
J. Appl. Phys. 124, 152121 (2018); https://doi.org/10.1063/1.5042444 124, 152121

© 2018 Author(s).

Telegraphic switching signals by magnet
tunnel junctions for neural spiking signals
with high information capacity
Cite as: J. Appl. Phys. 124, 152121 (2018); https://doi.org/10.1063/1.5042444
Submitted: 31 May 2018 . Accepted: 07 August 2018 . Published Online: 02 October 2018

Brandon R. Zink, Yang Lv , and Jian-Ping Wang

ARTICLES YOU MAY BE INTERESTED IN

Chain of magnetic tunnel junctions as a spintronic memristor
Journal of Applied Physics 124, 152116 (2018); https://doi.org/10.1063/1.5042431

Ultra-fast logic devices using artificial “neurons” based on antiferromagnetic pulse generators
Journal of Applied Physics 124, 152115 (2018); https://doi.org/10.1063/1.5042348

Perspective: Spintronic synapse for artificial neural network
Journal of Applied Physics 124, 151904 (2018); https://doi.org/10.1063/1.5042317

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1653735363/x01/AIP/Zurich_JAP_PDF_June2019/AIP_Banner_Journal_MFLI_1640x440_final_200kb.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5042444
https://doi.org/10.1063/1.5042444
https://aip.scitation.org/author/Zink%2C+Brandon+R
https://aip.scitation.org/author/Lv%2C+Yang
http://orcid.org/0000-0001-9062-309X
https://aip.scitation.org/author/Wang%2C+Jian-Ping
https://doi.org/10.1063/1.5042444
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5042444
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5042444&domain=aip.scitation.org&date_stamp=2018-10-02
https://aip.scitation.org/doi/10.1063/1.5042431
https://doi.org/10.1063/1.5042431
https://aip.scitation.org/doi/10.1063/1.5042348
https://doi.org/10.1063/1.5042348
https://aip.scitation.org/doi/10.1063/1.5042317
https://doi.org/10.1063/1.5042317


Telegraphic switching signals by magnet tunnel junctions for neural spiking
signals with high information capacity

Brandon R. Zink, Yang Lv, and Jian-Ping Wanga)

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455,
USA

(Received 31 May 2018; accepted 7 August 2018; published online 2 October 2018)

Magnetic tunnel junctions (MTJs) operating in the superparamagnetic regime produce telegraphic
signals that emulate neural spiking signals. Previous studies have characterized the random spiking
signals produced by MTJs in terms of the percentage of time spent in the anti-parallel (AP) magneti-
zation state (referred to as the “AP rate”) but ignore the switching rate of the MTJ. In this work, we
demonstrate that with proper tuning of both an external bias field and a bias voltage, we can control
the average dwell time in the AP-state and P-state pulses separately. Our data show that the AP
rate can be tuned with bias voltages ranging from 310 mV to 460 mV and bias fields from −200 Oe
to −230 Oe. The average dwell times in each state ranged from 225 ns to 285 μs and could be con-
trolled separately. This suggests that neural spiking signals produced by MTJs can be decoded by
both the spike rate and the spike count, which creates the possibility for increasing the information
capacity in the rate coding scheme. Published by AIP Publishing. https://doi.org/10.1063/1.5042444

I. INTRODUCTION

Neuromorphic computing is a computing scheme that
attempts to mimic methods in which biological nervous
systems process information with the purpose of performing
cognitive tasks such as pattern recognition, classification, and
prediction.1 Their architectures consist of a network of non-
linear processing units called neurons, which receive and
transmit electrical signals, which are modulated through
synaptic weights. The computing model that most accurately
emulates biological models is the neural spiking model2

where information transmitted between neurons is repre-
sented by a temporal sequence of electrical pulses, or spiking
signals. These spiking signals are decoded using a method
called neural coding, which can implement either rate coding
or temporal coding schemes. In rate coding, the spiking
signals are averaged or by counting the number of spikes
generated over a given measurement time,3 whereas temporal
coding considers the precise timing of the spikes.3,4

Temporal coding methods have higher information capacity
than rate coding schemes,3,4 meaning that each spiking
signal contains more information about the stimuli. However,
rate coding methods have higher tolerance to noise since the
spiking signals in rate coding schemes are assumed to be
probabilistic.3

