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Abstract

This paper finds the bulk local limit of the swap process of uniformly random sorting
networks. The limit object is defined through a deterministic procedure, a local version
of the Edelman—Greene algorithm, applied to a two dimensional determinantal point
process with explicit kernel. The latter describes the asymptotic joint law near 0 of
the eigenvalues of the corners in the antisymmetric Gaussian Unitary Ensemble. In
particular, the limiting law of the first time a given swap appears in a random sorting
network is identified with the limiting distribution of the closest to 0 eigenvalue in the
antisymmetric GUE. Moreover, the asymptotic gap, in the bulk, between appearances
of a given swap is the Gaudin—Mehta law—the limiting universal distribution for
gaps between eigenvalues of real symmetric random matrices. The proofs rely on the
determinantal structure and a double contour integral representation for the kernel of
random Poissonized Young tableaux of arbitrary shape.

Keywords Sorting network - Reduced decomposition - Gaudin—-Mehta law - GUE
corners - Young tableau - Determinantal point process
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1 Introduction
1.1 Overview

The main object of this article is the uniformly random sorting network, as introduced
by Angel et al. [5]. Let &,, denote the symmetric group and t; denote the transposition
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Fig. 1T Wiring diagram of a sorting network of S5 with swap sequence (2,4,3,1,2,1,4,3,2,4). Intersection
of two paths at location (i — 1/2, j + 1/2) indicates a swap at time i between labels at positions j and
J + 1. The intersection locations (red crosses) of a random sorting network of &, has a distributional limit
in windows of unit order in the vertical direction and order n in the horizontal direction

between i and i + 1 for 1 < i < n — 1. The 7; are called adjacent swaps. Let

rev =n,n—1,..., 1 denote the reverse permutation of G,,. A sorting network of G,,
is a sequence of permutations o9 = id, o1, ..., oy = rev of shortest length with the
property that for every k,

Ok+1 = 0r o 7; for somei.

In other words, the permutations change by swapping adjacent labels at each step
and must go from the identity to the reverse in the shortest number of swaps. The
number of adjacent swaps required in any sorting network of G, is (g) See Fig. 1 for
an example of a sorting network in the wiring diagram representation. We identify a
sorting network of &, by its sequence of swaps

(Sl, ey S(rzl)),

where s; denotes the adjacent swap (s;, s; + 1).

A random sorting network of G, is a sorting network of &, chosen uniformly at
random. Computer simulations were used to conjecture many beautiful asymptotic
properties of random sorting networks. See [5] for an account of these statements and
the first rigorous results, and also [1-4,14,30,36,38] for other asymptotic theorems.
The proofs of the conjectures from [5] were recently announced in [13].

In many examples, random combinatorial structures built out of symmetric groups
are known to exhibit the same asymptotic behavior as random matrices. The most
famous result of this sort due to Baik—Deift-Johansson [6] identifies the fluctuations
of longest increasing subsequences of random permutations with the fluctuations of
largest eigenvalue of random Hermitian matrices. Its further upgrades, [9,29,34] link
fluctuations of several first rows of the Young diagram distributed according to the
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Plancherel measure for symmetric groups to those of several largest eigenvalues. A
connection also exists for “bulk” (i.e. not largest) rows and eigenvalues, see [9].

On the other hand, up to now no such connections were known for random sort-
ing networks. In the present article we find such a connection. It exists for a sort
of local limit of random sorting networks. Indeed, we find the bulk local limit of
random sorting networks, by proving that it is given by a simple, local, determin-
istic algorithm (the local Edelman—Greene algorithm) applied to a specific random
point process on Z x Rx¢. In turn, we describe this point process by showing that
its correlation functions have determinantal form and provide explicit expressions for
the corresponding correlation kernel. The very same point process appeared in the
work of Forrester—Nordenstam [25] (see also Deffoseux [17]) as the hard edge limit
of antisymmetric GUE—corners process; it describes the asymptotic distribution of
the closest to 0 eigenvalues of the corners of large antisymmetric matrix with i.i.d.
(modulo symmetry) Gaussian entries of mean 0.

A corollary of our theorem is that the rescaled, asymptotic distribution of the first
time when the swap between L”ﬂ;“)J and L"(IJ“)J + 1 appears, for a € (—1,1),
is the same as the rescaled, asymptotic distribution of the closest to 0 eigenvalue
of an antisymmetric-GUE random matrix. Another corollary is that within the bulk,
the asymptotic gap between appearances of the aforementioned swap is described
by the Gaudin—Mehta law—the asymptotic universal distribution of the gap between
eigenvalues of real symmetric random matrices in the bulk. Complete statements are
given in the next section.

In an independent and parallel work, Angel et al. [2] also study the bulk local limit
of random sorting networks. Their approach is very different from ours. We deduce
explicit formulas for the prelimit local structure of random sorting networks, and
then analyze the asymptotic of these formulas in the spirit of Integrable Probability,
see [8,11] and also [37]. On the other hand, [2] argue probabilistically, analyzing a
Markov chain (whose transition probabilities are expressed through the hook formula
for dimensions) for sampling random Young tableaux. The connection to random
matrices remains invisible in the results of [2]. It would be interesting to match these
two approaches, but it has not been done so far.

1.2 Bulk limit of random sorting networks

We now describe our main result. Informally, we study the asymptotics of the point
process (s;j,i),i =1,..., (;), in a window of finite height and order n» width, so that
the number of points in the window remains finite; see Fig. 1. Here (s1, . . ., s(g)) are
swaps of a random sorting network of G,,.

In [5] it is proven that the point process (s;, i) is stationary with respect to the
second coordinate. Therefore, it suffices to study windows adjacent to O in second
coordinate, which we do.

The limiting object Sjocar 1S @ point process on Z x R defined by a two—step
procedure. First, we introduce an auxiliary point process Xedge 0n Z x Rx( through
its correlation functions.
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Definition 1.1 AX¢qge is the (unique) determinantal point process on Z x R>q with
correlation kernel

Kedge (X1, 113 X2, u2)

2 T b4
- / 27 cos (tm + —xl) cos (tuz + —xz) dt, if x3 > xy;
T 2 2

0

o0
2 T T
—— / 27" cos (tu1 + —x1> cos (tuz + —xz> dt, if xp < x;.
b4 2 2
1

We refer to [7] and Sect. 2.4 for more detailed discussions of determinantal point
processes. We note that the particles of X4 0n adjacent lines {x} x Rx¢ and {x +1} x
R>( almost surely interlace, see Fig. 2. The point process Xeqge has appeared in the
random matrix literature before in [17,25]. In more details, let G be an infinite random
matrix with rows and columns indexed by Z- (¢, and whose entries are independent and
G=GT Tpe top—left

m x m corner of A almost surely has 2|m /2] non-zero eigenvalues of the form

identically distributed, real-valued, standard Gaussians. Let A =

where 0 < AT < A% < - < A’Fm 1) Forrester and Nordenstam prove that Xegge is

the weak limit of the point process {(J, \/W)»?Mﬂ)} CZxRso,i € Z=o, j €7,
as M — oo.

Particle configurations of Siocy are obtained from Xegge by a deterministic pro-
cedure, which is a local version of the well-known Edelman—Greene bijection [21]
between staircase shaped tableaux and sorting networks. In the following we describe
this procedure. A rigorous definition of the procedure utilizes properties of Xegge
that are not immediate from Definition 1.1. We provide the rigorous construction in
Sect. 6.3 where the description is given in the language of Young tableau, which is the
more standard setup for defining the Edelman—Greene bijection.

Local Edelman—Greene algorithm Fix a configuration X of Xegge and suppose that we
want to define the positions of all particles of Sjoc, inside the rectangle [a, b] x [0, T']
with @ < 0 < b. Then almost surely there are two integers ¢ < 2a and b > 2b such
that X has no particles on the segments a x [0, T'] and b x [0, T']. The particles of X
outside [a, l3] x [0, T'] are further ignored.
We now define a particle configuration Y—the restriction of Sjocal Onto [& l;]

[0, T']—through an iterative procedure. Start by declaring ¥ = ¢J, and setting X to be
the restriction of X onto [, b] x [0, T]. Repeat the following until X is empty:

(1) Let (x, u) be an element of X with smallest second coordinate. The parity of x
will be even. Add (x/2,u) to Y, i.e., redefine Y := Y U {(x/2, u)}.

(2) Define the sliding path (x1,u1), (x2,u2), ... as a unique collection of points in
X (of maximal length) such that
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Fig.2 Top: A possible configuration (red crosses) of X4, restricted to [—5, 3]x [0, T'] with no particles on
{—5, 3} x [0, T]. Particles on consecutive lines interlace. Encircled points represent the sliding path during
the first step of the Edelman—Greene algorithm. Bottom: The result after the first step of the Edelman—Greene

algorithm

o (x1,up) = (x,u),

° U <u2<~-~<ukand|x,~—x,~+1|:lforiA: ,...,k—1,

e Foreachi =1,...,k — 1, the only points of X in the rectangle [x; — 1, x; +
1] X [uj, uj1] are (x;, u;) and (x;41, wiy1).

In other words, (x;11, u;j+1) is the point in [x; — 1, x; + 1] x (u;, T], which is
closest to (x;, u;). See Fig. 2 for an illustration.
(3) Remove the k points (x1, u1),..., (xk, ux) from X and replace them by k — 1 points
(x1, u2), (X2, u3), -0y (Xk—1, Uk).
(4) Go back to Step (1), unless X is empty.
The first coordinates of the particles of Y will be integral; this follows from the inter-
lacing property of the particles of X, which is preserved throughout the steps of the
procedure.

One immediate property of the just defined map Xegge F> Siocal is that the position
of the first particle of Sjpcal in the ray {a} x R>o almost surely coincides with the
position of the first particle of Xeqge in the ray {2a} x R>g. Therefore, the joint law
of the positions of the first particles of Sjocql in the rays {a;} x R>o, fori =1,... k,
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can be explicitly evaluated as a Fredholm determinant. See Corollary 1.3 for the case
k = 1 and [7] for general statements.

We also show that Sjocq1 is invariant under translations and reflections of the first
(Z—valued) coordinate, ergodic with respect to translations of the first coordinate, and
stationary in the second (R>o—valued) coordinate; see Proposition 6.4.

We are ready to formulate the main result.

Theorem 1.2 (Local random sorting network) Fixa € (—1, 1), and let sy, s2, .. ., ()
be swaps of a random sorting network of G,,. Define the point process Sy, of rescaled
swaps near the point ( w, 0) through

oo o2 e )

Then as n — 00, the point process Sy, converges weakly to Siocal.

It is proven in [5, Theorem 2] that the global scaling limit of the space-time swap
process of random sorting networks is the product of the semicircle law and Lebesgue
measure. The +/1 — o2 scaling of Theorem 1.2 is consistent with the semicircle result.

We emphasize that Theorem 1.2 states both that S, , converges and the limit is
obtained by applying the localized Edelman—Greene algorithm to Xeqge. Theorem 1.2
does not cover the case || = 1, where the asymptotic behavior changes. It is plausible
that the methods of the present article can be adapted to this remaining case, but we
not address it here; see [38] for another approach to || = 1 case.

Theorem 1.2 implies that the first swap times in random sorting networks converge
to a one—dimensional marginal of Sjocal; the distribution of the latter can be expressed
as a Fredholm determinant. Figure 3 shows the approximate sample distribution of the
rescaled first swap time and (6.2) shows the tail asymptotics.

Corollary 1.3 (First swap law). Let Trs o.n be the first time the swap interchanging
L"(O‘;l)J with L”(D‘;])J + 1 appears in a random sorting network of S,,. The following
convergence in law holds:

241 — a2

Jim — Trs.an = Trs,
where
0 1)k
P[Tps >t] =1+ Z ( k!) / det[Kedge (i, uj)lduy - - -dug, and  (1.1)

k=1 0.1

sin(u; —up)  sin(uy + uo)
T —uz) 7wy Fup)

Kedge (u1, uz) =

Connection to the Gaudin—Mehta law A further consequence deals with the limiting
law of the gap between swaps on the same horizontal line in random sorting networks.
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Fix B € (0, 1). Given a random sorting network of G,,, let T, be the distance between
| B(5) | and the closest to its right swap interchanging LMJ with L"(O‘—ZH)J + 1.
Let T_ be the analogous distance to the closest to its left swap.
Due to stationarity of random sorting networks, the joint law T_ and T is given
by
]P’[T, >a, Ty >b] =]P’[Tp5,a)n >a+b]. (1.2)

Indeed, due to stationarity, both sides of (1.2) give the probability of the event that there
are no swaps in the interval [—a, b] after the appropriate re-centerings. Equation (1.2)
shows that the law of (T4, T_), and hence, of the gap T_ + T4, is determined by the
law of the first swap time Trg o ,. In particular, their limiting law after rescaling by
+/1 — a?/n is uniquely determined from the distribution function (1.1).

This is connected to the scaling limit of the point process of eigenvalues of GOE
random matrices in the bulk. The scaling limit of the eigenvalues of GOE random
matrices near 0 is stationary. Let —A_ and A be, respectively, the closest to 0
negative and closest to 0 positive point in the limit process. If the matrices are scaled
so that the mean eigenvalue gap near O is 1, then (1.1) is the distribution function of
(r/2) A4. In other words, (1.1) is the asymptotic probability to see no eigenvalues
in an interval of length (2/m)¢ for large GOE random matrices, normalized so that
the mean eigenvalue gap around the interval is 1; see e.g. [20,27], [24, (8.139) and
(9.81)]. The gap between points, A_ + A, has its law determined from that of A
according to (1.2). This is the celebrated Gaudin—Mehta law, originally put forward
by Wigner as a model for the gap between energy levels in heavy nuclei and later
found in numerous systems. We arrive at the following corollary.

Corollary 1.4 (Gap law) Fora € (—1,1) and B € (0, 1), let Gapa’ﬂﬁn be the distance

in a random sorting network of G,, between the two swaps interchanging LMJ

with L@J + 1: the one closest from the left to time ﬂ(;) and the one closest from

the right to ﬂ(g) Then, the distributional limit

. 4V —a?
lim —— Gap, 4,

n— 00 mn

is the Gaudin—Mehta law, i.e. the asymptotic gap in the bulk between eigenvalues of
real symmetric random matrices with mean gap one.

