗τm̂]. Then the equilibrium state ρRt (ς) (resp. ρt(ς)) of fς |I(fς)
(resp. fς |J(fς)) satisfies

ρRt (ς)

(
B

(
Oς(m)(fς), exp

(
−κ

t∗ − t

)))
≥ 1− C exp

(
−κ

t∗ − t

)

(
resp. ρt(ς)

(
B

(
Oς(m)(fς), exp

(
−κ

t∗ − t

)))
≥ 1− C exp

(
−κ

t∗ − t

))
.

Our estimates show that for every ς in {+,−}N every accumulation measure of
(ρRt (ς))t>0 and of (ρt(ς))t>0 is supported on O+(fς) ∪ O−(fς), see Remark 4.1.

3.5. Proof of the Sensitive Dependence at Positive Temperature assum-

ing Theorem B. Let K ′
0 be the constant given by Theorem B for R0 = 80.

Let r# be the constant given by [CR17, Lemma 3.5] for this choice of K ′
0. Put

Λ0 = B(0, r#), and let F0 = (f̂λ)λ∈Λ0
be the family of quadratic-like maps con-

structed in [CR17, Lemma 3.5] for this choice of K ′
0. By [CR17, Lemma 3.5]

and [CR17, (3.3)] the family F0 is uniform with constants K ′
0 and 80, and admis-

sible. Fix a sufficiently large integer n for which the conclusions of Theorem B
are satisfied, and let (fς)ς∈{+,−}N and (τm)m∈N as in the statement of Theorem B.

Given ς in {+,−}N, denote by λ(ς) the unique parameter in Λ0 such that f̂λ(ς) = fς .

By [CR17, Lemma 3.5], λ(ς) is real. We prove the Sensitive Dependence at Positive
Temperature with Λ = {λ(ς) | ς ∈ {+,−}N}.

Let λ0 in Λ be given, and let (δℓ)ℓ∈N be an increasing sequence of positive
numbers converging to 1 as ℓ → +∞. Let ς0 in {+,−}N be such that λ0 := λ(ς0),
and put t∗,0 := t∗(fς

0
). Replacing (δℓ)ℓ∈N by a subsequence if necessary, assume

that for every ℓ ∈ N there is a unique m ∈ N such that

δℓ ∈ [τm, τm+1) and δℓ+1 ≥ τm+2.

Put m(ℓ) := m. We see that m(ℓ+ 1) ≥ m(ℓ) + 2, which implies

(3.8) δℓ ∈ [τm(ℓ), τm(ℓ+1)−1].

Let M be a given positive integer. Let ℓM be the smallest ℓ such that m(ℓ) ≥ M .
Let ς = (ς(m))m∈N be a sequence in {+,−}N that agrees with ς0 up to m(ℓM ) and
such that for every even (resp. odd) integer ℓ > ℓM and every m in [m(ℓ),m(ℓ +
1)− 1] we have ς(m) = + (resp. ς(m) = −).

Put λ := λ(ς) and t∗ := t∗(fς). Since the subfamily (fς)ς∈{+,−}N is continuous,
taking M sufficiently large we can ensure that λ is arbitrarily close to λ0 and that t∗
is arbitrarily close to t∗,0.

By (3.8) we have that t∗(ς) · δℓ is in [t∗(ς) · τm(ℓ), t∗(ς) · τm(ℓ+1)−1]. Since by
definition of ς for each ℓ in N larger than ℓM we have

ς(m(ℓ)) = · · · = ς(m(ℓ+ 1)− 1),
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and since ς(m(ℓ)) alternates between + and − according to whether ℓ is even or
odd, Theorem B implies the desired assertion for this choice of ς and thus, for λ
and t∗.

4. Proof of main results

In this section we prove Theorems A and B in §4.2 and §4.3, respectively. Indeed,
for both theorems we use the same family of maps. More precisely, put υ := 1

4 log 2,
and let R0 > 0 be given. Let K1, n1, and κ1 be given by Proposition A.4 with R′ =
R0. We prove that Theorems A and B hold with K0 = K1. Let F0 be a uniform
family of quadratic-like maps that admits K0 and R0 as uniformity constants, and
that is admissible. By Proposition A.4 with F1 = F0, for every n ≥ n1, every f
in Kn(F0) satisfies the Geometric Peierls Condition with constants κ1 and υ, and
by (A.1) we have

(4.1) log θ(f) ≤
3

8
υ.

Taking n1 larger if necessary, assume that for every n ≥ n1 there is a continuous
function sn : Kn → Kn(F0) such that c ◦ sn is the identity, and that (3.6) holds for
every f in sn(Kn).

Let Ξ1, Ξ2, C0,υ0 and Ξ3 be the constants given by Lemmas 3.3, A.1, A.2,
and A.7, respectively, with F = F0. Moreover, let n2 and C1 the constants
given by Proposition A.5 with F = F0 and κ = κ1, let n3 and C2 be given by
Proposition A.6 with F = F0, and let n& ≥ max{n1, n2, n3} be sufficiently large
so that

(4.2) exp(n&υ) ≥ Ξ
1
2
3 C1 (25 + 5 · Ξ2) .

4.1. The subfamily. In this subsection we define the subfamily (fς)ς∈{+,−}N , as
in the statement of Theorems A and B. Fix an integer n ≥ n&, let c& in Kn

be such that ι(c&) is the constant sequence equal to 0, and put f& := sn(c&).
By (3.6) we have θ(f&) > 1, so there is r& > 0 such that for c in B(c&, r&) ∩
Kn the number θ(sn(c)) is defined, and depends continuously on c. Reducing r&
if necessary, assume that for all c and c′ in B(c&, r&) ∩ Kn we have θ(sn(c)) ≤
θ(sn(c

′))2. By Proposition 2.4 it follows that there is an integer q& ≥ 0 such that
the set

{c ∈ Kn | for every j in {0, . . . , q&}, ι(c)j = 0}

is a compact set contained in B(c&, r&). Put

t∗,sup := sup
c∈Kn∩B(c&,r&)

log 2

log θ(sn(c))
, t∗,inf := inf

c∈Kn∩B(c&,r&)

log 2

log θ(sn(c))
,

η0 := sup
f∈sn(Kn∩B(c&,r&))

exp(χf (β(f)))

exp(χcrit(f))
,

and fix Ω > 0 sufficiently large such that

(4.3) 22Ω−3 ≥ 2n
(
Ξ

1
2
3 C1η

n
2
0

)t∗,sup
.

On the other hand, by (3.6) for each c in Kn the number

ξ(sn(c)) =
log Ξ2

2 log θ(sn(c))
,
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defined as in §A.4, depends continuously on c in Kn, so

ξ := sup
c∈Kn∩B(c&,r&)

ξ(sn(c)) < +∞.

Note that by our choice of r& for every c ∈ Kn ∩B(c&, r&) we have

(4.4) ξ ≤ 2ξ(sn(c)).

Put Ξ := ⌈2ξ⌉+1 as in §B.1, and let q ≥ q& be a sufficiently large integer satisfying
the conditions in §B.1 and such that in addition q + Ξ is even. For each real
number s ≥ 0, let Is and Js be the intervals defined in §B.1 for these choices of Ξ
and q. By definition, as s varies in N0 these intervals form a partition of [1,+∞).
Moreover, for each integer s in N0, the end points of Is and Js are even.

Endow the set {0, 1+, 1−} with the discrete topology, and {0, 1+, 1−}N0 with the

corresponding product topology. Moreover, endow the subset Σ̂ of {0, 1+, 1−}N0 ,
defined in §A.4, with the induced topology.

As in §B.2, for every τ ∈ (0, 1), put

s+(τ) :=

(
Ξ− 2ξ

q(1− τ)

) 1
2

and s−(τ) :=

(
Ξ + 2ξ

q(1− τ)

) 1
2

.

Let (τm)m∈N0
be an increasing sequence in [1/2, 1) converging to 1 satisfying the

following properties:

τ0 ≥

(
1−

1

400q

)
;(4.5)

t∗,sup(1− τ0) logC0 ≤ t∗,inf
υ0
8q

;(4.6)

For every m ∈ N, we have s+(τm) ∈ N, and s−(τm−1) + Ω + 6 < s+(τm).(4.7)

Notice that the inequality Ξ− 2ξ ≥ 1 implies that for every τ ≥ 1− 1
400q we have

(4.8) s+(τ) ≥ 20.

Put ℓ(0) = 0 and for every m in N put ℓ(m) := s+(τm) − 5. Given ς in {+,−}N,
let x̂(ς) be the sequence in {0, 1+, 1−}N0 defined by

x̂(ς)j :=





0 if for some s in N0 we have j + 1 ∈ Is;

1+ if j + 1 ∈
⋃

k∈[ℓ(0),ℓ(1)) Jk;

1ς(m) for j + 1 ∈
⋃

k∈[ℓ(m),ℓ(m+1)) Jk.

