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ABSTRACT. We study the distribution of Galois orbits of points of small height
on proper toric varieties, and its application to the Bogomolov problem.

We introduce the notion of monocritical toric metrized divisor. We prove
that a toric metrized divisor D on a proper toric variety X over a global field K
is monocritical if and only if for every generic D-small sequence of algebraic
points of X and every place v of K, the sequence of their Galois orbits on the
analytic space X3 converges to a measure. When this is the case, the limit
measure is a translate of the natural measure on the compact torus sitting in
the principal orbit of X.

The key ingredient is the study of the v-adic modulus distribution of Ga-
lois orbits of generic D-small sequences of algebraic points. In particular, we
characterize all their cluster measures.

We generalize the Bogomolov problem by asking when a closed subvariety
of the principal orbit of a proper toric variety that has the same essential
minimum than the ambient variety, must be a translate of a subtorus. We prove
that the generalized Bogomolov problem has a positive answer for monocritical
toric metrized divisors, and we give several examples of toric metrized divisors
for which the Bogomolov problem has a negative answer.
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1. INTRODUCTION

The study of the limit distribution of Galois orbits of points of small height
was initiated by Szpiro, Ullmo and Zhang in their seminal paper [SUZ97]. For
an Abelian variety defined over a number field and over an Archimedean place,
they proved the equidistribution of the Galois orbits of sequences of points whose
Néron-Tate height converges to zero. This equidistribution result was motivated by
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the Bogomolov conjecture on Abelian varieties, and eventually led to an affirmative
solution by Ullmo [U1198] and Zhang [Zha98], see also [Cinl1, Ghi09, Gub07, Yam13,
Yam16] for similar results in the function field case.

This equidistribution result has been widely generalized. In particular, it has
been extended to more general varieties and height functions and, with the in-
troduction of Berkovich spaces, to non-Archimedean places [Bil97, Cha00, FROG,
Cha06, BR06, Yua08, BB10, Chell]. However, all these generalizations are re-
stricted to height functions that satisfy a special condition, namely, that the es-
sential minimum of the heights of points is equal to the normalized height of the
ambient variety, see below for precisions. In this paper, a height function satisfying
this extremal condition is called “quasi-canonical”. All the available methods to
prove equidistribution for points of small height break down for heights functions
that are not quasi-canonical.

There are important classes of quasi-canonical height functions, such as Néron-
Tate heights on Abelian varieties, canonical metrics on toric varieties, and more
generally those coming from algebraic dynamical systems. But there are also many
height functions of interest that are not quasi-canonical, like (twisted) Fubini-Study
heights on projective spaces and the Faltings height on modular varieties.

For toric varieties and height functions the situation is startling: the only ones
that are quasi-canonical are essentially the canonical one, and those derived from it
by scaling and translations. So all the previous equidistribution results apply to a
very restricted class of toric height functions. In this paper, we give a complete de-
scription of the equidistribution phenomenon for general toric heights. Our results
reveal that a very mild positivity assumption is enough to guarantee equidistribu-
tion, see Corollary 1.2 and Theorem 6.4 for restricted applications. This provides
a wealth of new height functions for which the equidistribution property holds.
Moreover, we give a complete classification of those toric heights for which equidis-
tribution holds (Theorem 1.1), and use it to prove that the equidistribution prop-
erty implies the Bogomolov property in the toric context (Theorem 1.4). As a
by-product, we give a characterization of those toric heights whose essential mini-
mum is attained (Corollary 4.9). We also provide examples of toric height functions
that fail the Bogomolov property and for which the equidistribution property fails
in a myriad of ways (§6 and §7).

Our methods build on the results and techniques developed in [BPS14, BMPS16,
BPS15] to study toric heights. In particular, convex analysis and the Legendre-
Fenchel duality play an important role. We introduce new techniques to deal with
the spaces of adelic measures that appear naturally in the equidistribution problem.
Most of the technical difficulties arise from the fact that these spaces are not com-
pact. In dealing with these difficulties we are naturally led to consider the interplay
between several topologies on these spaces.

To describe our results more precisely, we start with a brief review of the state of
the art in the general setting. Let K be a global field, that is, a field that is either
a number field or the function field of a regular projective curve over an arbitrary
field, and My its set of places. We denote | - |, and n, the absolute value on K
associated to a place v and its weight. Let X be a proper algebraic variety over K
of dimension n, and D = (D, (|| ||s)veom, ) @ semipositive metrized (Cartier) divisor
with D big. Let

hy: X(K) — R

be the associated height function on the set of algebraic points of X, see §2 for
details. It is a generalization of the notion of height of algebraic points considered
by Weil, Northcott and others.
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The essential minimum of X with respect to D, denoted by pE(X), is the
smallest possible limit value of the height of a generic net of algebraic points of X.

Consequently, we say that a net (p;)ier is D-small if
lim by () = E5(X).

A fundamental inequality by Zhang [Zha95] shows that the essential minimum
can be bounded below in terms of the height and the degree of D:

p () > o

(n+1)degp(X)
We say that D is quasi-canonical if this lower bound for the essential minimum is
an equality (Definition 2.7).

For a place v € Mk, we denote by X" the v-adic analytification of X. If v is
Archimedean, it is a complex analytic space whereas, if v is non-Archimedean, it
is a Berkovich space over C,, the completion of the algebraic closure of the local
field K,. We endow the space of probability measures on X3" with the weak-x
topology with respect to the space of continuous functions on X2".

For an algebraic point p of X, we denote by Gal(p), its v-adic Galois orbit, that
is, the orbit of p in X2™ under the action of the absolute Galois group of K. We set

1
oo = Gallp) Y 4 (1.2)

Y geGal(p).

(1.1)

for the uniform probability measure on Gal(p),. We also denote by c1 (D, || - ||,)"
the v-adic Monge-Ampere measure of D, see for instance [BPS14, §1.4]. It is a
measure on X3" of total mass degp (X).

The following statement is representative of several equidistribution theorems
for Galois orbits of small points in the literature. In this form, it is due to Yuan
[Yua08, Theorem 3.1] for number fields and to Gubler [Gub08, Theorem 1.1] for
function fields, see also [Fab09] for this latter case.

Theorem 1 (Equidistribution for quasi-canonical metrics). Let X be a projective
variety over K of dimension n, and D a quasi-canonical semipositive metrized di-
visor on X with D ample. Let (p;)ier be a generic D-small net of algebraic points
of X. Then, for every v € Mg, the net of probability measures (Lp, )icr converges
to m c1(D, || - [|o)"", the normalized v-adic Monge-Ampére measure of D.

A common feature of this result and its variants and generalizations, is the as-
sumption that the lower bound (1.1) is an equality or, in other words, that the
metrized divisor D is quasi-canonical. This severely restricts their range of ap-
plication. Nonetheless, these results do apply to the important case of metrics
arising from algebraic dynamical systems and, moreover, they have a very strong
thesis: not only the Galois orbits of points of small height do converge, but the
limit measure is given by the normalized v-adic Monge-Ampere measure.

The motivation of this paper is to start the study of what happens when we
remove the hypothesis that D is quasi-canonical. Some of our typical questions
are: is there always an equidistribution phenomenon for Galois orbits of D-small
points? If not, can we give conditions on D, beyond being quasi-canonical, under
which such a phenomenon occurs? When equidistribution occurs, can we describe
the limit measure?

We address these questions and some of its continuations in the toric setting.
As mentioned previously, our approach is based on the techniques developed in the
series of papers [BPS14, BMPS16, BPS15]. We briefly recall the setting of these
papers.
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Let X be a proper toric variety over K of dimension n, given by a complete
fan ¥ on a vector space Ng >~ R™, and a nef and big toric divisor D on X, given
by a concave support function Up: Ng — R. This toric divisor also defines an
n-dimensional polytope Ap in the dual space Mg = Ny .

Let D = (D, (]| - |lu)vemy) be a semipositive toric metrized divisor on X with
underlying divisor D. To it we associate an adelic family of concave functions
%ﬂ): Ng — R, v € Mg, called the metric functions of D. They satisfy that
Y5, — ¥pl is bounded on Ng for all v, and that 5, = Wp for all v except for

a finite number. We also associate to D an adelic family of continuous concave
functions on the polytope 195’1): Ap — R, v € Mk, called the local roof functions
of D. They verify that U5, is the zero function for all v except for a finite number.
The global roof function is a concave function ¥5: Ap — R defined as the weighted
sum of the local roof functions.

Let T ~ Gy, i be the torus of X, which can be identified with Xo, the principal
open subset of X. There is a valuation map val,: T2" — Ng, defined, in any given
splitting of T, by

val,(z1,...,2,) = (= log|z1|v, ..., —log|znly), (1.3)

see also [BPS14, Formula (4.1.2)]. There is a canonical toric section s of O(D) with
div(s) = D. The metric function ¥p,, is characterized by the property

U, (valy(p)) = log||s(p)ll

for p € X§", while the local roof function ¥ , is defined as the Legendre-Fenchel
dual of 1/)571}. We use the extension of these constructions to the case of R-divisors,
see §2 and [BMPS16, §4] for precisions.

The metric functions and the roof functions convey a lot of information about
the pair (X, D). For instance, the essential minimum of X with respect to D can
be computed as the maximum of the global roof function [BPS15, Theorem Al:

5 (X) = max d(a). (14)

In the toric setting, the condition that the metrized divisor D is quasi-canonical is
very restrictive, since it is equivalent to the condition that its global roof function
is constant (Proposition 5.3). Thus, the only toric metrics to which Theorem 1
applies are those whose global roof function is constant.

To identify the toric metrics having good equidistribution properties, we in-
troduce the notion of monocritical toric metrized divisor. To define this con-

cept, first consider the map from Xy(K) to the space of measures on the adelic
space D, con, Nk given by

p— Vp = ((Valv)*ﬂpyv)UGDﬂK ’

where (val,).ptp» denotes the direct image under the v-adic valuation map in (1.3)
of the uniform probability measure on Gal(p), in (1.2). For a certain metric
space Hx of measures defined on €, cgn, Ve we show that there is a (Lipschitz)
continuous function n5: Hxg — R extending the height function h in the sense
that for every p in Xo(K) we have hi5(p) = n5(v,), see §4 for precisions. We show
that this function always attains its minimum value and we give a characteriza-
tion of the set of measures at which this function is minimized (Lemma 4.8 and
Corollary 4.10). The semipositive toric metrized divisor D is monocritical if the
function 7 attains its minimum at a unique measure (Definition 4.14, see also

Proposition 4.16 for equivalent formulations). For such a toric metrized divisor D,
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the uniquely minimizing measure is supported on a single point

u = (uy)vems € P Ne
vEMK

that satisfies ), n,u, = 0, where n, denotes the weight associated to a place
v € M as in §2. This point w is called the critical point of D (Corollary 4.10).

The condition for D of being monocritical can be characterized in terms of its
global roof function: given a point zmax € Ap maximizing 95, the sup-differential
O0V5(Zmax) is a convex subset of Ng containing the point 0. Then D is monocritical
if and only if 0 is a vertex of this convex subset and, when this is the case, the critical
point of D can be computed from the sup-differential of the local roof functions
at Tmax (Proposition 4.16).

For each v € Mk, we denote by S, the compact subtorus of T3". To a mono-
critical toric metrized divisor D with critical point u € @vem Ng, we associate
a probability measure g, ,, on X3" (Definition 5.1). When v is Archimedean,
it is the uniform measure on a translate of S, ~ (S')" whereas, when v is non-
Archimedean, it is the Dirac measure at a translate of the Gauss point of T2".

The following is the main result of this paper (Theorem 5.2).

Theorem 1.1 (Equidistribution for general toric metrics). Let X be a proper toric
variety over K and D a semipositive toric metrized divisor on X with D big. Then D
is monocritical if and only if for every place v € My and every generic D-small net
(p1)1er of algebraic points of X, the net of probability measures (up, »)ier on X"
converges.

When this is the case, the limit measure agrees with Xs, .,, where u, € Ng is
the v-adic component of the critical point of D.

Quasi-canonical toric metrized divisors are monocritical, and Theorem 1.1 re-
duces to Theorem 1 in this case. However, quasi-canonical metrized divisors are
rare even among monocritical metrized divisors, so Theorem 1.1 produces a wealth
of new examples of metrized divisors satisfying the equidistribution property that
were not covered by the previous results. A concrete class of such metrized divi-
sors are those defined over a number field K with positive smooth metrics at the
Archimedean places and canonical metrics at the non-Archimedean ones (Theo-
rem 6.4). Here we state a simplified version for the case when K = Q.

Corollary 1.2. Let X be a proper toric variety over Q and D a semipositive toric
metrized R-divisor with D big. We assume that the v-adic metric of D is, when
v is the Archimedean place, smooth and positive and, when v is non-Archimedean,
equal to the v-adic canonical metric of D. Then D is monocritical, and for every
generic D-small sequence (p;)i>1 of algebraic points of Xo and every place v € Mg,
the sequence (ftp, »)i>1 on X2 converges to the probability measure As, .

This corollary covers many typical examples of metrics on toric varieties such as
weighted projective spaces and toric bundles, see §6.2. For instance, let X = ]P’b
and let D be the divisor of the point at infinity equipped with the Fubini-Study
metric at the Archimedean place and the canonical metric at the non-Archimedean
places. Its essential minimum is

and for every generic sequence of algebraic points of ]P’(b with height converging to
this quantity, its oco-adic Galois orbits converge to the Haar probability measure
on S', the unit circle of the Riemann sphere (Example 6.5). This is an example
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where equidistribution does occur, but the limit measure is not given by the v-adic
Monge-Ampere measure as in Theorem 1.

In the other extreme, classical examples of translates of subtori with the canon-
ical metric can behave badly with respect to equidistribution. For instance, let X
be the line of ]P’(QQ of equation 2z; — z; = 0 and D the metrized divisor on X given
by the restriction of the canonical metrized divisor at infinity of IF’?@. As explained

in Example 6.1, Theorem 1.1 implies that D does not satisfy the equidistribution
property in the sense of Definition 2.9.

The key new ingredient in the proof of Theorem 1.1 is the study of the modulus
distribution of the v-adic Galois orbits of D-small nets of algebraic points.

For an algebraic point p € X((K) = T(K), the direct image measure

Vpw = (valy) s fipo
is a probability measure on Ny that gives the modulus distribution of its v-adic
Galois orbit. o
To each semipositive toric metrized divisor D with D big, we associate an adelic
family of nonempty subsets of Ny

(vaFv)UGflev (15)

with B, C F, (Notation 4.2). We endow the space of probability measures on Ng
with the weak-* topology with respect to the space of bounded continuous functions
on Ng. For a probability measure v on N, we denote by supp(r) C N its support
and, if v has finite first moment, we denote by E[v] its expected value.

The next result characterizes the limit behavior of the modulus distribution for
D-small nets (Theorem 4.3 and Corollary 4.12).

Theorem 1.3. Let X be a proper toric variety over K, D a semipositive toric
metrized divisor on X with D big, and v € Mg. For every D-small net (p)ier of
algebraic points in Xo, the net of probability measures (vp, v)icr has at least one
cluster point. Every such cluster point is a measure v, with finite first moment that
satisfies

supp(vy) C F,  and  E[y,] € B,. (1.6)
Conwversely, for every probability measure v,, on Ng that has finite first moment and
satisfies (1.6), there is a D-small net (p;)i1er of algebraic points of Xy such that v,
is the limit of the net (Vp, v)icr-

In the situation of Theorem 1.3, when F, consist of only one point u,, the
net (vp, v)ier, representing the modulus distribution of the Galois orbits of the net
of small points (p;);es, converges to the measure §,,. In this case, we say that D
satisfies the modulus concentration property at the place v.

One of the main ingredients in the proof of the toric equidistribution Theorem 1.1
is the characterization of monocritical metrized divisors as those for which, for every
place v, the set F, is reduced to a single point (Proposition 4.16). Equivalently,
a metrized divisor is monocritical if and only if it satisfies modulus concentration
at every place. This fact allows us to attach, to each monocritical divisor D, a
new metric on D that is quasi-canonical and such that the D-small points are also
small with respect to this new metric. In this way, we obtain Theorem 1.1 as a
consequence of Theorem 1.3 and Theorem 1.

In the proofs of Theorem 1.3 and Proposition 4.16, a central role is played by
a family of auxiliary concave functions (®,), gy, defined on the space of measures
on Ng with finite first moment. For each place v, the function ®, is nonpositive
and it is defined in terms of the metric at the place v, and in terms of a certain
average of the metrics at all the other places. The crucial fact is that the func-
tion 75 extending hpy vanishes at an adelic measure (v, )yeon, if and only if, for each
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place v, the function ®, vanishes at v,. In this way we reduce the equidistribution
problem to independent maximization problems at each place (Proposition 3.9 and
Theorem 4.3). The maximization problem at a given place is solved in §3. To do
this, we use that for each place v the function ®, is upper-semicontinuous with
respect to the weak-* topology defined above.

In the absence of modulus concentration, there is a wealth of limit measures of
v-adic Galois orbits of D-small nets of algebraic points. For instance, consider the
projective line over a number field K and any adelic set E = (E,)yem, of global
capacity 1, whose associated equilibrium measures are compatible with the collec-
tion of sets in (1.5) (see Theorem 7.2 for the precise condition). Using Rumely’s
Fekete-Szeg6 theorem [Rum02], we show that, for all v, the equilibrium measure
of F, can be realized as the limit measure of a sequence of v-adic Galois orbits of
D-small points (Theorem 7.2).

As we already mentioned, the original motivation in [SUZ97] to search for equidis-
tribution results of Galois orbits of small points was to prove the Bogomolov conjec-
ture. The Bogomolov conjecture for toric varieties can be stated as follows: let X
be a toric variety over K and D an ample toric divisor on X equipped with the
canonical metric. Let V C X ¢ be a closed subvariety that is not a translate of
a subtorus by a torsion point.7 Then there exists € > 0 such that the subset of
algebraic points of V' of canonical height bounded above by ¢, is not dense in V.
Equivalently, if V' C X% is a closed subvariety with p<. (V) = 0, then V' is a
translate of a subtorus by a torsion point. This statement is the toric counterpart
of the Bogomolov conjecture for Abelian varieties proved by Ullmo and Zhang.