The proof of Theorem 1.2 builds upon two ideas. The first one (which is also used
in most of the rigorous results on sorting networks) is to reduce the study of random
sorting networks to uniformly random staircase shaped standard Young tableaux via
the Edelman—Greene bijection [21] (see also [28]). Our observation is that if we
Poissonize uniformly random standard Young tableaux (of arbitrary shape!), then the
result can be described by a determinantal point process with an explicit correlation
kernel written as a double contour integral. We further show that the Poissonization
does not change the local statistics, and therefore, the limit theorem is reduced to the
asymptotic analysis of the aforementioned double contour integral, which we perform.
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Density

Fig.3 Density histogram of the rescaled first swap time for element 500 in a 1000 element random sorting
network

Our results on the correlations and limiting behavior of random standard Young
tableaux might be of independent interest, and so we present them in the next section.

1.3 Random standard Young tableaux

A partition A is a sequence of non-negative integers Ay > A > --- > 0 such that
= Z?i] Ai < 00. The length of A, denoted £(1), is the number of positive A; and
the size of A is |A|.

We identify a partition with a Young diagram (YD), which is the set of lattice points

(G, )eZ:i>=1,1<j<hr)

The points of the Young diagram A are its cells and we say the Young diagram has
shape A\. Given a pair of YDs A and p, we write A < u if the cells of A are contained
within the cells of w. If the containment is strict then A < . If A < u then pu\A
denotes the cells of w that are not in A. A standard Young tableau (SYT) of shape A
is an insertion of the numbers 1, 2, ..., [A| into the cells of A such that they strictly
increase along the rows (from left to right) and also along the columns (from bottom
to top). The numbers within a SYT are its entries. The set of SYTs of shape A is in
bijection with the set of increasing sequences of YDs

B=20 <20 5@ 0D = (1.3)

such that the entry k is inserted into the singleton cell of A®\1*=D,

A staircase shaped SYT of length n — 1 (or also n — 1 rows) is a SYT of shape
(n—1,n-2,...,2, 1),whichwedenote A,. The Edelman—Greene bijection [21] gives
a one-to-one correspondence between staircase shaped SYTs and sorting networks;
see Sect. 6.1 for the details. This is the reason for our interest in SYTs.
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Fig. 4 Young diagram (4,4,4,2,1,1) and corresponding particle configuration (7/2,5/2,3/2,
-3/2,-7/2,-9/2,—13/2,—-15/2,...)

A Poissonized Young tableau (PYT) of shape A is an insertion of distinct real
numbers from the interval (0, 1) into the cells of A such that they strictly increase
along the rows and along the columns. Note that if we replace the entries of a PYT by
their relative ranks then we get a SYT. The set of PYTs of shape A is in bijection with
the set of increasing sequences of YDs indicating the times of jumps:

p=20 %0508 Eamn (1.4)

such that the entry 7 is inserted in the singleton cell of A®\1*~D_ These increasing
sequences of Young diagrams with labels were discussed in [10] in the connection to
the Young bouquet; see also [33].

We would like to identify a PYT with a collection of non-intersecting paths. For
that we first map a Young diagram X to a countable particle configuration {A; — i +
1/2}i=1.2... C Z + 1/2. This procedure can be viewed as projecting the boundary of
the Young diagram in Russian notation onto a horizontal line, see Fig. 4. The empty
Young diagram ¢ corresponds to {—1/2, —=3/2, —=5/2,...}.

Give a PYT, for each ¢ consider the countable particle configuration corresponding
to the Young diagram filled with the entries < ¢ in the PYT. The trajectories of particles
then form a collection of paths, making jumps to the right at the times indexed by the
entries #; of the tableau (equivalently, labels in (1.4)). Let us draw a cross at a point
(x,t),x € Z,0 < t < 1, if a particle jumps from (x — 1/2) to (x + 1/2) at time ¢;
see Fig. 5. Although there are infinitely many particles, the only ones that move are
the £()) particles that correspond to the rows of A with positive size.

Theorem 1.5 (Poissonized tableaux) Given a finite Young diagram A, consider the
point process X, of jumps of a uniformly random Poissonized Young tableau of
shape A. X, is a determinantal point process on Z x [0, 1] with correlation kernel
K (x1, t1; x2, 1p) as follows. For x1,x2 € Zand t1,t2 € [0, 1],
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t=1| ®@ @ O O r O O o O

t=0y ® @ @ £ (@) O O O O 0O
-11/2 -9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2 11/2

Fig.5 Particle system associated to a staircase shaped PYT of size 10. Particles move along non-intersecting
paths. The jumps (red crosses) of a random PYT of fixed shape is a determinantal point process. The local
window of a PYT of shape A, consists of the trajectories of a group of L successive particles traced down
fromt =1tot =1— (u/n)

K;.(x1,t1; x25 1)
(t — p)¥1—2~1
(x1 —xo — 1!

* (2zii>2 55 dz 7§ dw rr<i_+w1)> ' Giil(z—txj)w

= >0, x1>x)

Cz[os)\l_XZ) Cyl0,n+x1)
(I =n)*(1 =)
wHz+x—x 417

o .
u—+i Fr'u+1+n)
where Gy (u) =T (u+1 - = —, n>L().
) =T ( )Eu—xi+z N ARTE (*)

The contours C,[0, A1 — x2) and Cy[0,n + x1) are as shown in Fig. 6. Both are
counter-clockwise, encloses only the integers in the respective half open intervals
[0, A1 — x2) and [0, n + x1), and arranged such that w 4+ z + xp — x1 + 1 remains
uniformly bounded away from 0 along the contours.

Remark 1.6 When t| or 1, equals 1, K, is to be understood in the limit as 71 or 7, tends to
1. The contours C,[0, A1 — x2) and Cy,[0, n — x2) may also be replaced by unbounded
contours C,[0, o) and Cy,[0, co) with bounded imaginary parts, respectively.

The proof of Theorem 1.5 is through a limit transition in the correlation kernel of
[35] (see also [18]) for the uniformly random Gelfand—-Tsetlin patterns; the proof is in
Sect. 3. Such a limit transition can be viewed as a degeneration of the combinatorial
structures related to the representation theory of the unitary groups U (N) to those
related to the symmetric groups &,,, see [10] for a discussion.
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z-contour

w-contour

)\1—1—5172
-1 0 n—1+x

Fig.6 The contours in the statement of Theorem 1.5

Let us emphasize that the very same procedure can be used to identify a uniformly
random SYT with a point process of jumps, however, the resulting process will not be
determinantal — this is why we need to pass from SYTs to PYTs.

1.4 From Poissonized tableaux to local statistics

We close the introduction with an outline of the argument that takes us from
Poissonized tableaux to local statistics of sorting networks. By the nature of the
Edelman—Greene bijection, the swaps of a sorting network of G, near time 0O are
determined by the location of the largest entries of an SYT of shape A,. These entries
reside within unit order distance of the edge of A,,, which consist of the cells (i, n —i)
for 1 <i < n — 1. As aresult, the first step to deriving local statistics of random
sorting networks is to derive the statistics of a uniformly random PYT of shape A,
near its edge.

Let 7, denote a uniformly random PYT of shape A,. We are interested in the
statistics of the entries of 7, that lie within the following windows. A window is
parameterized by a center « € (—1, 1) (corresponding to the center W of the
swaps of a sorting network), a length L, and an entry height u. The window then
consist of entries T, (i, j) that satisfy |i — (1 +a)n/2| < L and Tx, (0, j) = 1 — %
In other words, roughly the largest nu entries of 7a, with row indices in the interval
[I+a)yn/2—-L,(14+a)n/2+ L]

We study the statistics of 7, in a window in terms of its associated process of
jumps X, rescaled accordingly. For each integer n > 1, let ¢, be an integer having
the same parity as n and such that |c, —an| = O(1) asn — oo. Consider the rescaled
process of jumps

Xa,nz{(x,u)erRZoz(ercn,l—%)eXAn}. (1.5)
n —

Theorem 4.1 and Proposition 4.3 together imply that &}, , converges weakly to the

point process Xedge from Definition 1.1. It is the building block for the proof of
Theorem 1.2.
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In Sect. 5 we construct the local staircase shaped tableau 7qge by using the local
jump process Xedge. We prove in Theorem 5.2 that it provides the limiting statistics
of Tx, in local windows. Using a de-Poissonization argument we conclude in The-
orem 5.3 that uniformly random staircase shaped SYTs also converge within local
windows to Tedge. Although Poissonization is not important for the local limit, it is
important for the proof.

In Sect. 6 we prove Theorem 1.2. First, we give a proof of Corollary 1.3 in Sect. 6.2.
In Sect. 6.3 we define the local version of the Edelman—Greene algorithm that maps
’];_dge to Siocal- In Sect. 6.4 we complete the proof of Theorem 1.2 and conclude with
some statistical properties of Siocal.

2 Preliminaries

This section presents basic facts about Young tableaux, Poissonization and determinan-
tal point processes. Some material from the Introduction is repeated for convenience.

2.1 Gelfand-Tsetlin patterns

A semi-standard Young tableau of shape A = (A1, ..., Apy), Where A1 > Ay > --- >
Ay > 0 are integers, is an insertion of numbers from {1, ..., M} into the cells of
the YD A such that the entries weakly increase along each row and strictly increase
along every column. It is important to emphasize that while for the definitions of
Young diagrams and standard Young tableaux the value of M is not important, here
the object substantially depends on M. Semi-standard Young tableaux (SSYTs) are in
bijection with interlacing particle systems, often known as Gelfand—Tsetlin patterns
(or schemes).

A Gelfand-Tsetlin pattern (GTP) with M rows is a triangular array of non-negative
integers [a(i, j)] withrow i containing i entries a(i, 1), ..., a(i, i). The array satisfies
the following order and interlacing constraints.

Order & Interlace :  a(i, j) >a(i —1,j) >a(i,j+ 1) foreveryi and j.

Leta® = (a(i, 1), ..., a(i,i)) denote the i-th row of the GTP. Each row corresponds
to a YD due to the order constraints. The interlacing conditions ensure that a® D <
a®, and in fact, a(i)\a(i_l) is a horizontal strip which means that the cells in any
row of aV\a@~D are to the left of the cells in the previous row. Figure 7 provides an
example.

The set of GTPs with a fixed top row a™ is in bijection with the set of SSYTs
of shape A = a™_ Indeed, given a GTP [a(i, j)] with top row A, such a tableaux is

Fig.7 A Gelfand-Tsetlin 9 5 3 2
pattern with 4 rows 8 5 2

6 3
5
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obtained by inserting the value i into the cells of a\a @1 forevery 1 <i < M (set
a® = %). If a\a~D is empty then i is not inserted. In the reverse direction, given
a SSYT of shape A, a GTP with top row A is obtained by setting a”) to be the YD
consisting of the cells of A with entries < i and removing trailing zero rows to ensure
that ¢) has i entries.

A GTP may also be represented as an interlacing particle system on (Z + %) X 7. as
follows. Given a GTP [a(i, j)] with M rows, the particle system [v(Z, j)] associated
to it has M rows of particles, with particles on row i being placed on the horizontal
line {y = i} of the plane, and the position of the j-th particle on row i is

1
(v(i,j), i) - (a(i,j) —j+3 i) forevery 1< j <i.

The transformation a(i, j) — a(i, j) — j + % makes the order constraints strict and
the interlacing constraints semi-strict:

v(i, j)=v@i@—-1,j)>v@, j+1).

The jumps of an interlacing particle system v with M rows is a set of points in Z x
{1,..., M — 1}, defined inductively from the top row to the bottom as follows. Given
two consecutive rows [v(i, -)] and [v(i — 1, -)], the jumps on row i consist of particles
at the positions

(k,i—1) € Z* for every integer k € [v(i — 1, j), v(i, j)] andevery 1 < j <i—1.

In other words, the jumps of row i are placed on the horizontal line {y =i — 1} and
fill out integers in the intervals [v(i — 1, j), v(i, j)] forevery 1 < j < i — 1. Note
that v may determined from its top row and set of jumps.

2.2 Poissonized Young tableaux

For a YD 4, let [0, 1]* denote the set of functions from the cells of A into [0, 1]. Let
PYT(%) denote the set of all functions 7 € [0, 1]* that satisfy the following tableau
constraints.

(HTG,j)<T(@G,j+1)forevery (i, j)and (i, j+ 1) € A, 2.1
2) T(@,j)<T(@+1,j)forevery (i, j)and (i + 1, j) € A.

The Poissonized tableau (PYT) of shape A is an element of PYT(A). The Poissonized
staircase shaped tableau of size N = () is an element of PYT(A,,).

Let 7, denote a uniformly random element of PYT()1). Then 7} is related to a
uniformly random SYT of shape A in the following way. First, the entries of 7, are
distinct with probability 1. Given that, consider the random SYT T, obtained by
inserting k into the cell that contains the k-th smallest element of 7. Then T, is a
uniformly random SYT of shape A. In the other direction, 7, can be generated by
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first sampling T;,, then independently sampling a uniformly random Y € [0, 1]*, and
setting 75 (i, j) to be the Ty (i, j)-th smallest entry of Y.

Throughout the paper, 7, denotes a uniformly random element of PYT () and T},
denotes a uniformly random SYT of shape A.

2.3 Jumps of Poissonized tableaux and local limit

Any T € PYT(X) can be represented as an interlacing particles system with a fixed
top row in the following manner. Consider 0 < ¢ < 1 and let

YDO = {(i, j) € Ay : TG, j) <t}

The tableau constraints (2.1) ensure that YD is a YD for every ¢. Recall thata YD
can be made to have an infinite number of rows by appending rows of size O after the
last positive row. Encode A as particle configuration on Z + % by placing a particle at
position

1
vjzkj—j+§ for j > 1. 2.2)

This is an infinite particle configuration on Z + % such that vi > v, > --- and
v;j —vjp1 = 1for j > £(X) (shown in Fig. 4). Let v® be the particle configuration
associated to YD via (2.2) and let v = (v®;0 < ¢ < 1) be the particle system on
(Z + 1) x [0, 1] with a particle at position (x, ¢) if and only if x € v,

The particle system v(®) viewed in reverse time, i.e., from ¢t = 1 to ¢ = 0, can be
interpreted as an ensemble of non-intersecting and non-increasing paths p(i, u), for
1 <i < (). Let p(i, u) be the (Z + 1)-valued path starting from p(i, 0) = v\’ and
decreasing an integer unit at the times 1 —7°(i, X;), 1 =T (i, A, —1), ..., 1=T(, 1).If
some of the entries are equal then p (i, u) decreases by the number of consecutive equal
entries. The paths should be left continuous so that the jumps occur immediately after
the jump times. The path p(i, u) decreases by A; units with final position p(i, 1) =
—i+ % Due to the columns of 7 being non-decreasing — condition (2) of (2.1)—the
paths are non-intersecting: p(i,u) > p(i + 1, u) for every i and u. Figure 5 shows
the paths associated to a staircase shaped PYT.

