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We consider a random process with discrete time formed by squared singular values of
products of truncations of Haar-distributed unitary matrices. We show that this process
can be understood as a scaling limit of the Schur process, which gives determinantal
formulas for (dynamical) correlation functions and a contour integral representation for
the correlation kernel. The relation with the Schur processes implies that the continuous
limit of marginals for g-distributed plane partitions coincides with the joint law of
squared singular values for products of truncations of Haar-distributed random unitary
matrices. We provide structural reasons for this coincidence that may also extend to

other classes of random matrices.

1 Introduction

It was observed by many researchers that probability distributions from random matrix
theory appear as limit laws in a variety of problems in statistical mechanics and

combinatorics. Probably, the most known examples of this phenomenon are Ulam's
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2 A. Borodin et. al

problem for increasing subsequences of random permutations and domino tilings of
the Aztec diamond. We refer the reader to the book by Baik et al. [7] and references
therein for a detailed analysis of these two examples.

In both these problems, distributions of certain key quantities converge to
limiting distributions of random matrix theory (in an appropriate scaling limit as
the size of random matrices tends to infinity), in particular to the Tracy-Widom
distribution [44]. However, there are situations where not only limiting random matrix
distributions play a role. It can happen that joint laws of eigenvalues (or singular
values) corresponding to finite size random matrix ensembles arise as scaling limits
in a combinatorial or statistical mechanics problem that has no a priori relation with
random matrices.

One example is the Gaussian Unitary Ensemble (GUE)-corners process
investigated by Johansson and Nordenstam [29] and Okounkov and Reshetikhin [41].
It is easy to define the corners process: start with an infinite random matrix picked
from the GUE and consider the eigenvalues of its principal corner submatrices.
As was discovered in [29] and [41], the GUE-corners process can be obtained as
a scaling limit in tiling models. Okounkov and Reshetikhin further suggested a
(heuristic) argument toward the universal appearance of this process. Following this
prediction, GUE-corners process was found in more general tilings models by Gorin
and Panova [24] and the six-vertex model by Gorin [23] and Dimitrov [19]. It can be
also linked to the last passage percolation, see Baryshnikov [8], Gravner et al. [27],
O’Connell and Yor [37], Bougerol and Jeuli [15], Adler et al. [1], and references
therein.

The GUE-corners process is a determinantal (see, e.g., Borodin [10]) point
process with discrete time obtained using random matrices. If, instead of cutting
out corners of a single matrix, one starts adding independent GUE matrices, then
the eigenvalues of the sums also form a determinantal process, and the number of
matrices in the sum plays the role of discrete time, see Eynard and Mehta [20]. Another
class of (dynamical) determinantal processes with discrete time can be constructed
from products of random matrices, see Strahov [43] and Akemann and Strahov [6].
(Determinantal processes in products of random matrices were first discovered in
Akemann and Burda [2]). Such processes are called product matrix processes, and they
are formed by the squared singular values of random matrix products. We can use
independent complex Gaussian matrices to obtain a simple example of such processes.
Namely, let G, ..., G, be independent matrices with standard i.i.d. complex Gaussian

entries. Assume that G; is of size (n+v;) x (n+v,_;), vy =0,v; >0, ..., v,,_; >0, and

m—1
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Product Matrix Processes as Limits 3

foreachl=1,...,m, denote by le.,j =1,...,n, the squared singular values of the partial

product Y; = G;- - - G,. The configuration

{(l,y}) H=1,...,m;j= 1,...,n}

of all these squared singular values generates a random point process on
{1,...,m} x R_,. It was shown in Strahov [43] that this process is determinantal (and it
can be viewed as a determinantal process with discrete time). Paper [43] gives a contour
integral representation for the correlation kernel, together with its hard edge scaling
limit, and generalizes results obtained in Akemann et al. [5], Akemann et al. [4], and
Kuijlaars and Zhang [33] to the multi-level situation. A more general class of product
matrix processes related to certain multi-matrix models was introduced and studied
in Akemann and Strahov [6]. In this class the matrices in the products are no longer
independent, but in spite of that the product matrix processes are still determinantal.

From a different viewpoint, various matrix corners processes studied by
Johansson and Nordenstam [29], Okounkov and Reshetikhin [41], Adler et al. [1],
Forrester and Rains [22], Borodin [11], and Gorin [13] were shown to be continuous
limits of special Schur processes of Okounkov and Reshetikhin [38, 39]. The discrete time
determinantal process formed by the eigenvalues of sums of independent GUE matrices
can be understood as a limit of a special Schur process as well. It is natural to ask
whether product matrix processes also have this property. Motivated by this question,
we construct in this paper a product matrix process using corners of independent
Haar-distributed unitary matrices (or truncated unitary matrices). We demonstrate that
this process is a scaling limit of a certain Schur process, which implies determinantal
formulas for (dynamical) correlation functions. Moreover, starting from the general
Okounkov-Reshetikhin formula [39] for the correlation kernels of Schur processes, we
derive a double contour integral representation for the correlation kernel of the product
matrix process formed by truncated unitary matrices. The formula for the correlation
kernel we derive in this paper can be understood as a time-dependent generalization
of the result obtained in Kieburg et al. [31] for the squared singular values of matrix
products with truncated unitary matrices. We note that the determinantal point process
formed by eigenvalues of matrix products with truncated unitary matrices was studied
in Akemann et al. [3].

The fact that the product matrix process formed by truncated unitary matrices
is a continuous limit of the Schur process enables us to prove Theorem 2.9 below that

says that the continuous limit of marginals for g-distributed (skew) plane partitions
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4 A. Borodin et. al

Fig. 1. Plane partition with 4 x 3 support corresponds to a sequence of (interlacing) Young
diagrams. Two of them, 5 > 1 > 0 and 7 > 5 > 1, are highlighted. The asymptotic behavior of
these two diagrams is related to squared singular values of Ty and T, T, respectively, where T is
4 x 3 truncation of 7 x 7 random unitary matrix and Ty is 3 x 4 truncation of 4 x 4 random unitary
matrix. In the notations of Section 2.3, A=4,B=3, 7 =0,p=2,82=1,a01 =4, and oy = 5.

coincides with the joint law of squared singular values for products of corners of
Haar-distributed unitary matrices, see Figure 1 for one particular case of the theorem.
We consider Theorem 2.9 as the main result of the present paper. It demonstrates
that, similarly to the corners process, the time-dependent determinantal processes
constructed from products of truncated unitary matrices appear as scaling limits in
a model of statistical mechanics of a combinatorial nature. To the best our knowledge,
the present paper is the 1st work-relating products of random matrices with scaling
limits of models that have no a priori relation to random matrices.

It is also natural to ask about conceptual reasons for such a coincidence. Why
should random matrices be directly related to statistical mechanics models? For the
GUE-corners process, Okounkov and Reshetikhin [41] suggested the following heuristic
argument: if we start with a discrete model of statistical mechanics satisfying a certain
Gibbs (i.e., conditional uniformity) property, then one expects the same property to
survive in the continuous limit. Olshanski and Vershik [42] classified all such Gibbs
measures on triangular arrays of reals, and out of them only the GUE-corners process
agrees with the growth conditions implied by the Law of Large Numbers (limit shape
behavior) of the discrete model.

For the products of random matrices we do not dispose of an analog of the

Okounkov-Reshetikhin argument. However, let us explain the path that led us to
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Product Matrix Processes as Limits 5

the understanding that a similar connection with combinatorial statistical mechanics
is possible. The following fact [13, 22] is easy to prove by comparing the explicit
formulas for the distributions: if X is a corner of Haar-random unitary matrix, then the
eigenvalues of XX* (this is often called Jacobi or MANOVA ensemble) are distributed
as a continuous limit of a Schur measure with two principal specializations. One
could argue that this is an instance of the semiclassical asymptotics common in
representation theory. Next, we need to understand what happens with these eigenval-
ues when X is multiplied by another similar matrix. It is known that multiplication of
(real/complex/quaternion at 8 = 1, 2,4) matrices is intimately linked to multiplication
of corresponding Jack (=zonal) polynomials, which become Schur polynomials in the
case of the complex field (8 = 2) that we discuss here. This is discussed by Macdonald
[35, Chapter VII], Forrester [21, Section 13.4.3], and more recently used, for example, by
Kieburg and Kosters [30] and by Gorin and Marcus [25]. If we consider a version of the
multidimensional Fourier transform for the Schur measures (the appropriate version
was introduced by Gorin and Panova [24] and Bufetov and Gorin [17] under the name
Schur generating functions), then being a Schur measure or its continuous limit is
equivalent to the factorization of this transform into a product of one variable function.
Since such factorization is preserved under multiplication, the squared singular values
of products of random matrices have to be described by the Schur processes.

We detail how this argument works in the simplest case of 2 x 2 matrices
in Section 8. For the proof of our main statements, Proposition 2.6 and Theorem 2.9,
we choose in Sections 2-7 another path, which is more direct (and leads to a more
general result) but, perhaps, more mysterious. Let us remark that while the arguments
of Section 8 admit an immediate generalization to products of real and quaternion
matrices, yielding their representation as limits of Macdonald processes, for the proofs
of Sections 2-7 such a generalization is unclear.

The paper is organized as follows. In Section 2 we introduce notation and
present the main results. In particular, Proposition 2.4 gives a formula for the corre-
lation kernel of the product matrix process associated with truncated unitary matrices,
Proposition 2.6 shows that this product matrix process can be understood as a con-
tinuous limit of a special Schur process, and Theorem 2.9 presents our result on con-
vergence of marginals of g-distributed plane partitions to this product matrix process.
Sections 2-7 contain the proofs of our statements. In Section 8 we sketch another way
to prove our main results by exploiting symmetric functions and zonal polynomials.
Finally, the Appendix gives a 2nd proof of Proposition 2.4 based on the Eynard-Mehta

theorem.
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6 A. Borodin et. al
2 Notation and Statement of Results
2.1 Product matrix processes with truncated unitary matrices

Let G4, ..., Gp be matrices with random complex entries, and assume that each matrix
Gr, ke(l,...,p}, is of size N} x Nj_;. Set

X(k)=Gy...G,, kefl,...,p}.

If n = N,, then for each k, k € {1, ..., p}, X* (k)X (k) are random matrices of the same size
n x n. Denote by X]’? the jth largest eigenvalue of X* (k)X (k). The configuration of all these

eigenvalues,

[(k,x}‘)‘k:1,...,p;j=1,...,n], (2.1)

forms a point process on {1, ..., p} xR_,. This point process is called the product matrix
process associated with the random matrices X (1), X(2), ..., X(p).

Here we consider a product matrix process constructed from a collection of
truncated unitary matrices. Namely, let Uy, ..., U, Uy ,,..., U tp—1 be independent Haar-
distributed unitary matrices. We assume that the size of each matrix U;, 1 <j < p+1-1,
is equal to m;. Recall that if U is an m x m matrix, and the integers k, r are chosen such
that 1 < k,r < m, the submatrix T of U defined by

v, ... U

na

Uy ... U,

’ ’

is called a k x r truncation of U. Now, for1 <j<p+1—1let T; be the truncation of U;

of size (n + v]-) X (n + vj_l). We agree that vy = 0, and assume that the positive integers

M, Vi, ... Vipp_1 are chosen in such a way that the conditions
m; >2n+ vy, (2.2)
and
mi>n+vi+1, 2<j<p+l-1, (2.3)
are satisfied. Denote by x' = (x],...,x}) the vector of the squared singular values

of the product matrix T;...T;, and for 2 < j < p denote by X = (XJI,XJn) the

vector of the squared singular values of the product matrix T;,;_, ...T;. Configurations
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Product Matrix Processes as Limits 7

[(k,XJk) ‘k =1,...,p;j=1,...,n; form a point process on {1,...,p} x R_,. We will refer
to this point process as to the product matrix process associated with truncated
unitary matrices. We say that the product matrix T;...T; determines the initial
conditions of the product matrix process associated with truncated unitary matrices.
The numbers n, m;, v, will be called the parameters of the product matrix process

J
associated with truncated unitary matrices.

