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1. Introduction
1.1. Overview

This article is about the random N-particle configurations on Z and their asymptotic
behavior as N — co. For each N = 1,2, ..., let #(N) be a random N-dimensional vector

(N = (8 > g > s ) N ez, (1.1)

Our aim is to deal with global fluctuations of £(¥). One way to make sense of those is to
take an arbitrary test function f(x) and consider linear statistics
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) e, (4
Ly =3"¢ - |- (1.2)
1=1

We mostly deal with the case when f(x) is a polynomial (or, more generally, a smooth
function), yet if f(z) is the indicator function of an interval, then (1.2) merely counts
the number of random particles inside this interval.

Since by its definition, E;N) is a sum of N terms, it is reasonable to expect that it

grows linearly in N. And, indeed, in the class of systems that we study, %L&N) converges
as N — oo to a deterministic limit depending on the choice of f. We will refer to such
a phenomenon as the Law of Large Numbers, appealing to the evident analogy with a
similar statement of classical probability dealing with sequences of independent random
variables.

The next natural question is to study the fluctuations C;N) — EE;N) as N — oo. Such
fluctuations would grow as v/N in the systems arising from sequences of independent
random variables, but the scale is different in our context. We deal with probability
distributions coming from 2d statistical mechanics (lozenge and domino tilings, families of
non-intersecting paths), asymptotic representation theory, random matrix theory, and for
them the typical situation is that E;N) — EC;N) does not grow as N — oo. Nevertheless,
in all cases the fluctuations are asymptotically Gaussian, which justifies the name Central
Limit Theorem for these kinds of results.

The main theme of the present article is to develop a new toolbox for proving the Law
of Large Numbers and Central Limit Theorems, which would be robust to perturbations
of /M) Tt is somewhat hard to concisely describe the class of systems where the toolbox
is helpful. One reason is that we believe our conditions to be in a sense equivalent to the
LLN and CLT, see the end of Section 1.4 (which, of course, does not make these conditions
immediate to check). Yet we list below an extensive list of available applications.

Again coming back to the classical one-dimensional probability, a universal tool is
given there by the method of characteristic functions. For instance, it can be used to
prove that averages of independent random variables converge to a Gaussian limit under
very mild assumptions on the distributions of these variables, cf. textbooks [36], [22].

In our context the characteristic functions were not found to be useful, mostly due to
the fact that the dimension (number of the particles) grows with N, while the individual
coordinates KEN), 1=1,..., N are very far from being independent. Therefore, we suggest
to replace them by a new notion of Schur generating function which we now introduce.

Recall that a Schur function is a symmetric Laurent polynomial in variables x1,...,zn
parameterized by A = (A > A2 > --- > An) and given by

N
A +N—
det {Jziﬁ ]}
ij=1

B H1§i<j§N(xi —a5)

S)\('rla"'axN)

Let § denote the N-tuple (N — 1, N — 2,...,0) and note that the map A — A + dx
makes the weakly decreasing coordinates of A strictly decreasing, as in (1.1).
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For a random N-tuple of strictly ordered integers ¢(N)| as in (1.1), its distribution is
a function ty of N weakly decreasing integers given by ty(\) := Prob(f/(V) = X\ 4 6y ).

Definition 1.1. The Schur generating function S, of a random ty-distributed N-particle

configuration /(N is a function of N variables x, ...,z given by
sx(z1,...,xN)
= E A) ——— 1.
Sev (@1, 2n) A WA (13)

In [13] we showed how the Law of Large Numbers can be extracted from the asymp-
totic behavior of Schur generating functions. Interestingly, the answer, i.e. the exact
formula for limpy_, %E;N) depends only on f and the N — oo asymptotics of
Sen(21,1,1,...,1), that is, all variables except for one can be set to 1 prior to the
asymptotic analysis. A similar phenomenon was also found in [43] by another method.

Here we make the next step and address the Central Limit Theorem for global fluctu-
ations, the precise statement in this direction is Theorem 2.8. In fact, we go even further,
and also analyze random sequences of N-particle configurations forming Markov chains,
see Theorems 2.9, 2.10, 2.11 below. This time the answer, which is the covariance for
limpy o0 ([,SCN) — EC;N)), depends only on asymptotics of S, (z1,22,1,1,...,1), that
is, all variables except for two can be set to 1 prior to the asymptotic analysis. For
proving the asymptotic Gaussianity we need more.

Our theorems reduce the LLN and CLT to asymptotic behavior of Schur generating
functions, which is known in many cases. This leads to proofs of the LLN and CLT for
a variety of stochastic systems of particles, including:

(1) Lozenge tilings of trapezoid domains, cf. Fig. 2 in Section 3.

(2) Domino tilings of Aztec diamond, cf. Fig. 3 in Section 3 (for the application to
domino tilings of more complicated domains see [15]).

(3) Ensembles of non-intersecting random walks, cf. Fig. 4 in Section 3.

(4) 2+ 1-dimensional random growth models.

(5) Measures governing the decomposition into irreducible components for tensor prod-
ucts of irreducible representations of the unitary group U(N).

(6) Measures governing the decomposition of restrictions onto U (V) of extreme charac-
ters of the infinite-dimensional unitary group U(o0).

(7) Schur—Weyl measures.

A more detailed exposition of the applications of our method is given in Section 3.
1.2. Previous work on the subject

One advantage of our approach through Schur generating functions is that it is quite
general, and as a result, in each of our applications we can address more general situations
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than those rigorously known before. However, particular cases of some of our applications
were accessible previously by other important techniques. Let us list several of those.

e Determinantal point processes have led to Central Limit Theorems for uniformly
random lozenge tilings of certain domains in [37], [54], for 2+ 1 dimensional random
growth in [8], [20], [40]. Similar results for domino tilings of the Aztec diamond were
announced (without technical details) in [17].

¢ Asymptotic analysis of orthogonal polynomials through the recurrence relations has
led to Central Limit Theorems for ensembles of non-intersecting paths with specific
initial conditions (which also include some tiling models) in [12], [21].

« Discrete loop equations (also known as Nekrasov equations) have led in [9] to Central
Limit Theorems for discrete log-gases, which has overlaps with specific ensembles of
non-intersecting paths and tilings.

o Various representation-theoretic ideas, involving, in particular, computations in the
algebra of shifted symmetric functions and universal enveloping algebra of gl have
led in [38], [32], [26], [30], [3], [4], [18], [41], [44] to several instances of Central Limit
Theorem for the probability distributions of asymptotic representation theory.

o Differential operators acting in the algebra of symmetric functions in infinitely-many
variables were used in [47] for proving the Central Limit Theorem for the Jack
measures.

Let us emphasize, that despite the existence of several competing methods, most of
our applications were not previously accessible by any of them. Yet our technique is
adapted to the study of the global behavior of probabilistic systems, while some of these
methods are more suitable for the study of the local behavior.

1.8. Continuous models

Replacing ZEN) € Z by EZ(N) € R in (1.1), we arrive at continuous analogues of the
particle configurations under consideration. In this fashion, our results are closely related
to the global asymptotics for the eigenvalues of random matrix ensembles.

One precise example is given by the semiclassical limit, which degenerates the de-
composition of tensor products of irreducible representations of U(N) (one of our appli-
cations) to spectral decomposition of sums of independent Hermitian matrices, see [13,
Section 1.3] for the details. The Central Limit Theorem for this random matrix problem
is well-known, see [53, Section 10]. It can be put into the context of the second order
freeness in the free probability theory, see [46], [45]. In Section 9.4 we explain how the
covariance for our Central Limit Theorem for tensor products degenerates to the random
matrix one.

Another degeneration is the appearance of the Gaussian Unitary Ensemble (GUE) as a
scaling limit of lozenge and domino tilings near the boundary of the tiled domain, see [52],
[35], [28], [49]. Recall that GUE is the eigenvalue distribution of H = (X 4 X*), where
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X is N x N matrix of i.i.d. mean 0 complex Gaussian random variables. And again
for GUE the Gaussian asymptotics for global fluctuations is well-known and can be
generalized in (at least) two directions. The first one is a general Central Limit Theorem
for (continuous) log-gases of [33] based on the loop equations. The second generalization
is to replace the Gaussian distributions in the definition of GUE by arbitrary ones and to
study the resulting Wigner matriz. Then the global fluctuations can be accessed by the
moments method, see e.g. [1, Chapter 2] for an exposition. In more details, one computes
the moments of the eigenvalues in the following form

n n N
E (H Trace(Hmk)> =E (H Z(hl)m’“> . {h:}Y, are eigenvalues of H. (1.4)
k=1 i=1

k=1

The independence of matrix elements of H paves a way to find the asymptotic of the
left-hand side of (1.4), which then gives the global asymptotic of linear statistics of the
form (1.2) with polynomial test functions f(x).

1.4. Moments method

The moments method was never available for the discrete particle configurations as
in (1.1) for a very simple reason: there is no underlying random matrix or an analogue
thereof. Here we change this situation by providing a way to efficiently compute (a dis-
crete analogue of) the right-hand side in (1.4). Let us briefly state the key idea.

Let 9; denote the derivative with respect to the variable x; and consider the differential
operator

1 N
Dy, = H - (Z (xzal)m> H (zi — ;).

T
1<i<j<N i=1 1<i<j<N

A straightforward computation shows that the Schur functions are eigenvectors of D,,:

N
Dpnsy = (Z()\Z'FN—’L)m) S, /\:()\1,...,)\]\]).

i=1

Therefore, applying such operators to (1.3) we get

(i) (i)

The fact that differential (or difference) operators applied to symmetric functions can be

(1.5)

ri=o==xn=1

used for the analysis of random particle configurations is by no means new, see e.g. [5],
[6] for recent similar statements, and the asymptotic questions boil down to finding a
way to analyze the right-hand side of (1.5). This is where the specific and relatively
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simple definition of D,,, shines, as we are able to develop a combinatorial approach (yet
based on several analytic lemmas) to the right-hand side of (1.5).

One important observed feature is that the right-hand side of (1.5) depends only on
the values of the Schur generating function S, at points (z1,...,2y) such that all
but a bounded number of coordinates (i.e. the total number is not growing with N) are
equal to 1. First, this reduces a problem in growing (with N) dimension to a much more
tractable finite-dimensional form. Second, the values of Schur generating functions at
such points are very robust and not too sensitive to small perturbations for /(™). This
is indicated by the results of [29], [28] on the asymptotics of Schur functions, on which
we elaborate in Section 8. In particular, these results give enough control on the values
of Schur generating functions to give the asymptotic expansion for the left-hand side of
(1.5) needed for the Central Limit theorem. In contrast to our method, previous results
and related approaches in the area, such as those of [3], [5], [6], [4], [47] relied on the ezact
form of the Schur generating function or its analogue; in particular, it was necessary to
assume its factorization into a product of 1-variable functions.

From the technical point of view, even after all these observations are made, the
asymptotic analysis still needs many efforts and is much more complicated than that
of [13] where the Law of Large Numbers was addressed through the same technique.