Note that by definition x̂(ς) is in Σ̂ and that the first q entries of this sequence are

equal to 0. Moreover, the map x̂ : {+,−}N → Σ̂ so defined is continuous. Finally,
note that the length of each maximal block of 1−’s in x̂(ς) is even.

Define the family of itineraries (ι(ς))ς∈{+,−}N in {0, 1}N0 , by

ι(ς)j =





0 if x̂(ς)j = 0;

1 if x̂(ς)j = 1+;

0 if x̂(ς)j = 1− and j is even;

1 if x̂(ς)j = 1− and j is odd.

Note that ι(ς) is compatible with x̂(ς) in the sense of §A.4 and that the first q
entries of this sequence are equal to 0. Moreover, ι(ς) depends continuously on ς
in {+,−}N.
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Given ς in {+,−}N, let c(ς) in Kn be the unique parameter such that ι(fc(ς)) =

ι(ς) (Proposition 2.4), and put fς := sn(c(ς)). Note that the function ς 7→ fς so

defined is continuous. On the other hand, since for each ς in {+,−}N the first q ≥ q&
entries of ι(fς) = ι(ς) are equal to 0, the parameter c(ς) is in B(λ&, r&). So, for

every ς and ς ′ in {+,−}N we have

(4.9) θ(fς) ≤ θ(fς′)
2.

This finishes the definition of the continuous subfamily (fς)ς∈{+,−}N of sn(Kn).

4.2. Proof of Theorem A. The purpose of this subsection is to finish the proof of
Theorem A. That for each ς in {+,−}N the map fς |I(fς) is essentially topologically

exact follows from the fact that this map is not renormalizable, see [CRL13, §3] for
details. To prove that for each ς in {+,−}N there is a unique equilibrium state for
every positive t < t∗(fς) we just need to show that PR

fς
(t) > −t · χcrit(fς)/2. This

follows from the estimates for the pressure function given below. These estimates
will be also used in the proof of Theorem B in the next section, and they depend
only on Lemma B.2.

Let N : N0 → N0 and B : N0 → N0 be the functions defined in §B.1 for our
choices of Ξ and q. Clearly, N(k)/k → 0 as k → +∞, and for each ς in {+,−}N,
these functions coincide with those defined in §A.4 with (x̂j)j∈N0 = x̂(ς). It follows

that for each integer k ≥ 0, the 2 variables functions π±
fς ,k

defined in §A.4 for our

choice of ξ in §4.1 are independent of ς; we denote them by π±
k . Note that the

2 variables series defined in §B.1: Π±, and for each integer s ≥ 0, the series I±s ,
and J±

s , satisfy

Π± =

+∞∑

k=0

π±
k , I

±
s =

∑

k∈Is

π±
k , and J±

s =
∑

k∈Js

π±
k .

Finally, for each real number s ≥ 0 put λ(s) = |Js|
−1, as in §B.1.

Fix ς in {+,−}N and put

f := fς , p
+ := p+(ς), p− := p−(ς),

PR := PR

fς ,P
R := P

R

fς , P := Pfς ,P := Pfς ,

t∗ := t∗(fς), and t0 :=

(
1−

1

400q

)
· t∗.

Now we prove the estimates for the pressure functions for every t in (t0, t∗). Fix t
in (t0, t∗) and put

τ :=
1

t∗
t =

log θ(f)

log 2
t.

By (4.8), we have s+(τ)− 2 ≥ 18. Put

P̂+ := −t
χcrit(f)

2
+
log 2

3
λ(s+(τ)−2), and P̂− := −t

χcrit(f)

2
+
log 2

3
λ(s−(τ)+Ω).

By (4.1) we have that

(4.10) t0 ≥ 8 =
2 log 2

υ
.
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First we prove the lower bound for the real pressure function. By (3.6), (B.5),

Lemma A.7 with x̂ = x̂(ς) and δ = log 2
3 λ(s−(τ) + Ω) ≤ log 2, Lemma B.2, the

definition of η0, and (4.3) we have

(4.11)

+∞∑

k=0

exp
(
−(n+ 3k)P̂−

)
|Dfn+3k(f(0))|−

t
2

≥ Ξ
− t

2
3 exp

(
−n

log 2

3
λ(s−(τ) + Ω)

)(
exp(χcrit(f))

|Df(β(f))|

) t
2n

Π− (τ, λ(s−(τ) + Ω)
)
.

≥ 2−n
(
∆

1
2 η

n
2
0

)−t

22Ω−3

≥ Ct
1.

By (A.1) we have 2υ ≤ χcrit(f). Thus, using that λ(s) is strictly decreasing, by
part 1 of Lemma B.1, and (B.5), we deduce

P̂− < P̂+ < 0.

Together with (4.10) and using part 1 of Proposition A.5, we get that

(4.12) P (t) ≥ PR(t) ≥ P̂− and P(t, P̂−) ≥ P
R(t, P̂−) > 0.

Putting ∆ := Ω+1, we get PR(t) ≥ P̂− ≥ P−(t), where P−(t) as in the statement
of Theorem A.

Now we prove the upper bound for the complex pressure function. Notice that
by (4.4) and (4.9) we have

2τξ = θ(f)tξ ≤ θ(f)2tξ(f) = Ξt
2.

Combined with (3.6), Lemma A.7 with x̂ = x̂(ς) and δ = log 2
3 λ(s+(τ) − 2),

Lemma B.2, and (4.2), we obtain that

+∞∑

k=0

exp
(
−(n+ 3k)P̂+

)
|Dfn+3k(f(0))|−

t
2

≤ Ξ
1
2
3

(
exp(χcrit(f))

|Df(β(f))|

) t
2n

Π+
(
τ, λ(s+(τ)− 2)

)
.

≤
(
Ξ

1
2
3 exp(−nυ)

)t
(25 + 5 · 2τξ)

≤
(
Ξ

1
2
3 exp(−nυ) (25 + 5 · Ξ2)

)t

≤ C−t
1 .

Together with part 2 of Proposition A.5, this implies

(4.13) PR(t) ≤ P (t) ≤ P̂+ and P
R(t, P̂+) ≤ P(t, P̂+) < 0.

To conclude we observe that by part 2 of Lemma B.1 we have that P̂+ ≤ P+(t),
where P+(t) is as in the statement of Theorem A. This finish the prove of the
estimates for the pressure functions for t in (t0, t∗).

Now we prove the existence and uniqueness of equilibrium states for every t
in (0, t∗). Put

χR

inf(f) := inf

{∫
log |Df | dµ | µ ∈ M

R

f

}
,
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and

χinf(f) := inf

{∫
log |Df | dµ | µ ∈ Mf

}
.

Combining (4.12) and (4.13), we deduce that

P (t∗) = PR(t∗) = lim
tրt∗

PR(t) = −t∗
χcrit(f)

2
.

Using that for every t > 0 we have PR(t) ≥ −tχR

inf(f), we deduce that χR

inf(f) ≥
χcrit(f)/2, and by [CR17, Proposition 5.6] we get χR

inf(f) = χcrit(f)/2. Similarly,
χinf(f) = χcrit(f)/2. Using (4.12) again, we conclude that for every t in (0, t∗) we
have

PR(t) > −tχR

inf(f) and P (t) > −tχinf(f).

The existence and uniqueness of equilibrium states follows from [PR14] in the real
case and from [PRL11] in the complex case.

For the estimates for the pressure functions for t ≥ t∗, observe that

P (t∗) = PR(t∗) = −t∗χ
R

inf(f)

and the definition of the pressure function imply that for every t in [t∗,+∞) we
have

(4.14) P (t) = PR(t) = −t
χcrit(f)

2
.

Finally, we prove for t ≥ t∗ the assertion about the (t, p)-conformal measures
and the non-existence of equilibrium states. Using (3.6), Lemma A.7 with x̂ = x̂(ς)
and δ = 0, part 1 of Sublemma B.3, and (4.2), this implies that for every t in
[t∗,+∞),

+∞∑

k=0

exp (−(n+ 3k) (−tχcrit(f)/2)) |Dfn+3k(f(0))|−
t
2

≤ Ξ
1
2
3

(
exp(χcrit(f))

|Df(β(f))|

) t
2n

Π+ (τ, 0)) .

≤
(
Ξ

1
2
3 exp(−nυ)

)t
2(2τξ + 1)

≤
(
Ξ

1
2
3 exp(−nυ) (2 + 2 · Ξ2)

)t

≤ C−t
1 .

Together with part 2 of Proposition A.5, this implies that for every t in [t∗,+∞),

P
R

(
t,−t

χcrit(f)

2

)
≤ P

(
t,−t

χcrit(f)

2

)
< 0.

Thus, for every p ≥ −χcrit(f)/2 we get that

P
R (t, p) ≤ P (t, p) ≤ P

(
t,−t

χcrit(f)

2

)
< 0.

Hence, the assertion about (t, p)-conformal measures follows from (4.14), Proposi-
tion 3.2 and [CR17, Lemma 5.5].

