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We consider a random process with discrete time formed by squared singular values of

products of truncations of Haar-distributed unitary matrices. We show that this process

can be understood as a scaling limit of the Schur process, which gives determinantal

formulas for (dynamical) correlation functions and a contour integral representation for

the correlation kernel. The relation with the Schur processes implies that the continuous

limit of marginals for q-distributed plane partitions coincides with the joint law of

squared singular values for products of truncations of Haar-distributed random unitary

matrices. We provide structural reasons for this coincidence that may also extend to

other classes of random matrices.

1 Introduction

It was observed by many researchers that probability distributions from randommatrix

theory appear as limit laws in a variety of problems in statistical mechanics and

combinatorics. Probably, the most known examples of this phenomenon are Ulam’s
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2 A. Borodin et. al

problem for increasing subsequences of random permutations and domino tilings of

the Aztec diamond. We refer the reader to the book by Baik et al. [7] and references

therein for a detailed analysis of these two examples.

In both these problems, distributions of certain key quantities converge to

limiting distributions of random matrix theory (in an appropriate scaling limit as

the size of random matrices tends to infinity), in particular to the Tracy–Widom

distribution [44]. However, there are situations where not only limiting random matrix

distributions play a role. It can happen that joint laws of eigenvalues (or singular

values) corresponding to finite size random matrix ensembles arise as scaling limits

in a combinatorial or statistical mechanics problem that has no a priori relation with

random matrices.

One example is the Gaussian Unitary Ensemble (GUE)-corners process

investigated by Johansson and Nordenstam [29] and Okounkov and Reshetikhin [41].

It is easy to define the corners process: start with an infinite random matrix picked

from the GUE and consider the eigenvalues of its principal corner submatrices.

As was discovered in [29] and [41], the GUE-corners process can be obtained as

a scaling limit in tiling models. Okounkov and Reshetikhin further suggested a

(heuristic) argument toward the universal appearance of this process. Following this

prediction, GUE-corners process was found in more general tilings models by Gorin

and Panova [24] and the six-vertex model by Gorin [23] and Dimitrov [19]. It can be

also linked to the last passage percolation, see Baryshnikov [8], Gravner et al. [27],

O’Connell and Yor [37], Bougerol and Jeuli [15], Adler et al. [1], and references

therein.

The GUE-corners process is a determinantal (see, e.g., Borodin [10]) point

process with discrete time obtained using random matrices. If, instead of cutting

out corners of a single matrix, one starts adding independent GUE matrices, then

the eigenvalues of the sums also form a determinantal process, and the number of

matrices in the sum plays the role of discrete time, see Eynard and Mehta [20]. Another

class of (dynamical) determinantal processes with discrete time can be constructed

from products of random matrices, see Strahov [43] and Akemann and Strahov [6].

(Determinantal processes in products of random matrices were first discovered in

Akemann and Burda [2]). Such processes are called product matrix processes, and they

are formed by the squared singular values of random matrix products. We can use

independent complex Gaussian matrices to obtain a simple example of such processes.

Namely, let G1, . . ., Gm be independent matrices with standard i.i.d. complex Gaussian

entries. Assume that Gl is of size
(
n + νl

) × (n + νl−1

)
, ν0 = 0, ν1 ≥ 0, . . ., νm−1 ≥ 0, and
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Product Matrix Processes as Limits 3

for each l = 1, . . . ,m, denote by ylj, j = 1, . . . ,n, the squared singular values of the partial

product Yl = Gl · · ·G1. The configuration

{(
l, ylj

)
|l = 1, . . . ,m; j = 1, . . . ,n

}

of all these squared singular values generates a random point process on

{1, . . . ,m} × R>0. It was shown in Strahov [43] that this process is determinantal (and it

can be viewed as a determinantal process with discrete time). Paper [43] gives a contour

integral representation for the correlation kernel, together with its hard edge scaling

limit, and generalizes results obtained in Akemann et al. [5], Akemann et al. [4], and

Kuijlaars and Zhang [33] to the multi-level situation. A more general class of product

matrix processes related to certain multi-matrix models was introduced and studied

in Akemann and Strahov [6]. In this class the matrices in the products are no longer

independent, but in spite of that the product matrix processes are still determinantal.

From a different viewpoint, various matrix corners processes studied by

Johansson and Nordenstam [29], Okounkov and Reshetikhin [41], Adler et al. [1],

Forrester and Rains [22], Borodin [11], and Gorin [13] were shown to be continuous

limits of special Schur processes of Okounkov and Reshetikhin [38, 39]. The discrete time

determinantal process formed by the eigenvalues of sums of independent GUE matrices

can be understood as a limit of a special Schur process as well. It is natural to ask

whether product matrix processes also have this property. Motivated by this question,

we construct in this paper a product matrix process using corners of independent

Haar-distributed unitary matrices (or truncated unitary matrices). We demonstrate that

this process is a scaling limit of a certain Schur process, which implies determinantal

formulas for (dynamical) correlation functions. Moreover, starting from the general

Okounkov–Reshetikhin formula [39] for the correlation kernels of Schur processes, we

derive a double contour integral representation for the correlation kernel of the product

matrix process formed by truncated unitary matrices. The formula for the correlation

kernel we derive in this paper can be understood as a time-dependent generalization

of the result obtained in Kieburg et al. [31] for the squared singular values of matrix

products with truncated unitary matrices. We note that the determinantal point process

formed by eigenvalues of matrix products with truncated unitary matrices was studied

in Akemann et al. [3].

The fact that the product matrix process formed by truncated unitary matrices

is a continuous limit of the Schur process enables us to prove Theorem 2.9 below that

says that the continuous limit of marginals for q-distributed (skew) plane partitions
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4 A. Borodin et. al

Fig. 1. Plane partition with 4 × 3 support corresponds to a sequence of (interlacing) Young

diagrams. Two of them, 5 ≥ 1 ≥ 0 and 7 ≥ 5 ≥ 1, are highlighted. The asymptotic behavior of

these two diagrams is related to squared singular values of T1 and T2T1, respectively, where T1 is

4×3 truncation of 7×7 random unitary matrix and T2 is 3×4 truncation of 4×4 random unitary

matrix. In the notations of Section 2.3, A = 4, B = 3, π = ∅, p = 2, β2 = 1, α1 = 4, and α2 = 5.

coincides with the joint law of squared singular values for products of corners of

Haar-distributed unitary matrices, see Figure 1 for one particular case of the theorem.

We consider Theorem 2.9 as the main result of the present paper. It demonstrates

that, similarly to the corners process, the time-dependent determinantal processes

constructed from products of truncated unitary matrices appear as scaling limits in

a model of statistical mechanics of a combinatorial nature. To the best our knowledge,

the present paper is the 1st work-relating products of random matrices with scaling

limits of models that have no a priori relation to random matrices.

It is also natural to ask about conceptual reasons for such a coincidence. Why

should random matrices be directly related to statistical mechanics models? For the

GUE-corners process, Okounkov and Reshetikhin [41] suggested the following heuristic

argument: if we start with a discrete model of statistical mechanics satisfying a certain

Gibbs (i.e., conditional uniformity) property, then one expects the same property to

survive in the continuous limit. Olshanski and Vershik [42] classified all such Gibbs

measures on triangular arrays of reals, and out of them only the GUE-corners process

agrees with the growth conditions implied by the Law of Large Numbers (limit shape

behavior) of the discrete model.

For the products of random matrices we do not dispose of an analog of the

Okounkov–Reshetikhin argument. However, let us explain the path that led us to
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Product Matrix Processes as Limits 5

the understanding that a similar connection with combinatorial statistical mechanics

is possible. The following fact [13, 22] is easy to prove by comparing the explicit

formulas for the distributions: if X is a corner of Haar-random unitary matrix, then the

eigenvalues of XX∗ (this is often called Jacobi or MANOVA ensemble) are distributed

as a continuous limit of a Schur measure with two principal specializations. One

could argue that this is an instance of the semiclassical asymptotics common in

representation theory. Next, we need to understand what happens with these eigenval-

ues when X is multiplied by another similar matrix. It is known that multiplication of

(real/complex/quaternion at β = 1, 2, 4) matrices is intimately linked to multiplication

of corresponding Jack (=zonal) polynomials, which become Schur polynomials in the

case of the complex field (β = 2) that we discuss here. This is discussed by Macdonald

[35, Chapter VII], Forrester [21, Section 13.4.3], and more recently used, for example, by

Kieburg and Kosters [30] and by Gorin and Marcus [25]. If we consider a version of the

multidimensional Fourier transform for the Schur measures (the appropriate version

was introduced by Gorin and Panova [24] and Bufetov and Gorin [17] under the name

Schur generating functions), then being a Schur measure or its continuous limit is

equivalent to the factorization of this transform into a product of one variable function.

Since such factorization is preserved under multiplication, the squared singular values

of products of random matrices have to be described by the Schur processes.

We detail how this argument works in the simplest case of 2 × 2 matrices

in Section 8. For the proof of our main statements, Proposition 2.6 and Theorem 2.9,

we choose in Sections 2–7 another path, which is more direct (and leads to a more

general result) but, perhaps, more mysterious. Let us remark that while the arguments

of Section 8 admit an immediate generalization to products of real and quaternion

matrices, yielding their representation as limits of Macdonald processes, for the proofs

of Sections 2–7 such a generalization is unclear.

The paper is organized as follows. In Section 2 we introduce notation and

present the main results. In particular, Proposition 2.4 gives a formula for the corre-

lation kernel of the product matrix process associated with truncated unitary matrices,

Proposition 2.6 shows that this product matrix process can be understood as a con-

tinuous limit of a special Schur process, and Theorem 2.9 presents our result on con-

vergence of marginals of q-distributed plane partitions to this product matrix process.

Sections 2–7 contain the proofs of our statements. In Section 8 we sketch another way

to prove our main results by exploiting symmetric functions and zonal polynomials.

Finally, the Appendix gives a 2nd proof of Proposition 2.4 based on the Eynard–Mehta

theorem.
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6 A. Borodin et. al

2 Notation and Statement of Results

2.1 Product matrix processes with truncated unitary matrices

Let G1, . . ., Gp be matrices with random complex entries, and assume that each matrix

Gk, k ∈ {1, . . . ,p}, is of size Nk × Nk−1. Set

X(k) = Gk . . .G1, k ∈ {1, . . . ,p} .

If n = N0, then for each k, k ∈ {1, . . . ,p}, X∗(k)X(k) are random matrices of the same size

n×n. Denote by xkj the jth largest eigenvalue of X∗(k)X(k). The configuration of all these

eigenvalues,
{(

k, xkj

) ∣∣
∣
∣k = 1, . . . ,p; j = 1, . . . ,n

}
, (2.1)

forms a point process on {1, . . . ,p}×R>0. This point process is called the product matrix

process associated with the random matrices X(1), X(2), . . ., X(p).

Here we consider a product matrix process constructed from a collection of

truncated unitary matrices. Namely, let U1, . . ., Ul, Ul+1,. . ., Ul+p−1 be independent Haar-

distributed unitary matrices. We assume that the size of each matrix Uj, 1 ≤ j ≤ p+ l−1,

is equal to mj. Recall that if U is an m×m matrix, and the integers k, r are chosen such

that 1 ≤ k, r ≤ m, the submatrix T of U defined by

T =

⎛

⎜⎜
⎝

U1,1 . . . U1,r
...

Uk,1 . . . Uk,r

⎞

⎟⎟
⎠

is called a k × r truncation of U. Now, for 1 ≤ j ≤ p + l − 1 let Tj be the truncation of Uj

of size
(
n + νj

)
×
(
n + νj−1

)
. We agree that ν0 = 0, and assume that the positive integers

n, ν1, . . ., νl+p−1 are chosen in such a way that the conditions

m1 ≥ 2n + ν1, (2.2)

and

mj ≥ n + νj + 1, 2 ≤ j ≤ p + l − 1, (2.3)

are satisfied. Denote by x1 = (
x11, . . . , x

1
n

)
the vector of the squared singular values

of the product matrix Tl . . .T1, and for 2 ≤ j ≤ p denote by xj =
(
xj1, . . . , x

j
n

)
the

vector of the squared singular values of the product matrix Tj+l−1 . . .T1. Configurations
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Product Matrix Processes as Limits 7

{(
k, xkj

) ∣∣∣∣k = 1, . . . ,p; j = 1, . . . ,n
}
form a point process on {1, . . . ,p} × R>0. We will refer

to this point process as to the product matrix process associated with truncated

unitary matrices. We say that the product matrix Tl . . .T1 determines the initial

conditions of the product matrix process associated with truncated unitary matrices.

The numbers n, mj, νj will be called the parameters of the product matrix process

associated with truncated unitary matrices.

Proposition 2.1. Consider the product matrix process associated with truncated

unitary matrices, and let xk1 ≤ . . . ≤ xkn; k = 1, . . . ,p denote the set of the squared

singular values of the product matrix Tk+l−1 . . .T1. The joint probability distribution of(
xk1, . . . , x

k
n

)
is given by

1

Zn,p+l
� (xp)

×
p−1∏

r=1

det
[(

xr+1
j

)νl+r
(
xrk − xr+1

j

)ml+r−n−νl+r−1

+
(
xrk
)n−ml+r

]n

k,j=1

× det
[
w(l)

k

(
x1j

)]n

k,j=1
dx1 . . .dxn,

(2.4)

where (x − y)+ = max (0,x − y), the Vandermonde determinant � (xp) is defined by

� (xp) = ∏

1≤i<j≤n

(
xpj − xpi

)
, for 1 ≤ l ≤ p we write dxl = dxl1 . . .dxln, Zn,p+l is a

normalization constant, and w(l)
k (x) is a sequence of weight functions. The normaliza-

tion constant Zn,p+l can be written explicitly as

Zn,p+l =

n∏

j=1
�
(
m1 − 2n − ν1 + j

)
�(j)

p+l−1∏

k=2

(
�
(
mk − n − νk

))n

p+l−1∏

k=1

mk−n−νk∏

jk=1

(
jk + νk

)
n

. (2.5)

Here (a)m = a(a + 1) . . . (a + m − 1) stands for the Pochhammer symbol. The function

w(l)
k (x) can be expressed as a Meijer G-function,

w(l)
k (x) = clG

l,0
l,l

(
ml − n, . . . , m2 − n, m1 − 2n + k

νl, . . . , ν2, ν1 + k − 1

∣∣
∣
∣x

)

= cl
2π i

∫

C

�
(
ν1 + k − 1 + s

)∏l
j=2 �

(
νj + s

)

�
(
m1 − 2n + k + s

)∏l
j=2 �

(
mj − n + s

)x−sds, 0 < x < 1.