Let us end this section with a speculation. We believe that it should be possible to
reverse the theorems of the present article: the knowledge of the Law of Large Num-
bers and Central Limit Theorem should give (perhaps, subject to technical conditions)
exhaustive information about asymptotics of the Schur generating functions for all but
finitely many values of coordinates x; equal to 1. We plan to develop this direction in a
separate publication.'

1.5. Organization of the article

The rest of the text is organized as follows. In Section 2 we formulate our main
results linking the Central Limit Theorem for global fluctuations to the asymptotic
of Schur generating functions. Numerous applications of these results are presented in
Section 3. Section 4 gives a generalization of (1.5) which underlies all our developments.
The remaining sections present a step-by-step proof for the statements of Sections 2
and 3.
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1.7. Notation

Here we collect some notations that we use throughout this paper. Note that some of
these notations are slightly unconventional.
By & we denote the variables (x1,...,zN).

We denote by (1V) the sequence (1,1,...,1).
—_——

N

By 0; we denote the partial derivative %. We use 9, instead of %. For a function

of one variable f(z) we sometimes denote the derivative by the conventional notation
f'(z). By 8Y f we mean the function f itself.

For a differential operator D by D[F(z)]G(z) we mean that the differential operator
is applied to F'(x) only. Let S, be the group of all permutations of r elements; then

1
Symml,-u,frf(xla s 71.7’) = ﬁ Z f(xa(l)a Lo(2)- - 79:0(7‘))3
" oeS,

denotes the symmetrization of a function.

Let Vn(Z) := ]l <icj<n(zi — x;) be the Vandermond determinant in variables
1, "ITN-

Sometimes we omit the arguments of functions in formulas. For example, we can use
the symbol Vi instead of Vy (Z).

We use notations [N] :={1,2,...,N}, [2; N] :={2,3,...,N}.

> {ar,...,ar}c[n] denotes the summation over all subsets of [N] consisting of r elements.

All contours of integration in this paper are counter-clockwise.

2. Main results
2.1. Preliminaries and Law of Large Numbers
An N-tuple of non-increasing integers A = (A1 > Ao > -+ > Ay) is called a signature

of length N. We denote by GT y the set of all signatures of length N. The Schur function
sx, A € GTy, is a symmetric Laurent polynomial defined by

7

det[mN—J} - (i — )

@ i<j

det [a:jﬁN_j} det [mf\j+N_j}

5,\(361, .. .,J:N) =

Let t be a probability measure on the set GTy. A Schur generating function
Se(z1,...,2N) is a symmetric Laurent power series in x1, ...,z N given by
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Se(x1,...,xn) = Z ‘C(A)M

N
AEGTy sx (1)

In what follows we always assume that the measure v is such that this (in principle,
formal) sum is uniformly convergent in an open neighborhood of (1V). Note that the
uniform convergence of such a series in a neighborhood of (1V) implies the uniform
convergence in an open neighborhood of the N-dimensional torus {(z1,...,znN) : |z;| =
1,i=1,...,N}. Indeed, it follows from the estimate |sx(x1,...,zn)| < sx(Jz1], ..., |Zn])
(which is an immediate corollary of the combinatorial formula for Schur functions as a
positive sum of monomials, see [42, Chapter I, Section 5, (5.12)]).

The goal of this paper is to show how to extract information about vt with the help of

St($17...7.’L‘N).

Definition 2.1. A sequence of symmetric functions {F x5 (Z)} n>1 is called LLN-appropriate
if there exists a collection of reals {ci}r>1 such that

e For any N the function log Fy (Z) is holomorphic in an open complex neighborhood
of (1V).
e For any index ¢ and any k € N we have

OF log Fn (%
lim J1 08 TNE) ) = cj.
N—o0 N F=(1V)
e For any s € N and any indices ¢1,...,7s such that there are at least two distinct
indices among them we have
Oy, - 0; log Fn (2

lim O 108 (@) —0.
N—o00 N F=1N

e The power series

= ¢

k k—1

> (@ 1)

—1)

= (k—1)!
converges in a neighborhood of the unity.

Definition 2.2. A sequence p = {pn}n>1, Where py is a probability measure on GTy,

is called LLN-appropriate if the sequence {S,, } ny>1 of its Schur generating functions is
LLN-appropriate. For such a sequence we define a function F,(z) via

where {c;};>1 are the coefficients from Definition 2.1.
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General Example 2.3. Assume that the Schur generating functions of a sequence of prob-
ability measures p = {pn }n>1, where py is a probability measure on GTy, satisfies the
condition
N—k
lim 3110gSpN(x1,...,xk,1 )

= >
i N U(x), for any k > 1,

where U(x) is a holomorphic function, and the convergence is uniform in a complex
neighborhood of (1¥). Then py is a LLN-appropriate sequence with Fj,(z) = U(z).

Indeed, for a uniform limit of holomorphic functions the order of taking derivatives and
limit can be interchanged, which shows that the example above is correct. In applications
studied in this paper all LLN-appropriate measures will come from the construction of
Example 2.3. However, we prefer to prove general theorems in a slightly more general
setting of Definition 2.2.

For a signature A € GTy consider the measure on R

ml\] = %ia (#) (2.1)

The pushforward of a measure v on GTx with respect to the map A — m[)] defines a
random probability measure on R which we denote by m|t].

The following theorem is essentially [13, Theorem 5.1]. In Section 10 we comment on
the slight difference between this formulation and the one given in [13].

Theorem 2.4. Suppose that a sequence of probability measures p = {p(N)}n>1, where
p(N) is a probability measure on GTy, is LLN-appropriate, and k € N. Then the random
measures m[p(N)] converge as N — oo in probability, in the sense of moments to a
deterministic measure m on R, such that its kth moment equals

1+2z \z

|z|=€

/xkdm@):%i(;H) ]{ dz <3+1+<1+z)pp(1+z))k+1, (2.2)

where € < 1.

2.2. Main result: CLT for one level

Definition 2.5. We say that a sequence of symmetric functions {Fn(z1,...,ZN)}N>1
is appropriate (or CLT-appropriate) if there exist two collections of reals {c}r>1,

{dk}ki>1, such that

o For any N the function log Fiy (Z) is holomorphic in an open complex neighborhood
of (1),
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e For any index ¢ and any k € N we have

- OFlogF(Z)|
R N = Gk

#=1
o For any distinct indices 4, j and any k,! € N we have

: k ol = _
A}gnoo c')l 8j log FN(ZL')|f:1 = ko.

e For any s € N and any indices i1,...,%s such that there are at least three distinct
numbers among them we have

lim 0;,0;, ...0;, log Fn(%)[;_, = 0.
N—oc0

e The power series

S

k=1 ’ k=1;l=
converge in an open neighborhood of x =1 and (z,y) = (1, 1), respectively.

Definition 2.6. We say that a sequence of measures p = {pn } n>1 is appropriate (or CLT-
appropriate) if the sequence of its Schur generating functions {S, (z1,...,zn)}N>1 is
appropriate. For such a sequence we define functions

>

k=1 : k

~DF i 1d’“§ =D -0

Qp(w,y) =Gp(1+2,14+y) + CEE

General Example 2.7. Assume that the Schur generating function of a sequence of prob-
ability measures p = {pn}n>1 on GTy satisfies the conditions

. o1 1ogSpN(x1,...,xk,1N_k)
= >
A}gl{l)o N Ui (xy), for any k> 1,
A}im 002 log Sp(z1,. .., 2k, V=R = Uy(ay, x0), for any k> 1,
— 00

where Uj(x),Us(z,y) are holomorphic functions, and the convergence is uniform in a
complex neighborhood of unity. Then p is a (CLT-)appropriate sequence of measures
with FP('T) = Ul('r)v Gp(xay) = UQ(x?y)
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Indeed, for a uniform limit of holomorphic functions the order of taking derivatives and
limit can be interchanged, which shows that the example above is correct. In applications
studied in this paper all CLT-appropriate measures will come from the construction of
Example 2.7. However, we prefer to prove theorems for a slightly more general setting
of Definition 2.6.

Let pny be a probability measure on GT . Set

N
p,(CN) = Z M+ N-— i)k, k=1,2,..., A=(\,...,An) is py-distributed.
i=1

The following theorem is the main result of this paper.

Theorem 2.8. Let p = {pn}n>1 be an appropriate sequence of measures on signatures
with limiting functions F,(x) and Q,(x,y) (see Definition 2.6).
Then the collection

(N — Ep™)}en

converges, as N — 0o, in the sense of moments, to the Gaussian vector with zero mean
and covariance

i cov(p, pi) 1
N5oo  Nhkaitk2  (27f)2
|z|=€ |w|=2€

(é F14+(1+2)F,(1+ z)>kl

ko
X (% +1+ 1+ w)F,(1+ w)) Q,(z,w)dzdw,

where the z- and w-contours of integration are counter-clockwise and € < 1.

This theorem serves as a model example of our approach. However, for applications
it is often required to study the joint distributions of several random particle systems.
Our approach can be applied to (some of) these cases as well: We deal with them in the
next sections.

2.3. General setting for several levels

Let us introduce a general construction of Markov chains which are analyzable by our
methods.

For a positive integer m and € > 0 let A" be the space of analytic symmetric functions

in the region

{(z1,.-y2m) €EC™ i 1+e> |z >1—g, 14> |z >1—¢,..., 14> |z >1—¢}.
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We consider A" as a topological space with topology of uniform convergence in this
region.

Consider A™ := U.>oAl" endowed with the topology of the inductive limit. Note
that for f € A™ the function (21, z2,...,2m) [[1<;<j<m (i — ;) is an (antisymmetric)
analytic function. Therefore, it can be written as an absolutely convergent sum of mono-
mials xlll ...axlm where I; € Z, i = 1,2,...,m. Dividing both sides of such a sum by
[li<icj<m(zi —z;), we obtain that each element of A™ can be written in a unique way
as an absolutely convergent sum

E C)\S,\(l‘l,...,xm), C E(C,
AEGT,,

in some neighborhood of the m-dimensional torus.
We consider a map P, : A" — A" with the following properties:
1) Py, is a linear continuous map.
2) For every A € GT,, we have

sk(xlr"vx’m) Pmnsu(xl?""xn) Pm,n
Pm.n < ) =D A a0 S €Ro
sa(1m) UEGT,, 8(17)

m,n

This property says that the coefficients ¢}’ M
arbitrary complex numbers). Note that the sum in the right-hand side is absolutely

must be nonnegative reals (rather than

convergent due to the definition of pm n.
3) For any §f € A™ we have

(1) = pm.n(F)(1").

In words, this property asserts that our map should preserve the value at unity.
It follows from conditions 2) and 3) that

pm,,n .
g W =1.

neGT,

Since these coeflicients are nonnegative reals one can consider them as transitional prob-
abilities of a Markov chain. In more details, let ny,...,ns be positive integers, and let
Promgs- s Pn.on._, De maps satisfying conditions above. Let p be a probability measure
on GT,,,. Define the probability measure on the set

GT,, xGT,, x --- xGT,,
via

k
Prob(A(), A®, . A6)) = pAC) T oyt (2.3)
=2
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In Section 4 we prove a formula for the expectation of joint moments of signatures
XDV, distributed according to this measure.