Magnetic tunnel junctions (MTJs) are promising devices
for neuromorphic computing architectures due to their
nonvolatility, non-linear dynamics, ultra-low power consump-
tion, and scalability.5–7 Furthermore, MTJs exhibit tunable
stochasticity due to thermal fluctuations, which is typically
demonstrated through a synchronous process of consecutive
write and read current pulses. These experiments have
been done in order to test their reliability in spin-transfer torque
switched magnetic random access memory (STT-MRAM)

cells8–10 as well as to demonstrate their function as true
random number generators11,12 and stochastic computing
units.13 Additionally, stochastic MTJs have been proposed as
neurons and synapses in various stochastic spiking neuron
circuits which implement a neural rate coding scheme.14–18 In
these designs, some external stimuli (typically a current or
voltage pulse) produces stochastic signals from the MTJs,
which emulate neural spiking signals.

As the dimensions of the MTJ are scaled down, their
stochasticity increases due to a decrease in thermal stability.
Eventually, the energy barrier separating the anti-parallel
(AP) and parallel (P) states drops below 5 kbT, at which point
the MTJ reaches a superparamagnetic state19 and thermal
fluctuations will cause the free layer magnetization to
randomly switch between the two resistance states. This
generates time-domain telegraphic signals, which can be
tuned using a bias current or a bias field and are characterized
by the percentage of time the MTJ spends in both states or
the average dwell time in each state.20,21 Superparamagnetic
MTJs have been demonstrated to exhibit stochastic resonance
when exposed to a weak, external AC signal,22 suggesting
that these devices could be implemented in stochastic oscilla-
tor neural networks.23,24 Low-barrier MTJs also present a
unique opportunity for ultra-low power, spin-based comput-
ing platforms called probabilistic spin logic (PSL) where
novel circuits such as invertible Boolean logic circuits,25,26

Bayesian networks,27 and resistive-deep belief networks28

have been proposed in recent years.
Several recent studies have explored telegraphic signals

generated by low-barrier MTJs as neural spiking
signals.19,29,30 Experimental results produced by Suh et al.30

demonstrated that a neuron-synapse system can be formed
using a low-barrier MTJ as a neuron and memristive MTJ as
the synapse. Telegraphic switching signals in the MTJ were
controlled via the application of a DC voltage bias and a
field bias (Vbias and Hbias, respectively). A rate codinga)Author to whom correspondence should be addressed: jpwang@umn.edu
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scheme was realized by measuring the average firing rate,
which was represented by the percentage of measurement
time the MTJ spent in the AP state, which will be referred to
as the “AP rate.”

In this work, we expand on the work done by Suh et al.
by demonstrating separate control over the average AP- and
P-state pulse widths (<τAP> and <τP>, respectively). This
indicates that the AP rate and the number of AP pulses can
be treated as independent variables, which suggests that
the neuron-synapse system tested by Suh et al. is capable of
implementing a rate coding scheme with two degrees of
freedom. These findings open the possibility for rate coding
schemes with increased information capacity.

II. EXPERIMENT

Testing was performed on an MTJ with a nanopillar
stack and an elliptical cross section with nominal dimensions
of 45 × 110 nm2. The stack structure of the MTJ is PtMn
(15)/SAF/MgO (0.85)/Co20Fe60B20 (1.8), where the thick-
nesses given are in units of nm and the SAF (synthetic anti-
ferromagnet) layers have a structure of Co70Fe30 (2.3)/Ru
(0.85)/Co40Fe40B20 (2.4). The device has a resistance-area
product of 4.3Ω μm2, a coercivity of 23.5 Oe, and a tunnel-
ing magnetoresistance (TMR) ratio of 106%, where the resis-
tances in the AP and P states of 3300Ω and 1600Ω,
respectively. The hysteresis plot for our MTJ is shown in Fig. 1.