(2.6)
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8 A. Borodin et. al

In this formula C denotes a positively oriented contour in the complex s-plane

that starts and ends at −∞ and encircles the negative real axis. The constant cl in the

formula for w(l)
k (x) can be written as

cl = �
(
m1 − 2n − ν1 + 1

) l∏

j=2

�
(
mj − n − νj

)
. (2.7)

Remark 2.2. The Meijer G-function in equation (2.6) is equal to zero for x ≥ 1.

Correspondingly, we set the weight functions w(l)
k (x) to zero for x ≥ 1.

Remark 2.3. The right-hand side of equation (2.6) can be written as

c′
l

2π i

∫

C

(s)ν1+k−1
∏l

j=2 (s)νj

(s)m1−2n+k
∏l

j=2 (s)mj−n

x−sds,

where

c′
l = B

(
m1 − 2n − ν1 + 1, ν1 + k − 1

) l∏

j=2

B
(
mj − n − νj, νj

)
,

and B(x, y) stands for the Beta function.

Our next result provides explicit formulae for the correlation functions of the

product matrix process associated with truncated unitary matrices.

Proposition 2.4. The product matrix process with truncated unitary matrices is a

determinantal process on {1, . . . ,p} × R>0. Its correlation kernel, Kn,p,l(r, x; s,y) (where

r, s ∈ {1, . . . ,p}, and x, y ∈ R>0) can be written as

Kn,p,l(r, x; s,y) = −1

x
Gs−r,0
s−r,s−r

(
mr+l − n, . . . , ms+l−1 − n

νr+l, . . . , νs+l−1

∣∣
∣∣
y

x

)

1s>r

+ 1

(2π i)2

∮

Ct

dt
∮

Cζ

dζ

s+l−1∏

a=0
�
(
νa + ζ + 1

)

r+l−1∏

a=0
�
(
νa + t + 1

)

r+l−1∏

a=0
�
(
ma − n + t + 1

)

s+l−1∏

a=0
�
(
ma − n + ζ + 1

)
xty−ζ−1

ζ − t
,

(2.8)

where Ct is a closed contour in the complex t-plane encircling the interval [0,n−1] once

in the positive direction, Cζ is a positively oriented closed contour in the complex ζ -

plane encircling once an interval containing all the points − (1 + ν1
)
, . . ., − (m1 − n

)
; . . .;
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Product Matrix Processes as Limits 9

− (1 + νs+l−1

)
, . . ., − (ms+l−1 − n

)
, which does not intersect Ct. In the formula above it is

understood that m0 = ν0 = 0.

We note that if r = s = p and l = 1, then formula (2.8) reduces to the formula for

the correlation kernel derived in Kieburg et al. [31, Proposition 2.7].

In what follows we will give two proofs of Proposition 2.4. The 1st proof will use

the fact that the process defined by equation (2.4) can be understood as a continuous

limit of a special Schur process, see Proposition 2.6. Since the Schur processes are

determinantal, this will imply determinantal formulae for the correlation functions. As

for the explicit formula for the correlation kernel (see equation (2.8)), it will be obtained

from the general Okounkov–Reshetikhin formula [39] for correlation kernels of the Schur

processes by a certain limiting procedure in Section 6. The 2nd proof will be based on

the observation that the density of the product matrix process with truncated unitary

matrices can be written as a product of determinants. This will enable us to apply the

result by Eynard and Mehta [20], and to give a formula for the correlation functions, see

the Appendix. This 2nd argument is similar to the proof of Borodin and Rains [14] of the

determinantal structure of Schur processes.

2.2 Convergence of the Schur process

In this section we use the notation of Macdonald [35], and follow references [11, 12, 14,

39].

Let � be the algebra of symmetric functions in countably many variables

z1, z2, . . . . We use two sets of generators of �: power sums pk and complete homogeneous

symmetric functions hk, k = 1, 2, . . . , defined through

pk =
∞∑

i=1

(zi)
k, hk =

∑

i1≤i2≤···≤ik

zi1zi2 · · · zik .

We recall that the Schur functions sλ form a basis of � when λ varies over all Young

diagrams (or partitions). We also use skew Schur functions sλ/μ labeled by two Young

diagrams λ and μ.

A specialization 
 of � is an algebra homomorphism of � to C. A specialization 


of � is called nonnegative if it takes nonnegative values on the Schur functions, see, for

example, Borodin [11, Section 1] for a detailed discussion of nonnegative specializations

of the algebra of symmetric functions. The application of a specialization 
 to f ∈ �

will be denoted as f (
). The trivial specialization ∅ of � takes value 1 at the constant
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10 A. Borodin et. al

function 1 ∈ �, and takes value 0 at any homogeneous f ∈ � of degree ≥ 1. In particular

sλ(∅) = 0 unless λ = ∅, and sλ/μ(∅) = 0 unless λ = μ.

In this paper we will only use the simplest Schur positive specializations

parameterized by arbitrarym = 1, 2, . . . andm–tuple of positive reals (α1, . . . ,αm) ∈ R
m
>0.

We denote it 
 = (α1, . . . ,αm) and set

pk(
) = pk(α1, . . . ,αm) = (α1)
k + (α2)

k + . . . (αm)k.

Equivalently, this specialization can be encoded by its generating function

H(
;u) := 1 +
∞∑

k=1

hk(
)uk = exp

( ∞∑

k=1

pk(
)uk

k

)

=
m∏

i=1

1

1 − αiu
, (2.9)

where the 2nd identity is the algebraic relation between generators pk and hk.

The specializations that we use are often given by geometric series


 = (qt, qt+1, . . . , qs). When t > s, the geometric series is empty and 
 becomes the

trivial specialization.

Definition 2.5. Let p be a natural number, and let 
+
0 , . . . , 


+
p−1, 


−
1 , . . . , 


−
p be nonneg-

ative specializations of �. The Schur process of rank p is a probability measure on

sequences of Young diagrams

λ(1),μ(1), λ(2),μ(2), . . . , λ(p−2),μ(p−2), λ(p−1),μ(p−1), λ(p)

parameterized by 2p Schur positive specializations of the algebra of symmetric func-

tions given by

Prob
(
λ(1),μ(1), λ(2),μ(2), . . . , λ(p−2),μ(p−2), λ(p−1),μ(p−1), λ(p)

)

= 1

ZSchur
sλ(1)

(

+
0

)
sλ(1)/μ(1)

(

−
1

)
sλ(2)/μ(1)

(

+
1

)
sλ(2)/μ(2)

(

−
2

)
sλ(3)/μ(2)

(

+
2

)

× . . . × sλ(p−1)/μ(p−1)

(

−
p−1

)
sλ(p)/μ(p−1)

(

+
p−1

)
sλ(p)

(

−
p

)
.

(2.10)

Here ZSchur is a normalization constant.

Since sλ/μ ≡ 0 unless μ ⊂ λ, the Schur process lives on the following

configurations of Young diagrams:

∅ ⊂ λ(1) ⊃ μ(1) ⊂ λ(2) ⊃ μ(2) ⊂ λ(3) ⊃ . . . ⊂ λ(p−1) ⊃ μ(p−1) ⊂ λ(p) ⊃ ∅.
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Product Matrix Processes as Limits 11

For skew Schur functions we have the following summation formulae:

∑

μ∈Y
sμ/λ(
)sμ/ν(


′) = H(
; 
′)
∑

κ∈Y
sλ/κ(
′)sν/κ (
), (2.11)

and

∑

ν∈Y
sλ/ν(
)sν/μ(
′) = sλ/μ(
, 
′), (2.12)

see Macdonald [35, Section I.5, equation (5.10), and Example I.5.26(1)]. Here

H
(

; 
′) = exp

( ∞∑

k=1

pk(
)pk(

′)

k

)

,

and the values of the symmetric functions under the union specialization (
, 
′) are

determined by the power sum values given by

pk

(

, 
′) = pk (
) + pk

(

′) .

Hence, for specializations 
1, . . . , 
k, 

′
1, . . . , 


′
m we have

H
(

1, . . . , 
k; 


′
1, . . . , 


′
m

) =
k∏

i=1

m∏

j=1

H
(

i; 


′
j

)
. (2.13)

Proposition 2.6. Consider the Schur process defined by the probability measure (10).

Assume that the specializations 
+
0 , . . ., 
+

p−1 of the Schur process are defined by


+
0 =

(
e−(1+ν1)ε , e−(2+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νl)ε , e−(2+νl)ε , . . . , e−(ml−n)ε

)
, (2.14)


+
1 =

(
e−(1+νl+1)ε , e−(2+νl+1)ε , . . . , e−(ml+1−n)ε

)
, (2.15)

...


+
p−1 =

(
e−(1+νl+p−1)ε , e−(2+νl+p−1)ε , . . . , e−(ml+p−1−n)ε

)
. (2.16)

The specialization 
−
p is defined by


−
p =

(
1, e−ε , . . . , e−(n−1)ε

)
, (2.17)
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12 A. Borodin et. al

and all the other specializations 
−
1 , . . ., 
−

p−1 are trivial. With these specializations the

Schur process lives on sequences of partitions
(
λ(1), λ(2), . . . , λ(p)

)
, where each λ(k), 1 ≤

k ≤ p, has at most n nonzero parts almost surely. Set

xkj = e−ελ
(k)

j , k = 1, . . . ,p; j = 1, . . . ,n. (2.18)

Then the Schur process induces a point process on {1, . . . ,p} × R>0, and this process is

formed by the configurations
{(

k, xkj

) ∣∣∣∣k = 1, . . . ,p; j = 1, . . . ,n
}
. (2.19)

As ε → 0, the point process formed by configurations (2.19) converges to the product

matrix process associated with truncated unitary matrices, as defined in Section 2.1.

Remark 2.7. We prove Proposition 2.6 only under the assumptionm1 ≥ 2n+ν1 of (2.2).

Although it is very plausible that the statement is true without this condition, we do not

address the more general case in this text. A technical difficulty is that without (2.2) we

cannot use the result of Proposition 2.1 directly; in particular, the constant cl of (2.7) is

infinite.

2.3 Random skew plane partitions and products of truncated unitary matrices

Let A and B be two natural numbers, and denote by BA the A × B rectangle. Let π be

a Young diagram such that π ⊂ BA. A skew plane partition 
 with support BA/π is a

filling of all boxes of BA/π such that 
i,j ≥ 
i+1,j and 
i,j ≥ 
i,j+1 for all meaningfull

values of i and j. Here we assume that 
i,j is located in the ith row and jth column of

BA. The volume of a skew plane partition 
 is defined by

Volume (
) =
∑

i,j


i,j. (2.20)

Given a parameter 0 < q < 1, define a probability measure on the set of all skew plane

partitions 
 with support BA/π by setting

Prob {
} ∼ qVolume(
). (2.21)

For a skew plane partition 
 we define Young diagrams λ(k) (
), 1 ≤ k ≤ A + B + 1,

through

λ(k) (
) =
{

i,i+k−A−1

∣
∣∣
∣(i, i + k − A − 1) ∈ BA/π

}
.
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Product Matrix Processes as Limits 13

Note that λ(1) = λ(A+B+1) = ∅. Also, define

L (π) =
{
A + πi − i + 1

∣∣
∣∣i = 1, . . . ,A

}
.

This is a subset of {1, . . . ,A + B + 1} containing A points, and all such subsets are in

bijection with the Young diagrams (or partitions) π contained in the box BA.

It is not hard to see that the set of all skew plane partitions with support BA/π

consists of sequences
(
λ(1), . . . , λ(A+B+1)

)
with

λ(1) = λ(A+B+1) = ∅,

λ(j) ≺ λ(j+1) if j ∈ L(λ), λ(j) � λ(j+1) if j /∈ L(λ), (2.22)

where notation μ ≺ ν means that μ and ν interlace, that is

ν1 ≥ μ1 ≥ ν2 ≥ μ2 ≥ ν3 ≥ . . . .

We refer to Figure 1 for an illustration of A = 4, B = 3 and π = ∅ case. Moreover, we have

A+B+1∑

j=1

∣∣∣λ(j)
∣∣∣ = Volume (
) ,

where |μ| denotes the number of boxes in the Young diagram μ.

The probability measure on the set of all skew plane partitions 
 with support

BA/π and defined by equation (2.21) induces a probability measure on sequences
(
λ(1), . . . , λ(A+B+1)

)
. It is known (see Okounkov and Reshetikhin [39, 40]) that this

probability measure can be understood as the Schur process defined in Section 2.2 by

equation (2.10) with the rank p = A + B + 1, and nonnegative specializations
{

+
i

}p−1
i=0 ,{


−
i

}p
i=1 defined by

H
(

+
0 ;u

) = H
(

−
A+B+1;u

) = 1,

H
(

+
j ;u

)
=
⎧
⎨

⎩

1

1 − q−ju
, j ∈ L(π),

1, j /∈ L(π);
H
(

−
j ;u

)
=
⎧
⎨

⎩

1, j ∈ L(π),
1

1 − qju
, j /∈ L(π).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny297/5289628 by M

assachusetts Institute of Technology, M
IT Libraries user on 14 June 2019



14 A. Borodin et. al

Fig. 2. The set {1, . . . ,A + B + 1} enumerates the boundary of the skew diagram BA/π . In this

example A = 7, B = 6, and l = 4.

Note that for any two neighboring specializations 
−
k , 
+

k defined above, at least

one is trivial, and each μ(j) coincides either with λ(j) or λ(j+1). The only nontrivial

specializations are one variable specializations ρ = (α) with α = q±j. A basic property

of skew Schur functions is that sλ/μ(α) = 0 unless μ ≺ λ; this implies interlacing

conditions (2.22).

Let π ∈ BA. The set {1, . . . ,A + B + 1} enumerates the intersections of the

boundary of the skew diagram BA/π with the square grid, as shown on Figure 2. Denote

by l the number of vertical segments of of the boundary of the skew diagram BA/π .

Let
{
β1, . . . ,β2l−1

}
be a subset of {1, . . . ,A + B + 1}, where the numbers β1, . . .,

β2l−1 parameterize the vertical segments of the boundary of the skew diagram BA/π , see

Figure 3. For example, for the Young diagram π on Figure 2 we have β1 = 12, β2 = 9,

β3 = 7, β4 = 5, β5 = 4, β6 = 3, β7 = 2, and β8 = 1. Now, assume that a1 ≥ p, and pick p

numbers α1, . . ., αp such that β2 ≤ α1 < . . . < αp < β1, see Figure 3.