2.4. Main result: CLT for several levels

In this section we state three multi-level generalizations of Theorem 2.8. They are
mainly shaped to the applications studied in the present paper. With the use of the
construction from Section 2.3 it is possible to produce many other similar multi-level
generalizations of Theorem 2.8; this should be regulated by applications that one has in
mind.

We consider the following particular examples of the map pp , from Section 2.3. In

the first case, it is given by f(x1,...,2m) = f(x1,...,2,,1™7"), for m > n. In the
second case, it is given by sx(21,...,Zm) = g(x1,. .., Tm)sx (21, ..., Tm), for m =n and
a function g(z1,...,z,) which is a Schur generating function of a probability measure

on GT,,. Finally, in the third case we combine the two previous ones.
In an attempt to make the exposition more explicit, we repeat the construction of
Section 2.3 in all three cases below.

Example 1. For A € GTy,,p € GTy,, with k1 > ko, let us introduce the coefficients
prkl—)kg ()\ — M) Via

sa(T1,. .., Tp,, 1F17R2) Z su(T1, ... Thy)
2 SR W) W LICALEEC R R
SA(l ) MEGTk2 Sﬂ(l 2)

The branching rule for Schur functions asserts that the coefficients pry, _,; (A — i) are
non-negative for all A, u (see [42, Chapter 1.5]). Plugging in #; = -+ =z = 1, we see
that ZMGGT@ Pry, (A = p) = 1.

Let 0 <a; <ag <--- <a, =1 be fixed positive reals, and let py be a probability
measure on GTy.

Let us introduce the probability measure on the set GT|q, y) X GTq,n) X - - X GT |4, N]

via
n—1 ) )
Prob(AM, A@) AM)Y = pu(A™) H pr[aHlN]_,[aiN]()\(’H) — A9,
i=1

A e GT, Ny (25)

(the fact that all these weights are summed up to 1 can be straightforwardly checked by
induction over n).

We are interested in the joint distributions of random signatures of this random array.
Fort=1,2,...,n,let pLatN] be a (shifted) power sum of coordinates of signatures defined
by the formula
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[a¢N] k
pLatN] . Z (A’Et) T [CLtN} —Z) , k= 1,2,...,

i=1
where A is distributed according to the measure (2.5).

Theorem 2.9. Assume that p = {pn} is an appropriate sequence of probability measures
on GTy, N = 1,2,..., in the sense of Definition 2.6 and corresponding to functions
F, and Q,. Let us consider the probability measure on the sets of signatures defined by
(2.5). In the notations above, the collection of random variables

Nk ( l[aeN] _ E [atN])}
{ Pk P =1, mik>1

converges, as N — oo, in the sense of moments, to the Gaussian vector with zero mean
and covariance:

[a¢; N] [atzN]

kK k
i cov (pk ) Py atllaw2 7{ f ( 1+Z)Fp(1+z)> !

NS00 Nkatke (27i)2 a,

|z|=€ |w|=2¢

" <i+1+ 1+w)F,(1+w

atZ

N\
) Q,(z, w)dzdw,
where 1 <t1 <ty <n ande < 1.

Example 2. Let us start with the following classical fact. For A,y € GTy there is a
decomposition of the product of two Schur functions into a linear combination of Schur
functions:

sx(@1,. . aN)su(Tr, .. aN) = Z N usn(T1s . TN). (2.6)
neGT v

The coefficients CK# are well-known under the name of Littlewood—Richardson coeffi-
cients. It is known that for arbitrary A, u,n they are nonnegative (see, e.g., [42, Chap-
ter 1.9]).

Let p = {pn}, {tN)} {t }, e {t(n 1)} be sequences of appropriate measures, where
pN,tE\}), .. tg\, D are probablhty measures on GTy. Let ggN) (@),... ,gfl 1( ) be the
Schur generating functions of tN ,tg\?), .. ts\? 2 , respectively.

Define the coefficients stggr)(/\ =), for \e GTy, p € GTy, 1 <r < (n-—1), via

NN (V) 5u(7)
g’(“N)(x)m = M%N t(év)()\ ) (1) (2.7)
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Note that the series in the right-hand side is absolutely convergent and the coefficients

stE;V)) are nonnegative. Using (2.6), one can write an explicit formula for them:

() 5u(1Y) w0
sto V(A= p) = — vy ().
(gr) n%&v sx(1N)s, (1N) AN

Let us define a probability measure on the set

GTNXGTNX'“XGTN. (28)

n factors

We define the probability of the configuration

AL AD A e GTy x GTy x --- x GTy

via
n—1 ) )
Prob(AM, A®) M) = py (A T stV (A0 — A®), (2.9)
=1
Let pg\i) be the kth shifted power sum of \(%):
N k
p =% (Agﬂ FN - z) C k=12, (AO, A is (2.9)-distributed.
=1
Let
— — N) /- — N) /- N) /- N) /- N) /-
HM() = 8,, (@), HM (@) :=HM (@) (@), ..., BV (@) =17 (2)g" (@)

(2.10)
It can be directly shown by induction that the functions H. S(N)(f), are Schur generating
functions of A(¥), s = 1,...,n. Moreover, they are appropriate (in the sense of Defini-
tion 2.5) because g(N)

)

and S,, are appropriate sequences of functions.
Let us denote the corresponding to {H ,SN)} ~>1 limit functions from Definition 2.6 by
F

p;(s)(x)a Gp;(s)(wvy)a and Qp,(s)(xay)'

Theorem 2.10. Assume that p = {pn}, {tg\p}, {tg\Q,)}, el {tg\?*l)} are appropriate se-
quences of probability measures, and let g1(Z), ..., gn-1(Z), F, 5)(Z), Qp,(s)(T), Diss,
s=1,...,n, be as above. Then the collection of random variables

N—k( ) _ g <{V>)}
{ Py.s Ph;s k>1;5=1,...,n
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converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance:

N N
cov (pgfl;lﬂpl(fz;?%) 1

k1
. 1
Jn e g ) (B eame)

|z|=€ |w|=2¢

k2
1
X (a +1+ (1 + w)Fp7(52)(1 + w)) Qp7(52)(z,w)dzdw, (2.11)
where 1 < 51 < s9 <n and e K 1.
Example 3. Now let us turn to a case which unites the two previous ones. Let n be a

positive integer and let 0 < a; < --- < a,, be reals. Let {t%)}, _{tg\z,)}, e {tg\?_l)}, {tg\rf)}
be appropriate sequences of probability measures such that tg\l,) is a probability measure

on GTi,, np. Let g§N)(aj1, e T[g Ny s gfﬁ)l(xh ey Tlq, N1, g,SN)(xh .o, T[q, N]) De
Schur generating functions of tg\l,), tf,), . ,tg\r,kl), tg\r,l), respectively.
Define the coefficients stg));rﬂ_w()\ — p), for X € GTyq, , Ny, 1 € GTg Ny, 1 <7 <
(n—1), via
[a7‘+1 N] - [W*N]
(N) s)\(xlw"a‘r[arN]v]- )
9y (xh""x[arN]) S)\(l[ar+1N])
. (N) s#(xl,...,x[arN])
= > st e A= ) I I (2.12)
neGTN ©

Note that the series in the right-hand side is absolutely convergent and the coefficients
stgy)) are nonnegative. Using (2.4) and (2.6), one can write an explicit formula for them:

st O w= > Y )
(gr)ir+1—r H) = s (1[a,,.N])S (1[a1vN])
MmEGT . N) 12€GT 4, N n 2

X € 0Py 4 N]—[arN] (A = ey (72).

In this definition we combine two operations on appropriate Schur generating functions
which we use in the two previous cases: The substitution of 1’s into some variables and
multiplication by a function.

Let us define the probability measure on the set

GTlarn) X GTjayn) X -+ X GT(a,, N} X GTja, -
That is, we want to define the probability of a collection of signatures

AL A A=) A )y,
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where (%) is a signature of length [a;N], i =1,2,...,n. Let us do this in the following
way. We define this probability via

Prob(A(M, A@ ATD AM) = g (A™) Hst(ngHr AUTD 5 AD)(2.13)

Let p[atN] be the kth shifted power sum of A(*):

[atN] : k
=30 (W + N - )
i=1
E=1,2,...,  (A®,...,AM)is (2.13)-distributed.
Let
H(N)(‘Tla 'ax[anN]) _g'gz )(xlvﬂ'vm[anl\/])u
H,(ﬁ)l(ﬂﬁ, ... ,x[an_lN]) = HT(LN) (x1,... s Tlan_1 Ns l[a"N]_[“"‘lN])gfLN)l(xl, ... ,x[an_lN]),
Hl(N)(xl, e x[alN]) = HéN) (z1,... s TlazN]» 1[a2N]_[“1N])g§N) (z1,... ,x[an_lN]).
It can be directly shown by induction that the functions Ht(N)(:rl, .. ,x[atN]L are Schur
generating functions of A(*), t = 1,...,n. Moreover, they are appropriate (in the sense

of Definition 2.5) because gZ(N) and S,, are appropriate sequences of functions. Let
us denote the corresponding limit functions by F.)(7), G, (2,y), Qp ) (x,y), for
t=1,2,...,n

Theorem 2.11. In the notations above, the collection of random functions

[a: N] [a: N]
{N (Pk @~ Eppg )}t:l ikEN

is asymptotically Gaussian with the limit covariance

[ t1 N] [atz N]
. cov (pk‘l B2 ’pkg;tQ afll af;
lim =

k1
1
Nevoo Nk Tk = ni)? (; F 1+ (14 2)F, @1+ Z))

|z|=€ |w|=2€
1 k2
X <E +1+ (1 +w)F, )1+ w)) Qp,(ts) (2, w)dzdw,

where 1 <t <ty <s and e 1.
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3. Applications

In this section we state several applications of general theorems from Sections 2.2
and 2.4. The theorems are split into two parts: Sections 3.2, 3.4 are devoted to problems
of asymptotic representation theory, while Sections 3.5, 3.6, 3.7 deal with 2d lattice
models of statistical mechanics.

3.1. Preliminary definitions

In a considerable part of our theorems an input is given by a sequence \(N) € GTy,
N = 1,2,... of signatures. Depending on the context, they encode irreducible repre-
sentations, boundary conditions in statistical mechanics models or initial conditions of
Markov chains.

In our asymptotic results we are going to make the following technical assumption on
the behavior of A(N) as N becomes large.

Definition 3.1. A sequence of signatures A(N) € GTy is called regular, if there exists a
piecewise-continuous function f(¢) and a constant C' such that

ek X PR ]
j=1...,.N
and
/\j](\fN)_f(j/N)'<C’ j=1,...,N, N=12,.... (3.2)

Remark 3.2. Informally, the condition (3.1) means that scaled by N coordinates of \(V)
approach a limit profile f. The restriction that f(¢) is piecewise-continuous is reasonable,
since f(t) is a limit of monotonous functions and, thus, is monotonous (therefore, we
only exclude the case of countably many points of discontinuity for f). This restriction
originates in the asymptotic results of [28] and we believe that it, in fact, can be weakened
for most applications, cf. [49], [43].

