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Abstract. We study the distribution of Galois orbits of points of small height

on proper toric varieties, and its application to the Bogomolov problem.

We introduce the notion of monocritical toric metrized divisor. We prove

that a toric metrized divisor D on a proper toric variety X over a global field K

is monocritical if and only if for every generic D-small sequence of algebraic

points of X and every place v of K, the sequence of their Galois orbits on the

analytic space X
an

v
converges to a measure. When this is the case, the limit

measure is a translate of the natural measure on the compact torus sitting in

the principal orbit of X.

The key ingredient is the study of the v-adic modulus distribution of Ga-

lois orbits of generic D-small sequences of algebraic points. In particular, we

characterize all their cluster measures.

We generalize the Bogomolov problem by asking when a closed subvariety

of the principal orbit of a proper toric variety that has the same essential

minimum than the ambient variety, must be a translate of a subtorus. We prove

that the generalized Bogomolov problem has a positive answer for monocritical

toric metrized divisors, and we give several examples of toric metrized divisors

for which the Bogomolov problem has a negative answer.
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1. Introduction

The study of the limit distribution of Galois orbits of points of small height
was initiated by Szpiro, Ullmo and Zhang in their seminal paper [SUZ97]. For
an Abelian variety defined over a number field and over an Archimedean place,
they proved the equidistribution of the Galois orbits of sequences of points whose
Néron-Tate height converges to zero. This equidistribution result was motivated by
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the Bogomolov conjecture on Abelian varieties, and eventually led to an affirmative
solution by Ullmo [Ull98] and Zhang [Zha98], see also [Cin11, Ghi09, Gub07, Yam13,
Yam16] for similar results in the function field case.

This equidistribution result has been widely generalized. In particular, it has
been extended to more general varieties and height functions and, with the in-
troduction of Berkovich spaces, to non-Archimedean places [Bil97, Cha00, FR06,
Cha06, BR06, Yua08, BB10, Che11]. However, all these generalizations are re-
stricted to height functions that satisfy a special condition, namely, that the es-
sential minimum of the heights of points is equal to the normalized height of the
ambient variety, see below for precisions. In this paper, a height function satisfying
this extremal condition is called “quasi-canonical”. All the available methods to
prove equidistribution for points of small height break down for heights functions
that are not quasi-canonical.

There are important classes of quasi-canonical height functions, such as Néron-
Tate heights on Abelian varieties, canonical metrics on toric varieties, and more
generally those coming from algebraic dynamical systems. But there are also many
height functions of interest that are not quasi-canonical, like (twisted) Fubini-Study
heights on projective spaces and the Faltings height on modular varieties.

For toric varieties and height functions the situation is startling: the only ones
that are quasi-canonical are essentially the canonical one, and those derived from it
by scaling and translations. So all the previous equidistribution results apply to a
very restricted class of toric height functions. In this paper, we give a complete de-
scription of the equidistribution phenomenon for general toric heights. Our results
reveal that a very mild positivity assumption is enough to guarantee equidistribu-
tion, see Corollary 1.2 and Theorem 6.4 for restricted applications. This provides
a wealth of new height functions for which the equidistribution property holds.
Moreover, we give a complete classification of those toric heights for which equidis-
tribution holds (Theorem 1.1), and use it to prove that the equidistribution prop-
erty implies the Bogomolov property in the toric context (Theorem 1.4). As a
by-product, we give a characterization of those toric heights whose essential mini-
mum is attained (Corollary 4.9). We also provide examples of toric height functions
that fail the Bogomolov property and for which the equidistribution property fails
in a myriad of ways (§6 and §7).

Our methods build on the results and techniques developed in [BPS14, BMPS16,
BPS15] to study toric heights. In particular, convex analysis and the Legendre-
Fenchel duality play an important role. We introduce new techniques to deal with
the spaces of adelic measures that appear naturally in the equidistribution problem.
Most of the technical difficulties arise from the fact that these spaces are not com-
pact. In dealing with these difficulties we are naturally led to consider the interplay
between several topologies on these spaces.

To describe our results more precisely, we start with a brief review of the state of
the art in the general setting. Let K be a global field, that is, a field that is either
a number field or the function field of a regular projective curve over an arbitrary
field, and MK its set of places. We denote | · |v and nv the absolute value on K

associated to a place v and its weight. Let X be a proper algebraic variety over K
of dimension n, and D = (D, (‖ ·‖v)v∈MK

) a semipositive metrized (Cartier) divisor
with D big. Let

hD : X(K) −→ R

be the associated height function on the set of algebraic points of X, see §2 for
details. It is a generalization of the notion of height of algebraic points considered
by Weil, Northcott and others.
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The essential minimum of X with respect to D, denoted by µ
ess
D

(X), is the
smallest possible limit value of the height of a generic net of algebraic points of X.
Consequently, we say that a net (pl)l∈I is D-small if

lim
l
hD(pl) = µ

ess
D

(X).

A fundamental inequality by Zhang [Zha95] shows that the essential minimum
can be bounded below in terms of the height and the degree of D:

µ
ess
D

(X) ≥ hD(X)

(n+ 1) degD(X)
. (1.1)

We say that D is quasi-canonical if this lower bound for the essential minimum is
an equality (Definition 2.7).

For a place v ∈ MK, we denote by Xan
v the v-adic analytification of X. If v is

Archimedean, it is a complex analytic space whereas, if v is non-Archimedean, it
is a Berkovich space over Cv, the completion of the algebraic closure of the local
field Kv. We endow the space of probability measures on Xan

v with the weak-∗
topology with respect to the space of continuous functions on Xan

v .
For an algebraic point p of X, we denote by Gal(p)v its v-adic Galois orbit, that

is, the orbit of p in Xan
v under the action of the absolute Galois group of K. We set

µp,v =
1

#Gal(p)v

∑

q∈Gal(p)v

δq (1.2)

for the uniform probability measure on Gal(p)v. We also denote by c1(D, ‖ · ‖v)∧n

the v-adic Monge-Ampère measure of D, see for instance [BPS14, §1.4]. It is a
measure on Xan

v of total mass degD(X).
The following statement is representative of several equidistribution theorems

for Galois orbits of small points in the literature. In this form, it is due to Yuan
[Yua08, Theorem 3.1] for number fields and to Gubler [Gub08, Theorem 1.1] for
function fields, see also [Fab09] for this latter case.

Theorem 1 (Equidistribution for quasi-canonical metrics). Let X be a projective
variety over K of dimension n, and D a quasi-canonical semipositive metrized di-
visor on X with D ample. Let (pl)l∈I be a generic D-small net of algebraic points
of X. Then, for every v ∈ MK, the net of probability measures (µpl,v)l∈I converges

to 1
degD(X) c1(D, ‖ · ‖v)∧n, the normalized v-adic Monge-Ampère measure of D.

A common feature of this result and its variants and generalizations, is the as-
sumption that the lower bound (1.1) is an equality or, in other words, that the
metrized divisor D is quasi-canonical. This severely restricts their range of ap-
plication. Nonetheless, these results do apply to the important case of metrics
arising from algebraic dynamical systems and, moreover, they have a very strong
thesis: not only the Galois orbits of points of small height do converge, but the
limit measure is given by the normalized v-adic Monge-Ampère measure.

The motivation of this paper is to start the study of what happens when we
remove the hypothesis that D is quasi-canonical. Some of our typical questions
are: is there always an equidistribution phenomenon for Galois orbits of D-small
points? If not, can we give conditions on D, beyond being quasi-canonical, under
which such a phenomenon occurs? When equidistribution occurs, can we describe
the limit measure?

We address these questions and some of its continuations in the toric setting.
As mentioned previously, our approach is based on the techniques developed in the
series of papers [BPS14, BMPS16, BPS15]. We briefly recall the setting of these
papers.
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Let X be a proper toric variety over K of dimension n, given by a complete
fan Σ on a vector space NR ≃ Rn, and a nef and big toric divisor D on X, given
by a concave support function ΨD : NR → R. This toric divisor also defines an
n-dimensional polytope ∆D in the dual space MR := N∨

R .

Let D = (D, (‖ · ‖v)v∈MK
) be a semipositive toric metrized divisor on X with

underlying divisor D. To it we associate an adelic family of concave functions
ψD,v : NR → R, v ∈ MK, called the metric functions of D. They satisfy that

|ψD,v − ΨD| is bounded on NR for all v, and that ψD,v = ΨD for all v except for

a finite number. We also associate to D an adelic family of continuous concave
functions on the polytope ϑD,v : ∆D → R, v ∈ MK, called the local roof functions

of D. They verify that ϑD,v is the zero function for all v except for a finite number.
The global roof function is a concave function ϑD : ∆D → R defined as the weighted
sum of the local roof functions.

Let T ≃ Gn
m,K be the torus of X, which can be identified with X0, the principal

open subset of X. There is a valuation map valv : T
an
v → NR, defined, in any given

splitting of T, by

valv(x1, . . . , xn) = (− log |x1|v, . . . ,− log |xn|v), (1.3)

see also [BPS14, Formula (4.1.2)]. There is a canonical toric section s of O(D) with
div(s) = D. The metric function ψD,v is characterized by the property

ψD,v(valv(p)) = log ‖s(p)‖v
for p ∈ Xan

0 , while the local roof function ϑD,v is defined as the Legendre-Fenchel
dual of ψD,v. We use the extension of these constructions to the case of R-divisors,

see §2 and [BMPS16, §4] for precisions.
The metric functions and the roof functions convey a lot of information about

the pair (X,D). For instance, the essential minimum of X with respect to D can
be computed as the maximum of the global roof function [BPS15, Theorem A]:

µ
ess
D

(X) = max
x∈∆D

ϑD(x). (1.4)

In the toric setting, the condition that the metrized divisorD is quasi-canonical is
very restrictive, since it is equivalent to the condition that its global roof function
is constant (Proposition 5.3). Thus, the only toric metrics to which Theorem 1
applies are those whose global roof function is constant.

To identify the toric metrics having good equidistribution properties, we in-
troduce the notion of monocritical toric metrized divisor. To define this con-
cept, first consider the map from X0(K) to the space of measures on the adelic
space

⊕
v∈MK

NR given by

p 7−→ νp = ((valv)∗µp,v)v∈MK

,

where (valv)∗µp,v denotes the direct image under the v-adic valuation map in (1.3)
of the uniform probability measure on Gal(p)v in (1.2). For a certain metric
space HK of measures defined on

⊕
v∈MK

NR we show that there is a (Lipschitz)
continuous function ηD : HK → R extending the height function hD in the sense

that for every p in X0(K) we have hD(p) = ηD(νp), see §4 for precisions. We show
that this function always attains its minimum value and we give a characteriza-
tion of the set of measures at which this function is minimized (Lemma 4.8 and
Corollary 4.10). The semipositive toric metrized divisor D is monocritical if the
function ηD attains its minimum at a unique measure (Definition 4.14, see also

Proposition 4.16 for equivalent formulations). For such a toric metrized divisor D,
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the uniquely minimizing measure is supported on a single point

u = (uv)v∈MK
∈

⊕

v∈MK

NR

that satisfies
∑

v nvuv = 0, where nv denotes the weight associated to a place

v ∈ MK as in §2. This point u is called the critical point of D (Corollary 4.10).
The condition for D of being monocritical can be characterized in terms of its

global roof function: given a point xmax ∈ ∆D maximizing ϑD, the sup-differential

∂ϑD(xmax) is a convex subset of NR containing the point 0. Then D is monocritical
if and only if 0 is a vertex of this convex subset and, when this is the case, the critical
point of D can be computed from the sup-differential of the local roof functions
at xmax (Proposition 4.16).

For each v ∈ MK, we denote by Sv the compact subtorus of Tan
v . To a mono-

critical toric metrized divisor D with critical point u ∈ ⊕
v∈MK

NR, we associate

a probability measure λSv,uv on Xan
v (Definition 5.1). When v is Archimedean,

it is the uniform measure on a translate of Sv ≃ (S1)n whereas, when v is non-
Archimedean, it is the Dirac measure at a translate of the Gauss point of Tan

v .
The following is the main result of this paper (Theorem 5.2).

Theorem 1.1 (Equidistribution for general toric metrics). Let X be a proper toric
variety over K and D a semipositive toric metrized divisor on X with D big. Then D
is monocritical if and only if for every place v ∈ MK and every generic D-small net
(pl)l∈I of algebraic points of X0, the net of probability measures (µpl,v)l∈I on Xan

v

converges.
When this is the case, the limit measure agrees with λSv,uv

, where uv ∈ NR is

the v-adic component of the critical point of D.

Quasi-canonical toric metrized divisors are monocritical, and Theorem 1.1 re-
duces to Theorem 1 in this case. However, quasi-canonical metrized divisors are
rare even among monocritical metrized divisors, so Theorem 1.1 produces a wealth
of new examples of metrized divisors satisfying the equidistribution property that
were not covered by the previous results. A concrete class of such metrized divi-
sors are those defined over a number field K with positive smooth metrics at the
Archimedean places and canonical metrics at the non-Archimedean ones (Theo-
rem 6.4). Here we state a simplified version for the case when K = Q.

Corollary 1.2. Let X be a proper toric variety over Q and D a semipositive toric
metrized R-divisor with D big. We assume that the v-adic metric of D is, when
v is the Archimedean place, smooth and positive and, when v is non-Archimedean,
equal to the v-adic canonical metric of D. Then D is monocritical, and for every
generic D-small sequence (pl)l≥1 of algebraic points of X0 and every place v ∈ MQ,
the sequence (µpl,v)l≥1 on Xan

v converges to the probability measure λSv,0.

This corollary covers many typical examples of metrics on toric varieties such as
weighted projective spaces and toric bundles, see §6.2. For instance, let X = P1

Q

and let D be the divisor of the point at infinity equipped with the Fubini-Study
metric at the Archimedean place and the canonical metric at the non-Archimedean
places. Its essential minimum is

µ
ess
D

(X) =
log(2)

2
,

and for every generic sequence of algebraic points of P1
Q with height converging to

this quantity, its ∞-adic Galois orbits converge to the Haar probability measure
on S1, the unit circle of the Riemann sphere (Example 6.5). This is an example
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where equidistribution does occur, but the limit measure is not given by the v-adic
Monge-Ampère measure as in Theorem 1.

In the other extreme, classical examples of translates of subtori with the canon-
ical metric can behave badly with respect to equidistribution. For instance, let X
be the line of P2

Q of equation 2z1 − z2 = 0 and D the metrized divisor on X given

by the restriction of the canonical metrized divisor at infinity of P2
Q. As explained

in Example 6.1, Theorem 1.1 implies that D does not satisfy the equidistribution
property in the sense of Definition 2.9.

The key new ingredient in the proof of Theorem 1.1 is the study of the modulus
distribution of the v-adic Galois orbits of D-small nets of algebraic points.

For an algebraic point p ∈ X0(K) = T(K), the direct image measure

νp,v := (valv)∗µp,v

is a probability measure on NR that gives the modulus distribution of its v-adic
Galois orbit.

To each semipositive toric metrized divisor D with D big, we associate an adelic
family of nonempty subsets of NR

(Bv, Fv)v∈MK
, (1.5)

with Bv ⊂ Fv (Notation 4.2). We endow the space of probability measures on NR

with the weak-∗ topology with respect to the space of bounded continuous functions
on NR. For a probability measure ν on NR, we denote by supp(ν) ⊂ NR its support
and, if ν has finite first moment, we denote by E[ν] its expected value.

The next result characterizes the limit behavior of the modulus distribution for
D-small nets (Theorem 4.3 and Corollary 4.12).

Theorem 1.3. Let X be a proper toric variety over K, D a semipositive toric
metrized divisor on X with D big, and v ∈ MK. For every D-small net (pl)l∈I of
algebraic points in X0, the net of probability measures (νpl,v)l∈I has at least one
cluster point. Every such cluster point is a measure νv with finite first moment that
satisfies

supp(νv) ⊂ Fv and E[νv] ∈ Bv. (1.6)

Conversely, for every probability measure νv on NR that has finite first moment and
satisfies (1.6), there is a D-small net (pl)l∈I of algebraic points of X0 such that νv
is the limit of the net (νpl,v)l∈I .

In the situation of Theorem 1.3, when Fv consist of only one point uv, the
net (νpl,v)l∈I , representing the modulus distribution of the Galois orbits of the net

of small points (pl)l∈I , converges to the measure δuv
. In this case, we say that D

satisfies the modulus concentration property at the place v.
One of the main ingredients in the proof of the toric equidistribution Theorem 1.1

is the characterization of monocritical metrized divisors as those for which, for every
place v, the set Fv is reduced to a single point (Proposition 4.16). Equivalently,
a metrized divisor is monocritical if and only if it satisfies modulus concentration
at every place. This fact allows us to attach, to each monocritical divisor D, a
new metric on D that is quasi-canonical and such that the D-small points are also
small with respect to this new metric. In this way, we obtain Theorem 1.1 as a
consequence of Theorem 1.3 and Theorem 1.

In the proofs of Theorem 1.3 and Proposition 4.16, a central role is played by
a family of auxiliary concave functions (Φv)v∈MK

defined on the space of measures
on NR with finite first moment. For each place v, the function Φv is nonpositive
and it is defined in terms of the metric at the place v, and in terms of a certain
average of the metrics at all the other places. The crucial fact is that the func-
tion ηD extending hD vanishes at an adelic measure (νv)v∈MK

if and only if, for each
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place v, the function Φv vanishes at νv. In this way we reduce the equidistribution
problem to independent maximization problems at each place (Proposition 3.9 and
Theorem 4.3). The maximization problem at a given place is solved in §3. To do
this, we use that for each place v the function Φv is upper-semicontinuous with
respect to the weak-∗ topology defined above.

In the absence of modulus concentration, there is a wealth of limit measures of
v-adic Galois orbits of D-small nets of algebraic points. For instance, consider the
projective line over a number field K and any adelic set E = (Ev)v∈MK

of global
capacity 1, whose associated equilibrium measures are compatible with the collec-
tion of sets in (1.5) (see Theorem 7.2 for the precise condition). Using Rumely’s
Fekete-Szegő theorem [Rum02], we show that, for all v, the equilibrium measure
of Ev can be realized as the limit measure of a sequence of v-adic Galois orbits of
D-small points (Theorem 7.2).

As we already mentioned, the original motivation in [SUZ97] to search for equidis-
tribution results of Galois orbits of small points was to prove the Bogomolov conjec-
ture. The Bogomolov conjecture for toric varieties can be stated as follows: let X
be a toric variety over K and D

can
an ample toric divisor on X equipped with the

canonical metric. Let V ⊂ X0,K be a closed subvariety that is not a translate of
a subtorus by a torsion point. Then there exists ε > 0 such that the subset of
algebraic points of V of canonical height bounded above by ε, is not dense in V .
Equivalently, if V ⊂ X0,K is a closed subvariety with µ

ess
D

can(V ) = 0, then V is a
translate of a subtorus by a torsion point. This statement is the toric counterpart
of the Bogomolov conjecture for Abelian varieties proved by Ullmo and Zhang.

This conjecture was proved by Zhang [Zha95] for number fields, and later Bilu
gave a different proof using his own equidistribution theorem [Bil97]. Here we ex-
tend Bilu’s equidistribution theorem (Theorem 5.7) and use it to prove the following
generalization of the Bogomolov conjecture for toric varieties (Theorem 5.12).

Theorem 1.4. Let X be a proper toric variety over a number field K and D a
monocritical toric metrized divisor on X with critical point u = (uv)v∈MK

. Let V
be a closed subvariety of X0,K with

µ
ess
D

(V ) = µ
ess
D

(X).

Then V is a translate of a subtorus. Furthermore, if uv ∈ valv(T(K)) ⊗ Q for
all v, then V is the translate of a subtorus by an algebraic point p of X0 with
hD(p) = µ

ess
D

(X).