Consider the sequence
(
λ(α1), . . . , λ(αp)

)
of random Young diagrams associated

with a random skew plane partition 
 whose support is BA/π , and whose weight is

proportional to qVolume(
). By assigning to this sequence the point configuration

{(
1, λ(α1)

i − i
)}

i≥1
∪ . . . ∪

{(
p, λ(αp)

i − i
)}

i≥1
(2.23)

we obtain a random point process on {1, . . . ,p} × Z.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny297/5289628 by M

assachusetts Institute of Technology, M
IT Libraries user on 14 June 2019



Product Matrix Processes as Limits 15

Fig. 3. The parametrization of the the vertical segments of the boundary of BA/π by β1, . . ., β2l,

and the choice of α1, . . ., αp.

Proposition 2.8. The probability of the point configuration (2.23) is determined by the

probability measure

1

Z
s
λ(αp)

(
1,q, . . . , qB−π1−1

)
s
λ(αp)/λ

(αp−1)

(
qA+π1+2−αp , qA+π1+3−αp , . . . , qA+π1+1−αp−1

)

× s
λ

(αp−1)
/λ

(αp−2)

(
qA+π1+2−αp−1 , qA+π1+3−αp−1 , . . . , qA+π1+1−αp−2

)

× . . . · sλ(α2)/λ(α1)

(
qA+π1+2−α2 , qA+π1+3−α2 , . . . , qA+π1+1−α1

)

× sλ(α1)

(
qA+π1+2−α1 , qA+π1+3−α1 , . . . , qA+π1+1−β2 ; qA+π1+2−β3 , qA+π1+3−β3 , . . . , qA+π1+1−β4 ;

. . . ; qA+π1+2−β2l−3 , qA+π1+3−β2l−3 , . . . , qA+π1+1−β2l−2 ; qA+π1+2−β2l−1 , qA+π1+3−β2l−1 , . . . , qA+π1

)
,

(2.24)

where Z is a normalization constant.
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16 A. Borodin et. al

Now we are ready to state the main result of the present work. Let 
 be a

random skew partition with support BA/π whose weight is determined by equation

(2.21). Let
(
λ1, . . . , λ(A+B+1)

)
be a sequence of Young diagrams associated with 
.

Consider the subsequence
(
λ(α1), . . . , λ(αp)

)
of
(
λ1, . . . , λ(A+B+1)

)
, where the indexes α1,

. . ., αp are chosen as it is described above. By assigning to this subsequence the point

configuration (2.23) we obtain a random point process on {1, . . . ,p} × Z. Set n = B − π1,

q = e−ε , and define

xkj = e−ελ
(αk)

j , k = 1, . . . ,p; j = 1, . . . ,n.

Theorem 2.9. As ε → 0, the point process formed by configurations

{(
k, xkj

)
|k = 1, . . . ,p; j = 1, . . . ,n

}

converges to the product matrix process associated with truncated unitary matrices,

described in Section 2.1, and defined by probability distribution (2.4). The parameters

of the relevant product matrix process are given by

• n = B − π1.

• mk = A+ B+ 1− β2k for 1 ≤ k ≤ l and ml+k = A+ B+ 1− αk for 1 ≤ k ≤ p− 1.

• ν1 = A + π1 + 1 − α1, νk = A + π1 + 1 − β2k−1 for 2 ≤ k ≤ l, and

νl+k = A + π1 + 1 − αk+1 for 1 ≤ k ≤ p − 1.

The truncated unitary matrices forming the product matrix process in

Theorem 2.9 are shown schematically on Figure 4.

Remark 2.10 The condition m1 ≥ 2n + ν1 reads as

α1 ≥ B − π1 + β2. (2.25)

The conditions mj ≥ n + νj + 1 (where 2 ≤ j ≤ l) can be rewritten as

β2j−1 − β2j ≥ 0; α1 − β2 ≥ 0;

and

αk+1 − αk ≥ 0

(where 1 ≤ k ≤ p − 1), and are satisfied automatically.
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Product Matrix Processes as Limits 17

Fig. 4. The truncated unitary matrices forming the product matrix process associated with the

random skew plane partitions.
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18 A. Borodin et. al

Remark 2.11 The choice of the parameters νi, mi is not unique. Namely, we need to

identify the l geometric series in (2.14) with l geometric series in the last two lines of

(2.24) and there are l! ways to do so. Formally, our proof goes through only for the choices

which agree with the condition m1 ≥ 2n + ν1 of (2.2), see, however, Remark 2.7.

Example 2.12. Consider the particular case in which π = ∅, as in Figure 1. In this

situation l = 1, β1 = A+1, β2 = 1, and the parameters α1, . . ., αp take values in {1, . . . ,A}.
As a limit, we obtain the product matrix process with truncated unitary matrices whose

parameters n; m1, . . ., mp; ν1, . . ., νp are given by

• n = B;

• m1 = A + B, and mk = A + B + 1 − αk−1 for 2 ≤ k ≤ p;

• νk = A + 1 − αk for 1 ≤ k ≤ p.

3 Proof of Proposition 2.1

In order to prove Proposition 2.1 we will use two results obtained in Kieburg, Kuijlaars,

and Stivigny [31]. Namely, Corollary 2.6 in Kieburg et al. [31] implies that the probability

distribution of x1 = (
x11, . . . , x

1
n

)
(which is the vector of the squared singular values of

Tl . . .T1) can be written as

const�
(
x1
)
det

[
w(l)

k

(
x1j

)]n

k,j=1
dx1.

The 2nd result concerns the density of squared singular values for a product of

a nonrandom and a truncated unitary matrix. Namely, assume that U is a Haar-

distributed unitary matrix of size m × m, and let T be an (n + ν) × l truncation of U. In

addition, let X be a nonrandommatrix of size l×n, and impose the following constraints

for the parameters n, l, m, and ν:

1 ≤ n ≤ l ≤ m, m ≥ n + ν + 1.

Denote by
(
x1, . . . , xn

)
the vector of squared singular values of X, and by

(
y1, . . . , yn

)
the

vector of squared singular values of TX. If x1, . . . , xn are pairwise distinct and nonzero,

then the vector
(
y1, . . . , yn

)
has density

const

⎛

⎝
n∏

j=1

x−m+n
j

⎞

⎠

⎛

⎝
n∏

j=1

yν
j

⎞

⎠det
[(

xk − yj
)m−n−ν−1

+

]n

j,k=1

�(y)

�(x)
, (3.1)
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Product Matrix Processes as Limits 19

see Kieburg et al. [31, Theorem 2.1]. Now assume that X = Tl . . .T1. Applying the results

stated above we immediately obtain that the probability distribution of
(
xk1, . . . , x

k
n

)
is

proportional to the product of determinants as in equation (2.4). In order to compute

the normalization constant we use the Andréief integral identity (see, for instance, De

Bruijn [16]), and the recurrence relation

w(l+1)

k (y) =
1∫

0

τ νl+1 (1 − τ)ml+1−n−νl+1−1w(l)
k

(y
τ

) dτ

τ
,

see Kieburg et al. [31], equation (2.22). The integration over x11, . . ., x1n gives

∫
. . .

∫

0≤x11≤...≤x1n<∞
det

[(
x2j

)νl+1
(
x1k − x2j

)ml+1−n−νl+1−1

+

(
x1k

)n−ml+1
]n

j,k=1
det

[
w(l)

k

(
x1j

)]n

j,k=1
dx11 . . .dx1n

= det

⎡

⎣
∞∫

0

(
x2j

)νl+1
(
t − x2j

)ml+1−n−νl+1−1

+ tn−ml+1w(l)
k (t)dt

⎤

⎦

n

j,k=1

.

Changing the integration variable t = x2j
τ
, we rewrite the integral inside the determinant

above as

(
x2j

)νl+1

1∫

0

(
x2j
τ

− x2j

)ml+1−n−νl+1−1
(
x2j

)n−ml+1

τn−ml+1
w(l)

k

(
x2j
τ

)
x2j
τ2

dτ

=
1∫

0

τ νl+1 (1 − τ)ml+1−n−νl+1−1w(l)
k

(
x2j
τ

)
dτ

τ
= w(l+1)

k

(
x2j

)
.

(3.2)

As a result of integration over the variables x11, . . ., x1n; . . .; xp−1
1 , . . ., xp−1

n

we find

Zn,p+l =
∫

0≤x1≤...≤xn≤∞
det

(
xj−1
k

)n

j,k=1
det

(
w(l+p−1)

k

(
xj
))n

j,k=1
dx1 . . .dxn.
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20 A. Borodin et. al

Applying the Andréief integral identity again, we obtain

Zn,p+l = det

⎡

⎣
∞∫

0

xj−1w(l+p−1)

k (x)dx

⎤

⎦

n

j,k=1

=
(
cl+p−1

)n
det

⎡

⎣
∞∫

0

xj−1Gl+p−1,0
l+p−1,l+p−1

(
ml+p−1 − n, . . . , m2 − n, m1 − 2n + k

νl+p−1, . . . , ν2, ν1 + k − 1

∣∣∣∣x

)

dx

⎤

⎦

n

j,k=1

.

The integral inside the determinant can be computed explicitly in terms of Gamma

functions. Namely, formula (5.6.1.1) in Luke [34] gives

∞∫

0

xjGl+p−1,0
l+p−1,l+p−1

(
ml+p−1 . . . m2 − n m1 − 2n + k

νl+p−1 . . . ν2 ν1 + k − 1

∣∣
∣∣x

)

dx

=
∏l+p−1

k=2 �
(
νk + j

)
�
(
ν1 + k − 1 + j

)

∏l+p−1
k=2 �

(
mk − n + j

)
�
(
m1 − 2n + k + j

) ,

(3.3)

and we find

Zn,p+l = [� (m1 − 2n − ν1 + 1
)]n

l+p−1∏

j=2

[
�
(
mj − n − νj

)]n

×
∏l+p−1

k=2

∏n
j=1 �

(
νk + j

)

∏l+p−1
k=2

∏n
j=1 �

(
mk − n + j

) det

[
�
(
ν1 + k + j − 1

)

�
(
m1 − 2n + k + j

)

]n

j,k=1

.

The following formula for the determinant with Gamma functions entries is known:

det
[

�(c + i + j)

�(d + i + j)

]n−1

i,j=0
=

n−1∏

j=0

j!
�(d − c + j)

�(d − c)

�(c + j)

�(d + n − 1 + j)
, (3.4)

see equation (4.11) in Normand [36]. Using this formula we obtain

det

[
�
(
ν1 + k + j − 1

)

�
(
m1 − 2n + k + j

)

]n

j,k=1

=
n∏

j=1

�
(
ν1 + j

)

�
(
m1 − n + j

)

∏n
j=1 �(j)�

(
m1 − 2n − ν1 + j

)

(
�
(
m1 − 2n − ν1 + 1

))n .
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This gives

Zn,p+l =
l+p−1∏

j=2

[
�
(
mj − n − νj

)]n

×
∏l+p−1

k=1

∏n
j=1 �

(
νk + j

)

∏l+p−1
k=1

∏n
j=1 �

(
mk − n + j

)
n∏

j=1

�(j)�
(
m1 − 2n − ν1 + j

)
.

Since

n∏

j=1

� (ν + j)
�(m − n + j)

=
m−n−ν∏

j=1

�(ν + j)

�(ν + j + n)
=

m−n−ν∏

j=1

1

(j + ν)n
,

we can rewrite the normalization constant Zn,p+l in the same form as in the statement

of the Proposition 2.1.

4 Limits of Symmetric Functions

The aim of this section is to obtain certain asymptotic formulae for the Schur functions,

and for the skew Schur functions, see Propositions 4.1 and 4.3. We will need these

formulae in the proofs of our main results (Proposition 2.6 and Theorem 2.9).

Proposition 4.1. Let λ(ε) be a family of Young diagrams with N rows, where N ≤ M.

Assume that λ(ε) depends on a positive parameter ε in such a way that ελj(ε) → − log rj,

as ε → 0+, for some values 0 < r1 ≤ . . . ≤ rN < 1. Then

lim
ε→0+

{
εMN−N(N+1)

2 sλ

(
e−(1+ν)ε , . . . , e−(M+ν)ε

)}

= 1
N∏

j=1
�(M − N + j)

N∏

i=1

r1+ν
i

(
1 − ri

)M−N ∏

1≤i<j≤N

(
rj − ri

)
,

(4.1)

where ν ≥ 0. The convergence is uniform in rj’s.

Proof. Homogeneity of the Schur polynomials implies

sλ

(
e−(1+ν)ε , . . . , e−(M+ν)ε

)
= e

−(1+ν)ε
N∑

i=1
λi
sλ

(
1, e−ε , . . . , e−(M−1)ε

)
. (4.2)
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Moreover, the principal specialization of the Schur polynomials (see Macdonald [35, § 3,

Example 1]) gives

sλ

(
1, e−ε , . . . , e−(M−1)ε

)
= e

−ε
N∑

i=1
(i−1)λi ∏

1≤i<j≤M

1 − e−ε(λi−λj−i+j)

1 − eε(−i+j)
. (4.3)

The product in the right-hand side of the expression above can be written as

∏

1≤i<j≤M

1 − e−ε(λi−λj−i+j)

1 − eε(−i+j)
=

∏

1≤i<j≤N

(
1 − e−ε(λi−λj−i+j)

)

×
N∏

i=1

M∏

j=N+1

(
1 − e−ε(λi−i+j)

) ∏

i<j
1≤i≤N
1≤j≤M

1

1 − e−ε(−i+j)
.

(4.4)

Taking the limit ε → 0+, and using the fact that

∏

i<j
1≤i≤N
1≤j≤M

1

ε(j − i)
= 1

εMN−N(N+1)
2

1
N∏

j=1
�(M − N + j)

, (4.5)

we obtain the formula in the statement of the Proposition. �

Lemma 4.2. Let k(ε), m(ε) be two families of positive integers depending on a positive

parameter ε in such a way that εk(ε) → − log r, εm(ε) → − log s, as ε → 0+, for some

values 0 < r, s < 1. Then

lim
ε→0+

{
εM−1hk−m

(
e−(1+ν)ε , e−(2+ν)ε , . . . , e−(M+ν)ε

)}
= 1

�(M)

r1+ν

sM+ν
(s − r)M−1+ , (4.6)

where hn = s(n) is the nth complete homogeneous symmetric function,M ≥ 1, ν ≥ 0, and

(s − r)+ = max{0, s − r}. The convergence is uniform in s, r.

Proof. We start by noting that the right-hand side of (4.6) has no singularity at s = 0.