Proposition 2.1. Consider the product matrix process associated with truncated
unitary matrices, and let X’f < ... < Xfl; k = 1,...,p denote the set of the squared
singular values of the product matrix T} ; ;... T;. The joint probability distribution of

(X’f, ... ,X,’fL) is given by

1

A (xP)
Zn,p+l
p-1 n
—n—v—1
y H det (X’:_’_l)vlﬁ»r (X;; _ X{,+l)ml+r n—Vvi4r (X];;)n—WLH_r (24)
r=1 ! e kj=1

x det [w](cl) (X})]:J'ZI dx!...dx",

where (x — y), = max(0,x —y), the Vandermonde determinant A (xP) is defined by
AxP) = ] (XP—Xf), for 1 < | < p we write dx! = Xml...dX%, VA

11 : 1 1S a
1<i<j<n

n,p+

normalization constant, and w](cl) (x) is a sequence of weight functions. The normaliza-

tion constant Z,, ,,; can be written explicitly as

n,p+
L . . pti-1 n
[1T (my =20 =0y +)T0) T (T (mg = n=vp))
j=1 =2
Zn'p+l - p+l-1mg—n—yg . (25)
Uk + Vi),

k=1 Jk=1
Here (a),, = a(@+1)...(a + m — 1) stands for the Pochhammer symbol. The function

W](cl) (x) can be expressed as a Meijer G-function,

I m-n, ..., Mmo—n, m,—2n+k
W,(c)(x) = ché’? ! 2 1 b4
' v, e vy, v +k—1
F( e 1 )Hl r (2.6)
V1+ —1+s i—2 (U'+S)
:i lJ d x%ds, 0<x<1.
zmc r(ml—2n+k+s)]_[j:2F(mj—n+s)
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8 A. Borodin et. al

In this formula C denotes a positively oriented contour in the complex s-plane
that starts and ends at —oo and encircles the negative real axis. The constant ¢; in the

formula for w,(cl) (x) can be written as

q=T(m;—2n—v, +1)J]T

: (mj —-n-— vj) . (2.7)
j=2

Remark 2.2. The Meijer G-function in equation (2.6) is equal to zero for x > 1.

Correspondingly, we set the weight functions W](cl) (x) to zero for x > 1.
Remark 2.3. The right-hand side of equation (2.6) can be written as

1
o () 4k—1 [ iz (8)y,;

1 l
2mi c (S)m1—2n+k Hj=2 (s)mj—n

x5ds,

where

l
CEZB(ml—27’],—1)1+1,U1+k—1)HB(mj—n—Vj,Vj),

j=2

and B(x, y) stands for the Beta function.

Our next result provides explicit formulae for the correlation functions of the

product matrix process associated with truncated unitary matrices.

Proposition 2.4. The product matrix process with truncated unitary matrices is a

determinantal process on {1,...,p} x R_,. Its correlation kernel, Kn,p,l

y
)_{) 1s>r

s+1-1 r4l-1 (2.8)

H F(va+C+1) H F(ma_n+t+1) t,—c—1
a=0 X

1 a=0 Yy
+(2ni)2%dt%d§ r+l-1 s+l-1 c—t '
¢ G Il T(p+t+1) [I T(mg—n+s+1)

a=0

a=0

(r,x;s,y) (wWhere

r,se{l,...,p},and x,y € R_,) can be written as

s—=r,s—r

1 s—r,0 mr_,’_l—n, ey mS-‘rl—l_n
Kn,p,l(r/X; S, y) = _;G '

Vrtls e Vst+l-1

where C, is a closed contour in the complex t-plane encircling the interval [0, n — 1] once
in the positive direction, C, is a positively oriented closed contour in the complex ¢-

plane encircling once an interval containing all the points — (1 +v;), ..., — (m; —n); ...;
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Product Matrix Processes as Limits 9

—(I+vgy_1), ... — (mgy_; — n), which does not intersect C;. In the formula above it is

understood that my = vy = 0.

We note that if r = s = p and [ = 1, then formula (2.8) reduces to the formula for
the correlation kernel derived in Kieburg et al. [31, Proposition 2.7].

In what follows we will give two proofs of Proposition 2.4. The 1st proof will use
the fact that the process defined by equation (2.4) can be understood as a continuous
limit of a special Schur process, see Proposition 2.6. Since the Schur processes are
determinantal, this will imply determinantal formulae for the correlation functions. As
for the explicit formula for the correlation kernel (see equation (2.8)), it will be obtained
from the general Okounkov-Reshetikhin formula [39] for correlation kernels of the Schur
processes by a certain limiting procedure in Section 6. The 2nd proof will be based on
the observation that the density of the product matrix process with truncated unitary
matrices can be written as a product of determinants. This will enable us to apply the
result by Eynard and Mehta [20], and to give a formula for the correlation functions, see
the Appendix. This 2nd argument is similar to the proof of Borodin and Rains [14] of the

determinantal structure of Schur processes.

2.2 Convergence of the Schur process

In this section we use the notation of Macdonald [35], and follow references [11, 12, 14,
39].

Let A be the algebra of symmetric functions in countably many variables

Zy,2y,.... We use two sets of generators of A: power sums p; and complete homogeneous
symmetric functions hy, k=1, 2,..., defined through
o
k
Pe=2.@" h= D z7, 7
i=1 i1 <ip<-<iy

We recall that the Schur functions s, form a basis of A when A varies over all Young
diagrams (or partitions). We also use skew Schur functions s, ,, labeled by two Young
diagrams A and pu.

A specialization ¢ of A is an algebra homomorphism of A to C. A specialization o
of A is called nonnegative if it takes nonnegative values on the Schur functions, see, for
example, Borodin [11, Section 1] for a detailed discussion of nonnegative specializations
of the algebra of symmetric functions. The application of a specialization ¢ to f € A

will be denoted as f(o). The trivial specialization @ of A takes value 1 at the constant
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10 A. Borodin et. al

function 1 € A, and takes value 0 at any homogeneous f € A of degree > 1. In particular
5, (#) = 0 unless » = @, and S @ =0 unless A = u.

In this paper we will only use the simplest Schur positive specializations
parameterized by arbitrary m = 1,2,... and m-tuple of positive reals («y, ..., a,,) € RT,.

We denote it ¢ = (o, ...,,) and set

Pr(0) = Dr(@y, - .. ay) = (@)F 4 (@)% + ... (@,)k.

Equivalently, this specialization can be encoded by its generating function

1=

o) 00 k m 1
H(g;u) =1+ > h(o)uF =exp (z 1@) =11 — (2.9)
k=1 k=1 o

where the 2nd identity is the algebraic relation between generators p; and h;.
The specializations that we use are often given by geometric series
o = (¢',q"*,...,q°). When t > s, the geometric series is empty and ¢ becomes the

trivial specialization.

Definition 2.5. Let p be a natural number, and let Q(J{, ... ,Q;__I,QI_, i 0p be nonneg-
ative specializations of A. The Schur process of rank p is a probability measure on

sequences of Young diagrams

A M@ @ =2 e=2) 3 =D =D ;@)

parameterized by 2p Schur positive specializations of the algebra of symmetric func-

tions given by

Prob (A(n, p 3@ @ e -2 D) M(p—l),k(m)

1
= 50 (@) S0 (07) S0 00 () Sy 0 (07) S0 (03) (2.10)
Schur

X oo X S 0-1) /(-1 (Q;—l) Sa®) /=1 (Q;_l) S, (Qp_) .

Here Zg ., is a normalization constant.

Since s;,, = 0 unless u C A, the Schur process lives on the following

configurations of Young diagrams:

gca® oM ca® 5@ 00 5 a5 0D -0 5 g
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Product Matrix Processes as Limits 11

For skew Schur functions we have the following summation formulae:

D 5,005, = H(0; @) D505, (0), (2.11)
neY keY
and
Zsm(@)su/ﬂ(@’) =s;,.(0,0), (2.12)
veY

see Macdonald [35, Section 1.5, equation (5.10), and Example 1.5.26(1)]. Here

H(0; o) = exp (Z p—k(g)}:k(g )),

k=1

and the values of the symmetric functions under the union specialization (o, 0’) are

determined by the power sum values given by

pi (0,0) = pr (@) +pr () -

Hence, for specializations o, ...,0x, 0}, ..., 0y, We have

k m
H(Ql,...,gk;g/l,...,Q;n)=HHH(QZ-,‘QJ/~). (2.13)
i=1j=1

Proposition 2.6. Consider the Schur process defined by the probability measure (10).

Assume that the specializations Qa_, - Q;_l of the Schur process are defined by
of = (e_(H”l)e,e_(z*”l)e, L emmmes g (ddvpe g=(24vpe e_(ml_”)e) , (2.14)
Qii- — (e—(1+ul+1)e’ e_(2+vl+1)€, ., e—(ml+1—n)e) , (2.15)
Q;-—l — (e—(1+vl+p_1)e, e—(2+vl+p_1)e, ., e—(ml+p_1—n)e) ) (2.16)

The specialization g, is defined by

0 = (1,e—f,...,e—<”—1>€), (2.17)
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12 A. Borodin et. al

and all the other specializations o7, ..., 0,_; are trivial. With these specializations the
Schur process lives on sequences of partitions (1,1, ..., 1)), where each A%, 1 <

k < p, has at most n nonzero parts almost surely. Set

. ® )
k=™ k=1,..,pj=1...n (2.18)

Then the Schur process induces a point process on {1,...,p} x R_g, and this process is

formed by the configurations
k
[ (k)

As € — 0, the point process formed by configurations (2.19) converges to the product

k=1,...,p;j=1,...,nt. (2.19)

matrix process associated with truncated unitary matrices, as defined in Section 2.1.

Remark 2.7. We prove Proposition 2.6 only under the assumption m; > 2n+v; of (2.2).
Although it is very plausible that the statement is true without this condition, we do not
address the more general case in this text. A technical difficulty is that without (2.2) we
cannot use the result of Proposition 2.1 directly; in particular, the constant c; of (2.7) is

infinite.
2.3 Random skew plane partitions and products of truncated unitary matrices

Let A and B be two natural numbers, and denote by B4 the A x B rectangle. Let 7 be
a Young diagram such that 7 c B#. A skew plane partition IT with support B4/x is a
filling of all boxes of B4/x such that M;; > M, ; and I;; > I, ;,, for all meaningfull
values of i and j. Here we assume that I1;; is located in the ith row and jth column of

BA. The volume of a skew plane partition IT is defined by

Volume (IT) = > T1; ;. (2.20)
ij

Given a parameter 0 < q < 1, define a probability measure on the set of all skew plane

partitions IT with support B4/ by setting

Prob {IT} ~ gVelume(D (2.21)

For a skew plane partition IT we define Young diagrams 1% (I1), 1 < k < A+ B+ 1,
through

A® () = [Hi,i+k—A—1 (,i+k—A—-1)eBn}.
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Product Matrix Processes as Limits 13

Note that AV = AA+B+D) — g Also, define

E(T[)Z[A‘I‘ﬂl—l‘l‘l

i=1,...,A}.

This is a subset of {1,...,A + B+ 1} containing A points, and all such subsets are in
bijection with the Young diagrams (or partitions) 7= contained in the box BA.
It is not hard to see that the set of all skew plane partitions with support B4/x

consists of sequences (A1, ..., AATB+D) with

A — J@+B+D) _ g
A9 <0 ifje £, AV = AUV fj ¢ L), (2.22)

where notation x4 < v means that u and v interlace, that is
V] 2 Uy 2V 2 Uy 2 Vg > ...,

We refer to Figure 1 for an illustration of A = 4, B = 3 and 7 = # case. Moreover, we have

A+B+1
Z ‘AU)‘ = Volume (1),
j=1

where || denotes the number of boxes in the Young diagram u.

The probability measure on the set of all skew plane partitions IT with support
BA/n and defined by equation (2.21) induces a probability measure on sequences
(AW, .., AAFBFD) Tt is known (see Okounkov and Reshetikhin [39, 40]) that this
probability measure can be understood as the Schur process defined in Section 2.2 by
equation (2.10) with the rank p = A + B + 1, and nonnegative specializations {g;r 1;=—01,
{Qi_}lf=1 defined by

H(ogiuw) =H (0g4p:1iu) = 1,

1 . je L), 1, Jje L),
u H( 1 o
1, j ¢ Lo, o J#L.
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14 A. Borodin et. al

12 13 14

s EESEI.

