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Abstract
This paper finds the bulk local limit of the swap process of uniformly random sorting
networks. The limit object is defined through a deterministic procedure, a local version
of the Edelman–Greene algorithm, applied to a two dimensional determinantal point
process with explicit kernel. The latter describes the asymptotic joint law near 0 of
the eigenvalues of the corners in the antisymmetric Gaussian Unitary Ensemble. In
particular, the limiting law of the first time a given swap appears in a random sorting
network is identified with the limiting distribution of the closest to 0 eigenvalue in the
antisymmetric GUE. Moreover, the asymptotic gap, in the bulk, between appearances
of a given swap is the Gaudin–Mehta law—the limiting universal distribution for
gaps between eigenvalues of real symmetric random matrices. The proofs rely on the
determinantal structure and a double contour integral representation for the kernel of
random Poissonized Young tableaux of arbitrary shape.

Keywords Sorting network · Reduced decomposition · Gaudin–Mehta law · GUE
corners · Young tableau · Determinantal point process

Mathematics Subject Classification 60G55 · 60B20 · 05E15 · 82C22

1 Introduction

1.1 Overview

The main object of this article is the uniformly random sorting network, as introduced
by Angel et al. [5]. LetSn denote the symmetric group and τi denote the transposition
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Fig. 1 Wiring diagram of a sorting network of S5 with swap sequence (2,4,3,1,2,1,4,3,2,4). Intersection
of two paths at location (i − 1/2, j + 1/2) indicates a swap at time i between labels at positions j and
j + 1. The intersection locations (red crosses) of a random sorting network ofSn has a distributional limit
in windows of unit order in the vertical direction and order n in the horizontal direction

between i and i + 1 for 1 ≤ i ≤ n − 1. The τi are called adjacent swaps. Let
rev = n, n− 1, . . . , 1 denote the reverse permutation ofSn . A sorting network ofSn

is a sequence of permutations σ0 = id, σ1, . . . , σN = rev of shortest length with the
property that for every k,

σk+1 = σk ◦ τi for some i .

In other words, the permutations change by swapping adjacent labels at each step
and must go from the identity to the reverse in the shortest number of swaps. The
number of adjacent swaps required in any sorting network ofSn is

(n
2

)
. See Fig. 1 for

an example of a sorting network in the wiring diagram representation. We identify a
sorting network of Sn by its sequence of swaps

(
s1, . . . , s(n

2)

)
,

where si denotes the adjacent swap (si , si + 1).
A random sorting network of Sn is a sorting network of Sn chosen uniformly at

random. Computer simulations were used to conjecture many beautiful asymptotic
properties of random sorting networks. See [5] for an account of these statements and
the first rigorous results, and also [1–4,14,30,36,38] for other asymptotic theorems.
The proofs of the conjectures from [5] were recently announced in [13].

In many examples, random combinatorial structures built out of symmetric groups
are known to exhibit the same asymptotic behavior as random matrices. The most
famous result of this sort due to Baik–Deift–Johansson [6] identifies the fluctuations
of longest increasing subsequences of random permutations with the fluctuations of
largest eigenvalue of random Hermitian matrices. Its further upgrades, [9,29,34] link
fluctuations of several first rows of the Young diagram distributed according to the
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Plancherel measure for symmetric groups to those of several largest eigenvalues. A
connection also exists for “bulk” (i.e. not largest) rows and eigenvalues, see [9].

On the other hand, up to now no such connections were known for random sort-
ing networks. In the present article we find such a connection. It exists for a sort
of local limit of random sorting networks. Indeed, we find the bulk local limit of
random sorting networks, by proving that it is given by a simple, local, determin-
istic algorithm (the local Edelman–Greene algorithm) applied to a specific random
point process on Z × R≥0. In turn, we describe this point process by showing that
its correlation functions have determinantal form and provide explicit expressions for
the corresponding correlation kernel. The very same point process appeared in the
work of Forrester–Nordenstam [25] (see also Deffoseux [17]) as the hard edge limit
of antisymmetric GUE–corners process; it describes the asymptotic distribution of
the closest to 0 eigenvalues of the corners of large antisymmetric matrix with i.i.d.
(modulo symmetry) Gaussian entries of mean 0.

A corollary of our theorem is that the rescaled, asymptotic distribution of the first
time when the swap between � n(1+α)

2 � and � n(1+α)
2 � + 1 appears, for α ∈ (−1, 1),

is the same as the rescaled, asymptotic distribution of the closest to 0 eigenvalue
of an antisymmetric-GUE random matrix. Another corollary is that within the bulk,
the asymptotic gap between appearances of the aforementioned swap is described
by the Gaudin–Mehta law—the asymptotic universal distribution of the gap between
eigenvalues of real symmetric random matrices in the bulk. Complete statements are
given in the next section.

In an independent and parallel work, Angel et al. [2] also study the bulk local limit
of random sorting networks. Their approach is very different from ours. We deduce
explicit formulas for the prelimit local structure of random sorting networks, and
then analyze the asymptotic of these formulas in the spirit of Integrable Probability,
see [8,11] and also [37]. On the other hand, [2] argue probabilistically, analyzing a
Markov chain (whose transition probabilities are expressed through the hook formula
for dimensions) for sampling random Young tableaux. The connection to random
matrices remains invisible in the results of [2]. It would be interesting to match these
two approaches, but it has not been done so far.

1.2 Bulk limit of random sorting networks

We now describe our main result. Informally, we study the asymptotics of the point
process (si , i), i = 1, . . . ,

(n
2

)
, in a window of finite height and order n width, so that

the number of points in the window remains finite; see Fig. 1. Here (s1, . . . , s(n
2)

) are
swaps of a random sorting network ofSn .

In [5] it is proven that the point process (si , i) is stationary with respect to the
second coordinate. Therefore, it suffices to study windows adjacent to 0 in second
coordinate, which we do.

The limiting object Slocal is a point process on Z × R≥0 defined by a two–step
procedure. First, we introduce an auxiliary point process Xedge on Z × R≥0 through
its correlation functions.
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Definition 1.1 Xedge is the (unique) determinantal point process on Z × R≥0 with
correlation kernel

Kedge(x1, u1; x2, u2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

π

1∫

0

t x2−x1 cos
(

tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt, if x2 ≥ x1;

− 2

π

∞∫

1

t x2−x1 cos
(

tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt, if x2 < x1.

We refer to [7] and Sect. 2.4 for more detailed discussions of determinantal point
processes.We note that the particles ofXedge on adjacent lines {x}×R≥0 and {x+1}×
R≥0 almost surely interlace, see Fig. 2. The point process Xedge has appeared in the
randommatrix literature before in [17,25]. In more details, let G be an infinite random
matrix with rows and columns indexed byZ>0, and whose entries are independent and

identically distributed, real-valued, standard Gaussians. Let A = G−GT√
2

. The top–left
m × m corner of A almost surely has 2�m/2� non-zero eigenvalues of the form

±iλm
1 , ±iλm

2 , . . . , ±iλm�m/2�,

where 0 < λm
1 < λm

2 < · · · < λm�m/2�. Forrester and Nordenstam prove that Xedge is

the weak limit of the point process {( j,
√
2Mλ

2M+ j
i )} ⊂ Z× R≥0, i ∈ Z>0, j ∈ Z,

as M →∞.
Particle configurations of Slocal are obtained from Xedge by a deterministic pro-

cedure, which is a local version of the well-known Edelman–Greene bijection [21]
between staircase shaped tableaux and sorting networks. In the following we describe
this procedure. A rigorous definition of the procedure utilizes properties of Xedge
that are not immediate from Definition 1.1. We provide the rigorous construction in
Sect. 6.3 where the description is given in the language of Young tableau, which is the
more standard setup for defining the Edelman–Greene bijection.

Local Edelman–Greene algorithm Fix a configuration X ofXedge and suppose that we
want to define the positions of all particles of Slocal inside the rectangle [a, b]× [0, T ]
with a < 0 < b. Then almost surely there are two integers â < 2a and b̂ > 2b such
that X has no particles on the segments â × [0, T ] and b̂× [0, T ]. The particles of X
outside [â, b̂] × [0, T ] are further ignored.

We now define a particle configuration Y—the restriction of Slocal onto [â, b̂] ×
[0, T ]—through an iterative procedure. Start by declaring Y = ∅, and setting X̂ to be
the restriction of X onto [â, b̂] × [0, T ]. Repeat the following until X̂ is empty:

(1) Let (x, u) be an element of X̂ with smallest second coordinate. The parity of x
will be even. Add (x/2, u) to Y , i.e., redefine Y := Y ∪ {(x/2, u)}.

(2) Define the sliding path (x1, u1), (x2, u2), . . . as a unique collection of points in
X̂ (of maximal length) such that
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Fig. 2 Top:A possible configuration (red crosses) ofXedge restricted to [−5, 3]×[0, T ]with no particles on
{−5, 3}× [0, T ]. Particles on consecutive lines interlace. Encircled points represent the sliding path during
the first step of the Edelman–Greene algorithm.Bottom: The result after the first step of the Edelman–Greene
algorithm

• (x1, u1) = (x, u),
• u1 < u2 < · · · < uk and |xi − xi+1| = 1 for i = 1, . . . , k − 1,
• For each i = 1, . . . , k − 1, the only points of X̂ in the rectangle [xi − 1, xi +
1] × [ui , ui+1] are (xi , ui ) and (xi+1, ui+1).

In other words, (xi+1, ui+1) is the point in [xi − 1, xi + 1] × (ui , T ], which is
closest to (xi , ui ). See Fig. 2 for an illustration.

(3) Remove the k points (x1, u1),…, (xk, uk) from X̂ and replace them by k−1 points
(x1, u2), (x2, u3), …, (xk−1, uk).

(4) Go back to Step (1), unless X̂ is empty.

The first coordinates of the particles of Y will be integral; this follows from the inter-
lacing property of the particles of X̂ , which is preserved throughout the steps of the
procedure.

One immediate property of the just defined map Xedge �→ Slocal is that the position
of the first particle of Slocal in the ray {a} × R≥0 almost surely coincides with the
position of the first particle of Xedge in the ray {2a} × R≥0. Therefore, the joint law
of the positions of the first particles of Slocal in the rays {ai } ×R≥0, for i = 1, . . . , k,
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can be explicitly evaluated as a Fredholm determinant. See Corollary 1.3 for the case
k = 1 and [7] for general statements.

We also show that Slocal is invariant under translations and reflections of the first
(Z–valued) coordinate, ergodic with respect to translations of the first coordinate, and
stationary in the second (R≥0–valued) coordinate; see Proposition 6.4.

We are ready to formulate the main result.

Theorem 1.2 (Local random sorting network) Fix α ∈ (−1, 1), and let s1, s2, . . . , s(n
2)

be swaps of a random sorting network of Sn. Define the point process Sα,n of rescaled
swaps near the point (

n(α+1)
2 , 0) through

Sα,n =
{(

si −
⌊

n(α + 1)

2

⌋
,
√
1− α2 · 2i

n

)}(n
2)

i=1
.

Then as n →∞, the point process Sα,n converges weakly to Slocal.

It is proven in [5, Theorem 2] that the global scaling limit of the space-time swap
process of random sorting networks is the product of the semicircle law and Lebesgue
measure. The

√
1− α2 scaling of Theorem 1.2 is consistent with the semicircle result.

We emphasize that Theorem 1.2 states both that Sα,n converges and the limit is
obtained by applying the localized Edelman–Greene algorithm toXedge. Theorem 1.2
does not cover the case |α| = 1, where the asymptotic behavior changes. It is plausible
that the methods of the present article can be adapted to this remaining case, but we
not address it here; see [38] for another approach to |α| = 1 case.

Theorem 1.2 implies that the first swap times in random sorting networks converge
to a one–dimensional marginal of Slocal; the distribution of the latter can be expressed
as a Fredholm determinant. Figure 3 shows the approximate sample distribution of the
rescaled first swap time and (6.2) shows the tail asymptotics.

Corollary 1.3 (First swap law). Let TF S,α,n be the first time the swap interchanging⌊
n(α+1)

2

⌋
with

⌊
n(α+1)

2

⌋
+1 appears in a random sorting network ofSn. The following

convergence in law holds:

lim
n→∞

2
√
1− α2

n
TF S,α,n = TFS,

where

P [TFS > t] = 1+
∞∑

k=1

(−1)k

k!
∫

[0,t]k
det[Kedge(ui , u j )] du1 · · · duk, and (1.1)

Kedge(u1, u2) = sin(u1 − u2)

π (u1 − u2)
+ sin(u1 + u2)

π (u1 + u2)
.

Connection to the Gaudin–Mehta law A further consequence deals with the limiting
law of the gap between swaps on the same horizontal line in random sorting networks.
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Fix β ∈ (0, 1). Given a random sorting network ofSn , letT+ be the distance between
⌊
β
(n
2

)⌋
and the closest to its right swap interchanging

⌊
n(α+1)

2

⌋
with

⌊
n(α+1)

2

⌋
+ 1.

Let T− be the analogous distance to the closest to its left swap.
Due to stationarity of random sorting networks, the joint law T− and T+ is given

by
P
[
T− > a,T+ > b

] = P
[
TF S,α,n > a + b

]
. (1.2)

Indeed, due to stationarity, both sides of (1.2) give the probability of the event that there
are no swaps in the interval [−a, b] after the appropriate re-centerings. Equation (1.2)
shows that the law of (T+,T−), and hence, of the gap T− +T+, is determined by the
law of the first swap time TF S,α,n . In particular, their limiting law after rescaling by√
1− α2/n is uniquely determined from the distribution function (1.1).
This is connected to the scaling limit of the point process of eigenvalues of GOE

random matrices in the bulk. The scaling limit of the eigenvalues of GOE random
matrices near 0 is stationary. Let −�− and �+ be, respectively, the closest to 0
negative and closest to 0 positive point in the limit process. If the matrices are scaled
so that the mean eigenvalue gap near 0 is 1, then (1.1) is the distribution function of
(π/2)�+. In other words, (1.1) is the asymptotic probability to see no eigenvalues
in an interval of length (2/π)t for large GOE random matrices, normalized so that
the mean eigenvalue gap around the interval is 1; see e.g. [20,27], [24, (8.139) and
(9.81)]. The gap between points, �− +�+, has its law determined from that of �+
according to (1.2). This is the celebrated Gaudin–Mehta law, originally put forward
by Wigner as a model for the gap between energy levels in heavy nuclei and later
found in numerous systems. We arrive at the following corollary.

Corollary 1.4 (Gap law) For α ∈ (−1, 1) and β ∈ (0, 1), let Gapα,β,n be the distance

in a random sorting network of Sn between the two swaps interchanging
⌊

n(α+1)
2

⌋

with
⌊

n(α+1)
2

⌋
+ 1: the one closest from the left to time β

(n
2

)
and the one closest from

the right to β
(n
2

)
. Then, the distributional limit

lim
n→∞

4
√
1− α2

πn
Gapα,β,n

is the Gaudin–Mehta law, i.e. the asymptotic gap in the bulk between eigenvalues of
real symmetric random matrices with mean gap one.

The proof of Theorem 1.2 builds upon two ideas. The first one (which is also used
in most of the rigorous results on sorting networks) is to reduce the study of random
sorting networks to uniformly random staircase shaped standard Young tableaux via
the Edelman–Greene bijection [21] (see also [28]). Our observation is that if we
Poissonize uniformly random standard Young tableaux (of arbitrary shape!), then the
result can be described by a determinantal point process with an explicit correlation
kernel written as a double contour integral. We further show that the Poissonization
does not change the local statistics, and therefore, the limit theorem is reduced to the
asymptotic analysis of the aforementioned double contour integral, which we perform.
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Fig. 3 Density histogram of the rescaled first swap time for element 500 in a 1000 element random sorting
network

Our results on the correlations and limiting behavior of random standard Young
tableaux might be of independent interest, and so we present them in the next section.

1.3 Random standard Young tableaux

A partition λ is a sequence of non-negative integers λ1 ≥ λ2 ≥ · · · ≥ 0 such that
|λ| :=∑∞

i=1 λi <∞. The length of λ, denoted 	(λ), is the number of positive λi and
the size of λ is |λ|.