A closed subvariety of X0,K with

µ
ess
D

(V ) = µ
ess
D

(X)

is called a D-special subvariety. We say that a given toric metrized divisor D satis-
fies the Bogomolov property if every D-special subvariety is a translate of a subtorus
(Definition 5.11). This is not to be confused with the property (B) introduced by
Bombieri and Zannier, and studied by Amoroso, David and other authors. This
property is intimately related with the equidistribution property. Indeed, we give an
example of a metrized divisor D on P2

Q such that the line of equation z0+z1+z2 = 0

is D-special (Example 6.6). This line is certainly not a translate of a subtorus, and
so D does not satisfy the Bogomolov property. This metrized divisor is a variant
of the one in Example 6.1, and does not verify modulus concentration nor equidis-
tribution for any place of Q.

These results arise several interesting questions. For instance: is it possible that
a given semipositive toric metrized divisor D satisfies the equidistribution property
at one place and not at another? We study this for the projective line showing
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that, under a natural rationality hypothesis, the equidistribution property holds
at a given place if and only if it holds at every place (Proposition 7.5). However,
this conclusion is not true without this rationality hypothesis (Remark 7.7) and
we have neither settled this question for the projective line in full generality, nor
treated toric varieties of higher dimension.

It would also be interesting to see if the converse of Theorem 1.4 holds: Let X be
a proper toric variety with dimX ≥ 2. Given a semipositive toric metrized divisorD
on X, with D big satisfying the Bogomolov property, is D necessarily monocritical?
In Proposition 6.7 we show that this is true in a very particular case. Extending
this to the general case would reinforce the link between the equidistribution and
the Bogomolov properties.

The results of this paper also inspire questions for general varieties and metrized
divisors. For instance, from Corollary 1.2, it is plausible to conjecture that a toric
divisor equipped with a positive smooth, but not necessarily toric, Archimedean
metric and canonical non-Archimedean metrics, does satisfy the equidistribution
property. A puzzling question is that of computing the essential minimum, with
a formula generalizing (1.4) to the general, non-toric, case. Even more challeng-
ing seems the problem of generalizing the crucial notion of monocritical metrized
divisor.

Several of the results presented in this introduction hold in greater generality
and their thesis are stronger. We refer to the body of the paper for these versions.
The structure of the paper is as follows. In §2 we give the preliminaries on Galois
orbits and height of points. In §3 we introduce the upper semi-continuous concave
functional Φv and study its properties. In §4 we study the modulus distribution of
v-adic Galois orbits of D-small nets of points in toric varieties. In §5 we prove the
toric equidistribution theorem 1.1 and its variants, together with the Bogomolov
property for monocritical toric metrized divisors. In §6 we give examples illustrating
a number of phenomena, including a non-monocritical toric metrized divisor not
verifying the Bogomolov property. Finally, in §7 we use potential theory to study
the limit measures that appear in the absence of modulus concentration.
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Cerdá and Tom Tucker for useful discussions and pointers to the literature. We
also thank the referee for her/his detailed remarks that helped to improve the
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2. Galois orbits, height of points and essential minimum

By a global field K we mean a finite extension of either Q or the function field
of a regular projective curve over an arbitrary field, equipped with a certain set
of places, denoted by MK. Each place v ∈ MK is a pair consisting of an absolute
value | · |v on K and a positive weight nv ∈ Q>0, defined as follows.

The places of the field of rational numbers Q consist of the Archimedean and the
p-adic absolutes values, normalized in the standard way, and with all weights equal
to 1. For the function field K(C) of a regular projective curve C over a field k, the
set of places is indexed by the closed points of C. For each closed point v0 ∈ C, we
consider the absolute value and weight given, for α ∈ K(C)×, by

|α|v0 = c
−ordv0

(α)

k and nv0 = [k(v0) : k],
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with ck = #k if the base field k is finite and ck = e otherwise, and where ordv0(α)
denotes the order of α in the discrete valuation ring OC,v0

.
Let K0 denote either Q or K(C). In the general case when K is a finite extension

of K0, the set of places of K is formed by the pairs v = (| · |v, nv) where | · |v is an
absolute value on K extending an absolute value | · |v0

with v0 ∈ MK0
and

nv =
[Kv : K0,v0 ]

[K : K0]
nv0

, (2.1)

where Kv denotes the completion of K with respect to | · |v, and similarly for K0,v0 .
This set of places satisfies the following basic properties.

Proposition 2.1. Let K0 denote either Q or K(C), the function field of a regular
projective curve C over a field k. Let K be a finite extension of K0 and MK the
associated set of places as above. Then

(1) for every v0 ∈ MK0
, we have

∑
v|v0

nv = nv0
;

(2) for every α ∈ K×, we have
∑

v∈MK
nv log |α|v = 0 (product formula).

Proof. These properties are classical, see for instance [AW45, Theorems 2 and 3].
In the function field case there is a subtlety, due to the fact that a given field

may have different structures of global field depending on the choice of base curve.
Let C be a regular projective curve over k and K(C) →֒ K a finite extension

of fields. Then there is a regular projective curve B over k and a finite morphism
π : B → C such that K ≃ K(B) and the previous extension can be identified with
π∗ : K(C) →֒ K(B), see for instance [Liu02, Proposition 7.3.13 and Lemma 7.3.10].

We could give to K the structure of global field defined directly by the curve B,
but the obtained absolute values of K would not be extensions of those of K0. To
remedy this, we renormalize these absolute values of K and, to preserve the product
formula, we also change the weights.

From the valuative criterion of properness, for each closed point v0 ∈ C, the
absolute values of K extending | · |v0

are in bijection with the closed points of the
fiber above v0. Moreover, since the map π is finite, for each closed point v ∈ π−1(v0),
the ring OB,v is a finite module over OC,v0 . It follows from [Bou85, Chapitre 6,
Proposition 2 in §8.2 and Théorème 2 in §8.5] that the absolute value and weight
corresponding to v are given, for α ∈ K(B)×, by

|α|v = c
− ordv(α)

ev/v0

k , nv =
ev/v0

[k(v) : k]

[K(B) : K(C)]
, (2.2)

with ev/v0 the ramification index of v over v0. The same results in loc. cit. give
the formula in (1).

For the product formula in (2), we obtain from (2.2) that

∑

v

nv log |α|v = − log(ck)
∑

v

[k(v) : k]ordv(α)

[K(B) : K(C)]
=

− log(ck)

[K(B) : K(C)]
deg(div(α)) = 0,

because the degree of a principal divisor on B is zero, which concludes the proof. �

For v ∈ MK, we choose an algebraic closure Kv ⊂ Kv of Kv. The absolute
value | · |v on Kv has a unique extension to Kv. We denote by Cv the completion
of Kv with respect to this extended absolute value. We also choose an algebraic
closure K of K and an embedding v : K → Cv.

Let X be a variety over K, that is, a reduced and irreducible separated scheme
of finite type over K. The elements of X(K) are called the algebraic points of X.
For p ∈ X(K), its Galois orbit is Gal(p) := Gal(K/K) · p ⊂ X(K), that is, the orbit
of p under the action of the absolute Galois group of K.
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For v ∈ MK, we denote by Xan
Kv

the v-adic analytifications of X over Kv and
by Xan

v the v-adic analytifications of X over Cv. If v is Archimedean, they both
coincide with a complex space (XKv is equipped with an anti-linear involution
if Kv ≃ R). If v is non-Archimedean, they are Berkovich spaces over Kv and Cv,
respectively. These spaces are related by ([Ber90, Corollary 1.3.6])

Xan
Kv

= Xan
v /Gal(Kv/Kv).

We denote by

πv : X
an
v → Xan

Kv
(2.3)

the projection.
There is a map

X(Cv)−֒→Xan
v .

Using the chosen inclusion v : K →֒ Cv, we obtain a map X(K) →֒ X(Cv) and, by
composition the previous map, an inclusion

ιv : X(K)−֒→Xan
v .

The v-adic Galois orbit of an algebraic point p ∈ X(K), denoted by Gal(p)v,
is defined as the image of Gal(K/K) · p under ιv. It is a finite subset that does
not depend on the choice of the inclusion v. We also denote by µp,v the uniform
discrete probability measure on Xan

v supported on Gal(p)v, that is,

µp,v =
1

#Gal(p)v

∑

q∈Gal(p)v

δq, (2.4)

where δq is the Dirac measure at the point q ∈ Xan
v . Hence, for a continuous

function f : Xan
v → R,

∫
f dµp,v =

1

#Gal(p)v

∑

q∈Gal(p)v

f(q).

An R-divisor on X is a linear combination of Cartier divisors on X with real
coefficients. A metrized R-divisor D on X is an R-divisor D on X equipped with a
quasi-algebraic family of v-adic metrics (‖ · ‖v)v∈MK

, see [BMPS16, §3] for details.
In loc. cit., for each v ∈ MK the metric ‖·‖v is defined over the analytic space Xan

Kv
.

Note that this space was denoted “Xan
v ” in loc. cit. but since we will study

equidistribution problems of Galois orbits of points that are defined over varying
extensions of K of arbitrary large degree it is more convenient to work on the
space Xan

v instead that in the space Xan
Kv

. Hence we have changed the notation
accordingly. With this point of view, every object on Xan

Kv
will be seen as an

object on Xan
v by taking its inverse image under the projection πv. For instance

let D be a metrized R-divisor on X and s a rational R-section of D [BMPS16,
§3]. In loc. cit., the v-adic metric ‖ · ‖v is described by a continuous function
‖s‖v : Xan

Kv
\ | div(s)| → R>0. In the current paper we denote by ‖s‖v the function

on Xan
v \ | div(s)| given by the composition

‖s(p)‖v = ‖s(πv(p))‖v.
Clearly this function is invariant under the action of Gal(Kv/Kv).

To a metrized R-divisor D on X we can associate a height function

hD : X(K) −→ R

as follows.
Given p ∈ X(K), choose a rational R-section s of D such that p 6∈ | div(s)|.

Choose a finite extension F of K such that p ∈ X(F). For each w ∈ MF over a place
v ∈ MK, we can choose an embedding σw : F →֒ Cv such that the restriction of the
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absolute value | · |v of Cv agrees with | · |w. We denote also by σw the induced map
X(F) → Xan

v .

Definition 2.2. Let X be a variety over K, D a metrized R-divisor on X, and
p ∈ X(K). With the above notation, the height of p with respect to D is defined as

hD(p) = −
∑

w∈MF

nw log ‖s ◦ σw(p)‖v.

The height is independent of the choice of the rational R-section s, the exten-
sion F and the embeddings σw.

Instead of choosing a finite extension where the point p is defined, it is possible
to express the height of an algebraic point in terms of its Galois orbit.

Proposition 2.3. With the previous hypothesis and notation, the height of p with
respect to D is given by

hD(p) = −
∑

v∈MK

nv

#Gal(p)v

∑

q∈Gal(p)v

log ‖s(q)‖v.

Proof. Choose a finite normal extension F ⊂ K of K such that p ∈ X(F). For each
v ∈ MK we denote MF,v the set of places of F above v.

Write G = Gal(F,K) and let FG be the fixed field. Then F/FG is a Galois
extension with Galois group G and FG/K is purely inseparable. Hence, for v ∈ MK,

[Fw : Kv]

[F : K]
=

[Fw : (FG)v]

[F : FG]
=

1

#MF,v
.

Then, from the definition of the height of p in Definition 2.2 and Proposi-
tion 2.1(1), it follows that

hD(p) = −
∑

v∈MK

nv

∑

w|v

[Fw : Kv]

[F : K]
log ‖s ◦ σw(p)‖v

= −
∑

v∈MK

nv
#MF,v

∑

w|v
log ‖s ◦ σw(p)‖v. (2.5)

The group G acts on MF,v and, since p is defined over F, also on Gal(p)v. Both
actions are transitive. Therefore, choosing w0 ∈ MF,v,

1

#MF,v

∑

w|v
log ‖s ◦ σw(p)‖v =

1

#G

∑

g∈G

log ‖s ◦ σw0(g(p))‖v

=
1

#Gal(p)v

∑

q∈Gal(p)v

log ‖s(q)‖v.

The statement follows from this together with (2.5). �

The essential minimum of X with respect to D is defined as

µ
ess
D

(X) = sup
Y(X

Y closed

inf
p∈(X\Y )(K)

hD(p). (2.6)

Roughly speaking, the essential minimum is the generic infimum of the height
function.

Definition 2.4. Let X be a variety over K and D a metrized R-divisor on X. A
net (pl)l∈I of algebraic points of X is D-small if

lim
l
hD(pl) = µ

ess
D

(X).

The net (pl)l∈I is generic if, for every closed subset Y ( X, there is l0 ∈ I such
that pl 6∈ Y (K) for l ≥ l0.
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Proposition 2.5. Given a variety X over K and D a metrized R-divisor on X,
there exists a generic D-small net of algebraic points of X. Moreover, every generic
net (pl)l≥1 of algebraic points of X satisfies

lim inf
l

hD(pl) ≥ µ
ess
D

(X).

Proof. The second statement is clear from the definition of the essential minimum.
For the first statement, let I be the set of closed subvarieties of X of pure

codimension 1, ordered by inclusion. This is a directed set. For each Y ∈ I, denote
by c(Y ) its number of irreducible components and choose a point pY ∈ (X \ Y )(K)
with

hD(pY ) ≤ µ
ess
D

(X) +
1

c(Y )
.

Clearly, the net (pY )Y ∈I is generic and D-small. �

Remark 2.6. When K is a number field, the collection of subvarieties of X is
countable. This fact implies that a generic D-small net contains generic D-small
sequences (although these sequences need not be subnets). Thus, Proposition 2.5
implies the existence of generic D-small sequences of algebraic points in this case.

Suppose now that the variety X is proper over K and of dimension n. A metrized
R-divisor D on X is semipositive if it can be written as

D =
r∑

i=1

αiDi

with Di a semipositive metrized divisor and αi ∈ R≥0, i = 1, . . . , r. Recall that Di

is semipositive if each of its v-adic metrics is a uniform limit of a sequence of semi-
positive smooth (respectively, algebraic) metrics in the Archimedean (respectively,
non-Archimedean) case.

Given a semipositive metrized R-divisor D, we can extend the notion of height of
points to subvarieties of higher dimension. In particular, the height of X, denoted
by hD(X), is defined. Moreover, for each v ∈ MK we can consider the associated
v-adic Monge-Ampère measure, denoted by c1(D, ‖ · ‖v)∧n. It is a measure on Xan

v

of total mass degD(X), see for instance [BPS14, §1.4] for the case when D is a
divisor. The v-adic Monge-Ampère measure of an R-divisor is defined from that of
divisors by polarization and multilinearity.

A theorem of Zhang shows that, when K is a number field, D is an ample divisor
and D is semipositive, the essential minimum can be bounded below in terms of
the height of X and the degree of D [Zha95, Theorem 5.2]:

µ
ess
D

(X) ≥ hD(X)

(n+ 1) degD(X)
. (2.7)

This inequality can be generalized to global fields and semiample big divisors, see
for instance [Gub08, Proposition 5.10].

In some cases, the inequality (2.7) is an equality. For instance, this happens for
the canonical metric on divisors of toric and Abelian varieties, and for the canonical
metrics coming from dynamical systems. This motivates the following definition.

Definition 2.7. Let X be a proper variety over K of dimension n, and D a semi-
positive metrized R-divisor on X with D big. Then D is quasi-canonical if

µ
ess
D

(X) =
hD(X)

(n+ 1) degD(X)
.

In other words, quasi-canonical metrized R-divisors are those for which Zhang’s
lower bound for the essential minimum is attained.
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As we will see in §5, the condition for a toric metric of being quasi-canonical is
very restrictive. The following observation is a direct consequence of Proposition 2.5
and of the inequality (2.7).

Proposition 2.8. Let X be a proper variety over K of dimension n and D a
semipositive metrized divisor on X with D big and semiample. Then there exists a
generic net (pl)l∈I of algebraic points of X with

lim
l
hD(pl) =

hD(X)

(n+ 1) degD(X)
(2.8)

if and only if D is quasi-canonical.

We discuss now the equidistribution of Galois orbits of points of small height.
LetX be a proper variety over K and v ∈ MK. We endow the space of probability

measures on Xan
v with the weak-∗ topology with respect to the space of continuous

functions on Xan
v . In particular, a net of probability measures (µl)l∈I converges to

a probability measure µ if, for every continuous function f : Xan
v → R,

lim
l

∫
f dµl =

∫
f dµ.

Definition 2.9. Let D be a metrized R-divisor on X. A probability measure µ on
Xan

v is a v-adic limit measure for D if there exists a generic D-small net (pl)l∈I of
algebraic points of X such that the net of probability measures (µpl,v)l∈I converges

to µ. We say thatD satisfies the v-adic equidistribution property if, for every generic
D-small net (pl)l∈I as above, the net of measures (µpl,v)l∈I converges.

Clearly, when the v-adic equidistribution property holds, there exists a unique
limit measure.

Remark 2.10. When K is a number field, the analytic space Xan
v is homeomorphic

to a compact subspace of an Euclidean space [HLP14, Theorem 1.1]. In particular,
Xan

v is a compact Polish space, and so the space of probability measures on it is
metrizable [Vil09, pages 94–95]. In particular, this space of probability measures
has a nested countable basis of neighborhoods at each point. If all the generic D-
small sequences contained in a generic D-small net converge, they must converge to
the same limit. Then, using the above fact, we may strengthen Remark 2.6 showing
that a generic D-small net not converging to a given point contains a generic D-
small sequences not converging to that point. This implies that one can reduce to
sequences, instead of nets, in Definition 2.9 over number fields.

In the literature there are many equidistribution theorems of Galois orbits of
points of small height. All these equidistribution results deal with generic nets (or
sequences when K is a number field) of algebraic points satisfying the equality (2.8).
In view of Proposition 2.8, the existence of such a net implies that the metric is
quasi-canonical. Moreover, the condition (2.8) for this net is equivalent of being
D-small. Thus we can reformulate a general equidistribution result in the following
form.

Theorem 2.11. Let K be a global field and X a projective variety over K of di-
mension n. Let D be a semipositive metrized divisor on X such that D is ample.
If D is quasi-canonical then, for every place v ∈ MK,

(1) D satisfies the v-adic equidistribution property;
(2) the limit measure is the normalized Monge-Ampère measure

1

degD(X)
c1(D, ‖ · ‖v)∧n.
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This result is due to Yuan [Yua08, Theorem 3.1] in the number field case and,
with more general hypotheses, to Gubler [Gub08, Theorem 1.1] in the function field
case.

This equidistribution theorem imposes a very restrictive hypothesis, namely, that
the metrized divisor D is quasi-canonical. But it also has a very strong thesis: not
only the Galois orbits of points of small height converge to a measure, but this
limit measure can be identified with the normalized Monge-Ampère measure of the
metrized divisor.

The main objective of this paper is to start the study of what happens when
the hypothesis of D being quasi-canonical is removed. We will work with toric
varieties and toric metrics because, in this case, the tools developed previously
allow us to work very explicitly. In this setting, we will see that the first statement
in Theorem 2.11 holds in much great generality, but, if the metric is not quasi-
canonical, the limit measure does not need to agree with the normalized Monge-
Ampère measure.

3. Auxiliary results on convex analysis

In this section we gather several definitions and results on convex analysis that
we will use in our study of toric height functions. For a background in convex
analysis, see for instance [BPS14, §2].

Let NR ≃ Rn be a real vector space of dimension n andMR = Hom(NR,R) = N∨
R

its dual. The pairing between x ∈MR and u ∈ NR will be denoted either by 〈x, u〉
or 〈u, x〉.

Following [BPS14, §2], a convex subset C is nonempty. The relative interior
of C, denoted by ri(C), is the interior C relative to the minimal affine subspace
containing it.

Let C ⊂ MR be a convex subset and g : C → R a concave function. The sup-
differential of g at a point x ∈ C is

∂g(x) = {u ∈ NR | 〈u, z − x〉 ≥ g(z)− g(x) for all z ∈ C}.
It is a closed, convex subset of NR, see [BPS14, §2.2]. The stability set of g is the
convex subset of NR defined by

stab(g) = {u ∈ NR | u− g is bounded below}.
The Legendre-Fenchel dual of g is the concave function g∨ : stab(g) → R defined
by

g∨(u) = inf
x∈C

〈u, x〉 − g(x), (3.1)

see ibidem.
Let E ⊂ NR be a convex subset. A nonempty subset F ⊂ E is a face of E

if every closed segment S ⊂ E whose relative interior has nonempty intersection
with F , is contained in F .