Do 1mn
Lo T by

Ao bl

N 1 A 7,

........... 7"'

: ! 5 : :

QI_%)....g ....................

Fig. 2. The set {1,...,A +B+ 1} enumerates the boundary of the skew diagram B4/x. In this
example A=7,B=6,and [ =4.

Note that for any two neighboring specializations o, Q]-: defined above, at least
one is trivial, and each u? coincides either with A?) or AU*D. The only nontrivial
specializations are one variable specializations p = (&) with « = g*/. A basic property
of skew Schur functions is that s, @) =0 unless u < A; this implies interlacing
conditions (2.22).

Let 7 € BA. The set {1,...,A+ B+ 1} enumerates the intersections of the
boundary of the skew diagram B4 /= with the square grid, as shown on Figure 2. Denote
by I the number of vertical segments of of the boundary of the skew diagram B4 /.

Let {B,,...,By_1} be a subset of {1,...,A + B+ 1}, where the numbers 8, ...,
By—; parameterize the vertical segments of the boundary of the skew diagram B4 /x, see
Figure 3. For example, for the Young diagram = on Figure 2 we have 8, = 12, 8, = 9,
By =7,B,=5,P5 =4, Bg =3, B; = 2, and Bg = 1. Now, assume that a; > p, and pick p
numbers «;, ..., o, such that g, < «; <... <a, < f;, see Figure 3.

Consider the sequence (A(“l), . .,A(“P)) of random Young diagrams associated
with a random skew plane partition I1 whose support is B4/7, and whose weight is

proportional to gV°'"me(D) By assigning to this sequence the point configuration

((Lre <)) v (o 1)) 229

we obtain a random point process on {1,...,p} x Z.
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Product Matrix Processes as Limits 15

co e B
LI L5 S AN
P B
Fig. 3. The parametrization of the the vertical segments of the boundary of B4/x by 81, ..., Ba1,

and the choice of a1, ..., ap.

Proposition 2.8. The probability of the point configuration (2.23) is determined by the

probability measure

1
—m—1 A 2—a +m1+3—«a A+m1+1—ap—
ESA(“P) (llqr"‘qu m )S)L(“p)/x(“p—l) (q e prqA ! P,o.0q ! P 1)
2—ap_ 3—ap— 1—ap—
x S)L(D‘p—l)/)\(ap—Z) (qA+n1+ ap iy qA+n1+ ap—1 e, qA+JT1+ ap 2)

2— A 3— A 1—
X "-’Sww/wn (qA+711+ otzlq +m1+ az,._',q +m1+ Oll)

A 2— 3— 1-82. 2— A 3— A 1-84.
Xswp(q +m1+ Oll,qA+JT1+ Olll.”,qA'HTl'f‘ ﬂzlqA+ﬂ1+ ﬂ3,q +m1+ ﬂs'”.,q +m1+ ,34,

. 2—Bo— A 3—pBo1—
_._,qA+7T1+ ﬂzlalq +m1+ 13213’“

A 1-B-2. 2—Bo— A 3—Bo1—
q +m1+1-B21 2,qA+JT1+ Bai 1,q +m1+3—-B21 1’_”,qA+771),

(2.24)

where Z is a normalization constant.
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16 A. Borodin et. al

Now we are ready to state the main result of the present work. Let IT be a
random skew partition with support BA/7 whose weight is determined by equation
(2.21). Let (A!,...,A@*+B+D) be a sequence of Young diagrams associated with TI.
Consider the subsequence (A(“l), . ,A(“P)) of (A,...,A@*B+D) where the indexes o,
..., &y are chosen as it is described above. By assigning to this subsequence the point
configuration (2.23) we obtain a random point process on {1,...,p} x Z. Set n = B — my,
g = e ¢, and define

(og)
ey .
X‘]I.czeel ,k:l,,..,p;_]:l,...,n.

Theorem 2.9. As ¢ — 0, the point process formed by configurations

{(k,x]’?)m:1,...,p;j=1,...,n}

converges to the product matrix process associated with truncated unitary matrices,
described in Section 2.1, and defined by probability distribution (2.4). The parameters

of the relevant product matrix process are given by

e n=B-m.

e my=A+B+1—-pyforl<k<landmy=A+B+1—-oforl <k<p-1.

e vy = A+m+1—0o,vy =A+m +1 -y, for2 < k < and
Ul+k=A+7T1+].—Olk+lfOr1SkSp—l

The truncated unitary matrices forming the product matrix process in

Theorem 2.9 are shown schematically on Figure 4.
Remark 2.10 The condition m; > 2n + v, reads as
o) >B—m + Bs. (2.25)

The conditions m;=n+v;+ 1 (where 2 < j < I) can be rewritten as

,32j_1 - ,32j >0, a; — By 2 0;
and

U1 — o 20

(where 1 < k < p — 1), and are satisfied automatically.
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Product Matrix Processes as Limits 17

A+B+1- 5 B—m
A+B+1—52 U1 % T1 A+B+1-O{1
A+B+1-4, A+B+1-a
A+B+1-8, | U N T A+ B+1- b
A+B+1- Py A+ B4+1— Bos
A+B+1—fy Ui % T; A+B+1— By
A+B+1—O[1 A+B+1—B21_1
A+B+1—O{1 Ul+1 % T‘l+1 A+B+1—O(2
A+B4;1*O[p,1 A+B+1*Oép,1
A+B+1—ap_1 Up+l_1 % Tp+l_1 A—l—B—i—l—ozp

Fig. 4. The truncated unitary matrices forming the product matrix process associated with the
random skew plane partitions.
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18 A. Borodin et. al

Remark 2.11 The choice of the parameters v;, m; is not unique. Namely, we need to
identify the I geometric series in (2.14) with [ geometric series in the last two lines of
(2.24) and there are I! ways to do so. Formally, our proof goes through only for the choices

which agree with the condition m; > 2n + v, of (2.2), see, however, Remark 2.7.

Example 2.12. Consider the particular case in which # = #, as in Figure 1. In this

situationl =1, 8; =A+1, B, =1, and the parameters «;, ..., ap take values in {1,...,A}.
As a limit, we obtain the product matrix process with truncated unitary matrices whose
parameters n; my, ..., Mpy; vy, ..., Vp @re given by

e n=2_,

e m =A+Bandm,=A+B+1—o_,for2<k<p;
o y=A+1—-q forl<k<p.

3 Proof of Proposition 2.1

In order to prove Proposition 2.1 we will use two results obtained in Kieburg, Kuijlaars,
and Stivigny [31]. Namely, Corollary 2.6 in Kieburg et al. [31] implies that the probability
distribution of x! = (X}, ... ,X}L) (which is the vector of the squared singular values of

T;...T;) can be written as

const A (Xl) det I:W](Cl) (X})]:JZI dx?!.
The 2nd result concerns the density of squared singular values for a product of
a nonrandom and a truncated unitary matrix. Namely, assume that U is a Haar-
distributed unitary matrix of size m x m, and let T be an (n + v) x [ truncation of U. In
addition, let X be a nonrandom matrix of size Ix n, and impose the following constraints

for the parameters n, [, m, and v:
l<n<l<m, m=>n+v+1.
Denote by (x;,...,Xx,) the vector of squared singular values of X, and by (yy,...,y,) the

vector of squared singular values of TX. If x;, ..., x,, are pairwise distinct and nonzero,

then the vector (y;,...,y,) has density

const ﬁx._””" ﬁy‘f det (Xk—y~)m_n_v_1 i ﬂ, (3.1)
el j=1 ’ Ve jk=1 HX)
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Product Matrix Processes as Limits 19

see Kieburg et al. [31, Theorem 2.1]. Now assume that X = T;...T,;. Applying the results

k

stated above we immediately obtain that the probability distribution of (X’f ... ,Xn) is

proportional to the product of determinants as in equation (2.4). In order to compute

the normalization constant we use the Andréief integral identity (see, for instance, De

Bruijn [16]), and the recurrence relation

1

dr
Wl(cl+1)(y) = [ v (1 = )MVl Wl(cl) (Z) -,
Tt/ T

0

see Kieburg et al. [31], equation (2.22). The integration over X%, ., X,IL gives

Vi+1 myy—n—v—1 n—my " n
/ .. / det [(X]Z) " (X,lc —XJ?) ! " (X,lc) +] det I:W](Cl) (X]l)] dx} ...
+ k=1 Jik=1

0<x]<..<x}<oo

o n

Vi41 My —n—v—1
= det /(ij) (t—XJz) tn_m”lwl(cl)(t)dt
+
0 jk=1

2

Xm

n

X<
Changing the integration variable ¢ = --, we rewrite the integral inside the determinant

above as

1 )n_mlﬂ

2 my —n—vp—1 (2 2 2
Vi1 X (Xj o %7\ X5
2 J 2 @ J J
b - — x ———w, | — | 5dr
- T J =My t J 2

0
1

x%\ dr
— / TV (1 — )Tl WIE:Z) Jo)y == - W](CZ_H) (XZ) .
T )1 J

0

As a result of integration over the variables X%, e X

we find

. det (W,(CHP_D (Xj))Zk:I dx; ...dx,,.

Zyptl = / det (X;c_l);lk

,
0<x1<...<xp <00

(3.2)
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20 A. Borodin et. al

Applying the Andréief integral identity again, we obtain

00 n
_ j—1_ (+p—1)
Zy, py1 = det /XJ wy (x) dx
0 j k=1
i
00 n
n . _ m -n, ..., mo—n, m;—2n+k
_ j—1 AlHPp-1,0 I+p—-1 ’ ' 2 ' 1
—(Cl+p—1) det /X Gl+p—1,l+p—1 , } b ko1 x |dx
A I+p—1+ cees 21 1

The integral inside the determinant can be computed explicitly in terms of Gamma

functions. Namely, formula (5.6.1.1) in Luke [34] gives

o0
/JGHP 1,0 Mypq .. My—n m1—2n+k'x dx
Fp-1bp=1 Vitp—1 - Vg v +k—1
° (3.3)
l l . g
H+p F'(vg+J)T (v, +k—1+))
FPELE (my —n 4+) T (my — 2n + k + )

and we find

I+p-1

n
Zypu=[T(my—2n—v; +1)]" ] [F(mj—n—vj)]
j=2
Hl+p IH}l:lF(Vk'i‘j) det[ F(v+k+j—1) T _
Hl+p 1H?=1F(mk_n+j) I'(m, —2n+k+j) k=1

The following formula for the determinant with Gamma functions entries is known:

. [F(c+i+j)}”_1 oTd-c+)j) T+l

T =1 , 3.4
r@d+i+jlijo J.ZHOJ Fd—-c) Td+n—1+)) 34

see equation (4.11) in Normand [36]. Using this formula we obtain

det[ Ty +k+j-1) T 1 T (v +J) H}-“=1F(i)1“(m1—2n—v1+j)'
r( I (

my=2n+k+j) | i Tmi—n+j)  (T(my—2n—-v +1))"
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This gives
I+p-1 n
Zn,p_,’_l: H [F (m]—n—l)]):l
j=2
l+p 1 n
F v +J
z};[) 1 [ T (v Hrg)r L= 2n— v, +J).
H H] IF( TL-‘r—J
Since
f[ ro+n " T+ ’”H”
i rm-n+j) o1 Frv+j+n) e G+v),

we can rewrite the normalization constant Z,, ,.; in the same form as in the statement

n,p+
of the Proposition 2.1.

4 Limits of Symmetric Functions

The aim of this section is to obtain certain asymptotic formulae for the Schur functions,
and for the skew Schur functions, see Propositions 4.1 and 4.3. We will need these

formulae in the proofs of our main results (Proposition 2.6 and Theorem 2.9).

Proposition 4.1. Let A(¢) be a family of Young diagrams with N rows, where N < M.
Assume that A(¢) depends on a positive parameter € in such a way that eA;(e) - —logr;,

as € = 0+, for some values 0 <7, <... <ry < 1. Then

. _N@tD _ _
51_1>%1+ {EMN s 5 (e Utve o (M+v)e)}
1 4.1
- Hrl-i-v )My I (rj_ri), (4.1)
H F(M_N+J)L 1 1<i<j<N
j=1

where v > 0. The convergence is uniform in rj’s.