We identify a partition with a Young diagram (YD), which is the set of lattice points

{(i, j) ∈ Z
2 : i ≥ 1, 1 ≤ j ≤ λi }.

The points of the Young diagram λ are its cells and we say the Young diagram has
shape λ. Given a pair of YDs λ and μ, we write λ � μ if the cells of λ are contained
within the cells of μ. If the containment is strict then λ ≺ μ. If λ � μ then μ\λ
denotes the cells of μ that are not in λ. A standard Young tableau (SYT) of shape λ

is an insertion of the numbers 1, 2, . . . , |λ| into the cells of λ such that they strictly
increase along the rows (from left to right) and also along the columns (from bottom
to top). The numbers within a SYT are its entries. The set of SYTs of shape λ is in
bijection with the set of increasing sequences of YDs

∅ = λ(0) ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(|λ|) = λ (1.3)

such that the entry k is inserted into the singleton cell of λ(k)\λ(k−1).
A staircase shaped SYT of length n − 1 (or also n − 1 rows) is a SYT of shape

(n−1, n−2, . . . , 2, 1),whichwedenote
n . TheEdelman–Greene bijection [21] gives
a one-to-one correspondence between staircase shaped SYTs and sorting networks;
see Sect. 6.1 for the details. This is the reason for our interest in SYTs.

123



Random sorting networks: local statistics via random…

Fig. 4 Young diagram (4, 4, 4, 2, 1, 1) and corresponding particle configuration (7/2, 5/2, 3/2,
−3/2,−7/2,−9/2,−13/2,−15/2, . . . )

A Poissonized Young tableau (PYT) of shape λ is an insertion of distinct real
numbers from the interval (0, 1) into the cells of λ such that they strictly increase
along the rows and along the columns. Note that if we replace the entries of a PYT by
their relative ranks then we get a SYT. The set of PYTs of shape λ is in bijection with
the set of increasing sequences of YDs indicating the times of jumps:

∅ = λ(0) t1≺ λ(1) t2≺ λ(2) t3≺ · · · t|λ|≺ λ(|λ|) = λ (1.4)

such that the entry tk is inserted in the singleton cell of λ(k)\λ(k−1). These increasing
sequences of Young diagrams with labels were discussed in [10] in the connection to
the Young bouquet; see also [33].

We would like to identify a PYT with a collection of non-intersecting paths. For
that we first map a Young diagram λ to a countable particle configuration {λi − i +
1/2}i=1,2,... ⊂ Z+ 1/2. This procedure can be viewed as projecting the boundary of
the Young diagram in Russian notation onto a horizontal line, see Fig. 4. The empty
Young diagram ∅ corresponds to {−1/2,−3/2,−5/2, . . . }.

Give a PYT, for each t consider the countable particle configuration corresponding
to theYoung diagramfilledwith the entries≤ t in the PYT. The trajectories of particles
then form a collection of paths, making jumps to the right at the times indexed by the
entries tk of the tableau (equivalently, labels in (1.4)). Let us draw a cross at a point
(x, t), x ∈ Z, 0 < t < 1, if a particle jumps from (x − 1/2) to (x + 1/2) at time t ;
see Fig. 5. Although there are infinitely many particles, the only ones that move are
the 	(λ) particles that correspond to the rows of λ with positive size.

Theorem 1.5 (Poissonized tableaux) Given a finite Young diagram λ, consider the
point process Xλ of jumps of a uniformly random Poissonized Young tableau of
shape λ. Xλ is a determinantal point process on Z × [0, 1] with correlation kernel
Kλ(x1, t1; x2, t2) as follows. For x1, x2 ∈ Z and t1, t2 ∈ [0, 1],
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0

1t =

t =

-11/2 -9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2 11/2

Fig. 5 Particle system associated to a staircase shaped PYT of size 10. Particlesmove along non-intersecting
paths. The jumps (red crosses) of a random PYT of fixed shape is a determinantal point process. The local
window of a PYT of shape 
n consists of the trajectories of a group of L successive particles traced down
from t = 1 to t = 1− (u/n)

Kλ(x1, t1; x2; t2)

= 1{t2>t1, x1>x2}
(t1 − t2)x1−x2−1

(x1 − x2 − 1)!
+ 1

(2π i)2

∮

Cz [0,λ1−x2)

dz
∮

Cw[0,n+x1)

dw
� (−w)

� (z + 1)
· Gλ(z + x2)

Gλ(x1 − 1− w)

· (1− t2)z(1− t1)w

w + z + x2 − x1 + 1
,

where Gλ(u) = � (u + 1)
∞∏

i=1

u + i

u − λi + i
= � (u + 1+ n)

∏n
i=1(u − λi + i)

, n ≥ 	(λ).

The contours Cz[0, λ1 − x2) and Cw[0, n + x1) are as shown in Fig. 6. Both are
counter-clockwise, encloses only the integers in the respective half open intervals
[0, λ1 − x2) and [0, n + x1), and arranged such that w + z + x2 − x1 + 1 remains
uniformly bounded away from 0 along the contours.

Remark 1.6 When t1 or t2 equals 1, Kλ is to be understood in the limit as t1 or t2 tends to
1. The contours Cz[0, λ1− x2) and Cw[0, n− x2)may also be replaced by unbounded
contours Cz[0,∞) and Cw[0,∞) with bounded imaginary parts, respectively.

The proof of Theorem 1.5 is through a limit transition in the correlation kernel of
[35] (see also [18]) for the uniformly random Gelfand–Tsetlin patterns; the proof is in
Sect. 3. Such a limit transition can be viewed as a degeneration of the combinatorial
structures related to the representation theory of the unitary groups U (N ) to those
related to the symmetric groups Sn , see [10] for a discussion.
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z-contour

w-contour

0−1 n − 1 + x1

λ1 − 1 − x2

Fig. 6 The contours in the statement of Theorem 1.5

Let us emphasize that the very same procedure can be used to identify a uniformly
random SYT with a point process of jumps, however, the resulting process will not be
determinantal – this is why we need to pass from SYTs to PYTs.

1.4 From Poissonized tableaux to local statistics

We close the introduction with an outline of the argument that takes us from
Poissonized tableaux to local statistics of sorting networks. By the nature of the
Edelman–Greene bijection, the swaps of a sorting network of Sn near time 0 are
determined by the location of the largest entries of an SYT of shape 
n . These entries
reside within unit order distance of the edge of
n , which consist of the cells (i, n− i)
for 1 ≤ i ≤ n − 1. As a result, the first step to deriving local statistics of random
sorting networks is to derive the statistics of a uniformly random PYT of shape 
n

near its edge.
Let T
n denote a uniformly random PYT of shape 
n . We are interested in the

statistics of the entries of T
n that lie within the following windows. A window is
parameterized by a center α ∈ (−1, 1) (corresponding to the center (1+α)n

2 of the
swaps of a sorting network), a length L , and an entry height u. The window then
consist of entries T
n (i, j) that satisfy |i − (1+ α)n/2| ≤ L and T
n (i, j) ≥ 1− u

n .
In other words, roughly the largest nu entries of T
n with row indices in the interval
[(1+ α)n/2− L, (1+ α)n/2+ L].

We study the statistics of T
n in a window in terms of its associated process of
jumps X
n , rescaled accordingly. For each integer n ≥ 1, let cn be an integer having
the same parity as n and such that |cn−αn| = O(1) as n →∞. Consider the rescaled
process of jumps

Xα,n =
{
(x, u) ∈ Z× R≥0 :

(
x + cn, 1− u

n
√
1− α2

)
∈ X
n

}
. (1.5)

Theorem 4.1 and Proposition 4.3 together imply that Xα,n converges weakly to the
point process Xedge from Definition 1.1. It is the building block for the proof of
Theorem 1.2.
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In Sect. 5 we construct the local staircase shaped tableau Tedge by using the local
jump process Xedge. We prove in Theorem 5.2 that it provides the limiting statistics
of T
n in local windows. Using a de-Poissonization argument we conclude in The-
orem 5.3 that uniformly random staircase shaped SYTs also converge within local
windows to Tedge. Although Poissonization is not important for the local limit, it is
important for the proof.

In Sect. 6 we prove Theorem 1.2. First, we give a proof of Corollary 1.3 in Sect. 6.2.
In Sect. 6.3 we define the local version of the Edelman–Greene algorithm that maps
Tedge to Slocal. In Sect. 6.4 we complete the proof of Theorem 1.2 and conclude with
some statistical properties of Slocal.

2 Preliminaries

This section presents basic facts aboutYoung tableaux, Poissonization anddeterminan-
tal point processes. Some material from the Introduction is repeated for convenience.

2.1 Gelfand–Tsetlin patterns

A semi-standard Young tableau of shape λ = (λ1, . . . , λM ), where λ1 ≥ λ2 ≥ · · · ≥
λM ≥ 0 are integers, is an insertion of numbers from {1, . . . , M} into the cells of
the YD λ such that the entries weakly increase along each row and strictly increase
along every column. It is important to emphasize that while for the definitions of
Young diagrams and standard Young tableaux the value of M is not important, here
the object substantially depends on M . Semi-standard Young tableaux (SSYTs) are in
bijection with interlacing particle systems, often known as Gelfand–Tsetlin patterns
(or schemes).

A Gelfand–Tsetlin pattern (GTP) with M rows is a triangular array of non-negative
integers [a(i, j)]with row i containing i entries a(i, 1), . . . , a(i, i). The array satisfies
the following order and interlacing constraints.

Order & Interlace : a(i, j) ≥ a(i − 1, j) ≥ a(i, j + 1) for every i and j .

Let a(i) = (a(i, 1), . . . , a(i, i)) denote the i-th row of the GTP. Each row corresponds
to a YD due to the order constraints. The interlacing conditions ensure that a(i−1) �
a(i), and in fact, a(i)\a(i−1) is a horizontal strip which means that the cells in any
row of a(i)\a(i−1) are to the left of the cells in the previous row. Figure 7 provides an
example.

The set of GTPs with a fixed top row a(M) is in bijection with the set of SSYTs
of shape λ = a(M). Indeed, given a GTP [a(i, j)] with top row λ, such a tableaux is

Fig. 7 A Gelfand–Tsetlin
pattern with 4 rows

9 5 3 2
8 5 2
6 3
5
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obtained by inserting the value i into the cells of a(i)\a(i−1) for every 1 ≤ i ≤ M (set
a(0) = ∅). If a(i)\a(i−1) is empty then i is not inserted. In the reverse direction, given
a SSYT of shape λ, a GTP with top row λ is obtained by setting a(i) to be the YD
consisting of the cells of λ with entries ≤ i and removing trailing zero rows to ensure
that a(i) has i entries.

A GTP may also be represented as an interlacing particle system on (Z+ 1
2 )×Z as

follows. Given a GTP [a(i, j)] with M rows, the particle system [ν(i, j)] associated
to it has M rows of particles, with particles on row i being placed on the horizontal
line {y = i} of the plane, and the position of the j-th particle on row i is

(
ν(i, j), i

)
=

(
a(i, j)− j + 1

2
, i

)
for every 1 ≤ j ≤ i .

The transformation a(i, j) → a(i, j)− j + 1
2 makes the order constraints strict and

the interlacing constraints semi-strict:

ν(i, j) ≥ ν(i − 1, j) > ν(i, j + 1).

The jumps of an interlacing particle system ν with M rows is a set of points in Z ×
{1, . . . , M − 1}, defined inductively from the top row to the bottom as follows. Given
two consecutive rows [ν(i, ·)] and [ν(i −1, ·)], the jumps on row i consist of particles
at the positions

(k, i − 1) ∈ Z
2 for every integer k ∈ [ν(i − 1, j), ν(i, j)] and every 1 ≤ j ≤ i − 1.

In other words, the jumps of row i are placed on the horizontal line {y = i − 1} and
fill out integers in the intervals [ν(i − 1, j), ν(i, j)] for every 1 ≤ j ≤ i − 1. Note
that ν may determined from its top row and set of jumps.

2.2 Poissonized Young tableaux

For a YD λ, let [0, 1]λ denote the set of functions from the cells of λ into [0, 1]. Let
PYT(λ) denote the set of all functions T ∈ [0, 1]λ that satisfy the following tableau
constraints.

(1) T (i, j) ≤ T (i, j + 1) for every (i, j) and (i, j + 1) ∈ λ, (2.1)

(2) T (i, j) ≤ T (i + 1, j) for every (i, j) and (i + 1, j) ∈ λ.

The Poissonized tableau (PYT) of shape λ is an element of PYT(λ). The Poissonized
staircase shaped tableau of size N = (n

2

)
is an element of PYT(
n).

Let Tλ denote a uniformly random element of PYT(λ). Then Tλ is related to a
uniformly random SYT of shape λ in the following way. First, the entries of Tλ are
distinct with probability 1. Given that, consider the random SYT Tλ obtained by
inserting k into the cell that contains the k-th smallest element of Tλ. Then Tλ is a
uniformly random SYT of shape λ. In the other direction, Tλ can be generated by
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first sampling Tλ, then independently sampling a uniformly random Y ∈ [0, 1]λ, and
setting Tλ(i, j) to be the Tλ(i, j)-th smallest entry of Y .

Throughout the paper, Tλ denotes a uniformly random element of PYT(λ) and Tλ

denotes a uniformly random SYT of shape λ.

2.3 Jumps of Poissonized tableaux and local limit

Any T ∈ PYT(λ) can be represented as an interlacing particles system with a fixed
top row in the following manner. Consider 0 ≤ t ≤ 1 and let

YD(t) = {(i, j) ∈ 
n : T (i, j) ≤ t}.

The tableau constraints (2.1) ensure that YD(t) is a YD for every t . Recall that a YD
can be made to have an infinite number of rows by appending rows of size 0 after the
last positive row. Encode λ as particle configuration on Z+ 1

2 by placing a particle at
position

ν j = λ j − j + 1

2
for j ≥ 1. (2.2)

This is an infinite particle configuration on Z + 1
2 such that ν1 > ν2 > · · · and

ν j − ν j+1 = 1 for j > 	(λ) (shown in Fig. 4). Let ν(t) be the particle configuration
associated to YD(t) via (2.2) and let ν = (ν(t); 0 ≤ t ≤ 1) be the particle system on
(Z+ 1

2 )× [0, 1] with a particle at position (x, t) if and only if x ∈ ν(t).
The particle system ν(t) viewed in reverse time, i.e., from t = 1 to t = 0, can be

interpreted as an ensemble of non-intersecting and non-increasing paths p(i, u), for
1 ≤ i ≤ 	(λ). Let p(i, u) be the (Z+ 1

2 )-valued path starting from p(i, 0) = ν
(0)
i and

decreasing an integer unit at the times 1−T (i, λi ), 1−T (i, λi−1), . . . , 1−T (i, 1). If
some of the entries are equal then p(i, u) decreases by the number of consecutive equal
entries. The paths should be left continuous so that the jumps occur immediately after
the jump times. The path p(i, u) decreases by λi units with final position p(i, 1) =
−i + 1

2 . Due to the columns of T being non-decreasing – condition (2) of (2.1)—the
paths are non-intersecting: p(i, u) > p(i + 1, u) for every i and u. Figure 5 shows
the paths associated to a staircase shaped PYT.

The jumps of p(i, u) consists of points (x, t) ∈ Z× [0, 1] such that

(1) 1− t is a discontinuity point of p(i, u), i.e., t equals some entry of T on row i .
(2) x in an integer in the interval

[
p(i, (1 − t)+), p(i, 1 − t)

]
, where p(i, u+) =

lims↓u p(i, s).

The paths can be reconstructed from their jumps and initial positions. The jumps of
ν, and also of T , is the (possibly) multiset of Z× [0, 1] defined by

X = {(x, t) : (x, t) is a jump of some path p(i, u)}. (2.3)

X may be amultiset because two adjacent pathsmay jump at the same time by amounts
that causes some of their jumps to coincide. The coinciding jumps has be counted with
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multiplicity. However, if the entries of T are distinct then X is a simple set. The tableau
can be reconstructed from its jumps and the initial position of the paths.

Let Xλ denote the jumps of a uniformly random element Tλ of PYT(λ). Xλ is
simple almost surely since Tλ has distinct entries almost surely. Theorem 1.5 asserts
that Xλ is a determinantal point process on Z× [0, 1].