Indeed, this follows from the observation that for positive r we have r1+ν(s − r)M−1+ ≤
s1+νsM−1 = sM+ν .
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Product Matrix Processes as Limits 23

Specializing (4.3) to λ = (m) gives

hm

(
1,q, . . . , qM−1

)
=

M−1∏

j=1

1 − qm+j

1 − qj
.

Assuming m ≤ k we obtain

hk−m

(
e−(1+ν)ε , e−(2+ν)ε , . . . , e−(M+ν)ε

)

= e−(1+ν)ε(k−m)hk−m

(
1, e−ε , . . . , e−(M−1)ε

)
= e−(1+ν)ε(k−m)

M−1∏

j=1

1 − e−ε(k−m+j)

1 − e−εj

�
(r
s

)1+ν
M−1∏

j=1

1 − r
s

εj
= 1

εM−1

1

�(M)

r1+ν

sM+ν
(s − r)M−1 ,

(4.7)

where s ≥ r. If s < r, then m > k, and hk−m ≡ 0. �

Proposition 4.3. Let λ(ε), μ(ε) be two families of Young diagrams depending on a

positive parameter ε, with l(λ) = l(μ) = N. Assume that λ(ε), μ(ε) depend on the

parameter ε in such a way that ελj(ε) → − log rj, εμj(ε) → − log sj, as ε → 0+ for some

values 0 < r1 ≤ r2 ≤ . . . ≤ rN < 1, and 0 < s1 ≤ s2 ≤ . . . ≤ sN < 1. Then we have

lim
ε→0+

{
εMN−Nsλ/μ

(
e−(1+ν)ε , e−(2+ν)ε , . . . , e−(M+ν)ε

)}

= 1

(�(M))N

∏N
i=1

(
ri
)1+ν

∏N
i=1

(
si
)M+ν

det
[(

sj − ri
)M−1

+

]N

i,j=1
,

(4.8)

where M ≥ 1. The convergence is uniform in rj’s and sj’s.

Proof. Apply the Jacobi–Trudi formula (see [35, Chapter I, (5.4)]),

sλ/μ = det
(
hλi−μj−i+j

)N

i,j=1
,

together with Lemma 4.2. �
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24 A. Borodin et. al

Proposition 4.4. Let λ(ε) be a family of Young diagrams with n rows. Assume that λ(ε)

depends on a positive parameter ε in such a way that ελj(ε) → − log xj, as ε → 0+, for

some values 0 < x1 ≤ . . . ≤ xn < 1. Then

lim
ε→0+

⎡

⎣ε

p∑

k=1
(mk−n−νk)n−n(n+1)

2
sλ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νp)ε , . . . , e−(mp−n)ε

)
⎤

⎦

=
[
�
(
m1 − 2n − ν1 + 1

)]n

n∏

j=1
�
(
m1 − 2n − ν1 + j

)

× det

[

Gp,0
p,p

(
mp − n + 1 . . . m2 − n + 1 m1 − 2n + k + 1

νp + 1 . . . ν2 + 1 ν1 + k

∣
∣
∣
∣xj

)]n

j,k=1

,

(4.9)

where the parameters mj, νj are those specified in Section 2.1. The convergence is

uniform in xj’s.

Proof. The proof is by induction over p. Assume that p = 1. Then equation (4.9) takes

the form

lim
ε→0

[
ε(m1−n−ν1)n−n(n+1)

2 sλ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε

)]

=
[
�
(
m1 − 2n − ν1 + 1

)]n

n∏

j=1
�
(
m1 − 2n − ν1 + j

) det

[

G1,0
1,1

(
m1 − 2n + k + 1

ν1 + k

∣∣
∣∣xj

)]n

j,k=1

.
(4.10)

As follows from equations (2.20–2.25) in Kieburg et al. [31],

G1,0
1,1

(
m1 − 2n + k + 1

ν1 + k

∣∣∣∣x

)

= 1

�
(
m1 − 2n − ν1 + 1

)xν1+k(1 − x)m1−2n−ν1 .

We see that equation (4.10) turns into equation (4.1) (with N = n, M = m1 − n − ν), and

conclude that Proposition 4.4 holds true for p = 1.
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Assume that the statement of Proposition 4.4 holds true for certain natural p.

Let us prove this statement for p + 1. Equation (2.12) implies

sλ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νp+1)ε , . . . , e−(mp+1−n)ε

)

=
∑

μ

sλ/μ

(
e−(1+νp+1)ε , . . . , e−(mp+1−n)ε

)
×

sμ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . , e−(1+νp)ε , . . . , e−(mp−n)ε

)
.

(4.11)

Here we can assume that the sum is over Young diagrams μ with at most n rows. Let

λ(ε), μ(ε) be two families of Young diagrams depending on a positive parameter ε, with

l(λ) = l(μ) = n. Assume that λ(ε), μ(ε) depend on the parameter ε in such a way that

ελj(ε) → − log xj, εμj(ε) → − log sj, as ε → 0+ for some values 0 < x1 ≤ r2 ≤ . . . ≤ xn < 1,

and 0 < y1 ≤ y2 ≤ . . . ≤ yn < 1. Then Proposition 4.3 (with N = n, M = mp+1 − n − νp+1,

and ν = νp+1) implies that

ε−n+(mp+1−n−νp+1)nsλ/μ

(
e−(1+νp+1)ε , . . . , e−(mp+1−n)ε

)

converges to

1
[
�
(
mp+1 − n − νp+1

)]n

∏n
i=1

(
xi
)1+νp+1

∏n
i=1

(
yi
)mp+1−n det

[(
yj − xi

)mp+1−n−νp+1−1

+

]n

i,j=1
,

and the convergence is uniform in xj’s and yj’s. Moreover, by our assumption

ε

p∑

k=1
(mk−n−νk)n−n(n+1)

2
sμ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . , e−(1+νp)ε , . . . , e−(mp−n)ε

)

converges to

[
�
(
m1 − 2n − ν1 + 1

)]n

n∏

j=1
�
(
m1 − 2n − ν1 + j

) det

[

Gp,0
p,p

(
mp − n + 1 . . . m2 − n + 1 m1 − 2n + k + 1

νp + 1 . . . ν2 + 1 ν1 + k

∣
∣
∣
∣yj

)]n

j,k=1

,
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26 A. Borodin et. al

uniformly for y1, . . . , yn ∈ (0, 1). Since dμj ∼ −dyj
εyj

, we conclude that the right-hand side

of equation (4.11) multiplied by ε

p+1∑

k=1
(mk−n−νk)n−n(n+1)

2
converges to

[
�
(
m1 − 2n − ν1 + 1

)]n

n∏

j=1
�
(
m1 − 2n − ν1 + j

)
1

[
�
(
mp+1 − n − νp+1

)]n

n∏

i=1

(
xi
)1+νp+1

×
∫

. . .

∫

0≤y1≤...≤yn≤1

n∏

i=1

(
yi
)n−mp+1 det

[(
yj − xi

)mp+1−n−νp+1−1

+

]n

i,j=1

× det

[

Gp,0
p,p

(
mp − n + 1 . . . m2 − n + 1 m1 − 2n + k + 1

νp + 1 . . . νp−1 + 1 ν1 + k

∣
∣
∣
∣yj

)]n

j,k=1

dy1
y1

. . .
dyn
yn

,

and the convergence is uniform in x1, . . . , xn. The expression above can be rewritten as

1
n∏

j=1
�
(
m1 − 2n − ν1 + j

) p+1∏

j=2

[
�
(
mj − n − νj

)]n

×
∫

. . .

∫

0≤y1≤...≤yn≤1

dy1 . . .dyn

n∏

i=1

(
yi
)n−mp+1−1 det

[
x
1+νp

k

(
yj − xk

)mp+1−n−νp+1−1

+

]n

k,j=1
×

det
[
w(p)

k

(
yj
)]n

j,k=1
,

where we have used equations (2.6) and (2.7) to rewrite the Meijer G-function in terms

of the corresponding weight function w(p)

k (y). By the Andréief identity, and by the same

calculations as in the proof of Proposition 2.1 it can be shown that (4.12) is equal to

1
n∏

j=1
�
(
m1 − 2n − ν1 + j

) p+1∏

j=2

[
�
(
mj − n − νj

)]n
det

[
xjw

(p+1)

k

(
xj
)]n

j,k=1
.
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Rewriting the weight function w(p+1)

k in terms of the corresponding Meijer G-function

we obtain that

lim
ε→0+

⎡

⎣ε

p+1∑

k=1
(mk−n−νk)n−n(n+1)

2
sλ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νp+1)ε , . . . , e−(mp+1−n)ε

)
⎤

⎦

=
[
�
(
m1 − 2n − ν1 + 1

)]n

n∏

j=1
�
(
m1 − 2n − ν1 + j

)

× det

[

Gp+1,0
p+1,p+1

(
mp+1 − n + 1 . . . m2 − n + 1 m1 − 2n + k + 1

νp+1 + 1 . . . ν2 + 1 ν1 + k

∣
∣
∣
∣xj

)]n

j,k=1

,

(4.12)

uniformly for x1, . . . , xn ∈ (0, 1). �

5 Convergence of the Schur Process to the Product Matrix Process with Truncated

Unitary Matrices. Proof of Proposition 2.6

Now we begin to investigate the convergence of the Schur process to the product matrix

process with truncated unitary matrices. We start with the case where the initial

conditions are defined by a single truncated matrix T1, see Proposition 5.1. Then (using

Proposition 4.4) we generalize Proposition 5.1 to the case where the initial conditions

are specified by a product of l truncated matrices Tl . . .T1, and prove Proposition 2.66.

We remark that, in principle, the 2nd part can be avoided, as the general l case can be

obtained from the l = 1 case by restriction of a distribution to a subset of matrices. In

particular, in this way the consistency of Proposition 2.1 between different values of l

can be used to produce an alternative proof of Proposition 4.4.

Consider the Schur process defined in Section 2.2. Define the specializations 
+
0 ,

. . ., 
+
p−1, 
−

1 , . . ., 
−
p of the algebra of symmetric functions as follows:

• The specialization 
−
p is defined by


−
p =

(
1, e−ε , . . . , e−(n−1)ε

)
.

All other 
−
1 , . . ., 
−

p−1 are trivial.
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28 A. Borodin et. al

• The specializations 
+
0 , . . ., 
+

p−1 are defined by


+
j =

(
e−(1+νj+1)ε , e−(2+νj+1)ε , . . . , e−(mj+1−n)ε

)
, 0 ≤ j ≤ p − 1.

Assume that each λ(k) is mapped to
(
λ

(k)
1 − 1, λ(k)

2 − 2, . . .
)
, and that

(
λ(1), . . . , λ(p)

)
is

mapped to the point configurations

{(
1, λ(1)

i − i
)}n

i=1
∪ . . . ∪

{(
p, λ(p)

i − i
)}n

i=1
. (5.1)

With the specializations 
+
0 , . . ., 


+
p−1, 


−
1 , . . ., 


−
p the Schur process can be understood as

that living on the point configurations (5.1).

Set

xkj = e−ελ
(k)

j , k = 1, . . . ,p; j = 1, . . . ,n. (5.2)

The above Schur process induces a point process on {1, . . . ,n} ×R>0, and this process is

formed by the configurations

{(
k, xkj

) ∣∣∣∣k = 1, . . . ,p; j = 1, . . . ,n
}
. (5.3)

Proposition 5.1. As ε → 0, the point process formed by configurations (5.3) converges

to the product matrix process associated with truncated unitary matrices, and defined

in Section 2.1. The initial conditions of this process are defined by the matrix T1 (which

is the truncation of U1).

Proof. Since specializations 
−
1 , . . ., 
−

p−1 are trivial, the Schur process turns into the

probability measure

Prob
{
λ(1), λ(2), . . . , λ(p−1), λ(p)

}

= 1

Z
sλ(1)

(

+
0

)
sλ(2)/λ(1)

(

+
1

)
sλ(3)/λ(2)

(

+
2

)
. . . sλ(p−1)/λ(p−2)

(

+
p−2

)
sλ(p)/λ(p−1)

(

+
p−1

)
sλ(p)

(

−
p

)
,

(5.4)

where

1

Z
= 1

H
(

+
0 ; 


−
p
)
H
(

+
1 ; 


−
p
)
. . .H

(

+
p−1; 


−
p

) .
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Now we use the asymptotic formulae for the Schur functions obtained in Section 4. In

particular, Proposition 4.1 gives

sλ(1)

(
e−(1+ν1)ε , e−(2+ν1)ε , . . . , e−(m1−n)ε

)

� ε−(m1−n−ν1)n+n(n+1)
2

n∏

j=1
�
(
m1 − 2n − ν1 + j

)

n∏

i=1

(
x1i

)1+ν1
(
1 − x1i

)m1−2n−ν1 ∏

1≤i<j≤n

(
x1j − x1i

)
,

(5.5)

as ε → 0+. In addition, Proposition 4.3 implies that as ε → 0+,

sλ(j)/λ(j−1)

(
e−(1+νj)ε , e−(2+νj)ε , . . . , e−(mj−n)ε

)

� ε−(mj−n−νj)n+n

[
�
(
mj − n − νj

)]n

n∏

i=1

(
xji

)1+νj

(
xj−1
i

)mj−n det
[(

xj−1
k − xjl

)mj−n−νj−1

+

]n

k,l=1
,

(5.6)

where 2 ≤ j ≤ p. Besides, Proposition 4.1 also gives

sλ(p)

(
1, e−ε , . . . , e−(n−1)ε

)
� 1

ε
n(n−1)

2

n∏

j=1
�(j)

∏

1≤i<j≤n

(
xpj − xpi

)
. (5.7)

Let us find the asymptotics of the normalization constant (defined by equation (5.4)).

This is not strictly necessary as the uniform convergence of the configuration weights

implies the convergence of the normalization constants. We perform this limit transition

for the sake of completeness. We have

1

H
(

+
j−1; 


−
p

) =
n−1∏

i=0

mj−n−νj∏

l=1

(
1 − e−(i+l+νj)ε

)
� ε(mj−n−νj)n

n−1∏

i=0

mj−n−νj∏

l=1

(
i + l + νj

)
,

where 1 ≤ j ≤ p. Therefore,

1

Z
� ε

p∑

j=1
(mj−n−νj)n n−1∏

i=0

p∏

j=1

mj−n−νj∏

l=1

(
i + l + νj

)

= ε

p∑

j=1
(mj−n−νj)n p∏

j=1

mj−n−νj∏

l=1

�
(
l + νj + n

)

�
(
l + νj

) .