Proof. Homogeneity of the Schur polynomials implies

N
—(14v)e X" A4
s, (e_(H”)e, . ,e_(M“L”)E) =e =1 s, (1,3_6, . ,e_(M_l)e) ) (4.2)
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22 A. Borodin et. al

Moreover, the principal specialization of the Schur polynomials (see Macdonald [35, § 3,

Example 1]) gives

N .
—€ > (=12 1 — e—€(i=kj=i+))

S5, (l,e‘e, . ,e‘(M‘l)é) =e =l H . (4.3)

1 — ec(—i+))

1<i<j<M
The product in the right-hand side of the expression above can be written as

1 _ e—E (A.i_A.j_i+j)

[1 1 — et [1 (1_e_e(ki_kj_i+j))
_e -

1<i<j<M 1<i<j<N
N M
. 1 (4.4)
— e~ €=+ - -
<IT 1 (1 e ) I1 1 —e—<Cith
i=1j=N+1 i<j
1<i<N
1<j<M
Taking the limit ¢ - 0+, and using the fact that
S : (@.5)
H ej—1i)  myv-YEHL N ! '
i<j € [IT(M—N +))
1<i<N j=1
1<j<M
we obtain the formula in the statement of the Proposition. |

Lemma 4.2. Let k(¢), m(¢) be two families of positive integers depending on a positive
parameter € in such a way that ek(¢) —» —logr, em(e) > —logs, as € — 0+, for some

values 0 < r,s < 1. Then

1 r1+v

lim {GM_lh (e—(1+u)e, e—(2+v)e, ., e—(M+v)e)} - - -
€0+ k=m (M) sM+v

M-1
(s—ny ", (4.6)
where h,, = S(n) is the nth complete homogeneous symmetric function, M > 1, v > 0, and

(s — ), = max{0,s — r}. The convergence is uniform in s, r.

Proof. We start by noting that the right-hand side of (4.6) has no singularity at s = 0.
Indeed, this follows from the observation that for positive r we have r!*V(s — r)ﬂ'f'_1
sl+vSM—l — SM-}-U.

<
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Specializing (4.3) to A = (m) gives

M-1 1 — gmtJ
hm (].,q,...,qM_l) = H #
j=1

Assuming m < k we obtain

- (e—(1+v)el e~ @tve ,e—(M+v)e)

1+v)e(k M-1 ety T L= e ®mmD
= e~ Utele—mp, (1,e—€,...,e—( - )e) — e~Uelm) T

i 1- e~ 4.7)
(r)1+vM_l 1-— g 1 1 pltv ( )M—l
~ (- S = s—r ,
s i eM—-1 (M) sM+v
wheres > r. If s < r, then m > k, and h;_,, = 0. | |

Proposition 4.3. Let A(¢), u(e) be two families of Young diagrams depending on a
positive parameter ¢, with I(A) = I(u) = N. Assume that A(¢), u(¢) depend on the
parameter € in such a way that erj(e) > — log T €ple) > — log s;, as € = 0+ for some

valuesO <r; <r, <...<ry<1l,and0 <s; <s, <...<sy < 1. Then we have

lim {eMN—Ns (e_(lJ”’)e e~ (2tve e_(M+")€)}
e—0+ Mu ' I
4.8
_ 1 [, (ri)Hv m-17¥ “.8)
= yg— s det | (sj— 7y /
TCAMD)™ TTiL, (s9) +  lij=1
where M > 1. The convergence is uniform in r;'s and s;'s.
Proof. Apply the Jacobi-Trudi formula (see [35, Chapter I, (5.4)]),
N
S)“//'L = det (hki_uj_i—‘rj)i,j:l ’
together with Lemma 4.2. [ |
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24 A. Borodin et. al

Proposition 4.4. Let A(¢) be a family of Young diagrams with n rows. Assume that A(¢)
depends on a positive parameter € in such a way that ei;(e) - —logx;, as € — 0+, for

some values 0 < x; < ... <x, < 1. Then

D

S mg—n—vn— 10D 1 1
lim | ek=1 S, (e_( tve o emmi—me, L o=( +”P)€,...,e_(ml’_”)€)
e—>0+

[l (my —2n—v, +1)]"

n
[IT (m, —2n—v;, +)) (4.9)
j=1
n
xdet[c;g;g( m,—n+1 ... my—n+1 m —2n+k+1 Xj)} ’
Up+1 U2+1 V1+k j,k=l

where the parameters m;, v; are those specified in Section 2.1. The convergence is

uniform in Xj’s.

Proof. The proof is by induction over p. Assume that p = 1. Then equation (4.9) takes

the form

121(1) [E(ml—n—m)n—wsk (e—(1+1)1)e, L, e_(ml_n)e)]
n
[r (m1—2n—v1+1)]” 1of M —2n+k+1 (4.10)
= det Gl:l L X] .
I'(m; —2n—v, +j) v + k=1

]:

—

As follows from equations (2.20-2.25) in Kieburg et al. [31],

Gho m;—2n+k+1 ‘X _ 1 XL _ gymimznen,
' v, +k F(ml—Zn—vl—i—l)

We see that equation (4.10) turns into equation (4.1) (with N =n, M = m; —n —v), and

conclude that Proposition 4.4 holds true for p = 1.
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Product Matrix Processes as Limits 25

Assume that the statement of Proposition 4.4 holds true for certain natural p.

Let us prove this statement for p + 1. Equation (2.12) implies

S, (e_(““’l)e, e e e (upr)e e_(ml’“_”)e)
—(1+ _ —
:st/ﬂ (e ( ‘)p+1)€,__.,e (mp+1 n)e) % (4.11)
%
S, (e‘(H”‘)e, Letmmme (e ,e‘(mp‘")f) .

Here we can assume that the sum is over Young diagrams p with at most n rows. Let
A(€), u(e) be two families of Young diagrams depending on a positive parameter ¢, with
I(A) = l(n) = n. Assume that A(¢), u(¢) depend on the parameter ¢ in such a way that
eAj(e) - —long, euj(e) - —logsj, ase€ —> 0+ forsomevalues0 <x; <r, <...<x, <1,
and0 <y; <y, <... <y, < 1. Then Proposition 4.3 (With N =n, M =m, ; —n —v,.,

and v = v, ) implies that

E—n+(mp+1—n—vp+1)ns)t/u (e—(l+up+1)e, ., e—(mp+1—n)e)
converges to
1+
1 H?:l (Xi) P Mpy1—n—vp11—-17"
det (yj — Xi) ,
+ ij=1

[F (mp+1 —n- vp+1)]n [TiL, (yi)mpﬂ—n

and the convergence is uniform in x;’s and y;’s. Moreover, by our assumption

p S _ nn+l)
6k§1(mk n—vp)n— 155 s (e—(l+u1)e e~ (mi—ne. e~ (1+p)e e—(mp—n)e)
M eeos HI beeos
converges to
n

[C (my —2n — vy + 1" detlgpo (Mo~ o mp—n41l om -2n+k+1 v,

L o ; b v, +1 vy +1 v, +k J ,7’
[1T (m; —2n—v, +j) P k=1

J=1
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26 A. Borodin et. al

uniformly for y;,...,y, € (0,1). Since du; ~ —S—g, we conclude that the right-hand side
1
pi (my—n—v)n— 200
of equation (4.11) multiplied by e*=! converges to

—

[

(my—2n—v, +1)]" 1

n
n H (Xi)1+vp+1

r (ml —2n—v,; —I—_]) [F (mp+1 -—n-— Vp+1)] i=1

—

1

J

n

—n—v,.1—11"
« / - / H (yi)n—mp+1 det |:(y] _ Xi)TP-H n—Vp+1 li|

. | j=1
0<y1<...<yn<1 =1 "

m,—n+1 ... my—n+1 m;,—-2n+k+1
x det ngg P z !
v, +1 R v, +k

n
Y)j| dy; dy,
¢ — ... 1,
k=1 )41 Yn

and the convergence is uniform in x;, ..., x,,. The expression above can be rewritten as
1
n . p+1 n
'le(ml —2n—v; +)) ]_[z[F (mj—n—vj)]
j= j=

X

n
x // dy, ...dynH (yi)n_mp“_l det [X,iﬂp (Yj — Xk)

n
mp+1_n_vp+1_1:|
i=1

+ kj=1
0<y1<..<yn<l

det [ (1) [,

where we have used equations (2.6) and (2.7) to rewrite the Meijer G-function in terms
of the corresponding weight function W,(cp ) (). By the Andréief identity, and by the same

calculations as in the proof of Proposition 2.1 it can be shown that (4.12) is equal to

! det [X-W(p+1) (X)]n .
n Tk J 7, k=1
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Rewriting the weight function W](cp 1 in terms of the corresponding Meijer G-function

we obtain that

p+1
> (mg—n—vg)n— 2D
lim | e*=1 s, (e tve = (mi—me. . o=(tvpr)e  o=(mpr1—nje
0+ A
€E—>

B [[(m, —2n—v; + 1)]"

T n
[1T (m; —2n—v; +J)

Jj=1
1 1 n+k+1 "
p+1,0 My 1 — N+ .o My —n+ m; —2n+kKk+
x det |:Gp+1,p+1 ( ) ) . X; ,
Up+1 + e Vz + Vl + j,k:1
(4.12)
uniformly for x,,...,x, € (0, 1). [ |

5 Convergence of the Schur Process to the Product Matrix Process with Truncated

Unitary Matrices. Proof of Proposition 2.6

Now we begin to investigate the convergence of the Schur process to the product matrix
process with truncated unitary matrices. We start with the case where the initial
conditions are defined by a single truncated matrix T, see Proposition 5.1. Then (using
Proposition 4.4) we generalize Proposition 5.1 to the case where the initial conditions
are specified by a product of [ truncated matrices Tj... T}, and prove Proposition 2.66.
We remark that, in principle, the 2nd part can be avoided, as the general I case can be
obtained from the I = 1 case by restriction of a distribution to a subset of matrices. In
particular, in this way the consistency of Proposition 2.1 between different values of [
can be used to produce an alternative proof of Proposition 4.4.

Consider the Schur process defined in Section 2.2. Define the specializations o,

. Q;_l, 011 op of the algebra of symmetric functions as follows:

o The specialization g, is defined by

0p = (l,e_e,...,e_m_l)e).

All other oy, ..., Q;_l are trivial.
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28 A. Borodin et. al

e The specializations ¢f, ..., 0;_, are defined by
of = (e7Hm)e, e (Ghuwn)e, (M=) 0 <j<p—1.

Assume that each A® is mapped to (A(lk) - l,Agk) - 2) and that (A(V,...,1®P) is

mapped to the point configurations

{(La =)} v u{(ea? -9 (5.1)

With the specializations QS_, el Q;_l, O r--n op the Schur process can be understood as

that living on the point configurations (5.1).

Set
e .
X}‘:edf L k=1,...,p;j=1,...,n. (5.2)
The above Schur process induces a point process on {1,...,n} x R_,, and this process is

formed by the configurations

|(x0)

Proposition 5.1. As e — 0, the point process formed by configurations (5.3) converges

k=1,...,p;j=1,...,n}. (5.3)

to the product matrix process associated with truncated unitary matrices, and defined
in Section 2.1. The initial conditions of this process are defined by the matrix T; (which

is the truncation of U,).