2.4 Determinantal point processes

We describe some basic notions about point processes; for a thorough introduction
see [7,12]. Let S be a locally compact Polish space. A discrete subset X of S is
a countable multiset of S with no accumulation points. By identifying X with the
measure

∑
x∈X δx , the space of discrete subsets can be given the topology of weak

convergence of Borel measures on S. This means that Xn → X∞ if for every compact
subset C ⊂ S, lim supn #(C ∩ Xn) ≤ #(C ∩ X∞), where cardinality is taken with
multiplicity.

A discrete set is simple if every point in it has multiplicity one. A point process on
S is a Borel-measurable random discrete set of S. All point processes considered in
this paper will be simple almost surely.

Throughout the paper we denote #Z to be counting measure on Z and L(A) to be
Lebesgue measure on a measurable subset A ⊂ R. Also, μ1⊗μ2 denotes the product
of measures μ1 and μ2, and μ⊗k denotes the k-fold product of μ.

A determinantal point process X on S is a simple point process for which there is a
correlation kernel K : S× S → R, and a Radon measure μ on S, called the reference
measure, with the following property. For every continuous f : Sk → R of compact
support,

E

[ ∑

(x1,...,xk )∈X k

x1,...,xk distinct

f (x1, . . . , xk)

]

=
∫

Sk

det
[
K (xi , x j )

]
f (x1, . . . , xk) μ⊗k(dx1, . . . , dxk). (2.4)

Expectations of the form given by the l.h.s. of (2.4) determine the law ofX under mild
conditions on K [32]. This will be the case in this paper as the correlation kernels we
consider will be continuous. If S is discrete then it is customary to take the reference
measure to be counting measure. In this case X is determinantal if for every finite
A ⊂ S,

P
[
A ⊂ X

] = det [K (x, y)]x,y∈A .

Remark 2.1 The correlation kernel of a determinantal point process is not unique. If
X is a determinantal point process with correlation kernel K then K may be replaced
by g(x)

g(y)
K (x, y), for any non-vanishing function g, without changing determinants on

the r.h.s. of (2.4). Thus the new kernel determines the same process. This observation
will be used multiple times.
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The determinantal point processes that we consider will be on spaces of the form
S = Z × {1, . . . , M}, or S = Z × [0, 1], or S = Z × R≥0, with reference measures
being, respectively, counting measure, #Z⊗L[0, 1] and #Z⊗L(R≥0). The following
lemma records some facts that will be used in deriving weak limits of determinantal
point processes. We do not include the proof as it is rather standard; see [12,32].

Lemma 2.2 (I) Let XM be a determinantal point process on Z × {1, . . . , M} with
correlation kernel KM . For x1, x2 ∈ Z and 0 ≤ t1, t2 ≤ 1, let

kM (x1, t1; x2, t2) = M KM (x1, �Mt1�; x2, �Mt2�).

Suppose that kM → k uniformly on compact subsets of Z× (0, 1). Then the point
process

X scaled
M = {(x, t/M) : (x, t) ∈ XM }

restricted toZ×(0, 1) converges weakly to a determinantal point processX whose
reference measure is #Z ⊗ L(0, 1) and whose correlation kernel is k.

(II) Let Xn be a determinantal point process on Z × (0, 1) with reference measure
#Z ⊗ L(0, 1) and correlation kernel Kn. For cn ∈ Z and β > 0, define a point
process on Z× R>0 by

X scaled
n = {(

x − cn, βn(1− t)
) : (x, t) ∈ Xn

}
.

The correlation kernel of X scaled
n with reference measure #Z ⊗ L(R>0) is

kn(x1, u1; x2, u2) = (βn)−1Kn

(
x1 + cn, 1− u1

βn
; x2 + cn, 1− u2

βn

)
.

If kn → k uniformly on compact subsets of Z × R>0 then X scaled
n converges

weakly to a determinantal point process X with reference measure #Z⊗L(R>0)

and correlation kernel k.
Extend X to a point process on Z × R≥0 without additional points. Then X scaled

n
converges weakly to X on Z× R≥0 if the points of X scaled

n do not accumulate at the
boundary in the sense that for every x ∈ Z,

lim
ε→0

lim sup
n→∞

P

[
X scaled

n ∩ ({x} × [0, ε]) �= ∅
]
= 0.

3 Determinantal representation of Poissonized tableaux

3.1 Determinantal representation of discrete interlacing particle systems

In order to proveTheorem1.5weuse a determinantal description of discrete interlacing
particle systems due to Petrov. This is the main tool behind the proof.
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Fig. 8 The 3 types of lozenges used in tiling polygonal domains that correspond to interlacing particle
systems. The position of a lozenge is given by the midpoint of the horizontal side of the black triangular
part (red square). The positions have integer coordinates. Particles correspond to positions of the leftmost
lozenges but translated by 1/2 in the x-coordinate (in our notation). Jumps correspond to positions of the
rightmost lozenges

Let ν = (ν(M, 1)+ 1
2 > · · · > ν(M, M)+ 1

2 ) be a fixed particle configuration on
Z+ 1

2 . Here we abuse notation from Sect. 2.1 to have the ν(M, j)s be integers instead
of half-integers. Let Pν be the uniform measure on all interlacing particle systems or,
equivalently, GTPs as described in Sect. 2.1, with fixed top row ν. Let Xν be the point
process of jumps of an interlacing particle system sampled according to Pν , where the
jumps are as described in Sect. 2.1.

Petrov [35, Theorem 5.1] proves that Pν is a determinantal point process on (Z+
1
2 )× {1, . . . , M} with an explicit correlation kernel. According to the notation there,
particles live on Z but we have translated particle systems by 1/2 so that the jumps are
integral. In particular, in the notation of [35, Theorem 5.1], one has N = M , x M, j =
ν(M, j) and the variables x1, x2 take integer values. In [35, Section 6.1] it is explained
that the point process of jumps, Xν , is also determinantal on Z× {1, . . . , M − 1} and
its correlation kernel is given in terms of the correlation kernel of Pν in [35, Theorem
6.1] (up to the translation by 1/2).

In particular, [35, Theorem 6.1] proves that the correlation kernel of the jumps is

KXν
(x1, m1; x2, m2) = (−1)x2−x1+m2−m1 KPν

(x1 − 1, m1 + 1; x2, m2),

where KPν
is the kernel presented in [35, Theorem 5.1]. The discussion there is in

terms of lozenge tilings of polygonal domains using three types of lozenges as depicted
in Fig. 8. It is proved that the positions of any of the three types of lozenges in such a
uniformly random tiling is a determinantal point process. The jumps of an interlacing
particle system are given by the positions of the lozenges of the rightmost type from
Fig. 8, where as the particles themselves are given by the positions of lozenges of
the leftmost type. Jumps occur when a lozenge of the leftmost type is glued along
its bottom diagonal to a lozenge of the rightmost type; see [35, Figure 3] for such
a tiling. By Remark 2.1, (−1)x2−x1+m2−m1 KPν

(x1 − 1, m1 + 1; x2, m2) defines the
same determinantal point process as KPν

(x1−1, m1+1; x2, m2), and we will use the
latter kernel.

Some notation is needed in order to express the kernel for the point process of
jumps. For integers a and b, let C[a, b) denote a closed, counter-clockwise contour on
C that encloses only the integers a, a + 1, . . . , b − 1 if a > b, and empty otherwise.
Throughout the paper, all contours intersect the real line at points which have distance
at least 1/10 from the integers. This ensures that the integrands of all contour integrals
will be a uniform distance away from their poles.
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For z ∈ C and an integer m ≥ 1, let

(z)m = z(z + 1) · · · (z − m + 1), (z)0 = 1.

Theorem 3.1 ([35, Theorem 5.1]) The process of jumps, Xν , of a uniformly random
interlacing particle system with fixed top row ν = (

ν(M, 1) + 1
2 > ν(M, 2) + 1

2 >

· · · > ν(M, M) + 1
2

)
is a determinantal point process on Z × {1, . . . , M − 1} with

correlation kernel K as follows. For x1, x2 ∈ Z and 1 ≤ m1, m2 ≤ M − 1,

K (x1, m1; x2, m2)

= −1{m2≤m1, x2<x1}
(x1 − x2)m1−m2

(m1 − m2)! (3.1)

+ 1

(2π i)2

∮

Cz [x2,ν(M,1)+1)
dz

∮

Cw[x1−M,ν(M,1)+1)
dw

[
(z − x2 + 1)M−m2−1
(w − x1 + 1)M−m1

· (M − m1 − 1)!
(M − m2 − 1)!

× 1

w − z
·

M∏

j=1

w − ν(M, j)

z − ν(M, j)

]
.

The contour Cw[−M, ν(M, 1)+1) contains Cz[x2, ν(M, 1)+1) without intersecting
it.

3.2 Proof of Theorem 1.5

Let λ be a Young diagram with at most n rows of positive length, that is, 	(λ) ≤ n.
For M ≥ n, consider semi-standard Young tableaux of shape

λM = (λ1, . . . , λn, 0, . . . , 0︸ ︷︷ ︸
M−n zeroes

).

The effect of adding M − n zero rows is to allow the entries in the non-zero rows of
λ to be between 1 to M . The law of a uniformly random PYT of shape λ is the weak
limit of a uniformly random semi-standard Young tableau of shape λM , as M →∞,
after the entries are rescaled onto the interval [0, 1]. Indeed, the law of a uniformly
random PYT of shape λ can be approximated by the uniform distribution on points
[T (i, j)] ∈ [0, 1]λ that satisfy the tableau constraints (2.1), with each T (i, j) = k/M
for some 1 ≤ k ≤ M , and the column constraints being strict.

The top row of particle systems associated to semi-standard Young tableaux of
shape λM under the bijection described in Sect. 2.1 is

123



Random sorting networks: local statistics via random…

ν
(M)
λ =

(
(λ1 − 1)+ 1

2
, . . . , (λn − n)+ 1

2
,−(n + 1)

+ 1

2
,−(n + 2)+ 1

2
, . . . ,−M + 1

2

)
. (3.2)

Due to the approximation scheme above, and the bijection between semi-standard
Young tableaux and interlacing particle systems discussed in Sect. 2.2, the process of
jumps, Xλ, of a uniformly random PYT of shape λ is the weak limit of the process of
jumps,XλM , of a uniformly random interlacing particle systemwith top row ν(M) after
these jumps are rescaled ontoZ×{1/(M−1), . . . , 1}. Thus, we derive a determinantal
description of the rescaled jumps of XλM in the large M limit. Since Xλ almost surely
contains no jumps on the boundary Z× {0, 1}, it suffices to derive the determinantal
description with Xλ restricted to Z× (0, 1).

Let KM denote the kernel from Theorem 3.1 for the process XλM . As explained
in Remark 2.1, the kernel (M − 1)x2−x1 KM (x1, m1; x2, m2) determines the same
determinantal point process. By Lemma 2.2, in order to prove the theorem it suffices
to show that

(M − 1)x2−x1+1KM (x1, �(M − 1)t1�; x2, �(M − 1)t2�) −→ Kλ,

uniformly over compacts subsets of x1, x2 ∈ Z and t1, t2 ∈ (0, 1).
We begin by deforming the contours in the double contour integral from (3.1)

that defines KM . This will simplify the representation of KM for taking the large M
limit. Deform the w-contour, Cw[x1 − M, νλM (M, 1) + 1), by pushing it leftward
past the z-contour, Cz[x2, νλM (M, 1)+ 1), so that it encloses the consecutive integers
min{x1, x2}−1, . . . , x1−M . The deformation results in picking up residues atw = z
and also at the consecutive integers w = x1 − 1, . . . , x2, if x2 < x1.

Let JM (w, x1, m1; z, x2, m2) denote the integrand of the double contour integral
from (3.1) but without the factor of 1/(w − z). Note that νλM (M, 1) + 1 = λ1.
Calculating the residues at w = z and leaving the remaining residues as a contour
integral provides the following representation of KM .

KM (x1, m1; x2, m2)

= −1{m2≤m1, x2<x1}
(x1 − x2)m1−m2

(m1 − m2)! (I a)

+ 1

2π i

∮

Cz [x2,λ1)
dz

(z − x2 + 1)M−m2−1
(z − x1 + 1)M−m1

· (M − m1 − 1)!
(M − m2 − 1)! (I b)

+ 1

(2π i)2

∮

Cz [x2,λ1)
dz

∮

Cw[x1−M,min{x1,x2})∪Cw[x2,x1)
dw

JM (w, x1, m1; z, x2, m2)

w − z
(I I ).

(3.3)

The following lemma simplifies (I a)+ (I b).
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Lemma 3.2 For 0 ≤ m1, m2 ≤ M − 1,

1

2π i

∮

Cz [x2,λ1)
dz

(z − x2 + 1)M−m2−1
(z − x1 + 1)M−m1

· (M − m1 − 1)!
(M − m2 − 1)!

− 1{m2≤m1, x2<x1}
(x1 − x2)m1−m2

(m1 − m2)!
= 1{m2>m1, x1>x2}

(m1 − m2 + 1)x1−x2−1
(x1 − x2 − 1)! .

Proof The integral (I b) is evaluated in [35, Lemma 6.2] by summing over residues at
z = x2, . . . , x1 − 1 and evaluating the resulting sum in closed form via a hypergeo-
metric identity. We have

(I b) = 1{x1>x2}
(m1 − m2 + 1)x1−x2−1

(x1 − x2 − 1)! .

Therefore,

(I a)+ (I b) = 1{x1>x2}
[
(m1 − m2 + 1)x1−x2−1

(x1 − x2 − 1)! − 1{m2≤m1}
(x1 − x2)m1−m2

(m1 − m2)!
]

.

If m2 ≤ m1 then the above is 0 because both terms in the difference are equal to
(m1−m2+x1−x2−1)!
(m1−m2)!(x1−x2−1)! . Hence, (I a)+ (I b) in non zero only if x1 > x2 and m2 > m1 and

equals what is given in the statement of the lemma. ��
Now consider the expression (II) from (3.3). Observe that the zeroes of (w− x1 +

1)M−m1 are at consecutive integers x1 − 1, x1 − 2, . . . , x1 − (M −m1). On the other
hand, the polynomial

∏
j (w−νλM (M, j)) also has zeroes at νλM (M, n+i) = −(n+i)

for 1 ≤ i ≤ M−n. Therefore, the only poles of JM in thew variable are at the integers
x1 − 1, x1 − 2, . . . ,−n so long as x1 + m1 ≥ 0. For fixed x1 and m1 ≥

√
M , say,

the condition x1 +m1 ≥ 0 is satisfied for all large M . Thus, the contour integral over
Cw[x1 − M,min{x1, x2}) may be shortened to Cw[−n,min{x1, x2}) for all large M
if x1 remains fixed and m1 ≥

√
M .

Having done so, (II) becomes the following integral after changing variables z �→
z + x2 and w �→ −w + x1 − 1:

(I I ) = 1

(2π i)2

∮

Cz [0,λ1−x2)

dz
∮

Cw [0,n+x1)

dw

(z + 1)M−m2−1 (M − m1 − 1)!
M∏

j=1
−w+x1−1+νλM (M, j)

z+x2−νλM (M, j)

(−w)M−m1 (M − m2 − 1)! (w + z + x2 − x1 + 1)
.

(3.4)
By a slight abuse of notation, let JM henceforth denote the integrand of (3.4) without
the factor 1/(w + z + x2 − x1 + 1). The following lemma provides the asymptotic
form of JM .
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Lemma 3.3 Fix integers x1 and x2. Suppose 0 < t1, t2 < 1 and w and z remain
bounded and have distance at least 1/10 from the integers. Then for m1 = �t1(M−1)�
and m2 = �t2(M − 1)�,

(M − 1)x1−x2−1 JM (w, x1, m1; z, x2, m2)

= (1− t1)
w(1− t2)

z � (−w) Gλ(z + x2)

� (z + 1) Gλ(x1 − 1− w)
(1+ O(M−1)).

The big O term is uniform over z, w so long as the stated assumptions hold and t1, t2
remain in compact subsets of (0, 1). The function Gλ is as stated in Theorem 1.5.