This conjecture was proved by Zhang [Zha95] for number fields, and later Bilu
gave a different proof using his own equidistribution theorem [Bil97]. Here we ex-
tend Bilu’s equidistribution theorem (Theorem 5.7) and use it to prove the following
generalization of the Bogomolov conjecture for toric varieties (Theorem 5.12).

Theorem 1.4. Let X be a proper toric variety over a number field K and D a
monocritical toric metrized divisor on X with critical point w = (Uy)yeon,. Let V
be a closed subvariety of X,z with

K (V) = W5 (X).

Then V is a translate of a subtorus. Furthermore, if u, € val,(T(K)) @ Q for
all v, then V is the translate of a subtorus by an algebraic point p of Xy with

hy(p) = p3E(X).
A closed subvariety of X with
W (V) = " (X)

is called a D-special subvariety. We say that a given toric metrized divisor D satis-
fies the Bogomolov property if every D-special subvariety is a translate of a subtorus
(Definition 5.11). This is not to be confused with the property (B) introduced by
Bombieri and Zannier, and studied by Amoroso, David and other authors. This
property is intimately related with the equidistribution property. Indeed, we give an
example of a metrized divisor D on IP’?@ such that the line of equation zg+2; 422 =0
is D-special (Example 6.6). This line is certainly not a translate of a subtorus, and
so D does not satisfy the Bogomolov property. This metrized divisor is a variant
of the one in Example 6.1, and does not verify modulus concentration nor equidis-
tribution for any place of Q.

These results arise several interesting questions. For instance: is it possible that
a given semipositive toric metrized divisor D satisfies the equidistribution property
at one place and not at another? We study this for the projective line showing
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that, under a natural rationality hypothesis, the equidistribution property holds
at a given place if and only if it holds at every place (Proposition 7.5). However,
this conclusion is not true without this rationality hypothesis (Remark 7.7) and
we have neither settled this question for the projective line in full generality, nor
treated toric varieties of higher dimension.

It would also be interesting to see if the converse of Theorem 1.4 holds: Let X be
a proper toric variety with dim X > 2. Given a semipositive toric metrized divisor D
on X, with D big satisfying the Bogomolov property, is D necessarily monocritical?
In Proposition 6.7 we show that this is true in a very particular case. Extending
this to the general case would reinforce the link between the equidistribution and
the Bogomolov properties.

The results of this paper also inspire questions for general varieties and metrized
divisors. For instance, from Corollary 1.2, it is plausible to conjecture that a toric
divisor equipped with a positive smooth, but not necessarily toric, Archimedean
metric and canonical non-Archimedean metrics, does satisfy the equidistribution
property. A puzzling question is that of computing the essential minimum, with
a formula generalizing (1.4) to the general, non-toric, case. Even more challeng-
ing seems the problem of generalizing the crucial notion of monocritical metrized
divisor.

Several of the results presented in this introduction hold in greater generality
and their thesis are stronger. We refer to the body of the paper for these versions.
The structure of the paper is as follows. In §2 we give the preliminaries on Galois
orbits and height of points. In §3 we introduce the upper semi-continuous concave
functional @, and study its properties. In §4 we study the modulus distribution of
v-adic Galois orbits of D-small nets of points in toric varieties. In §5 we prove the
toric equidistribution theorem 1.1 and its variants, together with the Bogomolov
property for monocritical toric metrized divisors. In §6 we give examples illustrating
a number of phenomena, including a non-monocritical toric metrized divisor not
verifying the Bogomolov property. Finally, in §7 we use potential theory to study
the limit measures that appear in the absence of modulus concentration.
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2. GALOIS ORBITS, HEIGHT OF POINTS AND ESSENTIAL MINIMUM

By a global field K we mean a finite extension of either Q or the function field
of a regular projective curve over an arbitrary field, equipped with a certain set
of places, denoted by Mk. Each place v € M is a pair consisting of an absolute
value | - |, on K and a positive weight n, € Qxg, defined as follows.

The places of the field of rational numbers Q consist of the Archimedean and the
p-adic absolutes values, normalized in the standard way, and with all weights equal
to 1. For the function field K(C') of a regular projective curve C over a field k, the
set of places is indexed by the closed points of C'. For each closed point vy € C, we
consider the absolute value and weight given, for a € K(C)*, by

||y, = clzord”"(a) and  n,, = [k(vo) : K],
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with ¢, = #k if the base field k is finite and ¢, = e otherwise, and where ord,, («)
denotes the order of a in the discrete valuation ring Oc 4, -

Let Ko denote either Q or K(C'). In the general case when K is a finite extension
of Ky, the set of places of K is formed by the pairs v = (| - |,,n,) where | - |, is an
absolute value on K extending an absolute value | - |, with vy € Mk, and

[KU : Koﬂ]o] n
K:Ko 7

where K, denotes the completion of K with respect to |- |,, and similarly for Kg .
This set of places satisfies the following basic properties.

Ny = (2.1)

Proposition 2.1. Let K, denote either Q or K(C), the function field of a regular
projective curve C' over a field k. Let K be a finite extension of Ky and Mg the
associated set of places as above. Then

(1) for every vo € M, we have 3, Ny = Ny ;

(2) for every o € K*, we have ) ny log|al, = 0 (product formula).

vEMK

Proof. These properties are classical, see for instance [AW45, Theorems 2 and 3].

In the function field case there is a subtlety, due to the fact that a given field
may have different structures of global field depending on the choice of base curve.

Let C be a regular projective curve over k and K(C) — K a finite extension
of fields. Then there is a regular projective curve B over k and a finite morphism
m: B — C such that K ~ K(B) and the previous extension can be identified with
m*: K(C) — K(B), see for instance [Liu02, Proposition 7.3.13 and Lemma 7.3.10].

We could give to K the structure of global field defined directly by the curve B,
but the obtained absolute values of K would not be extensions of those of Ky. To
remedy this, we renormalize these absolute values of K and, to preserve the product
formula, we also change the weights.

From the valuative criterion of properness, for each closed point vy € C, the
absolute values of K extending | - |,, are in bijection with the closed points of the
fiber above vg. Moreover, since the map T is finite, for each closed point v € 7~ (vy),
the ring Op, is a finite module over O¢,y,. It follows from [Bou85, Chapitre 6,
Proposition 2 in §8.2 and Théoreme 2 in §8.5] that the absolute value and weight
corresponding to v are given, for a € K(B)*, by

ordy (a) )
lafy = ¢, T,y = M7 (2.2)
[K(B) : K(C)]
with e, /,, the ramification index of v over vg. The same results in loc. cit. give
the formula in (1).
For the product formula in (2), we obtain from (2.2) that

_ [k(v) : klord, (o)  —log(cy) . B
Zn log |af, = —log(cx) > K(B) K] ~ KB KIE ) deg(div(a)) = 0,

v

because the degree of a principal divisor on B is zero, which concludes the proof. [

For v € Mk, we choose an algebraic closure K, C K, of K,. The absolute
value | - |, on K, has a unique extension to K,. We denote by C, the completion
of K, with respect to this extended absolute value. We also choose an algebraic
closure K of K and an embedding 7,: K — C,.

Let X be a variety over K, that is, a reduced and irreducible separated scheme
of finite type over K. The elements of X (K) are called the algebraic points of X.
For p € X(K), its Galois orbit is Gal(p) = Gal(K/K) - p C X(K), that is, the orbit
of p under the action of the absolute Galois group of K.
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For v € M, we denote by X§" the v-adic analytifications of X over K, and
by X" the v-adic analytifications of X over C,. If v is Archimedean, they both
coincide with a complex space (Xk, is equipped with an anti-linear involution
if K, ~ R). If v is non-Archimedean, they are Berkovich spaces over K, and C,,
respectively. These spaces are related by ([Ber90, Corollary 1.3.6])

X = X3/ Gal(K, /Ky).
We denote by

Ty Xyt — Xg7 (2.3)
the projection.
There is a map
X(Cp)— X"

Using the chosen inclusion 7, : K < C,,, we obtain a map X (K) < X(C,) and, by
composition the previous map, an inclusion

tp: X(K)—s X202,

The v-adic Galois orbit of an algebraic point p € X (K), denoted by Gal(p).,
is defined as the image of Gal(K/K) - p under ¢,. It is a finite subset that does
not depend on the choice of the inclusion j,. We also denote by p, , the uniform
discrete probability measure on X3" supported on Gal(p),, that is,

1
Hpov = T~ 17~ ’ 7 (24)
p # Gal(p), qeral:(p)v '

where 0, is the Dirac measure at the point ¢ € X3". Hence, for a continuous
function f: X3" — R,

1
/fdﬂp,v:m Z f(a).

Y q€Gal(p).

An R-divisor on X is a linear combination of Cartier divisors on X with real
coefficients. A metrized R-divisor D on X is an R-divisor D on X equipped with a
quasi-algebraic family of v-adic metrics (|| - ||o)vemy, see [BMPS16, §3] for details.
In loc. cit., for each v € My the metric ||- ||, is defined over the analytic space Xg".
Note that this space was denoted “X3"” in loc. cit. but since we will study
equidistribution problems of Galois orbits of points that are defined over varying
extensions of K of arbitrary large degree it is more convenient to work on the
space X7" instead that in the space Xg". Hence we have changed the notation
accordingly. With this point of view, every object on Xg" will be seen as an
object on X2" by taking its inverse image under the projection m,. For instance
let D be a metrized R-divisor on X and s a rational R-section of D [BMPS16,
§3]. In loc. cit., the v-adic metric || - ||, is described by a continuous function
lIsllo: Xg" \ [div(s)] = Rso. In the current paper we denote by ||s||, the function
on X2™\ |div(s)| given by the composition

[s(@)llo = lls(mo(P))lo-

Clearly this function is invariant under the action of Gal(K,/K,).
To a metrized R-divisor D on X we can associate a height function

hys: X(K) — R
as follows. -
Given p € X(K), choose a rational R-section s of D such that p & |div(s)|.
Choose a finite extension F of K such that p € X (F). For each w € 9y over a place
v € Mk, we can choose an embedding o,,: F — C,, such that the restriction of the
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absolute value | - |, of C, agrees with |- |,,. We denote also by o,, the induced map
X(F) — X2,

Definition 2.2. Let X be a variety over K, D a metrized R-divisor on X, and
p € X(K). With the above notation, the height of p with respect to D is defined as

hi(p) = — Z Ny 10g |5 0 04 (p) |-
wEeEMp
The height is independent of the choice of the rational R-section s, the exten-
sion F and the embeddings o,.
Instead of choosing a finite extension where the point p is defined, it is possible
to express the height of an algebraic point in terms of its Galois orbit.

Proposition 2.3. With the previous hypothesis and notation, the height of p with
respect to D is given by

hs(p) =— Y #Cjﬁ > loglls(@)ll..

vEMy Y geGal(p),

Proof. Choose a finite normal extension F C K of K such that p € X (F). For each
v € My we denote My, the set of places of F above v.

Write G = Gal(F,K) and let F¢ be the fixed field. Then F/F¢ is a Galois
extension with Galois group G and F¢ /K is purely inseparable. Hence, for v € Mg,

Fo : Ky  [Fy (FS),] 1
[F: K] [F: F&) #HMp .,
Then, from the definition of the height of p in Definition 2.2 and Proposi-
tion 2.1(1), it follows that

() = - 3 nvzwmgnw%@m

n
== > =) "log|ls o aw(p)]le.  (2.5)
vEMK #m]F,v

wlv

The group G acts on Mg, and, since p is defined over F, also on Gal(p),. Both
actions are transitive. Therefore, choosing wg € My,

1 1
oy 22108l aulpl = 35 3 ol o)
1
= T log [[s(q)]|o-
Gl 2
# Gal(p) q€Gal(p)y
The statement follows from this together with (2.5). O
The essential minimum of X with respect to D is defined as
},L%SS(X) = sup inf _ hy(p). (2.6)
YCX pe(X\Y)(K)
Y closed

Roughly speaking, the essential minimum is the generic infimum of the height
function.

Definition 2.4. Let X be a variety over K and D a metrized R-divisor on X. A
net (p;)es of algebraic points of X is D-small if

limhp(pr) = w5 (X).

The net (p;)er is generic if, for every closed subset Y C X, there is |y € I such

that p; € Y(K) for I > .
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Proposition 2.5. Given a variety X over K and D a metrized R-divisor on X,
there exists a generic D-small net of algebraic points of X. Moreover, every generic
net (p1)i>1 of algebraic points of X satisfies

limlinf hy(pr) > pE (X).
Proof. The second statement is clear from the definition of the essential minimum.
For the first statement, let I be the set of closed subvarieties of X of pure
codimension 1, ordered by inclusion. This is a directed set. For each Y € I, denote
by ¢(Y') its number of irreducible components and choose a point py € (X \ Y)(K)
with
h~ < pPE(X) + ——.
D(pY) ) ( )+ C(Y)

Clearly, the net (py)yers is generic and D-small. O

Remark 2.6. When K is a number field, the collection of subvarieties of X is
countable. This fact implies that a generic D-small net contains generic D-small
sequences (although these sequences need not be subnets). Thus, Proposition 2.5
implies the existence of generic D-small sequences of algebraic points in this case.

Suppose now that the variety X is proper over K and of dimension n. A metrized
R-divisor D on X is semipositive if it can be written as

ﬁ = i aiﬁi
i=1

with D; a semipositive metrized divisor and «; € R>g, 4 =1,...,7. Recall that D;
is semipositive if each of its v-adic metrics is a uniform limit of a sequence of semi-
positive smooth (respectively, algebraic) metrics in the Archimedean (respectively,
non-Archimedean) case.

Given a semipositive metrized R-divisor D, we can extend the notion of height of
points to subvarieties of higher dimension. In particular, the height of X, denoted
by h5(X), is defined. Moreover, for each v € Mg we can consider the associated
v-adic Monge-Ampere measure, denoted by c1(D, || - ||l,)"". It is a measure on X"
of total mass degp(X), see for instance [BPS14, §1.4] for the case when D is a
divisor. The v-adic Monge-Ampeére measure of an R-divisor is defined from that of
divisors by polarization and multilinearity.

A theorem of Zhang shows that, when K is a number field, D is an ample divisor
and D is semipositive, the essential minimum can be bounded below in terms of

the height of X and the degree of D [Zha95, Theorem 5.2]:

u%s (X) 2 hD (X) )
(n+1)degp(X)
This inequality can be generalized to global fields and semiample big divisors, see
for instance [Gub08, Proposition 5.10].
In some cases, the inequality (2.7) is an equality. For instance, this happens for
the canonical metric on divisors of toric and Abelian varieties, and for the canonical
metrics coming from dynamical systems. This motivates the following definition.

(2.7)

Definition 2.7. Let X be a proper variety over K of dimension n, and D a semi-
positive metrized R-divisor on X with D big. Then D is quasi-canonical if

uﬁs (X) — hE(X) )

D (n+1)degp(X)
In other words, quasi-canonical metrized R-divisors are those for which Zhang’s
lower bound for the essential minimum is attained.



SMALL POINTS IN TORIC VARIETIES 13

As we will see in §5, the condition for a toric metric of being quasi-canonical is
very restrictive. The following observation is a direct consequence of Proposition 2.5
and of the inequality (2.7).

Proposition 2.8. Let X be a proper variety over K of dimension n and D a
semipositive metrized divisor on X with D big and semiample. Then there exists a
generic net (p)ier of algebraic points of X with

hp(X)
n+1)degp(X)

limhy(py) = ( (2.8)

if and only if D is quasi-canonical.

We discuss now the equidistribution of Galois orbits of points of small height.

Let X be a proper variety over K and v € k. We endow the space of probability
measures on X2" with the weak-* topology with respect to the space of continuous
functions on X2". In particular, a net of probability measures (u;);er converges to
a probability measure p if, for every continuous function f: X7* — R,

li{n/fdul:/fdﬂ.

Definition 2.9. Let D be a metrized R-divisor on X. A probability measure y on
X2 is a v-adic limit measure for D if there exists a generic D-small net (p;);e of
algebraic points of X such that the net of probability measures (tp, v)ier converges
to p. We say that D satisfies the v-adic equidistribution property if, for every generic
D-small net (p;)ier as above, the net of measures (tp, 0)ier converges.

Clearly, when the v-adic equidistribution property holds, there exists a unique
limit measure.

Remark 2.10. When K is a number field, the analytic space X3" is homeomorphic
to a compact subspace of an Euclidean space [HLP14, Theorem 1.1]. In particular,
X2 is a compact Polish space, and so the space of probability measures on it is
metrizable [Vil09, pages 94-95]. In particular, this space of probability measures
has a nested countable basis of neighborhoods at each point. If all the generic D-
small sequences contained in a generic D-small net converge, they must converge to
the same limit. Then, using the above fact, we may strengthen Remark 2.6 showing
that a generic D-small net not converging to a given point contains a generic D-
small sequences not converging to that point. This implies that one can reduce to
sequences, instead of nets, in Definition 2.9 over number fields.

In the literature there are many equidistribution theorems of Galois orbits of
points of small height. All these equidistribution results deal with generic nets (or
sequences when K is a number field) of algebraic points satisfying the equality (2.8).
In view of Proposition 2.8, the existence of such a net implies that the metric is
quasi-canonical. Moreover, the condition (2.8) for this net is equivalent of being
D-small. Thus we can reformulate a general equidistribution result in the following
form.

Theorem 2.11. Let K be a global field and X a projective variety over K of di-
mension n. Let D be a semipositive metrized divisor on X such that D is ample.
If D is quasi-canonical then, for every place v € Mk,
(1) D satisfies the v-adic equidistribution property;
(2) the limit measure is the normalized Monge-Ampére measure
1

i1 (D, | - )"
s RGN
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This result is due to Yuan [Yua08, Theorem 3.1] in the number field case and,
with more general hypotheses, to Gubler [Gub08, Theorem 1.1] in the function field
case.