Proof. Since specializations o, ..., 0p_; are trivial, the Schur process turns into the

probability measure
Prob {,\“),A(Z), . ,MP—U,MP)}

1 _
= ES)L(I) (QBL) 552 /5, (er) Sx3) /A@ (Q;) - Spp- /-2 (Q;_z) SA®) /3 e-1 (Q;_l) S, (Qp) '
(5.4)

where
1

H (o 0p) H (01 0p) - H (051705 )

NI+

6102 8unp | uo Jasn salelqi LA ‘ABojouyos ] Jo sxnisu| spasnyoessel Aq §29682S/.62AULUIWISE0] 0| /I0p/10BSqE-8]01B-80UBAPE/UIWI/WO0D dNO"dIWapEI.//:Sd)y WOol) POPEOjUMO(]



Product Matrix Processes as Limits 29

Now we use the asymptotic formulae for the Schur functions obtained in Section 4. In

particular, Proposition 4.1 gives

S, (e—(1+v1)e, e~ @tve ,e—(ml—n)e)
—(my—n—vy)n4 20D n 1 —on—
€ 2 “+v 1 mip—2n—v; 1 1 (5_5)
=3 [T ) (1—Xi) [1 (Xj‘Xi)'
H r ( —2n -y, +J) i=1 1<i<j<n
J=1

as € —» 0+. In addition, Proposition 4.3 implies that as ¢ — 0+,

S0 /3,01 (6_(1+Uj)6, e (e, ., e_(mf_n)e)
1+v;
—(mj—n—vj)n+n n ( ) mi—n—v;j—1 (5.6)
€ _ H i et [( —1 X;) j j } ,
[Fm )] o () c e
1
where 2 < j < p. Besides, Proposition 4.1 also gives
1
- —(m=1)¢) ~ p
Sy (l,e 6,...,8 6)_W H (X]P—Xi). (57)
€ H () 1<i<j<n
j=1

Let us find the asymptotics of the normalization constant (defined by equation (5.4)).
This is not strictly necessary as the uniform convergence of the configuration weights
implies the convergence of the normalization constants. We perform this limit transition

for the sake of completeness. We have

n—1M;—n—y;

) _ 1:[ l_n[ ( e—(i+l+Vj)e) ~ E(mj—n—Vj)n H H (i—l—l—l— Vj) ,

where 1 < j < p. Therefore,

1 (m] n—vj)nn=1 p M=

5= [TIT T (+t+v)
i=0j=1 I=1

Z(m] n—vj)n P "N VJF(l—I—U +TL)

— EJ
j=1 I=1 r (l + vj)
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Taking into account that
¥ ~ dXi 1<j< 1<i<
J~——l 1<j<p 1<i<n,
we find that the probability measure on AV, 1@, .. AP turns into the probability

measure

p Mj—n—vj r (l =+ Uj + n) 1 1

J.I:[l -1 I‘(l+vj) ﬁr(j)l’( —2n—v1+])ﬁ[ (mj—n—vj)]n
j=1

A (P Hdet[( ) (s ;a)mf‘"‘“f‘lx;;-mf}”

kl=1

(5.9)

vi+k—1 my—2n—v; "
x det[(xg) )T e,
Lk=1

This probability measure can be interpreted as the product matrix process associated
with truncated unitary matrices, see Proposition 2.1. The initial conditions of this
process are defined by the single truncated unitary matrix T, which corresponds to

I =1 in the definition of this product matrix process in Section 2.1. |

Proposition 9. Consider the Schur measure

1 _
ESA(P) (QS_!QT/”-rQ;__l) X)) (Qp) ’ (5.10)

which is the projection (for a discussion of projections of Schur processes see Borodin

[11, Section 2]) of the Schur process (equation (5.4)) to the Young diagram AP, If

then as ¢ — 0+ the probability measure defined by equation (5.10) converges to

ko TS Ui+ vy

[T, T (my —2n—v, + /) TG [Thoy (T (my — 1 — ve))" (5.11)
x A (xP) det I:W](cp) (X])]: . dx? ... dxh.
J=
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The probability measure defined by expression (5.11) can be understood as the ensemble
of squared singular values of the product matrix T,...T; (where Ty, ..., T, are the

truncated unitary matrices defined in Section 2.1).

Proof. We already know that the Schur process defined by equation (5.4) converges
to the product matrix process defined by the probability distribution (2.4). The Schur
measure defined by expression (5.10) is the projection of this Schur process to the
Young diagram A?), and the probability measure defined by expression (5.11) can be
understood as the projection of the product matrix process defined by the probability
distribution (2.4) to x? = (Xf, ... ,Xfl). The result follows. [ |

Proof of Proposition 2.6. Proposition 2.6 is a generalization of Proposition 5.1 to the
situation where the initial conditions are defined by a product of I truncated matrices
(and not by a single truncated matrix). For the specializations specified in the statement

of Proposition 2.6 the Schur process turns into the probability measure

1 _ —(n— _ _ _ —
7510 (1,6‘ ....e® 1)6) $5.0) /50-1) (6 (ip-1)e @=(@hvip-r)e o= (Mips ")6)
8,51 /30-2) (e_(lﬂ“”’z)e: e~ (Hvp2)e ,8_(ml+p72_n)6)
(5.12)
$32 /30 (e—(1+vl+1)e, e—(2+‘)l+1)€’ L e—(mlﬂ—n)e)
S, (e—(1+v1)e’ e~ @tve o= mimme. L o=(4we o—(2Fwe .,e—(ml—n)e) ,

where Z is a normalization constant. The rest of the proof of Proposition 2.6 follows the
same line as that of Proposition 5.1. The only essential difference is that we use equation

(4.9) instead of equation (5.4) for the asymptotics of the relevant Schur function

s, (e—(1+v1>e, L e mmme. L p=(we ,e—(mz—me)

as € —» 0+. |

6 Convergence of the Correlation Functions and the Proof of Proposition 2.4

Consider the Schur process defined by probability measure (2.10). Assume that the
specializations Qa_, Q;_l of the Schur process are defined by equations (2.14-2.16),

and that the specialization ¢, is defined by equation (2.17). Let us agree that all other
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32 A. Borodin et. al

011+ Q;_l are trivial. With these specializations the Schur process can be understood
as a point process on {1,...,p} x Z. Denote by QE SChur (u%,...,u,lcl;...;ugn,...,u’k'r‘n) the

correlation functions of this Schur process, and by schur (v Wi S, V) the correlation kernel
of this Schur process.

Proposition 2.6 says that the Schur process under consideration converges to
the product matrix process with truncated unitary matrices. This implies convergence
of the correlation functions. Namely, if Oky...kom (X}, . ,X}Cl,‘ X ,Xgrln) denotes the
correlation function of the product matrix process with truncated unitary matrices

defined by probability measure (2.4), then we must have

1 seh 1 1 1 1
lim esehur f “1oox!, .., —Zlogxl:. . .:—=logx™, ...,—=logx
50+| ki Kom Okrndom \ "¢ 08%1 ¢ 08Xk 108X ¢ 08Xy,
[Tex}...[]ex
i=1 i=1
1 m m
_le, 'km (Xlr /Xklr 1X1 ’ !ka)r

where the denominator came from the coordinate change. This limiting relation between
the correlation functions would naturally follow from the limiting relation between the

correlation kernels,

. 1
el—1>%1+| €y SChur( ——logx > ——logy)] =Kyp1 (i Xxis,y), 6.1)

where Ky p1 (T X;8,Y) denotes the correlation kernel of the product matrix process with
truncated unitary matrices, and where Kgchur
to Kg chur (77 Wi S/ V). Recall that two kernels of a determinantal process are called
equivalent if they define the same correlation functions. In what follows we will choose
K chur
exist.

(r,u; s, v) stands for a kernel equivalent

(r,u;s,v) in such a way that the limit in the right-hand side of equation (6.1) will

The Okounkov—Reshetikhin formula for the correlation kernel K¢

Schur (T Ui S, V) is

+ .
Q[r Pl ) H (Q[O,s)' W) dzdw

€
Schur (r,u;s,v) = ‘7{ ]{ _ Gl vrl’ (6.2)
(2mi)? (zw — 1)H Q[O i Z )H (Q[S,p]; W_l) zrrw

see [14, Theorem 2.2]. The choice of the integration contours X, and X,, depends on the

time variables r and s, and will be specified below. In the formula for the correlation
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kernel Kgchur (r,u; s, v) above we have used the notation
+ _ + + +
Qi) = 9 Ui, U...UQ]. .
The specializations Qa_, . Q;__l, 011 - op of the algebra of symmetric functions are

specified by equations (2.14-2.17).
For simplicity, let us consider the case corresponding to [ = 1. The proof of
Proposition 2.4 for a general [ is essentially the same.

Using equations (2.9) and (2.13) we find

1 r ]
—_ ) = H (]_ — e_(ao—l)éw—l) , H (Q[_r,p]’z) = 7 ,
H(Q[S'PVW ) a0=1 [ (1 —e(@-Deg)

ap=1
1
0.5’ mp—n —b ms—n b ’
Hb11=1+v1 (1 —¢€ 1€W) s Hbs=1+vs (1 —e SeW)
and

1 my—n mr—n
R A R I ()
H (Q[J(r),r); W) a1=1+v ar=1+vy

Therefore, we can write

€ ( ) 1 7{7{ dzdw ﬁ 1 — e—(@—Dey,~1
r,u,s,v)=
Schur (2mi)? (zw — 1)zutlyv+l al 1 — e—@o—Deyg
DI =
o (6.3)
L - -1 mr—n —are ,—1
Ha11:1+.,1 (1 — g€y, ) "'Har=1+vr (1 — e Wey )
mi—n _ prrp— —
1_[b11:1_|_,,1 (1 —e b1eW) . "Hbss=1+vs (1 —e bsew)

Assume that r > s. According to [14, Theorem 2.2], we can choose X, as a counterclock-
wise circle contour with its center at O, whose radius is larger than 1. Moreover, X,
should be chosen in such a way that all the points eItV emi—me, . oltvoe
e(Ms—1)¢ of the complex w-plane will be situated outside of the circle X, on its right. So
we define the contour ¥, by

cB+ip

2W={w:w=e

RONS [—n,n)},

where 0 < 8 <min{(1+v,),...,(m; —n);...;(1+v),...,(mg—n)}.
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34 A. Borodin et. al

In addition, we can choose X, as a counterclockwise circle with its center at O,
such that |z|]lw| > 1 for all z € X,, for all w € X, and such that the points 1, €<, ...,

e™~V¢ of the complex z-plane are situated outside of %,. So we define X, by

z, = {z:z:e_“€+i(p,<p € [—JT,FT)},

where 0 < @ < 8.

Let us consider the integral over w in (6.3). Since v > —n, the residue at infinity

of the integrand is equal to 0. Moreover, since 8 > o > 0, the singular point w = % is
situated inside the contour X, for every z € X,. This enables us (without changing the
integral in the right-hand side of equation (6.3)) to transform X, through the extended
w-complex plane into an integration contour X/, that encircles all the points e(!*"V¢,
L, emimme. L o(tvge - o(Ms—n)e gnce in the clockwise direction, and leaves w = e?
on its left. The contour ¥, can be viewed as an image of a contour C, in the complex
¢-plane under the transformation ¢ — w = e~¢¢. The contour ¥, can be chosen in
such a way that C, will be a clockwise oriented closed contour encircling all the points
—(I+v),.... =(my=n); ..; = (1+v), ..., — (mg—n) of the negative real axis, and
leaving ¢ = 0 on its right.

Now let us consider the integral over z in formula (6.3). We note that u > —n,
so the residue of the integrand at infinity is zero. Moreover, since f > «, and since
¥/ leaves e’ on its left, the singular point z = Viv is situated inside X,, for every
w € X,. Thus, we can deform X, through the extended complex plane into a new
contour ¥, encircling the points 1, €<, ..., ™D of the complex z-plane once in the
clockwise direction, and this deformation will not affect the integral. The contour %,
can be obtained from a clockwise oriented contour C, by the transformation ¢t - z = e*’.
Clearly, X can be chosen in such a way that C, will encircle the interval [0,n — 1], and
will not intersect C,.

We make the change of integration variables,
z=¢", w=e’,

and set

1 1
u=-—-logx, v=——1logy.
€ €
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This gives

1 — e€(¢—ao+D)
) H 1 — ec(t—ao+D)
apg=1

Schur( ——IOgX S, __logY)

[T, (1= e o) I, (1= eether)

[, (1 —em<@ton) [T (1 —eeG+bs)’

where the integration contours are chosen as in the statement of Proposition 2.

Set
. 1 mi—n l_e—e(t+a1) my—n 1—e—¢€(t+ar)
. n  1-e¢—%+D) (C ap+1) Ha1=1+v1 (—€ )...Har=1+vl (—e )
g, ¢ie)= 6({ B3] H 1—ec(t=ap+1) ee(t ag+l) mi—n 1—e E(H—bl) 1—e—<C+b9) \
ao=1 Hb1:1+v1 Hb5_1+vs €
(6.5)

As € — 0+, the function g (¢, ¢; €) converges uniformly (with respect to ¢ on C,, and with

respect to t on C;) to

1 ﬁ f - ao + 1 Ha1—1+v1 (t+ al) o 'Hzirr—_lz—vr (t+ a‘r)

' (6.6)
£t ap=1 ~ %o +1 le)ril=lr—1i-vl (; +b ) Hbs—1+vs ( + bS)

as € — 0+.