It is clear that if the sequence A(N) is regular, then the sequence m[A(N)] (defined
by (2.1)) weakly converges to a probabilistic measure on R with compact support. The
complete information about such measure can be encoded in several generating functions
that we now define.

For a probability measure m on R with compact support let us define the Cauchy—
Stieltjes transform Cy,(2) by

Con(2) = /dsz@;) _ +z_2/xdm(:v)+z_3/x2dm(a:)+.... (3.3)

This is a power series in 2~ which converges in a neighborhood of infinity.
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Define Cl({l)(z) to be the inverse series to C(2), i.e. such that
CL P (Cm(2)) = Ca(CLV(2)) = 2

as a power series Cl(n_l) z) has a form 1 4+ ag + a1z + a122 + a2z + ...). Further, set
z

1
Ran(z) = C5(2) — —. (3.4)
The function Ry,(z) is well-known in the free probability theory under the name of
Voiculescu R-transform, cf. [58], [48].

Integrating Ry, (z), set

In(z)

Hi(2) = / Rm(t)dt+1n<ln(z)>7
0

z—1

which should be understood as a holomorphic function in a neighborhood of z = 1.
The derivative of Hp,(z) has a simpler form:

_ 0 Vog(x) 1

H] .

(3.5)

The function H],(z) plays an important role in the context of the quantized free convo-
lution, see [13].

3.2. Asymptotic decompositions of representations of U(N)

Here we briefly recall some facts about representations of the unitary group (see
e.g. [27], [59], [60]) and state a central limit theorem for decompositions of their tensor
products and restrictions.

Let U(N) be the group of all unitary N x N matrices. It is a classical fact that the
irreducible representations of U () are parameterized by signatures of length N. Let us
denote by 7* the irreducible representation of U(N) corresponding to the signature A
(X is the highest weight of this representation), and let dim(\) denote the dimension of
this representation.

Consider a reducible finite-dimensional representation T of U(N) and let

Ty = @ c>\77’\

AEGT v

be a decomposition of Ty into irreducibles.

One of the basic ideas of asymptotic representation theory is to associate with Ty a
probability measure on the set of labels of irreducible representations. In the case of the
unitary group this results into the definition of the probability measure pr,:



722 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702-781

cy dim(7?)

prw(A) = dim(Ty)

We reduce the study of the asymptotic behavior of such probability measures to their
moments defined through

N
Y=Y (M N=DF k=12, (M,...,\n) is prov)-distributed. (3.7)

i=1

One basic operation which creates reducible representations is tensor product. The
decomposition of the (Kronecker) tensor product 7 ®@7# into irreducibles can be written
with the use of classical Littlewood—Richardson coefficients czuz

™ @mh = @ czﬂﬂ", M€ GTy,
neGT N

with an equivalent definition being (2.6). The Law of Large Numbers for tensor products
was proven in [13], and here is the Central Limit Theorem.
For two probability measures m' and m? with compact support set

o, (Ml 2 L0501

(1+2)H .(1+2)— (1+y)H (1 +y) 1
T -y >>+(x—y)2' 38)

+ log <1 —zy

Theorem 3.3 (Central Limit Theorem for tensor products). Suppose that \'(N), \}(N) €
GTy, N =1,2,..., are regular sequences of signatures such that

lim m\(N) =m’, i=1,2, weak convergence.
N —o00

Let Ty = 72 (V) @ 7V (V). Then, as N — oo, the random vector of moments (3.7)
{v* (o - B}

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance

k>1

Tn T
cov (pkiv,pkév>

1\/1E>n<x> Nkitke
1 1 F

|z|=€ |w|=2¢
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z,w)dzdw, (3.9)

ml,m2(

1 k2
X (w +14+ (1+w) (Hr/n1(1+w)+H1/nz(1+w))> Q%

where € < 1, function H}, was defined in Section 3.1, and Q?}l w2 15 defined in (3.8).

Remark 3.4. In this setting the operation of the tensor product of representations can be
seen as a quantization of the summation of independent random matrices. The degen-
eration from representations to matrices is known as a semiclassical limit, see e.g. [13,
Section 1.3] and references therein for details. Under this limit transition Theorem 3.3
turns into the result for the spectra of the sum of the Haar-distributed random Her-
mitian matrices with a fixed spectrum. In Section 9.4 we show that in this limit the
covariance (3.9) turns into the covariance for the random matrix problem, which can be
found in [53].

Remark 3.5. In a similar way one can prove a central limit theorem for decomposition
of ™ @ @@ for arbitrary positive integer s.

Remark 3.6. There is an approach to decomposition of tensor products via Perelomov—
Popov measures, see [13] for details. In this setting, one obtains a direct relation of these
measures and free probability. It would be interesting to relate Theorem 3.3 and the
concept of second-order freeness developed in [46], [45].

Proof of Theorem 3.3. Given that the character of 7 is precisely the Schur function sy,
and that taking tensor products corresponds to multiplying the characters, Theorem 3.3
is an immediate corollary of Theorem 2.8 and Proposition 8.4. 0O

We believe that Theorem 3.3 is new. Yet, there are simpler tensor products whose
asymptotic decomposition were intensively studied before in the context of the Schur—
Weyl duality, cf. [2], [44]. For that consider a representation Wy, of U(N) in vector
space (CM)®" via g(v) @ e @ -+ @ v,) = g(v1) ® g(v2) @ - -+ ® g(vn), g € U(N). The
decomposition of Wy, into irreducibles is governed by the Schur—Weyl measure, while
its N — oo limit (when n is kept fixed) is the celebrated Plancherel measure of the
symmetric group S(n).

Theorem 3.7 (Central Limit Theorem for Schur—Weyl measures). Assume thatn = [cN?]

forc>0andlet Tn = Wy, N =1,2,.... Then, as N — oo, the random vector of
moments (3.7)

v (b )}

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-

E>1

ance
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I =
NShe NFitks (27i)?

|z|=€ |w|=2€

cov (pff 7}9@7 ) 1 j{ <1 >k1
—+1+c+ecz
z
1 k2 1
X < +1l4+c+ cw> (c+ 2) dzdw, (3.10)
w (z —w)
where € < 1.

Proof. It is easy to see that the Schur generating function of Ty is given by the normal-
ized character of this representation:

(T1+ 32+ +an)"
Nm ’

SﬂN,n(xlv s 7$N) =
We have

B z N—
lim 01 log Spy, , (21, 171 = lim N0, [log (Wl + Tl)}
N=roo N N—o00 N

N —2
I\}im 010210g S, (1, 22, 1N72) = lim 0,0, |:CN2 log (ﬂ + T2 + —)} = —c.
— 00

N —o0

It remains to use Theorem 2.8. O

An earlier proof of Theorem 3.7 is given in [44], while its ¢ — 0 version is the Kerov’s
Central Limit Theorem for the Plancherel measure, see [38], [32].

Another natural operation on representations of U(N) is restriction onto the subgroup
U(M) C U(N), where U(M) is identified with the subgroup of U(N) fixing the last
N — M coordinate vectors.

Theorem 3.8 (Central Limit Theorem for restrictions). Suppose that A(N) € GTn, N =
1,2,..., is a reqular sequence of signatures such that

I\}im mAN)]=m, i=1,2, weak convergence.
— 00

Take 0 < a < 1 and let T be a representation of U(|aN]) given by Ty = W/\(N)|U(LQNJ).
Then, as N — oo, the random vector of moments (3.7)

)
{ Pk Py, E>1

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance
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TN TN
. cov (pkl s Dy, )
lim ————+

N—o0 Nki+k:
gl (1+1+ (1+z)H;n(1—|—z)>k1 (1 s (1+w)H;n(1+w)>’”
=L __

(27i) z w a

|z|=€ |w|=2¢

y (@aw [1og (1 B zw(l +2)H, (1 +2) — (1 +w)H,,(1+ w))] N - _1w)2) dxduw,

Z—w

(3.11)
where € < 1 and function H}, was defined in Section 3.1.

Theorem 3.8 is a particular case of Theorem 3.14, where we also present a more elegant
formula for the limiting covariance, expressing it in terms of a section of the Gaussian
Free Field, which we define next.

3.8. Preliminaries: 2d Gaussian Free Field

A Gaussian family is a collection of Gaussian random variables {£,}q,er indexed by
an arbitrary set T. We assume that all our random variables are centered, i.e.

E¢, =0, foralla e T.

Any Gaussian family gives rise to a covariance kernel Cov : T x T — R defined by

Cov(ai,az) = E(£a,&as)-

Assume that a function C': T x T — R is such that for any n > 1 and a,...,a, € T,

[é(&i,a]‘)]%:l is a symmetric and positive-definite matrix. Then (see e.g. [16]) there
exists a centered Gaussian family with the covariance kernel C.
Let H := {z € C : J(z) > 0} be the upper half-plane, and let C§° be the space of

smooth real-valued compactly supported test functions on H. Let us set

Z—w

zZ—w

G(z,w):=——1n

' , z,w € H,
and define a covariance kernel C': C§° x C3° — R via

C(f1, f2) = f1(2) f2(w)G(2, w)dzdZdwdw.
/]

The Gaussian Free Field (GFF) & on H with zero boundary conditions can be defined
as a Gaussian family {{;} recge with covariance kernel C. The field & cannot be defined
as a random function on H, but one can make sense of the integrals [ f(z)®(z)dz over
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finite contours in H with continuous functions f(z), see [55], [19, Section 4], [31, Section 2]
for more details.

In our results GFF will play a role of the universal limit object for two-dimensional
fluctuations of probabilistic models under consideration. In this sense, GFF plays a
similar role to Brownian motion and Gaussian distribution.

3.4. Extreme characters of U(o0)

In this section we switch from U(N) to its infinite-dimensional version. Consider the
tower of embedded unitary groups

Ul)cU@)C--CUN)CUN+1)C...,  UN)={uy}_1,

where U(N) is embedded into U(N +1) as the subgroup fixing the last coordinate vector.
The infinite-dimensional unitary group is the inductive limit of these groups:

Define a character of the group U(oo) as a continuous function x : U(oco) — C that
satisfies the following conditions:

e x(e) =1, where e is the identity element of U(oco) (normalization);

e X(ghg™') = x(h), where g, h are any elements of U(cc) (centrality);

. [x(gigj_l)]zj:l is an Hermitian and positive-definite matrix for any n > 1 and
91s---,gn € U(c0) (positive-definiteness).