(5.8)
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Taking into account that

dλ
(j)
i ∼ −dxji

εxji
, 1 ≤ j ≤ p, 1 ≤ i ≤ n,

we find that the probability measure on λ(1), λ(2),. . ., λ(p) turns into the probability

measure

⎛

⎝
p∏

j=1

mj−n−νj∏

l=1

�
(
l + νj + n

)

�
(
l + νj

)

⎞

⎠ 1
n∏

j=1
�(j)�

(
m1 − 2n − ν1 + j

)
1

p∏

j=2

[
�
(
mj − n − νj

)]n

× � (xp)
p∏

j=2

det
[(

xjl

)νj
(
xj−1
k − xjl

)mj−n−νj−1
x
n−mj

k

]n

k,l=1

× det
[(

x1l

)ν1+k−1 (
1 − x1l

)m1−2n−ν1
]n

l,k=1
dx1 . . .dxn.

(5.9)

This probability measure can be interpreted as the product matrix process associated

with truncated unitary matrices, see Proposition 2.1. The initial conditions of this

process are defined by the single truncated unitary matrix T1, which corresponds to

l = 1 in the definition of this product matrix process in Section 2.1. �

Proposition 9. Consider the Schur measure

1

Z
sλ(p)

(

+
0 , 


+
1 , . . . , 


+
p−1

)
sλ(p)

(

−
p

)
, (5.10)

which is the projection (for a discussion of projections of Schur processes see Borodin

[11, Section 2]) of the Schur process (equation (5.4)) to the Young diagram λ(p). If

xpk = e−ελ
(p)

k , 1 ≤ k ≤ n,

then as ε → 0+ the probability measure defined by equation (5.10) converges to

∏p
k=1

∏mk−n−νk
jk=1

(
jk + νk

)
n

∏n
j=1 �

(
m1 − 2n − ν1 + j

)
�(j)

∏p
k=2

(
�
(
mk − n − νk

))n

× � (xp)det
[
w(p)

k

(
xj
)]n

k,j=1
dxp1 . . .dxpn.

(5.11)
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Product Matrix Processes as Limits 31

The probability measure defined by expression (5.11) can be understood as the ensemble

of squared singular values of the product matrix Tp . . .T1 (where T1, . . ., Tp are the

truncated unitary matrices defined in Section 2.1).

Proof. We already know that the Schur process defined by equation (5.4) converges

to the product matrix process defined by the probability distribution (2.4). The Schur

measure defined by expression (5.10) is the projection of this Schur process to the

Young diagram λ(p), and the probability measure defined by expression (5.11) can be

understood as the projection of the product matrix process defined by the probability

distribution (2.4) to xp = (xp1 , . . . , xpn
)
. The result follows. �

Proof of Proposition 2.6. Proposition 2.6 is a generalization of Proposition 5.1 to the

situation where the initial conditions are defined by a product of l truncated matrices

(and not by a single truncated matrix). For the specializations specified in the statement

of Proposition 2.6 the Schur process turns into the probability measure

1

Z
sλ(p)

(
1, e−ε , . . . , e−(n−1)ε

)
sλ(p)/λ(p−1)

(
e−(1+νl+p−1)ε , e−(2+νl+p−1)ε , . . . , e−(ml+p−1−n)ε

)

sλ(p−1)/λ(p−2)

(
e−(1+νl+p−2)ε , e−(2+νl+p−2)ε , . . . , e−(ml+p−2−n)ε

)

...

sλ(2)/λ(1)

(
e−(1+νl+1)ε , e−(2+νl+1)ε , . . . , e−(ml+1−n)ε

)

sλ(1)

(
e−(1+ν1)ε , e−(2+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νl)ε , e−(2+νl)ε , . . . , e−(ml−n)ε

)
,

(5.12)

where Z is a normalization constant. The rest of the proof of Proposition 2.6 follows the

same line as that of Proposition 5.1. The only essential difference is that we use equation

(4.9) instead of equation (5.4) for the asymptotics of the relevant Schur function

sλ

(
e−(1+ν1)ε , . . . , e−(m1−n)ε ; . . . ; e−(1+νl)ε , . . . , e−(ml−n)ε

)

as ε → 0+. �

6 Convergence of the Correlation Functions and the Proof of Proposition 2.4

Consider the Schur process defined by probability measure (2.10). Assume that the

specializations 
+
0 , . . ., 
+

p−1 of the Schur process are defined by equations (2.14–2.16),

and that the specialization 
−
p is defined by equation (2.17). Let us agree that all other
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−
1 , . . ., 
−

p−1 are trivial. With these specializations the Schur process can be understood

as a point process on {1, . . . ,p} × Z. Denote by 

ε,Schur
k1,...,km

(
u1
1, . . . ,u

1
k1
; . . . ;um

1 , . . . ,um
km

)
the

correlation functions of this Schur process, and byKε
Schur (r,u; s,v) the correlation kernel

of this Schur process.

Proposition 2.6 says that the Schur process under consideration converges to

the product matrix process with truncated unitary matrices. This implies convergence

of the correlation functions. Namely, if 
k1,...,km

(
x11, . . . , x

1
k1
; . . . ; xm1 , . . . , xmkm

)
denotes the

correlation function of the product matrix process with truncated unitary matrices

defined by probability measure (2.4), then we must have

lim
ε→0+

{
1

k1∏

i=1
εx1i . . .

km∏

i=1
εxmi



ε,Schur
k1,...,km

(
−1

ε
logx11, . . . ,−

1

ε
logx1k1 ; . . . ;−

1

ε
logxm1 , . . . ,−1

ε
logxmkm

)}

= 
k1,...,km

(
x11, . . . , x

1
k1
; . . . ; xm1 , . . . , xmkm

)
,

where the denominator came from the coordinate change. This limiting relation between

the correlation functions would naturally follow from the limiting relation between the

correlation kernels,

lim
ε→0+

{
1

εy
K̂ε
Schur

(
r,−1

ε
logx; s,−1

ε
logy

)}
= Kn,p,l (r, x; s,y) , (6.1)

where Kn,p,l (r, x; s,y) denotes the correlation kernel of the product matrix process with

truncated unitary matrices, and where K̂ε
Schur (r,u; s,v) stands for a kernel equivalent

to Kε
Schur (r,u; s,v). Recall that two kernels of a determinantal process are called

equivalent if they define the same correlation functions. In what follows we will choose

K̂ε
Schur (r,u; s,v) in such a way that the limit in the right-hand side of equation (6.1) will

exist.

The Okounkov–Reshetikhin formula for the correlation kernel Kε
Schur (r,u; s,v) is

Kε
Schur (r,u; s,v) = 1

(2π i)2

∮

�z

∮

�w

H
(

−
[r,p]; z

)
H
(

+
[0,s);w

)

(zw − 1)H
(

+
[0,r); z

−1
)
H
(

−
[s,p];w

−1
)

dzdw

zu+1wv+1 , (6.2)

see [14, Theorem 2.2]. The choice of the integration contours �z and �w depends on the

time variables r and s, and will be specified below. In the formula for the correlation
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kernel Kε
Schur (r,u; s,v) above we have used the notation


±
[i,j] = 
±

i ∪ 
±
i+1 ∪ . . . ∪ 
±

j .

The specializations 
+
0 , . . ., 
+

p−1, 
−
1 , . . ., 
−

p of the algebra of symmetric functions are

specified by equations (2.14–2.17).

For simplicity, let us consider the case corresponding to l = 1. The proof of

Proposition 2.4 for a general l is essentially the same.

Using equations (2.9) and (2.13) we find

1

H
(

−
[s,p];w

−1
) =

n∏

a0=1

(
1 − e−(a0−1)εw−1

)
, H

(

−
[r,p]; z

)
= 1

n∏

a0=1

(
1 − e−(a0−1)εz

) ,

H
(

+
[0,s);w

)
= 1
∏m1−n

b1=1+ν1

(
1 − e−b1εw

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεw

) ,

and

1

H
(

+
[0,r);w

) =
m1−n∏

a1=1+ν1

(
1 − e−a1εz−1

)
. . .

mr−n∏

ar=1+νr

(
1 − e−arεz−1

)
.

Therefore, we can write

Kε
Schur (r,u; s,v) = 1

(2π i)2

∮

�z

∮

�w

dzdw

(zw − 1)zu+1wv+1

n∏

a0=1

1 − e−(a0−1)εw−1

1 − e−(a0−1)εz

×
∏m1−n

a1=1+ν1

(
1 − e−a1εz−1

)
. . .
∏mr−n

ar=1+νr

(
1 − e−arεz−1

)

∏m1−n
b1=1+ν1

(
1 − e−b1εw

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεw

) .

(6.3)

Assume that r ≥ s. According to [14, Theorem 2.2], we can choose �w as a counterclock-

wise circle contour with its center at 0, whose radius is larger than 1. Moreover, �w

should be chosen in such a way that all the points e(1+ν1)ε , . . ., e(m1−n)ε ; . . .; e(1+νs)ε , . . .,

e(ms−n)ε of the complex w-plane will be situated outside of the circle �w on its right. So

we define the contour �w by

�w =
{
w : w = eεβ+iϕ ,ϕ ∈ [−π ,π)

}
,

where 0 < β < min
{(
1 + ν1

)
, . . . ,

(
m1 − n

)
; . . . ;

(
1 + νs

)
, . . . ,

(
ms − n

)}
.
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In addition, we can choose �z as a counterclockwise circle with its center at 0,

such that |z||w| > 1 for all z ∈ �z, for all w ∈ �w, and such that the points 1, eε , . . .,

e(n−1)ε of the complex z-plane are situated outside of �z. So we define �z by

�z =
{
z : z = e−αε+iϕ ,ϕ ∈ [−π ,π)

}
,

where 0 < α < β.

Let us consider the integral over w in (6.3). Since v ≥ −n, the residue at infinity

of the integrand is equal to 0. Moreover, since β > α > 0, the singular point w = 1
z is

situated inside the contour �w, for every z ∈ �z. This enables us (without changing the

integral in the right-hand side of equation (6.3)) to transform �w through the extended

w-complex plane into an integration contour �′
w that encircles all the points e(1+ν1)ε ,

. . ., e(m1−n)ε ; . . .; e(1+νs)ε , . . ., e(ms−n)ε once in the clockwise direction, and leaves w = eεβ

on its left. The contour �′
w can be viewed as an image of a contour Cζ in the complex

ζ -plane under the transformation ζ �→ w = e−εζ . The contour �′
w can be chosen in

such a way that Cζ will be a clockwise oriented closed contour encircling all the points

− (1 + ν1
)
, . . ., − (m1 − n

)
; . . .; − (1 + νs

)
, . . ., − (ms − n

)
of the negative real axis, and

leaving ζ = 0 on its right.

Now let us consider the integral over z in formula (6.3). We note that u ≥ −n,

so the residue of the integrand at infinity is zero. Moreover, since β > α, and since

�′
w leaves eεβ on its left, the singular point z = 1

w is situated inside �z, for every

w ∈ �′
w. Thus, we can deform �z through the extended complex plane into a new

contour �′
z encircling the points 1, eε , . . ., eε(n−1) of the complex z-plane once in the

clockwise direction, and this deformation will not affect the integral. The contour �′
z

can be obtained from a clockwise oriented contour Ct by the transformation t �→ z = eεt.

Clearly, �′
z can be chosen in such a way that Ct will encircle the interval [0,n − 1], and

will not intersect Cζ .

We make the change of integration variables,

z = etε , w = e−ζε ,

and set

u = −1

ε
logx, v = −1

ε
logy.
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This gives

Kε
Schur

(
r,−1

ε
log x; s,−1

ε
logy

)
= ε2

(2π i)2

∮

Ct

dt
∮

Cζ

dζ
xt

yζ

1

1 − e−ε(ζ−t)

n∏

a0=1

1 − eε(ζ−a0+1)

1 − eε(t−a0+1)

×
∏m1−n

a1=1+ν1

(
1 − e−ε(t+a1)

)
. . .
∏mr−n

ar=1+νr

(
1 − e−ε(t+ar)

)

∏m1−n
b1=1+ν1

(
1 − e−ε(ζ+b1)

)
. . .
∏ms−n

bs=1+νs

(
1 − e−ε(ζ+bs)

) ,

(6.4)

where the integration contours are chosen as in the statement of Proposition 2.

Set

g (t, ζ ; ε) = ε

1 − e−ε(ζ−t)

n∏

a0=1

1−eε(ζ−a0+1)

ε

1−eε(t−a0+1)

ε

∏m1−n
a1=1+ν1

(
1−e−ε(t+a1)

ε

)
. . .
∏mr−n

ar=1+ν1

(
1−e−ε(t+ar)

ε

)

∏m1−n
b1=1+ν1

(
1−e−ε(ζ+b1)

ε

)
. . .
∏ms−n

bs=1+νs

(
1−e−ε(ζ+bs)

ε

) .

(6.5)

As ε → 0+, the function g (t, ζ ; ε) converges uniformly (with respect to ζ on Cζ , and with

respect to t on Ct) to

1

ζ − t

n∏

a0=1

ζ − a0 + 1

t − a0 + 1

∏m1−n
a1=1+ν1

(
t + a1

)
. . .
∏mr−n

ar=1+νr

(
t + ar

)

∏m1−n
b1=1+ν1

(
ζ + b1

)
. . .
∏ms−n

bs=1+νs

(
ζ + bs

) , (6.6)

as ε → 0+.

Now we define

K̂ε
Schur (r,u; s,v) =

s∏

k=1
εmk−n−νk

r∏

k=1
εmk−n−νk

Kε
Schur (r,u; s,v) .