Lemma 3.1. Let C ⊂ MR be a compact convex subset and g1, g2 : C → R two
continuous concave functions. Denote by Cmax the convex subset of C of the points
where g1 + g2 attains its maximum value and choose x ∈ Cmax. For i = 1, 2,

consider the concave function φ̂i : NR → R defined by

φ̂i(u) = g∨i (u)− 〈x, u〉+ gi(x). (3.2)

Then

(1) if x′ ∈ ri(Cmax), then ∂gi(x
′) is a face of ∂gi(x), i = 1, 2;

(2) ∂g1(x) ∩ (−∂g2(x)) is nonempty and does not depend on the choice of x ∈
Cmax;
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(3) the minimal face of ∂g1(x) containing ∂g1(x) ∩ (−∂g2(x)) does not depend
on the choice of x ∈ Cmax;

(4) the function φ̂i is nonpositive and vanishes precisely on ∂gi(x).

Proof. The restriction to Cmax of the sum g1+g2 is constant, and so the restrictions
to this set of g1 and g2 are affine and with opposite slopes. In other words, there is
u0 ∈ NR such that, for all x1, x2 ∈ Cmax,

g1(x2)− g1(x1) = 〈u0, x2 − x1〉 and g2(x2)− g2(x1) = −〈u0, x2 − x1〉. (3.3)

For the statement (1), let i ∈ {1, 2}, x′ ∈ ri(Cmax) and u ∈ ∂gi(x
′). By the

definition of the sup-differential, for all z ∈ C,

〈u, z − x′〉 ≥ gi(z)− gi(x
′). (3.4)

Since x′ is in the relative interior of Cmax, there exists ε > 0 such that x′−ε(x−x′) ∈
Cmax. By (3.4) and (3.3),

− ε〈u, x− x′〉 = 〈u, x′ − ε(x− x′)− x′〉
≥ gi(x

′ − ε(x− x′))− gi(x
′)

= (−1)i−1〈u0,−ε(x− x′)〉 = −ε(gi(x)− gi(x
′)).

Hence 〈u, x − x′〉 ≤ gi(x) − gi(x
′). By (3.4) applied to z = x, we have also the

reverse inequality. Thus 〈u, x− x′〉 = gi(x)− gi(x
′), and it follows from (3.4) that,

for all z ∈ C,

〈u, z − x〉 ≥ gi(z)− gi(x).

Hence u ∈ ∂gi(x) and so ∂gi(x
′) ⊂ ∂gi(x). Applying [BPS14, Proposition 2.2.8] to

the closed concave function g∨i and observing that g∨∨
i = gi, we deduce that ∂gi(x

′)
is a face of ∂gi(x).

To prove the statement (2) note that, since g1 + g2 attains its maximum value
at x, by [BPS14, Proposition 2.3.6(2)]

0 ∈ ∂(g1 + g2)(x) = ∂g1(x) + ∂g2(x).

Hence ∂g1(x)∩ (−∂g2(x)) 6= ∅, as stated. Now let u be a point in this intersection.
Then

〈u, z − x〉 ≥ g1(z)− g1(x) and 〈−u, z − x〉 ≥ g2(z)− g2(x). (3.5)

Choose x′′ ∈ Cmax. Subtracting, from the inequalities (3.5) applied to z = x′′, the
identities (3.3) applied to x1 = x and x2 = x′′, we deduce that

〈u− u0, x
′′ − x〉 = 0.

Using this together with (3.4)and (3.5), we obtain

〈u, z − x′′〉 ≥ g1(z)− g1(x
′′) and 〈−u, z − x′′〉 ≥ g2(z)− g2(x

′′).

Hence u ∈ ∂g1(x
′′) ∩ (−∂g2(x′′)), as stated.

For the next statement, consider the convex set B = ∂g1(x) ∩ (−∂g2(x)) that,
thanks to (2), does not depend on the choice of x ∈ Cmax. Denote by Fx the
minimal face of ∂g1(x) containing it. By (1), it is enough to consider the case when
x ∈ ri(Cmax). By the same statement, the set ∂g2(x) does not depend on the choice
of x ∈ ri(Cmax), proving (3).

The statement (4) follows readily from [BPS14, Lemma 2.2.6]. �

Definition 3.2. Let C ⊂ MR be a compact convex subset and g1, g2 : C → R two
continuous concave functions. Choose a point x in C at which g1 + g2 attains its
maximum value. We define the convex subset of NR

B(g1, g2) = ∂g1(x) ∩ (−∂g2(x))



16 BURGOS GIL, PHILIPPON, RIVERA-LETELIER, AND SOMBRA

and the convex subset

F (g1, g2) ⊂ ∂g1(x)

as the minimal face of ∂g1(x) that contains B(g1, g2). By Lemma 3.1(2,3), these
convex subsets do not depend on the choice of x.

Lemma 3.3. Let C ⊂ MR be a compact convex subset with nonempty interior
and g1, g2 : C → R two concave functions. Then B(g1, g2) is bounded and F (g1, g2)
contains no lines.

Proof. The convex set B(g1, g2) is not bounded if and only if it contains a ray, that
is, a subset of the form R≥0u1 + u2 with ui ∈ NR, i = 1, 2, and u1 6= 0. Suppose
that this is the case. This implies that, for x ∈ Cmax and all t ≥ 0,

tu1 + u2 ∈ ∂g1(x) and − tu1 − u2 ∈ ∂g2(x).

Hence, for all z ∈ C and t ≥ 0,

−〈u2, z − x〉+ g1(z)− g1(x) ≤ t〈u1, z − x〉 ≤ −〈u2, z − x〉 − g2(z) + g2(x).

Letting t→ ∞, this implies C ⊂ {z | 〈u1, z− x〉 = 0}, contradicting the hypothesis
that C has nonempty interior. Hence B(g1, g2) is bounded.

Similarly, if F (g1, g2) contains a line Ru1 + u2, then, for x ∈ Cmax and t ∈ R,

tu1 + u2 ∈ ∂g1(x).

This also implies that C is contained in the affine hyperplane {z | 〈u1, z − x〉 = 0}
and contradicts the hypothesis that C has nonempty interior. Hence F (g1, g2)
contains no lines. �

Let Cb(NR) be the space of bounded continuous functions on NR, let ‖ · ‖ be an
auxiliary norm on NR that we fix, and for x in NR and r > 0 denote by B(x, r) the
open ball in NR centered at x and of radius r.

Definition 3.4. We denote by P the space of Borel probability measures on NR

endowed with the weak-∗ topology with respect to Cb(NR). This is the coarsest
topology on P such that, for all ϕ ∈ Cb(NR), the function µ 7→

∫
ϕ dµ is continuous.

We denote by E ⊂ P the topological subspace of probability measures with finite
first moment, that is, the probability measures on NR satisfying

∫
‖u‖ dµ(u) <∞.

For µ ∈ E , the expected value is

E[µ] =

∫
u dµ(u) ∈ NR.

The weak-∗ topology of P with respect to Cb(NR) is called the “topologie étroite”
in [Bou69, §5]. By Proposition 5.4.10 in loc. cit., the topological space P is com-
plete, metrizable and separable. Later we will consider other topologies on the
underlying spaces of P and E . When this is the case, we will state explicitly the
used topology.

For µ ∈ P, its support, denoted by supp(µ), is the set of all points in NR such
that all its neighborhoods have positive measure. Clearly, every measure in P with
bounded support lies in E .
Proposition 3.5. The space E verifies the following properties.

(1) For every µ in E we have E[µ] ∈ conv(supp(µ)).
(2) The set of probability measures on NR with finite support is dense in E.
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Proof. To prove the first statement, let µ ∈ E and suppose that E[µ] does not lie
in conv(supp(µ)). Restricting to an affine subspace if necessary, we can assume
that conv(supp(µ)) ∪ {E[µ]} is not contained in a hyperplane. The hyperplane
separation theorem applied to the convex sets {E[µ]} and conv(supp(µ)), implies
that there is a nonconstant affine function f such that f(E[µ]) ≤ 0 and f |supp(µ)≥ 0,
see for example [Roc70, Theorem 11.3]. So

0 ≥ f(E[µ]) =

∫
f(u) dµ ≥ 0,

and therefore E[µ] and supp(µ) are both contained in the hyperplane {u ∈ NR |
f(u) = 0}. This contradiction completes the proof of the first statement.

To prove the second statement, we show that every measure in E is the limit of
measures with bounded support. For r > 0 put B(0, r) = {x ∈ NR | ‖x‖ ≤ r}.
Given a measure µ ∈ E , the sequence of probability measures with compact support
defined for l ≥ 1 by

µ|B(0,l) + µ(NR \ B(0, l)) δ0,
converges to µ as l → ∞.

Using a straightforward discretization argument, one can show that every mea-
sure in E with bounded support is the limit of probability measures with finite
support. Combined with the previous observation, this completes the proof of the
second statement. �

For the rest of this section, we fix a compact convex subset C ⊂ MR with
nonempty interior and two continuous concave functions g1, g2 : C → R. Since C
is compact, the stability set of gi is NR. Thus the Legendre-Fenchel dual g∨i is a
concave function on NR with stability set C.

We introduce the function Φ: E → R given, for µ ∈ E , by

Φ(µ) =

∫
g∨1 dµ+ g∨2 (−E[µ]) + max

x∈C
(g1(x) + g2(x)). (3.6)

This function will play a central role in the proof of the main results in the next
section.

It follows easily from its definition that Φ is concave. In general, this function is
not continuous, as the following example shows.

Example 3.6. Let NR = R, so that MR = R. Set C = [0, 1] and gi = 0, i = 1, 2.
Then g∨i (u) = min(0, u) for u ∈ R. Consider the sequence of measures

µl =
l − 1

l
δ0 +

1

l
δ−l, l ≥ 1,

where δ0 and δ−l are the Dirac measures at the points 0 and −l, respectively. This
sequence converges to δ0. However, Φ(µl) = −1 for all l and Φ(δ0) = 0.

Nevertheless, we have the following result.

Proposition 3.7. The function Φ is upper semicontinuous.

To prove this proposition, we need the following lemma.

Lemma 3.8. Let φ : NR → R be a continuous function. If φ is bounded above
(respectively below), then the map P → R ∪ {−∞} (respectively P → R ∪ {∞})
given by

µ 7−→
∫
φ dµ

is upper semicontinuous (respectively lower semicontinuous).
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Proof. We prove the case of a function bounded above, the other case being anal-
ogous. Let µ ∈ P and ε > 0 be given and, for l ≥ 1, put

φl(u) = max(φ(u),−l).
The sequence of functions (φl)l≥1 is monotone and converges pointwise to φ. So
Lebesgue’s monotone convergence theorem implies that there is l0 ≥ 1 such that∫

φl0 dµ ≤
∫
φ dµ+ ε.

Let (µl)l≥1 be a sequence in P converging to µ. Since φl0 ∈ Cb(NR), there exists
l1 ≥ 1 such that, for l ≥ l1,∫

φ dµl ≤
∫
φl0 dµl ≤

∫
φl0 dµ+ ε ≤

∫
φ dµ+ 2ε.

Since ε is arbitrary, lim supl→∞
∫
φ dµl ≤

∫
φ dµ, proving the lemma. �

Proof of Proposition 3.7. Set φi = g∨i , i = 1, 2 for short. Fix µ0 ∈ E and set
u0 = −E[µ0] ∈ NR. Take x ∈ ∂φ2(u0) ⊂MR. Then, for all u ∈ NR,

〈x, u− u0〉 ≥ φ2(u)− φ2(u0).

Let µ ∈ E . It follows from this inequality that

Φ(µ)− Φ(µ0) =

∫
φ1 dµ+ φ2(−E[µ])−

∫
φ1 dµ0 − φ2(−E[µ0])

≤
∫
φ1 d(µ− µ0)− 〈E[µ]− E[µ0], x〉

≤
∫
φ1 d(µ− µ0)−

∫
〈u, x〉 d(µ− µ0)

≤
∫
φ d(µ− µ0)

with φ = φ1 − x. Hence

Φ(µ) ≤ Φ(µ0)−
∫
φ dµ0 +

∫
φ dµ. (3.7)

Since x belongs to ∂φ2(u0) and ∂φ2(u0) ⊂ stab(φ2) = stab(φ1) = C, the func-
tion φ is bounded above. By Lemma 3.8, the right-hand side of (3.7) is upper
semicontinuous. The inequality (3.7) is an equality for µ = µ0. Hence Φ is upper
semicontinuous at µ0, as stated. �

Proposition 3.9. The function Φ is nonpositive, and vanishes for µ ∈ E if and
only if

supp(µ) ⊂ F (g1, g2) and E[µ] ∈ B(g1, g2), (3.8)

with B(g1, g2) and F (g1, g2) as in Definition 3.2.

Proof. Let notation be as in Lemma 3.1 and fix a point x ∈ ri(Cmax). For short
put

Ai = ∂gi(x), i = 1, 2, B = B(g1, g2), F = F (g1, g2).

By Lemma 3.1 (1), the sets A1 and A2 do not depend on the choice of the point

x ∈ ri(Cmax). Let φ̂i be as in (3.2). For every µ ∈ E we can write Φ(µ) in terms of

the functions φ̂i as

Φ(µ) =

∫
φ̂1 dµ+ φ̂2(−E[µ]). (3.9)

By Lemma 3.1(4), the functions φ̂i are nonpositive and vanish precisely on the
sets Ai. It follows from (3.9) that Φ is nonpositive and vanishes for every µ ∈ E
satisfying (3.8).
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Conversely, let µ ∈ E such that Φ(µ) = 0. Since both φ̂1 and φ̂2 are nonpositive,
the equality (3.9) also implies that

∫
φ̂1 dµ = 0 and φ̂2(−E[µ]) = 0.

Therefore supp(µ) ⊂ A1 and −E[µ] ∈ A2. By Proposition 3.5(1), E[µ] belongs to
conv(supp(µ)). Since A1 is a convex set that contains supp(µ), we deduce E[µ] ∈ A1

and so

E[µ] ∈ A1 ∩ (−A2) = B,

which gives the second condition in (3.8).
We next prove that the first condition in (3.8) is satisfied. Write θ = µ(F ), so

that 0 ≤ θ ≤ 1 and µ(A1 \F ) = 1− θ. We want to show θ = 1, thus we assume the
contrary, namely θ < 1. This implies that F is a proper face of A1. We put

u2 =
1

1− θ

∫

A1\F
u dµ ∈ A1 \ F.

If θ = 0, then E[µ] = u2 and so E[µ] ∈ A1 \ F , contradicting the fact that E[µ] ∈
B ⊂ F . Suppose that 0 < θ < 1 and set

u1 =
1

θ

∫

F

u dµ ∈ F.

Therefore

E[µ] = θu1 + (1− θ)u2 ∈ ri(u1u2),

the relative interior of the segment u1u2. Since E[µ] is in B and hence in F , we
have ri(u1u2) ∩ F 6= ∅. Moreover, the whole segment is contained in A1, and F is
a face of A1. We deduce that this segment is contained in F . Therefore u2 ∈ F ,
contradicting the fact that u2 ∈ A1\F . We conclude that θ = 1 and so supp(µ) ⊂ F
since F is closed. This proves the first condition and completes the proof. �

The function Φ satisfies also the following property.

Lemma 3.10. There are constants c1 ≥ 0 and c2 > 0 such that, for all µ ∈ E,

Φ(µ) ≤ c1 − c2

∫
‖u‖ dµ.

Proof. Let Ψ be the support function of C, which is the function on NR given by

Ψ(u) = min
y∈C

〈u, y〉.

Put c1 = 4maxy∈C(|g1(y)|, |g2(y)|). It follows from their definition that the func-
tions φi = g∨i verify, for u ∈ NR,

max (φ1(u), φ2(u)) ≤ Ψ(u) +
c1
4
. (3.10)

Let x be a point in the interior of C. On MR, we consider the norm induced by
the chosen norm ‖ · ‖ in NR. Since x is in the interior of C, we can find a constant
c2 > 0 such that B(x, c2), the closed ball of center x and radius c2, is contained in
C. Then

Ψ(u) ≤ min
y∈B(x,c2)

〈u, y〉 = 〈u, x〉 − c2‖u‖. (3.11)
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Since x ∈ C = stab(Ψ), we have (Ψ− x)(u) ≤ 0. By (3.10) and (3.11),

Φ(µ) =

∫
φ1(u) dµ+ φ2(−E[µ]) + max

y∈C
(g1(y) + g2(y))

≤ c1 +

∫
Ψ(u) dµ+Ψ(−E[µ])

≤ c1 +

∫
(Ψ− x)(u) dµ+ (Ψ− x)(−E[µ])

≤ c1 − c2

∫
‖u‖ dµ,

as stated. �

Proposition 3.11. Let (µl)l∈I be a net of measures in E such that

lim
l
Φ(µl) = 0.

Then (µl)l∈I has at least one cluster point in P, and every such cluster point µ lies
in E and satisfies

supp(µ) ⊂ F (g1, g2) and E[µ] ∈ B(g1, g2).

Proof. Replacing (µl)l∈I by a subnet if necessary, we assume that Φ(µl) ≥ −1 for
all l ∈ I. Let c1, c2 be the constants of Lemma 3.10 and set K = (c1 + 1)/c2 > 0.
This lemma implies that each µl is in the subset of E given by

{
µ ∈ E

∣∣∣
∫

‖u‖ dµ(u) ≤ K
}
.

This subset is compact thanks to Prokhorov’s theorem [Bou69, Théorème 5.5.1],
and it is metrizable because P is. Hence, the net (µl)l∈I has at least one cluster
point, and every such cluster point µ lies in E , proving the first statement.

To prove the last statement, let (µk)k∈I′ be a subnet converging to µ. By Propo-
sition 3.7, the function Φ is upper-semicontinuous and so

Φ(µ) ≥ lim sup
k

Φ(µk) = 0.

Hence Φ(µ) = 0, and the statement follows from Proposition 3.9. �

As we have seen in Example 3.6, the function Φ is not continuous. We now
consider another topology on E with respect to which the function Φ is continuous.

Given µ, µ′ ∈ P, denote by Γ(µ, µ′) the set of probability measures on NR ×NR

with marginals µ and µ′. That is, a probability measure ν on NR ×NR belongs to
Γ(µ, µ′) if and only if

(p1)∗ν = µ, (p2)∗ν = µ′,

where pi is the projection of NR×NR onto its i-th factor, and (pi)∗ the direct image
of measures.

Definition 3.12. The Kantorovich–Rubinstein distance (or Wasserstein distance
of order 1 ) on E is defined, for µ, µ′ ∈ E , by

W (µ, µ′) = inf
ν∈Γ(µ,µ′)

∫
‖u− u′‖ dν(u, u′).

The quantityW (µ, µ′) satisfies the axioms of a distance and is finite when µ, µ′ ∈ E
[Vil09, pages 94–95]. The Kantorovich–Rubinstein topology (or KR-topology for
short) of E is the topology induced by this distance.
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The finiteness of W (µ, µ′) for µ and µ′ in E , can be argued as follows. The
product measure µ× µ′ is in Γ(µ, µ′), and we have

W (µ, µ′) ≤
∫

‖u− u′‖ d(µ× µ′)(u, u′) ≤
∫

‖u‖ dµ(u) +

∫
‖u′‖ dµ′(u′) <∞.

For a Lipschitz continuous function ψ : NR → R, denote by Lip(ψ) its Lipschitz
constant, given by

Lip(ψ) = sup
u 6=u′

|ψ(u)− ψ(u′)|
‖u− u′‖ .

Lipschitz constants and the Kantorovich-Rubinstein distance are related by the
duality formula: for µ, µ′ ∈ E and a Lipschitz continuous function ψ : NR → R, we
have ∣∣∣∣

∫
ψ dµ−

∫
ψ dµ′

∣∣∣∣ ≤ Lip(ψ)W (µ, µ′), (3.12)

see for instance [Vil09, Remark 6.5].

Remark 3.13. By [Vil09, Theorem 6.9], the KR-topology agrees with the weak-∗
topology on E with respect to the space of continuous functions ϕ : NR → R such
that

|ϕ(u)| ≤ c(1 + ‖u‖)
for a c ∈ R and all u ∈ NR. In particular, the KR-topology is stronger than the
topology of E induced by that of P as in Definition 3.4.