The space of characters of U(c0) is obviously convex. The extreme points of this space
are called extreme characters; they replace characters of irreducible representations in
this infinite-dimensional setting. The classification of the extreme characters of U(co) is
known as the Edrei-Voiculescu theorem (see [57], [24], [56], [51], [10]). It turns out that
the extreme characters can be parameterized by the set Q = (a™,a™, 87, 87,77, v7),
where

ai:af2a52"'>07

pE=pE>pF > >0,

(oo}
7520, Y (af +55) <oo, BF B <1
i=1

Each w € Q gives rise to a function ®“ : {u € C: |u| =1} — C via

(o] + _
O (u) == exp(yT(u— 1)+ (u! H (1 +ﬁ — D) A+ 5 1)) (3.12)

= af (w-1) <1—a;<u—1 ~1))
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Then the extreme character of U(co) corresponding to w € Q is x“ given by

x(U) := H D (u), UeU(x)

u€Spectrum(U)

(this product is essentially finite, because only finitely many of u’s are distinct from 1).
Each character gives rise to a probabilistic object known as the central measure on
the Gelfand—Tsetlin graph. Let us present the necessary definitions.
The Gelfand-Tsetlin graph GT is defined by specifying its set of vertices as [ J3_, GTn
and putting an edge between any two signatures A € GTy and u € GTy_; such that
they interlace p < A, which means

AL > 1 =X > 2 UN—1 2 AN

We agree that GT( consists of a single empty signature @ joined by an edge with each
vertex of GT;. A path between signatures k € GTx and v € GTy, K < N, is a sequence

k= A0 < ANEFD AN =y AP eGT;, K <i<N.
An infinite path is a sequence
@< AW <A@ < AR N\

We denote by Py the set of all paths starting in @ and of length N. We denote by P
the set of all infinite paths.

For any character x of U(oco) one can associate a probability measure on paths P.
Indeed, for any fixed N let us define a probability measure My on GTy via the linear
decomposition

sa(ug, ..., un)
Xlony = Z M;\([(/\)W'
AEGT N

Next, define a weight of a subset of P consisting of all paths with prescribed members
up to GT by

MEO)

pX()\(l)v)\@),'”’)\(N)) = (—11\/)
EN

(3.13)

Note that this weight depends on A(™) only. It can be easily deduced from the branching
rules for characters of U(N) that this definition is consistent and correctly defines a

probability measure 1, on P.
We will analyze the asymptotics of probability measures corresponding to certain
sequences of extreme characters

w(N) = {{oif (N)}iz1, {a; (N) izt {8 (V) }iz1, {87 (N)}iz1, 7T (N), 7~ ()}
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In more detail, we will assume that a sequence w(N) satisfies the following condition.

Condition. We will consider sequences w(N) such that, as N — oo, we have

L 1 )

—N "5 (N)) = AT, =N 6(BH(N)) = B, lim T+,
1 1 (N
N;(S(O‘i_(N)) - A", N;é(ﬂ;(N)) — B, Nhinoo,y ]§7 ) =T, (3.14)

where AT, A™, BY, B~ are arbitrary finite (not necessarily probability) measures on
R with compact support, ', '~ are two positive real numbers, and we consider the
convergence of finite measures in the weak sense. We will denote by J the sextuple (AT,
A=, BT, B~,I'", ™) which consists of 4 finite measures and 2 real numbers.

A direct computation shows that if a sequence w(N) satisfies the condition (3.14),
then we have the following convergence of the Voiculescu functions (3.12)

9, log ®*WV) (1
A}im o8 ~ (1+2) =F(1+2), uniformly in |z| <€, € >0, (3.15)
— o0

where F = Fj is determined by J with the use of the formula (9.7); we do not need the
explicit formula for it at this moment.
The description of CLT for extreme characters involves the following functions.

Proposition 3.9. Let F(z) = F(z) be the function which is obtained in the limit (3.15).
For any y € R and n > 0 the equation

1 14+ 2)F(1+ =2

-+ 1 + % = y

z Ui Ui
has at most one root z € H. Let Dg € R? be the set of pairs (y,n) such that this root
exists. Then the map Dy — H from such a pair to such a root is a diffeomorphism.

We prove this proposition in Section 9.2.

Let z — (yr(2),nr(2)) be an inverse of the map given by Proposition 3.9. Proposi-
tion 3.9 introduces coordinates in which the fluctuations of extreme characters become
a Gaussian Free Field.

In order to make this statement precise, let us introduce the height function Hy :
R x R>1 X P — Z>q given by the formula

Hy (g, 0 PYsz0) o= {1 i < INn) AN - [N =i = Ny}, (3.6)

where /\ENW) are the coordinates of the signature from GT| | in the path which belongs
to P.
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Let us equip P with a probability measure fi,«, where w = w(IV) satisfies the condition
(3.15). Then Hy(y,n) := Hpn(y,n,-) becomes a random function which describes a
certain random stepped surface.

Let us carry Hy(y,n) over to H through

Hy(z) == Hn(yr(2),nr(2)),  z€H.

One might worry that some information is lost in this transformation, as the image of
the map z — (yr(2),nr(2)) is smaller than R x R>¢, yet the configuration is actually
frozen outside this image and there are no fluctuations to study, cf. Figs. 2, 3, where
random tilings are frozen outside inscribed circles.

For n >0 and k=1,2,... define a moment of the random height function as
“+o0
M = / y" (Hn(y,n) — EHn(y,n)) dy.
—o0

Also define the corresponding moment of GFF via

M= [ e

=€Hl e (2)=n

Theorem 3.10 (Central Limit Theorem for extreme characters). Assume that the sequence
of extreme characters w(N) satisfies condition (3.14). Let Hy(z) be a random height
function on H corresponding to w(N) as above. Then
VT (Hn(z) —EHpy(2)) — &(2).
N—oo

. . . N
In more details, as N — oo, the collection of random wvariables {\/%Mj(k )}A>0;kez>0
converges, in the sense of moments, to {M¥Y , }as0.kez-,-

Remark 3.11. For explicit expressions for the covariance of {MY ; }asokez., see (9.14).

Remark 3.12. The condition (3.14) for the growth of extreme characters was introduced
and studied in [4], where the law of large numbers for this probabilistic model was proven.
Among other connections, the condition (3.14) is related to the hydrodynamical limit
of random surfaces related to probabilistic particle systems with local interaction, see
Section 3.3 of [4] for more details.

The proof of Theorem 3.10 is given in Section 9.2. We believe that this statement is
new for general extreme characters. For the very special case when the only non-zero
parameter in (3.14) is I'" it was previously proven in [8], [3].

The paths of Py and P can be identified with lozenge tilings, which leads us to
statistical mechanics applications.
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Fig. 1. Lozenge tilings of halfplane corresponding to paths of P. Left panel: Horizontal lozenges encode
coordinates of signatures in path. Right panel: Some values of the height function.

3.5. Lozenge tilings

Consider a (right) halfplane on the regular triangular lattice. We would like to tile
this halfplane with lozenges (rhombuses) of three types: horizontal <, and two others
J, Q. Let P denote the set of complete tilings of the half-plane subject to two boundary
conditions: the lozenges become U as one goes far up and U as one goes far down, see
Fig. 1.

There is a natural bijection between P and the set P of paths in the Gelfand—Tsetlin
graph. For that observe that due to combinatorial constraints, there are precisely N
horizontal lozenges with horizontal coordinate N in a tiling of P. Let gV >yl >0 >
y~N denote the coordinates of these lozenges, where the coordinate system is shown in
Fig. 1. Then define A¥) € GTy through

yN =AM 4N i, 1<i<N. (3.17)

A direct check shows that then A" < X\(®) < ... and moreover (3.17) is a one-to-one
correspondence between P and P.

In terms of lozenge tilings, the height function Hy(y,7,-) has a very transparent
meaning: for a given (y,7) it counts the number of horizontal lozenges < above (Ny, N7),
cf. Fig. 1.7 In this way Theorem 3.10 can be restated as a Central Limit Theorem for
certain probability measures on lozenge tilings.

2 Many articles use another definition, counting the number of lozenges of types Q, g below the point
(Ny, Nn). Two definitions of the height function are related by an affine transform, and so the CLT for
them is the same.
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N =6

Fig. 2. Left panel: Lozenge tiling of a trapezoid domain of width N = 6. Right panel: Tilings of a hexagon
can be identified with tilings of a specific trapezoid domain. Here a sample of uniformly random tiling of
50 X 50 x 50 hexagon is shown.

There is also a different family of probability measures on lozenge tilings, which we
can analyze. The definition of these measures is purely combinatorial. Instead of tiling
a half-plane, let us take a strip of width N, allowing IV horizontal lozenges to stick out
of its right-boundary, see Fig. 1 and left panel of Fig. 2. Note that if we fix the lozenges
along the right-boundary, then the tiling is deterministic outside a finite trapezoid: above
the trapezoid we observe only U lozenges, and below there are only U lozenges (such a
trapezoid is also shown in the left panel of Fig. 2).

Repeating the bijection P« P we arrive at a correspondence between paths from
Pn and lozenge tilings of trapezoids.

Let us fix A(IV) € GTx and consider the set Py (A(N)) C Px of all paths between &
and A(N). This is a finite set. Let us equip this set with a uniform probability measure.
We are interested in the asymptotic behavior of random paths distributed according
to this measure. In terms of lozenge tilings, we consider a uniformly random tiling of
a trapezoid of width N with prescribed (deterministic) positions of horizontal lozenges
along the right boundary.

Repeating (3.16) we now define the (random) height function H*™)(y,n) of such
path. As before, in terms of a lozenge tiling, it counts the number of horizontal lozenges
< above a point Ny, Nn. Note that we now have 0 <7 < 1, as the tiling is not defined
outside this range.

As in Section 3.4, the CLT for H*™)(y,n) involves a certain map to the upper half-
plane H. Let us introduce it.

For a probability measure m with compact support on R, we define a map z —
(Ym(2),mm(2)), H— R x R via

(= D(Ep(Cn(E) ~ Dexp(Cu(2)
bm(2) = 2 (O () — b (Cm(2)
(- D) (eD(C(®) — Dexp(Can(2)) — 1)
Thn(2) = 1+ xp(Con(2)) — xp(Cun(2))
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Note that the expressions on the right-hand side of the equations above are invariant
with respect to complex conjugations, 80 ym(2) and ny,(2) are indeed real for any z. Let
Dy C R? be the image of this map. Also set

L—n
t e (Cm(2) =1

Fmin(2) =

Proposition 3.13. a) Assume that m is a probability measure with compact support and
density < 1 with respect to the Lebesgue measure. Then the map z = (ym(2), nm(z)) is
a diffeomorphism between H and Dy C R x [0, 1].

b) This diffeomorphism can be defined in another way. For fixed (y,n) € Rx [0, 1] con-
sider the equation Fm.,(2) = y. Then this equation has either 0 or 1 root in H. Moreover,
there is a root in H if and only if (y,n) € Dm, and if we put into correspondence to the
pair (y,m) € Dy the root from H we obtain the inverse of the map z = (Ym(2), tm(2)).

Proof. This is Theorem 2.1 of [23]. Note that there is a slight difference in notations:
X = Ym + 1 — nm and nm = 1, where (x,n) is a notation from [23]. O

As in Section 3.4 we carry the height function H*N)(y, ) over to H through
Hy(z) = H*™ (ym(2),1m(2)), 2 € H.

As before, we do not lose any information here, as the tiling is frozen outside Dy, and
there are no fluctuations, cf. right panel of Fig. 2, where the lozenge tiling is frozen
outside the circle inscribed into the hexagon.