To prove the assertions about equilibrium states, let t ≥ t∗ be given and sup-
pose by contradiction there is an equilibrium state ρ of f |I(f) (resp. f |J(f)) for
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the potential −t log |Df |. Since f satisfies the Collet-Eckmann condition, it fol-
lows that the Lyapunov exponent of ρ is strictly positive, see [NS98, Theorem A]
or [Riv12, Main Theorem] for the real case and [PRLS03, Main Theorem] for the
complex case. Then [Dob15, Theorem 6] in the real case and [Dob12, Theorem 8]
in the complex case imply that ρ is absolutely continuous with respect to the
(t,−tχcrit(f)/2)-conformal measure for f |I(f) (resp. f) that is supported on I(f)
(resp. J(f)). This implies in particular that ρ is supported on the backward orbit
of z = 0 and hence that ρ charges z = 0. This is impossible because this point is
not periodic. This contradiction shows that there is no equilibrium state of f |I(f)
(resp. fJ(f)) for the potential −t log |Df | and completes the proof Theorem A.

4.3. Proof of Theorem B. In this subsection we complete the proof of Theo-
rem B. We give the proof in the complex setting; except for the obvious notational
changes, it applies to the real case without modifications. The proof is based on the
fact that for each ς in {+,−}N the equilibrium state ρt(ς) is absolutely continuous
with respect to some (t, Pfς (t))-conformal measure with a density bounded from

above and from below (see Proposition 3.4). Then, we can estimate the measure
via the derivative of the orbit of the critical point. We keep the same notation as
in the previous subsections.

Fix t in (t0, t∗) and let m0 be in N such that t is in [t∗τm0−1, t∗τm0
]. Observe

that τm0−1 ≤ τ ≤ τm0
. On the other hand, note that by (4.12) and (4.13) there

is sC in [s+(τ)− 2, s−(τ) + Ω] such that

(4.15) P (t) = −t
χcrit(f)

2
+

log 2

3
λ(sC).

We start by proving that the hypotheses of Proposition 3.4 are satisfied for
this value of t. By (3.6), Lemma A.7 with δ = log 2

3 λ(s−(τ) + Ω), and part 1 of
Lemma B.4, we have

(4.16)

+∞∑

k=0

k · exp
(
−(n+ 3k)P̂−

)
|Dfn+3k(f(0))|−

t
2 < +∞.

In particular, this implies that the sum in (4.11) is finite, so by part 1 of Proposi-
tion A.5 we have

P(t, P̂−) < +∞.

This implies that P(t, ·) is continuous and strictly decreasing on [P̂−,+∞), so
by (4.12), (4.13), and [CR17, Proposition II] we have (3.3). Combining (4.16) and
part 3 of Proposition A.5, we obtain (3.5). In view of (4.12), this implies the same

sum in (3.5) with P̂− replaced by P (t), is finite. This complete the proof that the
hypotheses of Proposition 3.4 are satisfied.

Let ρ̃ and ρ̂ be the measures given by Proposition 3.4. Put D := Df , F := Ff

and for every integer k ≥ 0 put Dk := Df,k. For each integer s ≥ 0 let as and bs
be the left and right endpoint of Is, respectively as in §B.1. Thus a0 = 1 and for
every integer s ≥ 0 we have

Is = [as, bs) and Js = [bs, as+1).

Note that by part 2 of Lemma B.1 and the hypothesis q ≥ 100(Ξ + 1) in §B.1 we
have as+1 − bs = |Js| > (s+ 1)2.
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Put s0 := ⌈sC⌉ and for each integer ς in [s0 − 3, s0] put

ρ̂′ς :=

aς+1−1∑

k=bς+ς2

n+3(k+1−ς2)∑

j=n+3bς−2

∑

W∈Dk

(f j)∗ (ρ̃t|W ) ,

and put

ρ̂′′ :=
∑

k∈Js0

n+3(as0
+1−s20)∑

j=n+3bs0−1−2

∑

W∈Dk

(f j)∗ (ρ̃t|W ) .

Finally, put

ρ̂′ :=

(
s0∑

ς=s0−3

ρ̂′ς

)
+ ρ̂′′.

In part 1 we estimate the total mass of ρ̂′ from below, and in part 2 we show
that the total mass of ρ̂t − ρ̂′ is small in comparison to that of ρ̂′. In part 3 we
complete the proof of Theorem B by showing that the measure ρ̂′ is supported on
a small neighborhood of the orbit of p+ if ς(m) = +, and on a small neighborhood
of the orbit of p− if ς(m) = −.

Similarly to the previous subsection note that the 2 variables series defined

in §B.3: Π̃±, and for each integer s ≥ 0, the series Ĩ+s , J̃+
s , and Ĵ±

s , satisfy

Π̃+ =

+∞∑

k=0

k·π+
k , Ĩ

+
s =

∑

k∈Is

k·π+
k , J̃

+
s =

∑

k∈Js

k·π+
k and Ĵ±

s =

as+1−1∑

k=bs+s2

(k+1−bs−s2)π±
k .

1. To estimate the total mass of ρ̂′ from below put Υ1 := Ξ1C2Ξ
1
2
3 η

n
2
0 2n. Let ς

be an integer in [s0 − 3, s0]. By part 1 of Proposition A.6, Lemma A.7 with δ =
log 2
3 λ(sC) ≤ log 2, (3.2), (3.4), and (4.15), we have

|ρ̂′ς | =

aς+1−1∑

k=bς+ς2

3(k + 1− bς − ς2)
∑

W∈Dk

ρ̃t(W )

≥ (Ξ1C2)
−t

aς+1−1∑

k=bς+ς2

3(k + 1− bς − ς2) exp(−(n+ 3k)P (t))|Dfn+3k(f(0))|−t/2

≥

(
Ξ1C2Ξ

1
2
3

(
|Df(β(fς))|

exp(χcrit(f))

)n
2

)−t

2−n

aς+1−1∑

k=bς+ς2

3(k + 1− bς − ς2)π−
k (τ, λ(s

C))

≥ 3Υ−t
1 Ĵ−

ς (τ, λ(sC)).

This implies

(4.17) |ρ̂′| ≥ 3Υ−t
1

s0∑

ς=s0−3

Ĵ−
ς (τ, λ(sC)).

2. For ς in [s0 − 3, s0], put

Hς := {k ∈ N0 | bς + ς2 ≤ k ≤ aς+1 − 1}.
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By part 2 and the last inequality of Proposition A.6, (3.2), (3.4), and (4.15), we
have

|ρ̂− ρ̂′| =
∑

k∈N0

k 6∈⋃s0
ς=τ0−3 Hς

∑

W∈Dk

mf (W )ρ̃(W )

+

s0−1∑

ς=τ0−3

∑

k∈Hς

∑

W∈Dk

(
mf (W )− 3(k + 2− bς − ς2)

)
ρ̃(W )

+
∑

k∈Hs0

∑

W∈Dk

(
mf (W )− 3(k + 4− bs0 − 2s20 + |Js0−1|))

)
ρ̃(W )

≤ (Ξ1C2)
t




∑

k∈N0

k 6∈⋃s0
ς=τ0−3 Hς

(n+ 3k + 1) exp(−(n+ 3k)P (t))|Dfn+3k(f(0))|−
t
2

+

s0−1∑

ς=τ0−3

∑

k∈Hς

(n+ 3(bς + ς2)) exp(−(n+ 3k)P (t))|Dfn+3k(f(0))|−
t
2

+
∑

k∈Hs0

(n+ 3(bs0 + 2s20 − |Js0−1|)) exp(−(n+ 3k)P (t))|Dfn+3k(f(0))|−
t
2


 .

Thus, if we put Υ2 := Ξ1C2Ξ
1
2
3 exp(−nυ), then by (3.6), Lemma A.7 with δ =

log 2
3 λ(sC), (3.2), and part 2 of Lemma B.4,

|ρ̂− ρ̂′| ≤ (n+ 4)Υt
2

[
Π̃+(τ, λ(sC))−

s0∑

ς=s0−3

Ĵ+
ς (τ, λ(sC))− (|Js0−1| − s20)Ĵ

+
s0(τ, λ(s

C))

]

≤ (n+ 4)Υt
22

−qs20

s0∑

ς=s0−3

Ĵ−
ς (τ, λ(sC)).

Together with (4.17) we get

|ρ̂− ρ̂′| ≤ 3(n+ 4) (Υ1Υ2)
t
2−qs20 |ρ̂′|.

Putting C = 3(n+ 4)(Υ1Υ2)
t∗,sup we have

(4.18)
|ρ̂− ρ̂′|

|ρ̂|
≤

|ρ̂− ρ̂′|

|ρ̂′|
≤ C2−qs20 ≤ C exp(−qs20 log 2).

3. Using the inequalities s0 ≥ sC ≥ s+(τ) − 2, s+(τ0) ≥ 20, Ξ − 2ξ ≥ 1, and the
definitions of τ and t∗,inf we have that for every ς ∈ [s0 − 3, s0],

(4.19) ς2 ≥
s20
2

≥
(s+(τ)− 2)2

2
≥

(s+(τ))2

4
=

Ξ− 2ξ

4q(1− τ)
≥

t∗,inf

4q(t∗ − t)
.