The jumps of p(i, u) consists of points (x, ) € Z x [0, 1] such that

(1) 1 — 1t is a discontinuity point of p(i, u), i.e., t equals some entry of 7 on row i.
(2) x in an integer in the interval [p(i, (1 — 1)+), p(i, 1 —1)], where p(i, u+) =
limg, p(i, s).

The paths can be reconstructed from their jumps and initial positions. The jumps of
v, and also of T, is the (possibly) multiset of Z x [0, 1] defined by

X ={(x,t): (x,t) is ajump of some path p(i, u)}. 2.3)

X may be a multiset because two adjacent paths may jump at the same time by amounts
that causes some of their jumps to coincide. The coinciding jumps has be counted with
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multiplicity. However, if the entries of T are distinct then X is a simple set. The tableau
can be reconstructed from its jumps and the initial position of the paths.

Let X, denote the jumps of a uniformly random element 7, of PYT()L). X} is
simple almost surely since 7, has distinct entries almost surely. Theorem 1.5 asserts
that X is a determinantal point process on Z x [0, 1].

2.4 Determinantal point processes

We describe some basic notions about point processes; for a thorough introduction
see [7,12]. Let S be a locally compact Polish space. A discrete subset X of S is
a countable multiset of S with no accumulation points. By identifying X with the
measure »_ _y 8y, the space of discrete subsets can be given the topology of weak
convergence of Borel measures on S. This means that X,, — X if for every compact
subset C C S, limsup, #(C N X,) < #(C N X ), where cardinality is taken with
multiplicity.

A discrete set is simple if every point in it has multiplicity one. A point process on
S is a Borel-measurable random discrete set of S. All point processes considered in
this paper will be simple almost surely.

Throughout the paper we denote #7, to be counting measure on Z and L£(A) to be
Lebesgue measure on a measurable subset A C R. Also, 11 ® uy denotes the product
of measures /11 and 17, and £®¥ denotes the k-fold product of .

A determinantal point process X on S is a simple point process for which there is a
correlation kernel K : § x S — R, and a Radon measure 1 on S, called the reference
measure, with the following property. For every continuous f : S¥ — R of compact
support,

E|: Z f(xl,...,xk):|

(X1, X ) EXK
X1,...,X) distinct

=/det [K(xi,xj)] f(xl,...,xk);L@k(dx],...,dxk). 2.4)
Sk

Expectations of the form given by the 1.h.s. of (2.4) determine the law of X under mild
conditions on K [32]. This will be the case in this paper as the correlation kernels we
consider will be continuous. If S is discrete then it is customary to take the reference
measure to be counting measure. In this case X’ is determinantal if for every finite
ACS,

P [A C X] =det[K(x, )] yea -

Remark 2.1 The correlation kernel of a determinantal point process is not unique. If

X is a determinantal point process with correlation kernel K then K may be replaced
by % K (x, y), for any non-vanishing function g, without changing determinants on
the r.ﬁ.s. of (2.4). Thus the new kernel determines the same process. This observation

will be used multiple times.
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The determinantal point processes that we consider will be on spaces of the form
S=Zx{l,....M},or S =7Z x [0, 1], or § = Z x R>p, with reference measures
being, respectively, counting measure, #7 ® L[0, 1] and #7 ® L(R>g). The following
lemma records some facts that will be used in deriving weak limits of determinantal
point processes. We do not include the proof as it is rather standard; see [12,32].

Lemma 2.2 (I) Let Xy be a determinantal point process on Z x {1, ..., M} with
correlation kernel Kyy. For x1,x2 € Zand 0 < t1,tp < 1, let

ky(x1, 115 x2, 1) = MKy (x1, [M117]; x2, [M127).

Suppose that ky; — k uniformly on compact subsets of 7. x (0, 1). Then the point
process

X;/;aled ={(x,t/M): (x,t) € Xy}

restricted to 7. x (0, 1) converges weakly to a determinantal point process X whose
reference measure is #7 ® L£(0, 1) and whose correlation kernel is k.

(II) Let X,, be a determinantal point process on Z. x (0, 1) with reference measure
#y7, ® L(0, 1) and correlation kernel K,,. For ¢, € Z and B > 0, define a point
process on 7. X R by

x5ed — {(x — ¢, Bn(1—1)): (x,1) € Xy}

The correlation kernel of ercaled with reference measure #7 @ L(R.¢) is

u u
kn (x1, w1 X2, u2) = (Bn) 'K, x1+cn,1——1; xz+cn,1——2 .
Bn Bn

If k, — k uniformly on compact subsets of 7. x R~ then X,fcaled converges
weakly to a determinantal point process X with reference measure #7 @ L(Rx¢)
and correlation kernel k.
Extend X to a point process on Z x Rxq without additional points. Then X;Cﬁled
converges weakly to X on 7 x Rx if the points of X do not accumulate at the
boundary in the sense that for every x € Z,

lim lim sup P [X;Cﬁled N ((x) x [0, €]) # @] —0.

€e=>0 p-o0

3 Determinantal representation of Poissonized tableaux
3.1 Determinantal representation of discrete interlacing particle systems

In order to prove Theorem 1.5 we use a determinantal description of discrete interlacing
particle systems due to Petrov. This is the main tool behind the proof.

@ Springer



Random sorting networks: local statistics via random...

A h

Fig. 8 The 3 types of lozenges used in tiling polygonal domains that correspond to interlacing particle
systems. The position of a lozenge is given by the midpoint of the horizontal side of the black triangular
part (red square). The positions have integer coordinates. Particles correspond to positions of the leftmost
lozenges but translated by 1/2 in the x-coordinate (in our notation). Jumps correspond to positions of the
rightmost lozenges

Letv=GwM,1)+ % >...>v(M, M)+ %) be a fixed particle configuration on
Z+ % Here we abuse notation from Sect. 2.1 to have the v(M, j)s be integers instead
of half-integers. Let P, be the uniform measure on all interlacing particle systems or,
equivalently, GTPs as described in Sect. 2.1, with fixed top row v. Let X, be the point
process of jumps of an interlacing particle system sampled according to P,,, where the
jumps are as described in Sect. 2.1.

Petrov [35, Theorem 5.1] proves that P, is a determinantal point process on (Z +
%) x {1, ..., M} with an explicit correlation kernel. According to the notation there,
particles live on Z but we have translated particle systems by 1/2 so that the jumps are
integral. In particular, in the notation of [35, Theorem 5.1], one has N = M, M =
v(M, j) and the variables x1, x, take integer values. In [35, Section 6.1] it is explained
that the point process of jumps, X, is also determinantal on Z x {1, ..., M — 1} and
its correlation kernel is given in terms of the correlation kernel of P, in [35, Theorem
6.1] (up to the translation by 1/2).

In particular, [35, Theorem 6.1] proves that the correlation kernel of the jumps is

K, (x1,my; x2, mp) = (=127 Ky (xp — 1,my + 15 x2, m2),

where Kp, is the kernel presented in [35, Theorem 5.1]. The discussion there is in
terms of lozenge tilings of polygonal domains using three types of lozenges as depicted
in Fig. 8. It is proved that the positions of any of the three types of lozenges in such a
uniformly random tiling is a determinantal point process. The jumps of an interlacing
particle system are given by the positions of the lozenges of the rightmost type from
Fig. 8, where as the particles themselves are given by the positions of lozenges of
the leftmost type. Jumps occur when a lozenge of the leftmost type is glued along
its bottom diagonal to a lozenge of the rightmost type; see [35, Figure 3] for such
a tiling. By Remark 2.1, (—1)*—*1+m2=mi Kp,(x1 — 1, m1 + 1; xp, my) defines the
same determinantal point process as Kp, (x; — 1, m + 1; x2, m2), and we will use the
latter kernel.

Some notation is needed in order to express the kernel for the point process of
jumps. For integers a and b, let C[a, b) denote a closed, counter-clockwise contour on
C that encloses only the integers a,a + 1,...,b — 1 if a > b, and empty otherwise.
Throughout the paper, all contours intersect the real line at points which have distance
atleast 1/10 from the integers. This ensures that the integrands of all contour integrals
will be a uniform distance away from their poles.
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For z € C and an integer m > 1, let
@Dm=zz+1D)---z—m+1), (@o=1

Theorem 3.1 ([35, Theorem 5.1]) The process of jumps, X,, of a uniformly random

interlacing particle system with fixed top row v = (v(M, 1) + % >v(M,?2)+ % >
->v(M, M) + %) is a determinantal point process on Z x {1, ..., M — 1} with

correlation kernel K as follows. For x1,x> € Zand 1 <mj,m, <M — 1,

K (x1,my; x2,m2)

_ (.X'] - x2)m17m2
= —Lmy<my, xo<x1) m 3.1
1 — Dy—mo—
Ry dz dw[(Z X2+ Dwt—my—1
(2mi) (w—x1+ Dy—m,
C.lxav(M,)+1)  Cylxi—M,v(M,1)+1)
(M —my — 1)
(M —ms — 1)
M
1 —w(M, |
SRLIN § [ {)}.
W=z z—v(M, j)

J=1

The contour C,[—M, v(M, 1)+ 1) contains C,[x3, v(M, 1)+ 1) without intersecting
it.

3.2 Proof of Theorem 1.5

Let A be a Young diagram with at most n rows of positive length, that is, £(A) < n.
For M > n, consider semi-standard Young tableaux of shape

A =00 .. A, 0,...,0).
— ——
M —n zeroes

The effect of adding M — n zero rows is to allow the entries in the non-zero rows of
A to be between 1 to M. The law of a uniformly random PYT of shape A is the weak
limit of a uniformly random semi-standard Young tableau of shape A7, as M — oo,
after the entries are rescaled onto the interval [0, 1]. Indeed, the law of a uniformly
random PYT of shape A can be approximated by the uniform distribution on points
[T (i, j)] € [0, 1]* that satisfy the tableau constraints (2.1), with each T'(i, j) = k/M
for some 1 < k < M, and the column constraints being strict.

The top row of particle systems associated to semi-standard Young tableaux of
shape A under the bijection described in Sect. 2.1 is
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M) 1 1
v, = (M—1)+§,..-,(An—n)+§,—(n+1)

1 1 1
-, = 2 — e, =M+ =) 3.2
+2 (n+ )+2 +2) (3.2)

Due to the approximation scheme above, and the bijection between semi-standard
Young tableaux and interlacing particle systems discussed in Sect. 2.2, the process of
jumps, X, of a uniformly random PYT of shape A is the weak limit of the process of
jumps, Xj,,, of auniformly random interlacing particle system with top row vM) after
these jumps are rescaled onto Z x {1/(M —1), ..., 1}. Thus, we derive a determinantal
description of the rescaled jumps of X),, in the large M limit. Since &, almost surely
contains no jumps on the boundary Z x {0, 1}, it suffices to derive the determinantal
description with X), restricted to Z x (0, 1).

Let Ky denote the kernel from Theorem 3.1 for the process Z},,. As explained
in Remark 2.1, the kernel (M — 1) "1 Ky (x1, m1; xp, mo) determines the same
determinantal point process. By Lemma 2.2, in order to prove the theorem it suffices
to show that

(M — )2 Ky (xp, [(M — D115 x2, [(M — D) — K,

uniformly over compacts subsets of x1, xp € Z and 11, 1> € (0, 1).

We begin by deforming the contours in the double contour integral from (3.1)
that defines K ;. This will simplify the representation of K, for taking the large M
limit. Deform the w-contour, Cy[x1 — M, vy,, (M, 1) 4 1), by pushing it leftward
past the z-contour, C,[x2, vy,, (M, 1) + 1), so that it encloses the consecutive integers
min{xy, x2} —1, ..., x; — M. The deformation results in picking up residues at w = z
and also at the consecutive integers w = x1 — 1, ..., x2,if xp < x7.

Let Jy(w, x1, m1; z, x2, ma) denote the integrand of the double contour integral
from (3.1) but without the factor of 1/(w — z). Note that vy, (M,1) +1 = Ay.
Calculating the residues at w = z and leaving the remaining residues as a contour
integral provides the following representation of K.

Ky (x1,my; x2, m2)

(x1 — x2)ml —my

= _l{mzfml,xz<x1} (m) — my)! (Ia)
L. 7§ d E=x2+ Du—my—1 (M —m— 1! (Ib)
2i (z=x1+ Dpy—m, (M —my —1)!
C:[x2,41)
1 Iy (w, x1,my; z, x2,
P 7€ dz dw m(w, x1,my; z, X2, my) an.
(2mi)? w—z
Celx2,21)  Cylxr—M min{x;,x2HUCy [x2,x1)
(3.3)

The following lemma simplifies (/a) + (Ib).
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Lemma3.2 ForO <mjy,mp <M — 1,

1 (z—x2+ Dpm—my—1 . M —m; —1)!

N Z
2mi z—x1+Dy—my, M —my—1)!
Celx2,21)

(x1 _x2)m1—m2

(my —my)!
(my —my + 1)x1—x2—1
(x1 —x2 = D!

= Yyma<my, xy<x1)

= Ymyomy, x1>x2)

Proof The integral (/b) is evaluated in [35, Lemma 6.2] by summing over residues at
Z = Xx2,...,x1 — | and evaluating the resulting sum in closed form via a hypergeo-
metric identity. We have

(my —ma+ 1)y —x,—1
(x1 —xp— 1!

(Ib) = 1{x1>x2}

Therefore,

(my —my + 1)y —x,—1
(x1 —x2 — 1!

- l{mzsml}

(my —my)!

If m> < m then the above is 0 because both terms in the difference are equal to

(my—mo+x1—x2—1)!

CIET T Hence, (Ia) 4 (Ib) in non zero only if x; > xp and my > m| and

equals what is given in the statement of the lemma. O

Now consider the expression (II) from (3.3). Observe that the zeroes of (w — x| +
1) y—m, are at consecutive integers x; — 1, x1 — 2, ..., x; — (M — my). On the other
hand, the polynomial I—[j (w—wy,, (M, j))alsohas zeroes at vy ,, (M, n+i) = —(n+i)
for 1 <i < M —n. Therefore, the only poles of Jj; in the w variable are at the integers
xi —1,x; —2,..., —nsolong as x; +m; > 0. For fixed x; and m; > /M, say,
the condition x1 + m1 > 0 is satisfied for all large M. Thus, the contour integral over
Cylx1 — M, min{x, x2}) may be shortened to Cy,[—n, min{xy, x2}) for all large M
if x1 remains fixed and m| > VM.