This equidistribution theorem imposes a very restrictive hypothesis, namely, that
the metrized divisor D is quasi-canonical. But it also has a very strong thesis: not
only the Galois orbits of points of small height converge to a measure, but this
limit measure can be identified with the normalized Monge-Ampere measure of the
metrized divisor.

The main objective of this paper is to start the study of what happens when
the hypothesis of D being quasi-canonical is removed. We will work with toric
varieties and toric metrics because, in this case, the tools developed previously
allow us to work very explicitly. In this setting, we will see that the first statement
in Theorem 2.11 holds in much great generality, but, if the metric is not quasi-
canonical, the limit measure does not need to agree with the normalized Monge-
Ampere measure.

3. AUXILIARY RESULTS ON CONVEX ANALYSIS

In this section we gather several definitions and results on convex analysis that
we will use in our study of toric height functions. For a background in convex
analysis, see for instance [BPS14, §2].

Let Ng ~ R" be a real vector space of dimension n and Mr = Hom(Ng,R) = Ny
its dual. The pairing between x € Mg and u € Ny will be denoted either by (x, u)
or (u,x).

Following [BPS14, §2], a convex subset C' is nonempty. The relative interior
of C, denoted by ri(C), is the interior C relative to the minimal affine subspace
containing it.

Let C' C Mg be a convex subset and g: C' — R a concave function. The sup-
differential of g at a point x € C' is

0g(z) ={u € Ng | (u,z — z) > g(z) — g(z) for all z € C}.

It is a closed, convex subset of Ng, see [BPS14, §2.2]. The stability set of g is the
convex subset of Ny defined by

stab(g) = {u € Nr | u — ¢ is bounded below}.

The Legendre-Fenchel dual of g is the concave function ¢gV: stab(g) — R defined
by

9" (u) = inf (u,3) — g(a), (3.1

see tbidem.

Let F C Ny be a convex subset. A nonempty subset F' C FE is a face of E
if every closed segment S C E whose relative interior has nonempty intersection
with F', is contained in F.

Lemma 3.1. Let C C Mg be a compact convexr subset and g1,g92: C — R two
continuous concave functions. Denote by Crax the convex subset of C' of the points
where g1 + go attains its mazximum value and choose x € Cpax. Fori = 1,2,
consider the concave function QASZ Nr — R defined by

$i(u) = g}’ (u) = (w,u) + gi(2). (3.2)
Then

(1) if 2’ € ri(Chax), then dg;(x') is a face of Bg;(x), i = 1,2;
(2) dg1(x) N (—0ga(x)) is nonempty and does not depend on the choice of x €

max;
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(3) the minimal face of Og1(x) containing g1 (x) N (—0g2(x)) does not depend
on the choicerfx € Chax;
(4) the function ¢; is nonpositive and vanishes precisely on 0g;(x).

Proof. The restriction to Cpax of the sum g; +g- is constant, and so the restrictions
to this set of g1 and g9 are affine and with opposite slopes. In other words, there is
ug € Ng such that, for all 1,z € Chax,

g1(z2) — g1(z1) = (ug, 2 —x1) and  ga(2) — ga(w1) = —(ug, z2 — 1). (3.3)

For the statement (1), let ¢ € {1,2}, 2’ € ri(Cpax) and u € 9dg;(z’). By the
definition of the sup-differential, for all z € C,

(u,z = a') = gi(2) — gi(2"). (3.4)

Since 2’ is in the relative interior of Cy,ax, there exists € > 0 such that ' —e(z—2z’) €
Cax- By (3.4) and (3.3),

—elu,z —2') = (u, 2’ —e(x —2') — 2')
> gi(a' —e(x —a’)) — gi(2)
= (1) Huo, —¢(z — ') = —e(gi(2) — gi(")).
Hence (u,z — 2’y < g;(x) — gi(2’). By (3.4) applied to z = x, we have also the
reverse inequality. Thus (u,z — 2') = g;(z) — ¢;(2’), and it follows from (3.4) that,
for all z € C,
(u,z —x) > gi(2) — gi(x).

Hence u € dg;(z) and so dg;(z’) C dg;(z). Applying [BPS14, Proposition 2.2.8] to
the closed concave function g;” and observing that gV = g¢;, we deduce that dg;(z’)
is a face of dg;(x).

To prove the statement (2) note that, since g; + go attains its maximum value
at x, by [BPS14, Proposition 2.3.6(2)]

0 € 9(g1 + g2)(x) = 9g1(x) + Dg2(x).

Hence 9g1(z) N (—0g2(x)) # 0, as stated. Now let u be a point in this intersection.
Then

(u,z—x) > q1(2) —q1(z) and (—u,z—x) > ga(2) — g2(x). (3.5)
Choose 2" € Cax. Subtracting, from the inequalities (3.5) applied to z = z”/, the
identities (3.3) applied to x1 = x and x5 = 2", we deduce that

(u—wug,z" —z) = 0.
Using this together with (3.4)and (3.5), we obtain
(u,z—2") 2 g1(2) —g1(2”) and  (—u,z —2") = g2(2) — g2(a”).

Hence u € dg1(2”) N (—dga(z")), as stated.

For the next statement, consider the convex set B = dgy(z) N (—dga(z)) that,
thanks to (2), does not depend on the choice of € Cpax. Denote by F, the
minimal face of dg; (z) containing it. By (1), it is enough to consider the case when
x € 1i(Chax). By the same statement, the set dg2(x) does not depend on the choice
of z € ri(Cpax), proving (3).

The statement (4) follows readily from [BPS14, Lemma 2.2.6]. O

Definition 3.2. Let C' C Mg be a compact convex subset and g1,g2: C — R two
continuous concave functions. Choose a point z in C' at which g; + go attains its
maximum value. We define the convex subset of Ng

B(g1,92) = 9g1(x) N (—0g2(x))
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and the convex subset
F(g1,92) C 9g1(x)

as the minimal face of dg;(x) that contains B(g1, g2). By Lemma 3.1(2,3), these
convex subsets do not depend on the choice of z.

Lemma 3.3. Let C C Mg be a compact convex subset with nonempty interior
and g1,92: C = R two concave functions. Then B(g1,gz2) is bounded and F(g1,g2)
contains no lines.

Proof. The convex set B(g1, g2) is not bounded if and only if it contains a ray, that
is, a subset of the form R>qu; + up with u; € N, i = 1,2, and u; # 0. Suppose
that this is the case. This implies that, for x € Ciax and all t > 0,

tu; +ug € dg1(xz) and  —tu; —us € Ogo(x).
Hence, for all z € C and t > 0,
—(ug,z —x) + g1(2) — g1(x) < t({ur, z — ) < —({ug, z — ) — g2(2) + ga2(x).

Letting ¢ — oo, this implies C' C {z | (u1, 2z —x) = 0}, contradicting the hypothesis
that C has nonempty interior. Hence B(g1, g2) is bounded.
Similarly, if F'(g1,92) contains a line Rujy + usg, then, for x € Cphax and ¢t € R,

tuy + ug € dg1(x).

This also implies that C' is contained in the affine hyperplane {z | (u;,z — x) = 0}
and contradicts the hypothesis that C' has nonempty interior. Hence F(g1, g2)
contains no lines. O

Let Cp,(INg) be the space of bounded continuous functions on Ng, let || - || be an
auxiliary norm on Ng that we fix, and for « in Ng and r > 0 denote by B(x, ) the
open ball in Nk centered at x and of radius r.

Definition 3.4. We denote by P the space of Borel probability measures on Ny
endowed with the weak-x topology with respect to Cp(INg). This is the coarsest
topology on P such that, for all ¢ € Cy,(Ng), the function p +— [ ¢ dp is continuous.

We denote by £ C P the topological subspace of probability measures with finite
first moment, that is, the probability measures on Ny satisfying

/ Jull dpa(es) < oo.

For p € &£, the expected value is
Blu) = [ udn(w) € Ne.

The weak-* topology of P with respect to Cy,(Ng) is called the “topologie étroite”
in [Bou69, §5]. By Proposition 5.4.10 in loc. cit., the topological space P is com-
plete, metrizable and separable. Later we will consider other topologies on the
underlying spaces of P and £. When this is the case, we will state explicitly the
used topology.

For pu € P, its support, denoted by supp(p), is the set of all points in Ng such
that all its neighborhoods have positive measure. Clearly, every measure in P with
bounded support lies in €.

Proposition 3.5. The space £ verifies the following properties.

(1) For every p in € we have E[u] € conv(supp(u)).
(2) The set of probability measures on Ny with finite support is dense in E.
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Proof. To prove the first statement, let u € £ and suppose that E[u] does not lie
in conv(supp(i)). Restricting to an affine subspace if necessary, we can assume
that conv(supp(p)) U {E[p]} is not contained in a hyperplane. The hyperplane
separation theorem applied to the convex sets {E[u]} and conv(supp(u)), implies
that there is a nonconstant affine function f such that f(E[u]) < 0and f |supp(u)> 0,
see for example [Roc70, Theorem 11.3]. S

0> f(E /f ) dp >0,

and therefore E[u] and supp(u) are both contained in the hyperplane {u € Ng |
f(u) = 0}. This contradiction completes the proof of the first statement.

To prove the second statement, we show that every measure in £ is the limit of
measures with bounded support. For r > 0 put B(0,7) = {z € Ngr | ||z]| < r}.
Given a measure p € £, the sequence of probability measures with compact support
defined for [ > 1 by

s, + 1(Nr \ B(0,1)) do,
converges to p as | — oo.

Using a straightforward discretization argument, one can show that every mea-
sure in € with bounded support is the limit of probability measures with finite
support. Combined with the previous observation, this completes the proof of the
second statement. O

For the rest of this section, we fix a compact convex subset C' C Mpr with
nonempty interior and two continuous concave functions g1, ¢g2: C — R. Since C
is compact, the stability set of g; is Ng. Thus the Legendre-Fenchel dual g, is a
concave function on Ng with stability set C'.

We introduce the function ®: & — R given, for p € &, by

@) = [ oY du-+ g5 (- Blul) + max(on (&) + ga(a). (36)

This function will play a central role in the proof of the main results in the next
section.

It follows easily from its definition that ® is concave. In general, this function is
not continuous, as the following example shows.

Example 3.6. Let Ng = R, so that Mg = R. Set C =[0,1] and ¢; =0, i = 1,2.
Then g (u) = min(0, u) for u € R. Consider the sequence of measures

-1
= ——do + 517 1>1,

where §y and §_; are the Dirac measures at the points 0 and —I, respectively. This
sequence converges to dg. However, ®(y;) = —1 for all I and ®(dy) = 0.

Nevertheless, we have the following result.
Proposition 3.7. The function ® is upper semicontinuous.
To prove this proposition, we need the following lemma.

Lemma 3.8. Let ¢: Ng — R be a continuous function. If ¢ is bounded above
(respectively below), then the map P — R U {—oo} (respectively P — R U {o0})
given by

u%/cbdu

is upper semicontinuous (respectively lower semicontinuous,).
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Proof. We prove the case of a function bounded above, the other case being anal-
ogous. Let u € P and € > 0 be given and, for [ > 1, put

o1 (u) = max(p(u), —1).

The sequence of functions (¢;);>1 is monotone and converges pointwise to ¢. So
Lebesgue’s monotone convergence theorem implies that there is [y > 1 such that

/¢lodu§/¢du+e.

Let (p1)i>1 be a sequence in P converging to u. Since ¢y, € Cp(Ng), there exists
l1 > 1 such that, for [ > Iy,

Joams [ondu< [o,dures [odnse
Since ¢ is arbitrary, limsup;_, ., [ ¢ dpy < [ ¢ dp, proving the lemma. O

Proof of Proposition 3.7. Set ¢; = g, i = 1,2 for short. Fix py € & and set
ug = — E[po] € Nr. Take z € 0¢2(ug) C Mg. Then, for all u € Nk,

(2,0 —uo) > P2(u) — d2(uo).
Let p € €. It follows from this inequality that

B() ~ ¥(po) = [ 01 dp+ 6a(~Elp) ~ [ &1 duo ~ da(~ Blua)
< [ 61t 1) = (Blul - Bluo). 2
< /¢1 d(p — po) — /(% z) d(p — po)
< /¢ d(p — o)

with ¢ = ¢1 — . Hence
B() < @) ~ [0 dpo+ [ o (3.7)

Since = belongs to d¢a(ug) and dga(ug) C stab(de) = stab(¢y) = C, the func-
tion ¢ is bounded above. By Lemma 3.8, the right-hand side of (3.7) is upper
semicontinuous. The inequality (3.7) is an equality for p = po. Hence ® is upper
semicontinuous at pg, as stated. (]

Proposition 3.9. The function ® is nonpositive, and vanishes for u € & if and
only if

supp(p) C F(g1,92) and E[u] € B(g1,92), (3.8)
with B(g1, g2) and F(g1,g2) as in Definition 3.2.

Proof. Let notation be as in Lemma 3.1 and fix a point « € ri(Cpax). For short
put

A; = 0gi(x), i=1,2, B=DB(g1,92), F=F(g1,92)-
By Lemma 3.1 (1), the sets A; and Ay do not depend on the choice of the point
2 € 1i(Chax). Let @i be as in (3.2). For every pu € £ we can write ®(u) in terms of
the functions al as

() = / $1 dyu+ Ba(— Elu)). (3.9)

By Lemma 3.1(4), the functions <$Z are nonpositive and vanish precisely on the
sets A;. It follows from (3.9) that ® is nonpositive and vanishes for every p € &
satisfying (3.8).
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Conversely, let u € € such that ®(u) = 0. Since both 51 and (ZQ are nonpositive,
the equality (3.9) also implies that

/251 dp=0 and ¢(—E[u]) =0.

Therefore supp(u) C Ay and — E[u] € Ay. By Proposition 3.5(1), E[u] belongs to
conv(supp(p)). Since A; is a convex set that contains supp(u), we deduce E[u] € A
and so

E[,u] c AN (—AQ) = B,
which gives the second condition in (3.8).
We next prove that the first condition in (3.8) is satisfied. Write 8 = u(F), so

that 0 < 6 <1 and pu(A; \ F) =1—0. We want to show § = 1, thus we assume the
contrary, namely # < 1. This implies that F' is a proper face of A;. We put
1
Up = — udpe A\ F.
1 — 9 Al\F

If 0 = 0, then E[u] = ug and so E[u] € A; \ F, contradicting the fact that Efu] €
B C F. Suppose that 0 < 6 < 1 and set

1
ulzf/ud,uEF.
0Jr

Therefore
E[y] = uy + (1 — 0)usy € ri(u1uz),

the relative interior of the segment wyuz. Since E[u] is in B and hence in F, we
have ri(uguz) N F # (. Moreover, the whole segment is contained in A;, and F' is
a face of A;. We deduce that this segment is contained in F'. Therefore uy € F,
contradicting the fact that ug € A;\F. We conclude that § = 1 and so supp(u) C F'
since F' is closed. This proves the first condition and completes the proof. O

The function ® satisfies also the following property.

Lemma 3.10. There are constants ¢y > 0 and co > 0 such that, for all p € &,

B e~ e [ ul dn
Proof. Let ¥ be the support function of C', which is the function on Ny given by

U (u) = mi .
(u) = min{u, y)
Put ¢; = 4maxycc(|g1(y)], |92(y)|). It follows from their definition that the func-
tions ¢; = g verify, for u € N,

c

max (1 (u), é2(w) < W(u) + - (3.10)
Let = be a point in the interior of C. On Mg, we consider the norm induced by
the chosen norm || - || in Ng. Since z is in the interior of C, we can find a constant

¢y > 0 such that B(z, c2), the closed ball of center 2 and radius ¢z, is contained in
C. Then

U(w) < min (u,y) = (u,7) — caull. (3.11)
yeB(z,c2)
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Since z € C = stab(V¥), we have (¥ — z)(u) < 0. By (3.10) and (3.11),
®(p) = /¢1(U) dp+ d2(—Elu]) + r;leag(gl(y) +92(y))
<o [ W dps (- Elp)
<ert [(U =) dp+ (¥ - )~ El)

<ei-e [ ful du
as stated. O

Proposition 3.11. Let (u;)icr be a net of measures in £ such that

1i{n D(u) =0.

Then (u)ier has at least one cluster point in P, and every such cluster point u lies
in £ and satisfies

supp(p) C F(g1,92) and  E[u] € B(g1,92)-

Proof. Replacing (p;)1er by a subnet if necessary, we assume that ®(u;) > —1 for
all I € I. Let ¢, ¢ be the constants of Lemma 3.10 and set K = (¢1 +1)/¢a > 0.
This lemma implies that each p; is in the subset of £ given by

{uee| [l anw < x}.

This subset is compact thanks to Prokhorov’s theorem [Bou69, Théoréme 5.5.1],
and it is metrizable because P is. Hence, the net (u;);esr has at least one cluster
point, and every such cluster point p lies in £, proving the first statement.

To prove the last statement, let (g )rer be a subnet converging to p. By Propo-
sition 3.7, the function ® is upper-semicontinuous and so

® () > limsup @ () = 0.
k
Hence ®(u) = 0, and the statement follows from Proposition 3.9. O

As we have seen in Example 3.6, the function ® is not continuous. We now
consider another topology on £ with respect to which the function ® is continuous.
Given p, i’ € P, denote by T'(u, ') the set of probability measures on Ng x Ng
with marginals g and g'. That is, a probability measure v on Ng x Ng belongs to
D(w, p') if and only if
(p1)ev = p,  (p2)sv =11,
where p; is the projection of Ng x Ng onto its i-th factor, and (p;). the direct image

of measures.