Proposition 3.14. The function Φ is continuous with respect to the KR-topology.
In particular, if (µl)l∈I is a net of measures in E that converges to a measure µ ∈ E
with respect to the KR-topology and

supp(µ) ⊂ F (g1, g2) and E[µ] ∈ B(g1, g2),

then liml Φ(µl) = 0.

Proof. Let (µl)l∈I be a net on E that converges to a measure µ ∈ E with respect to
the KR-topology. By Remark 3.13,

lim
l

∫
g∨1 dµl =

∫
g∨1 dµ and lim

l
g∨2 (−E[µl]) = g∨2 (−E[µ]).

Therefore liml Φ(µl) = Φ(µ) and so Φ is continuous, proving the first statement.
The second statement follows from the first one and Proposition 3.9. �

We also need the following easy result. We include it here for the lack of a
suitable reference.

Lemma 3.15. Let Ei ⊂ NR, i = 1, . . . , r, be convex subsets and E = E1+ · · ·+Er

their Minkowski sum. For a point u0 ∈ E, the following conditions are equivalent:

(1) the point u0 is a vertex of E;
(2) the equation u0 =

∑
i zi with zi ∈ Ei has a unique solution and, for i =

1, . . . , r, the point zi in this solution is a vertex of Ei.

Proof. First assume that u0 is a vertex of E. Suppose that the equation u0 =
∑

i zi,
zi ∈ Ei, has two different solutions, namely u0 =

∑
i z

′
i and u0 =

∑
i z

′′
i with

z′i0 6= z′′i0 for some i0 ∈ {1, . . . , r}. Then both points

u1 =
∑

i 6=i0

z′i + z′′i0 and u2 =
∑

i 6=i0

z′′i + z′i0

belong to E, they are different and satisfy u0 = 1
2 (u1 + u2), contradicting the fact

that u0 is a vertex of E. Hence the equation u0 =
∑

i zi has a unique solution with
zi ∈ Ei.
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Now suppose that zi0 is not a vertex of Ei0 for some i0 ∈ {1, . . . , r}. Then we
can write zi0 = 1

2 (z
′
i0
+ z′′i0) with z

′
i0

6= z′′i0 both in Ei0 . Hence the points

u1 =
∑

i 6=i0

zi + z′i0 and u2 =
∑

i 6=i0

zi + z′′i0

are different, belong to E and u0 = 1
2 (u1 + u2), contradicting the assumption that

u0 is a vertex of E. Thus we have proved that (1) implies (2).
Assume now that the statement (2) is true but u0 is not a vertex of E. Then

there are two different points u1, u2 ∈ E with u0 = 1
2 (u1 + u2). Since E is the

Minkowski sum of the sets Ei, we can write

u0 =
∑

i

zi, u1 =
∑

i

z′i and u2 =
∑

i

z′′i .

The equation u0 =
∑

i zi has a unique solution and so zi = 1
2 (z

′
i + z′′i ) for all i.

Since zi is a vertex of Ei, this implies z′i = z′′i . Therefore u1 = u2, contradicting
the assumptions and thus proving that (2) implies (1). �

4. Modulus distribution

In this section, we study the asymptotic modulus distribution of the Galois orbits
of nets of points of small height in toric varieties. Our approach is based on the
techniques developed in the series of papers [BPS14, BMPS16, BPS15]. These
techniques are well-suited for the study of toric metrics and their associated height
functions. In the sequel, we recall the basic constructions and results.

Let K be a global field and T ≃ Gn
m,K a split torus of dimension n over K. Let

N = Hom(Gm,K,T) and M = Hom(T,Gm,K) = N∨

be the lattices of cocharacters and of characters of T, respectively, and write NR =
N ⊗ R and MR =M ⊗ R. We also fix an auxiliary norm ‖ · ‖ on NR.

Let v ∈ MK. We denote by Tan
v the v-adic analytification of T and by Sv its

compact subtorus. In the Archimedean case, Sv is isomorphic to (S1)n whereas, in
the non-Archimedean case, it is a compact analytic group, see [BPS14, § 4.2] for a
description. Moreover, there is a map valv : T

an
v → NR, defined, in a given splitting,

by

valv(x1, . . . , xn) = (− log |x1|v, . . . ,− log |xn|v). (4.1)

This map does not depend on the choice of the splitting, and the compact torus Sv
coincides with its fiber over the point 0 ∈ NR.

Let X be a proper toric variety over K with torus T, described by a complete
fan Σ on NR. To each cone σ ∈ Σ corresponds an affine toric variety Xσ, which
is an open subset of X, and an orbit O(σ) of the action of T on X. The affine
toric variety corresponding to the cone σ = {0} is the principal open subset X0. It
coincides with the orbit O(0) and is canonically isomorphic to the torus T.

An R-divisor D on X is toric if it is invariant under the action of T. Such an
R-divisor defines a virtual support function on Σ, that is, a function

ΨD : NR −→ R

whose restriction to each cone of the fan Σ is linear. We also associate to D the
subset of MR given by

∆D = stab(ΨD) = {x ∈MR | x ≥ ΨD}.
If D is pseudo-effective, then ∆D is a polytope and, otherwise, it is the empty set.
Properties of the R-divisor D can be read off from its associated virtual support
function and polytope. In particular, D is nef if and only if ΨD is concave, and D
is big if and only if ∆D has nonempty interior.
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A quasi-algebraic metrized divisor D = (D, (‖ · ‖v)v∈MK
) on X is toric if and

only if the v-adic metric ‖ · ‖v is invariant with respect to the action of Sv, for
all v. Such a toric metrized R-divisor on X defines a family of continuous functions
ψD,v : NR → R indexed by the places of K. For each v ∈ MK, this function is given,
for p ∈ Tan

v , by
ψD,v(valv(p)) = log ‖sD(p)‖v, (4.2)

where sD is the canonical rational R-section of D as in [BMPS16, §3]. This adelic
family of functions satisfies that |ψD,v −ΨD| is bounded for all v, and that ψD,v =
ΨD for all v except for a finite number. In particular, the stability set of each ψD,v

coincides with ∆D.
For each v ∈ MK, we also consider the v-adic roof function ϑD,v : ∆D → R,

which is given by

ϑD,v(x) = ψ∨
D,v

(x) = inf
u∈NR

(〈u, x〉 − ψD,v(u)).

This is an adelic family of continuous concave functions on ∆D that are zero except
for a finite number of places. The global roof function ϑD : ∆D → R is the weighted
sum

ϑD =
∑

v∈MK

nvϑD,v.

The essential minimum of X with respect to D defined in (2.6) can be computed
as the maximum of its roof function [BPS15, Theorem A], that is

µ
ess
D

(X) = max
x∈∆D

ϑD(x). (4.3)

Example 4.1. Let X be a proper toric variety over K and D a toric R-divisor
on X. The canonical metric on D is the metric characterized by the fact that, for
each v ∈ MK and p ∈ Tan

v ,

log ‖sD(p)‖can,v = ΨD(valv(p)),

see [BPS14, Proposition-Definition 4.3.15]. We denote this toric metrized R-divisor

by D
can

. For all v ∈ MK,

ψD
can

,v = ΨD and ϑDcan
,v = 0.

In particular, ϑDcan = 0 and µ
ess
D

can(X) = 0.

Given a semipositive toric metrized R-divisor D over D, its associated metric
functions are concave. Conversely, every adelic family of concave continuous func-
tions ψv : NR → R, v ∈ MK , with |ψv − ΨD| bounded for all v and such that
ψD,v = ΨD for all v except for a finite number, corresponds to a semipositive toric

metrized R-divisor over D [BMPS16, Proposition 4.19(1)]. For instance, a canoni-

cal toric metrized R-divisor D
can

is semipositive if and only if ΨD is concave, which
is equivalent to the condition that D is nef.

For the rest of this section, we suppose that X is a proper toric variety over the
global field K with torus T, and that D is a semipositive toric metrized R-divisor
with D big.

We also fix the notation below. Recall from §3 that P denotes the space of
probability measures on NR endowed with the weak-∗ topology with respect to the
space Cb(NR), and that E denotes the subspace of probability measures with finite
first moment.

Notation 4.2. Let v ∈ MK. We denote by gi,v, i = 1, 2, the concave functions
on ∆D given by

g1,v = ϑD,v and g2,v =
∑

w∈MK\{v}

nw

nv
ϑD,w.
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Thus ϑD = nv(g1,v + g2,v). We consider the convex subsets of NR given by Defini-
tion 3.2

Bv = B(g1,v, g2,v), Fv = F (g1,v, g2,v) (4.4)

and we write

Av = ∂g1,v(x)

for any x in the relative interior of the set ∆D,max where ϑD attains its maximum.
By Lemma 3.1 (1) Av does not depend on the choice of x ∈ ri(∆D,max). Thus Fv is
the minimal face of Av containing Bv. We also denote Φv the function on E given
by Definition (3.6) applied to the set C = ∆D and the functions gi,v, i = 1, 2.

Given v ∈ MK and a point p ∈ X0(K), we consider the discrete probability
measure on NR defined by

νp,v = (valv)∗µp,v,

where µp,v is the uniform discrete probability measure on Xan
v supported on the v-

adic Galois orbit of p as in (2.4). This probability measure on NR gives the modulus
distribution of the v-adic Galois orbit of the point p. The next result characterizes
the limit behavior of this modulus distribution for nets of points of small height.

Theorem 4.3. Let notation and hypotheses be as above. For each v ∈ MK and
every D-small net (pl)l∈I of algebraic points in the principal open subset X0, the
net (νpl,v)l∈I of measures in P has at least one cluster point. Every such cluster
point νv lies in E and satisfies

supp(νv) ⊂ Fv and E[νv] ∈ Bv. (4.5)

The proof of Theorem 4.3 is given below, after a definition and an auxiliary
result.

Definition 4.4. A centered adelic measure ν on NR is a collection of measures
νv ∈ E , v ∈ MK, such that νv = δ0, the Dirac measure at the point 0 ∈ NR, for all
but a finite number of places v, and such that

∑

v∈MK

nv E[νv] = 0. (4.6)

We denote by HK the set of all centered adelic measures on NR.

We introduce the function ηD : HK → R defined by

ηD(ν) = −
∑

v∈MK

nv

∫
ψD,v dνv. (4.7)

This function extends the notion of height of points to the space HK. Indeed, for
p ∈ X0(K), the collection

νp = (νp,v)v∈MK
(4.8)

is a centered adelic measure on NR, because of the product formula in Proposi-
tion 2.1(2). Moreover, the canonical R-section sD does not vanish at p and, by
Proposition 2.3 and (4.2),

hD(p) = −
∑

v

nv

#Gal(p)v

∑

q∈Gal(p)v

ψD,v(valv(q))

= −
∑

v

nv

∫
ψD,v dνp,v = ηD(νp). (4.9)
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Lemma 4.5. For every centered adelic measure ν = (νv)v∈MK
,

max
v∈MK

−nvΦv(νv) ≤ ηD(ν)− µ
ess
D

(X) ≤
∑

v∈MK

−nvΦv(νv). (4.10)

In particular, for p ∈ X0(K),

max
v∈MK

−nvΦv(νp,v) ≤ hD(p)− µ
ess
D

(X) ≤
∑

v∈MK

−nvΦv(νp,v). (4.11)

Proof. Let ∆D,max be the set of points maximizing the roof function ϑD and choose

x ∈ ∆D,max. For each v ∈ MK, let φ̂i,v : NR → R, i = 1, 2, be the function defined
by

φ̂i,v(u) = g∨i,v(u)− 〈x, u〉+ gi,v(x),

where gi,v denotes the concave function on ∆D in Notation 4.2 and g∨i,v its Legendre
dual as in (3.1).

Note that ψD,v = g∨1,v. Using (4.6) and (4.3), we deduce that

−
∑

v

nv

∫
ψD,v dνv = ϑD(x)−

∑

v

nv

∫
φ̂1,v dνv = µ

ess
D

(X)−
∑

v

nv

∫
φ̂1,v dνv.

Thus

ηD(ν)− µ
ess
D

(X) = −
∑

v

nv

∫
φ̂1,v dνv. (4.12)

For each v ∈ MK, we get from the definition of Φv that

Φv(νv) =

∫
φ̂1,v dνv + φ̂2,v(−E[νv]).

By Lemma 3.1(4), the functions φ̂i,v are nonpositive and so

Φv(νv) ≤
∫
φ̂1,v dνv. (4.13)

The second inequality in (4.10) then follows from (4.12) and (4.13).
To prove the first inequality in (4.10), fix v ∈ MK. By [BPS14, Proposi-

tions 2.3.1(1) and 2.3.3(3)],

φ̂2,v = ⊞w 6=v

(
φ̂1,w

nw
nv

)
, (4.14)

where w runs over the places of K different from v, the symbol ⊞ denotes the
sup-convolution and, for a concave function ψ and a nonzero constant λ, the ex-
pression ψλ denotes the right multiplication as in [BPS14, §2.3].

By the equality (4.14), the definitions of the sup-convolution and the right mul-
tiplication, and condition (4.6), we deduce

φ̂2,v(−E[νv]) ≥
∑

w 6=v

nw

nv
φ̂1,w(E[νw]). (4.15)

By the concavity of φ̂1,w and Jensen’s inequality,

∫
φ̂1,w dνw ≤ φ̂1,w(E(νw)) for all

w ∈ MK. Therefore, by (4.12) and (4.15),

ηD(ν)− µ
ess
D

(X) ≥ −nv

(∫
φ̂1,v dνv +

∑

w 6=v

nw

nv
φ̂1,w(E(νw))

)

≥ −nv

(∫
φ̂1,v dνv + φ̂2,v(−E[νv])

)
= −nvΦv(νv),

which proves the first inequality and completes the proof of (4.10). The inequalities
in (4.11) follow directly from (4.10) and (4.9). �
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Proof of Theorem 4.3. Let v ∈ MK and let Φv : E → R be the function defined
by (3.6) with g1,v and g2,v as in Notation 4.2. Since the net of points (pl)l∈I is

D-small,

lim
l
hD(pl) = µ

ess
D

(X).

By Proposition 3.9, Φv is nonpositive, and so we deduce from Lemma 4.5 that

lim
l
Φv(νpl,v) = 0.

The theorem is then a direct consequence of Proposition 3.11. �

To state a partial converse of Theorem 4.3, we need a further definition.

Definition 4.6. The adelic Kantorovich–Rubinstein distance WK on HK is defined,
for ν = (νv)v,ν

′ = (ν′v)v ∈ HK, by

WK(ν,ν
′) =

∑

v

nvW (νv, ν
′
v),

where W denotes the Kantorovich–Rubinstein distance in NR as in Definition 3.12.
By the definition of HK, there are only a finite number of nonzero terms in this
sum.

The topology on HK induced by this distance is called the adelic KR-topology.

Theorem 4.7. With notation and hypotheses as before, let ν = (νv)v∈MK
∈ HK be

a centered adelic measure such that

supp(νv) ⊂ Fv and E[νv] ∈ Bv

for all v. Then there is a generic D-small net (pl)l∈I of algebraic points of X0

such that the net of measures (νpl
)l∈I converges to ν with respect to the adelic

Kantorovich-Rubinstein distance.

The proof of Theorem 4.7 is given below, after some preliminary results. The
first result gives the main properties of the function ηD.

Lemma 4.8. The function ηD is Lipschitz continuous with respect to WK. More-
over, for all ν = (νv)v∈MK

∈ HK,

ηD(ν) ≥ µ
ess
D

(X), (4.16)

with equality if and only if supp(νv) ⊂ Fv and E[νv] ∈ Bv for all v.

Proof. Let S ⊂ MK be a finite subset such that ψD,v = ΨD for all v /∈ S. For ν =

(νv)v,ν
′ = (ν′v)v ∈ HK,

|ηD(ν)− ηD(ν ′)| ≤
∑

v

nv

∣∣∣∣
∫
ψD,v dνv −

∫
ψD,v dν′v

∣∣∣∣

≤
∑

v

Lip(ψD,v)nvW (νv, ν
′
v) ≤

(
max
x∈∆D

‖x‖
)
WK(ν,ν

′).

where the second inequality is given by the duality formula (3.12) and the last by
the observation that Lip(ψD,v) = maxx∈∆D

‖x‖ for all v. This proves that ηD is
Lipschitz continuous with respect to WK.

As already remarked, the functions Φv are nonpositive. By Lemma 4.5, this
implies the inequality (4.16). From the same result, it follows that the equality
holds if and only if Φv(νv) = 0 for all v. By Proposition 3.9, this holds if and only
if supp(νv) ⊂ Fv and E[νv] ∈ Bv, completing the proof of the lemma. �

From this lemma, we deduce as a direct consequence the next characterization
of algebraic points in toric varieties realizing the essential minimum.
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Corollary 4.9. Let p be an algebraic point of X0. Then hD(p) = µ
ess
D

(X) if and

only if supp(νp,v) ⊂ Fv and E[νp,v] ∈ Bv for all v ∈ MK.

Let HK ⊂ ⊕
v∈MK

NR be the subspace defined by the equation
∑

v nvuv = 0.

By sending the point (uv)v ∈ HK to the adelic centered measure (δuv
)v ∈ HK, we

identify HK with a subspace of HK.

Corollary 4.10. The minimum of the function ηD is equal to µ
ess
D

(X) and it is
attained at a point of the subspace HK ⊂ HK.

Proof. Let x be a point where ϑD attains its maximum. Since 0 ∈ ∂ϑD(x) and
∂ϑD(x) =

∑
v nv∂ϑD,v(x), we can find u = (uv)v ∈ HK such that for every v,

uv ∈ ∂ϑD,v(x) ∩
(
− ∂

( ∑

w∈MK\{v}

nw

nv
ϑD,w

)
(x)

)
= Bv.

The adelic centred measure δ = (δuv )v ∈ HK corresponding to u ∈ HK satisfies
supp(δuv

) = {uv} ⊂ Fv and E[δuv
] = uv ∈ Bv. Thus, by Lemma 4.8,

µ
ess
D

(X) = ηD(u) = min
ν∈HK

ηD(ν),

as stated. �

We next show that the measures coming from algebraic points are dense in HK.

Proposition 4.11. For every ν ∈ HK there is a generic net (pl)l∈I of algebraic
points of X0 such that the net of associated measures (νpl

)l∈I as in (4.8) converges
to ν with respect to the adelic KR-topology.

Proof. Put ν = (νv)v and let ε > 0 be given. Let S be a finite nonempty subset
of MK such that νv = δ0 for all v /∈ S, and put

ε′ =
ε

6
∑

v∈S nv
and d′ =

2

ε′
max
v∈S

∫
‖u‖ dνv.

By [Vil09, Theorem 6.18], for each v ∈ S we can approach νv with respect to the
KR-distance, by a probability measure with finite support. Therefore we can find
d ≥ max{2, d′} and for each v ∈ S a sequence of points uv,1, . . . , uv,d−1 ∈ NR such

that the probability measure ν′′v = 1
d−1

∑d−1
i=1 δuv,i satisfies W (νv, ν

′′
v ) < ε′. We

deduce from [Vil09, Formula (6.3)] the inequalities
∣∣∣∣
∫

‖u‖ dνv −
∫

‖u‖ dν′′v

∣∣∣∣ ≤ ε′ and ‖E[νv]− E[ν′′v ]‖ ≤ ε′.

Defining uv,d := dE[νv]−(d−1)E[ν′′v ], we verify ‖uv,d‖ ≤ ‖E[νv]‖+(d−1)ε′. Thus,

setting ν′v = 1
d

∑d
i=1 δuv,i and using Jensen’s inequality and [Vil09, Formula (6.3)]

again, we get

W (ν′′v , ν
′
v) ≤

1

d(d− 1)

d−1∑

i=1

‖uv,i‖+
1

d
‖uv,d‖

≤ 1

d

(∫
‖u‖ dν′′v +

∫
‖u‖ dνv + (d− 1)ε′

)
≤ 2

d

∫
‖u‖ dνv + ε′ ≤ 2ε′.