Having done so, (IT) becomes the following integral after changing variables z +—
z+xpandw— —w +x; — 1:

M

—wxy — 14y, (M, )
Gt Dbyt (M —my — 1)1 [ Zizteony (0.1

ztx2—vyy, (M, )

J=1

1= —— d d
D= G2 f ¢ Y o M —m; = Di(w + 2+ 52 =3 + 1)
C;[0,11—x2) Cy[0,n+x1)
(.4)

By a slight abuse of notation, let J3s henceforth denote the integrand of (3.4) without
the factor 1/(w + z 4+ x2 — x1 + 1). The following lemma provides the asymptotic
form of Jy.
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Lemma 3.3 Fix integers x| and x;. Suppose 0 < t,t» < 1 and w and z remain
bounded and have distance at least 1 /10 from the integers. Then formy = [t; (M —1)]
andmy = [tr(M — 1)],

(M — )27 gy (w, x1, my; 2, x2, ma)
N'—w)G
= (1= 1) (1 =y 1 W e Hx2)
Fz+1DGux1 —1—w)

(14 0M~1y).

The big O term is uniform over z, w so long as the stated assumptions hold and t1, t
remain in compact subsets of (0, 1). The function G, is as stated in Theorem 1.5.

Proof We will use the following identity:

I'(y+m)
= 0,—1,-2,...}. 3.5
(6)) o) v é&{ } (3.5

We will also use Stirling’s approximation of the Gamma function in the following
form:

F(X_quv‘) =m’ (1+0(n™"), m=1. (36)

The big O termis uniforminm solong as y is bounded and bounded away from negative
integers. Using these two properties, if m; = [t;(M — 1)] and my = [to(M — 1)]
then

4+ Dy—my-1 (M —m —1)!
(_w)M—m1 (M —m3 — 1)'
[ (—w)

=1 -1 - tz)zm M =1 (1+0omMm™") (3.7

Now consider the term

M n
[T w=vaM, ) =T]w=2;+i) w+n+1Dun
j=1 j=1
T . Tw+M+1)
=[lw=2+p- Twtn+1)

j=1

Applying 3.6)toI' (w+ M + 1) and I (z + M + 1) gives

—v,M,j) T ) fqw—Aj+j
o) DedntD mrw=ditd sy oy,
z=vay M, ) TwHn+l) <5 z=2j+]

=1
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Substituting in z 4+ xp and —w 4+ x; — 1 then gives

H—w—}—xl—l—v;LM(M,j)
Z+x2_VAM(M,j)

G
= )‘(Z—w (M — ])—(w+z)+X1—XZ—1(1 + O(M_l)). (3.8)
Gu(x; — 1 —w)
Combining (3.7) with (3.8) provides the desired conclusion of the lemma. O

We now prove that (M — 1)2~*1T1 K, converges to K. Suppose x; are fixed and
m; = [t;(M — 1)] fori = 1,2 and t; € [8, 1 — §] for some § > 0. Recall that K is
given in (3.3). For all sufficiently large values of M, Lemma 3.2 and then the identity
(3.5) followed by the estimate (3.6) show that (/a) + (Ib) of (3.3) equals

(my —my+ 1)y —xy—1
(x1 —x2 = 1!

(t1 — )12

(x1 —x2 — D!

(Ia) + (Ib) = 1{m2>m|,x1>x2} (3.9)

M =D a4+ o).

= Yyt ,x1<x2)

Now we consider (II) in the form given in (3.4) following the change of variables.
Lemma 3.3 implies that as M — oo,

I' (—w) G(z +x2)

C+1)Gix1 —1—w)’

(3.10)
The convergence is uniform over compact subsets of w and z so long as w and z are
uniformly bounded away from the integers. For all large values of M the contours
of integration of (/1) become free of M, namely, z € C,[0,A; — x2) and w €
Cyl0,n + x1). The contours may also be arranged such that they remain bounded
away from the integers and |w + z 4+ x2 — x; + 1] > 1/10 throughout, say. This
implies that as M — oo, (M — D2+l o) converges to

—l % '—w)G +

: dz % dw (1 —1)" (1 —1n)* (—w) Gi(z + x2)
(27‘[1)2 FE+1)Gux —1—w)
C:[0,A1—x2) Cyl0,n+x1)

1
X .
(wH+z+x2—x1+1)

(M — D27 Ty (w, xy, 115 2, %2, 1) = (1— 1) (1 — 1)°

We have thus concluded that (M —1)*2~*1+1 K, converges to the kernel K, givenin
Theorem 1.5. Moreover, the estimates show that the converge is uniform over compact
subsets of Z x (0, 1). Indeed, so long at#1, #, € [§, 1 — 8] and |x1][, |x2| < B, the error
term in the convergence is of order Op s(M _1), by Lemma 3.3, because the double
contours eventually become free of M and the integrand converges uniformly over
the contours. Part (I) of Lemma 2.2 now implies that the rescaled process of jumps,
X ;Laled, converges weakly on Z x (0, 1) to a determinantal point process with kernel
as given in Theorem 1.5. O
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4 Bulk local limit of the jumps of Poissonized staircase shaped
tableaux

In this section we prove that the point process X, , from (1.5) converges weakly to
the point process Xegge from Definition 1.1. This is done in a two-step procedure.
First, we prove in Theorem 4.1 that the limit of X, , is a determinantal point process
whose kernel is given in terms of a double contour integral. Second, we identifying
this kernel with the one from Definition 1.1 in Proposition 4.3.

Theorem 4.1 The point process Xy, from (1.5) converges weakly to a limiting determi-
nantal point process Xegge 0n Z x Rx(. The correlation kernel of Xegge with respect to
reference measure #7,Q L(Rx>q) is given as follows. Foruy, uy € R>gand x1, x; € Z,

Kedge (X1, u1; X2, u2)
(up — up)1—=2~1

= 1{u2<u1,x2<x1} (X1 - 1)'

1 7 G(w;xy,uy) G(z; x2, u2)
- d dw = - , wh
+(2ni)2 f . % w2 wHz+x—x1+1 ere
C;[0,00) Cy[0,00)
uz
G(z;x,u) = “4.1)

I'(z+ Dsin(%(z+x2))

The contours C,[0, co) and C,[0, 0o) are unbounded, contain the non-negative inte-
gers but remain uniformly bounded away from them and are arranged such that
w + z + xp — x1 + 1 remains uniformly bounded away from 0. They may also be
arranged such that their imaginary parts remain bounded and C, contains C,.

The value of Kedge When uy or ua equals 0 is to be understood in the sense of the
limit as uy or uy tends to 0.

Proof The proof proceeds in two steps, each verifying the conditions of part (II) of
Lemma 2.2. First, we will show that the correlation kernel of &}, , converges to Kegge
uniformly on compact subsets of x;, x> € Z and u1, up € R.¢. Then we will argue
that points of &}, , do not accumulate on the boundary Z x {0} as n — oo.

Let B = +/1 — 2. Part (I) of Lemma 2.2 and Theorem 1.5 imply that the correla-
tion kernel of A&, ,, with reference measure #7 ® L(R>) is

u u
Kn(x1,u1; x2,u2) = (Bn) 'K, [x1 4+ cn, 1 — “Lix +cp, 1 — =L).
Bn Bn

The kernel (Bn)*' 2K, determines the same point process by Remark 2.1. Using
part (II) of Lemma 2.2 it suffices to show that (8n)*' ~*2 K,, converges uniformly over
compact subsets of Z x R. to Kegge as n — 00 in order to deduce convergence of
Xo,n t0 Xedge 00 Z X R .
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Let G,, denote the function 2"~'G A,» Where G A, is as in Theorem 1.5. Then

2"'T(z+n+1) T@+n+1) T+n+ )T (=42

)
= = — . (4.2)

Gn(2) =

Substitute in x; + ¢, for the variables x; and 1 — (,Bn)_lui for the variables #; in Ka,,.
Then,

Ky (xy,ur; x2, up)

(up — up)¥1 271 -
= 1(u2<u1.)(2<X|) m (ﬂn)xz i
T (—w) Gu(z + x2 4 c) uf u5 (Bn) ="~

1
(2mi) Frz+DHGu(xy—14+c¢—wy(w+z+x—x1+1)
C:[0n—1—=cp—x2)  CylOn—l+cp+x1)

(4.3)
Using the formula for G, from (4.2) and applying the identity
n—c,—2 .
ra—-y)ry)=-— , ye¢{0,—-1,-2,...}, to y= gives
sin(ry) 2
4.4)
Fr'z4+n+c,+1) T

Gp(z+cp) = - - - = . 4.5
") S T (5 s (500 - 2) “

The estimate for I" (z) from (3.6) along with the observation that n = ¢, = (1 +
a)n + O(1) — +oo implies the following asymptotic bevaviour as n — o0o. The
symbol ~ denotes a multiplicative term 1 + O (n~!) where the big O error is uniform
over z in compact subsets of C\Z.

n=+(c,+2) n=+cy, n=+cy, +3
(25 (5) (5

FTh+cn+z+D~Tm+cy) (n+c)* T 4.7

Therefore,

r (n +oe 4z 4+ 1) r (n+cs+w) r (n—cs—w)
l—-(n+62n+z)l—~(n7c2,,fz) Frnh+c,+w+1)

1l—«
~ 1 —w Z—Ww
<1+a> (1+a) n

= (Bn)*".
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Substituting in z 4 x7 for z and —w + x; — 1 for w in this estimate gives

Gz +x2+c) sin (3 (—w+x; —1—n—c,))
Gp(—w+x1 — 1 +cp) Sin(%(z—l—xg—n—cn))

(’Bn)ererxzfm +1 )

4.8)
The error in the above estimate vanishes as n — oo so long as w, z and the x; lie in
compact subsets of their respective domains. We also have that

Cme (T
s?n (5(n—cn — w)) _ 31.n (Fw) if n—c, iseven.
sin (32 — ¢, —w))  sin (52)

Since n — ¢, is assumed to be even we conclude from (4.8) that so long w and z are
bounded and remain uniformly bounded away from the integers then

1 Gz x5 —sin(F(w —x1 + 1)
Gpx1+cp —1—w) N sin (%(Z + xz))

nan;O (IBn)x1—x2+ . (4.9)

The above displays the pointwise limit of the part of the integrand from (4.3) that
depends on n. In order to interchange the pointwise limit with the contour integral
we must show that the integrand is bounded uniformly over n by a function that is
integrable over the contours z € C;[0,n—1—c, —x2) and w € Cy[0, n—1+4c,+x1),
also uniformly over n. Then we may apply the dominated convergence theorem.

Towards this end suppose z is such that (1) [N(z)] < 2n, (2) |3(z)| is uniformly
bounded over n, say by 100, and (3) z remains bounded away from Z by distance at
least 1/10. In this case Stirling approximation to the Gamma function implies that
modulus of the ratio of the L.h.s. of (4.6) to its r.h.s. is bounded above and below
by exponential factors of uniform rate in |9 (z)|. The same holds for the ratio of the
L.h.s. of (4.7) to its r.h.s. That is, for some constant C,

(ni(cm))
e~ C @D < 2 < C IR,

() - ()

cCWi@y [T tatzt D
T T (n+cp) - (n 4 )+t

< L IR@I+D

Throughout the following C denotes a constant that is free of n but its value may
change from line to line. We combine the estimates above with the equation for G, (z+
¢y) from (4.5) and observe that there is a C such that 1/C < |sin(n — ¢, —2)| < C
due to the assumptions on z. This in turn implies that there is a C such that

Gn(z+cn)
(Bn)?

e~ CUR@DIHD

< C @D,

The contours C,[0,n — 1 — ¢, — x2) and Cy, [0, n — 1 + ¢, 4+ x1) can certainly be
arranged such that for fixed x| and x> the variables z + x> and —w + x; — 1 satisfy
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the aforementioned assumptions (1)—(3) uniformly over n. Thus, we get the following
uniform estimate over n withz € C.[0,n—1—c,—x2)andw € Cy[0, n—1+c,+x1):

< (Bn)MEtwrt—xi+1 ,C (R@HR@I+D

‘ Gu(z+x2+cp)
Gy(—w+x; —1+c¢py)

The contours may also be arranged such that |w + z + xp — x1 4+ 1| > 1/10, say. Then
the modulus of the integrand of the double contour integral from (4.3) satisfies

(Bnyo— | LW Gt xa + ) uf i (B @.10)
Fz+DGpxi =1+ —w)(w+z+x2—x1+1)
r(- o
< 'M‘ ) 15 €€ (MOHHMLED,
F@+1)

Stirling’s approximation implies that if 9%i(z) > 1/10 and |3J(z)| remains bounded
then .
il _ o~ @) 1og R()+R (@) (logu+0 (1) @.11)
IT(z+ 1|

Applying (4.4) with y = —w also gives I' (—w) = —x[[" (w + 1) sin(rw)]~'. Note
that |sin(rw)|~' < C so long as w remains uniformly bounded away from the
integers. Combining this with (4.11) shows that the r.h.s. of (4.10) is integrable over
unbounded double contours C,[0, 0o) > z and Cy,[0, 00) > w as long as the contours
are arranged such that z, w remain uniformly bounded away from the integers, have
uniformly bounded imaginary parts, and z + w + x2 — x; + 1 remains uniformly
bounded away from 0. Thus, the limit (4.9), upper bound (4.10) and the dominated
convergence theorem implies that as n — oo

(B ™2 Ky (1, uts x2, u2)
(up — up)1—=2~1
(x1 —x2 — D!
1 —I' (—w)sin (Z(w —x; +1
*t o }ﬁ dz dwuiu; - - -(2(1 D)
(2mi) I'(z+ 1)s1n(2(z+x2))

- 1{u2<Lt1 X <x1}

C.[0,00)  Cyl0,00)
1
wHz+x—x+1

Furthermore, our estimates show that the convergence is uniform over x; in compact
subsets of Z and u; in compact subsets of R.. (In fact, when some u#; — 0 the
integral contributes only through residues at the origin. Lemma 4.2 computes the limit
as u; — 0.) Comparing the limit integrand with the one presented in (4.1) we observe
that the proof of the kernel convergence will be complete once it is shown that

s B (7/2)
—I' (—w) sin (E(w —x 1)) ~ T'(w+ Dsin (Fw +a1)
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From (4.4), —T' (—w) = [ (w+ 1) sin(rw)]~'. Also, sin(Z(w —x + 1)) =
cos(5 (w — x)). Finally, double angle trigonometric formulae imply sin(rw) =
2sin(%(w + x)) cos(%(w — x)). Substituting these equations into the Lh.s. of the
above verifies the equality with the r.h.s.