Proof We will use the following identity:

(y)m = � (y + m)

� (y)
, y /∈ {0,−1,−2, . . .}. (3.5)

We will also use Stirling’s approximation of the Gamma function in the following
form:

� (y + m)

(m − 1)! = my (1+ O(m−1)), m ≥ 1. (3.6)

ThebigO term is uniform inm so long as y is bounded andbounded away fromnegative
integers. Using these two properties, if m1 = �t1(M − 1)� and m2 = �t2(M − 1)�
then

(z + 1)M−m2−1
(−w)M−m1

· (M − m1 − 1)!
(M − m2 − 1)!

= (1− t1)
w(1− t2)

z � (−w)

� (z + 1)
(M − 1)z+w (1+ O(M−1)) (3.7)

Now consider the term

M∏

j=1

(
w − νλM (M, j)

) =
n∏

j=1
(w − λ j + j) · (w + n + 1)M−n

=
n∏

j=1
(w − λ j + j) · � (w + M + 1)

� (w + n + 1)
.

Applying (3.6) to � (w + M + 1) and � (z + M + 1) gives

∏

j

w − νλM (M, j)

z − νλM (M, j)
= � (z + n + 1)

� (w + n + 1)
·

n∏

j=1

w − λ j + j

z − λ j + j
· Mw−z (1+ O(M−1)).
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Substituting in z + x2 and −w + x1 − 1 then gives

∏

j

−w + x1 − 1− νλM (M, j)

z + x2 − νλM (M, j)

= Gλ(z + x2)

Gλ(x1 − 1− w)
(M − 1)−(w+z)+x1−x2−1(1+ O(M−1)). (3.8)

Combining (3.7) with (3.8) provides the desired conclusion of the lemma. ��
We now prove that (M − 1)x2−x1+1KM converges to Kλ. Suppose xi are fixed and

mi = �ti (M − 1)� for i = 1, 2 and ti ∈ [δ, 1− δ] for some δ > 0. Recall that KM is
given in (3.3). For all sufficiently large values of M , Lemma 3.2 and then the identity
(3.5) followed by the estimate (3.6) show that (I a)+ (I b) of (3.3) equals

(I a)+ (I b) = 1{m2>m1,x1>x2}
(m1 − m2 + 1)x1−x2−1

(x1 − x2 − 1)! (3.9)

= 1{t2>t1,x1<x2}
(t1 − t2)x1−x2−1

(x1 − x2 − 1)! · (M − 1)x1−x2−1(1+ O(M−1)).

Now we consider (II) in the form given in (3.4) following the change of variables.
Lemma 3.3 implies that as M →∞,

(M − 1)x2−x1+1 JM (w, x1, t1; z, x2, t2)→ (1− t1)
w(1− t2)

z � (−w) Gλ(z + x2)

� (z + 1) Gλ(x1 − 1− w)
.

(3.10)
The convergence is uniform over compact subsets of w and z so long as w and z are
uniformly bounded away from the integers. For all large values of M the contours
of integration of (I I ) become free of M , namely, z ∈ Cz[0, λ1 − x2) and w ∈
Cw[0, n + x1). The contours may also be arranged such that they remain bounded
away from the integers and |w + z + x2 − x1 + 1| ≥ 1/10 throughout, say. This
implies that as M →∞, (M − 1)x2−x1+1 · (I I ) converges to

1

(2π i)2

∮

Cz [0,λ1−x2)

dz
∮

Cw[0,n+x1)

dw (1− t1)
w(1− t2)

z � (−w) Gλ(z + x2)

� (z + 1) Gλ(x1 − 1− w)

× 1

(w + z + x2 − x1 + 1)
.

Wehave thus concluded that (M−1)x2−x1+1KM converges to the kernel Kλ given in
Theorem 1.5. Moreover, the estimates show that the converge is uniform over compact
subsets of Z× (0, 1). Indeed, so long at t1, t2 ∈ [δ, 1− δ] and |x1|, |x2| ≤ B, the error
term in the convergence is of order OB,δ(M−1), by Lemma 3.3, because the double
contours eventually become free of M and the integrand converges uniformly over
the contours. Part (I) of Lemma 2.2 now implies that the rescaled process of jumps,
X scaled

λM
, converges weakly on Z× (0, 1) to a determinantal point process with kernel

as given in Theorem 1.5. ��
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4 Bulk local limit of the jumps of Poissonized staircase shaped
tableaux

In this section we prove that the point process Xα,n from (1.5) converges weakly to
the point process Xedge from Definition 1.1. This is done in a two-step procedure.
First, we prove in Theorem 4.1 that the limit of Xα,n is a determinantal point process
whose kernel is given in terms of a double contour integral. Second, we identifying
this kernel with the one from Definition 1.1 in Proposition 4.3.

Theorem 4.1 The point processXα,n from (1.5) converges weakly to a limiting determi-
nantal point process Xedge on Z×R≥0. The correlation kernel of Xedge with respect to
reference measure #Z⊗L(R≥0) is given as follows. For u1, u2 ∈ R≥0 and x1, x2 ∈ Z,

Kedge(x1, u1; x2, u2)

= 1{u2<u1,x2<x1}
(u2 − u1)

x1−x2−1

(x1 − x2 − 1)!
+ 1

(2π i)2

∮

Cz [0,∞)

dz
∮

Cw[0,∞)

dw
π

2
· G(w; x1, u1) G(z; x2, u2)

w + z + x2 − x1 + 1
, where

G(z; x, u) = uz

� (z + 1) sin
(

π
2 (z + x2)

) . (4.1)

The contours Cz[0,∞) and Cw[0,∞) are unbounded, contain the non-negative inte-
gers but remain uniformly bounded away from them and are arranged such that
w + z + x2 − x1 + 1 remains uniformly bounded away from 0. They may also be
arranged such that their imaginary parts remain bounded and Cz contains Cw.

The value of Kedge when u1 or u2 equals 0 is to be understood in the sense of the
limit as u1 or u2 tends to 0.

Proof The proof proceeds in two steps, each verifying the conditions of part (II) of
Lemma 2.2. First, we will show that the correlation kernel of Xα,n converges to Kedge
uniformly on compact subsets of x1, x2 ∈ Z and u1, u2 ∈ R>0. Then we will argue
that points of Xα,n do not accumulate on the boundary Z× {0} as n →∞.

Let β = √1− α2. Part (II) of Lemma 2.2 and Theorem 1.5 imply that the correla-
tion kernel of Xα,n with reference measure #Z ⊗ L(R≥0) is

Kn(x1, u1; x2, u2) = (βn)−1K
n

(
x1 + cn, 1− u1

βn
; x1 + cn, 1− u1

βn

)
.

The kernel (βn)x1−x2 Kn determines the same point process by Remark 2.1. Using
part (II) of Lemma 2.2 it suffices to show that (βn)x1−x2 Kn converges uniformly over
compact subsets of Z × R>0 to Kedge as n → ∞ in order to deduce convergence of
Xα,n to Xedge on Z× R>0.
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Let Gn denote the function 2n−1G
n , where G
n is as in Theorem 1.5. Then

Gn(z) = 2n−1� (z + n + 1)
∏n−1

j=1(z − n + 2 j)
= � (z + n + 1)

( z−n
2 + 1

)
n−1

= � (z + n + 1) �
( z−n+2

2

)

�
( z+n

2

) . (4.2)

Substitute in xi + cn for the variables xi and 1− (βn)−1ui for the variables ti in K
n .
Then,

Kn(x1, u1; x2, u2)

= 1{u2<u1,x2<x1}
(u2 − u1)

x1−x2−1

(x1 − x2 − 1)! (βn)x2−x1

+ 1

(2π i)2

∮

Cz [0,n−1−cn−x2)

dz
∮

Cw [0,n−1+cn+x1)

dw
� (−w) Gn(z + x2 + cn) uw

1 uz
2 (βn)−w−z−1

� (z + 1) Gn(x1 − 1+ cn − w)(w + z + x2 − x1 + 1)
.

(4.3)

Using the formula for Gn from (4.2) and applying the identity

� (1− y) � (y) = π

sin(π y)
, y /∈ {0,−1,−2, . . .}, to y = n − cn − z

2
gives

(4.4)

Gn(z + cn) = � (z + n + cn + 1)

�
( n+cn+z

2

)
�
( n−cn−z

2

) · π

sin
(

π
2 (n − cn − z)

) . (4.5)

The estimate for � (z) from (3.6) along with the observation that n ± cn = (1 ±
α)n + O(1) → +∞ implies the following asymptotic bevaviour as n → ∞. The
symbol∼ denotes a multiplicative term 1+ O(n−1) where the big O error is uniform
over z in compact subsets of C\Z.

�

(
n ± (cn + z)

2

)
∼ �

(
n ± cn

2

)
·
(

n ± cn

2

)± z
2

, (4.6)

� (n + cn + z + 1) ∼ � (n + cn) · (n + cn)z+1. (4.7)

Therefore,

� (n + cn + z + 1)

�
( n+cn+z

2

)
�
( n−cn−z

2

) · �
( n+cn+w

2

)
�
( n−cn−w

2

)

� (n + cn + w + 1)

∼
(

n + cn

n − cn

)w−z
2

(1+ α)z−w nz−w

∼
(
1− α

1+ α

) z−w
2

(1+ α)z−w nz−w

= (βn)z−w.
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Substituting in z + x2 for z and −w + x1 − 1 for w in this estimate gives

Gn(z + x2 + cn)

Gn(−w + x1 − 1+ cn)
∼ sin

(
π
2 (−w + x1 − 1− n − cn)

)

sin
(

π
2 (z + x2 − n − cn)

) (βn)w+z+x2−x1+1 .

(4.8)
The error in the above estimate vanishes as n →∞ so long as w, z and the xi lie in
compact subsets of their respective domains. We also have that

sin
(

π
2 (n − cn − w)

)

sin
(

π
2 (n − cn − w)

) = sin
(

π
2 w

)

sin
(

π
2 z

) if n − cn is even.

Since n − cn is assumed to be even we conclude from (4.8) that so long w and z are
bounded and remain uniformly bounded away from the integers then

lim
n→∞ (βn)x1−x2+1 Gn(z + x2 + cn)(βn)−w−z−1

Gn(x1 + cn − 1− w)
= − sin

(
π
2 (w − x1 + 1)

)

sin
(

π
2 (z + x2)

) . (4.9)

The above displays the pointwise limit of the part of the integrand from (4.3) that
depends on n. In order to interchange the pointwise limit with the contour integral
we must show that the integrand is bounded uniformly over n by a function that is
integrable over the contours z ∈ Cz[0, n−1−cn−x2) andw ∈ Cw[0, n−1+cn+x1),
also uniformly over n. Then we may apply the dominated convergence theorem.

Towards this end suppose z is such that (1) |�(z)| ≤ 2n, (2) |�(z)| is uniformly
bounded over n, say by 100, and (3) z remains bounded away from Z by distance at
least 1/10. In this case Stirling approximation to the Gamma function implies that
modulus of the ratio of the l.h.s. of (4.6) to its r.h.s. is bounded above and below
by exponential factors of uniform rate in |�(z)|. The same holds for the ratio of the
l.h.s. of (4.7) to its r.h.s. That is, for some constant C ,

e−C (|�(z)|+1) ≤
∣∣∣∣∣∣

�
(

n±(cn+z)
2

)

�
( n±cn

2

) · ( n±cn
2

)± z
2

∣∣∣∣∣∣
≤ eC (|�(z)|+1),

e−C (|�(z)|+1) ≤
∣
∣∣∣

� (n + cn + z + 1)

� (n + cn) · (n + cn)z+1

∣
∣∣∣ ≤ eC (|�(z)|+1).

Throughout the following C denotes a constant that is free of n but its value may
change from line to line.We combine the estimates abovewith the equation for Gn(z+
cn) from (4.5) and observe that there is a C such that 1/C ≤ | sin(n − cn − z)| ≤ C
due to the assumptions on z. This in turn implies that there is a C such that

e−C (|�(z)|+1) ≤
∣∣∣∣
Gn(z + cn)

(βn)z

∣∣∣∣ ≤ eC (|�(z)|+1).

The contours Cz[0, n − 1− cn − x2) and Cw[0, n − 1+ cn + x1) can certainly be
arranged such that for fixed x1 and x2 the variables z + x2 and −w + x1 − 1 satisfy
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the aforementioned assumptions (1)–(3) uniformly over n. Thus, we get the following
uniform estimate over n with z ∈ Cz[0, n−1−cn−x2) andw ∈ Cw[0, n−1+cn+x1):

∣∣
∣∣

Gn(z + x2 + cn)

Gn(−w + x1 − 1+ cn)

∣∣
∣∣ ≤ (βn)�(z+w)+x2−x1+1 eC (|�(z)|+|�(w)|+1).

The contours may also be arranged such that |w+ z+ x2− x1+ 1| ≥ 1/10, say. Then
the modulus of the integrand of the double contour integral from (4.3) satisfies

(βn)x1−x2

∣∣
∣∣∣

� (−w) Gn(z + x2 + cn) uw
1 uz

2 (βn)−w−z−1

� (z + 1) Gn(x1 − 1+ cn − w) (w + z + x2 − x1 + 1)

∣∣
∣∣∣

(4.10)

≤
∣∣∣∣

� (−w)

� (z + 1)

∣∣∣∣ |uw
1 | |uz

2| eC (|�(z)|+|�(w)|+1).

Stirling’s approximation implies that if �(z) ≥ 1/10 and |�(z)| remains bounded
then |uz |

|� (z + 1) | = e−�(z) log�(z)+�(z)(log u+O(1)). (4.11)

Applying (4.4) with y = −w also gives � (−w) = −π [� (w + 1) sin(πw)]−1. Note
that | sin(πw)|−1 ≤ C so long as w remains uniformly bounded away from the
integers. Combining this with (4.11) shows that the r.h.s. of (4.10) is integrable over
unbounded double contours Cz[0,∞) � z and Cw[0,∞) � w as long as the contours
are arranged such that z, w remain uniformly bounded away from the integers, have
uniformly bounded imaginary parts, and z + w + x2 − x1 + 1 remains uniformly
bounded away from 0. Thus, the limit (4.9), upper bound (4.10) and the dominated
convergence theorem implies that as n →∞

(βn)x1−x2 Kn(x1, u1; x2, u2)

→ 1{u2<u1,x2<x1}
(u2 − u1)

x1−x2−1

(x1 − x2 − 1)!
+ 1

(2π i)2

∮

Cz [0,∞)

dz
∮

Cw[0,∞)

dw uw
1 uz

2 ·
−� (−w) sin

(
π
2 (w − x1 + 1)

)

� (z + 1) sin
(

π
2 (z + x2)

)

· 1

w + z + x2 − x1 + 1
.

Furthermore, our estimates show that the convergence is uniform over xi in compact
subsets of Z and ui in compact subsets of R>0. (In fact, when some ui → 0 the
integral contributes only through residues at the origin. Lemma 4.2 computes the limit
as ui → 0.) Comparing the limit integrand with the one presented in (4.1) we observe
that the proof of the kernel convergence will be complete once it is shown that

−� (−w) sin
(π

2
(w − x1 + 1)

)
= (π/2)

� (w + 1) sin
(

π
2 (w + x1)

) .
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From (4.4), −� (−w) = π [� (w + 1) sin(πw)]−1. Also, sin(π
2 (w − x + 1)) =

cos(π
2 (w − x)). Finally, double angle trigonometric formulae imply sin(πw) =

2 sin(π
2 (w + x)) cos(π

2 (w − x)). Substituting these equations into the l.h.s. of the
above verifies the equality with the r.h.s.

To complete the proof of convergence of Xα,n to Xedge on Z×R≥0 it is enough to
show, using Lemma 2.2, that for every x ∈ Z,

lim
ε→0

lim sup
n→∞

E
[
#Xα,n ∩ ({x} × [0, ε])] = 0. (4.12)

In other words, points do not accumulate at the boundary in the limit. From relation
(2.4) for determinantal point processes and (4.3) we get

E
[
#Xα,n ∩ ({x} × [0, ε])]

=
∫ ε

0
Kn(x, t; x, t) dt

= 1

(2π i)2

∮

Cz [0,n−1−cn−x)

dz
∮

Cw [0,n−1+cn+x)

dw
� (−w) Gn(z + x + cn)

( ∫ ε

0 tw+z dt
)
(βn)−w−z−1

� (z + 1) Gn(x − 1+ cn − w)(w + z + 1)

= 1

(2π i)2

∮

Cz [0,n−1−cn−x)

dz
∮

Cw [0,n−1+cn+x)

dw
� (−w) Gn(z + x + cn) εw+z+1 (βn)−w−z−1

� (z + 1) Gn(x − 1+ cn − w)(w + z + 1)2
.