Clearly, the kernels K̂ε
Schur (r,u; s,v) and Kε

Schur (r,u; s,v) are equivalent. Let us consider

the limit

lim
ε→0+

[
1

εy
K̂ε
Schur

(
r,−1

ε
logx; s,−1

ε
log y

)]
. (6.7)

The fact that g(t, ζ ; ε) converges uniformly (with respect to ζ on Cζ , and with respect to

t on Ct) to expression (6.6) enables us to interchange the limit and the integrals, and to
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compute (6.7) explicitly. By formula (6.1) this limit is equal to Kn,p,l=1(r, x; s,y). Thus, we

have

Kn,p,l=1(r, x; s,y) = 1

(2π i)2

∮

Ct

dt
∮

Cζ

dζ
xt

yζ+1(ζ − t)

n∏

a0=1

ζ − a0 + 1

t − a0 + 1

×
∏m1−n

a1=1+ν1

(
a1 + t

)∏m2−n
a2=1+ν2

(
a2 + t

)
. . .
∏mr−n

ar=1+νr

(
ar + t

)

∏m1−n
b1=1+ν1

(
b1 + ζ

)∏m2−n
b2=1+ν2

(
b2 + ζ

)
. . .
∏ms−n

bs=1+νs

(
bs + ζ

) ,

(6.8)

where r ≥ s. We rewrite the products inside the integrals above in terms of Gamma

functions as follows:

n∏

a0=1

ζ − a0 + 1

t − a0 + 1
= �(ζ + 1)

�(ζ + 1 − n)

�(t + 1 − n)

�(t + 1)
, (6.9)

m1−n∏

a1=1+ν1

(
a1 + t

) = �
(
t + m1 − n + 1

)

�
(
t + ν1 + 1

) , . . . ,
mr−n∏

ar=1+νr

(
ar + t

) = �
(
t + mr − n + 1

)

�
(
t + νr + 1

) , (6.10)

and

m1−n∏

b1=1+ν1

(
b1 + ζ

) = �
(
ζ + m1 − n + 1

)

�
(
ζ + ν1 + 1

) , . . . ,
ms−n∏

bs=1+νs

(
bs + ζ

) = �
(
ζ + ms − n + 1

)

�
(
ζ + νs + 1

) . (6.11)

Taking this into account we see that the right-hand side of equation (6.8) can be

rewritten as that of equation (2.8). This proves Proposition 2.4 for r ≥ s (and l = 1).

Assume that r < s. In this case we can choose both �z and �w as counter-

clockwise circle contours whose centers are at 0, and whose radii are less than 1, see

[14, Theorem 2.2]. Let us agree that |z| < |w| < 1 for all z ∈ �z, and w ∈ �w. In addition,

we will choose �z in such a way that all the points e−(1+ν1)ε , . . ., e−(m1−n)ε ; . . .; e−(1+νs)ε ,

. . ., e−(ms−n)ε will be situated inside �z.

We will deform the contour �w through the extended complex plane into a new

contour �′
w encircling all the points e(1+ν1)ε , . . ., e(m1−n)ε ; . . .; e(1+νs)ε , . . ., e(ms−n)ε in the

clockwise direction, and leaving the points w = 1
z , z ∈ �z outside. As we deform �w

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny297/5289628 by M

assachusetts Institute of Technology, M
IT Libraries user on 14 June 2019



Product Matrix Processes as Limits 37

into �′
w, we should pick up the contribution at the residue at w = 1

z . Thus, we rewrite

equation (3.3) as

Kε
Schur (r,u; s,v) = − 1

2π i

∮

�z

dz

zu−v+1

1
∏mr+1−n

br+1=1+νr+1

(
1 − e−br+1εz−1

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεz−1

)

+ 1

(2π i)2

∮

�z

∮

�′
w

dzdw

(zw − 1)zu+1wv+1

n∏

a0=1

1 − e−(a0−1)εw−1

1 − e−(a0−1)εz

×
∏m1−n

a1=1+ν1

(
1 − e−a1εz−1

)
. . .
∏mr−n

ar=1+νr

(
1 − e−arεz−1

)

∏m1−n
b1=1+ν1

(
1 − e−b1εw

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεw

) .

(6.12)

Denote by Kε,I
Schur (r,u; s,v) the 1st term in the right-hand side of the above equation, and

by Kε,II
Schur (r,u; s,v) the 2nd term, so that

Kε,I
Schur (r,u; s,v) = − 1

2π i

∮

�z

dz

zu−v+1

1
∏mr+1−n

br+1=1+νr+1

(
1 − e−br+1εz−1

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεz−1

) ,

(6.13)

and

Kε,II
Schur (r,u; s,v) = 1

(2π i)2

∮

�z

∮

�′
w

dzdw

(zw − 1)zu+1wv+1

n∏

a0=1

1 − e−(a0−1)εw−1

1 − e−(a0−1)εz

×
∏m1−n

a1=1+ν1

(
1 − e−a1εz−1

)
. . .
∏mr−n

ar=1+νr

(
1 − e−arεz−1

)

∏m1−n
b1=1+ν1

(
1 − e−b1εw

)
. . .
∏ms−n

bs=1+νs

(
1 − e−bsεw

) .

(6.14)

In the formula for Kε,II
Schur (r,u; s,v) we deform the contour �z through the extended

complex plane into a new contour �′
z encircling the points 1, eε , . . ., e(n−1)ε in the

clockwise direction. Since we agree that all the points e−(1+ν1)ε , . . ., e−(m1−n)ε . . .;

e−(1+νs)ε , . . ., e−(ms−n)ε are situated inside �z, the contour �′
w can be chosen such that

this deformation will not affect the value of Kε,II
Schur (r,u; s,v). The contours �′

w and �′
z

can be viewed as images of contours Cζ , Ct under the transformations ζ �→ w = e−εζ ,

and t → z = eεt, and the contours Cζ , Ct will be those described in the statement of the

Proposition.
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Set

K̂ε,I
Schur (r,u; s,v) =

s∏

k=1
εmk−n−νk

r∏

k=1
εmk−n−νk

Kε,I
Schur (r,u; s,v) ,

K̂ε,II
Schur (r,u; s,v) =

s∏

k=1
εmk−n−νk

r∏

k=1
εmk−n−νk

Kε,II
Schur (r,u; s,v) ,

and

K̂ε
Schur (r,u; s,v) = K̂ε,I

Schur (r,u; s,v) + K̂ε,II
Schur (r,u; s,v) .

After the change of variables we find

K̂ε,II
Schur

(
r,−1

ε
logx; s,−1

ε
log y

)
= ε

(2π i)2

∮

Ct

dt
∮

Cζ

dζ
xt

yζ
g(t, ζ ; ε), (6.15)

where g(t, ζ ; ε) is defined by equation (6.5). We thus have

lim
ε→0+

[
1

εy
K̂ε,II
Schur

(
r,−1

ε
logx; s,−1

ε
logy

)]
= 1

(2π i)2

∮

Ct

dt
∮

Cζ

dζ
xt

yζ+1(ζ − t)

n∏

a0=1

ζ − a0 + 1

t − a0 + 1

×
∏m1−n

a1=1+ν1

(
a1 + t

)∏m2−n
a2=1+ν2

(
a2 + t

)
. . .
∏mr−n

ar=1+νr

(
ar + t

)

∏m1−n
b1=1+ν1

(
b1 + ζ

)∏m2−n
b2=1+ν2

(
b2 + ζ

)
. . .
∏ms−n

bs=1+νs

(
bs + ζ

) ,

(6.16)

where again we have used the uniform convergence of g(t, ζ ; ε) to take the limit inside

the integrals. Note that (as in the case r ≥ s) the right-hand side of equation (6.16) can

be written as the 2nd term in the right-hand side of equation (2.8).

Now consider the formula for K̂ε,I
Schur (r,u; s,v) given by (6.13). Assume that u > v.

In this case the residue at infinity is equal to zero, and all finite poles are situated inside

the contour �z. This implies that K̂ε,I
Schur (r,u; s,v) is equal to 0 for u > v. If u ≤ v, then

the residue at 0 is equal to 0, and we can deform �z into a contour �′
z encircling the

poles e−(1+νr+1)ε , . . ., e−(mr+1−n)ε ; . . . ; e−(1+νs)ε , . . ., e−(ms−n)ε once in the counterclockwise

direction, and leaving 0 on the left. The contour �′
z can be viewed as an image of a
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contour Ct under the transformation t �→ z = eεt, where Ct will be that described in the

statement of the Proposition. After the change of variables we find that

K̂ε,I
Schur (r,u; s,v) = − ε

2π i

∮

Ct

dt
(y
x

)−t 1
∏mr+1−n

br+1=1+νr+1

1−eε(t+br+1)
ε

. . .
∏ms−n

bs=1+νs

1−eε(t+bs)

ε

, (6.17)

where y < x. We have

lim
ε→0+

[
1

εy
K̂ε,I
Schur

(
r,−1

ε
logx; s,−1

ε
logy

)]

= − 1

2π i

∮

Ct

dt
xt

yt+1

1
mr+1−n∏

br+1=1+νr+1

(
br+1 + t

)
. . .

ms−n∏

bs=1+νs

(
bs + t

)

= − 1

2π i

∮

Ct

dt
xt

yt+1

�
(
t + νr+1 + 1

)
. . . �

(
t + νs + 1

)

�
(
t + mr+1 − n + 1

)
. . . �

(
t + ms − n + 1

)

= −1

x
Gs−r,0
s−r,s−r

(
mr+1 − n, . . . , ms − n

νr+1, . . . , νs

∣
∣∣∣
y

x

)

,

(6.18)

where y < x. As follows from equations (2.22–2.24) in Kieburg et al. [31], the function

Gs−r,0
s−r,s−r

(
mr+1 − n, . . . , ms − n

νr+1, . . . , νs

∣∣
∣∣
y

x

)

is equal to 0 for y ≥ x. Therefore, equation

lim
ε→0+

[
1

εy
K̂ε,I
Schur

(
r,−1

ε
logx; s,−1

ε
logy

)]

= −1

x
Gs−r,0
s−r,s−r

(
mr+1 − n, . . . , ms − n

νr+1, . . . , νs

∣∣∣∣
y

x

) (6.19)

holds true for y ≥ x as well. Finally, formula (6.1), equations (6.16) and (6.18) give the

desired formula for the correlation kernel in the case r < s.

7 Proof of Proposition 2.8 and Theorem 2.9

Proof of Proposition 2.8. In order to compute the probability of the point configu-

ration (2.23), we need to compute the projection of the Schur process associated with

a skew plane partition 
 to the diagrams λ(α1), . . .,λ(αp). It is convenient to obtain
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first the projection on λ(β2l+1), . . ., λ(β2), λ(α1), . . .,λ(αp), see Figure 3. Using equation (2.12)

we find

1

Z′ sλ
(β2l+1)

(
q−1, . . . , q−(β2l+1−1)

)
s
λ

(β2l+1)
/λ(β2l)

(
qβ2l+1 , . . . , qβ2l−1

)

× s
λ

(β2l−1)
/λ(β2l)

(
q−β2l , . . . , q−(β2l−1−1)

)
s
λ

(β2l−1)
/λ

(β2l−2)

(
qβ2l−1 , . . . , qβ2l−2−1

)

...

× sλ(β3)/λ(β4)

(
q−β4 , . . . , q−(β3−1)

)
sλ(β3)/λ(β2)

(
qβ3 , . . . , qβ2−1

)

× sλ(α1)/λ(β2)

(
q−β2 , . . . , q−(α1−1)

)
sλ(α2)/λ(α1)

(
q−α1 , . . . , q−(α2−1)

)

...

× s
λ(αp)/λ

(αp−1)

(
q−αp−1 , . . . , q−(αp−1)

)
s
λ(β1)/λ(αp)

(
q−αp , . . . , q−(β1−1)

)

× sλ(β1)

(
qβ1 , . . . , qA+B

)
.

(7.1)

Equations (2.11) and (2.12) enable us to sum over the Young diagrams λ(β2l+1), λ(β2l), . . .,

λ(β2), and λ(β1). The result is

1

Z′′ sλ(α1)

(
q−1, . . . , q−(β2l+1−1); q−β2l , . . . , q−(β2l−1−1); . . . ; q−β2 , . . . , q−(α1−1)

)

× sλ(α2)/λ(α1)

(
q−α1 , . . . , q−(α2−1)

)
. . . s

λ(αp)/λ
(αp−1)

(
q−αp−1 , . . . , q−(αp−1)

)

× s
λ(αp)

(
qβ1 , . . . , qA+B

)
.

(7.2)

Taking into account the homogeneity of the Schur polynomials, and noting that

β1 = A + π1 + 1, we see that the expression above can be rewritten as in the statement

of the Proposition 2.8. �

Proof of Theorem 2.8. Proposition 2.8 says that the probability of the point configu-

ration
{(

1, λ(α1)

i − i
)}

i≥1
∪ . . . ∪

{(
1, λ

(αp)

i − i
)}

i≥1

can be written as a product of skew Schur functions, see equation (2.24). If q = e−ε , the

parameters n; m1, . . . ,ml+p−1; ν1, . . ., νl+p−1 are related with parameters A, B; π1; α1, . . .,

αp; β1, . . ., β2l+1 as in the statement of Theorem 2.9, and λ(α1), . . ., λ(αp) are identified

with λ(1), . . . , λ(p), then the probability measure defined by equation (5.12) turns into the
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Product Matrix Processes as Limits 41

probability measure defined by equation (2.24). Application of Proposition 2.6 gives the

result. �

8 Alternative Proof Through Symmetric Functions and Zonal Polynomials

In this section we sketch an alternative path to derive Proposition 2.6. For the clarity

of the exposition we only detail one simplest case. At the end of the section we outline

ways for generalizations.

Simplest case: product of two 2 × 2 matrices. Let U1 and U2 be two 4 × 4 independent

Haar-distributed random unitary complex matrices. Let T1 and T2 be principal 2 × 2

corners of U1 and U2, respectively. Our aim is to link the distribution of the squared

singular values of T1T2 to a Schur measure.

First, note that T1 and T2 are almost surely nondegenerate. The squared singular

values of T1T2 are eigenvalues of T1T2T
∗
2T

∗
1. Since eigenvalues are preserved under

conjugations, they are the same as the eigenvalues of (T∗
1T1)(T2T

∗
2). Since, T1 and T∗

1 have

the same distribution, we can further rewrite the law of interest as the distribution of

eigenvalues for the matrix (T1T
∗
1)(T2T

∗
2).

Set A = T1T
∗
1 and B = T2T

∗
2. The (ordered) eigenvalues of A are real numbers

a1,a2 distributed with probability density

ρ(a1,a2) = 12(a2 − a1)
2, 0 ≤ a1 ≤ a2 ≤ 1. (8.1)

This computation is a particular case of the identification of singular values of a corner

of a random unitary matrix with Jacobi ensemble, see [18] and references therein. This

is also the k = p = � = 1 case in Proposition 2.1. The eigenvalues of B, 0 ≤ b1 ≤ b2 ≤ 1

have the same distribution.