To complete the proof of convergence of Xy, ;, to Xegge On Z x R it is enough to
show, using Lemma 2.2, that for every x € Z,

lim limsup E [# Xon N ({x} x [0, e])] =0. 4.12)

€e~>0 nosoo

In other words, points do not accumulate at the boundary in the limit. From relation
(2.4) for determinantal point processes and (4.3) we get

E [# Xan N ({x} x [0, €])]
= /6 Ky(x,t;x,t)dt
0

1 % 4 T (—w) Gu(z + x +cu) (fy 1T dr) (Br)™0 7!
Z

~ @rip Fe+DGix =14+ —w)w+z+1)
C;[0,n—1—c,—x) Cyl0,n—1+c,+x)
1 % d T (—w) Gp(z + x + ¢y) €V FaF1 () —w=2-1
= — Z .
(2ri)? T+ 1D)Gu(x—14cy —w)(w+z+1)?
C.[0,n—1—cp—x) Cyl0,n—14+c,+x)

The quantity above is of the form €/, ,. Arguing exactly as in the derivation of
the limit kernel, /., — I., where I, is given by the double contour integral in the
definition of Keqge (X, €; x, €) from (4.1) but with an additional factor of w +z + 1 in
the denominator of the integrand. Indeed, €/, = foe Kedge(x,1; x, t) dt, which is the
expected number of points of Xegge on {x} X [0, €]. The quantity /. remains uniformly
bounded near ¢ = 0 since, as € — 0, the contribution to the integral that defines I,
comes from the residues at w, z = 0 and these residues do not depend on €. (See
Lemma 4.2 where lime_, o Kedge (X, €; X, €) is derived analogously.) Consequently,
€l — 0 as € — 0 and thus the condition from (4.12) holds. O

4.1 Integral representation of the edge kernel

We begin with an auxiliary lemma.

Lemma4.2 Let Cy[0, 00) and C,[0, 00) be contours as in the statement of Theo-
rem 4.1 and let G(z; x, u) be as in (4.1). Fort > 0 let

1 G(w; xq,t G(z; x2,t
(1) = —= ?{ dz jﬁ dw = . (w; x1, tu) G(z5 X2 uz)).
(2ri)? 2 wtztm-—x+1

C;[0,00) Cy[0,00)

Then,
2 cos(Fxi)cos(Fx2) .
im () =17 wo-mrr S Fn-l
=0 _l{xl even} lf x2 =x1 — 1.
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Moreover, I is continuously differentiable on R~ and can be differentiated by inter-
changing differentiation with the contour integration.

Proof The integrand of I is continuously differentiable in ¢. Observe that the contours
of integration contain no singularities of the integrand, and in fact, are arranged to
be a positive distance from all zeroes of sin(7 (z 4+ x2)) and sin(5 (w + x1)) in the
denominator. The estimate for |u®|/|I" (z 4+ 1) | from (4.11) shows that the derivative
of the integrand in the variable ¢ is absolutely integrable over the contours as long
as t lies in a compact subset of Rxo. Consequently, by the dominated convergence
theorem, / is continuously differentiable and the derivative may be interchanged with
integration.

Let us now consider the limiting value of /(¢) as t — 0. Decomposing C,, as
Cyl0, 1) U Cyl1, 00), and similarly for C,, gives

Cy C.[0] Cy[0] C:[0] Cyl1,00] C;[1,00] Cy[0] C:[1,00] Cy[1,00]

These four contours may also be arranged such that R(w + z) > 0 unless both
w € Cy[0] and z € C,[0]. Recall that

MZ

G(z;x,u) = [ (z+ 1)sin (%(Z +x)).

Thus, the integrand of 7(¢) converges to 0 as ¢+ — 0 so long as w ¢ C,[0] and
z ¢ C,[0]. So each of the double contour integrals above except for the first has a
limit value of 0 as ¢+ — 0 (the limit operation may be interchanged with integration as
argued above). To complete the proof it suffices to calculate

7 G(w;xy, tur) G(z; x2, tuz))

1
lim —— % dz dw — - . (4.13)
t—0 (2mwi)? 2 wHz+x—x+1
C:[0]  Cwl0]

The integral above is evaluated via residues at w = Oand z = 0. If xo # x1 — 1
then (4.13) equals

2) G(w; x1, tuy) G(z; x2, t 2 cos (Zx;) cos (Zx
Res.—o (Reswz()((ﬂ/ ) G(w; x1, tur) G(z; x2 uz))) _2 (5x2) cos (3 1).
wH+z+x—x1+1 T xp—x1+1

This is the limit value of /(z) in the statement of the lemma for x, # x; — 1.

Now consider the limit (4.13) in the case x; = x; — 1. As the contour C,,[0] can
be arranged to be contained inside C[0], the integral in w equals the residue of the
integrand at the only possible pole at w = 0. This equals

Res <(n/2> G (w; x1. tu1) G(z: x2, m)) _cos(Fx1) (tug)*
w=0 w+z 2D+ Dsin (@ +x)
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If x1 is odd then the above equals 0. Otherwise, cos((r/2)x1) = (—=1)*1/2 and the
integral of the above over C,[0] is given by its residue at the pole z = 0 (note that
sin(%xz) # 0 since xp = x1 — 1 is odd). The residue equals

cos (Zx1) (tuz)* cos (3x1)
Res;—o ; = — =—1.
zI'(z+ 1) sin (%(Z + )Cz)) sin (%xz)

Thus, if x, = xo — 1 then (4.13) equals —1(,, even) and this completes the proof. O

Proposition 4.3 The kernel Keqge has the following form.

Kedge(xl, ui; X2, u2)
0

2

X2—X1 il 4 : .
— t cos (fu; + Exl cos (fur + Exz dt, if xp > x1;
T

— 1
00

2

T T
—— / 271 ¢cos (tul + —x1> cos (tuz + —xz) dt, if x; < xj.
T 2 2

1

Proof Fort > 0 let

o (up —up)1 21
f(t) = Kedge(xl, tuy; X2, tug) = 2 11{u1>u2,x1>x2}— + 1(1),
(x1 —x2 — 1!

where 1(¢) is as defined in Lemma 4.2. By Lemma 4.2, f is continuous differentiable
on R-¢ and the function *2~*1+1 (1) may be differentiated by interchanging differ-
entiation with integration. Differentiating 72~ £(¢) and clearing common powers

of ¢ gives
1 T
d dw —
2ni)? ?{ - 7§ Y2

C.[0,00)  Cy[0,00)
-G (w; x1, tur) G(z; x2, tuz))

N f dw G(w: x1. tuy)
=2 2mi AW AL T
Cy[0,00)

(o—xi+ D f+tf' =

1

S % dz G(z; x2, tuz)).
2mi

C;[0,00)

The contour integrals can be evaluated by summing over residues of G. Inside
the contour C,[0, oo], the function G(z, x, u) has simple poles at integers z such
that sin(7(z + x)/2) = 0. In other words, z has to have the same parity as x. Let
X = 1{x0dqy- The residues of the integral come from integers z = 2k + x for k > 0.
Since Resy—o (sin(rry/Z)_l) = Q2/m)(— 1, summing over the residues gives
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x+x

1 (tu)? 2= B p (tu)Hx
— f d == Mo

w
27i ['(z4+ Dsin(Z(z +x) 2k + x)!
C.10,00 (2 ) k>0
2= F .
= ———cos (ut — —x)
/4 2
2 T
= — Cos (ut + —x) .
b4 2
Consequently,

2
(2 —x1+ D f@)+tf'(t) = = cos (ult + %xl) cos (uzt + %xz) . (4.14)
T
Multiplying (4.14) by t*27*1 then implies that
2
[P H f) = Z 20 cos (ult + le) cos (uzt + zxg) . (4.15)
b4 2 2

For xo > xi, the rh.s. of (4.15) is integrable over ¢ in [0, 1]. Moreover,
20+ (1) — 0 ast — 0 because lim,_o f(r) = lim,_o I(r), and the latter
limit is finite whereas r*2~*111 — ( as 7 — 0. Therefore, (4.15) implies

2 1
fa) = —/ t*27*1 cos (ult + le) cos (uzt + zxz) dt.
T Jo 2 2

Next, consider the case x; < x; — 1. Now the relation from (4.15) should be
integrated from 1 to oo, which is convergent since x, — x1 < —2. The formula follows
so long as lim;_, o0 £*27°171 £(¢) = 0. Rather than derive this limit we take a slightly
indirect approach by considering the limit of f(¢) near ¢t = 0. For ¢ > 0 define

2 . b4 b4
g(t)y=—— s cos (ulst + —xl) cos (uzst + —xz) ds (4.16)
T J1 2 2
2 o
= = -l / s cos (uls + le) cos (uzs + zxz> ds.
b4 ! 2 2

Upon differentiating g it follows readily that g satisfies the same differential equation
as f displayed in (4.14). Therefore, f () = g(¢) + C for some constant C. In order to
identify C as zero it suffices to show that lim;_,¢ f () — g(¢) = 0. Since =l
ast — 0,duetoxy < x1 — 1, both f(¢) and I(¢) have the same limit as + — 0. Thus,
utilizing Lemma 4.2, showing C = 0 amounts to proving

(1) cos (5x2)
xo—x1+1

. 2 cos
lim g(t) = —
t—0 T
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The limit of g(¢) can be found using L"Hospital’s rule, which shows that

-2 [ 5% cos (u1s + S x1) cos(uzs + Fx2) ds
tx2_xl+1

2 27X ¢og (ult + %xl) cos (uzt + %xz)

li t)=1
[ 80 = iy

=lim &

=0 (x2 —x1 + 2=
_ 3 cos (%)q) cos (%xz)

T x2—x1+1 '

We conclude that g(t) = f(¢) for t € R., and in particular that f(1) = g(1), as
required.

Finally, consider the case x; = x; — 1. The r.h.s. of (4.15) is continuous for # in [0, 1]
because one of cos(ut + %xl) or cos(uot + %xz) has a zero at t = 0 depending upon
the parity of x. From Lemma 4.2, lim;_,¢ f(#) = 1{4;>u,} — 1{x; even}. Therefore,
(4.15) implies that

T T
f) = 1{u1>u2 - l{x] even} + _/ COS (Mlt + Exl) Ccos (le‘ + Ex2> dt.

4.17)
We now express (4.17) as an integral over ¢ € [1, 0co) as given in the proposition.
First, note Kegge may be modified on the measure zero set consisting of (x1, u1; x2, u2)
such that 1 = u without changing determinants in (2.4), and thus, this does not
affect the law of Xyqge. We will modify the kernel on this zero set after the following
calculations to get the form given in the proposition.
Observe that cos(uat + 5 x2) = sin(uzt + 5 x1) if xo = x1 — 1. Using trigonometric
formulae the integrand of (4.17) becomes

2cos (uyt + Zxi) sin (uar + 5x1) _ [ S‘“((”‘Jr“)t)*““((”z “DD x| even

—%lﬂ((ul-i-uz)t)%m((uz ul)t) x1 odd.

wt prem

(4.18)

Using the fact that | o0 “n’ = 7, we get that fora € R,

1. Ial . o0 1
/ sin(at) i — sgn(a)/ Lntdt _ sgn(a) _/ sin(at) dr. (4.19)

Using (4.19) and the representation of the integrand in (4.18) we infer that if x is
even then

2 ! _ T . T
1{u1>u2} — 1{x1 even} T — t " cos (ult + —X1> sin <u2t + —X1> dt
T Jo 2 2

sgn(uy + uz) + sgn(uz — uy)

=y >upy — 1+ )
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wt

1 1+ l{ulzo}
= —Hur=uz} T

b4 . b4
— —/ ! cos u1t + Exl) sin (uzt + EXI) dt.

B /OO sin((u1 + u2)t) + sin((uz — uy)t) d
1

This shows that (4.17) equals the expression given in the statement of the proposition

for xo = x; — 1 and x; even except for the additive term —1y,,— uz}(Hl =0} ). By
modifying Keqge on the zero set {uy = u2, x2 = x1 — 1, x1 even} we may ignore this
term.

For x1 being odd we argue in the same manner as above to infer that (4.17) equals

2 ! 9 T . T
1{u1>u2} — 1{x1 even} T — t " cos (ult + —X1> sin <u2t + —xl) dt
T Jo 2 2

sgn(uy + uz) + sgn(uy — uz)

= Ly >u) — )
/‘X’ sin((u + up)t) + sin((u1 — u2)t)
+ d
1 Tt
1, = 2 (> . T
= _lu=w>0 2 / t~'cos (ult + le) sin (uzt + —x1) dt.
2 T Ji 2 2
Once again, we modify Kegge On the zero set {u; = wuz,x2 = x1 — 1, x; odd} to
ignore the additive term —%l{ulzupo} and get the expression of the kernel given in
the proposition. O

4.2 Statistical properties of Xoqqe

This section derives certain properties of Xgqge, namely, Propositions 4.4, 4.6, Lem-
mas 4.8 and 4.9, that will be used to derive the local limit of staircase shaped tableaux
and of sorting networks.

Proposition 4.4 The process Xeqge has the following statistical properties.

1) Translation and reflection invariance: For any integer h the translated process
Xedge + (2h,0) = {(x +2h, u) : (x,u) € Xedge}
and the reflected process
(=1, 1) * Xegge = {(—x, u) @ (x, u) € AXeqge}
have the same law as Xeqge.
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II) One dimensional marginals: For any x € Z and uy, uz € Rxq,

sin(u — uy) sin(u; + up)
Kedge (X, u1; X, ) = ———— + (=) ————

. (4.20)
7 (U — uy) 7 (g + uz)

Therefore, Xegge N ({x} X Rx0) is a determinantal point process with reference
measure L(R>o) and correlation kernel (4.20).

Proof Part I) From Lemma 2.2 the correlation kernel of Xeqge + (21, 0) equals
Kedge (X1 —2h, uy; x2—2h, uz). The integral representation of Kegge in Proposition 4.3
implies that

Kedge(x1 — 2h, uy; xo — 2h, uz) = Kedge(x1, u1; X2, u2)

upon observing thatcos(x+mh) = (—1 Y cos(x), which implies that the integrands do
not change after the kernel is transformed. Consequently, the translated point process
has the same law as the original. Similarly, the correlation kernel for the reflected pro-
cess 18 Kedge (—x1, t1; —x2; u2) = (=)™ 72 Keqge (X2, u2; X1, uy). The latter kernel
defines the same determinantal point process as Xegge in law.