The quantity above is of the form ε Iε,n . Arguing exactly as in the derivation of
the limit kernel, Iε,n → Iε , where Iε is given by the double contour integral in the
definition of Kedge(x, ε; x, ε) from (4.1) but with an additional factor of w+ z+ 1 in
the denominator of the integrand. Indeed, ε Iε =

∫ ε

0 Kedge(x, t; x, t) dt , which is the
expected number of points ofXedge on {x}×[0, ε]. The quantity Iε remains uniformly
bounded near ε = 0 since, as ε → 0, the contribution to the integral that defines Iε
comes from the residues at w, z = 0 and these residues do not depend on ε. (See
Lemma 4.2 where limε→0 Kedge(x, ε; x, ε) is derived analogously.) Consequently,
ε Iε → 0 as ε → 0 and thus the condition from (4.12) holds. ��

4.1 Integral representation of the edge kernel

We begin with an auxiliary lemma.

Lemma 4.2 Let Cw[0,∞) and Cz[0,∞) be contours as in the statement of Theo-
rem 4.1 and let G(z; x, u) be as in (4.1). For t > 0 let

I (t) = 1

(2π i)2

∮

Cz [0,∞)

dz
∮

Cw[0,∞)

dw
π

2
· G(w; x1, tu1) G(z; x2, tu2))

w + z + x2 − x1 + 1
.

Then,

lim
t→0

I (t) =
{

2
π

cos( π
2 x1) cos( π

2 x2)
x2−x1+1 if x2 �= x1 − 1

−1{x1 even} if x2 = x1 − 1.
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Moreover, I is continuously differentiable on R>0 and can be differentiated by inter-
changing differentiation with the contour integration.

Proof The integrand of I is continuously differentiable in t . Observe that the contours
of integration contain no singularities of the integrand, and in fact, are arranged to
be a positive distance from all zeroes of sin(π

2 (z + x2)) and sin(π
2 (w + x1)) in the

denominator. The estimate for |uz|/|� (z + 1) | from (4.11) shows that the derivative
of the integrand in the variable t is absolutely integrable over the contours as long
as t lies in a compact subset of R≥0. Consequently, by the dominated convergence
theorem, I is continuously differentiable and the derivative may be interchanged with
integration.

Let us now consider the limiting value of I (t) as t → 0. Decomposing Cw as
Cw[0, 1) ∪ Cw[1,∞), and similarly for Cz , gives

∮

Cz

∮

Cw

=
∮

Cz [0]

∮

Cw[0]
+

∮

Cz [0]

∮

Cw[1,∞]
+

∮

Cz [1,∞]

∮

Cw[0]
+

∮

Cz [1,∞]

∮

Cw[1,∞]
.

These four contours may also be arranged such that �(w + z) > 0 unless both
w ∈ Cw[0] and z ∈ Cz[0]. Recall that

G(z; x, u) = uz

� (z + 1) sin
(

π
2 (z + x)

) .

Thus, the integrand of I (t) converges to 0 as t → 0 so long as w /∈ Cw[0] and
z /∈ Cz[0]. So each of the double contour integrals above except for the first has a
limit value of 0 as t → 0 (the limit operation may be interchanged with integration as
argued above). To complete the proof it suffices to calculate

lim
t→0

1

(2π i)2

∮

Cz [0]
dz

∮

Cw[0]
dw

π

2
· G(w; x1, tu1) G(z; x2, tu2))

w + z + x2 − x1 + 1
. (4.13)

The integral above is evaluated via residues at w = 0 and z = 0. If x2 �= x1 − 1
then (4.13) equals

Resz=0
(
Resw=0

(
(π/2) G(w; x1, tu1) G(z; x2, tu2)

w + z + x2 − x1 + 1

))
= 2

π

cos
(

π
2 x2

)
cos

(
π
2 x1

)

x2 − x1 + 1
.

This is the limit value of I (t) in the statement of the lemma for x2 �= x1 − 1.
Now consider the limit (4.13) in the case x2 = x1 − 1. As the contour Cw[0] can

be arranged to be contained inside Cz[0], the integral in w equals the residue of the
integrand at the only possible pole at w = 0. This equals

Resw=0
(

(π/2) G(w; x1, tu1) G(z; x2, tu2)

w + z

)
= cos

(
π
2 x1

)
(tu2)

z

z� (z + 1) sin
(

π
2 (z + x2)

) .
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If x1 is odd then the above equals 0. Otherwise, cos((π/2)x1) = (−1)x1/2 and the
integral of the above over Cz[0] is given by its residue at the pole z = 0 (note that
sin(π

2 x2) �= 0 since x2 = x1 − 1 is odd). The residue equals

Resz=0

(
cos

(
π
2 x1

)
(tu2)

z

z� (z + 1) sin
(

π
2 (z + x2)

)

)

= cos
(

π
2 x1

)

sin
(

π
2 x2

) = −1.

Thus, if x2 = x2 − 1 then (4.13) equals −1{x1 even} and this completes the proof. ��
Proposition 4.3 The kernel Kedge has the following form.

Kedge(x1, u1; x2, u2)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

π

0∫

1

t x2−x1 cos
(

tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt, if x2 ≥ x1;

− 2

π

∞∫

1

t x2−x1 cos
(

tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt, if x2 < x1.

Proof For t > 0 let

f (t) = Kedge(x1, tu1; x2, tu2) = t x1−x2−11{u1>u2,x1>x2}
(u2 − u1)

x1−x2−1

(x1 − x2 − 1)! + I (t),

where I (t) is as defined in Lemma 4.2. By Lemma 4.2, f is continuous differentiable
on R>0 and the function t x2−x1+1 f (t) may be differentiated by interchanging differ-
entiation with integration. Differentiating t x2−x1+1 f (t) and clearing common powers
of t gives

(x2 − x1 + 1) f + t f ′ = 1

(2π i)2

∮

Cz [0,∞)

dz
∮

Cw[0,∞)

dw
π

2

· G(w; x1, tu1) G(z; x2, tu2))

= π

2
· 1

2π i

∮

Cw[0,∞)

dw G(w; x1, tu1)

· 1

2π i

∮

Cz [0,∞)

dz G(z; x2, tu2)).

The contour integrals can be evaluated by summing over residues of G. Inside
the contour Cz[0,∞], the function G(z, x, u) has simple poles at integers z such
that sin(π(z + x)/2) = 0. In other words, z has to have the same parity as x . Let
x̄ = 1{x odd}. The residues of the integral come from integers z = 2k + x̄ for k ≥ 0.
Since Resy=2k(sin(π y/2)−1) = (2/π)(−1)k , summing over the residues gives
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1

2π i

∮

Cz [0,∞)

dw
(tu)z

� (z + 1) sin
(

π
2 (z + x)

) = 2(−1) x+x̄
2

π

∑

k≥0
(−1)k (tu)2k+x̄

(2k + x̄)!

= 2(−1) x+x̄
2

π
cos

(
ut − π

2
x̄
)

= 2

π
cos

(
ut + π

2
x
)

.

Consequently,

(x2 − x1 + 1) f (t)+ t f ′(t) = 2

π
cos

(
u1t + π

2
x1
)
cos

(
u2t + π

2
x2
)

. (4.14)

Multiplying (4.14) by t x2−x1 then implies that

[t x2−x1+1 f ]′ = 2

π
t x2−x1 cos

(
u1t + π

2
x1
)
cos

(
u2t + π

2
x2
)

. (4.15)

For x2 ≥ x1, the r.h.s. of (4.15) is integrable over t in [0, 1]. Moreover,
t x2−x1+1 f (t) → 0 as t → 0 because limt→0 f (t) = limt→0 I (t), and the latter
limit is finite whereas t x2−x1+1 → 0 as t → 0. Therefore, (4.15) implies

f (1) = 2

π

∫ 1

0
t x2−x1 cos

(
u1t + π

2
x1
)
cos

(
u2t + π

2
x2
)

dt .

Next, consider the case x2 < x1 − 1. Now the relation from (4.15) should be
integrated from 1 to∞, which is convergent since x2− x1 ≤ −2. The formula follows
so long as limt→∞ t x2−x1+1 f (t) = 0. Rather than derive this limit we take a slightly
indirect approach by considering the limit of f (t) near t = 0. For t > 0 define

g(t) = − 2

π

∫ ∞

1
sx2−x1 cos

(
u1st + π

2
x1
)
cos

(
u2st + π

2
x2
)

ds (4.16)

= − 2

π
t x1−x2−1

∫ ∞

t
sx2−x1 cos

(
u1s + π

2
x1
)
cos

(
u2s + π

2
x2
)

ds.

Upon differentiating g it follows readily that g satisfies the same differential equation
as f displayed in (4.14). Therefore, f (t) = g(t)+C for some constant C . In order to
identifyC as zero it suffices to show that limt→0 f (t)−g(t) = 0. Since t x1−x2−1 → 0
as t → 0, due to x2 < x1− 1, both f (t) and I (t) have the same limit as t → 0. Thus,
utilizing Lemma 4.2, showing C = 0 amounts to proving

lim
t→0

g(t) = 2

π

cos
(

π
2 x1

)
cos

(
π
2 x2

)

x2 − x1 + 1
.
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The limit of g(t) can be found using L’Hôspital’s rule, which shows that

lim
t→0

g(t) = lim
t→0

− 2
π

∫∞
t sx2−x1 cos

(
u1s + π

2 x1
)
cos(u2s + π

2 x2) ds

t x2−x1+1

= lim
t→0

2
π

t x2−x1 cos
(
u1t + π

2 x1
)
cos

(
u2t + π

2 x2
)

(x2 − x1 + 1)t x2−x1

= 2

π

cos
(

π
2 x1

)
cos

(
π
2 x2

)

x2 − x1 + 1
.

We conclude that g(t) = f (t) for t ∈ R>0, and in particular that f (1) = g(1), as
required.

Finally, consider the case x2 = x1−1. The r.h.s. of (4.15) is continuous for t in [0, 1]
because one of cos(u1t + π

2 x1) or cos(u2t + π
2 x2) has a zero at t = 0 depending upon

the parity of x1. From Lemma 4.2, limt→0 f (t) = 1{u1>u2} − 1{x1 even}. Therefore,
(4.15) implies that

f (1) = 1{u1>u2} − 1{x1 even} +
2

π

∫ 1

0
t−1 cos

(
u1t + π

2
x1
)
cos

(
u2t + π

2
x2
)

dt .

(4.17)
We now express (4.17) as an integral over t ∈ [1,∞) as given in the proposition.

First, note Kedge may bemodified on themeasure zero set consisting of (x1, u1; x2, u2)

such that u1 = u2 without changing determinants in (2.4), and thus, this does not
affect the law of Xedge. We will modify the kernel on this zero set after the following
calculations to get the form given in the proposition.

Observe that cos(u2t+ π
2 x2) = sin(u2t+ π

2 x1) if x2 = x1−1. Using trigonometric
formulae the integrand of (4.17) becomes

2 cos
(
u1t + π

2 x1
)
sin

(
u2t + π

2 x1
)

π t
=

{
sin((u1+u2)t)+sin((u2−u1)t)

π t , x1 even
− sin((u1+u2)t)+sin((u2−u1)t)

π t , x1 odd.

(4.18)

Using the fact that
∫∞
0

sin t
t = π

2 , we get that for a ∈ R,

∫ 1

0

sin(at)

π t
dt = sgn(a)

∫ |a|

0

sin t

π t
dt = sgn(a)

2
−

∫ ∞

1

sin(at)

π t
dt . (4.19)

Using (4.19) and the representation of the integrand in (4.18) we infer that if x1 is
even then

1{u1>u2} − 1{x1 even} +
2

π

∫ 1

0
t−1 cos

(
u1t + π

2
x1
)
sin

(
u2t + π

2
x1
)

dt

= 1{u1>u2} − 1+ sgn(u1 + u2)+ sgn(u2 − u1)

2
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−
∫ ∞

1

sin((u1 + u2)t)+ sin((u2 − u1)t)

π t
dt

= −1{u1=u2}
(
1+ 1{u1=0}

2

)

− 2

π

∫ ∞

1
t−1 cos

(
u1t + π

2
x1
)
sin

(
u2t + π

2
x1
)

dt .

This shows that (4.17) equals the expression given in the statement of the proposition

for x2 = x1 − 1 and x1 even except for the additive term −1{u1=u2}(
1+1{u1=0}

2 ). By
modifying Kedge on the zero set {u1 = u2, x2 = x1 − 1, x1 even} we may ignore this
term.

For x1 being odd we argue in the same manner as above to infer that (4.17) equals

1{u1>u2} − 1{x1 even} +
2

π

∫ 1

0
t−1 cos

(
u1t + π

2
x1
)
sin

(
u2t + π

2
x1
)

dt

= 1{u1>u2} −
sgn(u1 + u2)+ sgn(u1 − u2)

2

+
∫ ∞

1

sin((u1 + u2)t)+ sin((u1 − u2)t)

π t
dt

= −1{u1=u2>0}
2

− 2

π

∫ ∞

1
t−1 cos

(
u1t + π

2
x1
)
sin

(
u2t + π

2
x1
)

dt .

Once again, we modify Kedge on the zero set {u1 = u2, x2 = x1 − 1, x1 odd} to
ignore the additive term − 1

21{u1=u2>0} and get the expression of the kernel given in
the proposition. ��

4.2 Statistical properties ofXedge

This section derives certain properties of Xedge, namely, Propositions 4.4, 4.6, Lem-
mas 4.8 and 4.9, that will be used to derive the local limit of staircase shaped tableaux
and of sorting networks.

Proposition 4.4 The process Xedge has the following statistical properties.

I) Translation and reflection invariance: For any integer h the translated process

Xedge + (2h, 0) = {(x + 2h, u) : (x, u) ∈ Xedge}

and the reflected process

(−1, 1) ∗ Xedge = {(−x, u) : (x, u) ∈ Xedge}

have the same law as Xedge.
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II) One dimensional marginals: For any x ∈ Z and u1, u2 ∈ R≥0,

Kedge(x, u1; x, u2) = sin(u1 − u2)

π (u1 − u2)
+ (−1)x sin(u1 + u2)

π (u1 + u2)
. (4.20)

Therefore, Xedge ∩ ({x} × R≥0) is a determinantal point process with reference
measure L(R≥0) and correlation kernel (4.20).

Proof Part I) From Lemma 2.2 the correlation kernel of Xedge + (2h, 0) equals
Kedge(x1−2h, u1; x2−2h, u2). The integral representation of Kedge in Proposition 4.3
implies that

Kedge(x1 − 2h, u1; x2 − 2h, u2) = Kedge(x1, u1; x2, u2)

upon observing that cos(x+πh) = (−1)h cos(x), which implies that the integrands do
not change after the kernel is transformed. Consequently, the translated point process
has the same law as the original. Similarly, the correlation kernel for the reflected pro-
cess is Kedge(−x1, u1;−x2; u2) = (−1)x1−x2 Kedge(x2, u2; x1, u1). The latter kernel
defines the same determinantal point process as Xedge in law.

Part II) Proposition 4.3 gives that

Kedge(x, u1; x, u2) = 2

π

∫ 1

0
cos

(
tu1 + π

2
x
)
cos

(
tu2 + π

2
x
)

dt

= 1

π

(
sin(tu1 − tu2)

u1 − u2
+ sin(tu1 + tu2 + πx)

u1 + u2

) ∣∣∣∣

t=1

t=0

= 1

π

(
sin(u1 − u2)

u1 − u2
+ (−1)x sin(u1 + u2)

u1 + u2

)
.