We then easily check E[ν′v] = E[νv] and

W (νv, ν
′
v) ≤W (νv, ν

′′
v ) +W (ν′′v , ν

′
v) < 3ε′.

Set also ν′v = δ0 for v /∈ S. Then ν ′ = (ν′v)v ∈ HK and WK(ν,ν
′) < ε

2 .
Let F/K be a finite extension of degree d such that all places in S split completely,

as given by [BPS15, Lemma 2.2]. For each v ∈ S and w ∈ MF such that w | v, we
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have nw = nv/d. We enumerate the places above a given place v ∈ S as w(v, j),
j = 1, . . . , d.

Let HF ⊂ ⊕
w∈MF

NR be the subspace defined by the equation
∑

w nwuw = 0.
For each v ∈ MK consider the element u ∈ HF given, for w ∈ MF, by

uw =

{
uv,j for v ∈ S and w = w(v, j) with 1 ≤ j ≤ d,

0 for v /∈ S and w | v.

Consider the map valF : T(F) →
⊕

w∈MF
NR defined by valF = (valw)w∈MF

. This is
a group homomorphism and so it can be extended to a map

valF : T(F)⊗Q −→
⊕

w∈MF

NR.

By the product formula, the image of this map lies in the hyperplane HF and,
by [BPS15, Lemma 2.3], it is dense with respect to the L1-topology on HF. For
α ∈ T(F) and r ∈ Q, we have

‖u− valF(α
r)‖L1 =

∑

v∈S

nv
d

d∑

j=1

‖uv,j − valw(v,j)(α
r)‖+

∑

v/∈S

‖valv(αr)‖

=
∑

v

nv

∫
‖u− u′‖ dλv(u, u

′) (4.17)

for the probability measure λv on NR ×NR given by

λv =





1

d

d∑

j=1

δ(uv,j ,valw(v,j)(αr)) if v ∈ S,

δ(0,valv(αr)) if v /∈ S.

This measure has marginals ν′v and νp,v for any p = ω · αr with ω a torsion point

in T(K), thus W (ν′v, νp,v) ≤
∫
‖u − u′‖ dλv(u, u

′) for every v, and the quantity
in (4.17) is an upper bound for the adelic KR-distance WK(ν

′,νp). It follows that
we can choose α and r such that WK(ν

′,νp) < ε/2 and thus WK(ν,νp) < ε.

Since the orbit of αr under the action of the group of torsion points of T(K)
is Zariski dense, we have shown that, given ε > 0 and a nonempty open subset
U ⊂ X, we can choose p ∈ U(K) satisfying

WK(ν,νp) < ε.

As in the proof of Proposition 2.5, let I be the set of closed subvarieties of
pure codimension 1 in X ordered by inclusion. For each Y ∈ I choose a point
pY ∈ (X \ Y )(K) such that

WK(ν,νpY
) <

1

c(Y )

with c(Y ) the number of components of Y . Thus, the net of algebraic points
(pY )Y ∈I is generic and the net of probability measures (νpY

)Y ∈I converges to ν in
the KR-topology, proving the result. �

Proof of Theorem 4.7. Let ν = (νv)v be a centered adelic measure on NR such that
each measure νv satisfies the condition (4.5). By Lemma 4.8, it satisfies

ηD(ν) = µ
ess
D

(X).

Proposition 4.11 implies that there is a generic net (pl)l∈I of points in T(K) = X0(K)
such that (νpl

)l∈I converges to ν with respect to the distance WK. On the other
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hand, by Lemma 4.8 we also have

lim
l
hD(pl) = lim

l
ηD(νpl

) = ηD(ν) = µ
ess
D

(X),

and so the net (pl)l∈I is D-small. �

Corollary 4.12. Let v ∈ MK. For every measure νv ∈ E with supp(νv) ⊂ Fv and
E[νv] ∈ Bv, there is a generic D-small net (pl)l∈I of algebraic points of X0 such
that the net of measures (νpl,v)l∈I converges to νv with respect to the Kantorovich-
Rubinstein distance. In particular, (νpl,v)l∈I also converges to νv in the weak-∗
topology with respect to Cb(NR).

Proof. Let x be a point where ϑD attains its maximum. Since

E[νv] ∈ Bv ⊂ −∂
( ∑

w∈MK\{v}

nw
nv
ϑD,w

)
(x) = −

∑

w∈MK\{v}

nw
nv
∂ϑD,w(x),

we can find uw ∈ ∂ϑD,w for each w 6= v such that

uv := E[νv] = −
∑

w∈MK\{v}

nw

nv
uw.

In particular, for all w ∈ MK one has

uw = −
∑

w′∈MK\{w}

nw′

nw
uw′ ∈ ∂ϑD,w(x) ∩

(
− ∂

( ∑

w′∈MK\{w}

nw′

nw
ϑD,w′

)
(x)

)
= Bw.

Furthermore, we have uw = 0 for all but a finite number of places w in MK.
Put νw = δuw for each w 6= v. The statement then follows from Theorem 4.7
applied to the centered adelic measure ν = (νw)w∈MK

. �

Combining Theorems 4.3 and 4.7, we can obtain a criterion for when the direct
image under the valuation map of the Galois orbits of a small net converges in the
sense of measures. We show that in this case, the limit measure is concentrated in
a single point.

Corollary 4.13. Let v ∈ MK. The following conditions are equivalent:

(1) for every D-small net (pl)l∈I of algebraic points of X0, the net of measures
(νpl,v)l∈I converges in the weak-∗ topology with respect to Cb(NR);

(2) for every generic D-small net (pl)l∈I of algebraic points of X0, the net of
measures (νpl,v)l∈I converges in the weak-∗ topology with respect to Cc(NR),
the space of continuous functions on NR with compact support;

(3) the face Fv contains only one point.

When these equivalent conditions hold, the limit measures in (1) and (2) coincide
with the Dirac measure at the unique point of Fv.

Proof. It is clear that (1) implies (2), and Theorem 4.3 shows that (3) implies (1).
Now suppose that the face Fv has more than one point. Since Fv is the minimal
face containing Bv, we can find distinct points u0, u1, u2 ∈ Fv such that

u0 =
u1 + u2

2
∈ Bv.

The probability measures δu0 and 1
2δu1 + 1

2δu2 satisfy the conditions (4.5). By

Corollary 4.12, we can find generic D-small nets (pl)l∈I and (ql)l∈I such that the
nets of measures (νpl,v)l∈I and (νql,v)l∈I respectively converge to

δu0 and
1

2
δu1 +

1

2
δu2
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in the KR-topology, and hence in the weak-∗ topology with respect to Cc(NR).
Combining these nets, we can obtain a net that does not converge in this weak-∗
topology. Hence the condition (2) implies the condition (3).

The last statement follows from Theorem 4.3. �

When any of the equivalent conditions of Corollary 4.13 holds we say that the
metrized divisor D satisfies the modulus concentration property at the place v.
Thus Corollary 4.13 gives us a criterion for the modulus concentration property
at a place. We next give a criterion for the modulus concentration property at all
places simultaneously, which can be directly read from the roof function. Before
giving it, we need some preliminary results and a definition.

Definition 4.14. A semipositive toric metrized R-divisor D with D big is called
monocritical if the minimum of ηD in HK is attained at a unique point. If this is
the case, by Corollary 4.10, the minimum is attained at a point of HK. This point
is called the critical point of D.

Example 4.15. Let D
can

be a nef and big toric R-divisor equipped with the
canonical metric as in Example 4.1. Then all its local roof functions are zero.
Taking a point x in the interior of the polytope, we have ∂ϑD,v(x) = {0} for

every v. Hence Fv = {0} for every v and D is monocritical with critical point
0 ∈ HK.

Recall that ∆D,max denotes the convex set of points of ∆D where ϑD attains its
maximum.

Proposition 4.16. The following conditions are equivalent:

(1) the metrized R-divisor D is monocritical;
(2) for every point x ∈ ∆D,max, the set

HK ∩
∏

v∈MK

∂ϑD,v(x) (4.18)

contains a unique element u = (uv)v ∈ HK and, for v ∈ MK, the point uv
is a vertex of ∂ϑD,v(x);

(3) for every point x ∈ ∆D,max, the point 0 is a vertex of ∂ϑD(x);
(4) there exists a point x ∈ ∆D,max such that 0 is a vertex of ∂ϑD(x);
(5) for all v ∈ MK, the set Fv contains only one point.

When these equivalent conditions hold, Fv = {uv} for every v and u is the critical
point of D.

Proof. We prove first that (1) implies (2). Assume that D is monocritical. Let
u = (uv)v belong to the set (4.18). Then for every v ∈ MK we have

uv ∈ ∂ϑD,v(x) ∩
(
− ∂

( ∑

w∈MK,w 6=v

nw

nv
ϑD,w

)
(x)

)
.

So the measure ν = (δuv
)v belongs to HK and satisfies supp(δuv

) ⊂ Bv for each v.
In particular, supp(δuv ) ⊂ Fv and E[δuv ] ∈ Bv. Thus by Lemma 4.8

ηD(u) = min
ν′∈HK

ηD(ν ′).

Since D is monocritical, this shows that the set (4.18) is reduced to the unique
critical point of D.

Assume now that the set (4.18) contains a single point u = (uv)v ∈ HK and
there is a place v0 ∈ MK such that uv0

is not a vertex of ∂ϑD,v0
(x). Then we can
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find two points uv0,1, uv0,2 ∈ ∂ϑD,v0
(x) such that

uv0
=
uv0,1 + uv0,2

2
.

We consider the measure ν1 = (δuv
)v and the measure ν2 = (νv)v defined by

νv =




δuv

if v 6= v0,
δuv0,1 + δuv0,2

2
if v = v0.

Then ν2 is in (4.18) and, again by Lemma 4.8, we have that

ηD(ν1) = ηD(ν2) = min
ν∈HK

ηD(ν)

contradicting the hypothesis thatD is monocritical, and completing the proof of (2).
Assume that (2) is true and fix x ∈ ∆D,max. Let S ⊂ MK be the finite set of

places where uv 6= 0 or ϑD,v is not identically zero. We have that

∂ϑD(x) =
∑

v∈S

nv∂ϑD,v(x).

Moreover, (2) implies that the equation

0 =
∑

v∈S

nvav with av ∈ ∂ϑD,v(x)

has a unique solution av = uv and this solution satisfies that av is a vertex of
∂ϑD,v(x). Therefore, by Lemma 3.15 we deduce that 0 is a vertex of ∂ϑD(x).

Hence (2) implies (3).
Since ∆D,max is nonempty, (3) implies (4).
Assume now that (4) is true. For each v, let g1,v and g2,v be the continuous

concave functions on ∆D in Notation 4.2. Since ϑD = nvg1,v + nvg2,v,

∂ϑD(x) = nv∂g1,v(x) + nv∂g2,v(x).

Lemma 3.15 and the definition of the set Bv imply that this set contains one single
point uv, and that this point is a vertex of both ∂g1,v(x) and of −∂g2,v(x). Hence
Bv is already a face of ∂g1,v(x). Thus Fv = Bv = {uv} and so (4) implies (5).

By Lemma 4.8 it is clear that (5) implies (1) finishing the proof of the equivalence.
Assume now that D is monocritical. Since by Lemma 4.8 the point u in (2)

satisfies that ηD(u) = minν∈HK
ηD(ν), it is the critical point. Following the proof

of the equivalence we deduce that Fv = {uv} proving the last statement. �

For a given toric metrized R-divisor, the condition of being monocritical and its
critical point behave well with respect to scalar extensions. The following result
follows from the compatibility of toric metrics with scalar extensions in [BPS14,
Proposition 4.3.8].

Proposition 4.17. Let X and D as before. Let F ⊂ K be a finite extension of K
and write DF for the toric metrized R-divisor on XF obtained by scalar extension.
If D is monocritical with critical point (uv)v∈MK

, then DF is also monocritical and
its critical point (uw)w∈MF

is given by uw = uv for all v ∈ MK and w over v.

We now give the criterion for modulus concentration at every place.

Theorem 4.18. Let X and D be as before. The following conditions are equivalent:

(1) for every D-small net (pl)l∈I of algebraic points of X0 and every place
v ∈ MK, the net of measures (νpl,v)l∈I converges.

(2) the metrized R-divisor D is monocritical;
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When these equivalent conditions hold,

lim
l∈I

νpl,v = δuv ,

where (uv)v is the critical point of D.

Proof. The theorem follows directly from Corollary 4.13 and Proposition 4.16. �

When there is modulus concentration for every place, we can show that the
convergence holds not only in the weak-∗ topology with respect to Cb(NR) but even
in the stronger adelic KR-topology.

Theorem 4.19. Let X and D be as before. Assume that D is monocritical. Let
u = (uv)v be the critical point of D and set δu = (δuv )v ∈ HK. Then, for every
D-small net (pl)l∈I of algebraic points of X0, the net of centered adelic measures
(νpl

)l∈I converges to δu in the adelic KR-topology. In particular, for every v ∈ MK,
the net of measures (νpl,v)l∈I converges to δuv

in the KR-topology.

Proof. For each v ∈ MK, let fv : NR → R be the function given by

fv(u) = ψD,v(u)−ΨD(u− uv).

This is an adelic family of bounded continuous functions on NR with fv = 0 for all
but a finite number of v. Consider then the function η′ : HK → R given by

η′(ν) = ηD(ν) +
∑

v

nv

∫
fv dνv = −

∑

v

nv

∫
ΨD(u− uv) dνv.

Since the net (pl)l∈I is D-small,

lim
l
ηD(νpl

) = lim
l
hD(pl) = µ

ess
D

(X).

By Theorem 4.18, for every place v ∈ MK the net of measures (νpl,v)l∈I converges
to δuv

, so that liml

∫
fv dνpl,v =

∫
fv dδuv

= ψD,v(uv). Since u = (uv)v is the

critical point of D, using Corollary 4.10 we get

lim
l
η′(νpl

) = µ
ess
D

(X) +
∑

v

nvψD,v(uv) = 0. (4.19)

Choose a point x in the interior of ∆D. Then there is a constant c > 0 such
that, for all u ∈ NR,

‖u‖ ≤ −c (ΨD − x)(u).

It follows from the definition of the Kantorovich-Rubinstein distance that, for
each v ∈ MK,

W (νpl,v, δuv
) ≤

∫
‖u− uv‖ dνpl,v(u).

Hence

WK(νpl
, δu) ≤

∑

v

nv

∫
‖u− uv‖ dνpl,v(u)

≤ −c
∑

v

nv

∫
(ΨD − x)(u− uv) dνpl,v(u) = c η′(νpl

),

where the last equality follows from the facts that u belongs to HK and that νpl
is a

centered adelic measure on NR, thanks to the product formula in Proposition 2.1(2).
By (4.19), this distance converges to 0, completing the proof. �
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5. Equidistribution of Galois orbits and the Bogomolov property

We turn to the study of the limit measures of Galois orbits of D-small nets
of algebraic points in toric varieties. In this section, we denote by X a proper
toric variety over a global field K and D a toric metrized R-divisor on X with D
big. For v ∈ MK, recall that valv : T

an
v → NR denotes the valuation map, defined

in (4.1).
We first describe the limit measures in the monocritical case.

Definition 5.1. Given v ∈ MK and u ∈ NR, the probability measure λSv,u on Xan
v

is defined as follows.

(1) When v is Archimedean, note that val−1
v (u) = Sv · p for any point p ∈

val−1
v (u) and where Sv = val−1

v (0) ≃ (S1)n is the compact torus of Tan
v . In

this case, λSv,u is the direct image under the translation by p of the Haar
probability measure of Sv.

(2) When v is non-Archimedean, consider the multiplicative seminorm on the
group algebra Cv[M ] ≃ Cv[x

±1
1 , . . . , x±1

n ] that, to a Laurent polynomial∑
m∈M αmχ

m, assigns the value maxm(|αm|v e−〈m,u〉). This seminorm
gives a point, denoted by θ(u), in the Berkovich space Xan

v . The point θ(u)
lies in the preimage val−1

v (u). We then set λSv,u = δθ(u), the Dirac measure
at this point.

The following result corresponds to Theorem 1.1 in the introduction, and shows
that modulus concentration at every place implies the equidistribution property at
every place. Due to the existing equidistribution theorems in the literature, we
restrict its statement to divisors (rather than R-divisors).

Theorem 5.2. Let X be a proper toric variety over K and D a semipositive toric
metrized divisor on X with D big. The following conditions are equivalent:

(1) for every generic D-small net (pl)l∈I of algebraic points of X0 and every
place v ∈ MK, the net of probability measures (µpl,v)l∈I on Xan

v converges;

(2) the metrized divisor D is monocritical.

When these equivalent conditions hold, the limit measure in (1) is λSv,uv
, with

uv ∈ NR the v-adic component of the critical point of D.

The proof of Theorem 5.2 is done by reduction to the quasi-canonical case.
The following is the characterization of quasi-canonical toric metrized R-divisors in
[BPS15].

Proposition 5.3. Let X be a proper toric variety over K and D a semipositive
toric metrized R-divisor on X with D big. The following conditions are equivalent:

(1) D is quasi-canonical (Definition 2.7);
(2) ϑD is constant;
(3) there are u = (uv)v ∈ HK and (γv)v ∈ ⊕

v∈MK
R such that

ψD,v(u) = ΨD(u− uv)− γv

for all v ∈ MK and u ∈ NR.

Proof. The equivalence of (1) and (3) is given by [BPS15, Corollary 4.7]. The
equivalence of (1) and (2) is given in the course of the proof of [BPS15, Proposi-
tion 4.6], recalling that vol(D) = degD(X) and noting that, since by assumption D

is semipositive, v̂olχ(D) = hD(X). �

The following result gives the key step in the proof of Theorem 5.2.
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Proposition 5.4. Let X be a proper toric variety over K and D a monocrit-

ical metrized R-divisor on X with critical point u = (uv)v∈MK
. Let D

′
be the

toric metrized R-divisor over D corresponding to the family of concave functions
ψD

′

,v : NR → R, v ∈ MK, given by

ψD
′

,v(u) = ΨD(u− uv). (5.1)

Then D
′
is quasi-canonical and every D-small net of algebraic points of X0 is

also D
′
-small.

Proof. The fact that D
′
is quasi-canonical is given by Proposition 5.3.

Let (pl)l∈I be a D-small net of algebraic points of X0. By Theorem 4.19, the net
of centered adelic measures (νpl

)l∈I converges to δu = (δuv )v with respect to the
adelic KR-distance. By Lemma 4.8, the function ηD′ is continuous with respect to
this distance. Using (4.9), we deduce that

lim
l
hD′(pl) = lim

l
ηD′(νpl

) = ηD′(δu) = 0.

On the other hand, ϑD′

,v = uv for each v. Since the critical point u lies in the

subspace HK, we have that ϑD′ =
∑

v nvuv = 0. Hence,

µ
ess
D

′ (X) = max
x∈∆D

ϑD′(x) = 0.

Thus (pl)l∈I is D
′
-small, as stated. �

Proof of Theorem 5.2. Suppose that the condition (1) holds. Given a generic D-
small net (pl)l∈I of algebraic points ofX0 and v ∈ MK, the net of measures (µpl,v)l∈I

converges weakly with respect to the space C(Xan
v ). Hence, the net of direct images

(νpl,v)l∈I converges weakly with respect to the space Cc(NR). By Corollary 4.13, for

each v, the face Fv contains only one point. Proposition 4.16 then implies that D
is monocritical, giving the condition (2).

Now suppose that the condition (2) holds. Since D is monocritical, the poly-
tope ∆D has nonempty interior. Let Y be the toric variety associated to the normal
fan of ∆D and E the divisor on Y associated to the virtual support function ΨD,
see for example [BPS14, Theorem 3.3.3]. By construction E is ample and (Y,E) is
the polarized toric variety associated to the polytope ∆D, see for example [BPS14,
Theorem 3.4.6 and Remark 3.4.7]. By the characterization of semipositive toric
metrics in [BPS14, Theorem 4.8.1], the metric in D induces a semipositive toric
metric on E, and we denote by E the corresponding toric metrized divisor. We
have that ψE,v = ψD,v for all v, and so E is also monocritical with the same critical

point as D.
Let

E
′
= (E, ‖ · ‖′v)v∈MK

be the ample divisor E on Y equipped with the quasi-canonical toric metric given
by Proposition 5.4, with D replaced by E. Let (pl)l∈I be a generic D-small net of
algebraic points of X0 = T = Y0. It is also a generic E-small net of algebraic points

of Y0. By Proposition 5.4 with D replaced by E, it is also E
′
-small.