Define a moment of the random height function as

“+o00
M = / y" (H“N)(y,n) — EH“N)(ym)) dy, 0<n<1, keN.

Also define the corresponding moment of GFF via

dym(2)
dz

n= [ m@rer

zEH;=nm(z)

dz, 0<n<1l, keN.

Theorem 3.14 (Central Limit Theorem for lozenge tilings). Suppose that A(N) € GTy,

N =1,2,..., is a regular sequence of signatures such that
lim m[A(N)] = m, weak convergence, (3.18)
N—oo

and let Hy(2) be the height function for the uniformly random element of Pn(A(N)).
Then

VT (Hy(z) —EHN(2)) —— &(2),  z€H,

N —o0
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Fig. 3. Left panel: Domino tiling of Aztec diamond of size 5 and corresponding particle system. Right
panel: Uniformly random domino tiling of Aztec diamond of size 80. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

. . . AN
in the sense that, as N — oo, the collection of random variables {\/7_rMn(k )}n>0;keZ>o
converges, in the sense of moments, to {M:;,lk}n>0;kezzo-

Remark 3.15. For explicit expressions for the covariance of { M}, ~okezs,, see
Lemma 9.2.

The proof of Theorem 3.14 is given in Section 9.1, and we believe that in this generality
it is new.

The convergence to the Gaussian Free Field for certain lozenge tiling models was
first obtained by Kenyon [37]. Theorem 3.14 is closely related to the result obtained by
Petrov [54]. There are two differences: First, in [54] the convergence is obtained only for
measures m which consist of finitely many segments with density 1. In Theorem 3.14
an arbitrary measure m with compact support is allowed. The second difference is that,
though the limit object is the same, the convergence is proved for different sets of ob-
servables.

3.6. Domino tilings

In this section we switch from the triangular grid to the square grid and replace
lozenges by dominos. Consider an Aztec diamond of size N, which is the side N “saw-
tooth” rhombus drawn on the square grid, as shown in Fig. 3. Following [25], we consider
tilings of this rhombus with vertical and horizontal 2 x 1 dominos. For a positive real q
it is known that

number of horizontal dominos in Q __ N(N+1)/2
> q = (14q)VNFD/2,

Q is a domino tiling of size N Aztec diamond
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Let us pick a random tiling of size N Aztec diamond according to the probability measure
grumber of horizontal dominos . (1 1 q)=N(N+1)/2 A sample from this measure for q = 1 is
shown in the right panel of Fig. 3.

Similarly to Section 3.5, we can identify domino tilings with sequences of signatures,
although the construction is more delicate this time. Coloring the grid in the checker-

board order, we can distinguish four types of dominos: two vertical ones D, D and two
horizontal ones T, 1. We further choose one of the horizontal types and one of the

vertical types; for the sake of being definite let us choose D and 0. We stick to these
two types and put green particles on the gray squares (of the checkerboard coloring) and
yellow particles on the white squares, as shown in the left panel of Fig. 3.

Reading the yellow particle configuration from up-right to down-left, we observe N
slices with 1,2,..., N particles, respectively; a 3-particle slice is shown in Fig. 3. The
particles of the ¢-particle slice have coordinates y; > y? > --- > y!, which we identify
with a signature A(*) € GT, through

yi=2" 4t —i, 1<i<t<N.

We can now define the height function Hy(y,7n) of uniformly random domino tiling of
the size N Aztec diamond through the very same formula (3.16) as before. In terms of
tilings, the height function counts the yellow particles in the down-right direction on the
given diagonal (of fixed n and growing y) from the point (Ny, Nn).

As before we would like to carry the height function to the upper half-plane. For that
we need the following proposition.

Proposition 3.16. For any y € R and n € (0;1] the equation

2(q—ya) +z(mg+n+9-—y(1+q) +n(l+q) =0, (3.19)

has 0 or 1 root in H. It has a root in H if and only if the pair (y,n) lies in the ellipse
inscribed in the Aztec diamond

Da = {(y,n) : (@Hyﬂv—lf) (1+q) <1}

The map Da — H given by this root is a diffeomorphism. We denote by z —
(ya(z),na(2)) the inverse of this map.

This proposition coincides with Lemma 5.1 from [17].
Let us carry Hy(y,n) over to H — define

HAN () = Hy(ya(2),na(2)), 2 € H.

ForO<n<1land k=1,2,..., define a moment of the random height function as
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+oo
MY < [ v ~ BTy ()

— 00

Also define the corresponding moment of GFF via

dya(z)

& dz.

M= [ e

=€Hna (2)=n

Theorem 3.17 (Central Limit Theorem for the domino tilings of the Aztec diamond). Let
HAN(2) be a random function corresponding to the uniformly random domino tiling of
the Aztec diamond in the way described above. Then

VT (HAN (2) = EHAY (2)) —— &(2).
N—oo
In more details, as N — oo the collection of random variables {\/7_7M£1;N}0<77<1;k6220
converges, in the sense of finitely-dimensional distributions, to {Mﬁk}0<n<1;keZgo-

Remark 3.18. For the explicit expression for the covariance of {MUA,C} see (9.16).

Theorem 3.17 was first announced in [17] without technical details. Our proof is given
in Section 9.3. Moreover, Theorem 3.17 can be extended to random domino tilings of
more general domains, as shown in [15].

3.7. Noncolliding random walks

We proceed to our final application. Here the general framework is to study N inde-
pendent identical random walks on Z conditioned to have no collisions with each other.
This model is quite general, as one can start from different random walks, and also the
initial configuration for the conditional process might vary.

Here we stick to three simplest random walks (but it is natural to expect that the
results generalize far beyond that). Let R be one of the following:

o The continuous time Poisson random walk R = R, of intensity v > 0.

o The discrete time Bernoulli random walk R = Rg, where at each moment the particle
can either jump to the right by one with probability 0 < f < 1 or stay put with
probability 1 — 5.

e The discrete time geometric random walk R = R,,, where for a > 0 at each moment
the particle jumps to the right i steps with probability (1 — a)a?, i =0,1,2,....

We now define for each N = 1,2,... the N-dimensional noncolliding process X V%,
We fix an arbitrary initial condition X{'7(0) > --- > XIJ\\,I;R(O), take N independent
identically R-distributed random walks started from points va ;R(O), . ..Xg;R(O) and
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Fig. 4. Four noncolliding Poisson random walks started at configuration (1,4,5,10) and the positions of
walkers at time t = 2.

define XVif(t) as the conditional process given that the trajectories of these random
walks do not intersect (at all times ¢ > 0), cf. Fig. 4. Note that the condition has
probability zero, and so one needs to make sense of it. One way here is to start with
considering distinct ordered speeds (which correspond to the parameters 7, 5 or «),
and then make them all equal through a limit transition. We refer to [50], [39] for the
details of the construction. The result is that X™Vif is a Markov process, which fits
into the formalism of Section 2.3, more specifically, the maps py,n are given by the
multiplication, as in Example 2 of Section 2.4.
Let us identify the points of XVif with a signature A\ through

XN =N+ N (3.20)
In this notation, if R = R, and AV, ... \(") describe XVi(t) at times t; >ty > -+ >
t, = 0, then (in the notations of Example 2 in Section 2.4),

N
gk = exp (—Nv(tk —trr1) + (e — tht) Z:rl> , k=1,...,n—1. (3.21)
i=1

If R = Rg, then (this time ¢; should be integers)

N

ge=JJ(0+B8 —1)* " k=1, 01 (3.22)
i=1

If R = R,, then (again ) are integers)

N 1 th—tr+1
= _ k=1,...,n—1. 3.23
9k H<1—Q($1—1)> ) ) y 1 ( )

i=1

We are in a position to consider the large N-limit of these models. For that assume that
XN:iR(0) is given through (3.20) by a signature A\(N), and as N — oo these signatures
are regular in the sense of Definition 3.1. Let us choose some k times 7, > 5 > -+ >
7% > 0 and consider XVi(t) at t = N7y, N7y,..., N7,. Then using Theorems 8.1, 8.2
for the asymptotic of Schur generating function for A(N), and explicit formulas (3.21),
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(3.22), (3.23) we can use Theorem 2.10 and obtain the Central Limit Theorem for the
global fluctuations of XNV:®(N7),... XV:#(N7y). The fluctuations are asymptotically
Gaussian with covariance given by the double contour integral (2.11). It is plausible that
the covariance structure can be again described in terms of the Gaussian Free Field, as
in Sections 3.4, 3.5, 3.6, but we do not address this question in the present paper.

As far as we know, the CLT for global fluctuations was not addressed before in this
generality. The situation is different for a special case of densely packed initial condition
A(N) = (0V). Then for R = R, the CLT (and identification with the Gaussian Free
Field) was previously addressed in [8] by the technique of determinantal point processes
and in [3], [41] by computations in the universal enveloping algebra of U(N). Further, for
all three cases R = R, Rg, R, (and still A\(N) = (0%)) the CLT for global fluctuations
was established in [21] by employing recurrence relations for orthogonal polynomials.

4. Formula for moments

Our method of proof is based on the fact that given the knowledge of Schur generating
function of a probability measure, one can compute its moments. In order to do this,
one can apply a certain family of differential operators such that the Schur functions are
eigenfunctions of these operators. In more details, it is a straightforward computation
that for a probability measure py on GT with the Schur generating function Sy (%) we
have

=Y Z N+ N=i)* =E> (\i+N—i)k.

=1 AeGT N

o
Il
-

More generally, we have

N
D0)F Y (x; T)Sn(T)

Jj=1

.
Il
i

EH
Mz

N N
E(Z(/\i+Nsz>\+Nz ) (4.1)

and the similar formulas hold for the joint moments of several power sums of coordinates.
Let us address now a general case of Markov chains introduced in Section 2.3. In
Proposition 4.3 below we prove a general formula for moments in this setting. Similar
formulas for Macdonald processes can be found in [6, Section 4].
We will need the following technical lemmas.

Lemma 4.1. Assume that the sum

2 U0 l
Cly,... lelleZ . m]{;” Cly,...,ln c R) (4.2)
l1,...,INEZ
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absolutely converges in an open neighborhood of the N-dimensional torus {(xy,...,2N) :
lz1] = 1,...,|len| = 1}. Let {my,, iy}, ivez be a sequence of reals such that
Imuy,.an] S C (|l1]* + -+ [In]|*), where C is a positive real. Then the sum

11 l
E mllv--wlNcll,-nlexlleQ x]{[\r’
L, INEZ

absolutely converges in an open neighborhood of the N -dimensional torus.