Next, we fix 0 < q < 1 and consider a distribution on pairs of integers λ1 ≥ λ2 ≥
0 with weight

Pq(λ1, λ2) = (1 − q)(1 − q2)2(1 − q3) s(λ1,λ2)(1,q) s(λ1,λ2)(q,q
2). (8.2)

On one hand, (8.2) is a particular case of the Schur measure. On the other hand, the

explicit evaluations

s(λ1,λ2)(1,q) =
det

(
1 1

qλ1+1 qλ2

)

1 − q
= qλ2 − qλ1+1

1 − q
, s(λ1,λ2)(q,q

2) = qλ1+λ2
qλ2 − qλ1+1

1 − q
,
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imply that upon the change of variables qλi = ai, i = 1, 2, in the limit q → 1, (8.2)

becomes (8.1). The same computation works for matrices of arbitrary size and for any

values of the random matrix parameter β, see [22, Section 3.1] and [13, Theorem 2.8].

The next step is to use the Cauchy–Littlewood identity (see [35, Chapter I])

∑

(λ1,λ2)

s(λ1,λ2)(u1,u2)s(λ1,λ2,0k−2)(v1, v2, . . . , vk) =
2∏

i=1

k∏

j=1

1

1 − uivj
, k ≥ 2. (8.3)

Equation (8.2) and the identity (8.3) lead to the expectation evaluation

EPq

[
s(λ1,λ2)(u1,u2)

s(λ1,λ2)(1,q)

]

=
2∏

i=1

(1 − qi)(1 − qi+1)

(1 − uiq)(1 − uiq
2)
. (8.4)

Here u1 and u2 can be any complex numbers such that the series defining the

expectation absolutely converges. Wemake a particular choice, (u1,u2) = (qμ1+1, qμ2) for

two integers μ1 ≥ μ2 ≥ 0. Then, using the label–variable duality (which is an immediate

consequence of the definition of the Schur polynomials as ratios of two determinants)

s(λ1,λ2)(q
μ1+1, qμ2)

s(λ1,λ2)(1,q)
= s(μ1,μ2)

(qλ1+1, qλ2)

s(μ1,μ2)
(1,q)

, (8.5)

we get

EPq

[
s(μ1,μ2)

(qλ1+1, qλ2)

s(μ1,μ2)
(1,q)

]

=
2∏

i=1

(1 − qi)(1 − qi+1)

(1 − qμi−i+3)(1 − qμi−i+4)
, μ1 ≥ μ2 ≥ 0. (8.6)

Note that as one varies μ1,μ2, the left-hand side of (8.6) uniquely determines all the

moments of Pq-random vector (qλ1+1, qλ2). Indeed, since λ1 + 1 > λ2, it is enough

to consider only symmetric linear combinations of moments, and those are finite

combinations of Schur polynomials. Since (qλ1+1, qλ2) is supported inside [0, 1] × [0, 1],

the moments uniquely determine the distribution Pq. The conclusion is that (8.6) is

equivalent to the definition (8.2). Further, the same equivalency holds in the limit q → 1,

as (qλ1+1, qλ2) → (a1,a2). Equation (8.6) becomes

Eρ(a1,a2)

[
s(μ1,μ2)

(a1,a2)

s(μ1,μ2)
(1, 1)

]

=
2∏

i=1

i(i + 1)

(μi − i + 3)(μi − i + 4)
, μ1 ≥ μ2 ≥ 0. (8.7)
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We can now describe what is happening with expectations (8.4), (8.6) and

(8.7), when we multiply the matrices. The computation relies on the following integral

identity:

∫

U(2)

s(μ1,μ2)
(VUWU−1)

s(μ1,μ2)
(1, 1)

dU = s(μ1,μ2)
(v1, v2)

s(μ1,μ2)
(1, 1)

· s(μ1,μ2)
(w1,w2)

s(μ1,μ2)
(1, 1)

, μ1 ≥ μ2 ≥ 0. (8.8)

In (8.8), the integration goes over the group U(2) of 2 × 2 unitary complex matrices,

V and W are two fixed complex matrices with eigenvalues (v1, v2) and (w1,w2),

respectively, and by s(μ1,μ2)
(VUWU−1) we mean the Schur polynomial s(μ1,μ2)

evaluated

on two eigenvalues of the matrix VUWU−1. When V and W are unitary, the relation

(8.8) is known as the functional equation for the characters of U(2). More generally,

(8.8) is the identification of zonal polynomials of the symmetric space GL(2;C)/U(2)

with Schur polynomials, see [35, Chapter VII] and [21, Section 13.4.3]. For real and

quaternion matrices, an analog of (8.8) holds with Schur polynomials replaced by the

Jack polynomials. Using N = 2 in U(N) also plays no special role in (8.1) and the identity

extends to all N > 0.

Coming back toAB, the matricesA = T1T
∗
1 and B = T2T

∗
2 are independent, and the

distribution of each of them is U(2)-invariant, with respect to the action by conjugation.

In other words, while the eigenvalues have a specific distribution (1), the eigenvectors

are chosen uniformly at random (in the set of all possible pairs of orthogonal unit

vectors in C
2). Thus, if we plug V = A, W = B into (8.8) and take expectation with

respect to A and B, we get

E

[
s(μ1,μ2)

(AB)

s(μ1,μ2)
(1, 1)

]

= E

[
s(μ1,μ2)

(A)

s(μ1,μ2)
(1, 1)

]

E

[
s(μ1,μ2)

(B)

s(μ1,μ2)
(1, 1)

]

, μ1 ≥ μ2 ≥ 0.

Combining with (8.7), this implies

E

[
s(μ1,μ2)

(AB)

s(μ1,μ2)
(1, 1)

]

=
(

2∏

i=1

i(i + 1)

(μi − i + 3)(μi − i + 4)

)2

, μ1 ≥ μ2 ≥ 0,

which is (again by (8.3) and (8.5)) precisely the q → 1 limit of

EP̃q

[
s(μ1,μ2)

(qν1+1, qν2)

s(μ1,μ2)
(1,q)

]

, μ1 ≥ μ2 ≥ 0,
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for the integral vector ν1 ≥ ν2 ≥ 0 distributed according to the Schur measure

P̃q(ν1, ν2) = (1 − q)2(1 − q2)4(1 − q3)2 s(ν1,ν2)(1,q) s(ν1,ν2)(q,q
2, q,q2). (8.9)

We conclude that the eigenvalue distribution for AB is the q → 1 limit of (qν1+1, qν2)

distributed according to the Schur measure (8.9).

Generalizations. Let us discuss how to see the structure of the full Schur processes,

rather than just its slices given by the Schur measures. Note that the transition

between Pq of (8.2) and P̃q of (8.9) can be seen as one step of Markov chain on two-

row Young diagrams λ = (λ1, λ2) with transition probabilities P(λ → ν) found from the

decomposition

sλ(u1,u2)

sλ(1,q)
·
[

2∏

i=1

(1 − qi)(1 − qi+1)

(1 − uiq)(1 − uiq
2)

]

=
∑

ν

P(λ → ν)
sν(u1,u2)

sν(1,q)
. (8.10)

Summing (8.10) using (8.4), we get
∑

λ Pq(λ)P(λ → ν) = P̃q(ν). In the q → 1 limit, the same

structure of the Markov chain can be seen for the projection of the joint law of A and AB

onto their eigenvalues; this is again a corollary of (8.8).

Comparison of (8.10) with the skew Cauchy identity (see, e.g., [35, Section I.5,

Example 26]) yields that P(λ → ν) is given by the fomula

P(λ → ν) = (1 − q)(1 − q2)2(1 − q3)
sν(1,q)sν/λ(q,q

2)

sλ(1,q)
. (8.11)

Combining the definition of Pq with (8.11), we conclude that the two times Markov chain

with initial state Pq, transitional probability P(λ → ν) (and final state P̃q) is the Schur

process. Sending q → 1, we see that that the joint law of squared singular values of A

and AB is the continuous limit of this Schur process.

At this moment we can generalize the argument to products of more matrices.

Each additional factor gives another time step of the Markov chain. These transition

probabilities generalize (8.11) and therefore, the link to Schur processes persists. Let

us make a remark about the sizes of the matrices that are being multiplied. The

computation leading to (8.1) and its connection to (8.2) can be generalized to rectangular

corners of random unitary matrices of arbitrary sizes (and we can also deal with

real/squaternion β = 1, 4 cases). The identity (8.8) has similar extensions. However,

when we start iterating (8.8) it is convenient to assume that all the involved matrices

have the same square size, as then the present arguments extend word-for-word. This
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is less general than the setting of Proposition 2.6. It is plausible that the arguments of

this section can be adapted to the changing sizes as well, but we will not pursue this

direction. When we pass between a rectangular matrix T and its square counterpart

TT∗ encapsulating the singular values, the following distinction becomes important:

the matrices TT∗ and T∗T have the same nontrivial eigenvalues, but additional 0s show

up because of different sizes. One needs to translate this into the language of Schur

processes and expectations (8.4) and (8.6).

Finally, one can go beyond corners of unitary matrices and consider factors with

more complicated unitarily–invariant distributions. We refer to [26] for a progress in

this direction.

9 Appendix. Measures given by products of determinants, the Eynard–Mehta

theorem, and the 2nd proof of Proposition 2.4

The aim of this Appendix is to give another, more direct proof of Proposition 2.4 based

on an application of the Eynard–Mehta theorem [20]. The starting point of this proof

is the fact that the density of the product matrix process under considerations is

given by a product of determinants, see Proposition 2.1. This enables us to apply the

Eynard–Mehta theorem to the product matrix process with truncated unitary matrices.

Although, the proof below is similar to the arguments of [14] and [43], we decided to

reproduce it in the present setting for pedagogical reasons.

9.1 The Eynard–Mehta theorem

Let us first recall the formulation of the Eynard–Mehta theorem. Let n,p ≥ 1 be two

fixed natural numbers, and let X0, Xp+1 be two given sets. Let X be a complete separable

metric space, and consider a probability measure on (Xn)p given by

Probn,p(x)dμ(x) = 1

Zn,p
det

(
φ0,1(x

0
i , x

1
j )
)n

i,j=1
det

(
φp,p+1(x

p
i , x

p+1
j )

)n

i,j=1

×
p−1∏

r=1

det
(
φr,r+1(x

r
i , x

r+1
j )

)n

i,j=1
dμ(x).

(9.1)

In the formula above, Zn,p is the normalization constant, the functions φr,r+1 : X×X → C,

r = 1, . . . ,p − 1 are given intermediate one-step transition functions, φ0,1 : X0 × X → C

is a given initial one-step transition function, and φp,p+1 : X×Xp+1 → C is a given final

one-step transition function. Also,

x =
(
x1, . . . , xp

)
∈ (Xn)p ; xr = (xr1, . . . , xrn

)
, r = 1, . . . ,p,
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46 A. Borodin et. al

the vectors

x0 = (x01, . . . , x
0
n) ∈ Xn

0 , xp+1 = (xp+1
1 , . . . , xp+1

n ) ∈ Xn
p+1,

are fixed initial and final vectors, and

dμ(x) =
p∏

r=1

n∏

j=1

dμ(xrj ).

Here μ is a given Borel measure on X. Given two transition functions φ and ψ set

φ ∗ ψ(x, y) =
∫

X

φ(x, t)ψ(t, y)dμ(t).

The theorem below is the Eynard-Mehta theorem.

Theorem 9.1. The probability measure Probn,p(x)dμ(x) given by equation (9.1) defines

a determinantal point process on {1, . . . ,p} × X. The correlation kernel of this determi-

nantal point process, Kn,p(r, x; s,y) (where r, s ∈ {1, . . . ,p}, and x, y ∈ X), is given by the

formula

Kn,p(r, x; s,y) = −φr,s(x, y) +
n∑

i,j=1

φr,p+1(x, x
p+1
i )

(
A−1

)

i,j
φ0,s(x

0
j , y). (9.2)

The functions φr,s, and the matrix A = (ai,j) (where i, j = 1, . . . ,n) are defined in terms of

transition functions as follows:

φr,s(x, y) =
{ (

φr,r+1 ∗ . . . ∗ φs−1,s

)
(x, y), 0 ≤ r < s ≤ p + 1,

0, r ≥ s,
(9.3)

and

ai,j = φ0,p+1(x
0
i , x

p+1
j ). (9.4)

Remark 9.2. For the process defined by probability measure (9.1), and described by

Theorem 9.1, the correlation functions can be written as determinants of block matrices,

namely


k1,...,kp

(
x11, . . . , x

1
k1
; . . . ; xp1 , . . . , x

p
kp

)

= det

⎡

⎢⎢
⎢
⎢
⎢
⎣

(
Kn,p(1,x1i ; 1,x

1
j )
)j=1,...,k1

i=1,...,k1
. . .

(
Kn,p(1,x1i ;p,x

p
j )
)j=1,...,kp

i=1,...,k1
...

(
Kn,p(p,xpi ; 1,x

1
j )
)j=1,...,k1

i=1,...,kp
. . .

(
Kn,p(p,xpi ;p,x

p
j )
)j=1,...,kp

i=1,...,kp

⎤

⎥
⎥⎥
⎥⎥
⎦
,
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where 1 ≤ k1, . . . , kp ≤ n, and for 1 ≤ l, r ≤ p

(
Kn,p(l, xli; r, x

r
j )
)j=1,...,kr

i=1,...,kl
=

⎛

⎜
⎜
⎝

Kn,p(l, xl1; r, x
r
1) . . . Kn,p(l, xl1; r, x

r
kr

)

...

Kn,p(l, xlkl ; r, x
r
1) . . . Kn,p(l, xlkl ; r, x

r
kr

)

⎞

⎟
⎟
⎠ .

In what follows the functions

φ0,s(i, y), 2 ≤ s ≤ p,

will be called initial transition functions, and the functions

φr,p+1(x, j), 1 ≤ r ≤ p − 1,

will be called final transition functions. In addition, the functions of the form

φr,s(x, y), 1 ≤ r ≤ p − 2, r + 2 ≤ s ≤ p,

will be called intermediate transition functions. Finally, the function

φ0,p+1(i, j)

will be called the total transition function.

In order to prove Proposition 2.4 we rewrite the density of the product matrix

process with truncated unitary matrices obtained in Proposition 2.1 as in the statement

of the Eynard–Mehta theorem, and obtain explicit expressions for the transition

functions.

9.2 Explicit formulae for the transition functions

In our situation X0 = {1, . . . ,n}, Xp+1 = {1, . . . ,n}, X = R>0. The initial one-step

transition function is defined by

φ0,1 : {1, . . . ,n} × R>0 −→ R; φ0,1(i, x) = w(l)
i (x).

The final one-step transition function is defined by

φp,p+1 : R>0 × {1, . . . ,n} −→ R; φp,p+1(x, k) = xk−1.