Part II) Proposition 4.3 gives that

/1 T T

cos (tu1 + —x) cos (tuz + —x) dt

0 2 2
<sin(tu1 — tus) n sin(tuy + tup —{—er))

Uy — u U+ up

(sm(ul —u7) PP sin(u; + u2)> '
Uy — un uy+u

Kedge (X, u1; x, u2) =

t=1

t=0

Sl— S]— 2w

The fact hat Xegge N ({x} x Rx) is determinantal with kernel as stipulated follows
from the relation (2.4) for determinantal point processes. O

Lemma 4.5 There is auniversal constant C such that forx, xo € Zanduy, uz € R>g,

C
max{|x; — xa, [ug —u2} + 1

|Kedge(xl,u]§x27 uz)| < 4.21)

Proof Throughout this argument C denotes a universal constant whose value may
change from line to line. We begin with the case x; # x; — 1. From the integral
representation of Kedge We see thatif x, > x; then

1
/ 27 cos (tul + le) cos (tuz + zx2> dt
0 2 2

(4.22)

2

|Kedge (X1, u1; X2, u2)| = p

IA

1
2 / g C
T Jo T lx— x| +1
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Similarly, if x, < x then x, < x; —2 and

2| T T
| Kedge (X1, u1; X2, u2)| = — 27 cos (tu1 + E)q) cos (tuz + Exz) dt
T |J1

(4.23)
C
<—.
[x2 —x1|+1
Combining these bounds we deduce that if x, # x; — 1 then
4.24)

| Kedge (X1, u1; X2, u2)| < ————.
¢ [x1 — x| +1

Now we consider decay in the u-variables, assuming that x, # x; — 1. Define v(z)
as

sin (tul —tuy + 5 (x1 — xz)) sin (tul +tuy + 5 (x1 + xz))
7 (uy — uz) Uy + u2)

if Uy # us
v(t) =
t cos (%(xl — x2)) N sin (tu1 +tuy + 5 (x1 + xz))

ifuy = uy.
7T (U1 + uz)

Then v/'(¢) = %cos(rul + Zx1) cos(tuz + % x2). Using that | sin(y)/y| < 1, and the
formula for v(¢), we observe that there is a C such that

C
v(t)| < —— if |up —uz| > 1. 4.25
|()|_|u1_u2|+1 luy —uz| = (4.25)
Applying integration by parts to the integral form of Keqge gives, for xp > xi,

1
Kedge (X1, u1; x2, u2) = v(1) — v(0)1x;=x,) _/0 (x2 —x1) 27 L) dr.

Now the triangle inequality and (4.25) imply that if |u; — u| > 1 then

C Clx2 — x1] bl
[Kedge (X1, u1; X2, u2)| < + /t” T de
coee gy —uz| + 1 Juy —uz[+1 Jo
2C

<—
luy —us| + 1

If ju1 —uz| < 1, then we use the bound (4.24) to reach the same conclusion as above.
An entirely analogous bound holds when x; < x; because then x, < x; — 2, and
271 is integrable over ¢ € [1, 00). Therefore, for xo # x1 — 1,

[Kedge (X1, u1; X2, u2)| < i (4.26)

—I/l2|+1.

@ Springer



Random sorting networks: local statistics via random...

Combining (4.24) with (4.26) implies the required inequality (4.21) for x # x; — 1.
The case x, = x1 — | requires some care. The representation (4.18) for the integrand
of Kedge (X1, u1; x1 — 1, up) gives

2 [ T . g
Kedge(x1, 113 x1 — 1, u2) = - 1t~ cos (tul + EXI) sin (tuz + Exl) dt
1

(4.27)
_ /OO (=D sin(@) +u2)t) +sin(@wz —up)t)
— wt '
Integration by parts and the triangle inequality imply that fora > 1,
/00 it sin(at) _ cos(a) B /oodt cos(gt) - E
1 t a 1 at a
For 0 <a < 1, we have
00 : 1 : 1
f dt sin(ar) =Z_ / dt sin(ar) <C +/ dta < C.
1 t 2 0 t 0
Together, these bounds imply that for a € R,
% sin(at C
/ ar 3D | . (4.28)
1 t |a| +1

Separating (4.27) naturally into two integrals and applying (4.28) implies that

| Kedge (X1, u1; x1 — 1, u2)| < ————.
# [y —uz| + 1

This establishes (4.21) for the case xo = x; — | and completes the proof. O

Spatial ergodicity of Xeqge For h € 7Z, denote by " the translation that maps (x, u) —
(x 4 2h, u) for (x,u) € Z x Rxp. So Xegge is invariant under the action of every h
by Proposition 4.4. An event E associated to Xeqge is invariant if for every h € Z,
E = t"E, where t"E = {th(a)) w € E} and rh(a)) is the action of t” on a sample
outcome @ of Xedge. The invariant sigma-algebra of A is the sigma-algebra Finy
consisting of all the invariant events.

Proposition 4.6 Xeqe is ergodic w.r.t. spatial translations in that if E € Finy then
P[E] € {0, 1}.

Proof For A C Z x Rxq, let 7 (A) = 0 (Xeqge N A) be the sigma-algebra generated
by the points of Xygge restricted to A. For A, B C Z x Rxo, let

dist(A, B) = inf { max{|x — y|, |u —v[} : (x,u) € A, (y,v) € B}.

@ Springer



V. Gorin, M. Rahman

For k > 1, suppose f : (Z x R=¢)¥ — R is continuous and compactly supported.
Let

N(f) = > VACS R GEREERE S /OR

(1,110, (X ) € Xedge
(x;,u;) all distinct

Now suppose f,g : (Z x Rzo)k — R are continuous and compactly supported
such that there are disjoint subsets A, B C Z x R with support(f) C AK
and support(g) C BX. This implies that if (x1,u1; -+ ; Xk, ux) € support(f) and
(Xk+1, Uk+1; =+ + 5 X2k, U2k) € support(g), then (x;, u;) # (X4, uk+;) for every
1 <i,j < k. We first show that in this case

(2k)1C%

EININ@I=EINOIIEINGI = g5

Al gl (4.29)

where C is the universal constant from Lemma 4.5 and || f||; is the L'-norm of f
with respect to (#7 ® L(Rx0))®.
Indeed, the assumption on the supports of f and g imply from (2.4) that

E[N(fIN(®] = f det[Keage (xi, uis xj, uj)li<i j<or fx1, urs - 5 Xk, ug)
(ZXREO)M

®2%
X G(Xq1, Ukt1: -+ 5 Xok, uzk) d(#z ® LR=0)) "

Let us expand the determinant of the (2k) x (2k) matrix above as a sum over all permu-
tations. We break up the permutations into two types: permutations that map the subsets
{1,...,k}and {k + 1, ..., 2k} into themselves and those that do not. When summed
over permutations of the first type the integral above equals E [N (f)]E[N(g)]. For
a permutation o of the second type, observe that there are two indices i and j, with
i <kandj > k,suchthat (i) > k and 6 (j) < k. Then for £ € {i, j}, Lemma 4.5
gives

C
max{|x; — Xo )l [ue — us@yl} +1
C
R
= 1+ dist(A, B)

[Kedge (X¢, Ue; Xo(e)> Uo(0)]

For all other indices ¢ we have |Kedge(X¢, 5 Xq(0), Uo(r))| < C. Consequently,
the term involving o contributes at most C%*=2(1 4+ dist(A, B))"2 in absolute
value to the determinant above for every (xi,uy;---; Xk, ur) € support(f) and
(Xk1, Ukt15 - - 5 X2k, Uk) € support(g). Since there are (2k)! — (k!)2 such per-
mutations o, we conclude that
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[EIN(HN@]—EIN(HIE[N (]

(2k)1C%* 2%
< m / |fg|d(#Z®£(Rzo))®
’ (ZxRx0)%

(2k)1C%k
= IstA B 11 INAINIF4IFE
Let .#¥(A) be the sigma-algebra generated by the random variables N ( f), where
f : A¥ = R is continuous and compactly supported. The bound (4.29) implies that
if A and B are disjoint, X is . & k(A)-measurable and Y is .#* (B)-measurable, then,

(2k)1C2k

|]E[Xy]—E[X]E[Y]|SW

ENXITE[NY]]. (4.30)

The bound in (4.30) implies ergodicity of Xeqge as follows. Let E € Finy. Given
0 < € < 1, we may choose anevent E’ € ﬁk([—n, n] x Rxg), for some k and n, such
that P[EAE'] < €. Since Xeqge is invariant under t”, we have that P[t" EAT"E'] =
P [E AE’ ] for every h. Therefore by the triangle inequality,

P [E’ n rhE/] —P [E n thE] | <P[E'AE] +P [rhEArhE/] < 2e.

Due to invariance of E this implies that [P[E' N t"E'] — P[E]| < 2e.

Set h = n+m foranintegerm > 1. Then t" E’ € Z*([n+2m, 3n+2m] x R>o).
We now apply (4.30) with A = [—n, n] X R>p and B = [n 4+ 2m, 3n 4+ 2m] x R>o,
observing that dist(A, B) = 2m. Since P [thE’] =P [E’] by translation invaraince,
we infer that

2k)1C%*
‘IE” [E’ n thE/] - IE”[E’]Z‘ RGO
4m?
Since |P[E'] —P[E]| < €, we conclude that
2k)1C%*
PLEI-PLEP| < B2 4 se
4m?
Letting m — oo followed by € — 0 shows that P[E] =P [E 12, as required. m]

Remark 4.7 The proof above may be used to deduce that Xeqge is in fact space-time
mixing.

Lemma 4.8 Almost surely, Xegge has an unbounded collection of points on every line

{x} x R>o. In fact, the following holds. Let Ny (t) = #(Xedge N ({x} x [0, t])). For
every x, the sequence Ny (t)/t — 1/ in probability as t — o0.

@ Springer



V. Gorin, M. Rahman

Proof Fix x € Z. Using part (II) of Proposition 4.4 we see that for any interval
[as b] C RZO:

bh— —1)* 2b :
a D / du 2431
T 2

b
E[Ny([a,b])] = / Kedge(x, u, x,u) du = +
a 2 a u

Observe from (4.31) that E[N,(t)/t] = 1/7 + O(1/t) ast — oo.
From (4.20) we see that Kedge (X, u1; X, u2) is symmetric in the variables u; and
uy. Thus,

2
p(ur, uz) := Kedge(x, t1; X, u2) Kedge (x, t2; X, u1) = Kedge(x, u1; x, u2)” > 0.

From the relation (2.4) for determinantal point processes we have that

t t
E[Ne(®) - (N2 (1) = D] = /O /0 det{ Keage (¥, 1475 %, 1 )]i.j1.2 durdis

t 2 t pt
= </ Kedge(x,u;x,u)du> —/ / p(uy, ur)durduy
0 0 JO

<E[N:(0]*.

This inequality implies that Var (N, (¢)) < E [N, (¢)].Since E [N, ()] = (t/7)+0(1),
Chebyshev’s inequality implies that for any € > 0,

-y -2
€“t

t 4
This provides the claimed convergence in probability.

Convergence in probability implies that there is a sequence of times 7, — o0 such
that Ny (tx)/tx — 1/ almost surely as k — oo. This in turn implies that there is an
unbounded collection of points of Xeqee 0n {x} X R>( almost surely. An union bound
over x provides the claim in the lemma. O

Lemma 4.9 The following event occurs almost surely. For every t > QO there exists a
doubly infinite sequence of integers x;, i € Z, such that Xegge contains no points on
each of the segments {2x;} x [0, t].

Proof By monotocity and an union (or rather intersection) bound over rational values
of ¢, it suffices to show that the event occurs almost surely for every fixed r > 0. Given
a fixed ¢, let X; be the indicator of the event that Xgge has no points on {2i} x [0, ¢].
It suffices to show that almost surely infinitely many of the X;s equal 1 for i > 0.
Then, reflection invariance of Xedge and another union bound imply that almost surely
a doubly infinite collection of the X;s are equal to 1, as required.

Due to translation invariance of Xedge the sequence X;,i = 0,1,2,..., is sta-
tionary in that (Xo, X1, ...) has the same law as (X1, X», ...). It is also ergodic by
Proposition 4.6. Therefore, by the Ergodic Theorem,
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Fig.9 Black dots depicts cells of Axo. Rows and columns are lines that start at even integers and go in the
directions (—1, 1) and (1, 1), respectively. The region bounded by the red lines is the embedding of Ag into
Ao

n—1
lim —ZX,- = P[Xo = 1], almost surely.
n—-oo n =

The probability that X = 1 is the probability that Aegee has no points in {0} x [0, ¢].
This is strictly positive by (6.2) below. As a result, an infinite number of the X;s equal
1 whenever the limit in the above holds. O

5 The local staircase shaped tableau

The local staircase shaped tableau, henceforth, local tableau, is a random function on
Aooz{(x,y)GZZ:yZO,xEy(m0d2)}. (5.1)

Figure 9 provides an illustration. The rows and columns of Ay, are given by the
diagonal lines

row 2x = {(2x —k, k) 1 k > 0}, column 2x = {(2x +k, k) : k > O}.

In order to define tableaux on A, and their convergence, we first explain the topol-
ogy on [0, oo] since tableau entries will take values there (we allow the value co). The
topology on [0, oo] is the usual topology on R extended in the natural way by stip-
ulating that a sequence converges to oo if its values diverge to oo, possibly stabilizing
to the value co. In this case we will say that the sequence grows fo co. For example,
1,2,3,4,... grows to oo, as does 1, 00, 2, 00, ..., as well as 1, oo, 00, 00, . . ..

A tableau is a function T : Ay — [0, oo] such that it satisfies the tableau con-
straints

@ Springer



V. Gorin, M. Rahman

DTx,y) <min{T(x—1,y+1), T(x+1,y+ 1)} forevery (x,y) € Axo.
(5.2)

1) Along every row and column of 7' the entries grow to co.
The YD A, embeds into Ay via (i, j) € Ay = (j—i—1{0ddp, n—1—J) € Axo.

This is a rotation that puts row r of A, onrow 2(|n/2]| —r) of Ax; see Fig. 9. In this
manner any PYT T of shape A, embeds as a tableau Fr : Ay, — [0, 0o] by setting

FT(-xvy)
=T (5] - 5] ) i (5] -5 5]+ ) € An
B 00, otherwise.

(5.3)

By an abuse of notation we denote Fr by T.

We say that a sequence of tableaux 7, converges if there is a tableau 7 such that, in
the aforementioned topology on [0, o], T, (x, y) — T (x, y) for every (x,y) € Ax.
Note we stipulate that a limit of tableaux remain a tableau.

A random tableau T : Ao, — [0, 0o] is a Borel probability measure on tableaux
with respect to the topology above. Convergence of a sequence of random tableaux
means weak convergence with respect to this topology.

5.1 Bulk local limit of staircase shaped tableaux

Section 2.3 describes how PYTs of a given shape are in bijection with ensembles of
non-increasing and non-intersecting paths whose initial positions are given in terms
of the shape. We describe the bijection explicitly for tableaux defined on A as it will
be useful in the proof of the local limit theorem.

Consider an ensemble of paths {p(2x, u)}, for x € Z and u € R, that satisfy the
following.