The fact hat Xedge ∩ ({x} × R≥0) is determinantal with kernel as stipulated follows
from the relation (2.4) for determinantal point processes. ��
Lemma 4.5 There is a universal constant C such that for x1, x2 ∈ Z and u1, u2 ∈ R≥0,

|Kedge(x1, u1; x2, u2)| ≤ C

max{|x1 − x2|, |u1 − u2|} + 1
. (4.21)

Proof Throughout this argument C denotes a universal constant whose value may
change from line to line. We begin with the case x2 �= x1 − 1. From the integral
representation of Kedge we see that if x2 ≥ x1 then

|Kedge(x1, u1; x2, u2)| = 2

π

∣
∣∣∣

∫ 1

0
t x2−x1 cos

(
tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt

∣
∣∣∣

(4.22)

≤ 2

π

∫ 1

0
t x2−x1 dt ≤ C

|x2 − x1| + 1
.
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Similarly, if x2 < x1 then x2 ≤ x1 − 2 and

|Kedge(x1, u1; x2, u2)| = 2

π

∣∣
∣∣

∫ ∞

1
t x2−x1 cos

(
tu1 + π

2
x1
)
cos

(
tu2 + π

2
x2
)

dt

∣∣
∣∣

(4.23)

≤ C

|x2 − x1| + 1
.

Combining these bounds we deduce that if x2 �= x1 − 1 then

|Kedge(x1, u1; x2, u2)| ≤ C

|x1 − x2| + 1
. (4.24)

Now we consider decay in the u-variables, assuming that x2 �= x1− 1. Define v(t)
as

v(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin
(
tu1 − tu2 + π

2 (x1 − x2)
)

π(u1 − u2)
+ sin

(
tu1 + tu2 + π

2 (x1 + x2)
)

π(u1 + u2)
if u1 �= u2

t cos
(

π
2 (x1 − x2)

)

π
+ sin

(
tu1 + tu2 + π

2 (x1 + x2)
)

π(u1 + u2)
if u1 = u2.

Then v′(t) = 2
π
cos(tu1 + π

2 x1) cos(tu2 + π
2 x2). Using that | sin(y)/y| ≤ 1, and the

formula for v(t), we observe that there is a C such that

|v(t)| ≤ C

|u1 − u2| + 1
if |u1 − u2| ≥ 1. (4.25)

Applying integration by parts to the integral form of Kedge gives, for x2 ≥ x1,

Kedge(x1, u1; x2, u2) = v(1)− v(0)1{x1=x2} −
∫ 1

0
(x2 − x1) t x2−x1−1 v(t) dt .

Now the triangle inequality and (4.25) imply that if |u1 − u2| ≥ 1 then

|Kedge(x1, u1; x2, u2)| ≤ C

|u1 − u2| + 1
+ C |x2 − x1|
|u1 − u2| + 1

∫ 1

0
t x2−x1−1 dt

≤ 2C

|u1 − u2| + 1
.

If |u1− u2| < 1, then we use the bound (4.24) to reach the same conclusion as above.
An entirely analogous bound holds when x2 < x1 because then x2 ≤ x1 − 2, and
t x2−x1 is integrable over t ∈ [1,∞). Therefore, for x2 �= x1 − 1,

|Kedge(x1, u1; x2, u2)| ≤ C

|u1 − u2| + 1
. (4.26)
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Combining (4.24) with (4.26) implies the required inequality (4.21) for x2 �= x1 − 1.
The case x2 = x1−1 requires some care. The representation (4.18) for the integrand

of Kedge(x1, u1; x1 − 1, u2) gives

Kedge(x1, u1; x1 − 1, u2) = − 2

π

∫ ∞

1
t−1 cos

(
tu1 + π

2
x1
)
sin

(
tu2 + π

2
x1
)

dt

(4.27)

= −
∫ ∞

1

(−1)x1 sin((u1 + u2)t)+ sin((u2 − u1)t)

π t
dt .

Integration by parts and the triangle inequality imply that for a ≥ 1,

∣∣
∣∣

∫ ∞

1
dt

sin(at)

t

∣∣
∣∣ =

∣∣
∣∣
cos(a)

a
−

∫ ∞

1
dt

cos(at)

at2

∣∣
∣∣ ≤

C

a
.

For 0 ≤ a ≤ 1, we have

∣∣∣∣

∫ ∞

1
dt

sin(at)

t

∣∣∣∣ =
∣∣∣∣
π

2
−

∫ 1

0
dt

sin(at)

t

∣∣∣∣ ≤ C +
∫ 1

0
dt a ≤ C .

Together, these bounds imply that for a ∈ R,

∣∣∣∣

∫ ∞

1
dt

sin(at)

t

∣∣∣∣ ≤
C

|a| + 1
. (4.28)

Separating (4.27) naturally into two integrals and applying (4.28) implies that

|Kedge(x1, u1; x1 − 1, u2)| ≤ C

|u1 − u2| + 1
.

This establishes (4.21) for the case x2 = x1 − 1 and completes the proof. ��
Spatial ergodicity of Xedge For h ∈ Z, denote by τ h the translation that maps (x, u) �→
(x + 2h, u) for (x, u) ∈ Z× R≥0. So Xedge is invariant under the action of every τ h

by Proposition 4.4. An event E associated to Xedge is invariant if for every h ∈ Z,
E = τ h E , where τ h E = {τ h(ω) : ω ∈ E} and τ h(ω) is the action of τ h on a sample
outcome ω of Xedge. The invariant sigma-algebra of Xedge is the sigma-algebra Finv
consisting of all the invariant events.

Proposition 4.6 Xedge is ergodic w.r.t. spatial translations in that if E ∈ Finv then
P [E] ∈ {0, 1}.
Proof For A ⊂ Z× R≥0, let F (A) = σ(Xedge ∩ A) be the sigma-algebra generated
by the points of Xedge restricted to A. For A, B ⊂ Z× R≥0, let

dist(A, B) = inf
{
max{|x − y|, |u − v|} : (x, u) ∈ A, (y, v) ∈ B

}
.
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For k ≥ 1, suppose f : (Z × R≥0)k → R is continuous and compactly supported.
Let

N ( f ) =
∑

(x1,u1),...,(xk ,uk )∈Xedge
(xi ,ui ) all distinct

f (x1, u1; · · · ; xk, uk).

Now suppose f , g : (Z × R≥0)k → R are continuous and compactly supported
such that there are disjoint subsets A, B ⊂ Z × R≥0 with support( f ) ⊂ Ak

and support(g) ⊂ Bk . This implies that if (x1, u1; · · · ; xk, uk) ∈ support( f ) and
(xk+1, uk+1; · · · ; x2k, u2k) ∈ support(g), then (xi , ui ) �= (xk+ j , uk+ j ) for every
1 ≤ i, j ≤ k. We first show that in this case

|E [N ( f )N (g)]− E [N ( f )]E [N (g)]| ≤ (2k)!C2k

dist(A, B)2 + 1
|| f ||1 ||g||1, (4.29)

where C is the universal constant from Lemma 4.5 and || f ||1 is the L1-norm of f
with respect to (#Z ⊗ L(R≥0))⊗k .

Indeed, the assumption on the supports of f and g imply from (2.4) that

E [N ( f )N (g)] =
∫

(Z×R≥0)2k

det[Kedge(xi , ui ; x j , u j )]1≤i, j≤2k f (x1, u1; · · · ; xk, uk)

× g(xk+1, uk+1; · · · ; x2k, u2k) d
(
#Z ⊗ L(R≥0)

)⊗2k
.

Let us expand the determinant of the (2k)×(2k)matrix above as a sum over all permu-
tations.Webreak up the permutations into two types: permutations thatmap the subsets
{1, . . . , k} and {k + 1, . . . , 2k} into themselves and those that do not. When summed
over permutations of the first type the integral above equals E [N ( f )]E [N (g)]. For
a permutation σ of the second type, observe that there are two indices i and j , with
i ≤ k and j > k, such that σ(i) > k and σ( j) < k. Then for 	 ∈ {i, j}, Lemma 4.5
gives

|Kedge(x	, u	; xσ(	), uσ(	))| ≤ C

max{|x	 − xσ(	)|, |u	 − uσ(	)|} + 1

≤ C

1+ dist(A, B)
.

For all other indices 	 we have |Kedge(x	, u	; xσ(	), uσ(	))| ≤ C . Consequently,
the term involving σ contributes at most C2k−2(1 + dist(A, B))−2 in absolute
value to the determinant above for every (x1, u1; · · · ; xk, uk) ∈ support( f ) and
(xk+1, uk+1; · · · ; x2k, u2k) ∈ support(g). Since there are (2k)! − (k!)2 such per-
mutations σ , we conclude that
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|E [N ( f )N (g)]− E [N ( f )]E [N (g)]|

≤ (2k)!C2k

dist(A, B)2 + 1

∫

(Z×R≥0)2k

| f g| d(#Z ⊗ L(R≥0)
)⊗2k

= (2k)!C2k

dist(A, B)2 + 1
|| f ||1||g||1.

Let F k(A) be the sigma-algebra generated by the random variables N ( f ), where
f : Ak → R is continuous and compactly supported. The bound (4.29) implies that
if A and B are disjoint, X isF k(A)-measurable and Y isF k(B)-measurable, then,

|E [XY ]− E [X ]E [Y ] | ≤ (2k)!C2k

dist(A, B)2 + 1
E [|X |]E [|Y |] . (4.30)

The bound in (4.30) implies ergodicity of Xedge as follows. Let E ∈ Finv. Given
0 < ε < 1, we may choose an event E ′ ∈ F k([−n, n]×R≥0), for some k and n, such
that P

[
E
E ′

]
< ε. SinceXedge is invariant under τ h , we have that P

[
τ h E
τ h E ′

] =
P
[
E
E ′

]
for every h. Therefore by the triangle inequality,

|P
[

E ′ ∩ τ h E ′
]
− P

[
E ∩ τ h E

]
| ≤ P

[
E ′
E

]+ P

[
τ h E
τ h E ′

]
≤ 2ε.

Due to invariance of E this implies that |P [
E ′ ∩ τ h E ′

]− P [E] | ≤ 2ε.
Set h = n+m for an integer m ≥ 1. Then τ h E ′ ∈ F k([n+2m, 3n+2m]×R≥0).

We now apply (4.30) with A = [−n, n] × R≥0 and B = [n + 2m, 3n + 2m] × R≥0,
observing that dist(A, B) = 2m. Since P

[
τ h E ′

] = P
[
E ′

]
by translation invaraince,

we infer that

∣∣∣P
[

E ′ ∩ τ h E ′
]
− P

[
E ′

]2∣∣∣ ≤ (2k)!C2k

4m2 .

Since |P [
E ′

]− P [E] | ≤ ε, we conclude that

|P [E]− P [E]2 | ≤ (2k)!C2k

4m2 + 5ε.

Letting m →∞ followed by ε → 0 shows that P [E] = P [E]2, as required. ��
Remark 4.7 The proof above may be used to deduce that Xedge is in fact space-time
mixing.

Lemma 4.8 Almost surely, Xedge has an unbounded collection of points on every line
{x} × R≥0. In fact, the following holds. Let Nx (t) = #

(
Xedge ∩ ({x} × [0, t])). For

every x, the sequence Nx (t)/t → 1/π in probability as t →∞.
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Proof Fix x ∈ Z. Using part (II) of Proposition 4.4 we see that for any interval
[a, b] ⊂ R≥0,

E [Nx ([a, b])] =
∫ b

a
Kedge(x, u, x, u) du = b − a

π
+ (−1)x

2π

∫ 2b

2a
du

sin u

u
. (4.31)

Observe from (4.31) that E [Nx (t)/t] = 1/π + O(1/t) as t →∞.
From (4.20) we see that Kedge(x, u1; x, u2) is symmetric in the variables u1 and

u2. Thus,

ρ(u1, u2) := Kedge(x, u1; x, u2)Kedge(x, u2; x, u1) = Kedge(x, u1; x, u2)
2 ≥ 0.

From the relation (2.4) for determinantal point processes we have that

E [Nx (t) · (Nx (t)− 1)] =
∫ t

0

∫ t

0
det[Kedge(x, ui ; x, u j )]i, j=1,2 du1du2

=
(∫ t

0
Kedge(x, u; x, u) du

)2

−
∫ t

0

∫ t

0
ρ(u1, u2) du1du2

≤ E [Nx (t)]
2 .

This inequality implies thatVar(Nx (t)) ≤ E [Nx (t)]. SinceE [Nx (t)] = (t/π)+O(1),
Chebyshev’s inequality implies that for any ε > 0,

P

[∣∣∣∣
Nx (t)

t
− 1

π

∣∣∣∣ > ε

]
= O(1)

ε2 t
.

This provides the claimed convergence in probability.
Convergence in probability implies that there is a sequence of times tk →∞ such

that Nx (tk)/tk → 1/π almost surely as k →∞. This in turn implies that there is an
unbounded collection of points of Xedge on {x}×R≥0 almost surely. An union bound
over x provides the claim in the lemma. ��
Lemma 4.9 The following event occurs almost surely. For every t > 0 there exists a
doubly infinite sequence of integers xi , i ∈ Z, such that Xedge contains no points on
each of the segments {2xi } × [0, t].
Proof By monotocity and an union (or rather intersection) bound over rational values
of t , it suffices to show that the event occurs almost surely for every fixed t > 0. Given
a fixed t , let Xi be the indicator of the event that Xedge has no points on {2i} × [0, t].
It suffices to show that almost surely infinitely many of the Xi s equal 1 for i ≥ 0.
Then, reflection invariance ofXedge and another union bound imply that almost surely
a doubly infinite collection of the Xi s are equal to 1, as required.

Due to translation invariance of Xedge the sequence Xi , i = 0, 1, 2, . . ., is sta-
tionary in that (X0, X1, . . .) has the same law as (X1, X2, . . .). It is also ergodic by
Proposition 4.6. Therefore, by the Ergodic Theorem,
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Column 0Row 0

Fig. 9 Black dots depicts cells of 
∞. Rows and columns are lines that start at even integers and go in the
directions (−1, 1) and (1, 1), respectively. The region bounded by the red lines is the embedding of
8 into

∞

lim
n→∞

1

n

n−1∑

i=0
Xi = P [X0 = 1] , almost surely.

The probability that X0 = 1 is the probability that Xedge has no points in {0} × [0, t].
This is strictly positive by (6.2) below. As a result, an infinite number of the Xi s equal
1 whenever the limit in the above holds. ��

5 The local staircase shaped tableau

The local staircase shaped tableau, henceforth, local tableau, is a random function on


∞ =
{
(x, y) ∈ Z

2 : y ≥ 0, x ≡ y (mod 2)
}

. (5.1)

Figure 9 provides an illustration. The rows and columns of 
∞ are given by the
diagonal lines

row 2x = {(2x − k, k) : k ≥ 0}, column 2x = {(2x + k, k) : k ≥ 0}.

In order to define tableaux on
∞ and their convergence, we first explain the topol-
ogy on [0,∞] since tableau entries will take values there (we allow the value∞). The
topology on [0,∞] is the usual topology on R≥0 extended in the natural way by stip-
ulating that a sequence converges to∞ if its values diverge to∞, possibly stabilizing
to the value∞. In this case we will say that the sequence grows to ∞. For example,
1, 2, 3, 4, . . . grows to∞, as does 1,∞, 2,∞, . . ., as well as 1,∞,∞,∞, . . ..

A tableau is a function T : 
∞ → [0,∞] such that it satisfies the tableau con-
straints
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I) T (x, y) ≤ min {T (x − 1, y + 1), T (x + 1, y + 1)} for every (x, y) ∈ 
∞.

(5.2)

II) Along every row and column of T the entries grow to∞.

The YD
n embeds into
∞ via (i, j) ∈ 
n �→ ( j− i−1{n odd}, n− i− j) ∈ 
∞.
This is a rotation that puts row r of 
n on row 2(�n/2�− r) of 
∞; see Fig. 9. In this
manner any PYT T of shape 
n embeds as a tableau FT : 
∞ → [0,∞] by setting

FT (x, y)

=
{

n
(
1− T

(⌊ n
2

⌋− x+y
2 ,

⌊ n
2

⌋+ x−y
2

))
, if

(⌊ n
2

⌋− x+y
2 ,

⌊ n
2

⌋+ x−y
2

) ∈ 
n;
∞, otherwise.

(5.3)

By an abuse of notation we denote FT by T .
We say that a sequence of tableaux Tn converges if there is a tableau T such that, in

the aforementioned topology on [0,∞], Tn(x, y) → T (x, y) for every (x, y) ∈ 
∞.
Note we stipulate that a limit of tableaux remain a tableau.