Now we define

mrg—n—vg

e

€

o~
Il
—

K ohur (1 U; S, V) = K (T U s, V).

Emk—n—vk

I~

x
I
—

Clearly, the kernels K¢ (r,u;s,v) and K¢ (r,u; s,v) are equivalent. Let us consider

Schur Schur
the limit
. 1
61_1>%1+ o SChur —= logx s, —— logy (6.7)

The fact that g(, ¢; €) converges uniformly (with respect to ¢ on C,, and with respect to

t on C,) to expression (6.6) enables us to interchange the limit and the integrals, and to
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compute (6.7) explicitly. By formula (6.1) this limit is equal to K}, ,,;_; (7, x; s, ). Thus, we

have

ap=1

X x5, 7) = 1 j{dt]{dg xt ﬁg—ao—{—l
np =TS Y = e vl -t t—ag+1
“ G (6.8)

H:zril:_ltll—vl (al + t) HZZZ:_IY—LHZ (a2 + t) cee HZ:‘":_lr—L‘,-])r (ar + t)
[, (01 + ) M550, (b2 +¢) - T, (b5 +¢)

’

where r > s. We rewrite the products inside the integrals above in terms of Gamma

functions as follows:

n

Hé—a0+1_ re¢+1) rE+1-n) 6.9
t—ag+1 T(@+1-n) TI@E+1) ' '
ap=1
" r(t —n+1 1 T (t —n+1
[ (a+1)= (tm —n+ ) [ (@ +9)= (¢ m, —n+ ), (6.10)
a1=1+n r (t Tt 1) ar=1+v, r (t +v+ 1)
and
min F(c+m;—n+1 M~ Fc+me—n+1
[T Bi+9)= (l;: : . ), T bs+¢) = (1§“ T ) (6.11)
b1:1+l)1 (c+v1+ ) bs:1+Us (§+VS+ )

Taking this into account we see that the right-hand side of equation (6.8) can be
rewritten as that of equation (2.8). This proves Proposition 2.4 for r > s (and [ = 1).
Assume that r < s. In this case we can choose both ¥, and ¥, as counter-
clockwise circle contours whose centers are at 0, and whose radii are less than 1, see
[14, Theorem 2.2]. Let us agree that |z| < |[w| < 1 forallze ¥,, and w € ¥ ,. In addition,
we will choose X, in such a way that all the points e~ (1€, e=(mi—ne, . g=(tvs)e,
.., e~ Ms=e will be situated inside %,,.
We will deform the contour ¥, through the extended complex plane into a new

contour ¥/, encircling all the points e1+¢, | eMmi=me, . gl+ve  gMs—M€ jpn the

1

clockwise direction, and leaving the points w = ,, z € ¥, outside. As we deform %,
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into £/, we should pick up the contribution at the residue at w = % Thus, we rewrite

equation (3.3) as

. 1 dz 1
KSchur (ru;s,v) =—-—

; u—v+1 Mmry1—n _ _ _
i) @, (e ) T, (L)

n

n 1 j{j{ dzdw H 1 — e~(@—Dey,
(2mi)? (zw — 1)zutly v+l — e—(ap—Dey
3z i

[y, (1 —emmez=) T (1 —e%ezt)

ayj=1+v; ar=1+vr
m;—n — —
Hb11:1+v1 (1 —e blfw) Hbs—l—H)s (1 —e bsfw)

(6.12)

Denote by K5y (r,u; s, v) the 1st term in the right-hand side of the above equation, and
by K;fﬁur (r,u; s, v) the 2nd term, so that
K =L dz 1
Schur "' Ui S, v T ori u—v+1l yMry1—n — — —
27”22 z Hbr++1:1+vr+1 (1 -€ bH—lez ) Hbs—1+vs (1 —e€ bseZ 1)
(6.13)
and
dzdw "1 — e (@—Dey,~1
I
ECh“r (r,u;s,v) = 2 7{7{ u+1y,v+1 H —(ao—1)
(271) (zw — Dzutlwv ool 1 — e—(@—Deg
Z E/ 0=
(6.14)
mp—n — —1 my—n —are —1
Ha11,1+y1 (1 — e Q1€ ) .. 'Har—l-i-vr (1 — e ey )

Hml lz—vl (1 - e_blew) Hbs—1+v3 (1 - e—bsew)

Pl
In the formula for Koihur

complex plane into a new contour ¥, encircling the points 1, e, ..., e™=De in the

(r,u;s,v) we deform the contour X, through the extended

clockwise direction. Since we agree that all the points e~ = e-(mi-me .
e~ (It e=(Ms—1€ gre situated inside X,, the contour X/, can be chosen such that
this deformation will not affect the value of Kggfmr
can be viewed as images of contours C.r Gy under the transformations ¢ = w = e™¢¢,

(r,u; s,v). The contours X, and X,

and t —» z = e, and the contours C.r Cy will be those described in the statement of the

Proposition.
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Set

mr—n—vg

e

€

o~
Il
—

Ks I

K Schur

Schur (ru;s,v) =

(r,u;s,v),
Emk—n—vk

:1

o
Il
—

ﬁ emk—n—uk

5 k=1
Kgh o (roups,v) = 00— KT (ruis, V),
H eMi—n—vg
k=1
and
I%;Chur (r,u;s,v) = Schur (r,u;s,v) +K§g}llur (r,u;s,v).
After the change of variables we find
K;CI}Imr( ——logX s, ——logy) Zni % %d{ —g(t,¢;e), (6.15)

where g(t, ¢; €) is defined by equation (6.5). We thus have

_ 1 s 1 1 1 7{ ]{ x* L r—ag+1
1 —K¢ ,——logx;s,——1 = dt ¢ d
o0t [ey Schur (r e OBXSTL ogy)} (2i)® ngl(; -0 alo——Il —a+1
Ct C; -

H:Zl:_lr}i-vl (al + t) H(rznzzz_lz—vz (a2 + t) te H:zn:_lrfkv (a + t)
le:il:_lﬁ-ul (bl + {) leyzzz_lr-ll—vz (bz + é‘) Hb 71+vs ( + é‘)

’

(6.16)

where again we have used the uniform convergence of g(t, ¢; ¢) to take the limit inside
the integrals. Note that (as in the case r > s) the right-hand side of equation (6.16) can
be written as the 2nd term in the right—hand side of equation (2.8).

Now consider the formula for KS “hur
In this case the residue at infinity is equal to zero, and all finite poles are situated inside

the contour %,. This implies that K&

Schur

(r,u; s, v) given by (6.13). Assume that u > v.

(r,u;s,v) is equal to O for u > v. If u < v, then
the residue at 0 is equal to 0, and we can deform X, into a contour X, encircling the
poles e~(Hvri)e - em(Mr—m)e, . o=(ltvs)e  o=(Ms—M)€ gnce in the counterclockwise

direction, and leaving O on the left. The contour X, can be viewed as an image of a
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contour C, under the transformation ¢t — z = e“*, where C, will be that described in the

statement of the Proposition. After the change of variables we find that

- € Y\t 1
R (rous,v)=——— ¢ dt (—) , (6.17
Schur( ) 271 X Mrp1—1 1— e‘(t+br+1) _ g€ (t+bs) ( )
Ct Hbr+1=1+vr+1 Hbs—1+vs €
where y < x. We have
1 1
lim | —K¢% ——10 x;s,——1lo
e—0+ [ey Schur ( & ¢ 087
1 xt 1
- _ﬁ yt+1 Mrp1—N ms—n
Ce M (e +t)... I (bs+1)
bri1=14vrq1 bs=1+vsg (6.18)
1 x! F(t+v+1)...T(t+v+1)

t
2mi y*Hr(t+my, —n+1)...T(t+mg—n+1)

Ct
Y
X r

where y < x. As follows from equations (2.22-2.24) in Kieburg et al. [31], the function

)

1
lim [ Kgclhur( ——logX s, ——logy)]

1 540 m.,—n, ..., mg—n
——G
- S—r,s—r

Vv

Vri1r e s

G50 (mr+1—n, ., Mg—n
S—r,s—r

Vg1 ey

is equal to O for y > x. Therefore, equation

e—>0+ | €Y
(6.19)
_ Gs r,0 meyy,-n ..., Mmg—n |y
- T Ys-rs—r ;
Vet cee, Vg

holds true for y > x as well. Finally, formula (6.1), equations (6.16) and (6.18) give the

desired formula for the correlation kernel in the case r < s.

7 Proof of Proposition 2.8 and Theorem 2.9

Proof of Proposition 2.8. In order to compute the probability of the point configu-
ration (2.23), we need to compute the projection of the Schur process associated with

a skew plane partition IT to the diagrams AV, .. A It is convenient to obtain
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40 A. Borodin et. al

first the projection on APz+1), | A(B2) j(@) 3@ gsee Figure 3. Using equation (2.12)

we find

1 -1 - -1 -1
St (q R ))Sx(ﬁzl+1)/x(ﬁzl> (qﬂzl+1,.”’qﬂ2l )

X S, 11 13, (B (q_ﬁﬂ, cees q_(ﬁ”—l_l)) S5 Ba1-1) /3, Pat—) (qﬂ”‘l, . ,qﬁ”‘z_l)

X S)(83) /(b2) (q_ﬂ‘*, . ,q_(’33_1)) S3.(83) /5.82) (qﬂ3, .. .,qﬂz_l)
(7.1)

X S)L(al)/k(ﬂz) (q_ﬁzr ey q_(al_l)) s)\(olz)/)\(ol]) (q_al et q—(az—l))

—ap_ —(ap—1 - —(B1-1
Xsk(ap)/k(“p—l) (q “-1...,q (ap )) $;.61) /3.p) (q “,...,q B ))

X S, 8D (qﬁl,...,qA+B).

Equations (2.11) and (2.12) enable us to sum over the Young diagrams AFzi+1), 3P
AB2) and AV, The result is

1

Sy (q—1, g BanD g Ba  g= B, g=Pr .,q—(oq—l))

X S) (@) s (1) (q—ou, - ’q—(az—l)) “o -5, @p) 3 @p-1) (q_apflw--rq_(ap_l)) (7.2)

X S, (@p) (qﬂl,...,q’“B).

Taking into account the homogeneity of the Schur polynomials, and noting that
By = A+ m; + 1, we see that the expression above can be rewritten as in the statement
of the Proposition 2.8. |

Proof of Theorem 2.8. Proposition 2.8 says that the probability of the point configu-

{(1,,\@1)—1')} U...U{(LM“P)—i)}
l i>1 t i>1

can be written as a product of skew Schur functions, see equation (2.24). If g = e™¢, the

ration

parameters n; my, ..., My, 1; Vy, ..., Vjpp_; are related with parameters A, B; 7y; a4, ...,
@pi By, -+ Boyyy as in the statement of Theorem 2.9, and A @) gre identified

with AV, ..., A, then the probability measure defined by equation (5.12) turns into the
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probability measure defined by equation (2.24). Application of Proposition 2.6 gives the
result. |

8 Alternative Proof Through Symmetric Functions and Zonal Polynomials

In this section we sketch an alternative path to derive Proposition 2.6. For the clarity
of the exposition we only detail one simplest case. At the end of the section we outline
ways for generalizations.

Simplest case: product of two 2 x 2 matrices. Let U; and U, be two 4 x 4 independent
Haar-distributed random unitary complex matrices. Let T} and T, be principal 2 x 2
corners of U; and U,, respectively. Our aim is to link the distribution of the squared
singular values of T; T, to a Schur measure.

First, note that T}, and T, are almost surely nondegenerate. The squared singular
values of T|T, are eigenvalues of T,T,T;T}. Since eigenvalues are preserved under
conjugations, they are the same as the eigenvalues of (T} T,)(T,T;). Since, T, and T} have
the same distribution, we can further rewrite the law of interest as the distribution of
eigenvalues for the matrix (T, T7)(T,T).