Definition 3.12. The Kantorovich—Rubinstein distance (or Wasserstein distance
of order 1) on & is defined, for p, ' € &, by

W(p,p') = inf /Hu — || dv(u,u’).
vel(p,p’)

The quantity W (u, 1') satisfies the axioms of a distance and is finite when u, p’ € €

[Vil09, pages 94-95]. The Kantorovich—Rubinstein topology (or KR-topology for

short) of £ is the topology induced by this distance.
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The finiteness of W (u,p') for p and g/ in &, can be argued as follows. The
product measure p X g’ is in T'(u, p’), and we have

W (u, 1) /Mu—unduxu ud) /wwdu (/Wwdu

For a Lipschitz continuous function ¢: Ng — R, denote by Lip(v) its Lipschitz

constant, given by
. P(u) — (v
Llp(¢) — Sup | ( ) /( )l
uFu’ [[u — ||
Lipschitz constants and the Kantorovich-Rubinstein distance are related by the
duality formula: for p, u’ € € and a Lipschitz continuous function ¢ : Ng — R, we

have
'/wdu [oaw

see for instance [Vil09, Remark 6.5].

< Lip(t) W (1, 1), (3.12)

Remark 3.13. By [Vil09, Theorem 6.9], the KR-topology agrees with the weak-x
topology on £ with respect to the space of continuous functions ¢: Ng — R such
that

lo(u)l < e(1+ [lul))
for a ¢ € R and all v € Ng. In particular, the KR-topology is stronger than the
topology of £ induced by that of P as in Definition 3.4.

Proposition 3.14. The function ® is continuous with respect to the KR-topology.
In particular, if ()ier s a net of measures in E that converges to a measure j € €
with respect to the KR-topology and

supp(p) C F(g1,92) and  E[u] € B(g1, 92),
then lim; ®(u;) = 0.

Proof. Let (11;)ic1 be a net on £ that converges to a measure u € £ with respect to
the KR-topology. By Remark 3.13,

tim [ g) d = [ g} di and limgy (~Elu)) = g3 (~Elp).

Therefore lim; ®(p;) = ®(u) and so ® is continuous, proving the first statement.
The second statement follows from the first one and Proposition 3.9. O

We also need the following easy result. We include it here for the lack of a
suitable reference.

Lemma 3.15. Let E; C Ng,t=1,...,r, be convex subsets and E = E1+---+ E,
their Minkowski sum. For a point ug € F, the following conditions are equivalent:
(1) the point ug is a vertex of E;
(2) the equation ug =Y, z; with z; € E; has a unique solution and, for i =
1,...,7, the point z; in this solution is a vertex of F;.

Proof. First assume that ug is a vertex of . Suppose that the equation ug =), 2,
zi € EZ, has two different solutions, namely ug = >,z and ug = »_, 2 with
zj # 2 for some ig € {1,...,r}. Then both points

= Z zi+ 2y and  uy = Z z + 2,
i;ﬁ’b‘o i7£i0
belong to E, they are different and satisfy ug = %(ul + uz), contradicting the fact

that ug is a vertex of E. Hence the equation ug = Zl z; has a unique solution with
z; € Bj;.
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Now suppose that z;, is not a vertex of E;, for some iy € {1,...,7}. Then we

can write z;, = 3(2], + 2{}) with z] # 2’ both in E;,. Hence the points

Uy = Zzi—&—zl’»o and  ug = Zzz—i—zx)
iio i#io
are different, belong to E and ug = %(ul + ug), contradicting the assumption that
ug is a vertex of E. Thus we have proved that (1) implies (2).
Assume now that the statement (2) is true but ug is not a vertex of E. Then
there are two different points ui,us € F with ug = %(ul + usz). Since E is the
Minkowski sum of the sets F;, we can write

uozg 2, ulzg zi  and uQ:E 2y
3 i 5

The equation ug = Y, z; has a unique solution and so z; = $(z] + z/) for all 4.
Since z; is a vertex of E;, this implies z; = z{. Therefore u; = ug, contradicting
the assumptions and thus proving that (2) implies (1). O

4. MODULUS DISTRIBUTION

In this section, we study the asymptotic modulus distribution of the Galois orbits
of nets of points of small height in toric varieties. Our approach is based on the
techniques developed in the series of papers [BPS14, BMPS16, BPS15]. These
techniques are well-suited for the study of toric metrics and their associated height
functions. In the sequel, we recall the basic constructions and results.

Let K be a global field and T ~ Gy,  a split torus of dimension n over K. Let

N =Hom(G,,kx,T) and M =Hom(T,G,,x)=N"

be the lattices of cocharacters and of characters of T, respectively, and write Ng =
N ®R and Mg = M ® R. We also fix an auxiliary norm || - || on Ng.

Let v € Mg. We denote by T2" the v-adic analytification of T and by S, its
compact subtorus. In the Archimedean case, S, is isomorphic to (S*)™ whereas, in
the non-Archimedean case, it is a compact analytic group, see [BPS14, § 4.2] for a
description. Moreover, there is a map val, : T3" — Ng, defined, in a given splitting,
by

val, (21, ..., 2n) = (= log|z1]v, ..., —10g |Zn|v)- (4.1)
This map does not depend on the choice of the splitting, and the compact torus S,
coincides with its fiber over the point 0 € Ng.

Let X be a proper toric variety over K with torus T, described by a complete
fan ¥ on Ng. To each cone o € ¥ corresponds an affine toric variety X,, which
is an open subset of X, and an orbit O(c) of the action of T on X. The affine
toric variety corresponding to the cone o = {0} is the principal open subset Xg. It
coincides with the orbit O(0) and is canonically isomorphic to the torus T.

An R-divisor D on X is toric if it is invariant under the action of T. Such an
R-divisor defines a wvirtual support function on X, that is, a function

\IID:NR—)R

whose restriction to each cone of the fan X is linear. We also associate to D the
subset of My given by

Ap =stab(Up) ={x € Mg |z > Up}.

If D is pseudo-effective, then Ap is a polytope and, otherwise, it is the empty set.
Properties of the R-divisor D can be read off from its associated virtual support
function and polytope. In particular, D is nef if and only if ¥ is concave, and D
is big if and only if Ap has nonempty interior.
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A quasi-algebraic metrized divisor D = (D, (|| - ||s)vemy) on X is toric if and
only if the v-adic metric || - ||, is invariant with respect to the action of S, for
all v. Such a toric metrized R-divisor on X defines a family of continuous functions
Y5, Nr — R indexed by the places of K. For each v € 9, this function is given,
for 7p € T2", by

U5, (valy(p)) = log [lsp(p)ll, (4.2)
where sp is the canonical rational R-section of D as in [BMPS16, §3]. This adelic
family of functions satisfies that 1) , — ¥p| is bounded for all v, and that 95 , =
W p for all v except for a finite number. In particular, the stability set of each %’v
coincides with Ap.

For each v € Mgk, we also consider the v-adic roof function V5 ,: Ap — R,
which is given by

U5,,(x) =vp ,(2) = inf ((u,2) —¢5 ,(u).
) u€ Ng

This is an adelic family of continuous concave functions on Ap that are zero except
for a finite number of places. The global roof function ¥5: Ap — R is the weighted

sum
195 = E un 195711 .
vEMK

The essential minimum of X with respect to D defined in (2.6) can be computed
as the maximum of its roof function [BPS15, Theorem A], that is

K5 (X) = max Up(a) (4.3)

Example 4.1. Let X be a proper toric variety over K and D a toric R-divisor
on X. The canonical metric on D is the metric characterized by the fact that, for
each v € Mg and p € T,

1Og ||3D(p)|‘can,v = \I’D(Valv (p))7
see [BPS14, Proposition-Definition 4.3.15]. We denote this toric metrized R-divisor
by D", For all v € M,

%Can,v = \I/D a,nd ﬂﬁcan,v = 0
In particular, Jzean = 0 and pEean (X) = 0.

Given a semipositive toric metrized R-divisor D over D, its associated metric
functions are concave. Conversely, every adelic family of concave continuous func-
tions 1,: Ng — R, v € Mg, with [1h, — Up| bounded for all v and such that
%w = Up for all v except for a finite number, corresponds to a semipositive toric
metrized R-divisor over D [BMPS16, Proposition 4.19(1)]. For instance, a canoni-
cal toric metrized R-divisor D is semipositive if and only if ¥ is concave, which
is equivalent to the condition that D is nef.

For the rest of this section, we suppose that X is a proper toric variety over the
global field K with torus T, and that D is a semipositive toric metrized R-divisor
with D big.

We also fix the notation below. Recall from §3 that P denotes the space of
probability measures on Ng endowed with the weak-* topology with respect to the
space C,(Nr), and that £ denotes the subspace of probability measures with finite
first moment.

Notation 4.2. Let v € Mg. We denote by g;., ¢ = 1,2, the concave functions
on Ap given by

n
Jg1v = ’195’,0 and 92,0 = Z l’l?ﬁ’w.
weMr\{v} v
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Thus Y55 = 1y (91,0 + g2,0). We consider the convex subsets of Ng given by Defini-
tion 3.2

B, = B(g1,0:92,0),  Fo = F(g1,0,92,0) (4.4)
and we write
Ay = 0g1,0(7)
for any « in the relative interior of the set Ap max where ¥ attains its maximum.
By Lemma 3.1 (1) A, does not depend on the choice of z € ri(Ap max). Thus F, is

the minimal face of A, containing B,. We also denote ®, the function on £ given
by Definition (3.6) applied to the set C' = Ap and the functions g; ., i = 1,2.

Given v € Mg and a point p € X((K), we consider the discrete probability
measure on Ng defined by
Vpo = (valy)slip.vs

where pi, ,, is the uniform discrete probability measure on X3" supported on the v-
adic Galois orbit of p as in (2.4). This probability measure on N gives the modulus
distribution of the v-adic Galois orbit of the point p. The next result characterizes
the limit behavior of this modulus distribution for nets of points of small height.

Theorem 4.3. Let notation and hypotheses be as above. For each v € Mk and
every D-small net (p;)ier of algebraic points in the principal open subset X, the
net (Vp, v)ier of measures in P has at least one cluster point. Every such cluster
point v, lies in € and satisfies

supp(vy) C F,  and  E[v,] € B,. (4.5)

The proof of Theorem 4.3 is given below, after a definition and an auxiliary
result.

Definition 4.4. A centered adelic measure v on Np is a collection of measures
v, € &, v € Mg, such that v, = §y, the Dirac measure at the point 0 € Ny, for all
but a finite number of places v, and such that

> nyEp] =0. (4.6)
vEMK

We denote by Hyg the set of all centered adelic measures on Ng.

We introduce the function n5: Hx — R defined by

) =— n/% dv,. (4.7)

vEMK

This function extends the notion of height of points to the space Hgk. Indeed, for

p € Xo(K), the collection
Vp = (Vpw)vemy (4.8)

is a centered adelic measure on Nk, because of the product formula in Proposi-
tion 2.1(2). Moreover, the canonical R-section sp does not vanish at p and, by
Proposition 2.3 and (4.2),

b5) ==X gl GZI() U o (val (q)
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Lemma 4.5. For every centered adelic measure v = (Vy)pemiy

vneli%l); Py (V) < (V) — u%SS(X) < Ezg); —ny Dy (). (4.10)
vEMK

In particular, for p € Xo(K),
52%%; —ny Py (Vp0) < hi5(p) — H%S(X) < ezm: Ny Py (Vp,0).- (4.11)
vEMK

Proof. Let Ap max be the set of points maximizing the roof function ¥ and choose
Z € Ap max. For each v € M, let (Ei,v: Nr — R, i = 1,2, be the function defined
by R
() = g, (0) = (z,u) + gio(2),
where g; ., denotes the concave function on Ap in Notation 4.2 and g/, its Legendre
dual as in (3.1). '
Note that ¢35, = g7,,. Using (4.6) and (4.3), we deduce that

*va /wﬁﬂ) dVv = 195(1') - va/gb\l,v dVU = H%S(X) - va /51,1) dVv-

v

() — S (X) = =S n, / Brv v, (4.12)
For each v € Mk, we get from the deﬁnitivon of @, that
O, (vy) = /$1,1, dv, + 52,@(—E[Vv])~
By Lemma 3.1(4), the functions dA’i,v are nonpositive and so

(bv(l/v) S /Q/b\l,v dVv- (413)

The second inequality in (4.10) then follows from (4.12) and (4.13).
To prove the first inequality in (4.10), fix v € Mg. By [BPS14, Proposi-
tions 2.3.1(1) and 2.3.3(3)],

~ ~ Ny
¢2,’u = Bﬂw;ﬁv (¢1,wn7>7 (414)

where w runs over the places of K different from v, the symbol H denotes the
sup-convolution and, for a concave function ¢ and a nonzero constant A, the ex-
pression 1\ denotes the right multiplication as in [BPS14, §2.3].
By the equality (4.14), the definitions of the sup-convolution and the right mul-
tiplication, and condition (4.6), we deduce
b2o(=El]) 2 3“1 61 u(Elval). (4.15)

n
wWHv v

By the concavity of qAﬁLw and Jensen’s inequality, /qgl’w dr, < qAbl,w(E(uw)) for all
w € Mg. Therefore, by (4.12) and (4.15),

(V) — B (X) > —nv(/&,v dvy + ) T&,w(E(vw)))

wH#v v
> _nv(/(;l,v dv, + ;Z/;Q,U(_ E[”v])) = _nvq)v(yv)v

which proves the first inequality and completes the proof of (4.10). The inequalities
in (4.11) follow directly from (4.10) and (4.9). d
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Proof of Theorem 4.3. Let v € Mk and let ®,: £ — R be the function defined
by (3.6) with g1, and g2, as in Notation 4.2. Since the net of points (p;)er is

D-small,
lim by () = wS5°(X).
By Proposition 3.9, ®, is nonpositive, and so we deduce from Lemma 4.5 that
lilm D, (vp,.v) =0.
The theorem is then a direct consequence of Proposition 3.11. O

To state a partial converse of Theorem 4.3, we need a further definition.

Definition 4.6. The adelic Kantorovich—Rubinstein distance Wx on Hy is defined,
for v = (vy)y, V' = (V) € Hi, by

Wi (v, V') =3 n,W (v, 1)),

where W denotes the Kantorovich-Rubinstein distance in Nk as in Definition 3.12.
By the definition of Hk, there are only a finite number of nonzero terms in this
sum.

The topology on Hg induced by this distance is called the adelic KR-topology.

Theorem 4.7. With notation and hypotheses as before, let v = (v, )yeom, € Hi be
a centered adelic measure such that

supp(vy) C F,  and  E[y,] € B,

for all v. Then there is a generic D-small net (p;)icr of algebraic points of X
such that the net of measures (vp,)icr converges to v with respect to the adelic
Kantorovich-Rubinstein distance.

The proof of Theorem 4.7 is given below, after some preliminary results. The
first result gives the main properties of the function 7y.

Lemma 4.8. The function ny is Lipschitz continuous with respect to Wx. More-
over, for all v = (Vy)yeomy € Hk,

() 2 K (), (1.16)
with equality if and only if supp(v,) C F, and Elv,] € B, for all v.

Proof. Let S C Mk be a finite subset such that ¢35, = ¥p for all v ¢ S. For v =
(Vv)myl = (Vq/))v € Hxk,

/%,v dv, — /z/)ﬁv dv)

< 3 Lin(p, )no W (v, v)) < ( max o) Wil ).

) —np ) < o,

where the second inequality is given by the duality formula (3.12) and the last by
the observation that Lip(¢5,) = maxzeca,, ||| for all v. This proves that 7y is
Lipschitz continuous with res:pect to Wk.

As already remarked, the functions ®, are nonpositive. By Lemma 4.5, this
implies the inequality (4.16). From the same result, it follows that the equality
holds if and only if ®,(v,) = 0 for all v. By Proposition 3.9, this holds if and only
if supp(v,,) C Fy, and E[v,] € B,, completing the proof of the lemma. O

From this lemma, we deduce as a direct consequence the next characterization
of algebraic points in toric varieties realizing the essential minimum.
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Corollary 4.9. Let p be an algebraic point of Xo. Then hp(p) = p$*(X) if and
only if supp(vp,») C F, and E[v,,] € B, for all v € M.
Let Hx C ®vemK Nr be the subspace defined by the equation >, n,u, = 0.

By sending the point (u,), € Hg to the adelic centered measure (d,,), € Hk, we
identify Hx with a subspace of Hy.

Corollary 4.10. The minimum of the function 15 is equal to u3*(X) and it is
attained at a point of the subspace Hx C Hy.

Proof. Let = be a point where ¥ attains its maximum. Since 0 € 0¥ () and
I5(z) =2, nu0V5 (), we can find u = (u,), € Hx such that for every v,

u, € 85, (x) N (- a( 3 Z“JﬁD,w> (x)) = B,

weMr\{v} v

The adelic centred measure § = (d,,), € Hx corresponding to u € Hyg satisfies
supp(0y, ) = {uy} C F,, and E[d,,] = u, € B,. Thus, by Lemma 4.8,

Hp (X) = np(u) = min n5(v),
as stated. O
We next show that the measures coming from algebraic points are dense in Hx.

Proposition 4.11. For every v € Hg there is a generic net (p;)ie; of algebraic
points of Xo such that the net of associated measures (Vp,)icr as in (4.8) converges
to v with respect to the adelic KR-topology.

Proof. Put v = (), and let € > 0 be given. Let S be a finite nonempty subset
of Mk such that v, = oy for all v ¢ S, and put
! € ! 2
== d d=-= du,.
c 6 e o o e Izr;leas)‘(/uu” v

By [Vil09, Theorem 6.18], for each v € S we can approach v, with respect to the
KR-distance, by a probability measure with finite support. Therefore we can find
d > max{2,d’} and for each v € S a sequence of points w1, ..., Uy 4—1 € Ng such

that the probability measure v) = -1+ Zdil Ou, , satisfies W(v,,v,) < €'. We
deduce from [Vil09, Formula (6.3)] the inequalities

\ [l an,— [ ugavz] <

Defining u, 4 := dE[ —(d—1) E[v)]], we verify ||uy 4| < || E[vy]||+(d—1)e’. Thus,
setting v, = 5 Z¢:1 u,; and using Jensen’s inequality and [Vil09, Formula (6.3)]
again, we get

¢ and | E[v,] —E[V)]| <<

v =

W (v, v,) < 7d Z”uvzn"‘ [[wo,all

2
< y (/ lul| dv)) + / lul| dvy + (d — 1)5’) < 7 / lul| dv, 4+ &' < 2¢”.