The MTJ tested is thermally stable at zero bias and room
temperature; however, we induced telegraphic signals using a
field and voltage bias (illustrated in the inset of Fig. 1). Note
that our method is very similar to the one used by Suh
et al.30 At thermal equilibrium, the energy band diagram
with respect to orientation of magnetization of the free layer
(Mf) will be symmetric between the AP- and P-states. When
a bias field is applied in the direction that favors P-state ori-
entation, the energy increases in the AP-state and decreases
in the P-state. This reduces the energy barrier seen in the
AP-state and increases the barrier seen in the P-state.
The opposite effect happens when a positive bias voltage is
applied; the resulting spin-polarized current through the
MTJ produces a spin-torque term which favors the AP-state

orientation. We observed that telegraphic signals were gener-
ated when the energy barrier of the MTJ was less than 8 kbT.

It should be noted that the shape of the energy band
diagram is not the same when the MTJ is in the AP and P
states. This is because the resistance in the AP state is higher
than in the P state, and since Vbias is constant, the current
through the MTJ is higher in the P-state. A higher current
means a more significant reduction in the energy barrier in
the P-state, resulting in a higher probability of P to AP
switching. After the MTJ switches to the AP state, the
current is reduced, thus reducing the energy barrier in the
AP-state, which allows for a higher probability of AP to P
switching from Hbias.

Measurements were made on a Tektronix DPO 72004C
mixed signal oscilloscope, the bias voltage was provided
using a Keithley 2400 source meter, and the bias field was
generated using a Kepco BOP 20-20 power supply. A series
connection was made between the MTJ and the oscilloscope,
which has an internal resistance of 50Ω. In effect, the MTJ
created a voltage divider network with the 50Ω internal
resistance of the oscilloscope. The voltage measured at the
oscilloscope was used to calculate the resistance of the MTJ
at each data point. Each trial was measured for 2 ms in 80 ps
intervals.

III. RESULTS

Data sets were taken at bias fields of −200, −215, and
−230 Oe and bias voltages ranging from 310 mV to 460 mV.
Figure 2 shows the telegraphic signals for four of these sets.
The numbers displayed above each set in Fig. 2 are given in
the order Hbias, Vbias, AP rate, <τAP>, and <τP>. Trials (a)
and (b) have roughly the same Vbias but trial (a) has a larger

FIG. 1. Hysteresis loop for the MTJ tested and an illustration of the energy
barrier in the AP- and P-states (inset).

FIG. 2. Four different telegraphic switching signals produced by the MTJ
under varying bias conditions. The set of numbers above each set indicate
the bias conditions and the key measurements. These numbers follow the
order Hbias, Vbias, AP rate, <τAP>, and <τP>.
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Hbias. Therefore, it is unsurprising, the trial (a) has a smaller
AP-rate, since Hbias is set to favor the P-state. The same
observation can be made when comparing trials (c) and (d).
Conversely, trials (b) and (c) have the same Hbias, but trial
(b) has a larger Vbias. As seen in Fig. 2, trial (b) has a larger
AP-rate, which is expected since Vbias is set to favor the
AP-state.

The overall effect of how the AP rate is affected by Vbias

for a constant Hbias is illustrated in Fig. 3. This plot indicates
a trade-off between low bias voltages and a large tunability
range in Vbias. With lower Hbias values, telegraphic switching
signals can be generated at lower bias voltages. However,
this also means that the AP rate is tunable through a smaller
range of bias voltages. The data from Fig. 3 demonstrate that
the AP rate can be tuned from 0 to 1 through a 65 mV range
of bias voltages for Hbias =−200 Oe. This range increases to

85 mV for Hbias =−215 Oe and 80 mV for Hbias =−230 Oe.
However, the AP rate for the −230 Oe trials is only tuned
from 0 to 0.6. Higher ranges of tunability allow for more
precise control of the MTJ output, thus higher resolution
measurements can be made.

The tunability of the AP rate is not unexpected and has
already demonstrated in several previous experiments.20,21,30

However, interesting results from our data are seen in the
relation between Hbias and Vbias versus <τAP> and <τP>.
Returning to the trials shown in Fig. 2, we see that <τAP> in
trial (a) is over 1 order of magnitude lower than in trial (b),
yet <τP> in trials a and b are roughly the same. Recall that
these two trials have roughly the same Vbias but differ in
Hbias, and we can see that the trial with the larger Hbias has a
significantly smaller <τAP>. Furthermore, <τAP> for trials (b)
and (c) are on the same order of magnitude; however, <τP> is
significantly larger in trial (c). As previously stated, these
trials have the same Hbias, but trial (b) has a larger Vbias.
These observations indicate that <τP> has a stronger depen-
dence on the bias voltage than it has on the bias field,
whereas <τAP> has a stronger dependence on bias field.