By Theorem 2.11, for each place v the net (µpl,v)l∈I converges to the normal-
ized Monge-Ampère measure µv = 1

degE(Y )c1(E, ‖ · ‖′v)∧n on Y an
v . Consider the

real Monge-Ampère measure M(ψE
′

,v) associated to the v-adic metric in E
′
as in

[BPS14, Definition 2.7.1]. By the explicit formula (5.1) and [BPS14, Example 2.7.5],

M(ψE
′

,v) = volM (∆D)δuv =
degE(Y )

n!
δuv .
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Then [BPS14, Theorem 4.8.11] implies that µv = λSv,uv
. Therefore, the net of

measures (µpl,v)l∈I on Xan
v converges to λSv,uv

, giving the condition (1) and the
last statement in the theorem. �

Example 5.5. Let D
can

be a big and nef toric divisor on X equipped with the
canonical metric. Following Example 4.15, this toric metrized divisor is monocritical
with critical point 0 ∈ HK. Hence, it satisfies the v-adic equidistribution property
with limit measure λSv,0, for every v ∈ MK.

In [Bil97], Bilu gave an equidistribution theorem for Galois orbits of sequences
of points of small canonical height. This result is restricted to number fields and
Archimedean places. However, and in contrast to the previous example, this result
holds not just for generic, but for strict sequences of points, that is, sequences
that eventually avoid any given proper torsion subvariety. This stronger version of
the equidistribution property was used in a crucial way in loc. cit. to prove the
Bogomolov property for the canonical height.

Here we extend this version of the equidistribution property to monocritical
metrized R-divisors on toric varieties (Theorem 5.7) and deduce from it the Bogo-
molov property (Theorem 1.4 in the introduction, or Theorem 5.12 below). Our
proofs are similar to Bilu’s and use Fourier analysis. Hence, for the rest of the
section we restrict to the case when K is a number field and we only study the
equidistribution over the Archimedean places. Following Remark 2.10, we restrict
without loss of generality to sequences, instead of nets.

To formulate this extension, we have to modify slightly the notion of strict se-
quence. First we recall some standard terminology: a subtorus of T is an algebraic
subgroup of T that is geometrically irreducible, a translate of a subtorus is a sub-
variety of TK that is the orbit of a point p ∈ T(K) by a subtorus, and a torsion

subvariety is a translate of a subtorus by a torsion point of the group T(K) ≃ (K
×
)n.

Definition 5.6. A sequence (pl)l≥1 of algebraic points of T is strict if, for every

translate of a subtorus U ( TK, there is l0 ≥ 1 such that pl /∈ U(K) for all l ≥ l0.

Equivalently, (pl)l≥1 is strict if, for every m ∈M \ {0} and every point q ∈ X0(K),
there is l0 ≥ 1 such that χm(pl) 6= χm(q) for all l ≥ l0.

Theorem 5.7. Let X be a proper toric variety over a number field K and D a mon-
ocritical metrized R-divisor on X. Then, for every strict D-small sequence (pl)l≥1 of
algebraic points of X0 and every Archimedean place v ∈ MK, the sequence (µpl,v)l≥1

converges to the probability measure λSv,uv , with uv ∈ NR the v-adic component of

the critical point of D.

Proof. Let (pl)l≥1 be a strict D-small sequence of algebraic points of X0. For each
m ∈M \ {0} consider the character

χm : T −→ Gm,K.

Since (pl)l≥1 is strict, the sequence (χm(pl))l≥1 is generic.
We embed Gm,K →֒ P1

K as the principal open subset. Let D0 = div(x0) be the
divisor at infinity on P1

K, equipped with the toric metric corresponding to the adelic
family of functions ψD

m
0 ,v : R → R given by

ψD
m
0 ,v(u) = min(0, u− 〈m,uv〉).
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By Proposition 5.3, this metric is quasi-canonical. For each v ∈ MK, there is a
commutative diagram

Tan
v

χm

//

valv

��

Gan
m,v

valv

��

NR m
// R

The commutativity of this diagram implies that νχm(pl),v = m∗νpl,v. By Theo-
rem 4.19, the sequence (νpl

)l≥1 converges in the adelic KR-topology to the centered
adelic measure (δuv )v on NR. Hence, the sequence (νχm(pl))l≥1 converges in the
adelic KR-topology to the centered adelic measure (δ〈m,uv〉)v on R. By Lemma 4.8,

lim
l
ηDm

0
(νχm(pl)) = ηDm

0
((δ〈m,uv〉)v) = µ

ess
D

m
0
(P1

K).

By the identity in (4.9), ηDm
0
(νχm(pl)) = hDm

0
(χm(pl)). Thus the sequence of points

(χm(pl))l≥1 is D
m

0 -small.
Summarizing, the sequence (χm(pl))l≥1 of algebraic points of P1

0 is generic and

small with respect to the quasi-canonical toric metrized divisor D
m

0 . Theorem 2.11
then implies that the sequence of measures (µχm(pl),v)l≥1 on the analytification

P1,an
v ≃ P1(C) converges to λSv,〈m,uv〉.
Assume now that v is Archimedean. Since the space of probability measures

on X(C) is sequentially compact, by restricting to a subsequence we can suppose
without loss of generality that (µpl,v)l≥1 converges to a measure µ. Since the
sequence of direct images ((valv)∗µpl,v)l≥1 converges in the KR-topology to the
Dirac measure on the point uv ∈ NR, we deduce that

supp(µ) ⊂ val−1
v (uv) = Sv · e−uv .

Let z be the standard affine coordinate of P1(C). For each m ∈ M \ {0}, let
zm be a continuous function on P1(C) that agrees with z on a neighborhood of
S1 · χm(e−uv ). Hence (χm)∗(zm) agrees with the character χm on a neighborhood
of Sv · e−uv . Then

∫
χm dµ =

∫
(χm)∗(zm) dµ = lim

l

∫
(χm)∗(zm) dµpl,v

= lim
l

∫
zm d(χm)∗µpl,v = lim

l

∫
zm dµχm(pl),v

=

∫
zm dλS1,〈m,uv〉 =

∫
z dλS1,〈m,uv〉 = 0,

where the last equality comes from Cauchy’s formula. Hence
∫
χm dµ = 0 for

all m ∈ M \ {0}. By Fourier analysis, the only probability measure supported
on Sv · e−uv satisfying this condition is λSv,uv . Thus µ = λSv,uv , concluding the
proof. �

Remark 5.8. Our notion of strict sequence is stronger than the one in [Bil97].
Nevertheless, for the canonical height on a projective space, a small sequence of
points is strict in our sense if and only if it eventually avoids any fixed translate
of a subtorus with essential minimum equal to 0. Such a translate of a subtorus
is necessarily a torsion subvariety, see for instance Example 5.16. Hence, a small
sequence of points that is strict in the sense of Bilu [Bil97] is also strict in the sense
of Definition 5.6. Thus Theorem 5.7 applied to the canonically metrized divisor at
infinity on a projective space specializes to [Bil97, Theorem 1.1].
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Remark 5.9. To the best of our knowledge, even for the canonical metric it is
still not know if the equidistribution property for strict sequences holds for the
non-Archimedean places of a global field.

The toric Bogomolov conjecture can be stated as follows: let X be a toric variety
and D an ample toric divisor on X. Let V ⊂ X0,K be a closed subvariety that is
not torsion. Then there exists ε > 0 such that the subset of algebraic points of V of
canonical height bounded above by ε, is not dense in V . Equivalently, if V ⊂ X0,K

is a closed subvariety such that µess
D

can(V ) = 0, then V is a torsion subvariety.

This conjecture was proved by Zhang in the number field case [Zha95]. Bilu
obtained a proof of Zhang’s theorem based on his equidistribution theorem. In
what follows, we extend his approach to the general monocritical case over a number
field.

Recall that X denotes a proper toric variety over a number field K and D a toric
metrized R-divisor on X. For a subvariety V ⊂ XK, we set

µ
abs
D

(V ) = inf{hD(x)|x ∈ V (K)}
for the absolute minimum of the height function. The fact that D is toric implies

µ
ess
D

(X) = µ
abs
D

(X0), (5.2)

see [BPS15, Lemma 3.9(2)]. Therefore, for any subvariety V ⊂ X0,K,

µ
ess
D

(V ) ≥ µ
abs
D

(V ) ≥ µ
abs
D

(X0) = µ
ess
D

(X). (5.3)

This motivates the following definition.

Definition 5.10. A closed subvariety V ⊂ X0,K is D-special if

µ
ess
D

(V ) = µ
ess
D

(X).

In particular, an algebraic point p of X0 is D-special if and only if hD(p) = µ
ess
D

(X).

We also propose the following terminology.

Definition 5.11. The toric metrized R-divisor D satisfies the Bogomolov property
if every D-special subvariety of X0,K is a translate of a subtorus.

Note that ifX is of dimension 1, then the Bogomolov property is trivially satisfied
for every metrized divisor.

We consider the problem of deciding if a given toric metrized R-divisor satisfies
the Bogomolov property. The following result corresponds to Theorem 1.4 in the
introduction, and shows that the answer is affirmative for monocritical metrics.

Theorem 5.12. Let X be a proper toric variety over a number field K and D a
monocritical metrized R-divisor on X with critical point u = (uv)v∈MK

. Let V be
a D-special subvariety of X0,K. Then V is a translate of a subtorus.

Furthermore, if uv ∈ valv(T(K)) ⊗ Q for all v, then V is the translate of a
subtorus by a D-special point.

Before giving the proof of this theorem, we study special points and, more gener-
ally, special translates of subtori in the monocritical case. We first give a criterion
for the existence of such points.

Proposition 5.13. Let X be a proper toric variety over K and D a monocritical
metrized R-divisor on X with critical point u = (uv)v∈MK

. Then there exists a
D-special point if and only if

uv ∈ valv(T(K))⊗Q for all v ∈ MK. (5.4)

If this is the case, then every D-special point is of the form q1/ℓ with q ∈ X0(K)
and ℓ ≥ 1.
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Proof. Suppose that there is a D-special point p ∈ X0(K). Choose a finite normal
extension F ⊂ K of K where p is defined. Consider the norm of p relative to this
extension, given by

NF
K(p) =

∏

τ∈Gal(F/K)

τ
(
p[F:K]i

)

where Gal(F/K) and [F : K]i are the Galois group and the inseparable degree of
the extension, respectively.

Let v ∈ MK. For every τ ∈ Gal(F/K), there is a place w ∈ MF over v such
that valv(τ(p)) = valw(p). By Corollary 4.9 and Proposition 4.17, we have that
valw(p) = uv for any such place. It follows that valv(τ(p)) = uv for all τ . Using
that #Gal(F/K) · [F : K]i = [F : K], we deduce that

valv(N
F
K(p)) =

∑

τ

valv
(
τ
(
p
)[F:K]i)

= [F : K]uv.

Since NF
K(p) ∈ T(K), we get that [F : K]uv ∈ valv(T(K)), proving the implication.

Conversely, assume that the condition (5.4) holds. Let S ⊂ MK be a finite set
containing the Archimedean places and those places v where uv 6= 0. Set

T(K)S = {p ∈ T(K) | valv(p) = 0 for all v /∈ S}
and let HK,S be the subspace of

⊕
v∈S NR defined by the equation

∑
v∈S nvzv = 0.

Moreover, consider the lattice

Γ = HK,S ∩
⊕

v∈S

valv(T(K))

and the map valS : T(K)S → Γ given by valS(p) = (valv(p))v∈S . By Dirichlet’s unit
theorem [Wei74, Chapter IV, §4, Corollary to Theorem 9], the image Λ of this map
is a sublattice that is commensurable to Γ. Thus Λ⊗Q = Γ⊗Q. Condition (5.4)
implies that (uv)v∈S ∈ Γ⊗Q = Λ⊗Q. Hence, there is an integer ℓ ≥ 1 such that

(ℓuv)v∈S ∈ Λ.

In other terms, there is q ∈ T(K)S such that valv(q) = ℓuv for all v ∈ S. By Corol-
lary 4.9, the point p = q1/ℓ ∈ T(K) is D-special, proving the reverse implication.

To prove the last statement, suppose that the condition (5.4) holds and consider
an arbitrary D-special point p′ ∈ X0(K). Let p be the D-special point constructed
above and F ⊂ K a finite extension of K so that p, p′ ∈ T(F). Then valw(p

′p−1) = 0
for all w ∈ MF. By Kronecker’s theorem, the point p′p−1 is torsion. We conclude
that some positive power of p′ lies in T(K), as stated. �

Next we characterize the translates of subtori that are D-special. Let U = TK · p
be the translate of a subtorus T ⊂ T by a point p ∈ X0(K). The subtorus T corre-
sponds to a saturated sublattice Q of N ; we denote by ι : Q →֒ N the corresponding
inclusion map. Let F ⊂ K be a finite extension of K where p is defined. For each
w ∈ MF, we consider the affine subspace of NR given by

AU,w = valw(p) +QR.

Indeed AU,w = valw(U
an
w ) and so this affine subspace depends only on U and not

on a particular choice for the translating point p.
As explained in [BPS14, §3.2], the normalization of the closure of U in XK can

be given a structure of toric variety. Let Σ be the fan on NR corresponding to X
and ΣQ the fan on QR obtained by restricting Σ to this latter linear space. Then
the inclusion ι : QR →֒ NR induces an equivariant map of toric varieties

ϕp,ι : XΣQ,K → XK

extending the inclusion U →֒ TK.
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Proposition 5.14. Let X be a proper toric variety over a number field K and D
a monocritical metrized R-divisor on X with critical point u = (uv)v∈MK

. Let
U = TK · p ⊂ X0,K be the translate of a subtorus T ⊂ T by a point p ∈ X0(K)

defined over a finite extension F ⊂ K of K. For a place w in MF denote by v(w)
the place in MK below w. Then we have the following properties.

(1) The translate U is D-special if and only if uv(w) ∈ AU,w for all w ∈ MF.

(2) If the translate U is D-special, then the metrized R-divisor ϕ∗
p,ιD is mono-

critical and its critical point is (uv(w) − valw(p))w∈MF
.

Proof. By passing to a suitable large finite extension of K and applying Proposi-
tion 4.17, we can reduce to the case when U is the translate of a K-rational point,
that is, U = TK · p with p ∈ X0(K). With this assumption, F = K and we set
v := w = v(w).

Since D is a semipositive toric metrized divisor with D big, the virtual sup-
port function ΨD is concave and its associated polytope has dimension n. Hence,
there is m ∈ MR such that 〈m,u〉 > ΨD(u) for all u 6= 0. Moreover, the metric
functions ψD,v are concave for all v ∈ MK.

Consider the toric metrized R-divisor E := ϕ∗
ι,pD on the toric variety XΣQ

. By
[BPS14, Proposition 4.3.19], its virtual support function and metric functions are
given, for z ∈ QR, by

ΨE(z) = ΨD(ι(z)), ψE,v(z) = ψD,v(valv(p) + ι(z)).

Therefore ΨE is concave and satisfies 〈ι∨m, z〉 > ΨE(z) for all z ∈ QR \{0}. Hence,
the R-divisor E is big. Moreover, the metric functions ψE,v are concave and so E
is semipositive.

Since U is identified with a dense open subset of XΣQ,K, we have

µ
ess
D

(U) = µ
ess
E

(XΣQ
).

Consider the affine subspace AU =
⊕

v AU,v of
⊕

v NR. By Corollary 4.10,

µ
ess
E

(XΣQ
) = min

u′∈HK∩AU

∑

v

−nvψD,v(u
′
v), µ

ess
D

(X) = min
u′∈HK

∑

v

−nvψD,v(u
′
v).

Since D monocritical, the minimum in the right equality is attained only at the
point u′ = u. We conclude that µ

ess
E

(U) = µ
ess
D

(X) if and only if uv ∈ AU,v for
all v ∈ MK, proving both statements. �

Corollary 5.15. Let X be a proper toric variety over a number field K and D a
monocritical metrized R-divisor on X with critical point u = (uv)v∈MK

, and suppose
that uv ∈ valv(T(K))⊗Q for all v ∈ MK. Then a translate of a subtorus of X0 is
D-special if and only if it is the translate of a subtorus by a D-special point.

Proof. Clearly, the translate of a subtorus by a D-special point is D-special. To
prove the reverse implication, let U be a D-special translate of a subtorus and write
U = TK ·p as in the statement of Proposition 5.14. By this result, the toric metrized

R-divisor E = ϕ∗
p,ιD is monocritical and, for each v ∈ MK and w ∈ MF over v,

uv ∈ AU,w ∩ valv(T(K))⊗Q ⊂ AU,w ∩ valw(T(F))⊗Q.

Since p ∈ X0(F),

AU,w ∩ valw(T(F))⊗Q = valw(p) + valw(T (F))⊗Q.

Hence uv − valw(p) ∈ valw(T (F))⊗Q. Extending the base field to F and restricting
to XΣQ

, Proposition 5.13 implies that this toric variety contains an E-special point.

Hence U contains a D-special point and it is the translate of T by this point, as
stated. �
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Example 5.16. Let D
can

be a nef and big toric R-divisor on the proper toric
variety X, equipped with the canonical metric. By Example 4.15, it is monocritical
with critical point 0 ∈ HK. Hence, p ∈ X0(K) isD

can
-special if and only if valv(p) =

0 for every v ∈ MK. By Kronecker’s theorem, this is also equivalent to the fact
that p is torsion. Hence, Corollary 5.15 shows that a translate of a subtorus that
is D

can
-special is necessarily the translate of a subtorus by a torsion point, that is,

a torsion subvariety.

Proof of Theorem 5.12. Let U ⊂ X0,K be the minimal translate of a subtorus con-
taining the subvariety V and let Q and ΣQ be as the ones defined before Proposi-
tion 5.14. By (5.2) and (5.3), we have µ

abs
D

(U) = µ
ess
D

(U) and

µ
ess
D

(X) = µ
abs
D

(X0) ≤ µ
abs
D

(U) ≤ µ
abs
D

(V ) ≤ µ
ess
D

(V ) = µ
ess
D

(X).

Therefore, U is D-special. By Proposition 5.14(2), D pulls back to a monocritical
metrized R-divisor on XΣQ

, the normalization of the closure of U in XK. Replac-
ing X by this toric variety, we reduce to the case where U = X0,K.

Using Proposition 2.5, we choose a sequence (pl)l≥1 of algebraic points of V that
is generic in V and satisfies

lim
l
hD(pl) = µ

ess
D

(V ).

Since V is not contained in any proper translate of a subtorus, this sequence is
strict and, since V is D-special, it is also D-small.

Applying Theorem 5.7 to an Archimedean place v ∈ MK, we obtain that the
sequence of measures (µpl,v)l≥1 converges to a measure whose support is the trans-
late Sv · e−uv of the compact subtorus, with uv the v-adic coordinate of the critical
point of D.

Since V is D-special, it is a closed subvariety of X0,K. Therefore V an
v is closed

in Xan
0,v. The measures (µpl,v)l≥1 have support in V an

v , and the limit measure has

support Sv ·e−uv . By the closedness of V an
v we deduce the inclusion Sv ·e−uv ⊂ V an

v .
Using that Sv · e−uv is dense in Xan

v with respect to the Zariski topology, it follows
that V = X0,K, proving the first statement of the theorem.

The last statement of the theorem follows from Corollary 5.15. �

By Theorem 5.12 and Example 5.16, the canonical toric metrized R-divisor D
can

satisfies the Bogomolov property, and every D
can

-special subvariety is torsion.
Hence, Theorem 5.12 extends Zhang’s theorem to the general monocritical case.
On the other hand, in §6.3 we will give examples of non-monocritical metrized
divisors not satisfying the Bogomolov property.