A random tableau T : 
∞ → [0,∞] is a Borel probability measure on tableaux
with respect to the topology above. Convergence of a sequence of random tableaux
means weak convergence with respect to this topology.

5.1 Bulk local limit of staircase shaped tableaux

Section 2.3 describes how PYTs of a given shape are in bijection with ensembles of
non-increasing and non-intersecting paths whose initial positions are given in terms
of the shape. We describe the bijection explicitly for tableaux defined on
∞ as it will
be useful in the proof of the local limit theorem.

Consider an ensemble of paths {p(2x, u)}, for x ∈ Z and u ∈ R≥0, that satisfy the
following.

(I) p(x, ·) : R≥0 → Z+ 1

2
is left continuous, non-increasing with p(x, 0) = 2x + 1

2
.

(5.4)

(II) p(x, ·) are non-intersecting: p(x, u) > p(x − 1, u) for every x ∈ Z, u ∈ R≥0.
(III) The jumps of the paths as defined by (2.3) is a discrete subset of Z× R≥0.

For a tableau T : 
∞ → [0,∞], paths satisfying (5.4) are obtained by setting
p(x, u) = 2x + 1

2 for 0 ≤ u ≤ T (2x, 0), and for k ≥ 1,

p(x, u) = p(x, 0)− k if T (2x − k + 1, k − 1) < u ≤ T (2x − k, k).

In otherwords, p(x, ·) is left continuous and decreases by integer units at times indexed
by row 2x of T . The paths are non-intersecting due to the columns of T being non-
decreasing. Indeed, p(x, u)− p(x − 1, u) = 2+ Nx−1(u)− Nx (u), where Nx (u) is
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the number of entries of T on row 2x with value at most u. Due to the columns being
non-decreasing, Nx−1(u) ≥ Nx (u) − 1, and thus, p(x, u) − p(x − 1, u) ≥ 1. The
jumps of the paths form a discrete set due to the rows and columns of T growing to∞.
When a row entry equals∞ then the corresponding path jumps only a finite number
of times.

Let X denote the jumps for the ensemble of paths associated to a tableau T on
∞.
The jumps can be read off from T in the following manner. For every x ∈ Z, the jumps
on the line {x} × Z≥0 are the entries of T whose cells have first coordinate x in 
∞.
More precisely, if u is the k-th smallest point of X on {x} × R≥0 then

u = T
(
x, 2k − 1− 1{x even}

)
. (5.5)

If there are less than k points on {x} × R≥0, there is no such u and the tableau entry
above equals∞.

To see this, observe that u is the time when the path starting at initial position
(x + 1

2 )+ 2k − 1− 1{x even} jumps for the (2k − 1{x even})-th time. Indeed, this is the
k-th path starting at or to the right of position x + 1

2 and it hits position x − 1
2 after

jump number 2k − 1{x even}. The first k jumps on {x} × R≥0 are the times when the
first k paths starting at or to the right of position x + 1

2 hits position x − 1
2 . Also, when

there is no such u it means that the path starting from (x + 1
2 )+ 2k − 1− 1{x even} has

exhausted its jumps and it does not get to position x − 1
2 .

Let MT→X denote the map from tableaux defined on
∞ to jumps of paths satisfy-
ing (5.4). This map is invertible with the inverse given by the relation (5.5). Namely,
T (x, y) is the

[
(y + 1 + 1{x even})/2

]
–th smallest jump of X on {x} × R≥0 with the

convention that T (x, y) = ∞ if no such jump exists. Let MX→T denote the inverse
map.

Lemma 5.1 The set of jumps of paths satisfying (5.4) is closed in the topology on
discrete subsets of Z × R≥0. The map MT→X is a homeomorphism from the set of
tableaux on 
∞ to the set of jumps of paths satisfying (5.4), with inverse given by
MX→T .

Proof Themaps MT→X and MX→T are inverses by design.Wemust show that they are
continuous.We beginwith continuity of MT→X . Let Tn be a sequence of tableaux such
that Tn converges to a tableau T∞. Let Xn = MT→X (Tn) and X∞ = MT→X (T∞).
Recall from Sect. 2.4 that convergence of Xn to X∞ requires that for every x ∈ Z and
k ≥ 1, the k-th smallest point of Xn on {x}×R≥0 must converge to the corresponding
point of X∞, while accounting for the case that there may be less than k points.

Let y = 2k − 1 − 1{x even}. Then, by (5.5), Tn(x, y) is the k-th smallest point of
Xn on {x} × R≥0 and similarly for T∞(x, y). There are two cases: T∞(x, y) < ∞
or T∞(x, y) = ∞. In the former case, the k-th smallest point of Xn on {x} × R≥0
is eventually finite and the same for X∞. Moreover, we have convergence of these
points since Tn(x, y) → T∞(x, y). In the latter case, given any bounded subset of
{x} ×R≥0, the k-th smallest point of Xn eventually escapes the set or is non-existent
due to Tn(x, y) → ∞. This is as required since X∞ has no k-th smallest point on
{x} × R≥0. This proves that MT→X is continuous.
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Now we show that the set of jumps of paths satisfying (5.4) is a closed set in the
space of discrete subsets ofZ×R≥0, as well as that that MX→T is continuous. Suppose
Xn is a sequence of such jumps sets and that it converges to a discrete subset X∞.

Let Tn = MX→T (Xn). First, we show that Tn(x, y) converges for every (x, y) ∈

∞. Indeed, Tn(x, y) is the k-th smallest point of Xn on {x} ×R≥0 for k = (y + 1+
1{x even})/2. Therefore, convergence of Xn to X∞ implies that Tn must converge to
some function T∞ : 
∞ → [0,∞]. Note that T∞(x, y) = ∞ if and only if X∞ has
less than k points on {x} × R≥0.

The function T∞ is a tableau because the tableau inequalities from (5.2) continue
to hold in the entry-wise limit, and the rows and columns will grow to∞ due to X∞
being a discrete set. Thus, consider X̂∞ = MT→X (T∞). By the first part of the proof,
Xn → X̂∞. But then, X̂∞ = X∞ because limits of discrete subsets of Z × R≥0 are
unique. This shows both the closure property of sets of jumps for paths satisfying (5.4)
and the continuity of MX→T . ��

We now state the local limit theorem for Poissonized staircase shaped tableaux in
the bulk. For α ∈ (−1, 1), let cn = 2(� n

2 � − � (1+α)n
2 �). For a PYT T having shape


n , embed it as a tableau on 
∞ according to (5.3) and consider the rescaled tableau
Tα,n : 
∞ → [0,∞] defined by

Tα,n(x, y) =
√
1− α2 T (x + cn, y). (5.6)

Let T
n be a uniformly random PYT of shape 
n and denote by Tα,n the random
tableau associated to T
n by (5.6).

Theorem 5.2 The sequence of random Poissonized tableaux Tα,n converges weakly to
a random tableau Tedge. Moreover, the law of Tedge is MX→T (Xedge).

Proof Observe that |cn−αn| ≤ 2 for every n. With this choice of cn , the jump process
associated to Tα,n has law Xα,n from (1.5) because these jumps are simply the jumps
of T
n rescaled onto Z × R≥0 as in (1.5). Theorem 4.1 asserts that Xα,n converges
weakly to Xedge. Due to being a weak limit of the jumps of ensembles of paths
satisfying (5.4),Xedge is also almost surely the jumps of such an ensemble of paths by
the closure property given in Lemma 5.1. The continuity of MX→T then implies that
MX→T (Xα,n) converges weakly to MX→T (Xedge). Therefore, Tα,n converges weakly
to a random tableau Tedge having the law of MX→T (Xedge). ��
Bulk local limit theorem for random staircase shaped SYT Recall T
n denotes a
uniformly random SYT of shape 
n and N = (n

2

)
. Consider the rescaled tableau

Trsc

n

(i, j) = T
n (i, j)

N + 1
. (5.7)

Theorem 5.3 The random tableau Trsc

n

converges to Tedge in the bulk local limit, that
is, under the embedding and rescaling from (5.6).

Proof Consider the following coupling between T
n and T
n . Given T
n , indepen-
dently sample P(1) < P(2) < · · · < P(N ) according to the order statistics of N
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i.i.d. random variables distributed uniformly on [0, 1]. Insert the entry P(k) into the
cell of 
n that contains entry k of T
n . The resulting tableau has the law of T
n .
Using this coupling, and due to the manner the scaling from (5.6) is defined, it suffices
to show the following in order to conclude that Trsc


n
converges to Tedge by way of

Theorem 5.2.
Fix an L > 0 and consider any (x, y) ∈ 
∞ such that (x, y) ∈ [−L, L] × [0, L].

Let P(k) be the entry of T
n inside (x, y) under the embedding from (5.6). Then as
n →∞, we need to show that

n
∣∣∣P(k) − k

N + 1

∣∣∣ −→ 0 in probability. (5.8)

The number k is random, its distribution depends on T as well as n and α.
In order to establish (5.8) we will use the following auxiliary fact, which is a

byproduct of [5, Theorem 11]. There is a number δn of order o(N ) as n →∞, such
that with probability tending to 1 as n → ∞, every entry of T
n within the cells of

∞ ∩ [−L, L] × [0, L] under the embedding (5.6) has value at least N − δn . As a
consequence, k ≥ N − δn with probability tending to 1. We write

P

[
n

∣∣∣∣P(k) − k

N + 1

∣∣∣∣ > ε

]
≤ n2

ε2
E

[∣∣∣∣P(k) − k

N + 1

∣∣∣∣

2 ∣∣∣ k ≥ N − δn

]

+P [k < N − δn] . (5.9)

For a fixed deterministic j , P( j) has a Beta distribution with parameters j and
N + 1− j , which has mean j/(N + 1) and variance

E

[∣∣∣
∣P( j) − j

N + 1

∣∣∣
∣

2
]

= j(N + 1− j)

(N + 1)2(N + 2)
.

Since the P( j)s are independent of T, employing the bound above for j ≥ N − δn and
summing over the probabilities of k give

E

[∣
∣∣∣P(k) − k

N + 1

∣
∣∣∣

2 ∣∣∣ k ≥ N − δn

]

≤ δn

N 2 .

The latter quantity is of order o(1)/N as n → ∞. Since N = (n
2

)
, we conclude that

both terms on the right hand side of (5.9) tend to 0 as n →∞. ��
Statistical properties of the local staircase shaped tableau The set 
∞ can be made
into a directed graph by putting directed edges from each vertex (x, y) ∈ 
∞ to the
vertices (x − 1, y + 1) and (x + 1, y + 1). The automorphisms of this graph consists
of translations φh , for h ∈ Z, given by φh(x, y) = (x + 2h, y), as well as a reflection
φ− given by φ−(x, y) = (−x, y). Tableaux are preserved by these automorphisms.

A random tableau T is translation invariant if T ◦ φh has the same law as T for
every translation φh . The random tableau is reflection invariant if T ◦φ− has the same
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law as T. The translation invariant sigma-algebra of T is the sigma-algebra of events
that remain invariant under every translation:

Finv = {Events E associated to T s.t. φh E = E for every h ∈ Z.} .

(Recall that φh E = {ω ◦ φh : ω ∈ E}.) We say T is ergodic under translations ifFinv
is the trivial sigma-algebra.

Proposition 5.4 The local tableau Tedge has the following statistical properties.

(1) Almost surely, Tedge(x, y) is finite for every (x, y) ∈ 
∞ and the entries of Tedge
are all distinct.

(2) The law of Tedge is both translation and reflection invariant.
(3) Tedge is ergodic under translations.
(4) Almost surely, for every t > 0 there are infinitely many positive and negative

x ∈ Z such that Tedge(2x, 0) > t .

Proof Almost surely,Xedge has an infinite and unbounded collection of points on every
line {x} ×R≥0 by Lemma 4.8. Also, almost surely, Xedge does not contain two points
of the form (x, u) and (y, u) with x �= y. To see this, observe from the relation (2.4)
for determinantal point processes that the expected number of such pairs of points in
Xedge is 0 due to the set of such pairs having measure zero with respect to the measure
(
#Z⊗ L(R≥0)

)⊗2. When both these properties hold, Tedge satisfies (1).
The law of Tedge is invariant under translations because for every translation φh ,

the tableau Tedge ◦ φh is constructed from the jump process Xedge + (2h, 0), which
has the same law of Xedge by Proposition 4.4. Similarly, reflection invariance of Tedge
follows from reflection invariance of Xedge. This establishes (2).

The ergodicty of Tedge under translations follows from the ergodicity ofXedge under
translations (Proposition 4.6). This is because a translation invariant event for Tedge
is the image of a translation invariant event for Xedge under the map MX→T . Finally,
(4) is the statement of Lemma 4.9. ��

6 Random sorting networks

6.1 Sorting networks, Young tableaux and Edelman–Greene bijection

Stanley [39] enumerated the number of sorting networks of Sn , which equals

(n
2

)!
∏n−1

j=1(2n − 1− 2 j) j
.

Following Stanley et al. [21] provided an explicit bijection between sorting networks
and staircase shaped SYT. An account of further combinatorial developments may be
found in [26,28]. We describe the part of the Edelman–Greene bijection that maps
staircase shaped tableaux to sorting networks. The inverse map is a modification of
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Fig. 10 First step of the Edelman–Greene algorithm on a staircase shaped SYT of size 10. Sliding path is
bolded. The associated sorting network of S5 has swap sequence (2,4,3,1,2,1,4,3,2,4)

the RSK algorithm; we do not describe it here since it is not used in the paper. See
[21] or [5, Section 4] for a full description of the bijection.

Recall that a sorting network ofSn is identified by its sequence of adjacent swaps
(s1, . . . , sN ), where N = (n

2

)
. For the rest of the paper we will use N to denote

(n
2

)
.

For T ∈ SYT(
n), we adopt the convention that T (i, j) = −∞ if (i, j) /∈ 
n .

The Schützenberger operator Let (imax(T ), jmax(T )) denote the cell containing the
maximum entry of a SYT T . The Schützenberger operator � : SYT(
n) →
SYT(
n) is a bijection defined as follows. Given T ∈ SYT(
n), construct the
sliding path of cells c0, c1, . . . , cd−1 ∈ 
n iteratively in the following manner. Set
c0 = (imax(T ), jmax(T )) and cd = (1, 1). Then set

cr+1 = argmax
{
T (cr − (1, 0)), T (cr − (0, 1))

}
.

Let�(T ) = [T̂ (i, j)]where T̂ (cr ) = T (cr+1)+1 for 0 ≤ r ≤ d−1, T̂ (cd) = 1, and
T̂ (i, j) = T (i, j)+ 1 for all other cells (i, j) ∈ 
n\{c0, . . . , cd}. Figure 10 provides
an illustration.

The Edelman–Greene map EG : SYT(
n) �→ {sorting networks of Sn} is defined
by

EG(T ) =
(

jmax
(
�k(T )

))

0≤k≤N−1 , (6.1)

where �k is the k-th iterate of �. Edelman and Greene [21, Theorem 5.4] proved that
EG indeed maps to sorting networks and that is has an inverse.

6.2 First swap times of random sorting networks: proof of Corollary 1.3

Let TFS(s) be the first time the adjacent swap (s, s+1) appears in a sorting network ω

ofSn . According to the Edelman–Greene bijection, this time is recorded in the entry
(n − s, s) of EG(ω). Thus,

TFS(s) = N + 1− EG(ω)(n − s, s).

In terms of the rescaled tableau Trsc

n

from (5.7) we have that

TFS(s)
law= (N + 1) · (1− Trsc


n
(n − s, s)).
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This implies the following for TFS,α,n—the first time an adjacent swap between
� n(1+α)

2 � and � n(1+α)
2 � + 1 appears in a random sorting network of Sn :

2
√
1− α2

n
TFS,α,n

law= 2N + 2

n2 Trsc
α,
n

(0, 0).

Here, Trsc
α,
n

is the tableau Trsc

n

rescaled and embedded into 
∞ according to (5.6).
Theorem 5.3 implies that Trsc

α,
n
(0, 0) converges weakly to Tedge(0, 0). Since (2N +

2)/n2 → 1, we conclude that the rescaled TFS,α,n from above converges weakly to
Tedge(0, 0). Thus, TFS has the law of Tedge(0, 0).