We then easily check E[v)] = E[v,] and
W(VU’ 'u) < W(VU7 v) +W( Vs v) < 38

Set also v, = & for v ¢ S. Then v’ = (v,), € Hk and Wk (v,v') < 5.
Let F/K be a finite extension of degree d such that all places in S split completely,
as given by [BPS15, Lemma 2.2]. For each v € S and w € My such that w | v, we
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have n,, = n,/d. We enumerate the places above a given place v € S as w(v, j),
j=1,....d.

Let Hr C D, eom, Nr be the subspace defined by the equation ), 14 u, = 0.
For each v € Mk consider the element w € Hy given, for w € My, by

Uy; forve Sandw=uwvj) withl<j<d,
Uy =
0 for v ¢ S and w | v.

Consider the map valg: T(F) — ,,con. Vr defined by valg = (valy )weon,. This is
a group homomorphism and so it can be extended to a map

valp: T(F) @ Q — €D Ne.
weEMp
By the product formula, the image of this map lies in the hyperplane Hp and,
by [BPS15, Lemma 2.3], it is dense with respect to the L!'-topology on Hp. For
a € T(F) and r € Q, we have

d
r Ty T T
= vale(a)]| 2 = 3 7Dl = valugop (@) + Y lval (a7)]

ves o j=1 v S
= va / lu— || dXy(u, ") (4.17)

for the probability measure A\, on Ng X Ng given by

d
1 .
Ay = ﬁ Z 6(’“’”:j’va‘lu7(1y,j)(l)éT)) ifv e S,

J=1
5(0,Va1v(ar)) if v ¢ S.

This measure has marginals v}, and v, for any p = w - " with w a torsion point
in T(K), thus W(v),vps) < [ |lu— /|| d\y(u,u’) for every v, and the quantity
in (4.17) is an upper bound for the adelic KR-distance Wi (v',v}). It follows that
we can choose o and r such that Wk (v',v,) < £/2 and thus Wk (v,v,) < e.

Since the orbit of a” under the action of the group of torsion points of T(KK)
is Zariski dense, we have shown that, given € > 0 and a nonempty open subset
U C X, we can choose p € U(K) satisfying

Wk (v,v),) < e.

As in the proof of Proposition 2.5, let I be the set of closed subvarieties of
pure codimension 1 in X ordered by inclusion. For each Y € I choose a point
py € (X \Y)(K) such that

1
c(Y)
with ¢(Y) the number of components of Y. Thus, the net of algebraic points

v )ver is generic and the net of probability measures (v, )yer converges to v in
p € g P Yy py )Y€E g
the KR-topology, proving the result. O

WK(V7VPY) <

Proof of Theorem 4.7. Let v = (v,,), be a centered adelic measure on Ng such that
each measure v, satisfies the condition (4.5). By Lemma 4.8, it satisfies

(V) = 1y (X).

Proposition 4.11 implies that there is a generic net (p;);er of points in T(K) = X(K)
such that (vp,)ier converges to v with respect to the distance Wx. On the other
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hand, by Lemma 4.8 we also have
lim by () = lim g (vy,) = n5(v) = K5 (X),
and so the net (p;);er is D-small. O

Corollary 4.12. Let v € My. For every measure v, € £ with supp(v,) C F, and
Elv,] € B,, there is a generic D-small net (p;)ier of algebraic points of Xo such
that the net of measures (Vp, »)ic1 converges to v, with respect to the Kantorovich-
Rubinstein distance. In particular, (Vp, v)ier also converges to v, in the weak-*
topology with respect to C,(NR).

Proof. Let x be a point where ¥ attains its maximum. Since

tenco( X M )w-- Y i)

weMg\{v} v weMr\{v} Mo
we can find u,, € 819571” for each w # v such that

uy = Efry] = — Z " .

uz
weMg\{v}

In particular, for all w € Mk one has

Uy = — Z @Uw/ € g5, (x)N ( 3< Z nw/ﬂD’w,) (m)) = By

weMg\{w} weMg\{w}

Furthermore, we have w,, = 0 for all but a finite number of places w in IMik.
Put v, = J,, for each w # v. The statement then follows from Theorem 4.7
applied to the centered adelic measure v = (Vy)wemiy - O

Combining Theorems 4.3 and 4.7, we can obtain a criterion for when the direct
image under the valuation map of the Galois orbits of a small net converges in the
sense of measures. We show that in this case, the limit measure is concentrated in
a single point.

Corollary 4.13. Let v € Mg. The following conditions are equivalent:

(1) for every D-small net (p;)ier of algebraic points of X, the net of measures
(Vp, w)icr converges in the weak-+ topology with respect to Cp(Nr);

(2) for every generic D-small net (p)icr of algebraic points of Xg, the net of
measures (Vp, »)icr converges in the weak-+ topology with respect to Co(Ng),
the space of continuous functions on Ngr with compact support;

(3) the face F, contains only one point.

When these equivalent conditions hold, the limit measures in (1) and (2) coincide
with the Dirac measure at the unique point of F,.

Proof. Tt is clear that (1) implies (2), and Theorem 4.3 shows that (3) implies (1).
Now suppose that the face F, has more than one point. Since F), is the minimal
face containing B,, we can find distinct points ug, u1, us € F, such that

U1 + usg
2
The probability measures &,, and 3d,, + £8,, satisfy the conditions (4.5). By

€ B,.

ug =

Corollary 4.12, we can find generic D-small nets (p;)ier and (q;);es such that the
nets of measures (vp, )ier and (Vg 4 )ier respectively converge to

1 1
0y, and §6u1+§§u2
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in the KR-topology, and hence in the weak-* topology with respect to C.(Ng).
Combining these nets, we can obtain a net that does not converge in this weak-*
topology. Hence the condition (2) implies the condition (3).

The last statement follows from Theorem 4.3. (]

When any of the equivalent conditions of Corollary 4.13 holds we say that the
metrized divisor D satisfies the modulus concentration property at the place v.
Thus Corollary 4.13 gives us a criterion for the modulus concentration property
at a place. We next give a criterion for the modulus concentration property at all
places simultaneously, which can be directly read from the roof function. Before
giving it, we need some preliminary results and a definition.

Definition 4.14. A semipositive toric metrized R-divisor D with D big is called
monocritical if the minimum of 75 in Hk is attained at a unique point. If this is
the case, by Corollary 4.10, the minimum is attained at a point of Hg. This point
is called the critical point of D.

Example 4.15. Let D be a nef and big toric R-divisor equipped with the
canonical metric as in Example 4.1. Then all its local roof functions are zero.
Taking a point x in the interior of the polytope, we have 0¥5 (z) = {0} for
every v. Hence F, = {0} for every v and D is monocritical with critical point
0 € Hg.

Recall that Ap max denotes the convex set of points of Ap where ¥ attains its
maximum.

Proposition 4.16. The following conditions are equivalent:

(1) the metrized R-divisor D is monocritical;
(2) for every point & € Ap max, the set

Hen [ 095,(2) (4.18)
vEMK

contains a unique element u = (uy), € Hg and, for v € Mk, the point u,
is a vertex of 05, ();

(3) for every point x € Ap max, the point 0 is a vertex of 095 (x);

(4) there exists a point x € Ap max such that 0 is a vertex of 005 (x);

(5) for all v € My, the set F,, contains only one point.

When these equivalent conditions hold, F, = {u,} for every v and w is the critical
point of D.

Proof. We prove first that (1) implies (2). Assume that D is monocritical. Let
u = (uy), belong to the set (4.18). Then for every v € Mk we have

u, € 995, (x) N (— a( 3 “‘“’ﬁaw)(az))
wEMy , w#v v

So the measure v = (J,, ), belongs to Hg and satisfies supp(d,,) C B, for each v.
In particular, supp(dy,) C Fy, and E[d,,] € B,. Thus by Lemma 4.8

_ : /
np(w) = min 5.

Since D is monocritical, this shows that the set (4.18) is reduced to the unique
critical point of D.

Assume now that the set (4.18) contains a single point v = (u,), € Hg and
there is a place vg € M such that u,, is not a vertex of dv5 , (x). Then we can
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find two points wy,,1, U2 € OVp v (z) such that

U”Uo,l + uU0,2

Uy, = 5
We consider the measure v; = (4, ), and the measure vy = (v,,), defined by
Ou, if v # v,
Vy = 6717;0,1 + 5“1)0,2

3 if v = wy.

Then vy is in (4.18) and, again by Lemma 4.8, we have that
n5(v1) = np(ve) = min np(v)

contradicting the hypothesis that D is monocritical, and completing the proof of (2).
Assume that (2) is true and fix © € Ap max. Let S C Mg be the finite set of
places where u, # 0 or Y5 , is not identically zero. We have that

005 (x) = Z n, 0V, ().

veS

Moreover, (2) implies that the equation

0= Z nya, with a, € 6195,1) (2)
vES

has a unique solution a, = u, and this solution satisfies that a, is a vertex of
995 ,(x). Therefore, by Lemma 3.15 we deduce that 0 is a vertex of 9¥5(x).
Hence (2) implies (3).

Since Ap max is nonempty, (3) implies (4).

Assume now that (4) is true. For each v, let g1, and g2, be the continuous
concave functions on Ap in Notation 4.2. Since V5 = ny91,0 + N0 92,0,

005 (x) = ny0g1,0 () + 1u092, ().

Lemma 3.15 and the definition of the set B, imply that this set contains one single
point u,, and that this point is a vertex of both d¢1 ., (z) and of —9g2 ,(z). Hence
B, is already a face of d¢1 ,(z). Thus F, = B, = {u,} and so (4) implies (5).
By Lemma 4.8 it is clear that (5) implies (1) finishing the proof of the equivalence.
Assume now that D is monocritical. Since by Lemma 4.8 the point u in (2)
satisfies that np5(u) = min, ey, n5(v), it is the critical point. Following the proof
of the equivalence we deduce that F, = {u,} proving the last statement. O

For a given toric metrized R-divisor, the condition of being monocritical and its
critical point behave well with respect to scalar extensions. The following result
follows from the compatibility of toric metrics with scalar extensions in [BPS14,
Proposition 4.3.8].

Proposition 4.17. Let X and D as before. Let F C K be a finite extension of K
and write Dy for the toric metrized R-divisor on Xy obtained by scalar extension.
If D is monocritical with critical point (Uy)veomy, then Dy is also monocritical and
its critical point (Uy)weomy 1S given by uy, = u, for all v € Mk and w over v.

We now give the criterion for modulus concentration at every place.

Theorem 4.18. Let X and D be as before. The following conditions are equivalent:

(1) for every D-small net (p;)ic; of algebraic points of Xo and every place
v € Mk, the net of measures (Vp, »)icr converges.
(2) the metrized R-divisor D is monocritical;
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When these equivalent conditions hold,

lllenll Vpro = 5%’

where (uy), is the critical point of D.

Proof. The theorem follows directly from Corollary 4.13 and Proposition 4.16. O

When there is modulus concentration for every place, we can show that the
convergence holds not only in the weak-* topology with respect to Cy,(/Ng) but even
in the stronger adelic KR-topology.

Theorem 4.19. Let X and D be as before. Assume that D is monocritical. Let
u = (u,), be the critical point of D and set 8, = (84,)» € Hr. Then, for every
D-small net (p)ier of algebraic points of Xo, the net of centered adelic measures
(vp, )ier converges to 8, in the adelic KR-topology. In particular, for everyv € Mk,
the net of measures (Vp, v)icr converges to &, in the KR-topology.

Proof. For each v € Mk, let f,: Ng — R be the function given by
fo(u) =45, (u) — ¥p(u—uy).

This is an adelic family of bounded continuous functions on Ng with f, = 0 for all
but a finite number of v. Consider then the function n’: Hx — R given by

70) = p(v) + X /fv dv, = - ;nv/wu ) e,

Since the net (p;)es is D-small,
limnp(vy, ) = limhg(p) = w5 (X).

By Theorem 4.18, for every place v € Mk the net of measures (v, ,)ier converges
to dy,, so that limy [ f, dvp, , = [ fo dou, = U5, (uy). Since u = (uy), is the
critical point of D, using Corollary 4.10 we get

lim ' (vp,) = w$°(X) + > nuip,, (1) = 0. (4.19)

v

Choose a point z in the interior of Ap. Then there is a constant ¢ > 0 such
that, for all u € Ng,

[ull < —c(¥p —2)(u).

It follows from the definition of the Kantorovich-Rubinstein distance that, for
each v € Mk,

W (V02 60,) < / = ]| v (1),

Hence

Wi, 64) < 3 e / = | dvgy o (10

<= n [(Wh = a)u = ) vy ) = e/ (),

where the last equality follows from the facts that w belongs to Hx and that v, is a
centered adelic measure on N, thanks to the product formula in Proposition 2.1(2).
By (4.19), this distance converges to 0, completing the proof. O
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5. EQUIDISTRIBUTION OF (GALOIS ORBITS AND THE BOGOMOLOV PROPERTY

We turn to the study of the limit measures of Galois orbits of D-small nets
of algebraic points in toric varieties. In this section, we denote by X a proper
toric variety over a global field K and D a toric metrized R-divisor on X with D
big. For v € Mk, recall that val,: T2" — Nr denotes the valuation map, defined
in (4.1).

We first describe the limit measures in the monocritical case.

Definition 5.1. Given v € Mk and u € Ng, the probability measure Ag, , on X3"
is defined as follows.

(1) When v is Archimedean, note that val,'(u) = S, - p for any point p €
val, ' (u) and where S, = val; ' (0) ~ (S")" is the compact torus of T2". In
this case, Ag, . is the direct image under the translation by p of the Haar
probability measure of S,,.

(2) When v is non-Archimedean, consider the multiplicative seminorm on the
group algebra C,[M] ~ Cv[xlil,...,xffl] that, to a Laurent polynomial
Y omen @mX™, assigns the value max,, (|cmly e~ (™). This seminorm
gives a point, denoted by 6(u), in the Berkovich space X2". The point 6(u)
lies in the preimage val; ' (u). We then set As, u = 0g(u), the Dirac measure
at this point.

The following result corresponds to Theorem 1.1 in the introduction, and shows
that modulus concentration at every place implies the equidistribution property at
every place. Due to the existing equidistribution theorems in the literature, we
restrict its statement to divisors (rather than R-divisors).

Theorem 5.2. Let X be a proper toric variety over K and D a semipositive toric
metrized divisor on X with D big. The following conditions are equivalent:

(1) for every generic D-small net (p;)ier of algebraic points of Xo and every
place v € My, the net of probability measures (tp, . )icr on X3" converges;
(2) the metrized divisor D is monocritical.

When these equivalent conditions hold, the limit measure in (1) is As, u,, With
Uy € Ng the v-adic component of the critical point of D.

The proof of Theorem 5.2 is done by reduction to the quasi-canonical case.
The following is the characterization of quasi-canonical toric metrized R-divisors in

[BPS15].

Proposition 5.3. Let X be a proper toric variety over K and D a semipositive
toric metrized R-divisor on X with D big. The following conditions are equivalent:

(1) D is quasi-canonical (Definition 2.7);
(2) ¥ is constant;
(3) there are uw = (uy)y € Hx and (1)v € @,eom, R such that

’(/)B,'u(u) =Up(u—uy) =Y
for all v € Mk and u € Ng.

Proof. The equivalence of (1) and (3) is given by [BPS15, Corollary 4.7]. The
equivalence of (1) and (2) is given in the course of the proof of [BPS15, Proposi-
tion 4.6], recalling that vol(D) = degp,(X) and noting that, since by assumption D

is semipositive, vol, (D) = h5(X). O

The following result gives the key step in the proof of Theorem 5.2.
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Proposition 5.4. Let X be a proper toric variety over K and D a monocrit-
ical metrized R-divisor on X with critical point w = (uy)yeo,. Let D' be the
toric metrized R-divisor over D corresponding to the family of concave functions
%/,v: Nr — R, v € Mg, given by

b () = Wp(u— u). (5.1)

Then D is quasi-canonical and every D-small net of algebraic points of Xo is
also D -small.

Proof. The fact that D'is quasi-canonical is given by Proposition 5.3.

Let (p1)ier be a D-small net of algebraic points of Xy. By Theorem 4.19, the net
of centered adelic measures (v, )ier converges to 8, = (dy, ), With respect to the
adelic KR-distance. By Lemma 4.8, the function 75 is continuous with respect to
this distance. Using (4.9), we deduce that

li{n hy () = li%n Ny (Vp,) = np (0) = 0.
On the other hand, ¥, = u, for each v. Since the critical point w lies in the
subspace Hy, we have that 95 = Y n,u, = 0. Hence,

ns7 (X) = max d5(z) = 0.

€Ap

Thus (p;)er is ﬁ/—small, as stated. O

Proof of Theorem 5.2. Suppose that the condition (1) holds. Given a generic D-
small net (p;);er of algebraic points of X and v € My, the net of measures (up, v)ier
converges weakly with respect to the space C(X3"). Hence, the net of direct images
(Vp,v)ier converges weakly with respect to the space C.(Nr). By Corollary 4.13, for
each v, the face F, contains only one point. Proposition 4.16 then implies that D
is monocritical, giving the condition (2).