In addition, the intermediate transition functions can be written as

φr,r+1 : R>0 × R>0 −→ R, r = 1, . . . ,p − 1,

φr,r+1(x, y) = yνr+l (x − y)
mr+l−n−νr+l−1
+ x−mr+l+n,

where (x − y)+ = max (0,x − y).
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For the initial transition functions φ0,s, s = 2, . . . ,p, we obtain the following

recurrence relation:

φ0,s (i, x) =
1∫

0

τ νs−1+l(1 − τ)ms−1+l−n−νs−1+l−1φ0,s−1

(
i,
x

τ

) dτ

τ
. (9.5)

This is the recurrence relation for φ0,s(i, x) = w(s−1+l)
i (x) (where 1 ≤ s ≤ p), see

Kieburg et al. [31, Equation (2.23)].

The total transition function φ0,p+1(i, j) can be written as

φ0,p+1 (i, j) =
∞∫

0

φ0,p (i,p) φp,p+1(t, j)dt =
∞∫

0

tj−1w(p−1+l)
i (t)dt

= cp−1+l

∞∫

0

tj−1Gp+l−1,0
p+l−1,p+l−1

(
mp+l−1 − n, . . . , m2 − n, m1 − 2n + i

νp+l−1, . . . , ν2, ν1 + i − 1

∣∣∣∣t

)

dt,

(9.6)

where cp−1+l is defined by equation (2.7). The Mellin transform of a Meijer G-function is

∞∫

0

dxxs−1Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣xy

)

= 1

ys

m∏

i=1
�
(
bi + s

) n∏

j=1
�
(
1 − aj − s

)

q∏

k=m+1
�
(
1 − bk − s

) p∏

l=n+1
�
(
al + s

)
. (9.7)

This gives an expression of the total transition function φ0,p+1(i, j) in terms of Gamma

functions

φ0,p+1 (i, j) = cp−1+l

∏p+l−1
k=2 �

(
νk + j

)
�
(
ν1 + i + j − 1

)

∏p+l−1
k=2 �

(
mk − n + j

)
�
(
m1 − 2n + i + j

) . (9.8)

Similar calculations give us the formula for the final transition functions. In particular,

we can write

φp−1,p+1(x, j) =
∞∫

0

φp−1,p(x, y)φp,p+1(y, j)dy

=
∞∫

0

yνp−1+l (x − y)
mp−1+l−n−νp−1+l−1
+ x−mp−1+l+nyj−1dy

= x−mp−1+l+n

x∫

0

yνp−1+l (x − y)mp−1+l−n−νp−1+l−1 yj−1dy.

(9.9)
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The change of the integration variable y = τx gives

φp−1,p+1(x, j) = xj−1

1∫

0

τ νp−1+l+j−1 (1 − τ)mp−1+l−n−νp−1+l−1 dτ

= xj−1
�
(
νp−1+l + j

)
�
(
mp−1+l − n − νp−1+l

)

�
(
mp−1+l − n + j

) .

(9.10)

Repeating this calculation, we arrive to a general formula for the final transition

function

φr,p+1 (x, j) =
p−1∏

a=r

�
(
νa+l + j

)
�
(
ma+l − n − νa+l

)

�
(
ma+l − n + j

) xj−1, r ∈ {1, . . . ,p − 1} . (9.11)

Finally, let us find the intermediate transition functions φr,s(x, y). Since

G1,0
1,1

(
a

b

∣∣
∣∣x

)

= (1 − x)a−b−1xb

�(a − b)
, 0 < x < 1,

we can rewrite the transition function φr,r+1(x, y) as

φr,r+1(x, y) = 1

x
�
(
mr+l − n − νr+l

)
G1,0
1,1

(
mr+l − n

νr+l

∣∣
∣∣
y

x

)

. (9.12)

In addition, we have the following recurrence relation

1∫

0

xνr (1 − x)mr−n−νr−1Gr−1,0
r−1,r−1

(
mr−1 − n, . . . , m2 − n, m1 − n

νr−1, . . . , ν2, ν1 + n − 1

∣∣∣∣
y

x

)
dx

x

= �
(
mr − n − νr

)
Gr,0
r,r

(
mr − n, . . . , m2 − n, m1 − n

νr, . . . , ν2, ν1 + n − 1

∣
∣∣∣y

)

,

(A13)

see Beals and Szmigielski [9, Equation (5)]. Starting from (9.12), and applying (9.13), we

obtain

φr,s (x, y) = 1

x

s∏

k=r+1

�
(
mk+l−1 − n − νk+l−1

)
Gs−r,0
s−r,s−r

(
mr+l − n, . . . , ms+l−1 − n

νr+l, . . . , νs+l−1

∣∣∣
∣
y

x

)

,

(9.14)

where 1 ≤ r ≤ p − 2, and r + 2 ≤ s ≤ p.

A.2 The inverse of A

Here we find an explicit formula for
(
A−1

)
i,j in the formula for the correlation kernel

in Theorem 2.4. If A =
(
ai,j

)n

i,j=1
, then ai,j is equal to the total transition function
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φ0,p+1 (i, j) given by equation (9.8). We need to find the inverse of the matrix Ǎ =
(
ǎi,j

)n

i,j=1
defined by

ǎi,j = �(ν1 − 1 + i + j)

�(m1 − 2n + i + j)
, i, j ∈ {1, . . . ,n} .

Proposition 9.3. For N = 1, 2, . . . and −α,−β ∈ C \ N, the matrix

[
(α + 1)i+j

(α + β + 2)i+j

]N−1

i,j=0

is invertible and its inverse matrix
(
γi,j

)N−1

i,j=0
is given by

γi,j = (−1)i+j (α + β + 1)i (α + β + 1)j

(α + 1)i (α + 1)j (α + β + 1)

×
N−1∑

p=0

(2p + α + β + 1)(α + 1)pp!

(α + β + 1)p(β + 1)p(p − i)! i! (p − j)! j!
(α + β + i + 1)p (α + β + j + 1)p .

(9.15)

Proof. See Theorem 10 in Zhang and Chen [45]. �

We apply Proposition 9.3, and find

A−1 =
(
bi,j
)n

i,j=1
, (9.16)

where

bi,j =
(
cp−1+l

)−1
∏l+p−1

k=2 �
(
mk − n + i

)

∏l+p−1
k=2 �

(
νk + i

)
�
(
m1 − 2n + 2

)

�
(
ν1 + 1

)

× (−1)i+j

(
m1 − 2n + 1

)
i−1

(
m1 − 2n + 1

)
j−1(

ν1 + 1
)
i−1

(
ν1 + 1

)
j−1

(
m1 − 2n + 1

)

×
n−1∑

k=0

(
2k + m1 − 2n + 1

) (
ν1 + 1

)
k(

m1 − 2n + 1
)
k

(
m1 − 2n − ν1 + 1

)
k

k!
(
m1 − 2n + i

)
k

(
m1 − 2n + j

)
k

(k − i + 1)! (i − 1)! (k − j + 1)! (j − 1)!
.

(9.17)
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Now we can write the 2nd term in the formula for the correlation kernel (equation (9.2))

as

K̃n,p(r, x; s,y) =
n∑

i,j=1

φr,p+1(x, i)
(
A−1

)

i,j
φ0,s(j, y)

= �
(
m1 − 2n + 1

)

�
(
m1 − 2n − ν1 + 1

)
�
(
ν1 + 1

)
1

∏l+p−1
k=2 �

(
mk − n − νk

)

×
n−1∑

k=0

k!
(
ν1 + 1

)
k

(
2k + m1 − 2n + 1

)

(
m1 − 2n + 1

)
k

(
m1 − 2n − ν1 + 1

)
k

Pr,k(x)Qs,k(y),

(9.18)

where

Pr,k(x) =
k∑

i=0

(−1)k−i
(
m1 − 2n + i + 1

)
k

(
m1 − 2n + 1

)
i

∏p+l−1
a=2 �

(
ma − n + i + 1

)

(k − i)! i!
(
ν1 + 1

)
i

∏p+l−1
a=2 �

(
νa + i + 1

) φr,p+1(x, i+1),

(9.19)

and

Qs,k(y) =
k∑

j=0

(−1)k
(
m1 − 2n + j + 1

)
k

(
m1 − 2n + 1

)
j

(k − j)! j!
(
ν1 + 1

)
j

φ0,s (j + 1,y) . (9.20)

9.4 The contour integral representation for Pr,k(x)

Using explicit formula for the final transition function φr,p+1(x, i) (see equation (9.11))

we rewrite Pr,k(x) as

Pr,k(x) = �
(
ν1 + 1

)∏p+l−1
a=r+l �

(
ma − n − νa

)

�
(
m1 − 2n + 1

)

×
k∑

i=0

(−1)k−i

(k − i)! i!

�
(
m1 − 2n + i + k + 1

)∏r+l−1
a=2 �

(
ma − n + i + 1

)

∏r+l−1
a=1 �

(
νa + i + 1

) xi.

(9.21)

The Residue Theorem gives the following contour integral representation for Pr,k(x):

Pr,k(x) = �
(
ν1 + 1

)∏p+l−1
a=r+l �

(
ma − n − νa

)

�
(
m1 − 2n + 1

)

× 1

2π i

∮

�k

�(t − k)�
(
m1 − 2n + t + k + 1

)∏r+l−1
a=2 �

(
ma − n + t + 1

)

∏r+l−1
a=0 �

(
νa + t + 1

) xtdt,

(9.22)

where �k is a closed contour encircling the interval [0,k] once in the positive direction,

and where ν0 = 0.
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A.4 The contour integral representation for Qs,k(y)

Equation (9.20) together with the formula for the initial transition functions obtained

in Section 9.2 give

Qs,k(y) = �
(
m1 − 2n − ν1 + 1

)
�
(
ν1 + 1

)∏s+l−1
a=2 �

(
ma − n − νa

)

�
(
m1 − 2n + 1

)

×
k∑

j=0

(−1)k−j

(k − j)! j!

�
(
m1 − 2n + j + k + 1

)

�
(
ν1 + 1 + j

)

× Gs+l−1,0
s+l−1,s+l−1

(
ms+l−1 − n, . . . , m2 − n, m1 − 2n + j + 1

νs+l−1, . . . , ν2, ν1 + j

∣
∣
∣
∣y

)

.

(9.23)

The contour integral representation for the Meijer G-function inside the sum above is

Gs+l−1,0
s+l−1,s+l−1

(
ms+l−1 − n, . . . , m2 − n, m1 − 2n + j + 1

νs+l−1, . . . , ν2, ν1 + j

∣∣
∣∣y

)

= 1

2π i

∫

C

�
(
ν1 + j + u

)∏s+l−1
a=2 �

(
νa + u

)

�
(
m1 − 2n + j + u + 1

)∏s+l−1
a=2 �

(
ma − n + u

)y−udu,

(9.24)

where the contour C is a positively oriented curve in the complex u-plane that starts and

ends at −∞, and encircles the negative real axis. In equation (9.23) the resulting sum is

k∑

j=0

(−1)k−j

(k − j)! j!

�
(
m1 − 2n + j + k + 1

)

�
(
ν1 + 1 + j

)
�
(
ν1 + j + u

)

�
(
m1 − 2n + j + u + 1

)

= (−1)k

k!

�
(
u + ν1

)

�
(
1 + ν1

)
�
(
m1 − 2n + k + 1

)

�
(
m1 − 2n + u + 1

)
k∑

j=0

(−k)j

j!

(
ν1 + u

)
j(

ν1 + 1
)
j

(
m1 − 2n + k + 1

)
j(

m1 − 2n + k + 1
)
j

= (−1)k

k!

�
(
u + ν1

)

�
(
1 + ν1

)
�
(
m1 − 2n + k + 1

)

�
(
m1 − 2n + u + 1

)

× 3F2
(−k,u + ν1,m1 − 2n + k + 1; 1 + ν1,m1 − 2n + u + 1; 1

)
.

The Pfaff–Saalschültz Theorem says that

3F2 (−k,a,b; c,d; 1) = (c − a)k(c − b)k

(c)k(c − a − b)k
,

if the balanced condition, c +d = 1− k+ a+ b, is satisfied, see, for example, Ismail [28,

Section 1.4]. In our case

a = u + ν1, b = l − 2n + 1 + k, c = 1 + ν1, d = m1 − 2n + 1 + u,
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and the balanced condition is satisfied. Thus, we have

3F2
(−k,u + ν1,m1 − 2n + 1 + k; 1 + ν1,m1 − 2n + 1 + u; 1

) = (1 − u)k(ν1 − m1 + 2n − k)k

(1 + ν1)k(2n − u − m1 − k)k
.

Taking into account that

(1 − u)k

(2n − m1 − u − k)k
= (u − k)k

(u − 2n + m1 + 1)k
,

we obtain the formula

Qs,k(y) = (−1)k
�(m1 − 2n − ν1 + 1)

�(m1 − 2n + 1)

�(m1 − 2n + 1 + k)(ν1 − m1 + 2n − k)k

k! (1 + ν1)k

×
∏s+l−1

a=2 �
(
ma − n − νa

)

2π i

∫

C

∏s+l−1
a=1 �

(
νa + u

)

∏s+l−1
a=2 �

(
ma − n + u

)
(u − k)k(

u − 2n + m1 + 1
)
k

× y−udu

�
(
m1 − 2n + 1 + u

) .

(9.25)

A.5 Derivation of the correlation kernel

Equation (9.14) gives the 1st term in equation (9.2) for the correlation kernel. To write

explicitly the 2nd term in equation (9.2) we insert the formulae for Pr,k (equation (9.22)),

and Qs,k (equation (9.25)) into equation (9.18). After simplifications we see that the 2nd

term in equation (9.2) can be written as

K̃n,p (r, x; s,y) =
∏p+l−1

a=r+l �
(
ma − n − νa

)

∏p+l−1
a=s+l �

(
ma − n − νa

)

× 1

(2π i)2

∮

�k

dt
∫

C
du

∏r+l−1
a=2 �

(
ma − n + t + 1

)

∏r+l−1
a=0 �

(
t + νa + 1

)

∏s+l−1
a=0 �

(
νa + u

)

∏s+l−1
a=2 �

(
ma − n + u

)

×
n−1∑

k=0

(m1 − 2n + 2k + 1)
�(t − k)�(t + m1 − 2n + k + 1)

�(u − k)�(u + m1 − 2n + k + 1)
xty−u.

(9.26)

The sum inside the integral is the same as that in Kuijlaars and Stivigny [32] (see the

proof of Proposition 4.4 in Kuijlaars and Stivigny [32]), and the rest of the proof is the

same as that of Proposition 4.4 and Theorem 4.7 in Kuijlaars and Stivigny [32].
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