Set A = T,T; and B = T,T;. The (ordered) eigenvalues of A are real numbers

a,,a, distributed with probability density
oa;,a,) =12(a, —a;)?, 0<a; <a,<l. (8.1)

This computation is a particular case of the identification of singular values of a corner
of a random unitary matrix with Jacobi ensemble, see [18] and references therein. This
is also the k = p = ¢ = 1 case in Proposition 2.1. The eigenvalues of B,0 < b; < b, <1
have the same distribution.

Next, we fix 0 < g < 1 and consider a distribution on pairs of integers A; > 1, >

0 with weight

Py hg) = (1= (1 —g)*(1 =) s, 0, (1D S, (@ T 8.2)

On one hand, (8.2) is a particular case of the Schur measure. On the other hand, the

explicit evaluations

1 1
det
gt g2 gz — gl

S (1D = = D Seuan@d) =4

A2 _ g1+l
PN ek

l-q

’
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imply that upon the change of variables g% = a;,

i = 1,2, in the limit ¢ —» 1, (8.2)
becomes (8.1). The same computation works for matrices of arbitrary size and for any
values of the random matrix parameter 8, see [22, Section 3.1] and [13, Theorem 2.8].

The next step is to use the Cauchy-Littlewood identity (see [35, Chapter II)

2 k
1
Z S(20) (U1 U2)S(1y g, 00-2) (V1 Vo, ooy V) = HH T—uv’ k> 2. (8.3)
(A1,22) i=1j=1 )

Equation (8.2) and the identity (8.3) lead to the expectation evaluation

g | Stire W) zﬁ (1—-ghH(1 —gth _ 8.4)
Pl Sap 1@ o - ug (1 —ug?)

Here u; and u, can be any complex numbers such that the series defining the
expectation absolutely converges. We make a particular choice, (u;, u,) = (g*1*!, g*2) for
two integers p; > u, > 0. Then, using the label-variable duality (which is an immediate

consequence of the definition of the Schur polynomials as ratios of two determinants)

S(M,)\z)(qm—i_1 :q"?) _ S(u1,m2) (qM-H ' q)hz)

- ’ (8.5)
St i) (1 @) Sy ) (11 @)
we get
s @+, g*) 1 — g (1 — git!
EPq|: (11,142) - :H 1 ( ,L~_?+)3( 1 q #‘)_i+4 , . 6.6)
S(u,u2) (11 @) iy =g o)A — ghimiE)

Note that as one varies i, iy, the left-hand side of (8.6) uniquely determines all the
moments of Pq—random vector (g*'*!,g*?). Indeed, since A +1 > 1, it is enough
to consider only symmetric linear combinations of moments, and those are finite
combinations of Schur polynomials. Since (g*'*!, g*2) is supported inside [0, 1] x [0, 1],
the moments uniquely determine the distribution P,. The conclusion is that (8.6) is
equivalent to the definition (8.2). Further, the same equivalency holds in the limit g — 1,

as (¢ *!,¢*?) — (a,,a,). Equation (8.6) becomes

S (a;,a,) 2 i(i+1)
E (p1,p2) \ P17 ™2
— 1 1 | T | | / > > 0. 8.7
p(al,az)|: :| L =iy —i+a Hy 2 Mo 2 (8.7)
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We can now describe what is happening with expectations (8.4), (8.6) and
(8.7), when we multiply the matrices. The computation relies on the following integral

identity:

-1
/ S(m,uz)(VUWU )dU _ S(m,uz)(VI'VZ) . S(m,uz)(wl'WZ)' [y >ty > 0. (8.8)
U@2)

S(Mlyltz)(l’ 1) S(m,/tz)(l’ L S(/Alyllz)(l’ 1)

In (8.8), the integration goes over the group U(2) of 2 x 2 unitary complex matrices,
V and W are two fixed complex matrices with eigenvalues (v;,v,) and (w;, w,),
respectively, and by S(MM)(VUWU_I) we mean the Schur polynomial s, ., evaluated
on two eigenvalues of the matrix VUWU~!. When V and W are unitary, the relation
(8.8) is known as the functional equation for the characters of U(2). More generally,
(8.8) is the identification of zonal polynomials of the symmetric space GL(2;C)/U(2)
with Schur polynomials, see [35, Chapter VII] and [21, Section 13.4.3]. For real and
quaternion matrices, an analog of (8.8) holds with Schur polynomials replaced by the
Jack polynomials. Using N = 2 in U(V) also plays no special role in (8.1) and the identity
extends to all N > 0.

Coming back to AB, the matrices A = T, Ty andB=T, T; are independent, and the
distribution of each of them is U(2)-invariant, with respect to the action by conjugation.
In other words, while the eigenvalues have a specific distribution (1), the eigenvectors
are chosen uniformly at random (in the set of all possible pairs of orthogonal unit
vectors in C?). Thus, if we plug V = A, W = B into (8.8) and take expectation with
respect to A and B, we get

E |:S(M1,M2)(AB)] _ E|: S(m,/tz)(A) :|IE|: S(Mlyuz)(B) :| .y >y > 0.
S(Mllﬂz)(l’ 1) S(M,Mz)(l' 1) S(M,Mz)(l’ L

Combining with (8.7), this implies
2

5[ Sww@B) ] _ (1 i(i+ 1) Wy > iy 2 0
Sy gy (L D) =i+ —i+4) )’ 1="r2="

i=1

which is (again by (8.3) and (8.5)) precisely the g — 1 limit of

E- S(u1,12) (qUI—H 'q")
Pq

’ l‘l/l 2 MZ 2 0!
S(Ml.ll«z)(l’q) :|
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for the integral vector v; > v, > 0 distributed according to the Schur measure

Py(v),vp) = (1= > —g)* (1 = ¢*)? 5,0, (1 D Sy (@ T 0. T (8.9)

We conclude that the eigenvalue distribution for AB is the ¢ — 1 limit of (g"*!, g"?)
distributed according to the Schur measure (8.9).

Generalizations. Let us discuss how to see the structure of the full Schur processes,
rather than just its slices given by the Schur measures. Note that the transition
between P, of (8.2) and Pq of (8.9) can be seen as one step of Markov chain on two-
row Young diagrams A = (A, A,) with transition probabilities P(A — v) found from the

decomposition

2 . .
S, (U1, Uy) (1-g"H(1 —gth S s, (uy, up)
) P(h - : 8.10

5. (1,q [E (1 —u;)(1 - uiqz)] Z ( s,(1,q) 810

Summing (8.10) using (8.4), we get >, P, (WP — v) = 13q(v). In the g — 1 limit, the same
structure of the Markov chain can be seen for the projection of the joint law of A and AB
onto their eigenvalues; this is again a corollary of (8.8).

Comparison of (8.10) with the skew Cauchy identity (see, e.g., [35, Section 1.5,
Example 26]) yields that P(A — v) is given by the fomula

s,(1, @5,/,(q,9%)

(8.11)
SA(LQ)

PL—v)=01-q91-¢»*0-q°

Combining the definition of Pq with (8.11), we conclude that the two times Markov chain
with initial state Py, transitional probability P(A — v) (and final state Pq) is the Schur
process. Sending g — 1, we see that that the joint law of squared singular values of A
and AB is the continuous limit of this Schur process.

At this moment we can generalize the argument to products of more matrices.
Each additional factor gives another time step of the Markov chain. These transition
probabilities generalize (8.11) and therefore, the link to Schur processes persists. Let
us make a remark about the sizes of the matrices that are being multiplied. The
computation leading to (8.1) and its connection to (8.2) can be generalized to rectangular
corners of random unitary matrices of arbitrary sizes (and we can also deal with
real/squaternion 8 = 1,4 cases). The identity (8.8) has similar extensions. However,
when we start iterating (8.8) it is convenient to assume that all the involved matrices

have the same square size, as then the present arguments extend word-for-word. This
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is less general than the setting of Proposition 2.6. It is plausible that the arguments of
this section can be adapted to the changing sizes as well, but we will not pursue this
direction. When we pass between a rectangular matrix T and its square counterpart
TT* encapsulating the singular values, the following distinction becomes important:
the matrices TT* and T*T have the same nontrivial eigenvalues, but additional Os show
up because of different sizes. One needs to translate this into the language of Schur
processes and expectations (8.4) and (8.6).

Finally, one can go beyond corners of unitary matrices and consider factors with
more complicated unitarily-invariant distributions. We refer to [26] for a progress in

this direction.

9 Appendix. Measures given by products of determinants, the Eynard-Mehta
theorem, and the 2nd proof of Proposition 2.4

The aim of this Appendix is to give another, more direct proof of Proposition 2.4 based
on an application of the Eynard-Mehta theorem [20]. The starting point of this proof
is the fact that the density of the product matrix process under considerations is
given by a product of determinants, see Proposition 2.1. This enables us to apply the
Eynard-Mehta theorem to the product matrix process with truncated unitary matrices.
Although, the proof below is similar to the arguments of [14] and [43], we decided to

reproduce it in the present setting for pedagogical reasons.

9.1 The Eynard-Mehta theorem

Let us first recall the formulation of the Eynard-Mehta theorem. Let n,p > 1 be two

fixed natural numbers, and let X, X,

metric space, and consider a probability measure on (¥™)P given by

be two given sets. Let X be a complete separable

1 n n
PrObn,p (}_()dl’l/()_() = Z_ det (¢(),1 (X?'X}))ij:l dEt (¢p,p+1 (Xf)r X;?+l))

n.p ij=1

o1 9.1)

n
x [T det (41 &} ,X}“))U_l du(x).
r=1 v

In the formula above, Z, , is the normalization constant, the functions ¢,,,; : XxX — C,
r=1,...,p— 1 are given intermediate one-step transition functions, ¢y, : Xo x X - C
is a given initial one-step transition function, and ¢, , ., : X x X,,; — Cis a given final

one-step transition function. Also,

)_(:(Xl,...,Xp) e(%”)p; x'=(x},....xp),r=1,...,p,

6102 8unp | uo Jasn salelqi LA ‘ABojouyos ] Jo sxnisu| spasnyoessel Aq §29682S/.62AULUIWISE0] 0| /I0p/10BSqE-8]01B-80UBAPE/UIWI/WO0D dNO"dIWapEI.//:Sd)y WOol) POPEOjUMO(]



46 A. Borodin et. al

the vectors

0 0 0 1 +1 +1
x)=(x],...,x;) € X, xP* =(X11’ ,o XD )GXZH,

are fixed initial and final vectors, and

P n
du = [T [ dnch.

r=1j=1

Here u is a given Borel measure on X. Given two transition functions ¢ and ¢ set

¢*mezéfuﬁwmwmmy

The theorem below is the Eynard-Mehta theorem.

Theorem 9.1. The probability measure Prob,, ,(x)du(x) given by equation (9.1) defines

(
n.p

a determinantal point process on {1,...,p} x X. The correlation kernel of this determi-
nantal point process, Kn,p(r, x;s,y) (wWhere r,s € {1,...,p}, and x,y € X), is given by the

formula
- 1
K, (1 X:s,y) ==, X, 7)+ D ¢ x, x0T (A_l)ij%,s(xjo,y)- (9.2)
ij=1 :
The functions By s and the matrix A = (aiJ) (wherei,j =1,...,n) are defined in terms of

transition functions as follows:

(brpp1*-- %bs_15) (x,y), 0<r<s<p+]1,
o, r>s,

¢ s(X,y) = [ (9.3)

and

+1
@i = Gops1 (. X ). 9.4)

Remark 9.2. For the process defined by probability measure (9.1), and described by

Theorem 9.1, the correlation functions can be written as determinants of block matrices,

namely
1 1. P p
le,...,kp (Xl’ . ’Xkl' . ’Xl PN ,ka)
j=1,..k j=1,..kp
K .(1,x!:1,x! ) (K 1, x5 ,XP)
( n’p( t ]) i=1,...k1 n,p( t p J ) i=1,...k1

== det 5 ’

j=1,....k1 j:l,...,kp
p. 1 .
(Kn,p(p/Xi ’ llXJ' ))i:l,...,kp (Kn,p(pl Xf/ D, Xf)) i1
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where 1 <k;,...,k, <n,andforl <l r<p
j=1,...k Kn,p(l,Xll}T‘,XD Kn,p(llel;r’X;;r)
. - J=1,...Kkr _ .
(Kn,p(eri' r'Xj))izl,...,kz -

. r . r
Kn'p(l,xkl, rxy) ... Kn,p(l'Xkl' X )

In what follows the functions
$0s(0,y), 2<s<p,
will be called initial transition functions, and the functions
Grp1 & )), 1<r<p-1,
will be called final transition functions. In addition, the functions of the form
brsx,y), 1<r<p-2, r+2<s<p,
will be called intermediate transition functions. Finally, the function
b0,p+1(00J)

will be called the total transition function.