Using (4.6) and putting υ! := υ0
t∗,inf

8q , we get

(4.20) C0 exp

(
−υ0 · t∗,inf
4q(t∗ − t)

)
≤ exp

(
−υ!
t∗ − t

)
.
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For ς ∈ {+,−}, denote by Oς the forward orbit of pς under f . Recall that
τm0−1 ≤ τ ≤ τm0 and sC in [s+(τ) − 2, s−(τ) + Ω]. Using that s+ and s− are
increasing functions we have

s+(τm0−1)− 2 < s+(τ)− 2 ≤ sC ≤ s−(τ) + Ω ≤ s−(τm0
) + Ω.

Hence,
s+(τm0−1)− 2 < s0 ≤ s−(τm0

) + Ω + 1.

and by (4.7) we
s+(τm0−1)− 2 < s0 < s+(τm0+1)− 5.

This implies that

(4.21) [s0 − 3, s0] ⊆ [ℓ(m0 − 1), ℓ(m0 + 1)).

A similar argument shows that if τ = τm0−1 then

(4.22) [s0 − 3, s0] ⊆ [ℓ(m0 − 1), ℓ(m0)).

Fix an integer ς in [s0−3, s0] and let m(ς) in N0 be so that ℓ(m(ς)) ≤ ς < ℓ(m(ς)+1).
For every integer j such that j + 1 is in

⋃
k∈[ℓ(m(ς)),ℓ(m(ς)+1)) Jk we have x̂(ς)j =

1ς(m(ς)), so

ι(ς)j =





1 if ς(m(ς)) = +;

0 if ς(m(ς)) = − and j is even;

1 if ς(m(ς)) = − and j is odd.

Since bς is even, for every ℓ in [0, aς+1 − 1 − bς ] the points fn+1+3(bς+ℓ−1)(0) and

f3ℓ(pς(m(ς))) are both in Yf or both in Ỹf . Since Yf and Ỹf are puzzle pieces of
depth 4, it follows that

Pf,3(aς+1−1−bς)+4(f
n+1+3(bς−1)(0)) = Pf,3(aς+1−1−bς)+4(p

ς(m(ς))).

Then, for each integer j in [bς − 1, aς+1 − 2] we have

(4.23) Pf,3(aς+1−2−j)+4(f
n+1+3j(0)) = Pf,3(aς+1−2−j)+4(f

3j(pς(m(ς)))),

which implies that for each integer k in Jς and for each integer j in [bς − 1, k − 1],

Pf,3(k−j)+1(f
n+1+3j(0)) = Pf,3(k−j)+1(f

3j(pς(m(ς)))).

Note that by definition of Dk, every element W of Dk is contained in Pf,n+3k+2(0),
so, if in addition we have k ≥ bς + ς2 and j ≤ k− ς2, then by (4.20) and Lemma A.2
we obtain

fn+1+3j(W )∪f (n+1+3j)+1(W )∪f (n+1+3j)+2(W ) ⊂ B(Oς(m(ς)), exp(−υ!/(t∗− t))),

which proves that ρ̂′ς is supported on B(Oς(m(ς)), exp(−υ!/(t∗ − t))).
On the other hand, for each integer k in Js0 , every element W of Dk is contained

in Pf,n+3k+2(0), and hence in Pf,n+3(as0
−1)+2(0). Thus, by (4.23) with ς = s0 − 1

we have, by (4.20) and Lemma A.2, that for every integer j in [bs0−1 − 1, as0 − s20],

fn+1+3j(W )∪f (n+1+3j)+1(W )∪f (n+1+3j)+2(W ) ⊂ B(Oς(m(s0−1)), exp(−υ!/(t∗−t))),

which proves that ρ̂′′ is supported on B(Oς(m(s0−1)), exp(−υ!/(t∗ − t))).
Let m and m̂ be integers as in the statement of Theorem B, that is,

(4.24) m̂ ≥ m ≥ 1, ς(m) = · · · = ς(m̂), and fix t in [t∗τm, t∗τm̂].

Then, τm ≤ τ ≤ τm̂ so for every ς in [s0 − 3, s0], by (4.21) if m̂ > m and by (4.22)
if m̂ = m, we have ς(m(ς)) = ς(m). It follows from the considerations above that
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the measure ρ̂′ is supported on B(Oς(m), exp(−υ!/(t∗− t))). To conclude the proof,
recall that the equilibrium state ρt of f |J(f) for the potential −t log |Df | is the
probability measure proportional to ρ̂. By (4.18) together with (4.19) and (4.20),
we conclude that

ρt

(
C \B

(
Oς(m), exp

(
−

υ!
t∗ − t

)))
≤

|ρ̂− ρ̂′|

|ρ̂|
≤ C exp

(
−
t∗,inf · log 2

2(t∗ − t)

)
.

Recalling that υ! = υ0 · t∗,inf/8q, this completes the proof of Theorem B with

κ = min{υ0

8q ,
log 2
2 }t∗,inf .

Remark 4.1. Without assuming the existence of m̂ and m satisfying (4.24) the
measure ρ̂′ is supported on B (O+ ∪ O−, exp(−υ!/(t∗ − t))), and the estimate above
gives that for every t ∈ (t∗τ1, t∗) we have

ρt

(
C \B

(
O+ ∪ O−, exp

(
−

κ

t∗ − t

)))
≤ C exp

(
−

κ

t∗ − t

)
.

Appendix A. Estimating the geometric pressure function

In this appendix we collect several results from [CR17] that we use in the proofs
Theorems A and B in §4.

Throughout this section we fix a uniform family of quadratic-like maps F , with
constants R and K.

A.1. Some uniform bounds. For a parameter c in P2(−2) the external rays Rc(7/24)

and Rc(17/24) land at the point γ(c) in Pc,1(0), see [CRL13, §3.3]. Let Ûc be the
open disk containing −β(c) that is bounded by the equipotential 2 and by

Rc(7/24) ∪ {γ(c)} ∪Rc(17/24).

Put Ŵc := f−1
c (Ûc), and for every n ≥ 3 and every f in Kn(F ) put Ŵf :=

hf (Ŵc(f)).

Lemma A.1 (Uniform distortion bound, [CR17], Lemma 4.9). There is Ξ2 > 1
such that for each integer n ≥ 4 and each f in Kn(F ) the following properties
hold: For each integer m ≥ 1 and each connected component W of f−m(Pf,1(0))

on which fm is univalent, fm maps a neighborhood of W biholomorphically to Ŵf

and the distortion of this map on W is bounded by Ξ2.

Recall that gf : hf (Yc(f) ∪ Ỹc(f)) → Pf,1(0) is defined by gf = hf ◦ gc(f) ◦ h−1
f ,

see §3.1.

Lemma A.2 ([CR17], Lemma 4.11). Let F be a uniform family of quadratic-like
maps. Then, there are constants C0 > 0 and υ0 > 0 such that for every f in P5(F ),

every ℓ in N, and every connected component W of g−ℓ
f (Pf,1(0)), we have

max{diam(W ), diam(f(W )), diam(f2(W ))} ≤ C0 exp(−υ0ℓ).

A.2. Geometric Peierls condition. Let n ≥ 5 be an integer and f in Kn(F ).
Put

D′
f := {w ∈ C \ Vf | fm(w) ∈ Vf for some m ∈ N},

and for w in D′
f denote by mf (w) the least integer m such that fm(w) ∈ Vf

and call it the first landing time of w to Vf . The first landing map to Vf is the

map Lf : D′
f → Vf defined by Lf (w) := fmf (w)(w).
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Definition A.3 (Geometric Peierls Condition). Given κ > 0 and υ > 0, a quadratic-
like map f in F satisfies the Geometric Peierls Condition with constants κ and υ,
if for every z in L−1

f (Vf ) we have

|DLf (z)| ≥ κ exp((χcrit(f)/2 + υ)mf (z)).

Proposition A.4 ([CR17], Proposition 4.3). For every υ > 0 satisfying υ < 1
2 log 2

and every R′ > 0, there are constants K1 > 1, n1 ≥ 6, and κ1 > 0, such that the
following property holds. If F1 admits K1 and R′ as uniformity constants, then for
every integer n ≥ n1, every element f of Kn(F1) satisfies the Geometric Peierls
Condition with constants κ1 and υ, and we have

χf (β(f)) > χcrit(f) + 2υ,

(A.1) χcrit(f) > 2υ, and χf (p(f)) < χf (p
+(f)) + υ/4.

A.3. Controlling the geometric pressure function via the postcritical se-

ries.

Proposition A.5 ([CR17], Proposition I). Let F be a uniform family of nor-
malized quadratic-like maps. For every κ > 0 and every υ > 0 there are n2 ≥ 5
and C1 > 1 such that for every integer n ≥ n2 and every f in Kn(F ) satisfying the
Geometric Peierls Condition with constants κ and υ, the following properties hold
for each t ≥ 2 log 2/υ.