D px,) :Rsop = Z + % is left continuous, non-increasing with p(x, 0) = 2x + %

5.4
(II) p(x,-) are non-intersecting: p(x,u) > p(x — 1,u) forevery x € Z, u € Rxy.
(IIT) The jumps of the paths as defined by (2.3) is a discrete subset of Z x Rxg.

For a tableau T : Ax — [0, oo], paths satisfying (5.4) are obtained by setting
px,u) =2x + % forO <u < T(2x,0),and for k > 1,

px,u)=px,0)—k if TCx —k+1,k—1)<u<TQ2x —k, k).
In other words, p(x, -) is left continuous and decreases by integer units at times indexed
by row 2x of T. The paths are non-intersecting due to the columns of 7' being non-

decreasing. Indeed, p(x,u) — p(x — 1, u) =2 + Ny_1(u) — Ny (u), where Ny (u) is
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the number of entries of 7' on row 2x with value at most u. Due to the columns being
non-decreasing, Ny_1(u) > Ny(u) — 1, and thus, p(x,u) — p(x — 1,u) > 1. The
jumps of the paths form a discrete set due to the rows and columns of 7" growing to oo.
When a row entry equals oo then the corresponding path jumps only a finite number
of times.

Let X denote the jumps for the ensemble of paths associated to a tableau 7" on A .
The jumps can be read off from 7 in the following manner. For every x € Z, the jumps
on the line {x} x Zx( are the entries of T whose cells have first coordinate x in Ax.
More precisely, if u is the k-th smallest point of X on {x} x R then

w=T(x, 2k =1 = Lxeven))- (5.5)

If there are less than k points on {x} x Rxg, there is no such « and the tableau entry
above equals oo.

To see this, observe that u is the time when the path starting at initial position
(x + %) + 2k — 1 — 1y even) jumps for the (2k — 1y eyeny)-th time. Indeed, this is the
k-th path starting at or to the right of position x + % and it hits position x — % after
jump number 2k — 1y even). The first k& jumps on {x} x R~ are the times when the
first k paths starting at or to the right of position x + % hits position x — % Also, when

there is no such u it means that the path starting from (x + %) + 2k — 1 — 1y even) has

c . . .- 1
exhausted its jumps and it does not get to position x — 5.

Let M7_, x denote the map from tableaux defined on A to jumps of paths satisfy-
ing (5.4). This map is invertible with the inverse given by the relation (5.5). Namely,
T (x,y) is the [(y + 1+ 1y even})/Z]—th smallest jump of X on {x} x R with the
convention that 7'(x, y) = oo if no such jump exists. Let Mx_, 7 denote the inverse
map.

Lemma 5.1 The set of jumps of paths satisfying (5.4) is closed in the topology on
discrete subsets of Z x R>o. The map Mt_, x is a homeomorphism from the set of
tableaux on A to the set of jumps of paths satisfying (5.4), with inverse given by
Mx 7.

Proof The maps My_, x and Mx_, 7 are inverses by design. We must show that they are
continuous. We begin with continuity of M7_, x. Let T,, be a sequence of tableaux such
that 7,, converges to a tableau To,. Let X;, = M7 x(T;;) and Xoo = M7 x(To).
Recall from Sect. 2.4 that convergence of X, to X, requires that for every x € Z and
k > 1, the k-th smallest point of X, on {x} x R0 must converge to the corresponding
point of X, while accounting for the case that there may be less than k points.

Let y = 2k — 1 — 1y even). Then, by (5.5), T,,(x, y) is the k-th smallest point of
Xy, on {x} x R>¢ and similarly for T (x, y). There are two cases: Too(x, y) < 00
or Too(x,y) = oo. In the former case, the k-th smallest point of X,, on {x} x Rxg
is eventually finite and the same for X,,. Moreover, we have convergence of these
points since T, (x, y) — T (x, y). In the latter case, given any bounded subset of
{x} x R>p, the k-th smallest point of X,, eventually escapes the set or is non-existent
due to T, (x,y) — oo. This is as required since X, has no k-th smallest point on
{x} x Rxo. This proves that M7_, x is continuous.
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Now we show that the set of jumps of paths satisfying (5.4) is a closed set in the
space of discrete subsets of Z x Rx¢, as well as that that M y_, 7 is continuous. Suppose
X, is a sequence of such jumps sets and that it converges to a discrete subset X .

Let T, = Mx_.1(Xy). First, we show that T, (x, y) converges for every (x, y) €
A Indeed, T, (x, y) is the k-th smallest point of X,, on {x} x R fork = (y + 1+
1{x even))/2. Therefore, convergence of X, to X implies that 7,, must converge to
some function T, : Aso — [0, 00]. Note that T (x, y) = oo if and only if X has
less than & points on {x} x Rxp.

The function T, is a tableau because the tableau inequalities from (5.2) continue
to hold in the entry-wise limit, and the rows and columns will grow to co due to X
being a discrete set. Thus, consider Xoo = M7 x(Tao). By the first part of the proof,
X, — )A(OO. But then, )A(oo = Xoo because limits of discrete subsets of Z x Rxq are
unique. This shows both the closure property of sets of jumps for paths satisfying (5.4)
and the continuity of Mx_,r. O

We now state the local limit theorem for Poissonized staircase shaped tableaux in
the bulk. For o € (=1, 1), let ¢, = 2(| %] — [%2% ). For a PYT T having shape
A,, embed it as a tableau on A, according to (5.3) and consider the rescaled tableau
Tu.n : Aso — [0, oo] defined by

Tun(x, ) =vV1—a2T(x+cpy, ). (5.6)

Let 7, be a uniformly random PYT of shape A, and denote by 7, the random
tableau associated to 7T, by (5.6).

Theorem 5.2 The sequence of random Poissonized tableaux Ty, , converges weakly to
a random tableau Teqge. Moreover, the law of Teage is Mx 1 (Xedge)-

Proof Observe that |c, —an| < 2 for every n. With this choice of ¢,, the jump process
associated to 7, , has law X, , from (1.5) because these jumps are simply the jumps
of T, rescaled onto Z x R as in (1.5). Theorem 4.1 asserts that X, , converges
weakly to Xegge. Due to being a weak limit of the jumps of ensembles of paths
satisfying (5.4), Xedge is also almost surely the jumps of such an ensemble of paths by
the closure property given in Lemma 5.1. The continuity of Mx_, 7 then implies that
My _,7(Xy,,) converges weakly to Mx _, 7 (Xeqge). Therefore, To.n converges weakly
to a random tableau ’Tedge having the law of Mx _, 7 (Xeqge). O

Bulk local limit theorem for random staircase shaped SYT Recall Ta, denotes a
uniformly random SYT of shape A, and N = (}). Consider the rescaled tableau

TG ))

TS (i, j) = 5.7
A, s J) Nl (5.7

Theorem 5.3 The random tableau TrASi converges to Tegge in the bulk local limit, that
is, under the embedding and rescaling from (5.6).

Proof Consider the following coupling between Ta, and 7a,. Given T, ,, indepen-
dently sample P(1y < Pp) < --- < P(y) according to the order statistics of N
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i.i.d. random variables distributed uniformly on [0, 1]. Insert the entry P into the
cell of A, that contains entry k of Ta,. The resulting tableau has the law of 7x,.
Using this coupling, and due to the manner the scaling from (5.6) is defined, it suffices
to show the following in order to conclude that TrAS’i converges to Teqge by way of
Theorem 5.2.

Fix an L > 0 and consider any (x, y) € Ay such that (x, y) € [-L, L] x [0, L].
Let P be the entry of 74, inside (x, y) under the embedding from (5.6). Then as
n — oo, we need to show that

k
n|Puy — o 0 in probability. (5.8)

The number £ is random, its distribution depends on T as well as n and «.

In order to establish (5.8) we will use the following auxiliary fact, which is a
byproduct of [5, Theorem 11]. There is a number §,, of order o(N) as n — o0, such
that with probability tending to 1 as n — oo, every entry of T, within the cells of
Aso N[—L, L] x [0, L] under the embedding (5.6) has value at least N — §,,. As a
consequence, k > N — §, with probability tending to 1. We write

[

For a fixed deterministic j, P(;) has a Beta distribution with parameters j and
N + 1 — j, which has mean j /(N + 1) and variance

2

Py —

€ <"2E P £ ‘k>N b
> _— _—_— —
€2 N - "

+P[k < N — §,]. (5.9)

N +1

zllp i Pl iwN+1=)
(V) - 2 :
N+1 (N +D(N+2)
Since the P(j)s are independent of T, employing the bound above for j > N —§, and
summing over the probabilities of k give
2 5,

‘kzN—(Sn:|§m.

k
EU% TNl

The latter quantity is of order o(1)/N as n — o0. Since N = (g) we conclude that
both terms on the right hand side of (5.9) tend to 0 as n — oo. O

Statistical properties of the local staircase shaped tableau The set Ay, can be made
into a directed graph by putting directed edges from each vertex (x, y) € A to the
vertices (x — 1, y + 1) and (x + 1, y + 1). The automorphisms of this graph consists
of translations ¢y, for h € Z, given by ¢, (x, y) = (x 4+ 2h, y), as well as a reflection
¢_ given by ¢_(x, y) = (—x, y). Tableaux are preserved by these automorphisms.
A random tableau T is translation invariant if T o ¢, has the same law as T for
every translation ¢,. The random tableau is reflection invariant if T o ¢_ has the same
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law as T. The translation invariant sigma-algebra of T is the sigma-algebra of events
that remain invariant under every translation:

Zinv = {Events E associated to T s.t. o E = E forevery h € Z.} .

(Recall that ¢, E = {wo ¢, : w € E}.) We say T is ergodic under translations if .Fj,y
is the trivial sigma-algebra.

Proposition 5.4 The local tableau Teqge has the following statistical properties.

(1) Almost surely, Tedge (x, y) is finite for every (x, y) € A and the entries of’Tedge
are all distinct.

(2) The law of Teqge is both translation and reflection invariant.

(3) Tedge is ergodic under translations.

(4) Almost surely, for every t > 0 there are infinitely many positive and negative
X € Z such that Teqge (2x, 0) > t.

Proof Almost surely, Xeqge has an infinite and unbounded collection of points on every
line {x} x R>o by Lemma 4.8. Also, almost surely, Xeqge does not contain two points
of the form (x, u) and (y, u) with x # y. To see this, observe from the relation (2.4)
for determinantal point processes that the expected number of such pairs of points in
Xedge is 0 due to the set of such pairs having measure zero with respect to the measure

(#Z ® ﬁ(RZo))@)z. When both these properties hold, Zeqge satisfies (1).

The law of ’Tedge is invariant under translations because for every translation ¢y,
the tableau Zeqge © ¢, is constructed from the jump process Xegge + (242, 0), which
has the same law of Xqge by Proposition 4.4. Similarly, reflection invariance of Tedge
follows from reflection invariance of Xeqge. This establishes (2).

The ergodicty of ’Tedge under translations follows from the ergodicity of Xeqge under
translations (Proposition 4.6). This is because a translation invariant event for Tedge
is the image of a translation invariant event for Xegge under the map My_, 7. Finally,
(4) is the statement of Lemma 4.9. O

6 Random sorting networks
6.1 Sorting networks, Young tableaux and Edelman-Greene bijection

Stanley [39] enumerated the number of sorting networks of &,,, which equals

()"

[MiZi@n—1-2j)i

Following Stanley et al. [21] provided an explicit bijection between sorting networks
and staircase shaped SYT. An account of further combinatorial developments may be
found in [26,28]. We describe the part of the Edelman—Greene bijection that maps
staircase shaped tableaux to sorting networks. The inverse map is a modification of
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7 ® 8

. —_—
5 (1012 2 6 | 7
2168 314109
1134109 112|510

Fig. 10 First step of the Edelman—Greene algorithm on a staircase shaped SYT of size 10. Sliding path is
bolded. The associated sorting network of G5 has swap sequence (2,4,3,1,2,1,4,3,2,4)

the RSK algorithm; we do not describe it here since it is not used in the paper. See
[21] or [5, Section 4] for a full description of the bijection.

Recall that a sorting network of &,, is identified by its sequence of adjacent swaps

(s1,...,sn), where N = (3). For the rest of the paper we will use N to denote (5).
For T € SYT(A,), we adopt the convention that T (i, j) = —oo if (i, j) ¢ A,.
The Schiitzenberger operator Let (imax(T), jmax(T)) denote the cell containing the
maximum entry of a SYT 7. The Schiitzenberger operator ® : SYT(A,) —
SYT(A,) is a bijection defined as follows. Given T € SYT(A,), construct the
sliding path of cells cg, c1, ..., cq—1 € A, iteratively in the following manner. Set
co = (imax(T), jmax(T)) and ¢z = (1, 1). Then set

cr41 = argmax {T (¢, — (1,0)), T(c, — (0, 1))}.

Let &(T) = [T(i, j)] where T(c,) = T(¢c,41)+1for0 <r <d—1,T(cg) = 1,and
f(i, Jj)=T(@, j)+ 1forall other cells (i, j) € A,\{co, ..., cq}. Figure 10 provides
an illustration.

The Edelman—Greene map EG : SYT(A,) +— {sorting networks of G,,} is defined
by

EG(T) = (Jnux (@5D))) (6.1)

where @ is the k-th iterate of ®. Edelman and Greene [21, Theorem 5.4] proved that
EG indeed maps to sorting networks and that is has an inverse.

6.2 First swap times of random sorting networks: proof of Corollary 1.3
Let Trs(s) be the first time the adjacent swap (s, s + 1) appears in a sorting network
of G,,. According to the Edelman—Greene bijection, this time is recorded in the entry
(n —s,s) of EG(w). Thus,

Trs(s) = N+ 1 — EG(w)(n — s, ).

In terms of the rescaled tableau TrAsi from (5.7) we have that

Trs(s) "2 (N+1D-(1 =T —s.5).
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This implies the following for Tgs o ,—the first time an adjacent swap between
L"(lja)J and L”“;“)J + 1 appears in a random sorting network of &,

21— a2 jaw 2N +2
———Trsan = o T2, 0.0).

Here, TS’CA” is the tableau TrAs‘; rescaled and embedded into Ay, according to (5.6).
Theorem 5.3 implies that T‘rijn (0, 0) converges weakly to Zegge (0, 0). Since (2N +
2) /n2 — 1, we conclude that the rescaled Trs 4, from above converges weakly to
Tedge (0, 0). Thus, Trs has the law of Tegge (0, 0).