6. Examples

The obtained criteria can be applied in concrete situations to decide if a given
semipositive toric metrized R-divisor satisfies properties like modulus concentra-
tion or equidistribution. In this section, we consider translates of subtori with
the canonical height, and toric metrized R-divisors equipped with positive smooth
metrics at the Archimedean places and canonical metrics at the non-Archimedean
ones. We also give a family of counterexamples to the Bogomolov property in the
non-monocritical case.

6.1. Translates of subtori with the canonical height. Let X be a proper toric
variety of dimension n over a global field K and D a big and nef toric R-divisor
on X. Let ΨD be its virtual support function.
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We denote by D
can

this R-divisor equipped with the canonical metric as in
Example 4.1. This toric metrized R-divisor satisfies that, for all v ∈ MK,

ψD
can

,v = ΨD and ϑDcan
,v = 0.

Since D is big, ∆D has dimension n. Every point x in the interior of ∆D maximizes
the global roof function and ∂ϑDcan

,v(x) = {0}. Therefore, for all v ∈ MK,

Bv = {0} and Fv = {0}.
By Proposition 4.16, the canonical metric is monocritical and so, by Theorem 5.2,
D

can
satisfies the equidistribution property at every place (Example 5.5).

We next study the toric metrics on D that are obtained as the inverse image by
an equivariant map of a canonical metrized toric divisor on a projective space. For
r ≥ 0, let Pr

K be the standard projective space over K with homogeneous coordinates
(z0 : · · · : zr) and H the hyperplane at infinity, defined by the equation z0 = 0.

Denote by H
can

this toric divisor equipped with the canonical metric.
Let v ∈ MK. If v is Archimedean, we set λv = 1 whereas, if v is non-

Archimedean, we set λv as the positive generator of the discrete subgroup valv(K
×)

of R. A piecewise affine function is said to be λv-rational if all its defining affine
functions 〈x, u〉+ b satisfy x ∈MQ and b ∈ λvQ.

Let ψ : NR → R be a concave λv-rational piecewise affine function with |ψ−ΨD|
bounded. This determines a semipositive metric on OXan

v
(D). As seen in [BPS14,

Example 3.7.11], there is an integer r > 0 and a toric morphism ι : X → Pr
K such

that

ψ = ψι∗H
can

,v.

Hence, any such function ψ can be realized as the v-adic metric function of the
preimage of H

can
to X. This allows us to construct many examples, both mono-

critical and non-monocritical, of metrized toric divisors.
In the next examples, we fix K = Q and, as before, we denote by H

can
the

hyperplane at infinity with the canonical metric.

Example 6.1. Let ι : Gm,Q → P2
Q be the map given by

ι(t) = (1 : t/2 : t).

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(H
can

). Then
X = P1

Q and D is the divisor at infinity.
We have ∆D = [0, 1]. As explained in [BPS14, Example 5.1.16], for each v ∈ MQ

the graph of the local roof function associated to D is given by the upper envelope
of the extended polytope

conv((0, 0), (1, log |1/2|v), (1, log |1|v)) ⊂ R× R.

The graphs of these functions are represented in Figure 1. Thus, for x ∈ [0, 1]

log(2)

v = 2

− log(2)

v = ∞ v 6= ∞, 2

Figure 1. Local roof functions in Example 6.1

we have ϑ2(x) = x log(2) and ϑv(x) = 0 for v 6= 2. The global roof function
is ϑ(x) = x log(2) and the only point that maximizes it is x = 1. Moreover,
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∂ϑ2(1) = (−∞, log(2)] and ∂ϑv(1) = (−∞, 0] for v 6= 2. With Notation 4.2, we
have

B2 = [0, log(2)], F2 = [−∞, log(2)],

Bv = [− log(2), 0], Fv = [−∞, 0] for v 6= 2.

By Corollary 4.13, this metrized divisor does not satisfy the modulus concentration
property at any place. A fortiori, it does not satisfy the equidistribution property
at any place.

Indeed, by (4.3) we have µ
ess
D

(X) = log(2). Let (ωl)l≥1 be a sequence given by
a choice of a primitive l-th root of the unity, a 6= 2 a positive prime number and r
an integer with log(a) ≤ r log(2). Choose any r-th root a1/r of a and consider the
generic sequences of points

pl = (1 : ωl) and ql = (1 : 2a−1/rωl) for l ≥ 1.

For every v ∈ MQ, l ≥ 1, p ∈ Gal(pl)v and q ∈ Gal(ql)v we have (valv)∗(p) = 0 and

(valv)∗(q) =





log(2) if v = 2,
−1
r log(a) if v = a,

− log(2) + 1
r log(a) if v = ∞,

0 if v 6= 2, a,∞.

Either by computing the local roof functions of D or the Weil height of the image
of these points under the inclusion ι, we deduce that

hD(pl) = log(2) and hD(ql) = log(2).

Therefore both sequences areD-small. For any place v, the sequence µpl,v converges
to λSv,0. In contrast, if we denote uv = (valv)∗(q) for any q ∈ Gal(ql)v , then µql,v

converges to λSv,uv . This shows that neither the modulus concentration nor the
equidistribution properties hold for the places 2, a,∞. Varying a, we deduce that
these properties do not hold at any place of Q.

The metric of D at the Archimedean place is the canonical one. The metrics at
the non-Archimedean places can be interpreted in terms of integral models. Let X
be the blow up of P1

Z at the point (1 : 0) over the prime 2. The fibre of the structural
map X → Spec(Z) over the point 2 has two components: the exceptional divisor
of the blow up, which we denote by E, and the strict transform of the fibre of P1

Z,
which we denote by Y . Consider the divisor

D = ∞+ Y,

where ∞ denotes the closure in X of the point (0 : 1) ∈ P1(Q). The pair (X ,D)
is a model of (X,D). For each non-Archimedean place v, this model induces an
algebraic metric on D that agrees with the v-adic metric of D.

Example 6.2. Consider now the map ι : Gm,Q → P2
Q given by

ι(t) = (t−1 : 1/2 : t).

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(H
can

). In this
case, X = P1

Q and D is the divisor at infinity plus the divisor at zero.
We have ∆D = [−1, 1]. As before, we compute the local roof functions using

[BPS14, Example 5.1.16]. Their graphs are represented in Figure 2. For x ∈ [0, 2],
we have ϑ2(x) = (1 − |x|) log(2) and ϑv(x) = 0 for v 6= 2. Thus, the global roof
function is ϑ(x) = (1−|x|) log(2). Its maximum is attained only at the point x = 0.
In this case, ∂ϑ2(0) = [− log(2), log(2)] and ∂ϑv(0) = {0} for v 6= 2. We deduce
that

B2 = {0}, F2 = [− log(2), log(2)] and Bv = {0}, Fv = {0} for v 6= 2. (6.1)
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log(2)

v = 2

− log(2)

v = ∞ v 6= ∞, 2

Figure 2. Local roof functions in Example 6.2

By Corollary 4.13, D satisfies modulus concentration for all places except the
place 2. This toric metrized divisor is not monocritical, and so we cannot ap-
ply Theorem 5.2 in this case. Indeed, later we will see that D does not satisfy the
equidistribution property at any place of Q (Example 7.6).

As in the previous example, the metric of D at the Archimedean place is the
canonical one, and those at the non-Archimedean places can be interpreted in terms
of integral models. Let X be the blow up of P1

Z at the points (1 : 0) and (0 : 1)
over the prime 2. The fibre of the structural map X → Spec(Z) over the point 2
has three components. Consider the divisor

D = ∞+ 0,

where ∞ denotes the closure in X of the point (0 : 1) ∈ P1(Q) and 0 the closure of
the point (1 : 0). The pair (X ,D) is a model of (X,D). For each non-Archimedean
place v, this model induces an algebraic metric on D that agrees with the v-adic
metric of D.

Example 6.3. This time we consider the map ι : Gm,Q → P3
Q given by

ι(t) = (1 : t/2 : t2/2 : t3).

Let X be the normalization of the closure of ι(Gm,Q) and D = ι∗(H
can

). In this
case, X = P1

Q and D is three times the divisor at infinity.
We have ∆D = [0, 3] and the local roof functions are represented in Figure 3.

They are given by ϑ2(x) = log(2)min(x, 1, 3 − x) and ϑv(x) = 0 for v 6= 2. The

log(2)

v = 2

− log(2)

v = ∞

v 6= ∞, 2

Figure 3. Local roof functions in Example 6.2

global roof function is thus ϑ(x) = log(2)min(x, 1, 3 − x), which is maximized at
any point of the interval [1, 2]. Choosing the maximizing point x = 3/2, we have
∂ϑv(3/2) = {0} for all v.
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ThusD is monocritical, by Proposition 4.16. By Corollary 4.13 and Theorem 5.2,
it satisfies both the modulus concentration and the equidistribution properties for
any place.

6.2. Positive Archimedean metrics. The following result covers many of the
examples considered in [BPS14, BMPS16, BPS15]: twisted Fubini-Study metrics
on projective spaces, metrics from polytopes, Fubini-Study metrics on toric bun-
dles, ℓp-metrics on toric varieties, and Fubini-Study metrics on weighted projective
spaces. All of them consist of toric varieties over Q with a toric divisor equipped
with a positive smooth metric at the Archimedean place and the canonical metric
at the non-Archimedean ones.

Theorem 6.4. Let X be a proper toric variety over a number field K and D =
(D, (‖ · ‖v)v∈MK

) a semipositive toric metrized R-divisor with D big. We assume
that, when v is Archimedean, ‖ · ‖v is a positive smooth metric on the principal
open subset Xan

0,v whereas, when v is non-Archimedean, it is the v-adic canonical

metric of D. Then D is monocritical. In particular, it satisfies the equidistribution
property for every place of K.

When K = Q, the v-adic limit measure is λSv,0 for every v ∈ MQ.

Proof. Since the metric is smooth and positive on Xan
0,v for v Archimedean, the

proof of [BPS14, Proposition 4.4.1] implies that the metric function ψD,v is smooth
and strictly concave, in the sense that its Hessian is negative definite. Therefore
ψD,v is of Legendre type in the sense of [BPS14, Definition 2.4.1] and, by [BPS14,

Theorem 2.4.2(2)], the local roof function ϑD,v is of Legendre type. In particular,
ϑD,v is smooth and strictly concave on the interior of ∆D and the sup-differential
at any point of the border of the polytope is empty.

For the non-Archimedean places, the metrics are canonical and so their local
roof functions are zero. Hence

ϑD =
∑

v|∞
nvϑD,v,

this function is smooth and strictly concave on the interior of ∆D, and its sup-
differential at any point of the border of ∆D is empty. This implies that there is a
unique maximizing point xmax ∈ ∆D, which lies in the interior of the polytope, and
that ∂ϑD(xmax) = {0}. Thus, the first assertion then follows from Proposition 4.16.

When K = Q there is only one Archimedean place. Therefore all the v-adic
metrics are the canonical metric except one. This implies easily that the critical
point in this case is u = (0)v and the last statement follows from Theorem 5.2. �

Example 6.5. Let X = P1
Q and D the divisor at infinity equipped with the

Fubini-Study metric at the Archimedean place and the canonical metric at the
non-Archimedean ones. By Theorem 6.4, this toric metrized divisor satisfies the
equidistribution property at every place. Moreover, the limit measure of the Galois
orbits of any generic D-small sequence is λSv,0.

Recall that the canonical metric at the non-Archimedean places corresponds to
the canonical model of (P1

Q,∞) given by (P1
Z,∞), where ∞ is the closure of the

point (0 : 1) ∈ P1(Q). If we change the integral model, different phenomena may
occur. For instance, consider the integral model of Example 6.1, whose global roof
function is given by

ϑD,∞(x) = −1

2
(x log x+ (1− x) log(1− x)) + x log(2),

see [BPS14, Example 6.2.3]. The unique maximum of this function is attained at
a point in the interior of ∆D = [0, 1]. Since ϑD,∞ is differentiable on (0, 1), we
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deduce that the sup-differential is reduced to one point. By Proposition 4.16, this
new toric metrized divisor is also monocritical.

In contrast, if we consider the divisor D′ = 0+∞ with the Fubini-Study metric
at the Archimedean place and the metrics induced by the integral model of Exam-
ple 6.2, then the maximum of the global roof function is attained at the point zero
and the sup-differential at this point is [− log(2), log(2)]. Since zero is not a vertex
of this set, by Proposition 4.16 this divisor is not monocritical. Hence it does not
satisfy the equidistribution property at the Archimedean place.

6.3. Counterexamples to the Bogomolov property. In this section, we give
examples of toric metrized divisors not satisfying the Bogomolov property. For
simplicity, we restrict to the case K = Q. As in §6.1, we denote by H

can
the

canonical metrized divisor at infinity on a projective space.

Example 6.6. Consider the map ι : Gm,Q ×Gm,Q → P3
Q given by

ι(t1, t2) = (1 : 2 : t1 : t2).

As in the examples in the previous section, we denote by X the normalization of
the closure of the image of ι and D = ι∗(H

can
). In this case, X = P2

Q and D is the
divisor at infinity.

We have that ∆D is the standard simplex of NR = R2 and ΨD : R2 → R is the
function given by

ΨD(u1, u2) = min(0, u1, u2).

By [BPS14, Example 4.3.21], the local metric functions are given, for (u1, u2) ∈ R2,
by

ψD,v(u1, u2) =

{
ΨD

(
u1 + log(2), u2 + log(2)

)
− log(2) if v = ∞,

ΨD(u1, u2) if v 6= ∞.

By [BPS14, Example 5.1.16], the local roof functions are given, for (x1, x2) ∈ ∆D,
by

ϑD,v(x1, x2) =

{
(1− x1 − x2) log(2) if v = ∞,

0 if v 6= ∞.

Hence the global roof function agrees with ϑD,∞. Its only maximizing point is

xmax = (0, 0), and one computes easily that ∂ϑD,∞(0, 0) = (− log(2),− log(2)) +

R2
≥0 and ∂ϑD,v(0, 0) = R2

≥0 for v 6= ∞. Thus

B∞ = [− log(2), 0]2, F∞ = (− log(2),− log(2)) + R2
≥0,

Bv = [0, log(2)]2, Fv = R2
≥0 for v 6= ∞.

We also have µ
ess
D

(X) = ϑ(0, 0) = log(2).

Let (z0 : z1 : z2) be homogeneous coordinates of X and consider the curve C of
equation z0+z1+z2 = 0. In what follows, we will see that this curve is a D-special
subvariety. Since C is not a translate of a subtorus, this will show that D does not
satisfy the Bogomolov property.

For l ≥ 1 choose a primitive l-th root of the unity ωl. Let z1,l be a solution of
the equation z2 + z + ωl = 0 and put z2,l = ωl/z1,l for the other solution. Then

z1,l + z2,l + 1 = 0 and z1,lz2,l = ωl. (6.2)

In particular, pl = (1 : z1,l : z2,l) is an algebraic point of C.
Let v ∈ MQ and q = (1 : q1 : q2) ∈ Gal(pl)v. If v 6= ∞, then the conditions (6.2)

imply that

valv(q) = (0, 0) ∈ Bv. (6.3)
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If v = ∞, then these same conditions (6.2) give max(|q1|∞, |q2|∞) ≤ 1+
√
5

2 . Thus

val∞(q) ∈
(
− log

(1 +
√
5

2

)
,− log

(1 +
√
5

2

))
+ R2

≥0 ⊂ F∞. (6.4)

Moreover, by the product formula and (6.3), we have

E[νpl,∞] =
1

#Gal(pl)∞

∑

q∈Gal(pl)∞

val∞(q) = (0, 0) ∈ B∞. (6.5)

By Corollary 4.9, the conditions (6.3), (6.4) and (6.5) imply that hD(pl) = µ
ess
D

(X).

Since the sequence (pl)l≥1 is generic in C, we deduce µ
ess
D

(C) = µ
ess
D

(X) and so C

is a D-special subvariety.

We generalize this example to a family of metrics on toric varieties of dimension
greater than or equal to 2.

Proposition 6.7. Let X be a proper toric variety over Q of dimension n ≥ 2 and D
a big and nef R-divisor on X. Let u0 ∈ NR and consider the metrized divisor D

u0

over D defined by

ψD
u0 ,v(u) =

{
ΨD(u− u0) if v = ∞,

ΨD(u) if v 6= ∞.

Then D
u0

satisfies the Bogomolov property if and only if u0 = 0.

Proof. When u0 = 0 we have D
u0

= D
can

. By Theorem 5.12 and Example 5.16,
this toric metrized divisor satisfies the Bogomolov property.

Suppose u0 6= 0. The local roof functions of D
u0

are given, for x ∈ ∆D, by

ϑDu0 ,v(x) =

{
〈x, u0〉 if v = ∞,

0 if v 6= ∞.

In particular, the global roof function ϑD coincides with ϑDu0 ,∞. The maximum
of ϑD is attained on a face of ∆D. Fix x0 in the relative interior of this face. If we
denote by ϑ0 the constant function equal to 0 defined on ∆D, then σ0 = ∂ϑ0(x0)
is a cone in NR containing −u0 in its relative interior. Moreover,

∂ϑDu0 ,∞(x0) = u0 + σ0 and ∂ϑDu0 ,v(x0) = σ0 for v 6= ∞.

It follows that 0 ∈ Bv for every v, that F∞ = u0 + σ0 and that Fv = σ0 for v 6= ∞.
As in Example 6.6, to prove that D

u0
does not satisfy the Bogomolov property,

it is enough to exhibit a curve C in X that is D-special but not a translate of a
subtorus.

We identify NR ≃ Rn. Since X is proper and σ0 is a cone of the fan of X, there
is a primitive vector n0 ∈ N in σ0. It follows that there is ε0 > 0 such that

ℓ0 := {xn0 | −ε0 ≤ x ≤ ε0} ⊂ u0 + σ0.

Choose a primitive vector a0 ∈ N such that a0 and n0 generate a saturated sub-
lattice V of N . Put b0 = n0 + a0. Then a0 and b0 form an integral basis of V . Fix
an integer k0 ≥ ε−1

0 and consider the linear map L : VR → R2 defined by

L(sa0 + tb0) = k0 · (s, t).
Let S be the toric surface in X0 associated to the saturated sublattice V . The
linear map L induces a toric morphism ι : S → G2

m,Q. Let C be the curve in G2
m,Q

of equation x+ y + 1 = 0 and denote by C0 the closure in X of the curve ι−1(C).
As in Example 6.6, for l ≥ 1 choose a primitive l-th root of unity root ωl. Let z1,l

be a solution of the equation z2 + z + ωl = 0 and put z2,l = ωl/z1,l. Hence

z1,l + z2,l + 1 = 0 and z1,lz2,l = ωl.
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In particular, (z1,l, z2,l) ∈ C(Q). Choose a point pl ∈ C0(Q) such that ι(pl) =
(z1,l, z2,l). The sequence of points (pl)l≥0 is generic in C0.

For every place v there is a commutative diagram

(G2
m)

an
v

valv

��

San
v

valv

��

�

�

//ιoo Xan
0,v

valv

��

R2 VR
�

�

//Loo NR

Since n0 = b0 − a0, we have

ℓ := L(ℓ0) = {(x,−x) | |x| ≤ ε0k0}.

Arguing as in Example 6.6, for every non-Archimedean place v and every point
q ∈ Gal(pl)v, we have

valv(ι(q)) = 0.

Since L is injective, valv(q) = 0 and therefore νpl,v = δ0. In particular,

supp(νpl,v) = {0} ⊂ Fv and E[νpl,v] = 0 ∈ Bv.

When v = ∞, the product formula implies that

E[νpl,∞] =
1

#Gal(pl)∞

∑

q∈Gal(pl)∞

val∞(q) = 0 ∈ B∞.

On the other hand, note that for every q in Gal(pl)∞, the point ι(q) = (q1, q2)
satisfies

q1 + q2 + 1 = 0 and q1q2 = ωl.

We thus have |q1|∞ |q2|∞ = 1,
√
5− 1

2
≤ min{|q1|∞, |q2|∞} ≤ max{|q1|∞, |q2|∞} ≤ 1 +

√
5

2
,

and therefore

|max(− log |q1|∞,− log |q2|∞)| ≤ log

(
1 +

√
5

2

)
≤ 1 ≤ ε0k0.