Proof. Let ¢ > 0 be a real number such that the series (4.2) absolutely converges in
{(x1,...,2n) 1 —e <|zy| <14e¢,i=1,...,N}. Consider a series

ST enanll et Lt 1 e, (4.3)

l1,...,INEZ signs

where the sum over signs contains 2%V terms corresponding to different choices of signs

in + inside the arguments. Note that this series is convergent. Assume that [y, ..., [ are
positive, and l441,...,Iy are negative. Then
1+ 5)“ L1+ 5)15(1 — 5)15“ (1= g)lN > |g[:1|l1 |:c2|l2 e |a:N|lN. (4.4)

Since for any /;’s there is a term of the form (4.4) in the summation (4.3), we obtain
that there exists D > 1 such that the series

Ly ||l
> eny oy [P
l1,..,INEZ

is convergent. This implies the statement of the lemma. O

Lemma 4.2. Assume that the series

E easa(@y, ..., oN), cx € Ry,

ANeGT N
absolutely converges in an open neighborhood of the N-dimensional torus {(xy,...,xN) :
1] = 1,...,Jen| = 1}. Let {ma}recry be a sequence of reals such that |my| <

C(IM|"+ -+ |An|*¥), where A= (M, ..., An) and C is a positive real. Then the sum

E mxcxsx(21,...,N), ey € Ry
AEGT N

absolutely converges in an open neighborhood of the N -dimensional torus.
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Proof. Set
f(x1,...,zN) = Z exsa(z1, ..., xN), ex € Rxo.
AEGTN
Then f(z1,...,zy) is an analytic symmetric function in a neighborhood of the
N-dimensional torus. Therefore, f(z1,...,2n5) [[1<;<j<n (i — 7;) is an analytic anti-

symmetric function and can be written as an absolutely convergent sum of monomials:

f(%l,...,ZL‘N) H (.’Ei—l‘j): Z Cll’m)lNJ}lll...xl]{[V.

1<i<j<N l1,....INEZ

Due to antisymmetry we can consider only terms with [y > [y > --- > Iy. Then
Lemma 4.1 shows that the sum

! In
E M1 —N41,la—N+2,...,In)Cla,einTL - TN

11> >INEZL

is absolutely convergent in some neighborhood of the N-dimensional torus. Multiplying
this series by the inverse of the Vandermond determinant, we obtain that the desired
series

Z macasa(z1, ..., zn), (4.5)
AEGTN

absolutely converges in the region [[;_;(z; —x;) > d for any 6 > 0. Since the series (4.5)

consists of analytic functions, the use of the Cauchy integral formula gives the absolute
convergence in a neighborhood of the torus. 0O

For a positive integers m,n set

Dy = H iixj (Z (xiai)m> H (zi — ;).

- X
1<i<j<n

i=1 1<i<j<n
Proposition 4.3. In notations of Section 2.3 let mq,...,my be positive integers, let
N1,y Ny Prgmgs s Prgone_y € as in Section 2.3, and let p be a probability measure

on GT,, with the Schur generating function S, € A" . Assume that (/\(1), oA s
distributed according to (2.3). Then

Dgr?ll)pnmnlpir?;)pnsynz e pnk,nk,IID%L:)Sp(Il, e 7Ink)

=1
ni n2 Nk
=E <Z ()\Z(-l) +ng —ip)™ Z ()\52) +ng —ig)™? - Z (/\Ek) +ny — Zk)m"> , (4.6)
=1 =1 in=1

where in the left-hand side we set to 1 all variables after applying all differential operators.
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Proof. We will prove this proposition for & = 2; the proof for general k is analogous. We

have
(n2) (2) _ A (@1, ny) . \ma
D2 Sp(x1, .. Tpy) = Z Prob(A )\)W Z (Niy + 12 —12)".
AEGT, A i=1

Lemma 4.2 shows that this sum is absolutely convergent in an open neighborhood of
the no-dimensional torus, and, therefore, belongs to A™2.
Thus, one can apply P, n, and obtain

"1)pn27n1D("z)S (T1,. .y Tny)

n2
— Dggll) Z Prob()\(Q) — A) Z cl;:ﬁ,nl SM-(ZM(']:T;;)ITH) Z (Alz + g — Z-Z)WLQ
AEGT,, WEGT,, ® =1
$(2T1, . Tny) <
- Z Z Prob(A™ = A)e pnﬁ m 2l (1m) 2 Z()\(l) +ny —iy)™
AEGT, nEGT,, S i1=1

no mo
X Z ()\522) + ng — ig) .
i0=1

Plugging (x1,...,2,,) = (1™) and using (2.3) we obtain the statement of the proposi-
tion. O

Therefore, our goal is to compute the asymptotics of the expressions in the left-hand
side of (4.1) and (4.6). This computation is the content of Sections 5, 6, 7.

5. Technical lemmas
This section contains the technical ingredients for the proofs of our main theorems.
5.1. Preliminary definitions and lemmas

For any N > 1 let Fiy(Z) be a function of N variables Z. For an integer D we will say
that a sequence of analytic complex functions {Fn (Z)}%_, has an N-degree at most D

if for any s > 0 (not depending on N) and any indices iy, ...,is we have
1 S
]\}E)noo ND 81'1 ...8i5FN(.T)|f:1 :ci17---,0i57 (51)
for some constants ¢;, .. ;.. In particular, the limit
dm 5 Fn (&)

should exist (this corresponds to s = 0).
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Similarly, we will say that a sequence of analytic complex functions {Fx(Z)}3_; has
N-degree less than D if for any s > 0 (not depending on N) and any indices 41, ...,4s
we have

1

Our main source of such functions is the following lemma.

Lemma 5.1. Assume that for D € N, a sequence of functions {Fn(Z)}_, satisfies the
following condition: For any k € N there exists € = (k) > 0 such that

: 1 N—k
J\}E}IIOOWFN<$17...,$]€71 ) =G(z1,...,28),
where G(z1,...,xx) is an analytic function in the neighborhood of (x1,...,x1) = (1%),
and the convergence is uniform in the region |x; — 1| < e, i = 1,2,...,k. Then

{Fn(Z)}%_, has a N-degree at most D. If the function G(x1,...,xx) equals 0, then
{Fn (%)}~ has a N-degree less than D.

Proof. Let iy,...,is be indices from (5.1). For computing the expression 9, ... 0; Fn(Z)
we can set to 1 all variables x; such that ¢ > max(iy,...,is) prior to the differentiation.
After this, let us recall that the uniform convergence of complex analytic functions implies

. 1 _
ngnoo Wa“ ST 3,*3FN($1, ey Ty 1N k) = 61 . 8,»3((}(331, ... ,J?k). O

Let F](Vl)(f) have N-degree at most Dj, and let FJ(\?)(f) have N-degree at most Ds.
Then it is easy to see that for any index i the function 9; F’ ](Vl ) (Z) has N-degree at most Dy,
Fj(vl)(f) + FJ(\,Q)(J?) has N-degree at most max (D1, D), and FJ(Vl)(f)FJ(VQ) (Z) has N-degree
at most Dy + Ds.

Lemma 5.2. Assume that for each N =1,2,..., Fn(Z) is a symmetric analytic function
in an open neighborhood of (1V). Then for any indices ay,...,aqz+1 the function

( Fy(7) )
A2ntan (xal - xa'z) s (:L'al - maq+l)

is analytic in a (possibly smaller) open neighborhood of 1V . If {Fx(Z)} has N-degree at
most D (less than D), then the sequence (5.2) has N-degree at most D (less than D).

Syme,

(5.2)

Proof. [13, Lemma 5.4] implies the first claim.
We need to prove that for any indices i1, ..., the limit

lim 0y ...0i,SyMq, as,..

Fiv (@) > (5.3)

Pt ((mal - 1’a2) s (mal - xaq+l)
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has the same N-degree as the function Fly. Note that we can immediately specialize to 1
all variables except for x;,,...,%; , Ta,,--.,Ta,,, - After this, we deal with a statement
about the functions with finite (not depending on N) number of variables.

Any coefficient of Taylor expansion of (5.2) can be written as a finite (not depending
on N) combination of the Taylor coefficients of the function Fy. Indeed, it was shown in
the proof of Lemma 5.4 of [13] (see formula (5.4)) that the Taylor coefficient of Fy of the
term of N-degree M from can contribute to the Taylor coefficients of (5.2) of N-degree
dwith M — (q+s+1)2<d < M+ (q+s+1)% where q + s appears because this is the
number of variables which were not immediately set to 1.

Therefore, the N-degree of (5.3) is at most that of Fy. O

Let F(z) be a complex analytic function of one variable at the neighborhood of the
unity. Let us introduce the notation for the coefficients in its Taylor expansion

F(z)=ag+a(z—1)+ag(z— 1?4+ - +a,(z—1)"+....
Lemma 5.3. For a function F(x) and positive integer r we have

1 a
= —0F =T
s (r+DT (z) aq T+l

F(z1) >

x1 —x2)...(T1 — Try1)

SYyma, ... arin <(
Proof. This is Lemma 5.5 in [13]. O

Lemma 5.4. We have

. F(z1) F(r2)
$2,.--%1r+1—>1 ((Z‘l - Ig)(l’l - 13) e (171 - $T+1) + (1‘2 - Il)(IQ — Ig) e (CCQ — Ir+1)
Pl
T G — o) @ — ) - (@1 — m)
F(l‘l) —ag — al(xl — 1) — = ar_l(acl — l)r_l

- e . (5.4)

Note that we do not set the value of the variable x1 in the left-hand side.

Proof. In the left-hand side of (5.4) the first term has a limit as za,..., 2,41 — 1, and
the sum of other terms has a limit by Lemma 5.3 applied to the function F(z)/(x —z1).
We obtain that the left-hand side of (5.4) equals

Flz1) 1 5 [M]

(-1 (r—117" T — T

=1
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_ _F) Z < - 1) o5 [F(2)] (-1)" " *(r — 1 k)!

(1) =\ k (x —xp)r—1-F et

_ F(r) —ag—aj(z1 —1) —---—a,_1(x1 — 1)1t
= (xl — 1)7" . O

5.2. Expectation-contributing terms

Let us introduce notations which we will use in the rest of Section 5. Let p = {pn} be
an appropriate sequence of measures on GT with the Schur generating function Sy =
Spn (z1, ...,z N), and limiting functions F,(x), G,(z,y), and Q,(z,y) (see Definition 2.6).
In this section we will analyze expressions which eventually contribute to the leading
order of the expectation of the moments of the measure py.

For an integer [ > 0 let us introduce the notation

8
\_/
—

o

(@28
S—

N
Foy (@) = Z T)Sn (

i=1

Lemma 5.5. The following statements hold:
a) The functions F(;y(Z) have N-degree at most [+ 1.
b) For any index i the functions 0;F (%) have N-degree at most I.
c) For any indices i # j the functions 0;0;F (%) have N-degree less than I.