1. For p in [−tχcrit(f)/2, 0) satisfying

+∞∑

k=0

exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2 ≥ Ct
1,

we have PR

f (t, p) > 0 and PR

f (t) ≥ p. If in addition the sum above is finite,

then Pf (t, p) is finite and PR

f (t) > p.

2. For p ≥ −tχcrit(f)/2 satisfying

+∞∑

k=0

exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2 ≤ C−t
1 ,

we have Pf (t, p) < 0 and Pf (t) ≤ p.
3. For p ≥ −tχcrit(f)/2 satisfying

+∞∑

k=0

k · exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2 < +∞,

we have
∑

W∈Df

mf (W ) · exp(−mf (W )p) sup
z∈W

|DFf (z)|
−t < +∞.

Let n ≥ 4 be an integer and f in Kn(F ). Since the critical point z = 0 does not
belong to Df (cf., Lemma 4.2 in [CRL13]), for each integer ℓ ≥ 1, each connected
component of Df intersecting Pf,ℓ(0) is contained in Pf,ℓ(0). We define the level
of a connected component W of Df as the largest integer k ≥ 0 such that W is
contained in Pf,n+3k+2(0). Given an integer k ≥ 0 denote by Df,k the collection of

all connected components of Df of level k; we have Df =
⋃+∞

k=0 Df,k.
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Proposition A.6 ([CR17], Proposition 5.6). Let F be a uniform family of nor-
malized quadratic-like maps. For every κ > 0 and every υ > 0 there are n3 ≥ 5
and C2 > 1 such that for every integer n ≥ n3 and every f in Kn(F ) satisfying the
Geometric Peierls Condition with constants κ and υ, the following properties hold
for each t ≥ 2 log 2/υ and each integer k ≥ 0:

1. For each p < 0, we have

∑

W∈Df,k∩DR

f

exp(−mf (W )p) inf
z∈W

|DFf (z)|
−t >

C−t
2 exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2.

2. For each p ≥ −tχcrit(f)/2− tυ/3, we have

∑

W∈Df,k

exp(−mf (W )p) sup
z∈W

|DFf (z)|
−t <

Ct
2 exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2.

Moreover,

∑

W∈Df,k

(mf (W )− (n+ 3k)) exp(−mf (W )p) sup
z∈W

|DFf (z)|
−t <

Ct
2 exp(−(n+ 3k)p)|Dfn+3k(f(0))|−t/2.

A.4. Estimating the postcritical series. Denote by Σ̂ the set of all those se-
quences (x̂j)j∈N0

in {0, 1+, 1−}N0 such that for each j in N0 satisfying x̂j = 1+

(resp. x̂j = 1−), we have x̂j+1 6= 1− (resp. x̂j+1 6= 1+). A sequence (xj)j∈N0

in {0, 1}N0 is compatible with a sequence (x̂j)j∈N0 in Σ̂ if for every j in N0 such
that x̂j = 0 (resp. x̂j = 1+, x̂j = x̂j+1 = 1−), we have xj = 0 (resp. xj = 1,
xj 6= xj+1).

Fix a sequence (x̂j)j∈N0
in Σ̂. Define N : N0 → N0 by N(0) := 0, and for k in N

by

N(k) := ♯{j ∈ {0, . . . , k − 1} | x̂j = 0}.

Moreover, define B : N0 → N0 by B(0) := 0, B(1) := 1, and for k ≥ 2 by

B(k) := 1 + ♯{j ∈ {0, . . . , k − 2} | x̂j 6= x̂j+1}.

Note that for k in N the function B(k) is equal to the number of blocks of 0’s, 1+’s,

and 1−’s in the sequence (x̂j)
k−1
j=0 .

Throughout the rest of this subsection, fix a uniform family of quadratic-like
maps F , and let Ξ2 > 1 be the constant given by Lemma A.1. Note that for n ≥ 5
and f in Kn(F ), the condition θ(f) > 1 is equivalent to χf (p(f)) > χf (p

+(f)),
see (3.7) for the definition of θ(f). When this holds, define

ξ(f) :=
log Ξ2

2 log θ(f)
.

If in addition the itinerary ι(f) is compatible with (x̂j)j∈N0 , let ξ ≥ ξ(f) be given
and define for each integer k ≥ 0 and each (τ, λ) in [0,+∞)× [0,+∞),

π±
f,k(τ, λ) := 2−λk−τN(k)±ξτB(k).
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Lemma A.7 ([CR17], Lemma 6.1). There is Ξ3 > 1 such that the following prop-

erty holds. Let x̂ be a sequence in Σ̂ such that N(k)/k → 0 as k → +∞, and such
that the length of every maximal block containing only 1−’s is even. Then, for every
integer n ≥ 6 and every f in Kn(F ) such that χ(p−(f)) = χ(p+(f)), and such that
the itinerary ι(f) is compatible with x̂, we have

χcrit(f) =
1

3
log |Dgf (p

+(f))|.

If moreover

χf (p(f)) > χf (p
+(f))

the following property holds for every choice of ξ ≥ ξ(f). For every integer k ≥ 0,
and all t > 0 and δ ≥ 0, we have

Ξ
− t

2
3 exp(−nδ)

(
exp(χcrit(f))

|Df(β(f))|

) t
2n

π−
f,k

(
log θ(f)

log 2
t,

3δ

log 2

)

≤ exp

(
−(n+ 3k)

(
−t

χcrit(f)

2
+ δ

))
|Dfn+3k(f(0))|−

t
2

≤ Ξ
t
2
3 exp(−nδ)

(
exp(χcrit(f))

|Df(β(f))|

) t
2n

π+
f,k

(
log θ(f)

log 2
t,

3δ

log 2

)
.

Appendix B. Estimating the positive temperature 2 variables series

B.1. Preliminary estimates. Given an integer Ξ ≥ 0, let q ≥ 100(Ξ + 1) be a
sufficiently large integer such that 2q−3 ≥ q + 1 + Ξ. Define the cubic function

Q : R → R

s 7→ Q(s) := qs3.

For each real number s in [0,+∞) define

as := 2Q(s) and bs := 2Q(s) +Q(s+ 1)−Q(s) + Ξ,

and the following intervals of R:

Is := [as, bs) and Js := [bs, as+1) .

Note that |I0| = q+Ξ, and that for integer values of s, the intervals Is and Js form
a partition of [1,+∞) that we use in §4.1 to define a certain family of itineraries.
For s in [0,+∞) that is not necessarily an integer, the interval Js is used in the
proof of Lemmas B.2 and B.4 in §B.2 and §B.3, respectively.

Define the function N : N0 → N0, by N(0) := 0, and for k in N by

N(k) := ♯

{
j ∈ {0, . . . , k − 1} | j + 1 ∈

+∞⋃

s=0

Is

}
,

and the function B : N0 → N0 by B(0) := 0, and for s in N0 by

(B.1) B−1(2s+ 1) = Is and B−1(2(s+ 1)) = Js.

Observe that for every s in N0, we have for every k in Js

(B.2) N(k) =

s∑

j=0

|Ij | =

s∑

j=0

(Q(j + 1)−Q(j) + Ξ) = Q(s+ 1) + Ξ · (s+ 1)
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and for every k in Is

(B.3) N(k) = k + 1− as +Q(s) + Ξs.

Let ξ > 0 be given, put Ξ := ⌈2ξ⌉+ 1, and let q be as before. For s in N0 define
the following 2 variables series on [0,+∞)× [0,+∞),

I±s (τ, λ) :=
∑

k∈Is

2−λk−τN(k)±τξB(k) and J±
s (τ, λ) :=

∑

k∈Js

2−λk−τN(k)±τξB(k),

and put

Π±(τ, λ) := 1 +

+∞∑

s=0

I±s (τ, λ) +

+∞∑

s=0

J±
s (τ, λ).

Note that by (B.1) and (B.2), for all j in N0 and all τ > 0 we have

(B.4) J±
j (τ, λ) = 2−τQ(j+1)−(Ξ∓2ξ)τ ·(j+1)

∑

k∈Jj

2−λk.

For every real number s in [0,+∞) define

λ(s) :=
1

|Js|
.

By part 2 of Lemma B.1 (below) and the hypothesis q ≥ 100(Ξ + 1), we have

(B.5) 0 < λ(s) ≤ 1/4.

In §B.2 we estimate Π+ from above and Π− from below for some particular values
of the variable λ depending on the variable τ . In §B.3 we estimate a weighted version
of the series Π+ from above.

We finish this subsection with a lemma collecting some simple estimates that are
extensively used in what follows.