This implies that

val∞(ι(q)) ∈ ℓ, val∞(q) ∈ ℓ0 ⊂ u0 + σ0 = F∞ and supp(νpl,∞) ⊂ F∞.

By Lemma 4.8, we have hD(pl) = µ
ess
D

(X). Being the sequence (pl)l≥1 generic

in C0, we deduce that C0 is D-special. Since C0 is not a translate of a subtorus,
we conclude that D does not satisfy the Bogomolov property, as stated. �

7. Potential theory on the projective line and small points

In this section, we apply potential theory on the projective line over a num-
ber field, and in particular Rumely’s Fekete-Szegő theorem, to produce interesting
sequences of small points in the non-monocritical case.

In the absence of modulus concentration, this allows to produce a wealth of non-
toric measures that are limit measures of Galois orbits of generic sequences of points
of small height. These techniques also allow to show that the absence of modulus
concentration at a place can affect the equidistribution property at another place.
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7.1. Limit measures in the absence of modulus concentration. We recall the
basic objects of potential theory on the projective line. For most of the details and
precise definitions, we refer the reader to [Tsu75] and [BR10] for the Archimedean
and non-Archimedean cases, respectively.

Let K be a number field and fix a place v ∈ MK. For a subset E ⊂ Cv, we denote
by E its closure in A1,an

v . Moreover, for r > 0, put

Bv(E, r) =
{
z ∈ Cv

∣∣∣ inf
a∈E

|z − a|v ≤ r
}
.

In particular, for a ∈ Cv the set Bv(a, r) is the closed ball with center a and radius r.
Set Ov = Bv(0, 1), and recall that Sv = {z ∈ Cv | |z|v = 1}.

Note that if E is a bounded subset of Cv, then E is compact. Since A1,an
v is

metrizable, it follows that the set of Borel probability measures on E endowed with
the weak-∗ topology is compact, metrizable, and therefore sequentially compact.

Denoting by A1,an
v × A1,an

v the product of A1,an
v with itself in the category of

topological spaces, let

δv : A
1,an
v × A1,an

v → R

be the function defined by δv(z, z
′) = |z − z′|v for v Archimedean, and the unique

upper semicontinuous extension of the function on Cv × Cv defined by (z, z′) 7→
|z − z′|v for v non-Archimedean, see [BR10, Proposition 4.1].

Given a Borel probability measure µ on A1,an
v , the energy integral (with respect

to the point at infinity) of µ is defined as

Iv(µ) =

∫

A1,an
v ×A1,an

v

− log(δv(z, z
′)) d(µ× µ)(z, z′). (7.1)

Let K ⊂ A1,an
v be a measurable subset. The v-adic Robin constant and capacity

(with respect to the point at infinity) of K are respectively defined as

Vv(K) = inf{Iv(µ) | supp(µ) ⊂ K} and capv(K) = e−Vv(K) . (7.2)

If K is compact and capv(K) > 0, then there exists a unique probability measure,
denoted by ρK , supported on K and realizing the infimum in (7.2), see [Tsu75,
§III.2 and Theorem III.32] for the Archimedean case and [BR10, Propositions 6.6
and 7.21] for the non-Archimedean one. Hence

Iv(ρK) = Vv(K).

This measure is called the equilibrium measure of K. It does not charge singletons,
so we can also consider it as a measure on C×

v . For K = Ov, it agrees with λSv,0,
the Haar probability measure on the unit circle when v is Archimedean, and the
Dirac measure at the Gauss point of A1,an

v when v is non-Archimedean. We also
have

capv(Ov) = 1, (7.3)

see for example [Rum02, §3].
In the non-Archimedean case, Cv is a proper subset of A1,an

v . In general, for a
Borel subset E of Cv, we have

capv(E) ≤ capv(E),

but this inequality might be strict even if E is closed and bounded. Equality holds
if, for example, there are r > 0 and a polynomial P with coefficients in Cv, such
that E = {z ∈ Cv | |P (z)| ≤ r}, see [BR10, Corollary 6.26] and [Rum02, §3.2].
Definition 7.1. An adelic set is a collectionE = (Ev)v∈MK

such that Ev is a subset
of Cv invariant under the action of the absolute v-adic Galois group Gal(Kv/Kv)
for all v, and such that Ev = Ov for all but a finite number of v. We say that E
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is bounded (respectively closed, open) if Ev is bounded (respectively closed, open)
for all v.

Given an adelic set E = (Ev)v∈MK
, its (global) capacity is defined as

cap(E) =
∏

v∈MK

capv(Ev)
nv .

By (7.3), this product actually runs over a finite set and so the global capacity is
well-defined.

The following result shows that, in the non-monocritical case, there is a wealth
of limit measures of Galois orbits of generic sequences of points of small height that
are not invariant under the action of the compact torus.

Theorem 7.2. Let X = P1
K and D the divisor at infinity equipped with a semipos-

itive toric metric. Let Bv, Fv be the associated subsets of NR = R as in (4.4). Let
E = (Ev)v∈MK

be a closed bounded adelic set such that cap(E) = 1, and such that
for every non-Archimedean place v we have cap(Ev) = cap(Ev). Assume that the
following conditions hold:

(1) supp((valv)∗ρEv
) ⊂ Fv for all v ∈ MK;

(2) E[(valv)∗ρEv
] ∈ Bv for all v ∈ MK;

(3)
∑

v∈MK
nv E[(valv)∗ρEv

] = 0.

Then there is a generic D-small sequence (pl)l≥1 of algebraic points of X0 = Gm,K

such that, for every v ∈ MK, the sequence of probability measures (µpl,v)l≥1 con-
verges to ρEv

.

The proof of this theorem will be given after two preliminary propositions. The
next statement is a direct consequence of Rumely’s version of the Fekete-Szegő
theorem in [Rum02, Theorem 2.1].

Proposition 7.3. Let E = (Ev)v∈MK
be a closed bounded adelic set such that

cap(E) ≥ 1. There exists a sequence (pl)l≥1 of pairwise distinct points of K
×

satisfying

Gal(pl)v ⊂ Bv

(
Ev,

1

l

)

for all l ≥ 1 and v ∈ MK. In particular, Gal(pl)v ⊂ Ev for every non-Archimedean
place v such that Ev = Ov.

Proof. For l ≥ 1, consider the bounded adelic neighbourhood U l = (Ul,v)v∈MK
of E

given by

Ul,v = Bv

(
Ev,

1

l

)
.

By [Rum02, Theorem 2.1] with S = ∅, there is an infinite number of points p ∈ K
×

such that Gal(p)v ⊂ Ul,v for all v. Inductively, for each l ≥ 1 we choose pl as one
of these points that is different from pl′ for l

′ ≤ l − 1. �

In the notation of Proposition 7.3, when the adelic set E has capacity 1, the
sequence of v-adic Galois orbits of the points pl equidistribute according to the
equilibrium measure of the closure Ev.

Proposition 7.4. Let E = (Ev)v∈MK
be a closed bounded adelic set such that

cap(E) = 1 and such that for every non-Archimedean place v we have cap(Ev) =

cap(Ev). Let (pl)l≥1 be a sequence of pairwise distinct points of K
×
with Gal(pl)v ⊂

Bv(Ev,
1
l ) for all l ≥ 1 and v ∈ MK. Then, for all v ∈ MK, the sequence (µpl,v)l≥1

converges to the equilibrium measure of Ev.
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Proof. Our hypotheses imply that for every l ≥ 1 the Weil height of pl is bounded
from above independently of l. Together with the Northcott property and the
fact that the points in the sequence (pl)l≥1 are pairwise distinct, this implies that
liml #Gal(pl) = ∞. Taking a subsequence if necessary, we assume that #Gal(pl) ≥
2 for every l ≥ 1.

Since for each place v the space of Borel probability measures on Bv(Ev, 1) is
sequentially compact, by taking a subsequence we can suppose without loss of gen-
erality that the sequence (µpl,v)l≥1 converges to a probability measure µv supported

on
⋂

l Bv(Ev,
1
l ) = Ev.

For each l ≥ 1 and v ∈ MK, put for short Gl,v = Gal(pl)v and set

dl,v =
1

#Gl,v(#Gl,v − 1)

∑

q,q′∈Gl,v

q 6=q′

log |q − q′|v.

Consider also the probability measure on A1,an
v × A1,an

v , given by

νl,v =
1

#Gl,v(#Gl,v − 1)

∑

q,q′∈Gl,v

q 6=q′

δq × δq′ ,

and note that (νl,v)l≥1 converges to µv × µv. The function log(δv(·, ·)) is bounded
from above on Bv(Ev, 1)× Bv(Ev, 1). Similarly as in the proof of Lemma 3.8, this
property implies that

lim sup
l→∞

dl,v = lim sup
l→∞

∫

A1,an
v ×A1,an

v

log(δv(z, z
′)) dνl,v(z, z

′)

≤ −Iv(µv) ≤ log capv(Ev). (7.4)

By the product formula,
∑

v∈MK
nvdl,v = 0. Let S ⊂ MK be a finite set of

places containing the Archimedean places and those where Ev 6= Ov. In particular,
dl,v ≤ 0 for v /∈ S. Hence, for v ∈ MK,

lim inf
l→∞

dl,v = lim inf
l→∞

∑

w∈MK\{v}
−nw

nv
dl,w

≥ lim inf
l→∞

∑

w∈S\{v}
−nw

nv
dl,w

≥ −
∑

w∈S\{v}

nw
nv

lim sup
l→∞

dl,w

≥ −
∑

w∈S\{v}

nw
nv

log(capw(Ew))

≥ log(capv(Ev)).

Together with (7.4) and our hypothesis capv(Ev) = capv(Ev), this implies Iv(µv) =
− log capv(Ev). Therefore µv is the equilibrium measure of Ev, and the proof is
complete. �

Proof of Theorem 7.2. Let (pl)l≥1 be a sequence of pairwise distinct points of K
×

as in Proposition 7.4, which exists thanks to Proposition 7.3. Note in particular
that the sequence (pl)l≥1 is generic. On the other hand, Proposition 7.4 implies
that, for every v ∈ MK, the sequence of probability measures (µpl,v)l≥1 converges
to ρEv

. Here we have to show that, under the present hypotheses, this sequence of

points is D-small.
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Let sD be the canonical section of O(D) with div(sD) = D. This is a global
section vanishing only at infinity. Hence for every v ∈ MK the v-adic Green function

gD,v = − log ‖sD‖v
is a continuous real-valued function on A1,an

v . Let S ⊂ MK be a finite set of places
containing the Archimedean places, the places where the metric ‖ · ‖v differs from
the canonical one, and those where Ev 6= Ov.

By construction, for each v ∈ MK and l ≥ 1 we have Gal(pl)v ⊂ Bv(Ev, 1). In
particular, for v 6∈ S, Gal(pl)v ⊂ Ov and so gD,v(q) = 0 for all q ∈ Gal(pl)v. Hence

hD(pl) =
∑

v∈MK

nv

#Gal(pl)v

∑

q∈Gal(pl)v

gD,v(q) =
∑

v∈S

nv

∫
g̃D,v dµpl,v

for any continuous function g̃D,v on P1,an
v coinciding with gD,v on the bounded

subset Bv(Ev, 1).

The measures µpl,v converge to ρEv
and are supported on the closure Bv(Ev, 1).

Also, for all v /∈ S, we have ρEv = λSv,0 and gD,v vanishes on the support of this
measure. Hence

lim
l→∞

hD(pl) =
∑

v∈S

nv

∫
g̃D,v dρEv

=
∑

v∈MK

nv

∫
gD,v dρEv

. (7.5)

By the condition (3) and the fact that E is an adelic set, we deduce that the col-
lection ν = ((valv)∗ρEv

)v∈MK
is a centered adelic measure (Definition 4.4). More-

over, gD,v = −ψD,v ◦ valv on A1,an
v \ {0}. By (7.5), we have

lim
l→∞

hD(pl) = −
∑

v∈MK

nv

∫
ψD,v d(valv)∗ρEv

= ηD(ν).

Lemma 4.8 together with the conditions (1) and (2) implies that ηD(ν) = µ
ess
D

(X).

Hence the sequence (pl)l≥1 is D-small, as stated, finishing the proof of the theorem.
�

7.2. Local modulus concentration and equidistribution. Corollary 4.13 gives
a criterion for a semipositive toric metrized R-divisor to satisfy the modulus concen-
tration property at a given place. Applying it, one can immediately give examples
where modulus concentration fails at that place. If this happens, then the equidis-
tribution property also fails at that place.

Can this absence of modulus concentration affect the equidistribution property
at another place? The next result on the projective line over a number field shows
that this can be the case under a rationality hypothesis.

Proposition 7.5. Let X = P1
K be the projective line over a number field K, D the

divisor at infinity equipped with a semipositive toric metric, and v0 ∈ MK. For each
v ∈ MK, let Bv be the set introduced in Notation 4.2. Assume that there is a point

p ∈ X0(K) = K
×

such that valv(p) ∈ Bv for all v ∈ MK and valv0(p) ∈ ri(Bv0).
If D does not satisfy the modulus concentration property at v0, then D does not

satisfy the equidistribution property at any place of K.

Proof. Assume that D does not satisfy the modulus concentration property at v0.
Let v ∈ MK. If v = v0 then clearly D does not satisfy the equidistribution property
at v, so we can suppose that v 6= v0. Extending scalars to a suitable large number
field and translating by the point p, we can also reduce to the case when 0 ∈ ri(Bv0

)
and 0 ∈ Bw for all w ∈ MK.

Let Fv0 , g1,v0
and g2,v0 be as in Notation 4.2, and let x be a in ∆D at which g1,v0+

g2,v0 attains its maximum. By Corollary 4.13, the set Fv0 is not a single point. Since
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0 ∈ ri(Bv0
) and Fv0

is the minimal face of ∂g1,v0(x) containing Bv0
, there is δ > 0

such that the set Fv0 contains the interval [−δ, δ]. Set

c =
eδ +e−δ

2
> 1

and consider the closed bounded adelic set E = (Ew)w∈MK
given by

Ev0 =

{
[−2c, 2c] if v0 is Archimedean,

Bv0
(2, c) if v0 is non-Archimedean,

Ev =

{
[−2/c, 2/c] if v is Archimedean,

Bv(2, 1/c) if v is non-Archimedean,

and, for w 6= v0, v,

Ew =

{
[−2, 2] if w is Archimedean,

Ow = Bw(0, 1) if w is non-Archimedean.

The local capacities of these sets are

capv0
(Ev0) = c, capv(Ev) = 1/c and capw(Ew) = 1 for w 6= v0, v,

see for instance [Rum02, §3]. Hence, the global capacity of E is 1.
Consider the map R : P1

K → P1
K defined in affine coordinates by R(z) = z + 1

z .

Using the expression R(z)− 2 = (z−1)2

z , one checks that, for w non-Archimedean,

R−1(Ew) =





{z ∈ Cv0 | |z − 1|2v0 ≤ c|z|v0} if w = v0,

{z ∈ Cv | |z − 1|2v ≤ c−1|z|v} if w = v,

{z ∈ Cw | |z2 + 1|w ≤ |z|w} if w 6= v0, v,

=





{z ∈ Cv0
| c−1 ≤ |z|v0

≤ c} if w = v0,

Bv(1, c
−1/2) if w = v,

Sw if w 6= v0, v.

(7.6)

On the other hand, using

z =
1

2

(
R(z)±

√
R(z)2 − 4

)
, c−

√
c2 − 1 = e−δ and c+

√
c2 − 1 = eδ,

one also checks that, for w Archimedean,

R−1(Ew) =





Sv0
∪
{
z ∈ Cv0 | im(z) = 0, e−δ ≤ |z|v0

≤ eδ
}

if w = v0,{
z ∈ Sv | im(z) ≥

√
1− c−2

}
if w = v,

Sw if w 6= v0, v.

(7.7)

We represent in Figure 4 the inverse images by R of the sets Ev0 , Ev and Ew in

the Archimedean case. The point x therein is x = c−1 + i
√
1− c−2.

We deduce from the previous analysis that, regardless whether v0, v or w are
Archimedean or not, we have

R−1(Ev0
) ⊂ val−1

v0
([−δ, δ]), R−1(Ev) ( Sv and R−1(Ew) = Sw for w 6= v0, v.

Let (pl)l≥1 be a sequence of pairwise distinct points as given by Proposition 7.3
applied to the adelic set E. For each l ≥ 1, choose a point ql ∈ R−1(pl). Since

for each place v the space of Borel probability measures on Bv(Ev, 1) is sequen-
tially compact, after restricting to a subsequence we can assume that the sequence
(µql,w)l≥1 converges to a probability measure µw on R−1(Ew), for all w ∈ MK.
By construction, for each w the supports of the direct image measures νql,w =
(valw)∗µql,w, l ≥ 1, are contained in [−δ, δ] ⊂ NR. Therefore, this sequence of
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e
−δ− e

−δ− e
δ

e
δ

R−1(Ev0)

x

x−x

−x

R−1(Ev)

1−1

i

−i

R−1(Ew)

Figure 4. Inverse images by R of the sets Ev0 , Ev and Ew for v0,
v and w 6= v, v0 Archimedean

measures converges in the KR-topology to the direct image (valw)∗µw, which can
be seen by using Remark 3.13.

Let S ⊂ MK be the finite subset consisting of the Archimedean places plus v0
and v. If w 6= v0, then Gal(ql)w ⊂ val−1

w (0) and E[νql,w] = 0. Thus

E[(valw)∗(µw)] = lim
l
E[νql,w] = 0.

Hence, thanks to the convergence in the KR-topology and the product formula,

E[(valv0
)∗(µv0

)] = lim
l
E[νql,v0 ] = lim

l

∑

w∈S
w 6=v0

−E[νql,v0 ] = 0.

Thus E[(valw)∗(µw)] = 0 ∈ Bw for all w ∈ MK. By construction, it is also clear that
supp((valw)∗µw) ⊂ Fw for all w. By Lemma 4.8, the sequence (ql)l≥1 is D-small.

We have thus constructed a generic D-small sequence such that its v-adic Galois
orbit converges to a measure µv whose support is contained in the closure R−1(Ev).
On the other hand, the sequence (ωl)l≥1 given by the choice of a primitive l-th root

of unity is also D-small, but its v-adic Galois orbit converges to the measure λS,0.

By (7.6) and (7.7) the support of this measure is not contained in R−1(Ev), so it
is different from µv. We deduce that D does not satisfy the v-adic equidistribution
property, as stated. �

Example 7.6. Let X = P1
Q and D the divisor at infinity plus the divisor at

zero, equipped with the semipositive toric metric from Example 6.2. As explained
therein, D does not satisfy modulus concentration at the place v0 = 2 and, by (6.1),
we have 0 ∈ ri(Bv) for all v ∈ MQ. Theorem 7.2 implies that D does not satisfy
the equidistribution property for any place of Q.
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Remark 7.7. A rationality hypothesis like the condition that the sets Bv contain
the image by the valuations map of an algebraic point, is necessary for the conclu-
sion of Proposition 7.5 to hold. Indeed, suppose that, for a given non-Archimedean

place v, we have Bv = Fv = {uv} with uv 6∈ valv(K
×
v ). By the tree structure of

the Berkovich projective line, this implies that val−1
v (uv) consists of a single point,

of type III in Berkovich’s classification [BR10, §1.4]. Hence, the v-adic modulus
concentration at v given by Corollary 4.13, easily implies that the v-adic Galois
orbits of D-small sequences of algebraic points concentrate around this point of
type III, regardless of the structure of the set Bv0

.
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[Cha06] , Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew.

Math. 595 (2006), 215–235.
[Che11] H. Chen, Differentiability of the arithmetic volume function, J. Lond. Math. Soc. (2)

84 (2011), 365–384.
[Cin11] Z. Cinkir, Zhang’s conjecture and the effective Bogomolov conjecture over function

fields, Invent. Math. 183 (2011), 517–562.
[Fab09] X. Faber, Equidistribution of dynamically small subvarieties over the function field of

a curve, Acta Arith. 137 (2009), 345–389.
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Institut de Mathématiques de Jussieu – U.M.R. 7586 du CNRS, Équipe de Théorie des
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