Now we explain how to get the distribution function of TFS given in (1.1). Observe
that the event {Tedge(0, 0) > t} is the event {Xedge∩({0}×[0, t]) = ∅}. The probability
of the latter (often known as “gap probability”) has the representation given by (1.1),
which is the Fredholm determinant of Kedge over L2({0} × [0, t]). This is a well-
known property of determinantal point processes under the condition that the kernel
be of trace class [12]. The kernel Kedge is of trace class on L2({0} × [0, t]) simply
because |Kedge(0, u1; 0, u2)| ≤ 2/π .

The asymptotic behaviour of the distribution function of TFS is well-known:

logP [TFS > t] = −1

4
t2 − 1

2
t − 1

8
log t + 7

24
log 2+ 3

2
ζ ′(−1)+ o(1) as t →∞.

(6.2)
The formula (6.2) has a history. In theoretical physics literature, the leading term in
(6.2) was first studied in [19], while the full expansion was given in [20]. The complete
mathematical treatment was developed in [15,16,22,23,31]; the present form of (6.2)
is given in the last reference.

We will only need the simple corollary of (6.2) that P [TFS > t] > 0 for every t .

6.3 Edelman–Greene algorithm on the local tableau

The procedure described here is the same as the one given in the Introduction except
that it is in the language of tableaux instead of their jumps. In order to define the
Edelman–Greene algorithm on the local tableau we first introduce some concepts that
allow us to define Edelman–Greene algorithm on tableaux defined on 
∞.

A directed path from (x, y) ∈ 
∞ to (x ′, y′) ∈ 
∞ is a sequence of cells c0 =
(x, y), c1, . . . , ck = (x ′, y′) of 
∞ such that ci+1 − ci ∈ {(−1, 1), (1, 1)} for every
i . The cells of 
∞ can be partially ordered as follows: (x, y) ≤ (x ′, y′) if there is a
directed path from (x, y) to (x ′, y′). Recall that
∞ is a directed graphwith edges from
(x, y) to (x ± 1, y+ 1). It can also be thought of as an undirected graph by forgetting
the direction of the edges. A connected subset of 
∞ is a connected subgraph of 
∞
in the undirected sense.

A Young diagram (YD) of 
∞ is a connected subset λ that is downward closed
in the partial order, that is, if (x, y) ∈ λ and (x ′, y′) ≤ (x, y) then (x ′, y′) ∈ λ. For
example, 
n is a YD of 
∞. The boundary of λ, ∂λ, consists of cells (x, y) /∈ λ
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such that there is a directed edge from some cell (x ′, y′) ∈ λ to (x, y). The peaks of
λ consists of the maximal cells of λ in the partial order.

Let T : 
∞ → [0,∞] be a tableau as in (5.2). A sub-tableau is the restriction
of T to a YD λ; we say λ is the support of the sub-tableau. Let T finite = {T (x, y) :
T (x, y) �= ∞}. We take the support of T to be the support of T finite. Observe that
T finite is a countable disjoint union of sub-tableaux of T , say T1, T2, . . .. Indeed, the
support of the Ti s are the connected components of the subgraph spanned by cells
(x, y) such that T (x, y) �= ∞. We will call the Ti s the clusters of T . The tableau T is
EG-admissible if all the entries of T finite are distinct and every cluster Ti is supported
on a YD of finite size.

Edelman–Greene algorithm on a finite tableau Let λ be a YD of 
∞ of finite size
and T : λ→ R≥0 a tableau such that all its entries are distinct. The Edelman–Greene
map EG takes as input T and outputs a triple (x, t, T̂ ), where x ∈ Z, t ∈ R≥0 and T̂
is a sub-tableau.

The sliding path of T is a directed path c0, c1, . . . , ck defined by

(1) c0 = argmin { T (x, y) : (x, y) ∈ λ}.
(2) ci+1 = argmin { T (ci + (−1, 1)), T (ci + (1, 1)) }.
(3) ck = peak of λ obtained when both ck + (±1, 1) belong to ∂λ.

Let λ̂ = λ\{ck} and define T̂ : λ̂→ R≥0 by

T̂ (x, y) =
{

T (x, y), if (x, y) ∈ λ̂\{c0, . . . , ck−1};
T (ci+1), if (x, y) = ci for some 0 ≤ i ≤ k − 1.

The cell c0 must be on the bottom level of 
∞ and has the form (2x, 0) for some
x ∈ Z. Set t = T (c0). The output is EG(T ) = (x, t, T̂ ), and empty if T is the empty
tableau.

The Edelman–Greene algorithm on T outputs a discrete subset S(T ) ⊂ Z× R≥0,
denoted the swaps of T . Let (x j , t j , T̂ j ), for 1 ≤ j ≤ |λ|, be defined iteratively by
(x1, t1, T̂1) = EG(T ) and (x j , t j , T̂ j ) = EG(T̂ j−1) for 2 ≤ j ≤ |λ|. Then,

S(T ) = {(x j , t j ) : 1 ≤ j ≤ |λ|}. (6.3)

If the cell (x, y) ∈ λ contains the k-th smallest entry of T then its entry is removed
during the k-th iteration of the algorithm. We will say that the entry at (x, y) exits at
time tk from row xk . We will also say that (xk, tk) originates from cell (x, y).

Edelman–Greene algorithm on an admissible tableau Let T1, T2, . . . be the clusters of
an EG-admissible tableau T . Observe that for i �= j , the swaps of Ti and Tj exit from
mutually disjoint rows. Thus, the swap sets S(T1), S(T2), . . . are row-wise mutually
disjoint. The swaps of T are defined as

S(T ) =
⋃

i

S(Ti ).
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The local tableau Tedge is not EG-admissible. In order to define swaps for the local
tableau we cut off large entries so that it becomes EG-admissible, and then process
the tableau in a graded manner. For this to be successful, the EG algorithm ought to be
consistent in the sense that running it on a tableau, and then restricting to swaps that
originate from a sub-tableau, must produce the same outcome as the algorithm applied
to the sub-tableau. This is not always the case and the following explains when it may
be so.

Given two tableaux Tsmall and Tbig, we say Tsmall ≤ Tbig if the following criteria
hold.

(1) Tsmall(x, y) = Tbig(x, y) for every (x, y) ∈ support(Tsmall).
(2) For every (x, y) ∈ support(Tsmall), and (x ′, y′) ∈ support(Tbig)\support(Tsmall),

if (x, y) belongs to the same cluster of Tbig as (x ′, y′) then Tsmall(x, y) <

Tbig(x ′, y′).

Lemma 6.1 Let Tsmall ≤ Tbig, and suppose that Tbig is EG-admissible. Then, applying
the EG algorithm to Tbig and restricting to the swaps that originate from the cells of
Tsmall produces the same outcome as applying the EG algorithm to Tsmall. In particular,
S(Tsmall) ⊂ S(Tbig).

Proof Observe that the clusters of Tsmall are contained within the clusters of Tbig.
The EG algorithm acts independently on each cluster of Tbig is a row-wise disjoint
manner. Fix a particular cluster T of Tbig, and suppose that the clusters of Tsmall that are
contained inside T are T1, . . . , Tk . It suffices to prove that the EG algorithm applied to
T , and then restricted to the swaps that originate from T1, . . . , Tk , produces the same
outcome as the algorithm applied to each individual Ti .

Let λ = support(T ) and λi = support(Ti ). The assumption is that each entry of
λ\(∪iλi ) is larger than every entry of ∪iλi . Therefore, the EG algorithm applied to T
will process every entry of∪iλi before it ever processes an entry from the complement.
When some entry from λ\(∪iλi ) enters a cell of some λi during the first

∑
i |λi | steps,

the algorithm treats that entry as if it were∞. Since Tsmall agrees with Tbig on ∪iλi ,
the EG algorithm will output the swaps of T1, . . . , Tk during the first

∑
i |λi | steps,

and then output the remaining swaps of T \(∪i Ti ). This is what was claimed. ��
A tableau T is graded EG-admissible if all of its finite-valued entries are distinct

and, if for every t > 0, the sub-tableau

T≤t = {T (x, y) : T (x, y) ≤ t} is EG-admissible.

Observe that T≤t1 ≤ T≤t2 whenever t1 ≤ t2. Lemma 6.1 thus implies that S(T≤t1) ⊂
S(T≤t2). Therefore, for a graded EG-admissible tableau T , we may define

S(T ) =
⋃

t≥0
S(T≤t ). (6.4)

Lemma 6.2 Suppose a sequence of tableaux Tn → T∞, and also that every Tn and
T∞ are graded EG-admissible. Then for every integer x and t ≥ 0, there is a finite
YD λ that contains the cluster of (2x, 0) in T≤t

n for every n.
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Proof This follows from a diagonalization argument, more precisely, König’s infinity
lemma, which states that every infinite connected graph with finite vertex degrees
contains an infinite path.

Suppose for the sake of a contradiction that the conclusion of the lemma fails. Let
Tn,x,t denote the cluster of (2x, 0) in T≤t

n . Call a cell (x ′, y′) ∈ 
∞ bad if there is
a undirected path in 
∞ from (2x, 0) to (x ′, y′) that is contained in infinitely many
of the clusters Tn,x,t . Consider the connected component of (2x, 0) in 
∞ that is
spanned by the subgraph of bad vertices. If the component is finite then there is a
finite YD λ that contains the component. This implies that for all sufficiently large n,
every cell of ∂λ lies outside Tn,x,t because any path from (2x, 0) to a cell outside λ

must pass through ∂λ. Therefore, Tn,x,t ⊂ λ for all large n. Since every Tn is graded
EG-admissible, this means that there is a finite YD that contains every Tn,x,t , which
is a contradiction.

Therefore, the connected component of (2x, 0) spanned by the bad vertices is
infinite. Since every vertex of 
∞ has degree at most 4, König’s lemma provides an
infinite path of (distinct) bad vertices (x0, y0), (x1, y1), . . . starting from (x0, y0) =
(2x, 0). By definition of being bad, for everym, there is a path from (2x, 0) to (xm, ym)

that is contained in some infinite subsequence of the clusters Tnm
i ,x,t with nm

i → ∞
as i →∞. Let 	m be the length of this path. Observe that 	m →∞ with m because
the distance from (2x, 0) to (xm, ym) in 
∞ must tend to infinity due to every vertex
having degree at most 4.

The YD λm formed by the cells of
∞ that are at or below the cells on the path from
(2x, 0) to (xm, ym) must be contained in every cluster Tnm

i ,x,t . Since Tn converges to
T∞, this implies that λm ⊂ T∞,x,t for everym. Since |λm | ≥ 	m →∞, we deduce that
T∞,x,t is infinite. However, this is a contradiction to T∞ being graded EG-admissible.

��
Theorem 6.3 Suppose a sequence of tableaux Tn → T∞, and that every Tn as well as
T∞ is graded EG-admissible. Then S(Tn) → S(T∞) as discrete subsets of Z× R≥0.

Proof A compact subset of Z × R≥0 is a finite, disjoint union of sets of the from
{x} × C for x ∈ Z and compact C ⊂ R≥0. Therefore, we must show that for every
such x and C ,

lim sup
n

#
[
S(Tn) ∩ ({x} × C)

] ≤ #
[
S(T∞) ∩ ({x} × C)

]
.

Fix a t > 0 such that C ⊂ [0, t].
Suppose T is a graded EG-admissible tableau. The swaps of T on {x} × [0, t] are

the entries of T≤t that exit from row x . Let Tx,t denote the cluster of (2x, 0) in T≤t .
By Lemma 6.1, the swaps of T on {x} × [0, t] are completely determined by running
the EG algorithm on Tx,t . We deduce from Lemma 6.2 that there is a finite YD λ such
that

support(Tn,x,t ) ⊂ λ for every n and support(T∞,x,t ) ⊂ λ.

Since sup(x ′,y′)∈λ |Tn(x ′, y′) − T∞(x ′, y′)| → 0, we conclude that the following
must occur for all sufficiently large n.

123



V. Gorin, M. Rahman

(1) The order of the entries of Tn on λ stabilizes to the order of the entries of T∞ on
λ.

(2) For every (x ′, y′) ∈ λ, if T∞(x ′, y′) /∈ C then Tn(x ′, y′) /∈ C .

Once condition (1) holds then, due to Tn,x,t ⊂ λ, a swap from S(Tn) lies on {x}×C
if and only if there is a cell (x ′, y′) ∈ λ such that Tn(x ′, y′) ∈ C and, when the EG
algorithm is applied to T∞ restricted to λ, the entry at cell (x ′, y′) exits from row x .
The same conclusion holds for swaps of S(T∞) on {x} ×C . This property along with
condition (2) implies that

S(Tn) ∩ ({x} × C) ⊂ S(T∞) ∩ ({x} × C) for all large n.

This completes the proof. ��

6.4 Completing the proof of Theorem 1.2

Theorem 1.2 will follow from Theorem 6.3 once we prove that the local tableau Tedge
is graded EG-admissible almost surely. To this end, first observe that the entries of
Tedge are finite and distinct by part (1) of Proposition 5.4. We must show that, almost
surely, the clusters of T ≤t

edge are finite for every t .
By part (4) of Proposition 5.4, the local tableau satisfies the following almost surely:

for every t and x , there are integers a, b ≥ 0 such that Tedge(2x − 2a, 0) > t and
Tedge(2x + 2b, 0) > t . When this property holds the tableau constraints imply that
the cluster of T ≤t

edge containing (2x, 0) must be contained within cells whose row and
column indices are both between 2x−2a and 2x+2b. The set of such cells is finite, and
so the cluster of every bottom level cell in T ≤t

edge is finite. Now if Tedge(2x − k, k) ≤ t

then cell (2x − k, k) belongs to the same cluster as (2x, 0) in T ≤t
edge since the row

entries are non-decreasing. This implies that, almost surely, T ≤t
edge is EG-admissible

for every t , as required.
Finally, we complete the proof. The law of Sα,n is that of the Edelman–Greene

algorithm applied to the rescaled uniformly random staircase shaped tableauTrsc

n

from
(5.7). Theorem 5.3 asserts that Trsc


n
converges weakly to Tedge as a tableau embedded

in 
∞. By Skorokhod’s representation theorem, there exists random tableaux Tn and
T∞ defined on a common probability space such that Tn has the law of Trsc


n
, T∞ has

the law of Tedge, and Tn → T∞ almost surely.
The tableaux Tn and T∞ are graded EG-admissible almost surely. Theorem 6.3 then

implies that S(Tn) converges to S(T∞) almost surely. This means that Sα,n , which has
the law of S(Tn), converges weakly to S(Tedge), which is the law of S(T∞). ��

We conclude with some statistical properties of the local swap process.

Proposition 6.4 The process Slocal has the following properties.

(1) Slocal is invariant under translations and reflection of the Z-coordinate.
(2) Slocal is stationary in time in that for every t ≥ 0, the process Slocal ∩ (Z× R≥t )

has the same law as (shifted) Slocal.
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(3) Slocal is ergodic under translations of the Z-coordinate in that the sigma-algebra

Finv = {Events of Slocal that are invariant under every translation} is trivial.

Remark 6.5 We believe that Slocal is also ergodic in the time coordinate. However, the
proof of this is more challenging and, therefore, we leave it as a conjecture.

Proof We have that Slocal = S(Tedge) in law. Applying a Z-automorphism to Slocal
is the same as first applying its analogue to Tedge (the maps φh and φ−), and then
applying the EG algorithm to the resulting tableau. Thus, the invariance of Slocal
under Z-automorphisms follows from the corresponding invariance of Tedge stated in
Proposition 5.4.

Time stationarity of Slocal is a consequence of the stationarity of finite random
sorting networks [5, Theorem 1(i)], as we explain. If (s1, . . . , sN ) is the sequence of
swaps of a random sorting network of Sn , then (s1, . . . , sN−1) has the same law as
(s2, . . . , sN ).

The ergodicity of Slocal under Z-translations is a consequence of the ergodicty of
Tedge under translations (part 3 of Proposition 5.4). Indeed, a translation invariant event
for Slocal is the image of a translation invariant event of Tedge under the EG algorithm.

��
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