In order to prove Proposition 2.4 we rewrite the density of the product matrix
process with truncated unitary matrices obtained in Proposition 2.1 as in the statement
of the Eynard-Mehta theorem, and obtain explicit expressions for the transition

functions.
9.2 Explicit formulae for the transition functions

In our situation X, = {1,...,n}, po = {1,...,n}, ¥ = R_,. The initial one-step
transition function is defined by
. )
Bo1: {1, mhxR_g—> R; ¢g,(0,x) =w ().
The final one-step transition function is defined by
qbp'pﬂ t Ry x{l,...,n} — R; ¢p,p+1(x,k) = xk1

In addition, the intermediate transition functions can be written as

Grri1: RogxRg— R, r=1,...,p—1,

My —N—vr =1 _—m,. 4n
X '

brr1X,y) =y X —y)4

where (x —y), = max(0,x —y).
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For the initial transition functions bo,5:S = 2,...,p, We obtain the following

recurrence relation:

1

. x\ dr
Bo,s (i, %) = / V14 (] — f)ms—1+l—n—vsfl+l—1¢oys_1 (z, ;) - (9.5)
0
This is the recurrence relation for ¢ (i, x) = WES_HZ) (x) (where 1 < s < p), see
Kieburg et al. [31, Equation (2.23)].
The total transition function ¢y ., (i,j) can be written as
o o
.. . . i —1+41
bop+1 (L)) = /¢0,p (i, P) ¢p p11 () =/tj 'wP TP @de
0 0
- (9.6)
B i1 p+l—1,0 My 1 =N ..., My—n, My —2n+i
- p—1+l/tj Gp+l—1,p+l—1( 1 t)dt,
Vpti-1 ' Var v+l

0

where ¢,_,; is defined by equation (2.7). The Mellin transform of a Meijer G-function is

ﬁF(bi+s) ﬁF(l—aj—s)

o
s—1,mnf @1 -1 Gp _ 1 i=1 j=1
/dXX Gpa ( ) ) Xy)_ s a > . 9.7
0 1o g [T T(1=bg—s) [I T'(a+s)
k=m+1 I=n+1

This gives an expression of the total transition function Po,p +1(@,J) in terms of Gamma
functions
+I-1 ; . .
iz T (e +A)T(n+i+i—1)

®0,p+1 @J) =cCp_14 — . (9.8)
b b Hi:éll“(mk—n+j)r‘(m1—2n+i—l—j)

Similar calculations give us the formula for the final transition functions. In particular,

we can write

Bprp1 05 = [ By pX V)0 (7,17
0

o0

_ /y”l"l” (x — y)Tp71+l—n—Vp*1+l—1 X_mp_1+l+nyj—1dy (9.9)
0

X
—Mpy_141+N Vp_ My_141—N—Vvp_147—1 j—1
— x Mp-1+ /yp1+l(X_y)pl+l p—1+1 YJ dy_
0
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The change of the integration variable y = 7x gives

1
bp1pp1 X)) =271 / TPl (1 — )Mol g
0

(9.10)
1 r (Vp—1+l +J) r (mp—l+l —n- vp—1+l)

:XJ

Repeating this calculation, we arrive to a general formula for the final transition

function
p—1 ;
- I (Ua+l +J) r (ma+l —n- l)a+l) —1
) x,)) = - X", refl,...,p—1}. (9.11)
R | e ]

Finally, let us find the intermediate transition functions ¢, ;(x,y). Since

a 1— a—-b—1,b
G}(l)( ) X) _ 107X

, O0<x<1,
I'(a—b)
we can rewrite the transition function ¢, ,.,, (x,y) as

1 10f M~ N |Y
Gr 1 y) = T (M —n—v.y) Gy r+ o B (9.12)
X vr+l X
In addition, we have the following recurrence relation
1 dx
m,,—n, ..., my—n, m;—n
/XUr(l _ X)mr—n—vr—l G::i’,o,‘_l r—1 2 1 ‘Z il
' V1, ceey Vo, vy+n-—-1[X] X
0 (A13)
m.—-n, ..., my—n, m;—n
=T (m,—n—-v,) G r 2 ! )y ,
' V., ce vy, v+n-—1
see Beals and Szmigielski [9, Equation (5)]. Starting from (9.12), and applying (9.13), we
obtain
1 £ —r0 m.,—n, ..., Mgy 1—Nn |y
brs () = [T T (mygm == viyyn) G;—;:s—r( " s <
k=r+1 Vrglr s Vsyl-1

(9.14)

wherel <r<p-2,andr+2<s<p.

A.2 The inverse of A

Here we find an explicit formula for (A‘l)ij in the formula for the correlation kernel

n
in Theorem 2.4. If A = (ai J) X then a;; is equal to the total transition function
)i .
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n

$o,p+1 (i,)) given by equation (9.8). We need to find the inverse of the matrix A = (éi ,J-)
defined by

ij=1

5o T —14i+)
WooT(my —2n+i+))’

i,je{l,...,n}.
Proposition 9.3. For N =1,2,...and —«,—B € C\ N, the matrix
N-1

[ @+ 1)y }
@+B+2)iy; |,

N-1
is invertible and its inverse matrix (yi J) o is given by

ij=

DM@t B+ D)@+ B+ 1)

T T @D @+ ;@ B+ D)
N-1 @2p+a+B+1)(a+1),p! 19:19)
p+a o pP’ . .
1 1),.
2 G B Dy Dy i i @ AT e ek ATy
Proof. See Theorem 10 in Zhang and Chen [45]. |
We apply Proposition 9.3, and find
_1 —_ P n
Al = (bw)i,jzl’ 9.16)
where
b 1[I T (my, — n+0) T (my — 2n + 2)
ij = (Cp—1+l) p-1 : r 1
%' T (v +1) (n +1)
. (1) (my—2n+1), , (m; —2n+ 1)]._1 ©.17)
(v + 1)y (1 + 1), (Mg —2n+1) '
XE (2k+m) —2n+1) (v, +1), ki (m) —2n+1i), (m) —2n+j),
= (my—2n+1), (my—2n—v +1), k=i+DIE-DIGk—j+DIG-D!
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Now we can write the 2nd term in the formula for the correlation kernel (equation (9.2))

as
_ n
Knlp(rlX; S,Y) = Z ¢r,p+1(Xl l) (A_1)1J¢0,S(J’Y)
ij=1 h
B I'(m;—2n+1) 1 ©.18)
L (my=2n—v +1)T (v + 1) [E27T (my — 1 — ) '
k(v +1), (2k+my —2n+1
x Z ( ( 12 )f( 12 )1 Pr,k(X)Os,k(Y),
= (my—2n+ e (M) —2n—v; +1),
where

P (X)_Zk:(—bk_i(ml—zwr”l) Lmy—2n+ 1) [P T, —n+i+1)
e (=1t (v, + 1), [225 T (v +4+ 1)
(9.19)
and
K (=DF(my —2n+j+1), (m; —2n+1);

Jj=0

9.4 The contour integral representation for P, j(x)

Using explicit formula for the final transition function Prpy1(X, i) (see equation (9.11))
we rewrite P, ;(x) as

L (v + 1) [T (my —n—vy)

I'(m, —2n+1)

Pr,k(X) =
(9.21)

Xl

Z":(_nk—ir( —2n4it+k+ )5 T (mg—n+i+1)
—~ (k—itil [T (v +i 4 1)

The Residue Theorem gives the following contour integral representation for P, ; (x):

-
(Ul + 1) H§+r+ll (ma —n- va)

I'(m, —2n+1)

P, (x) =

(9.22)
. T(t—kr (my—2n+t+k+ 1) L5 T (mg —n+t+1) -
. xtdt,
2mi [T (vg + 2+ 1)
Xk

where X is a closed contour encircling the interval [0, k] once in the positive direction,

and where vy = 0.

¢r,p+1 (Xr l+ ]-) ’
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A.4 The contour integral representation for Qg i (y)

Equation (9.20) together with the formula for the initial transition functions obtained

in Section 9.2 give

F(my—2n—v, +1)T (v + D JEL T (mg —n —vy)
I (m; —2n+1)

Q) =

Zk: (=¥ T (my —2n+j+k+1)

= (k=4 T (v;+1+)) 9.23)
% GST-1.0 Mgy =N ..oy My—n, My —2n+j+1
s+1—-1,5+1-1 . VA B
Vsil-1/ e Vo vy +J

The contour integral representation for the Meijer G-function inside the sum above is

Gsti-1.0 Mgy 1—N, ..., My—n, My —2n+j+1
s+1-1,s+1-1 . y
Vsti-1 Vg, vy +Jj

- (9.24)
1 P +i+wllels T (va+y —u
=55 SH-T y du,
J T(my—2n+j+u+1)[[;Z; T(mg—n+u

where the contour C is a positively oriented curve in the complex u-plane that starts and

ends at —oo, and encircles the negative real axis. In equation (9.23) the resulting sum is

Zk: (—1)%7 T (m; —2n+j+k+1) T (v +j+u)
< (k=D T +1+j) T(m—2n+jtu+l)

(—k); (1 +u); (my —2n+k+1);
JUo(+1); (my —2n+k+1),

_ = DET (u4v,) T
kI T(1+
(

)T
_ = DET (u+v,)
kI T (14w

r
r
X 3F, (~k,u+v,m —2n+k+1;1+v,m —2n+u+1;1).

The Pfaff-Saalschiiltz Theorem says that

(c—a)(c—Db)

F,(=k,a,b;c,d;1) = ,
sF2 ( ) (©)(c—a—Db);

if the balanced condition, c+d = 1 — k + a + b, is satisfied, see, for example, Ismail [28,

Section 1.4]. In our case

a=u+v,b=l-2n+1+k c=1+v,,d=m; —-2n+1+u,
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and the balanced condition is satisfied. Thus, we have

1-u -m;+2n—k
3F2(—k,u+v1,m1—2n+1+k;1+v1,m1—2n+1+u;1)=( Dy =y + k

Taking into account that

(].—u)k _ (u—k)k
@2n-m; —u—-k), (u—2n+m;+1)'

we obtain the formula

Fmy—2n—v;+1)I’'(m; —2n+1+k)(v; —m; +2n —k)
Qs (y) = (=DF Fl 1 (m, (v, —my .
( _2”+1) k(L + vy
;ilz_ll"(ma—n—va) Hs+ll (l) —I—u) (u— k),
271 J 5 T (mg —n4uw) (u—2n+my +1), (9.25)
—Uu
o y ¥%du

r(m,—2n+1+u)
A.5 Derivation of the correlation kernel

Equation (9.14) gives the 1st term in equation (9.2) for the correlation kernel. To write
explicitly the 2nd term in equation (9.2) we insert the formulae for P, ; (equation (9.22)),
and Qg (equation (9.25)) into equation (9.18). After simplifications we see that the 2nd

term in equation (9.2) can be written as

-1

HZJ’_H-Z ( -—n- va)
-

H§+s+; ( a N~ va)

7{ /du L5 (my—n+t+1) [T (v, +u)

f<n,p (r,x;s,y) =

(27‘[1)2 r+lol (t+va+1) Hs+l 1p ( _n+u) (9.26)
n—1
rt—kr¢+m, —2n+k+1) , _,
-2 2 1
><I§)(m1 n+ 2k + )F(u—k)F(u+ml—2n+k+1)X

The sum inside the integral is the same as that in Kuijlaars and Stivigny [32] (see the
proof of Proposition 4.4 in Kuijlaars and Stivigny [32]), and the rest of the proof is the

same as that of Proposition 4.4 and Theorem 4.7 in Kuijlaars and Stivigny [32].
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