Lemma B.1. The following properties hold:

1. For each real number s ≥ 0, we have bs ≤ as+1/2 and the function λ(s) is
strictly decreasing;

2. For each real number s ≥ 0, we have as+1/2 ≤ |Js|;
3. For every s ≥ 1, we have bs + 2(s+ 1)2 ≤ 5

4as;

4. Given s ≥ 1, put s0 := ⌈s⌉. Then, we have bs0 + 2s20 ≤ 3|Js|.

Proof. Part 1, case s = 0 is given by our hypothesis 2q−3 ≥ q + 1 + Ξ. For s > 0,
it follows from this and from the fact that, by the hypothesis q ≥ 100(Ξ + 1), the
derivative of the function

s 7→ 2q(s+1)3−1 − (2qs
3

+ q(3s2 + 3s+ 1) + Ξ)

is strictly positive on [0,+∞). This also implies that λ(s) is strictly decreasing.
Part 2 follows from part 1.
Part 3, case s = 1 is given by our hypotheses q ≥ 100(Ξ+1) and 2q−3 ≥ q+1+Ξ.

For s > 1, it follows from this and from the fact that the derivative of the function

s 7→
5

4
2qs

3

− (2qs
3

+ q(3s2 + 3s+ 1) + Ξ + 2(s+ 1)2)

is strictly positive on [1,+∞).
Part 4 follows from parts 2 and 3. �
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B.2. Estimating the 2 variables series. Define the functions s+, s− : (−∞, 1) →
R by

s±(τ) :=

(
Ξ∓ 2ξ

q(1− τ)

) 1
2

.

Lemma B.2. For every τ in
(

q−1
q , 1

)
, we have

Π+
(
τ, λ

(
s+(τ)− 2

))
≤ 25 + 5 · 2τξ,

and for every Ω ≥ 0, we have

22Ω−3 ≤ Π− (τ, λ
(
s−(τ) + Ω

))
.

Sublemma B.3. The following properties hold:

1. For τ ≥ 1 we have

Π+(τ, 0) ≤ 2
(
2τξ + 1

)
.

2. For every real number s in [0,+∞) and every τ in (2/3, 1) satisfying τ >
Q(s+1)−1
Q(s+2) , we have

Π+(τ, λ(s)) ≤ 4 + 5 · 2τξ + 2

⌊s⌋+1∑

j=0

2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1).

3. For every real number s in [0,+∞) and every τ > 0, we have

1

8
2(1−τ)Q(⌊s⌋+1)−τ(Ξ+2ξ)(⌊s⌋+1) ≤ Π−(τ, λ(s)).

Proof. 1. By (B.1), (B.3), and the hypothesis Ξ − 2ξ ≥ 1, for every τ > 0 and
every λ ≥ 0 we have

+∞∑

s=0

I+s (τ, λ) ≤

+∞∑

s=0

|Is|∑

m=1

2−τ(Q(s)+Ξs+m)+τξ·(2s+1)

= 2τξ
+∞∑

s=0

2−τ(Q(s)+(Ξ−2ξ)s)

|Is|∑

m=1

2−τm

≤ 2τξ
2−τ

1− 2−τ

+∞∑

s=0

2−τ(Ξ−2ξ)s

≤ 2τξ
2−τ

(1− 2−τ )
2 .

(B.6)

By (B.1), (B.2), the hypothesis Ξ − 2ξ ≥ 1, and that for every s ≥ 0 we have
|Js| ≤ as+1, we obtain for every τ ≥ 1 and with λ = 0

+∞∑

s=0

J+
s (τ, 0) =

+∞∑

s=0

|Js|2
−τ(Q(s+1)+Ξ·(s+1))+2τξ·(s+1)

≤

+∞∑

s=0

2−(τ−1)Q(s+1)−τ(Ξ−2ξ)(s+1)

≤
2−τ

1− 2−τ
.

(B.7)
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Combining inequalities (B.6) and (B.7), we get for every τ ≥ 1

Π+(τ, 0) ≤ 1 + 2τξ
2−τ

(1− 2−τ )
2 +

2−τ

1− 2−τ
≤ 2

(
2τξ + 1

)
.

This is part 1 of the sublemma.

2. Fix s in [0,+∞) and set s0 := ⌊s⌋. We use (B.6) to estimate Π+(τ, λ(s)).

To estimate
∑+∞

j=0 J
+
j (τ, λ(s)), note that by definition of λ(s), for each integer ℓ

satisfying 1 ≤ ℓ ≤ |Js| we have

1

2
≤ 2−λ(s)ℓ ≤ 1.

On the other hand, the inequality q ≥ 100(Ξ+1) implies that the function j 7→ |Jj |
is nondecreasing on [0,+∞). Therefore, for each j in {0, . . . , s0} we have |Jj | ≤ |Js|
and then

(B.8)
1

2
|Jj | ≤

|Jj |∑

m=1

2−λ(s)m ≤ |Jj |.

On the other hand

(B.9)
+∞∑

m=1

2−λ(s)m =
1

2λ(s) − 1
≤

1

λ(s) log 2
≤ 2|Js|.

Note also that for j ∈ N, by (B.4), the inequalities bj ≥ b0 = q + Ξ + 1 ≥ 1, (B.9)

and |Js| ≤ 2Q(s+1), we have

J+
j (τ, λ(s)) = 2−τ(Q(j+1)+(Ξ−2ξ)(j+1))

∑

k∈Jj

2−λ(s)k

≤ 2|Js|2
−τ(Q(j+1)+(Ξ−2ξ)(j+1))

≤ 2 · 2Q(s+1)−τ(Q(j+1)+(Ξ−2ξ)(j+1)).

(B.10)

Taking j = s0 + 1 and using the inequality Q(s+ 1) ≤ Q(s0 + 2), we obtain,

(B.11) J+
s0+1(τ, λ(s)) ≤ 2 · 2(1−τ)Q(s0+2)−τ(Ξ−2ξ)(s0+2).

On the other hand, our hypothesis τ > Q(s+1)−1
Q(s+2) implies that for j ≥ s0 + 2 we

have

Q(s+ 1)− τQ(j + 1) ≤ Q(s+ 1)− τQ(s+ 2) < 1.

So, using the inequalities Ξ − 2ξ ≥ 1 and τ > 2/3, and summing (B.10) over j
satisfying j ≥ s0 + 2, we obtain

(B.12)

+∞∑

j=s0+2

J+
j (τ, λ(s)) ≤

+∞∑

j=s0+2

22−τ(Ξ−2ξ)(j+1) ≤
22−3τ

1− 2−τ
<

1

1− 2−τ
.

Now we complete the estimate of
∑+∞

j=0 J
+
j (τ, λ(s)), by estimating the terms for

which j is in {0, . . . , s0}. From (B.8), (B.4), and |Jj | ≤ 2Q(j+1), we deduce that for
every integer j in {0, . . . , s0} we have

J+
j (τ, λ(s)) ≤ |Jj | · 2

−τ(Q(j+1)+(Ξ−2ξ)(j+1)) ≤ 2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1).
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Summing over j in {0, . . . , s0} and using inequalities (B.11) and (B.12), we obtain

+∞∑

j=0

J+
j (τ, λ(s))

≤

s0∑

j=0

2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1) + 2 · 2(1−τ)Q(s0+2)−τ(Ξ−2ξ)(s0+2) +
1

1− 2−τ

≤ 2

s0+1∑

j=0

2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1) +
1

1− 2−τ
.

Together with (B.6) this implies

(B.13) Π+(τ, λ(s))

≤ 1 +
2−τ

(1− 2−τ )
2 2

τξ + 2

s0+1∑

j=0

2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1) +
1

1− 2−τ
.

Using that τ is in (2/3, 1), we have 1
1−2−τ ≤ 3 and 2−τ

(1−2−τ )2
≤ 5. We obtain part 2

of the sublemma by combining these estimates with (B.13).

3. Fix s in [0,+∞) and set s0 := ⌊s⌋. By parts 1 and 2 of Lemma B.1 we have

λ(s)(bs0 − 1) ≤ 2 ·
bs0
as+1

≤ 1.

By this inequality, part 2 of Lemma B.1, (B.4), the first inequality of (B.8), and
the first equality in (B.10), we have

1

23
2(1−τ)Q(s0+1)−τ(Ξ+2ξ)(s0+1)

≤
1

22
|Js0 |2

−τ(Q(s0+1)+Ξ·(s0+1))−2τξ·(s0+1)

≤
1

2
|Js0 |2

−λ(s)(bs0−1)−τ(Q(s0+1)+Ξ·(s0+1))−2τξ·(s0+1)

≤




|Js0
|∑

m=1

2−λ(s)m


 2−λ(s)(bs0−1)−τ(Q(s0+1)+Ξ·(s0+1))−2τξ·(s0+1)

= J−
s0(τ, λ(s)).

This proves part 3 of the sublemma and completes the proof. �

Proof of Lemma B.2. Fix τ in
(

q−1
q , 1

)
and Ω ≥ 0. Put s(τ) =

(
2

q(1−τ)

) 1
2

. Note

that τ > q−1
q ⇔ 2 < s(τ)2. This last inequality and our hypothesis q ≥ 100(Ξ + 1)

imply that
(3q + 2)s(τ) < 3qs(τ)2 + q + 1.

Finally the last inequality is equivalent to

2s(τ) < Q(s(τ))−Q(s(τ)− 1) + 1 ⇔

(1− τ)Q(s(τ)) < Q(s(τ))−Q(s(τ)− 1) + 1 ⇔

Q (s(τ)− 1)− 1

Q (s(τ))
< τ.
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On the other hand, the function s 7→ Q(s−1)−1
Q(s) is strictly increasing on [0,+∞).