Now suppose that the condition (2) holds. Since D is monocritical, the poly-
tope Ap has nonempty interior. Let Y be the toric variety associated to the normal
fan of Ap and E the divisor on Y associated to the virtual support function ¥p,
see for example [BPS14, Theorem 3.3.3]. By construction E is ample and (Y, E) is
the polarized toric variety associated to the polytope Ap, see for example [BPS14,
Theorem 3.4.6 and Remark 3.4.7]. By the characterization of semipositive toric
metrics in [BPS14, Theorem 4.8.1], the metric in D induces a semipositive toric
metric on E, and we denote by E the corresponding toric metrized divisor. We
have that 1/)@71) = 1/)571) for all v, and so E is also monocritical with the same critical

point as D.
Let

B = (B, - )veom.
be the ample divisor E on Y equipped with the quasi-canonical toric metric given
by Proposition 5.4, with D replaced by E. Let (p;)ier be a generic D-small net of
algebraic points of Xo = T = Yj. It is also a generic E-small net of algebraic points
of Yy. By Proposition 5.4 with D replaced by E, it is also ' -small.
By Theorem 2.11, for each place v the net (u,, »)ier converges to the normal-

ized Monge-Ampeére measure i, = mcl (E,| - [I))"™ on Y. Consider the

real Monge-Ampere measure M (i ) associated to the v-adic metric in E asin
[BPS14, Definition 2.7.1]. By the explicit formula (5.1) and [BPS14, Example 2.7.5],
degp (Y
Mg ) = volyr(Ap)d., = degp() 5

n!
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Then [BPS14, Theorem 4.8.11] implies that p, = Xs,.u,. Therefore, the net of
measures (fp, v)ier on X3* converges to As, u,, giving the condition (1) and the
last statement in the theorem. O

Example 5.5. Let D™ be a big and nef toric divisor on X equipped with the
canonical metric. Following Example 4.15, this toric metrized divisor is monocritical
with critical point 0 € Hg. Hence, it satisfies the v-adic equidistribution property
with limit measure Ag, o, for every v € Mx.

In [Bil97], Bilu gave an equidistribution theorem for Galois orbits of sequences
of points of small canonical height. This result is restricted to number fields and
Archimedean places. However, and in contrast to the previous example, this result
holds not just for generic, but for strict sequences of points, that is, sequences
that eventually avoid any given proper torsion subvariety. This stronger version of
the equidistribution property was used in a crucial way in loc. cit. to prove the
Bogomolov property for the canonical height.

Here we extend this version of the equidistribution property to monocritical
metrized R-divisors on toric varieties (Theorem 5.7) and deduce from it the Bogo-
molov property (Theorem 1.4 in the introduction, or Theorem 5.12 below). Our
proofs are similar to Bilu’s and use Fourier analysis. Hence, for the rest of the
section we restrict to the case when K is a number field and we only study the
equidistribution over the Archimedean places. Following Remark 2.10, we restrict
without loss of generality to sequences, instead of nets.

To formulate this extension, we have to modify slightly the notion of strict se-
quence. First we recall some standard terminology: a subtorus of T is an algebraic
subgroup of T that is geometrically irreducible, a translate of a subtorus is a sub-

variety of Ty that is the orbit of a point p € T(K) by a subtorus, and a torsion
subvariety is a translate of a subtorus by a torsion point of the group T(K) ~ (KX )"

Definition 5.6. A sequence (p;);>1 of algebraic points of T is strict if, for every
translate of a subtorus U C Ty, there is [o > 1 such that p; ¢ U(K) for all [ > .

Equivalently, (p;);>1 is strict if, for every m € M \ {0} and every point ¢ € X (K),
there is Iy > 1 such that x™(p;) # x™(q) for all I > ly.

Theorem 5.7. Let X be a proper toric variety over a number field K and D a mon-
ocritical metrized R-divisor on X . Then, for every strict D-small sequence (p;)i>1 of
algebraic points of Xo and every Archimedean place v € My, the sequence (fip, »)i>1
converges to the probability measure Xs, o, , with u, € Nr the v-adic component of
the critical point of D.

Proof. Let (p;);>1 be a strict D-small sequence of algebraic points of Xy. For each
m € M \ {0} consider the character

Xml T — Gm,]K-

Since (p;);>1 is strict, the sequence (x™(pi))i>1 is generic.

We embed Gy, x — ]P)I%( as the principal open subset. Let Doy = div(zg) be the
divisor at infinity on P}, equipped with the toric metric corresponding to the adelic
family of functions 1/’55",1;1 R — R given by

W o () = min(0,u — {m,u,)).
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By Proposition 5.3, this metric is quasi-canonical. For each v € Mk, there is a
commutative diagram

Xm,
an an
T3 —— G,

val, l \L val,

Np —7—>R

The commutativity of this diagram implies that vym(p,) ., = muvp, . By Theo-
rem 4.19, the sequence (v, );>1 converges in the adelic KR-topology to the centered
adelic measure (d,,), on Ngr. Hence, the sequence (vym(p,))i>1 converges in the
adelic KR-topology to the centered adelic measure (0, ,,))» on R. By Lemma 4.8,

1t 15 () = 1 (B Do) = bS5 ().

By the identity in (4.9), o (Vym(p) = hm (x™(pr)). Thus the sequence of points

(X™(p1))1>1 is Dy -small.

Summarizing, the sequence (x™(p;));>1 of algebraic points of P} is generic and
small with respect to the quasi-canonical toric metrized divisor 581. Theorem 2.11
then implies that the sequence of measures (jym(p,),0)i>1 on the analytification
PLan ~ P1(C) converges to AS, (mouy) -

Assume now that v is Archimedean. Since the space of probability measures
on X (C) is sequentially compact, by restricting to a subsequence we can suppose
without loss of generality that (u,, ,)i>1 converges to a measure p. Since the
sequence of direct images ((valy)«ftp, »)i>1 converges in the KR-topology to the
Dirac measure on the point w, € Ngr, we deduce that

P1),v

supp(p) C valy ' (u,) =S, -e .

Let z be the standard affine coordinate of P*(C). For each m € M \ {0}, let
Zm be a continuous function on P!(C) that agrees with z on a neighborhood of
St x™(e7). Hence (x™)*(2m) agrees with the character Y™ on a neighborhood
of S, -e % . Then

/de,u:/( ™ (zm) du*hm/ “(2m) ditp, v

= hm/zm */prl v = hm/zm d:“x ™(p1),v

= /Zm d)\317<m,u“> = /Z d)\51,<m7u“> = 07

where the last equality comes from Cauchy’s formula. Hence f x"dp = 0 for
all m € M\ {0}. By Fourier analysis, the only probability measure supported
on S, - e~" satisfying this condition is Ag, u,. Thus g = Ag, u,, concluding the
proof. O

Remark 5.8. Our notion of strict sequence is stronger than the one in [Bil97].
Nevertheless, for the canonical height on a projective space, a small sequence of
points is strict in our sense if and only if it eventually avoids any fixed translate
of a subtorus with essential minimum equal to 0. Such a translate of a subtorus
is necessarily a torsion subvariety, see for instance Example 5.16. Hence, a small
sequence of points that is strict in the sense of Bilu [Bil97] is also strict in the sense
of Definition 5.6. Thus Theorem 5.7 applied to the canonically metrized divisor at
infinity on a projective space specializes to [Bil97, Theorem 1.1].
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Remark 5.9. To the best of our knowledge, even for the canonical metric it is
still not know if the equidistribution property for strict sequences holds for the
non-Archimedean places of a global field.

The toric Bogomolov conjecture can be stated as follows: let X be a toric variety
and D an ample toric divisor on X. Let V' C X be a closed subvariety that is
not torsion. Then there exists € > 0 such that the subset of algebraic points of V' of
canonical height bounded above by ¢, is not dense in V. Equivalently, if V' C ka
is a closed subvariety such that uiDSEan(V) =0, then V is a torsion subvariety.

This conjecture was proved by Zhang in the number field case [Zha95]. Bilu
obtained a proof of Zhang’s theorem based on his equidistribution theorem. In
what follows, we extend his approach to the general monocritical case over a number
field.

Recall that X denotes a proper toric variety over a number field K and D a, toric

metrized R-divisor on X. For a subvariety V' C Xg, we set
RS (V) = inf {hip ()] € V ()}

for the absolute minimum of the height function. The fact that D is toric implies

S (X) = uip®(Xo), (5.2)
see [BPS15, Lemma 3.9(2)]. Therefore, for any subvariety V' C Xo x>
WES(V) > (V) > pabs(Xo) = ps(X). (5.3)

This motivates the following definition.
Definition 5.10. A closed subvariety V' C X is D-special if
W (V) = S (X),
In particular, an algebraic point p of X is D-special if and only if hi(p) = u%S(X ).
We also propose the following terminology.

Definition 5.11. The toric metrized R-divisor D satisfies the Bogomolov property
if every D-special subvariety of X is a translate of a subtorus.

Note that if X is of dimension 1, then the Bogomolov property is trivially satisfied
for every metrized divisor.

We consider the problem of deciding if a given toric metrized R-divisor satisfies
the Bogomolov property. The following result corresponds to Theorem 1.4 in the
introduction, and shows that the answer is affirmative for monocritical metrics.

Theorem 5.12. Let X be a proper toric variety over a number field K and D a
monocritical metrized R-divisor on X with critical point w = (Uy)yeom,- Let V' be
a D-special subvariety of XO,K' Then V' is a translate of a subtorus.

Furthermore, if u, € val,(T(K)) ® Q for all v, then V is the translate of a
subtorus by a D-special point.

Before giving the proof of this theorem, we study special points and, more gener-
ally, special translates of subtori in the monocritical case. We first give a criterion
for the existence of such points.

Proposition 5.13. Let X be a proper toric variety over K and D a monocritical
@etrized R-divisor on X with critical point u = (uy)yemy. Then there exists a
D-special point if and only if

uy € val,(T(K)) @ Q  for all v € Mk. (5.4)

If this is the case, then every D-special point is of the form ¢'/* with ¢ € Xo(K)
and £ > 1.
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Proof. Suppose that there is a D-special point p € X(K). Choose a finite normal
extension F C K of K where p is defined. Consider the norm of p relative to this

extension, given by
Ne() = [ ™)
T€Gal(F/K)
where Gal(F/K) and [F : K]; are the Galois group and the inseparable degree of
the extension, respectively.
Let v € Mg. For every 7 € Gal(F/K), there is a place w € My over v such
that val,(7(p)) = val,(p). By Corollary 4.9 and Proposition 4.17, we have that

valy, (p) = w, for any such place. It follows that val,(7(p)) = u, for all 7. Using
that # Gal(F/K) - [F : K]; = [F : K], we deduce that

val, (NE(p) = 3 val, (7 (p) ) = [F : Klu,.

Since N (p) € T(K), we get that [F : K]u, € val,(T(K)), proving the implication.
Conversely, assume that the condition (5.4) holds. Let S C 9k be a finite set
containing the Archimedean places and those places v where u, # 0. Set
T(K)s = {p € T(K) | val,(p) =0 for all v ¢ S}

and let Hx g be the subspace of )
Moreover, consider the lattice

I' = Hg,s N @D val,(T(K))
vES

ves IV defined by the equation ) g 1,2, = 0.

and the map valg: T(K)s — I given by valg(p) = (val,(p))yecs. By Dirichlet’s unit
theorem [Wei74, Chapter IV, §4, Corollary to Theorem 9], the image A of this map
is a sublattice that is commensurable to I'. Thus A ® Q =I' ® Q. Condition (5.4)
implies that (uy)yes € T ® Q = A ® Q. Hence, there is an integer £ > 1 such that

(éuv)ves S A

In other terms, there is ¢ € T(K)g such that val,(¢) = fu, for all v € S. By Corol-
lary 4.9, the point p = ¢/¢ € T(K) is D-special, proving the reverse implication.
To prove the last statement, suppose that the condition (5.4) holds and consider
an arbitrary D-special point p’ € Xo(K). Let p be the D-special point constructed
above and F C K a finite extension of K so that p,p’ € T(F). Then val, (p'p~1) =0
for all w € Mp. By Kronecker’s theorem, the point p'p~! is torsion. We conclude
that some positive power of p’ lies in T(K), as stated. O

Next we characterize the translates of subtori that are D-special. Let U = Tg-p
be the translate of a subtorus T' C T by a point p € X(K). The subtorus T corre-
sponds to a saturated sublattice @ of N; we denote by ¢: Q < N the corresponding
inclusion map. Let F C K be a finite extension of K where p is defined. For each

w € My, we consider the affine subspace of N given by

AU,w = Valw (p) + QR-

Indeed Ay, = val, (U3") and so this affine subspace depends only on U and not
on a particular choice for the translating point p.

As explained in [BPS14, §3.2], the normalization of the closure of U in X can
be given a structure of toric variety. Let X be the fan on Ny corresponding to X
and Yg the fan on Qr obtained by restricting ¥ to this latter linear space. Then
the inclusion ¢: Qr < Ng induces an equivariant map of toric varieties

Ppo Xp,x = Xk

extending the inclusion U — Tk.
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Proposition 5.14. Let X be a proper toric variety over a number field K and D
a monocritical metrized R-divisor on X with critical point w = (uy)pemy. Let

U=Tg p C Xyg be the translate of a subtorus T C T by a point p € Xo(K)
defined over a finite extension F C K of K. For a place w in Mg denote by v(w)
the place in Mg below w. Then we have the following properties.
(1) The translate U is D-special if and only if Uy(w) € Avw for all w € Mp.
(2) If the translate U is D-special, then the metrized R-divisor @Z’LE 15 mono-
critical and its critical point is (Uy(w) — Valy (P))wems -

Proof. By passing to a suitable large finite extension of K and applying Proposi-
tion 4.17, we can reduce to the case when U is the translate of a K-rational point,
that is, U = Ty - p with p € Xo(K). With this assumption, F = K and we set
vi=w = v(w).

Since D is a semipositive toric metrized divisor with D big, the virtual sup-
port function Wy is concave and its associated polytope has dimension n. Hence,
there is m € My such that (m,u) > ¥p(u) for all u # 0. Moreover, the metric
functions %,v are concave for all v € M.

Consider the toric metrized R-divisor E = cp’[’pﬁ on the toric variety Xs,. By
[BPS14, Proposition 4.3.19], its virtual support function and metric functions are
given, for z € Qg, by

Up(2) =¥p(u2),  ¥g,(2) =vp,(val(p) + ¢(2))-
Therefore ¥ is concave and satisfies (Vm, 2) > Up(2) for all z € Qg \{0}. Hence,
the R-divisor E' is big. Moreover, the metric functions ¢ , are concave and so E
is semipositive.
Since U is identified with a dense open subset of XEQ x> we have

K (U) = (X,
Consider the affine subspace Ay = @, Av,» of @, Nr. By Corollary 4.10,

K (Xsg) = min ST —nuip (), W) = min 3 —noig, (u)).
v

v

Since D monocritical, the minimum in the right equality is attained only at the

point w’ = w. We conclude that p*(U) = pS*(X) if and only if u, € Ay, for

all v € Mgk, proving both statements. O
Corollary 5.15. Let X be a proper toric variety over a number field K and D a
monocritical metrized R-divisor on X with critical point u = (Uy)pemy, and suppose
that u, € val,(T(K)) ® Q for all v € My. Then a translate of a subtorus of X is
D-special if and only if it is the translate of a subtorus by a D-special point.

Proof. Clearly, the translate of a subtorus by a D-special point is D-special. To
prove the reverse implication, let U be a D-special translate of a subtorus and write
U = T -p as in the statement of Proposition 5.14. By this result, the toric metrized
R-divisor E = go;‘,’LE is monocritical and, for each v € Mk and w € My over v,

Uy € Ay Nval,(T(K)) @ Q C Ay Nval, (T(F)) @ Q.
Since p € Xo(F),
Ay Nval, (T(F)) @ Q = valy, (p) + val,(T(F)) ® Q.

Hence u,, — valy, (p) € val, (T'(F)) ® Q. Extending the base field to F and restricting
to Xs,, Proposition 5.13 implies that this toric variety contains an E-special point.

Hence U contains a D-special point and it is the translate of T by this point, as
stated. O
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Example 5.16. Let D™ be a nef and big toric R-divisor on the proper toric
variety X, equipped with the canonical metric. By Example 4.15, it is monocritical
with critical point 0 € Hy. Hence, p € X((K) is D" -special if and only if val, (p) =
0 for every v € Mg. By Kronecker’s theorem, this is also equivalent to the fact
that p is torsion. Hence, Corollary 5.15 shows that a translate of a subtorus that
is D" -special is necessarily the translate of a subtorus by a torsion point, that is,
a torsion subvariety.

Proof of Theorem 5.12. Let U C X, g be the minimal translate of a subtorus con-
taining the subvariety V' and let Q and ¥ be as the ones defined before Proposi-
tion 5.14. By (5.2) and (5.3), we have u%’S(U) = p(U) and

K (X) = w5 (Xo) < W (U) < uip(V) < usP(V) = ui(X).

Therefore, U is D-special. By Proposition 5.14(2), D pulls back to a monocritical
metrized R-divisor on Xy, the normalization of the closure of U in Xp. Replac-
ing X by this toric variety, we reduce to the case where U = XQ,K-

Using Proposition 2.5, we choose a sequence (p;);>1 of algebraic points of V' that
is generic in V' and satisfies

limhp(pr) = p5* (V).

Since V is not contained in any proper translate of a subtorus, this sequence is
strict and, since V is D-special, it is also D-small.

Applying Theorem 5.7 to an Archimedean place v € Mk, we obtain that the
sequence of measures (fp, v);>1 converges to a measure whose support is the trans-
late S, - e " of the compact subtorus, with u, the v-adic coordinate of the critical
point of D.

Since V is D-special, it is a closed subvariety of Xox- Therefore V" is closed
in X§%. The measures (tp, v)i1>1 have support in V2", and the limit measure has
support S, -e~"». By the closedness of V2" we deduce the inclusion S, -e™" C V2"
Using that S, -e™" is dense in X" with respect to the Zariski topology, it follows
that V' = X &, proving the first statement of the theorem.