These observations are further substantiated when we
consider the range of <τAP> and <τP> for each Hbias set
shown in Fig. 3. The values of <τAP> range from 37.3 to 89.9
μs, 2.05 to 10.8 μs, and 255 to 366 ns for the −200, −215,
and −230 Oe sets, respectively. The upper end of these ranges
were generated in trials with larger Vbias values; however,
note that <τAP> does not change orders of magnitudes if Hbias

is held constant. On the other hand, <τP> values range from
1.51 to 285 μs, 418 ns to 188 μs, and 255 ns to 15.4 μs for the
Hbias sets at −200, −215, and −230 Oe sets, respectively.
While <τP> tended to decrease between sets with larger
Hbias, the change between sets was much more significant
than the variation within each set. The range of <τP>

FIG. 3. AP rate versus Vbias for the three Hbias values tested.

FIG. 4. Contour map of the average pulse widths over all bias voltages and bias fields for (a) the AP-states and (b) the P-states. These contour maps are
displayed on a natural logarithmic scale.
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decreased by 1 order of magnitude between the Hbias sets;
however, <τP> varied by at least 3 orders of magnitude within
each set.

The AP- and P-state pulse widths are mapped out in
Figs. 4(a) and 4(b), which show logarithmic-scale contour
plots of <τAP> and <τP> versus Vbias and Hbias. Figure 4(a)
displays the AP-state pulse widths, where the contour lines of
<τAP> run mostly parallel to the Vbias axis and perpendicular
to the Hbias axis. The opposite relation is shown for the
P-state pulse widths in Fig. 4(b), where the contour lines of
<τP> run perpendicular to the Vbias axis and parallel to the
Hbias axis. As previously stated, Vbias has an effect on <τAP>
and Hbias has an effect on <τP>. However, these relations are
not significant (seen in Table I), which show the correlation
coefficients for Hbias and Vbias in relation to ln(<τAP>) and
ln(<τP>). These correlation coefficients further demonstrate
that Hbias and Vbias have very asymmetric effects on <τAP>
and <τP>. Remember that these correlations are calculated on
a natural log-scale for <τAP> and <τP>, meaning that even if
changes in Hbias produced changes in <τP>, the change in
<τAP> could be as high as 3 orders of magnitude higher
than the change in <τP>, as seen from our data. The same
statement can be made for the effect of changes in Vbias

on <τAP>.
This discrepancy in how the two biases effect <τAP> and

<τP> separately allows for independent control over the AP
rate and the number of AP pulses generated. What this
feature implies for rate coding is that the average spike rate
and the spike count are no longer separate decoding
methods, but now are independent variables that can be
considered separately in the same decoding scheme. Using
MTJs in the telegraphic switching regime introduces the
potential for increasing the information capacity in the rate
coding scheme.

A significant shortcoming to this method is that it
requires a tunable external field. Not only is this not practical
for neuromorphic computing designs but applying a bias
field also requires large power consumption. For this reason,
future work should be focused on improving this method by
eliminating the need for a bias field. Other alternatives, such
as magneto-electric coupling, should be explored.

IV. CONCLUSIONS

In this work, we demonstrated that through proper
tuning of the bias field and voltage, MTJs can generate
tunable telegraphic switching signals, which emulate neural
spiking signals. These devices can be used to implement a
rate coding scheme where the average spike rate is repre-
sented by the AP rate, which can be easily tuned with
external parameters, which in our case were a bias field

and a bias voltage. Furthermore, our data show that the
average AP-state pulse width could be controlled separately
from the average P-state pulse width, meaning that the
number of AP pulses generated is independent of the
AP-rate with this method. This introduces the possibility
for a rate coding scheme to be implemented where the
spike rate and the spike count are independent of each
other. A rate coding scheme with this feature would have
higher information capacities while maintaining their
noise tolerance.
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