Using 1 ≤ Ξ− 2ξ ≤ 2 we deduce

Q(s+(τ)− 1)− 1

Q(s+(τ))
≤

Q (s(τ)− 1)− 1

Q(s(τ))
< τ.

So the hypotheses of part 2 of Sublemma B.3 are satisfied with s = s+(τ) − 2.
Let F : R → R be the quadratic function defined by

F (ℓ) := (1− τ)Q(ℓ)− τ(Ξ− 2ξ)ℓ.

Note that F (0) = 0,

F

(
s+(τ)

2

)
=

(Ξ− 2ξ)
3
2

8q
1
2

(1− τ)
1
2 −

3τ(Ξ− 2ξ)

4

(
s+(τ)

2

)

and

F (s+(τ)) =
(Ξ− 2ξ)

3
2

q
1
2

(1− τ)
1
2 .

Using that F is convex on [0,+∞), we conclude that for each ℓ in [0, s+(τ)] we have

F (ℓ) = (1− τ)Q(ℓ)− τ(Ξ− 2ξ)ℓ

≤
(Ξ− 2ξ)

3
2

q
1
2

(1− τ)
1
2 −

3τ(Ξ− 2ξ)

4
min

{
ℓ, s+(τ)− ℓ

}
.

Therefore, putting s+ = s+(τ) − 2 and using 1 ≤ Ξ − 2ξ ≤ 2, q ≥ 100(Ξ + 1),
and τ ≥ q−1

q , we have

⌊s+⌋+1∑

j=0

2(1−τ)Q(j+1)−τ(Ξ−2ξ)(j+1) ≤ 2

⌊s+⌋+2∑

ℓ=0

2
(Ξ−2ξ)

3
2

8
√

2
(1−τ)

1
2 − 3τ(Ξ−2ξ)

4 ℓ

≤ 2 · 2
1
40

1

1− 2−
3
4 · 23

< 10.

The first inequality of the lemma is then obtained using part 2 of Sublemma B.3
with s = s+.

To prove the second inequality, first we define F− : R → R as the quadratic
function given by

F−(ℓ) := (1− τ)Q(ℓ)− τ(Ξ + 2ξ)ℓ.

Notice from the definition of Ξ = ⌈2ξ⌉+1 and the hypothesis that τ is in
(

q−1
q , 1

)
,

we have

F−(s−(τ) + Ω) = (1− τ) · (Ξ + 2ξ)s−(τ) + (3− τ) · (Ξ + 2ξ)Ω

+ q (1− τ) Ω2
(
3s−(τ) + Ω

)

≥ 2(Ξ + 2ξ)Ω

≥ 2Ω.

Using that F− is increasing on the interval
[(

τ
3

) 1
2 s−(τ),+∞

)
, that contains s−(τ),

and putting s− = s−(τ) + Ω, we get

2Ω ≤ F−(s−) ≤ F−(⌊s−⌋+ 1) = (1− τ)Q(⌊s−⌋+ 1)− τ(Ξ + 2ξ)(⌊s−⌋+ 1).
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Together with part 3 of Sublemma B.3 with s = s−, we obtain

22Ω ≤ 2(1−τ)Q(⌊s−⌋+1)−τ(Ξ+2ξ)(⌊s−⌋+1) ≤ 8Π− (τ, λ
(
s−
))

,

proving the second inequality of the lemma. �

B.3. Estimating the weighted 2 variables series. For each s in N0, τ > 0,
and λ ≥ 0 put

Ĩ+s (τ, λ) :=
∑

k∈Is

k · 2−λk−τN(k)+τξB(k),

J̃+
s (τ, λ) :=

∑

k∈Js

k · 2−λk−τN(k)+τξB(k),

and

Π̃+(τ, λ) := 1 +
+∞∑

s=0

Ĩ+s (τ, λ) +
+∞∑

s=0

J̃+
s (τ, λ).

Noting that by part 2 of Lemma B.1 we have as+1 − bs = |Js| ≥ s2 + 1, define
for each τ > 0 and λ ≥ 0,

Ĵ±
s (τ, λ) :=

as+1−1∑

k=bs+s2

(k + 1− bs − s2) · 2−λk−τN(k)±τξB(k).

Lemma B.4. For each τ in [1/2, 1], the following properties hold:

1. For each s > 0 we have Π̃+(τ, λ(s)) < +∞;
2. Given s ≥ 10, put s0 := ⌈s⌉. Then

Π+(τ, λ(s)) ≤ Π̃+(τ, λ(s))−

s0∑

ς=s0−3

Ĵ+
ς (τ, λ(s))− (|Js0−1| − s20)J

+
s0(τ, λ(s))

≤ 2−qs20

s0∑

ς=s0−3

Ĵ−
ς (τ, λ(s)).

The proof of this lemma is after the following lemma.

Sublemma B.5. Given s ≥ 10, put s0 := ⌈s⌉. For every τ in [1/2, 1] the following
properties hold:

1. Ĵ−
s0(τ, λ(s)) ≥

1
29 2

2q(s+1)3−qτ ·(s0+1)3−(Ξ+2ξ)τ ·(s0+1);
2. For every integer ς in [s0 − 3, s0 − 1] we have

(bς + ς2)J+
ς (τ, λ(s)) ≤

1

20
2−qs20 Ĵ−

ς (τ, λ(s));

3. (bs0 − |Js0−1|+ 2s20)J
+
s0(τ, λ(s)) ≤

1
42

−qs20 Ĵ−
s0(τ, λ(s)).
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Proof. 1. By (B.1), (B.2), and part 4 of Lemma B.1, we have

(B.14) Ĵ−
s0(τ, λ(s))

= 2−qτ ·(s0+1)3−(Ξ+2ξ)τ ·(s0+1)

as0+1−1∑

k=bs0+s20

(k + 1− bs0 − s20) · 2
−λ(s)k

≥
1

23
2−qτ ·(s0+1)3−(Ξ+2ξ)τ ·(s0+1)

|Js0
|−s20∑

m=1

m · 2−λ(s)m.

Noticing that for every integer N ≥ 1 we have

N∑

m=1

m · 2−λ(s)m =
2λ(s)

(2λ(s) − 1)2

(
1− (N + 1)2−λ(s)N +N2−λ(s)(N+1)

)
,

and that the function

η 7→ 1− (N + 1)ηN +NηN+1

is decreasing on [0, 1], we have

|Js0
|−s20∑

m=1

m · 2−λ(s)m

=
2λ(s)

(2λ(s) − 1)2
·
(
1− (|Js0 | − s20 + 1)2−λ(s0)(|Js0

|−s20) + (|Js0 | − s20)2
−λ(s0)(|Js0

|−s20+1)
)

=
2λ(s)

(2λ(s) − 1)2
·
(
1− 2λ(s0)s

2
0−1 − (|Js0 | − s20)2

λ(s0)s
2
0−1

(
1− 2−λ(s0)

))

=
2λ(s)

(2λ(s) − 1)2
·
(
1− 2λ(s0)s

2
0−1

(
1 +

(
|Js0 | − s20

) (
1− 2−λ(s0)

)))
.

Observe that 1− 2−λ(s0) ≤ log(2λ(s0)). Using this inequality we obtain

(B.15)

|Js0
|−s20∑

m=1

m · 2−λ(s)m ≥
2λ(s)

(2λ(s) − 1)2

(
1− 2λ(s0)s

2
0−1(1 + log 2)

)

≥
1

24
1

(2λ(s) − 1)2
.

Note that by 0 ≤ λ(s) ≤ 1, we have 2λ(s) − 1 ≤ λ(s). Thus, together with part 2 of
Lemma B.1, the previous chain of inequalities implies

|Js0
|−s20∑

m=1

m · 2−λ(s)m ≥
1

24
· |Js|

2 ≥
1

26
· 22q(s+1)3 .

Together with (B.14), the inequality Ξ ≥ 2ξ, and our hypothesis q ≥ 100(Ξ + 1),
this implies

Ĵ−
s0(τ, λ(s)) ≥

1

29
22q(s+1)3−qτ ·(s0+1)3−(Ξ+2ξ)τ ·(s0+1).

This proves part 1.
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2. Let ς be an integer in [s0−3, s0] and note that by (B.1), (B.4), and the definition

of Ĵ−
ς , we have

(B.16)
J+
ς (τ, λ(s))

Ĵ−
ς (τ, λ(s))

= 24τξ·(ς+1)+λ(s)ς2
∑|Jς |

m=1 2
−λ(s)m

∑|Jς |−ς2

m=1 m · 2−λ(s)m
.

Suppose ς is in [s0 − 3, s0 − 1]. Then λ(s)|Jς | ≤ 1, so

J+
ς (τ, λ(s))

Ĵ−
ς (τ, λ(s))

≤ 2 · 24τξ·(ς+1)+λ(s)ς2
∑|Jς |

m=1 2
−λ(s)m

∑|Jς |−ς2

m=1 m

≤ 22 · 24τξ·(ς+1)+λ(s)ς2 |Jς |

(|Jς | − ς2)2
.