The last statement of the theorem follows from Corollary 5.15. O

By Theorem 5.12 and Example 5.16, the canonical toric metrized R-divisor D"
satisfies the Bogomolov property, and every Ecan—special subvariety is torsion.
Hence, Theorem 5.12 extends Zhang’s theorem to the general monocritical case.
On the other hand, in §6.3 we will give examples of non-monocritical metrized
divisors not satisfying the Bogomolov property.

6. EXAMPLES

The obtained criteria can be applied in concrete situations to decide if a given
semipositive toric metrized R-divisor satisfies properties like modulus concentra-
tion or equidistribution. In this section, we consider translates of subtori with
the canonical height, and toric metrized R-divisors equipped with positive smooth
metrics at the Archimedean places and canonical metrics at the non-Archimedean
ones. We also give a family of counterexamples to the Bogomolov property in the
non-monocritical case.

6.1. Translates of subtori with the canonical height. Let X be a proper toric
variety of dimension n over a global field K and D a big and nef toric R-divisor
on X. Let Up be its virtual support function.
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We denote by D™ this R-divisor equipped with the canonical metric as in
Example 4.1. This toric metrized R-divisor satisfies that, for all v € Mk,

%can)v = \I/D a,nd ﬂbcan)v = 0

Since D is big, Ap has dimension n. Every point x in the interior of Ap maximizes
the global roof function and 9¥5ean () = {0}. Therefore, for all v € My,

B, ={0} and F,={0}.

By Proposition 4.16, the canonical metric is monocritical and so, by Theorem 5.2,
D™ satisfies the equidistribution property at every place (Example 5.5).

We next study the toric metrics on D that are obtained as the inverse image by
an equivariant map of a canonical metrized toric divisor on a projective space. For
r > 0, let Pk be the standard projective space over K with homogeneous coordinates

(z0 : -+ : 2z) and H the hyperplane at infinity, defined by the equation zy = 0.
Denote by H “* this toric divisor equipped with the canonical metric.
Let v € Mg. If v is Archimedean, we set A\, = 1 whereas, if v is non-

Archimedean, we set A, as the positive generator of the discrete subgroup val, (K*)
of R. A piecewise affine function is said to be \,-rational if all its defining affine
functions (x,u) + b satisfy x € Mg and b € A\, Q.

Let ¢p: Ng — R be a concave \,-rational piecewise affine function with ) — ¥ p|
bounded. This determines a semipositive metric on Oxan (D). As seen in [BPS14,
Example 3.7.11], there is an integer » > 0 and a toric morphism ¢: X — Pf such
that

) =t geen
Hence, any such function @ can be realized as the v-adic metric function of the
. —can .
preimage of H ~ to X. This allows us to construct many examples, both mono-
critical and non-monocritical, of metrized toric divisors.
In the next examples, we fix K = Q and, as before, we denote by H™ the
hyperplane at infinity with the canonical metric.

Example 6.1. Let ¢: Gy g — Pg be the map given by

Wty =(1:t/2:¢).

Let X be the normalization of the closure of «(Gp,g) and D = *(H ). Then
X =P and D is the divisor at infinity.

We have Ap = [0,1]. As explained in [BPS14, Example 5.1.16], for each v € Mg
the graph of the local roof function associated to D is given by the upper envelope
of the extended polytope

conv((0,0), (1,1og[1/2,), (1,log[1],)) C R x R.
The graphs of these functions are represented in Figure 1. Thus, for = € [0,1]

10g(2) p----------—4

v =2

v # 00,2

FIGURE 1. Local roof functions in Example 6.1

we have ¥o(z) = xlog(2) and ¥,(x) = 0 for v # 2. The global roof function
is ¥(z) = zlog(2) and the only point that maximizes it is = 1. Moreover,
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092(1) = (—o0,log(2)] and 99,(1) = (—o0,0] for v # 2. With Notation 4.2, we
have

By = [O,lOg(Q)L F, = [700,10g(2)],
B, = [—10g(2),0], F,=[—00,0] for v # 2.

By Corollary 4.13, this metrized divisor does not satisfy the modulus concentration
property at any place. A fortiori, it does not satisfy the equidistribution property
at any place.

Indeed, by (4.3) we have pus®(X) = log(2). Let (wi)i>1 be a sequence given by
a choice of a primitive I-th root of the unity, a # 2 a positive prime number and r
an integer with log(a) < rlog(2). Choose any r-th root a'/" of a and consider the
generic sequences of points

p=0:w) and ¢ =(1: 2a_1/rwl) for I > 1.
For every v € Mg, | > 1, p € Gal(p;), and ¢ € Gal(g;), we have (val,).(p) = 0 and

log(2) ifv=2,

=Llog(a if v = a,
(val)a(g) = § 7 18 |
—log(2) + - log(a) if v = o0,

0 if v#£2,a,00.

Either by computing the local roof functions of D or the Weil height of the image
of these points under the inclusion ¢, we deduce that

hp(p) =log(2) and  hp(q) = log(2).

Therefore both sequences are D-small. For any place v, the sequence p,, , converges
to Ag, 0. In contrast, if we denote u, = (val,).(g) for any ¢ € Gal(q;), , then pg, »
converges to Ag, 4,. This shows that neither the modulus concentration nor the
equidistribution properties hold for the places 2, a,00. Varying a, we deduce that
these properties do not hold at any place of Q.

The metric of D at the Archimedean place is the canonical one. The metrics at
the non-Archimedean places can be interpreted in terms of integral models. Let X
be the blow up of P}, at the point (1 : 0) over the prime 2. The fibre of the structural
map X — Spec(Z) over the point 2 has two components: the exceptional divisor
of the blow up, which we denote by E, and the strict transform of the fibre of P},
which we denote by Y. Consider the divisor

D=+Y,

where 30 denotes the closure in X of the point (0 : 1) € P}(Q). The pair (X, D)
is a model of (X, D). For each non-Archimedean place v, this model induces an
algebraic metric on D that agrees with the v-adic metric of D.

Example 6.2. Consider now the map ¢: G0 — ]P’(Q@ given by

W)= ("1 1/2:t).
Let X be the normalization of the closure of t(Gyq) and D = *(H )
case, X = I%J and D is the divisor at infinity plus the divisor at zero.

We have Ap = [—1,1]. As before, we compute the local roof functions using
[BPS14, Example 5.1.16]. Their graphs are represented in Figure 2. For x € [0, 2],
we have ¥a(z) = (1 — |z|) log(2) and ¥,(z) = 0 for v # 2. Thus, the global roof
function is ¥(z) = (1 —|z|) log(2). Its maximum is attained only at the point x = 0.
In this case, 092(0) = [—log(2),log(2)] and 0v,(0) = {0} for v # 2. We deduce
that

By = {0}, Fy =[—log(2),log(2)] and B, ={0}, F, ={0} forv#2. (6.1)

. In this
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log(2)

- ‘ > o -
—log(2) i
v = 00

v=2 v # 00,2

FIGURE 2. Local roof functions in Example 6.2

By Corollary 4.13, D satisfies modulus concentration for all places except the
place 2. This toric metrized divisor is not monocritical, and so we cannot ap-
ply Theorem 5.2 in this case. Indeed, later we will see that D does not satisfy the
equidistribution property at any place of Q (Example 7.6).

As in the previous example, the metric of D at the Archimedean place is the
canonical one, and those at the non-Archimedean places can be interpreted in terms
of integral models. Let X be the blow up of P} at the points (1 : 0) and (0 : 1)
over the prime 2. The fibre of the structural map X — Spec(Z) over the point 2
has three components. Consider the divisor

D= +0,

where 50 denotes the closure in X of the point (0: 1) € P!(Q) and 0 the closure of
the point (1:0). The pair (X, D) is a model of (X, D). For each non-Archimedean
place v, this model induces an algebraic metric on D that agrees with the v-adic
metric of D.

Example 6.3. This time we consider the map ¢: Gy, g — IP’% given by

W)= (1:t/2:t2/2:t3).
—can)

Let X be the normalization of the closure of ((Gy, o) and D = *(H
case, X = Pb and D is three times the divisor at infinity.

We have Ap = [0,3] and the local roof functions are represented in Figure 3.
They are given by ¥2(x) = log(2) min(x,1,3 — z) and ¥,(z) = 0 for v # 2. The

. In this

log(2)
f f § + o~
—log(2) [ ] [ ]
v=2 V=00
® ® Lo
v # 00,2

FI1GURE 3. Local roof functions in Example 6.2

global roof function is thus ¥(z) = log(2) min(z,1,3 — x), which is maximized at
any point of the interval [1,2]. Choosing the maximizing point x = 3/2, we have
09, (3/2) = {0} for all v.
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Thus D is monocritical, by Proposition 4.16. By Corollary 4.13 and Theorem 5.2,
it satisfies both the modulus concentration and the equidistribution properties for
any place.

6.2. Positive Archimedean metrics. The following result covers many of the
examples considered in [BPS14, BMPS16, BPS15]: twisted Fubini-Study metrics
on projective spaces, metrics from polytopes, Fubini-Study metrics on toric bun-
dles, ¢P-metrics on toric varieties, and Fubini-Study metrics on weighted projective
spaces. All of them consist of toric varieties over Q with a toric divisor equipped
with a positive smooth metric at the Archimedean place and the canonical metric
at the non-Archimedean ones.

Theorem 6.4. Let X be a proper toric variety over a number field K and D =
(D, (Il - l)vemy) @ semipositive toric metrized R-divisor with D big. We assume
that, when v is Archimedean, || - ||, is a positive smooth metric on the principal
open subset X§%, whereas, when v is non-Archimedean, it is the v-adic canonical
metric of D. Then D is monocritical. In particular, it satisfies the equidistribution
property for every place of K.

When K = Q, the v-adic limit measure is Xg, o for every v € Mg.

Proof. Since the metric is smooth and positive on X§%, for v Archimedean, the

proof of [BPS14, Proposition 4.4.1] implies that the metric function ¢ , is smooth
and strictly concave, in the sense that its Hessian is negative definite. Therefore
¥p, is of Legendre type in the sense of [BPS14, Definition 2.4.1] and, by [BPS14,
Theorem 2.4.2(2)], the local roof function ¥ , is of Legendre type. In particular,
195,1} is smooth and strictly concave on the interior of A p and the sup-differential
at any point of the border of the polytope is empty.

For the non-Archimedean places, the metrics are canonical and so their local
roof functions are zero. Hence

’195 = Z nvﬁﬁv,

v|oo

this function is smooth and strictly concave on the interior of Ap, and its sup-
differential at any point of the border of Ap is empty. This implies that there is a
unique maximizing point m.x € Ap, which lies in the interior of the polytope, and
that 05 (2max) = {0}. Thus, the first assertion then follows from Proposition 4.16.

When K = Q there is only one Archimedean place. Therefore all the v-adic
metrics are the canonical metric except one. This implies easily that the critical
point in this case is u = (0), and the last statement follows from Theorem 5.2. O

Example 6.5. Let X = ]P’%I and D the divisor at infinity equipped with the
Fubini-Study metric at the Archimedean place and the canonical metric at the
non-Archimedean ones. By Theorem 6.4, this toric metrized divisor satisfies the
equidistribution property at every place. Moreover, the limit measure of the Galois
orbits of any generic D-small sequence is Ag, 0.

Recall that the canonical metric at the non-Archimedean places corresponds to
the canonical model of (P}, 00) given by (P},50), where 50 is the closure of the
point (0 : 1) € P1(Q). If we change the integral model, different phenomena may
occur. For instance, consider the integral model of Example 6.1, whose global roof

function is given by
1
U5 oo (T) = . (zlogz + (1 — z)log(l — z)) + z log(2),

see [BPS14, Example 6.2.3]. The unique maximum of this function is attained at
a point in the interior of Ap = [0,1]. Since ¥5  is differentiable on (0,1), we
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deduce that the sup-differential is reduced to one point. By Proposition 4.16, this
new toric metrized divisor is also monocritical.

In contrast, if we consider the divisor D’ = 0 + oo with the Fubini-Study metric
at the Archimedean place and the metrics induced by the integral model of Exam-
ple 6.2, then the maximum of the global roof function is attained at the point zero
and the sup-differential at this point is [— log(2),log(2)]. Since zero is not a vertex
of this set, by Proposition 4.16 this divisor is not monocritical. Hence it does not
satisfy the equidistribution property at the Archimedean place.

6.3. Counterexamples to the Bogomolov property. In this section, we give
examples of toric metrized divisors not satisfying the Bogomolov property. For
—=can

simplicity, we restrict to the case K = Q. As in §6.1, we denote by H  the
canonical metrized divisor at infinity on a projective space.

Example 6.6. Consider the map ¢: Gu,g X Gm,g — P§, given by
L(tl,tg) = (1 12 tl . tg).

As in the examples in the previous section, we denote by X the normalization of
the closure of the image of t and D = L*(Fcan). In this case, X = IF’?Q and D is the
divisor at infinity.
We have that Ap is the standard simplex of Ng = R? and ¥p: R2 — R is the
function given by
\IJD(ul, UQ) = min(O, U, Ug).

By [BPS14, Example 4.3.21], the local metric functions are given, for (uy,us) € R?,
by

Up (ur +1og(2),uz +log(2)) —log(2) if v = oo,
Up(ug,uz) if v # oo.

%71} (U/lv u2) = {

By [BPS14, Example 5.1.16], the local roof functions are given, for (z1,z2) € Ap,
by

(1 -1 —x2)log(2) if v =00,
ﬁD’U(%m):{O et if v # oo

Hence the global roof function agrees with ¥ . Its only maximizing point is
Tmax = (0,0), and one computes easily that 995 (0,0) = (—log(2), —log(2)) +
R%, and 995 ,(0,0) = R, for v # co. Thus

By = [_ log(2), 0]2’ Fyo = (—1log(2), —log(2)) + RQgOa
B, = [0,log(2)]?, F, = RQZO for v # oo.

We also have u*(X) = 9(0,0) = log(2).
Let (29 : 21 : 22) be homogeneous coordinates of X and consider the curve C of
equation zg + 21 + 22 = 0. In what follows, we will see that this curve is a D-special
subvariety. Since C' is not a translate of a subtorus, this will show that D does not
satisfy the Bogomolov property.
For [ > 1 choose a primitive I-th root of the unity w;. Let z;; be a solution of
the equation 2% 4+ z 4+ w; = 0 and put z9 = wy /71, for the other solution. Then

z10+2,+1=0 and 2120 =w. (6.2)

In particular, p; = (1: 21 : 22;) is an algebraic point of C.
Let v € Mg and ¢ = (1 : ¢1 : q2) € Gal(pr)y. If v # 0o, then the conditions (6.2)
imply that
val,(q) = (0,0) € B,. (6.3)
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If v = 0o, then these same conditions (6.2) give max(|q1|co, |g2|0o) < 1+2\/§_ Thus
1++5 1++5 5
valso(q) € (—log( 5 ),—log( 5 >)+R20CFOO~ (6.4)
Moreover, by the product formula and (6.3), we have
1
Elvy o] = — 1.(q) = (0,0) € B 6.5
[Vpu ] # Gal(pl)oo Z va. (Q) ( ) ( )

g€Gal(pr) oo

By Corollary 4.9, the conditions (6.3), (6.4) and (6.5) imply that hz(p)) = n3°(X).
Since the sequence (p;);>1 is generic in C, we deduce p35°(C) = ps*(X) and so C
is a D-special subvariety.

We generalize this example to a family of metrics on toric varieties of dimension
greater than or equal to 2.

Proposition 6.7. Let X be a proper toric variety over Q of dimensionn > 2 and D
a big and nef R-divisor on X. Let ug € Ng and consider the metrized divisor D"
over D defined by

b () =

)

Up(u—ug) ifv=o0,
Up(u) if v # 0.

Then D*° satisfies the Bogomolov property if and only if ug = 0.

Proof. When ug = 0 we have D" =D, By Theorem 5.12 and Example 5.16,
this toric metrized divisor satisfies the Bogomolov property.
Suppose ug # 0. The local roof functions of D" are given, for x € Ap, by

Imo () = (x,ug)  if v =00,
R if v # o0.

In particular, the global roof function ¥z coincides with ¥zu . The maximum
of ¥5 is attained on a face of Ap. Fix z¢ in the relative interior of this face. If we
denote by ¥y the constant function equal to 0 defined on Ap, then oo = 99¢(x0)
is a cone in Nr containing —ug in its relative interior. Moreover,

I5u0 oo (T0) =uo + 09 and  Jgu ,(79) = 0o for v # oco.
It follows that 0 € B, for every v, that F, = ug + 0 and that F, = o for v # co.
As in Example 6.6, to prove that D" does not satisfy the Bogomolov property,
it is enough to exhibit a curve C in X that is D-special but not a translate of a
subtorus.

We identify Ng ~ R™. Since X is proper and og is a cone of the fan of X, there
is a primitive vector ng € N in og. It follows that there is g9 > 0 such that

by :={xng | —e0 < x < eo} Cup+ 0o.

Choose a primitive vector ag € N such that ag and ng generate a saturated sub-
lattice V of N. Put by = ng + ag. Then ag and by form an integral basis of V. Fix
an integer kg > g, ! and consider the linear map L: Vg — R? defined by

L(Sao + tbo) =ko- (S,t).
Let S be the toric surface in X associated to the saturated sublattice V. The
linear map L induces a toric morphism ¢: S — an@. Let C be the curve in an’@
of equation x + y + 1 = 0 and denote by Cj the closure in X of the curve . 1(C).

As in Example 6.6, for [ > 1 choose a primitive I-th root of unity root w;. Let 21,
be a solution of the equation 22 + z + w; = 0 and put zo,] = wy/71,. Hence

210+ 2, +1=0 and 2122 = wy.
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In particular, (z1,,22;) € C(Q). Choose a point p; € Cp(Q) such that t(p;) =
(21,1, 22,1). The sequence of points (p;);>o is generic in Cp.
For every place v there is a commutative diagram

(GR" =— Spn—— X&,

ivalv lvalv lvalu

R2 <&y Ng

Since ng = bg — ag, we have
0= L(ly) = {(z,—x) | |z| < eoko}-

Arguing as in Example 6.6, for every non-Archimedean place v and every point
q € Gal(p;),, we have

val, (¢(g)) = 0.