Now we explain how to get the distribution function of Tgg given in (1.1). Observe
that the event {Zcgge (0, 0) > 7} is the event { Xeqee N ({0} % [0, £]) = @}. The probability
of the latter (often known as “gap probability”) has the representation given by (1.1),
which is the Fredholm determinant of Kegge Over L2({0} x [0, ¢]). This is a well-
known property of determinantal point processes under the condition that the kernel
be of trace class [12]. The kernel Kegge is of trace class on L2({O} x [0, t]) simply
because |Keqge (0, u1; 0, up)| < 2/m.

The asymptotic behaviour of the distribution function of Tgg is well-known:

1, 1 1 7 3,

loglP[Tps > t] = _é_lt — Et — glogt + ﬁlogZ—i— 5;‘ (=) 4+o0(1) ast — oo.
(6.2)

The formula (6.2) has a history. In theoretical physics literature, the leading term in

(6.2) was first studied in [19], while the full expansion was given in [20]. The complete

mathematical treatment was developed in [15,16,22,23,31]; the present form of (6.2)

is given in the last reference.

We will only need the simple corollary of (6.2) that P [Tgrg > 7] > O for every ¢.

6.3 Edelman-Greene algorithm on the local tableau

The procedure described here is the same as the one given in the Introduction except
that it is in the language of tableaux instead of their jumps. In order to define the
Edelman—Greene algorithm on the local tableau we first introduce some concepts that
allow us to define Edelman—Greene algorithm on tableaux defined on A .

A directed path from (x,y) € Ay to (x', ) € A is a sequence of cells ¢y =
(x,¥),¢1,...,ck = (x',y) of Ao such that ¢;11 — ¢; € {(—1, 1), (1, 1)} for every
i. The cells of Ay can be partially ordered as follows: (x, y) < (x’, y) if there is a
directed path from (x, y) to (x’, y’). Recall that A , is a directed graph with edges from
(x,y)to (x £ 1, y+1).It can also be thought of as an undirected graph by forgetting
the direction of the edges. A connected subset of A is a connected subgraph of A
in the undirected sense.

A Young diagram (YD) of A is a connected subset A that is downward closed
in the partial order, that is, if (x, y) € A and (x/, y’) < (x, y) then (x’, y') € A. For
example, A, is a YD of As. The boundary of X, dA, consists of cells (x, y) ¢ A
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such that there is a directed edge from some cell (x’, y') € A to (x, y). The peaks of
A consists of the maximal cells of A in the partial order.

Let T : Ao — [0, 00] be a tableau as in (5.2). A sub-tableau is the restriction
of T to a YD A; we say A is the support of the sub-tableau. Let 71"t = (T'(x, y) :
T(x,y) # oo}. We take the support of T to be the support of 7" Observe that
Tfinite j5 4 countable disjoint union of sub-tableaux of 7, say Ty, T3, . ... Indeed, the
support of the T;s are the connected components of the subgraph spanned by cells
(x, y) such that T'(x, y) # oo. We will call the T;s the clusters of T. The tableau T is
EG-admissible if all the entries of 71" are distinct and every cluster T} is supported
on a YD of finite size.

Edelman—Greene algorithm on a finite tableau Let A be a YD of Ay of finite size
and T : A — R atableau such that all its entries are distinct. The Edelman—Greene
map EG takes as input 7" and outputs a triple (x, 7, f), where x € Z,t € R>¢ and T
is a sub-tableau.

The sliding path of T is a directed path ¢y, c1, ..., ¢k defined by

(1) co =argmin {7 (x, y) : (x,y) € A}.
(2) cit1 =argmin{T(c; + (—1,1)), T(c; +(1,1)) }.
(3) cx = peak of A obtained when both c; + (£1, 1) belong to dA.

Let & = A\{ct} and define 7 : A — R by

Py — {m,y), if (x.y) € A\feo, .. e
T(ci+1), if (x,y)=c¢; forsome 0<i <k —1.
The cell ¢cp must be on the bottom level of Ay and has the form (2x, 0) for some
x € Z.Sett = T (cp). The output is EG(T) = (x, ¢, f"), and empty if 7 is the empty
tableau.
The Edelman—Greene algorithm on 7" outputs a discrete subset S(7) C Z x Rxo,
denoted the swaps of T. Let (x, t;, ]A”j), for 1 < j < |A[, be defined iteratively by
(x1, 11, Ty) = EG(T) and (x,, t;, T;) = EG(Tj_y) for2 < j < |A|. Then,

S(T) =A{(xj.1;) : 1 = j < [} (6.3)

If the cell (x, y) € A contains the k-th smallest entry of T then its entry is removed
during the k-th iteration of the algorithm. We will say that the entry at (x, y) exits at
time #; from row x;. We will also say that (xg, tx) originates from cell (x, y).

Edelman—Greene algorithm on an admissible tableau Let Ty, T», . . . be the clusters of
an EG-admissible tableau 7. Observe that for i # j, the swaps of 7; and T exit from
mutually disjoint rows. Thus, the swap sets S(77), S(73), . .. are row-wise mutually
disjoint. The swaps of T are defined as

S(T) = s).

i
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The local tableau %dge is not EG-admissible. In order to define swaps for the local
tableau we cut off large entries so that it becomes EG-admissible, and then process
the tableau in a graded manner. For this to be successful, the EG algorithm ought to be
consistent in the sense that running it on a tableau, and then restricting to swaps that
originate from a sub-tableau, must produce the same outcome as the algorithm applied
to the sub-tableau. This is not always the case and the following explains when it may
be so.

Given two tableaux Tyman and Tpig, we say Tsman < Tpig if the following criteria
hold.

() Tsman(x, y) = Toig(x, y) for every (x, y) € support(Tsman).
(2) For every (x, y) € support(Tsman), and (x’, y') € support(Tpig) \support(Tsmal),
if (x,y) belongs to the same cluster of Tz as (x',y") then Tyman(x,y) <

Tbig(x/» y).

Lemma 6.1 Let Tyman < Tvig, and suppose that Tyig is EG-admissible. Then, applying
the EG algorithm to Tyig and restricting to the swaps that originate from the cells of
Tsmall produces the same outcome as applying the EG algorithm to Tyman. In particular,
S(Tsman) C S(Tbig)~

Proof Observe that the clusters of Ty, are contained within the clusters of Ty;g.
The EG algorithm acts independently on each cluster of T is a row-wise disjoint
manner. Fix a particular cluster T" of Tyig, and suppose that the clusters of Tsmay that are
contained inside 7 are T, . .., Ty. It suffices to prove that the EG algorithm applied to
T, and then restricted to the swaps that originate from 77, ..., Tk, produces the same
outcome as the algorithm applied to each individual T7;.

Let A = support(7T) and A; = support(7;). The assumption is that each entry of
M\ (U;A;) is larger than every entry of U; A;. Therefore, the EG algorithm applied to T
will process every entry of U; A; before it ever processes an entry from the complement.
When some entry from A\ (U; A;) enters a cell of some A; during the first ), |;| steps,
the algorithm treats that entry as if it were oo. Since Tyman agrees with Thig on U;A;,
the EG algorithm will output the swaps of 71, ..., Ty during the first ), |A;] steps,
and then output the remaining swaps of 7'\ (U; ;). This is what was claimed. O

A tableau T is graded EG-admissible if all of its finite-valued entries are distinct
and, if for every ¢ > 0, the sub-tableau

T='={T(x,y):T(x,y) <t} is EG-admissible.

Observe that T="! < T=2 whenever t; < t,. Lemma 6.1 thus implies that S(T="") C
S(T="). Therefore, for a graded EG-admissible tableau 7', we may define

S(T) = U S(T=. 6.4)

t>0

Lemma 6.2 Suppose a sequence of tableaux T, — Too, and also that every T, and
Teo are graded EG-admissible. Then for every integer x and t > 0, there is a finite
YD X that contains the cluster of (2x, 0) in T,=" for every n.
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Proof This follows from a diagonalization argument, more precisely, Konig’s infinity
lemma, which states that every infinite connected graph with finite vertex degrees
contains an infinite path.

Suppose for the sake of a contradiction that the conclusion of the lemma fails. Let
Ty x.1 denote the cluster of (2x,0) in 7,=". Call a cell (x/, y’) € Ao bad if there is
a undirected path in Ay from (2x, 0) to (x, y’) that is contained in infinitely many
of the clusters 7, r ;. Consider the connected component of (2x, 0) in Ay that is
spanned by the subgraph of bad vertices. If the component is finite then there is a
finite YD A that contains the component. This implies that for all sufficiently large #,
every cell of 9 lies outside 7}, , ; because any path from (2x, 0) to a cell outside A
must pass through dA. Therefore, T, ; ; C A for all large n. Since every 7, is graded
EG-admissible, this means that there is a finite YD that contains every 7, x ;, which
is a contradiction.

Therefore, the connected component of (2x, 0) spanned by the bad vertices is
infinite. Since every vertex of Ay, has degree at most 4, Konig’s lemma provides an
infinite path of (distinct) bad vertices (xg, yo), (x1, ¥1), . .. starting from (xg, yo) =
(2x, 0). By definition of being bad, for every m, there is a path from (2x, 0) to (x,,,, i)
that is contained in some infinite subsequence of the clusters Tn}n,x,, with n]" — oo
asi — oo. Let £, be the length of this path. Observe that £,, — oo with m because
the distance from (2x, 0) to (x;,, ym) in A must tend to infinity due to every vertex
having degree at most 4.

The YD A,, formed by the cells of Ay, that are at or below the cells on the path from
(2x, 0) to (xn, yn) must be contained in every cluster T,» .. Since T,, converges to
T, this implies that A, C Too,x,; fOr every m. Since |A,y, | ,2 {,, — oo, wededuce that
T.x,; 18 infinite. However, this is a contradiction to 7, being graded EG-admissible.

O

Theorem 6.3 Suppose a sequence of tableaux T,, — Too, and that every T,, as well as
T is graded EG-admissible. Then S(T,) — S(Tx) as discrete subsets of Z x Rx.

Proof A compact subset of Z x Rx¢ is a finite, disjoint union of sets of the from
{x} x C for x € Z and compact C C Rx(. Therefore, we must show that for every
such x and C,

limsup #[S(T,) N (fx} x O)] < #[S(Tx) N ({x} x O)].

Fix at > O such that C C [0, 7].

Suppose T is a graded EG-admissible tableau. The swaps of T on {x} x [0, ¢] are
the entries of 7= that exit from row x. Let T, denote the cluster of (2x, 0) in T='.
By Lemma 6.1, the swaps of T on {x} x [0, ¢] are completely determined by running
the EG algorithm on 7 ;. We deduce from Lemma 6.2 that there is a finite YD A such
that

support(7, ;) C A forevery n and support(Teo x,r) C A.

Since sup s yyex [Tn (x',¥) — Teo(x’, )| — 0, we conclude that the following
must occur for all sufficiently large n.
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(1) The order of the entries of T,, on A stabilizes to the order of the entries of T, on
A
(2) Forevery (x',y') € A, if Too(x', ') ¢ C then T, (x', y') ¢ C.

Once condition (1) holds then, due to 7}, , ; C A, aswap from S(7,) lieson {x} x C
if and only if there is a cell (x’, y’) € A such that 7,(x’, y’) € C and, when the EG
algorithm is applied to To restricted to A, the entry at cell (x’, y’) exits from row x.
The same conclusion holds for swaps of S(7) on {x} x C. This property along with
condition (2) implies that

S(T)N{x} xC) C S(Teo) N ({x} x C) for all large n.
This completes the proof. O

6.4 Completing the proof of Theorem 1.2

Theorem 1.2 will follow from Theorem 6.3 once we prove that the local tableau ’];dge
is graded EG-admissible almost surely. To this end, first observe that the entries of
Tedge are finite and distinct by part (1) of Proposition 5.4. We must show that, almost
surely, the clusters of the are finite for every 7.

By part (4) of Proposition 5.4, the local tableau satisfies the following almost surely:
for every ¢t and x, there are integers a, b > 0 such that ’]}dge(Zx —2a,0) > t and
Tedge(2x + 2b,0) > t. When this property holds the tableau constraints imply that
the cluster of ’Tjée containing (2x, 0) must be contained within cells whose row and
column indices are both between 2x —2a and 2x +2b. The set of such cells is finite, and
so the cluster of every bottom level cell in Tjg'e is finite. Now if ’Tedge 2x —k, k) <t
then cell (2x — k, k) belongs to the same cluster as (2x, 0) in ngle since the row
entries are non-decreasing. This implies that, almost surely, ’Tjée is EG-admissible
for every ¢, as required.

Finally, we complete the proof. The law of S, , is that of the Edelman—Greene
algorithm applied to the rescaled uniformly random staircase shaped tableau TrAsi from
(5.7). Theorem 5.3 asserts that TrAs‘; converges weakly to ’Tedge as a tableau embedded
in As. By Skorokhod’s representation theorem, there exists random tableaux 7,, and
T defined on a common probability space such that 7, has the law of T, 7o has
the law of Zeqge, and 7, — 7o almost surely.

The tableaux 7,, and 7, are graded EG-admissible almost surely. Theorem 6.3 then
implies that S(7;,) converges to S(7~) almost surely. This means that Sy ,,, which has
the law of S(7,,), converges weakly to S(Zedge), Which is the law of S(7x0). O

We conclude with some statistical properties of the local swap process.

Proposition 6.4 The process Siocal has the following properties.

(1) Siocal is invariant under translations and reflection of the Z-coordinate.
(2) Siocal is stationary in time in that for every t > 0, the process Siocal N (Z x Rx;)
has the same law as (shifted) Siocal-
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(3) Siocal Is ergodic under translations of the Z-coordinate in that the sigma-algebra
Finv = {Events of Siocal that are invariant under every translation} is trivial.

Remark 6.5 We believe that Sjoc, is also ergodic in the time coordinate. However, the
proof of this is more challenging and, therefore, we leave it as a conjecture.

Proof We have that Sjgcq = S(?;dge) in law. Applying a Z-automorphism to Sjocal
is the same as first applying its analogue to Zedee (the maps ¢, and ¢_), and then
applying the EG algorithm to the resulting tableau. Thus, the invariance of Sjocal
under Z-automorphisms follows from the corresponding invariance of Zeqe stated in
Proposition 5.4.

Time stationarity of Sjoca 1S @ consequence of the stationarity of finite random

sorting networks [5, Theorem 1(i)], as we explain. If (sq, ..., sy) is the sequence of
swaps of a random sorting network of &,,, then (s, ..., sy—1) has the same law as
(Sz, ey SN).

The ergodicity of Siocal under Z-translations is a consequence of the ergodicty of
%dge under translations (part 3 of Proposition 5.4). Indeed, a translation invariant event
for Sjocal is the image of a translation invariant event of %dge under the EG algorithm.

O
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