Noting that by part 2 of Lemma B.1 and our hypotheses s ≥ 10 and q ≥ 100(Ξ+1)
we have

λ(s)ς2 ≤ ς2/|Jς | ≤ 1 and |Jς | ≤ 2(|Jς | − ς2).

By parts 2 and 3 of Lemma B.1, by the inequality Ξ ≥ 2ξ, by our hypotheses q ≥
100(Ξ + 1), τ ∈ [1/2, 1] and s ≥ 10, we have

(bς + ς2)
J+
ς (τ, λ(s))

Ĵ−
ς (τ, λ(s))

≤ 26aς2
4τξ·(ς+1)|Jς |

−1

≤ 2qς
3+q(ς+1)−q(ς+1)3

≤ 2−q(3ς2+2ς)

≤ 2−3qς2

≤
1

20
2−qs20 .

This proves part 2.

3. By part 3 of Lemma B.1 and the hypothesis s ≥ 10 we have

bs0 − |Js0−1|+ 2s20 = bs0 − (as0 − bs0−1) + 2s20 ≤ bs0−1 + 2s20 ≤ 2 · 2q(s0−1)3 .

Thus, by part 2 of Lemma B.1, (B.15), (B.16), and the inequality λ(s) ≤ 1, we have

(bs0 − |Js0−1|+ 2s20)
J+
s0(τ, λ(s))

Ĵ−
s0(τ, λ(s))

≤ 26 · 2q(s0−1)3+4τξ·(s0+1)+λ(s)s20(2λ(s) − 1)

≤ 26λ(s) · 2q(s0−1)3+4τξ·(s0+1)+λ(s)s20

≤ 27 · 2−q(s+1)3+q(s0−1)3+4τξ·(s0+1)+λ(s)s20 .

Using λ(s)s20 = s20|Js|
−1 ≤ 1, the inequality Ξ ≥ 2ξ, and our hypotheses q ≥

100(Ξ + 1), τ ∈ [1/2, 1] and s ≥ 10, we have

(bs0 − |Js0−1|+ 2s20)
J+
s0(τ, λ(s))

Ĵ−
s0(τ, λ(s))

≤ 2−qs30+q(s0−1)3+q(s0+1) ≤
1

4
2−qs20 .

This completes the proof of part 3 and of the lemma. �

Proof of Lemma B.4. 1. Note that for every s ≥ 0, we have λ(s) ≤ 1 and

+∞∑

m=1

m · 2−λ(s)m =
2λ(s)

(
2λ(s) − 1

)2 ≤
2λ(s)

(λ(s) log 2)2
≤ 23|Js|

2 ≤
(
23
)
22q(s+1)3 .
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Together with (B.1), (B.2), (B.3), for every j in N0 this implies

(B.17) J̃+
j (τ, λ(s)) + Ĩ+j+1(τ, λ(s))

≤ 2−τ(q(j+1)3+Ξ·(j+1))+τξ·(2j+3)
∑

k∈Jj∪Ij+1

k · 2−λ(s)k

≤ (2τ ·ξ+3)22q(s+1)3−qτ ·(j+1)3−τ(Ξ−2ξ)·(j+1).

By the inequality Ξ− 2ξ ≥ 1 and our hypothesis that τ is in [1/2, 1], for every j ≥
2s+ 1 we have

J̃+
j (τ, λ(s)) + Ĩ+j+1(τ, λ(s)) ≤

(
2ξ+3

)
2−τ ·(j+1).

This implies that Π̃+(τ, λ(s)) is finite, as wanted.

2. The first inequality follows directly from the definitions. Note that by (B.1)
and (B.3), and our hypothesis that τ is in [1/2, 1], we have

(B.18) 1 + Ĩ+0 (τ, λ(s)) ≤ 1 +

+∞∑

k=1

k · 2−τk+ξ = 1 + 2ξ
2−τ

(1− 2−τ )2
≤ 10 · 2ξ.

By part 3 of Lemma B.1, (B.1), (B.3), the inequality Ξ−2ξ ≥ 1 and our hypothesis
that τ is in [1/2, 1], for every integer j ≥ 1 we have

Ĩj(τ, λ(s)) ≤
(
2ξ
)
2−τ(qj3+(Ξ−2ξ)j)

|Ij |∑

m=1

(aj +m) 2−τm

≤

(
2ξ ·

5

4

)
2−τ(qj3+(Ξ−2ξ)j)aj

|Ij |∑

m=1

2−τm

≤
(
2ξ+2

)
2qj

3−qτj3−(Ξ−2ξ)τj

≤
(
2ξ+2

)
2q(1−τ)j3−τj .

Combined with (B.18) and our hypothesis that τ is in [1/2, 1], this implies

1 +

s0+1∑

j=0

Ĩ+j (τ, λ(s)) ≤
(
2ξ+5

)
2(1−τ)q(s0+1)3 .

Together with part 1 of Lemma B.5, the inequality Ξ ≥ 2ξ and our hypotheses s ≥
10 and q ≥ 100(Ξ + 1), this inequality implies

(B.19) 1 +

s0+1∑

j=0

Ĩ+j (τ, λ(s)) ≤
1

23
2−qs20 Ĵ−

s0(τ, λ(s)).

On the other hand, by (B.1) and (B.2) for every j in {0, . . . , s0 − 4} we have

J̃+
j (τ, λ(s)) = 2−τ(q(j+1)3+Ξ·(j+1))+2τξ·(j+1)

∑

k∈Jj

k · 2−λ(s)k

≤ |Jj |2
q(j+1)3−qτ ·(j+1)3−(Ξ−2ξ)τ ·(j+1)

≤ 22q(j+1)3−qτ ·(j+1)3−(Ξ−2ξ)τ ·(j+1)

≤ 22q(s0−3)3−qτ ·(s0−3)3−(Ξ−2ξ)τ ·(s0−3).
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Together with part 1 of Lemma B.5, the inequality Ξ ≥ 2ξ and with our hypothe-
ses q ≥ 100(Ξ + 1) and s ≥ 10, this implies

(B.20)

∑s0−4
j=0 J̃+

j (τ, λ(s))

Ĵ−
s0(τ, λ(s))

≤ s02
−2qs20 ≤

1

22
2−qs20 .

On the other hand, by (B.17), part 1 of Lemma B.5, and our hypotheses q ≥
100(Ξ + 1) and τ ∈ [1/2, 1], for every integer j ≥ s0 + 1 we have

J̃+
j (τ, λ(s)) + Ĩ+j+1(τ, λ(s))

Ĵ−
s0(τ, λ(s))

≤
(
2ξ+12

)
2−qτ ·((j+1)3−(s0+1)3)−(Ξ−2ξ)τ ·(j+1)+(Ξ+2ξ)τ ·(s0+1)

≤
(
2ξ+12

)
2−qτ ·((j−s0)

3+3(j−s0)
2(s0+1)+3(j−s0)(s0+1)2)+4ξτ(s0+1)

≤
1

24
2−qs20(j−s0).

Summing over j ≥ s0 + 1 and using our hypotheses q ≥ 100(Ξ + 1) and s ≥ 10, we
obtain

∑+∞
j=s0+1

(
J̃+
j (τ, λ(s)) + Ĩ+j+1(τ, λ(s))

)

Ĵ−
s0(τ, λ(s))

≤
1

24
2−qs20

1− 2−qs20
≤

1

23
2−qs20 .

Combined with (B.19) and (B.20), this implies

(B.21) Π̃+(τ, λ(s))−

s0∑

ς=s0−3

J̃+
ς (τ, λ(s)) ≤

1

2
2−qs20 Ĵ−

s0(τ, λ(s)).

Notice that for each positive integer ς we have

(B.22) J̃+
ς (τ, λ(s))− Ĵ+

ς (τ, λ(s))

≤

bς+ς2−1∑

k=bς

k · 2−λk−τN(k)+τξB(k) +

aς+1−1∑

k=bς+ς2

(bς + ς2) · 2−λk−τN(k)+τξB(k)

≤ (bς + ς2)J+
ς (τ, λ(s)).

Using this and part 2 of Lemma B.5 for each integer ς in [s0 − 3, s0 − 1], we get

(B.23) J̃+
ς (τ, λ(s))− Ĵ+

ς (τ, λ(s)) ≤
1

20
2−qs20 Ĵ−

ς (τ, λ(s)).

Now by (B.22) with s = s0 and part 3 of Lemma B.5 we have

(B.24) J̃+
s0(τ, λ(s))− Ĵ+

s0(τ, λ(s))− (|Js0−1| − s20)J
+
s0(τ, λ(s)) ≤

1

4
2−qs20 Ĵ−

s0(τ, λ(s)).

Finally, putting together (B.21), (B.23) and (B.24) we obtain the desired inequality
and complete the proof of the lemma. �
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