Since L is injective, val,(¢) = 0 and therefore v, , = §y. In particular,
supp(vp, ») = {0} C F,, and E[vp, ] =0 € B,,.

When v = oo, the product formula implies that

1
. IS valoo(q) = 0 € B.
[Vp1,00] # Gal(pr) oo qeG;(pl)oo 0 OO

On the other hand, note that for every ¢ in Gal(p;)s, the point ¢(q) = (q1,¢2)
satisfies

q1+g+1=0 and qig2=w.
We thus have [¢1]co |92]00 = 1,

V-1 1+5

g = min{|q1|oo, [q2]00 } < max{|qi]oo, [g2]oc} <

and therefore

145
(-~ 108 1 o~ o o) < log (577 ) < 1.2 oo

This implies that
valoo (L(q)) € ¢, valso(q) € bo Cup+00=Fsx and supp(Vp, ) C Fro.

By Lemma 4.8, we have hy(p;) = u%S(X). Being the sequence (p;);>1 generic

in Cp, we deduce that Cp is D-special. Since Cj is not a translate of a subtorus,
we conclude that D does not satisfy the Bogomolov property, as stated. O

7. POTENTIAL THEORY ON THE PROJECTIVE LINE AND SMALL POINTS

In this section, we apply potential theory on the projective line over a num-
ber field, and in particular Rumely’s Fekete-Szegd theorem, to produce interesting
sequences of small points in the non-monocritical case.

In the absence of modulus concentration, this allows to produce a wealth of non-
toric measures that are limit measures of Galois orbits of generic sequences of points
of small height. These techniques also allow to show that the absence of modulus
concentration at a place can affect the equidistribution property at another place.
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7.1. Limit measures in the absence of modulus concentration. We recall the
basic objects of potential theory on the projective line. For most of the details and
precise definitions, we refer the reader to [Tsu75] and [BR10] for the Archimedean
and non-Archimedean cases, respectively.

Let K be a number field and fix a place v € Mk. For a subset £ C C,, we denote
by E its closure in Al Moreover, for r > 0, put

Bo(E,r) = {z ec,

inf |z —al, < r}.
aclE

In particular, for a € C, the set B, (a, r) is the closed ball with center a and radius r.
Set O, = B,(0,1), and recall that S, = {2 € C, | |2|, = 1}.

Note that if F is a bounded subset of C,, then E is compact. Since AL*" is
metrizable, it follows that the set of Borel probability measures on E endowed with
the weak-* topology is compact, metrizable, and therefore sequentially compact.

Denoting by Ala" x Alan the product of AL*" with itself in the category of
topological spaces, let

Sy: AL x ALan 5 R

be the function defined by §,(z,2’) = |z — 2’|, for v Archimedean, and the unique
upper semicontinuous extension of the function on C, x C, defined by (z,2’) —
|z — 2’|, for v non-Archimedean, see [BR10, Proposition 4.1].

Given a Borel probability measure g on AL the energy integral (with respect
to the point at infinity) of p is defined as

L= [ = 10s(0 () dx )2, (7.1)

Let K C Al®" be a measurable subset. The v-adic Robin constant and capacity
(with respect to the point at infinity) of K are respectively defined as

Vo(K) = inf{I, (1) | supp(p) € K} and  cap,(K)=e Vo) (7.2)

If K is compact and cap,(K) > 0, then there exists a unique probability measure,
denoted by pg, supported on K and realizing the infimum in (7.2), see [Tsu75,
§IIL.2 and Theorem II1.32] for the Archimedean case and [BR10, Propositions 6.6
and 7.21] for the non-Archimedean one. Hence

Iy(px) = Vo(K).

This measure is called the equilibrium measure of K. It does not charge singletons,
so we can also consider it as a measure on C. For K = O,, it agrees with Xg, o,
the Haar probability measure on the unit circle when v is Archimedean, and the
Dirac measure at the Gauss point of AL®" when v is non-Archimedean. We also
have

cap,(0,) =1, (7.3)

see for example [Rum02, §3].
In the non-Archimedean case, C, is a proper subset of A#". In general, for a
Borel subset E of C,, we have

cap, (E) < cap, (E),

but this inequality might be strict even if E is closed and bounded. Equality holds
if, for example, there are r > 0 and a polynomial P with coefficients in C,, such
that £ = {z € C, | |[P(2)| < r}, see [BR10, Corollary 6.26] and [Rum02, §3.2].

Definition 7.1. An adelic set is a collection E = (E,),ecom, such that F, is a subset
of C, invariant under the action of the absolute v-adic Galois group Gal(K,/K,)
for all v, and such that E, = O, for all but a finite number of v. We say that FE
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is bounded (respectively closed, open) if E, is bounded (respectively closed, open)
for all v.

Given an adelic set E = (Ey)yemy, its (global) capacity is defined as

cap(E) = H cap, (E,)"".
vEMK

By (7.3), this product actually runs over a finite set and so the global capacity is
well-defined.

The following result shows that, in the non-monocritical case, there is a wealth
of limit measures of Galois orbits of generic sequences of points of small height that
are not invariant under the action of the compact torus.

Theorem 7.2. Let X =P} and D the divisor at infinity equipped with a semipos-
itive toric metric. Let B,, F, be the associated subsets of Ng = R as in (4.4). Let
E = (E,)vemy be a closed bounded adelic set such that cap(E) = 1, and such that

for every non-Archimedean place v we have cap(E,) = cap(E,). Assume that the
following conditions hold:

(1) supp((valy)spr,) C F, for allv e Mg;
(2) E[(valy)spr,] € By for all v € M;
(3) Lvem, ™ El(valy).pps,] = 0.
Then there is a generic D-small sequence (p1)1>1 of algebraic points of Xo = Gk
such that, for every v € Mk, the sequence of probability measures (pp, ,)i>1 con-
verges to pg—-.
The proof of this theorem will be given after two preliminary propositions. The

next statement is a direct consequence of Rumely’s version of the Fekete-Szegd
theorem in [Rum02, Theorem 2.1].

Proposition 7.3. Let E = (E,),comy be a closed bounded adelic set such that
cap(E) > 1. There exists a sequence (p;)i>1 of pairwise distinct points of K”
satisfying
1
Gal(pi), € B, (Eu. 7)

for alll > 1 and v € Mk. In particular, Gal(p;), C E, for every non-Archimedean
place v such that E, = O,,.

Proof. For [ > 1, consider the bounded adelic neighbourhood U; = (Up y)vemy of E
given by

Uso = B, (E %)

By [Rum02, Theorem 2.1] with S = {), there is an infinite number of points p € K*
such that Gal(p), C U, for all v. Inductively, for each I > 1 we choose p; as one
of these points that is different from p; for I’ <1 — 1. O

In the notation of Proposition 7.3, when the adelic set E has capacity 1, the
sequence of v-adic Galois orbits of the points p; equidistribute according to the
equilibrium measure of the closure F,.

Proposition 7.4. Let E = (E,),comy be a closed bounded adelic set such that
cap(E) = 1 and such that for every non-Archimedean place v we have cap(F,) =
cap(Ey). Let (pi)i>1 be a sequence of pairwise distinct points OfKX with Gal(p;), C
By (Ey, %) for alll > 1 and v € Mg. Then, for all v € Mk, the sequence (fip, v)i>1
converges to the equilibrium measure of F,.
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Proof. Our hypotheses imply that for every [ > 1 the Weil height of p; is bounded
from above independently of [. Together with the Northcott property and the
fact that the points in the sequence (p;);>1 are pairwise distinct, this implies that
lim; # Gal(p;) = oo. Taking a subsequence if necessary, we assume that # Gal(p;) >
2 for every [ > 1.

Since for each place v the space of Borel probability measures on B, (FE,,1) is
sequentially compact, by taking a subsequence we can suppose without loss of gen-
erality that the sequence (fp, »)i>1 converges to a probability measure i, supported
Onml ( v7l>_Ev-

For each I > 1 and v € Mk, put for short G;, = Gal(p;), and set

1
dy » = log |q — ¢'[»-
= G, ) 2 sl
4,9 €G1 o

q#q’

Consider also the probability measure on AL2" x Al-an given by

Vjp = 0g X g,
b #le(#le_ Z v

4,4’ €Gi
a#q
and note that (1,);>1 converges to i, X . The function log(d,(+,-)) is bounded
from above on B,(E,,1) x B,(E,,1). Similarly as in the proof of Lemma 3.8, this
property implies that

limsupd,, = lim sup/ log(8,(2,2")) dvy (2, 2")
Al an Al,an

l—o0 l—o0

< —Iy(po) < logcap,(Ey). (7.4)

By the product formula, Evesmm nydi, = 0. Let § C Mg be a finite set of
places containing the Archimedean places and those where E,, # O,. In particular,
di» <0 for v ¢ S. Hence, for v e M,

o o My
hlrgggf diy = 11[II_1)(1>£lf Z ) d w
weMx\{v}

>hm1nf Z ——dlw
weS\{v} T

> — E —hmbu djw
a Ny l—>oop b
weS\{v}

> 3 ™ log(eap, (Ey))

weS\{v} My
> log(cap, (E,)).

Together with (7.4) and our hypothesis cap, (E,) = cap, (E,), this implies I,,(j1,) =
—logcap,(E,). Therefore p, is the equilibrium measure of E,, and the proof is
complete. O

Proof of Theorem 7.2. Let (p;);>1 be a sequence of pairwise distinct points of K"
as in Proposition 7.4, which exists thanks to Proposition 7.3. Note in particular
that the sequence (p;);>1 is generic. On the other hand, Proposition 7.4 implies
that, for every v € Mg, the sequence of probability measures (i, »);>1 converges
to pg~ Here we have to show that, under the present hypotheses, this sequence of

points is D-small.
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Let sp be the canonical section of O(D) with div(sp) = D. This is a global
section vanishing only at infinity. Hence for every v € Mk the v-adic Green function

95., = —log|lspllv

is a continuous real-valued function on AL:#". Let S C 9k be a finite set of places
containing the Archimedean places, the places where the metric || - ||, differs from
the canonical one, and those where E, # O,,.

By construction, for each v € Mg and I > 1 we have Gal(p;), C By(E,,1). In
particular, for v ¢ S, Gal(pi), C O, and so g5 ,(¢) = 0 for all ¢ € Gal(p;),. Hence

- > gangy > 9m@ =3 [, due

vEMK qGGal(pl)q, veS

for any continuous function 55’” on PLa1 coinciding with 95, on the bounded
subset B, (E,,1).

The measures pp, , converge to pg, and are supported on the closure B, (E,, 1).
Also, for all v ¢ S, we have pp, = As, 0 and g5, vanishes on the support of this
measure. Hence

llirgoh (p1) va/ » dpE, = Z Ty /%,v dpg, . (7.5)
vES vEMy
By the condition (3) and the fact that E is an adelic set, we deduce that the col-
lection v = ((val,)«pE, Jvemy is a centered adelic measure (Definition 4.4). More-
over, g5 , = —Y5,, © val, on Alan\ 10}, By (7.5), we have

hm h Z nv/ d(valy)«pE, = np(v).

vEMK
Lemma 4.8 together with the conditions (1) and (2) implies that n5(v) = p3°(X).

Hence the sequence (p;);>1 is D-small, as stated, finishing the proof of the theorem.
O

7.2. Local modulus concentration and equidistribution. Corollary 4.13 gives
a criterion for a semipositive toric metrized R-divisor to satisfy the modulus concen-
tration property at a given place. Applying it, one can immediately give examples
where modulus concentration fails at that place. If this happens, then the equidis-
tribution property also fails at that place.

Can this absence of modulus concentration affect the equidistribution property
at another place? The next result on the projective line over a number field shows
that this can be the case under a rationality hypothesis.

Proposition 7.5. Let X = P]%g be the projective line over a number field K, D the
divisor at infinity equipped with a semipositive toric metric, and vy € Mg. For each
v € Mk, let B, be the set introduced in Notation 4.2. Assume that there is a point
p € Xo(K) =K such that val,(p) € B, for all v € My and val,, (p) € ri(By,).

If D does not satisfy the modulus concentration property at vg, then D does not
satisfy the equidistribution property at any place of K.

Proof. Assume that D does not satisfy the modulus concentration property at vg.
Let v € Mg. If v = vy then clearly D does not satisfy the equidistribution property
at v, so we can suppose that v # vg. Extending scalars to a suitable large number
field and translating by the point p, we can also reduce to the case when 0 € ri(B,,)
and 0 € B, for all w € M.

Let Fyy, 91,0, and g2 o, be as in Notation 4.2, and let  be a in Ap at which g1 ,,+
92,0, attains its maximum. By Corollary 4.13, the set F},, is not a single point. Since
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0 € ri(B,,) and F,, is the minimal face of 0g1 4, (z) containing B,,, there is § > 0
such that the set F,, contains the interval [—4,d]. Set
e 4e?

S |
¢ 2

and consider the closed bounded adelic set E = (E.,)wemy given by

[—2¢,2¢] if v is Archimedean,

o {Bvo (2,¢) if vg is non-Archimedean,
[—2/c,2/c] if v is Archimedean,
B {Bv(2, 1/c)  if v is non-Archimedean,
and, for w # vq, v,
P {[—2, 2] if w is Archimedean,
b Ow = By(0,1) if w is non-Archimedean.
The local capacities of these sets are
cap,, (Ev,) = ¢, cap,(E,) =1/c and cap,(E,) =1 forw #vy,v,

see for instance [Rum02, §3]. Hence, the global capacity of F is 1.
Consider the map R: Py — Pk defined in affine coordinates by R(z) = z + L.

(z=1)?

Using the expression R(z) —2 = , one checks that, for w non-Archimedean,

{z € Cy, | |z—1|12}0 < clzlw, b i w= vy,
RYE,) ={{zeCy||z—12<cz|,} ifw=0v,
2 eCul |2+ 1l < sh} i w00,

(7.6)
{z€Cy |t <zl <} if w=y,
= ¢ B,y(1,¢71/?) if w=w,
Sw if w # vg,v.

On the other hand, using

z:%(R(z):l:\/R(z)Q—élc), c—vVe2—1=e¢? and c++e2-1=¢,

one also checks that, for w Archimedean,
Sue U{z € Cy, |im(z) = 0,67 < |2y, <€’} if w =g,
R NE,)={{z €S, |im(z) > V1—c2} if w =, (7.7)

Sw if w # vg,v.

We represent in Figure 4 the inverse images by R of the sets E,,, £, and E,, in
the Archimedean case. The point x therein is z = ¢! +iv/1 — ¢=2.

We deduce from the previous analysis that, regardless whether vy, v or w are
Archimedean or not, we have

RY(E,,) C Valv_ol([—é, §), RYE,)CS, and R YE,)=S, forw # vg,v.

Let (p1);>1 be a sequence of pairwise distinct points as given by Proposition 7.3
applied to the adelic set E. For each [ > 1, choose a point ¢, € R™!(p;). Since
for each place v the space of Borel probability measures on B,(FE,,1) is sequen-
tially compact, after restricting to a subsequence we can assume that the sequence
(Hq, w)i>1 converges to a probability measure g, on R=1(Ey), for all w € Mx.
By construction, for each w the supports of the direct image measures vy, ., =
(valy)sptg w, ! > 1, are contained in [—4,d] C Ng. Therefore, this sequence of
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—T -\ x
—e ed ed
—x \ T
R™Y(Ey) R™Y(E,)
1
—1 1
—1
R (Ew)

FIGURE 4. Inverse images by R of the sets E,,, E, and E,, for vy,
v and w # v, vy Archimedean

measures converges in the KR-topology to the direct image (valy, )« ptw, which can
be seen by using Remark 3.13.

Let S C 9k be the finite subset consisting of the Archimedean places plus vy
and v. If w # vy, then Gal(q;), C val;,'(0) and E[v,, ,,] = 0. Thus

Ef(valy)s (pw)] = lim Efvg, ] = 0.
Hence, thanks to the convergence in the KR-topology and the product formula,

E[(Valvo)*(:u'vo)] = hlrnE[unvo] = li}n Z - E[quﬂ)o] =0.

Thus E[(valy)«(pw)] = 0 € By, for all w € Mg. By construction, it is also clear that
supp((valy )« fiw) C Fy for all w. By Lemma 4.8, the sequence (g;);>1 is D-small.

We have thus constructed a generic D-small sequence such that its v-adic Galois
orbit converges to a measure p,, whose support is contained in the closure R~Y(E,).
On the other hand, the sequence (w;);>1 given by the choice of a primitive i-th root
of unity is also D-small, but its v-adic Galois orbit converges to the measure g o.
By (7.6) and (7.7) the support of this measure is not contained in R~1(E,), so it
is different from p,. We deduce that D does not satisfy the v-adic equidistribution
property, as stated. O

Example 7.6. Let X = Pb and D the divisor at infinity plus the divisor at
zero, equipped with the semipositive toric metric from Example 6.2. As explained
therein, D does not satisfy modulus concentration at the place vy = 2 and, by (6.1),
we have 0 € ri(B,) for all v € Mg. Theorem 7.2 implies that D does not satisfy
the equidistribution property for any place of Q.
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Remark 7.7. A rationality hypothesis like the condition that the sets B, contain
the image by the valuations map of an algebraic point, is necessary for the conclu-
sion of Proposition 7.5 to hold. Indeed, suppose that, for a given non-Archimedean

place v, we have B, = F, = {u,} with u, ¢ valv(]K:). By the tree structure of
the Berkovich projective line, this implies that val, 1(uv) consists of a single point,
of type IIT in Berkovich’s classification [BR10, §1.4]. Hence, the v-adic modulus
concentration at v given by Corollary 4.13, easily implies that the v-adic Galois
orbits of D-small sequences of algebraic points concentrate around this point of
type III, regardless of the structure of the set B,,.
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