Proof. Since Sy (1)

= 1, the function log Sy is well-defined in a neighborhood of (1%V)
and we can rewrite (5.5) in the following form:

N

1
Ve Z (2:0;)' Vi exp(log S ).
i=1

f(l)(itl, ce ,IN) =

We will write the result of the application of the differential operator 9; to exp(log Sy)
in the form

0;Sn = 0; exp(log Sy) = 9;[log Sy] exp(log Sn). (5.6)

After the application of all differential operators in (5.5) in this fashion we can cancel
Sy in the numerator and the denominator and write F(;) (%) as a large sum of factors of

the form
coxt =0 (97 log Sn])™ ... (9* [log Sn])% (5.7)
(i — Tay) - (T — T4, ’
where ¢, a4, ..., a, are distinct indices, {s;} and {d;} are nonnegative integers such that

81 < 89 < -+- < 8¢ and
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T+ 80+ s1d1 + -+ sedy =, (5.8)

and co depends on r,{s;},{d;}, but does not depend on N or as,...,a,. Since the
operator va:l(xiai)l is symmetric, all terms obtained from (5.7) by permuting variables

Ti,Tay,- -, Tq, are present in our sums. Therefore, F;)(Z) can be represented as a sum

T

Fo@= > @+
Tv{sj}f{dj}

=50 (951 log Sy])% ... (0% [log Sn])*
X Z Symal,u.,awrl (cowal (al[og N]) (al[Og N]) )7 (59)

{a1,...;ars1}C[N] (xal - va) s (xal - xar+1)

where the first sum is subject to (5.8), and we omitted the dependence of ¢y on
r{s;},{d;}.

Let us now prove three 3 statements of Lemma 5.5.

a) First, let us consider the asymptotics of the expression

cozl%0 (95 log Sn])4 ... (35 [log Sn])% )

(mal - .’Ea2> cee (xal - xa'r'+1)

Syma17~»-,¢lr+1 (

F=1

Note that each factor (831 [log S N])d1 has N-degree at most d;, since py is an appropriate
sequence. Therefore, Lemma 5.2 and equality (5.8) imply that this function has N-degree
I — r at most. The expression

cory; * (05! log Sn])™ ... (95! [log Sn])*
Z Symah..»,ar-u 1 1 1

{a1,.csars1}C[N] (xal - xaz) cee (xal - xa'r'+1)

=1
contains O(N"*1) terms of this form; therefore, it has N-degree at most N'*1.
b) We are interested in the asymptotics of the expression
I=s0(931[log Sy])% ... (02 [log Sn])%
o0 Y Symen (x (0 o ). 05 o )
(a1, ar 1 }CIN] Pa — Faz) - \War ~ Farp =1
5.10)
Let us consider two cases.
bl) First, consider a term
I=s0 (951 Moe Sn 19 ... (95t [log Sal)%
cox o o}
81' Syma17..<7ar+1 Lt ( al[ g N]) ( al[ & N]) (511)
(‘ral - ‘ra‘z) cee (xth - xar+1) F=1
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with i ¢ {ai,...,a,41}. Note that there are O(N""1) such terms. We need to apply the
operator 0; to one of the factors 9,7 log Sy, because only these factors depend on z; in
this case. Note that

9;(037 log Sn )™ = dg (929 [log Sn])10; [057 log Sn ]
has N-degree at most d, — 1. Assume that the operator d; is applied to (95! [log Sn])™
(other cases can be considered analogously). Then the expression can be written as a
sum of terms of the form

<coxfhs°6¢ (921 [log SN])™] ... (92 [log sN])dt>

(xal - ‘raz) s ('Tal - -/I:a,,,Jrl)

=1

Lemma 5.2 asserts that this sum has N-degree at most (dy —1)4+da+ds+- - - +d;. Recall
that r + sg + s1dy + -+ - + s¢dy = I. We see that the maximum of N-degree is achieved
att=1,80=0, s =1,dy =1—r. It follows that the expression (5.11) has N-degree
at most [ —r — 1. Taking into account that there are O(N"*1) terms of such a form, we
obtain that the sum has N-degree at most I.

b2) Now let us consider the term of the form (5.11) with i € {a1,...,a,41}. Since ¢
is fixed, there are O(N") terms of such form. Note that since the function

coxfljs" (031 [log S ... (05t [log Sn])% )

(xch - 'raz) s (xal - xar+1)

Syma1>m,ar+1 (

r=1

has N-degree at most [ — r, then its derivative also has degree at most | — r. Therefore,
the sum of all terms of such a form has N-degree at most [, which concludes the proof
of the claim b).

¢) We are interested in the asymptotics of the expression

[=s0 (951 log Sy])% ... (0% [log Sn])%
azaj Z Symal,.“,arﬂ <Coxal ( al[og N]) ( al[og N]) >

{a1,sars1}C[N] (xal _xa2)"'(xa1 _xar+1)

=1

(5.12)

Again, let us consider several cases related to whether indices i and j are from
{a1,...,ar41} or not.

c1) If both indices i and j are outside of {aq,...,a-+1}, and both differentiations 0;
and 0; are applied to same logSy. Since 9,0;0;log Sy has N-degree less than 0, the
same considerations as in the case bl) imply the statement of proposition.

¢2) If both indices are outside of {ay,...,a-4+1}, and these differentiations are applied
to different 9, [log Sn]. It is easy to see that in this case all terms have N-degree at
most | — 1 which is even stronger than we need.



746 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702-781

c3) If i € {a1,...,a,41} and j is outside of this set, then we lose one degree of N
in the summation over sets of indices and another degree when we differentiate log Sy .
Therefore, all these terms have N-degree at most [ — 1, what is stronger than we need.

cd) If i,5 € {a1,...,ar41}, then we lose two degrees in the summation over sets of
indices. Again, all such terms give contribution N-degree [ — 1 at most. This concludes
the proof of the lemma. 0O

Remark 5.6. Note that we have

0 F (%) = 0; lzl: (i) (r+1)!

r=0

xle (aal [log SN])lir

(Tay = Zay) -+ (Tay — Tay iy

X > Symal,‘..,am( )> +Ty(@), (5.13)

{(Ll,...,ar+1}C[N]

where the function T(l) (Z) has N-degree less than [. Indeed, the proof of Lemma 5.5 shows
that the highest N-degree is obtained in the case sy =1, d; +7r =1, so =s3=---=0.
A coefficient (f,) appears because we need to apply I — r differentiations to exp(log(Sy))
and r differentiations to V.

5.8. Covariance-contributing terms
For positive integers [1, 2 let us define one more function by

-1
G112 () wZ(% ) >+
r=0

{a1,..,ar41}C[N]

xflllaal []:(12)] (aal [log SNDl1717T

(xm - xa?) s (‘ral - xar+1)

X Symal,...,arﬂ (514)

The meaning of this function is given by the next lemma; essentially, this lemma
describes the covariance in our probability models.

Lemma 5.7. For any positive integers l1,ls we have

N N
1 S S o
VNS Z(xilail)ll Z(%ﬁ@)b [VNSN] = Fu) (%) Fy) (Z) + G, 1) () +T(Z), (5.15)
=1 i1

where G, 1,)(Z) has N-degree at most Iy + Iz, and T(&) has N-degree less than Iy + ly.
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Proof. The left-hand side of (5.15) can be written as

N
> (@i,0i)" [V SnFua ()] -

i1=1

1
VN SN

Applying differentiations 9;, with the use of (5.6), we can rewrite it as the sum of terms

of the form
_ d d
s om0 [Fu] (95 los S])" .. (95 log S "
Gt (Tay, — Tayp) -+ - (Ta, — xar+1) ’
for nonnegative integers r, sg, 1, ..., St, do, ..., ds, such that s < s3 < --- < s; and

So+ 81+ Seda+ -+ sedy +17 =14 (5.16)

From terms with s; = 0 we obtain F'F;,(Z)F(,)(Z). Let us deal with other terms.

Let us estimate N-degree of all terms with fixed collection of numbers r, sg, s1, ..., ¢,
ds,...,d;. Lemma 5.5 asserts that 8;2 [}"(12)] has N-degree at most Iy since s; > 1.
Therefore, the total N-degree of these terms is at most lo +do + - +di + (r + 1) (as
usual, we apply Lemma 5.2 here). Given (5.16) and s; > 1, it is clear that this number
is maximal for s = 0, s1 = 1, s = 1, do = I3 — 1 — r; for this choice of parameters
our sum of terms has N-degree at most [; + I, and for all other terms the expression
lo+do+---+d+ (r+1) is smaller and the total contribution of all other terms have
N-degree less than [y + Is.

The terms with s =0, s;1 = 1, s = 1, do =13 — 1 — r are exactly those which are
present in the expression (5.14). O

Lemma 5.8. The function G, 1,)(%) has N-degree at most Iy + lz. For any index i the
function 0;G, 1,)(Z) has N-degree less than Iy + l3.

Proof. The first statement was proven in the previous lemma. We know that G, ;,)(%)
is the sum of terms

28, Oay [Fiuz)] (Oa log Sy])" 7'

(xal - xaz) cee (xal - xar+1)

SYMay.....ap1 ,
over r =0,1,...,0l1 — 1, and all sets {a1,...,a,41} C{1,...,N}. When we differentiate
the sum of these terms by 9;, we need to consider two cases. First, the terms with ¢ inside
{a1,...,a,4+1} has N-degree at most l; + 13 — 1, because the index i is fixed and the total
number of terms has smaller order in N. Second, if ¢ is outside of {ay,...,a,41}, then 9;
should be applied to 0, [Fi,)] or da, [log Sn]. By Lemma 5.5 0;04, [F(i,)] has N-degree
less than Iy, and our conditions on log Sy imply that 0;0,, [log Sy] has N-degree less
than 1. Therefore, for these terms the N-degree also decreases due to this differentiation;
we obtain that the total N-degree of the expression is less than [; + 1. O
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Remark 5.9. The proof of Lemma 5.7 shows that

N

mll ; (2:0; [Fup)(@)]) @:0)" ™ [Vr(@) SN (D)] = Gty 1) (F) + Tty 412 (),

where T(l +1,)(Z) has N-degree less than [y + 5.
5.4. Product of several moments

For a positive integer s and a subset {ji,...,j,} € [s] we denote by Ps .j, the

set of all pairings of the set {1,2,...,s}\{Jj1,...,Jp}. In particular, this set is empty
if {1,2,...,s}\{j1,...,Jp} has odd number of elements. We will also need the notation

2; . - . . ..
’lef___,jp which stands for the set of all pairings of {2,...,s}\{j1,...,Jp}. For a pairing

P we denote by [] p the product over all pairs (a,b) from this pairing.

(a,b)e
Proposition 5.10. For any positive integer s and any positive integers ly,...,ls we have
1 N N N
ls
VnSn ZZ:l 'rll 1 Z_: ng 12 Zz_:l(xlsals) [VNSN]
1= - s

- Z Z ‘F(ln)(f) e ‘F(l.]p)(f) Z H g(la:lb) ]17 ] (f) s

p=0 {j1,....jp }€ls] PEP;, ., (ab)eP

where lel;s . (&) has N-degree less than 355 1 1 — 3271 1j;.

Proof. We will prove this statement by induction over s. For s = 1 the statement follows
from definition (5.5). For s = 2 it follows from Lemma 5.7. Assume that we already
proved it for s — 1. Let us apply the operators Zg:l(:ciﬁis)ls, ey Zg:l(:cizé‘@)b, and
use the induction assumption. We need to analyze the expression

N s—1
1 - -
T (Z%@n)“) VNS Y Y Fun@) .. Fy,) (&)

p=0 {j1,....7p }€[2;5]

x Z H Glkaen) ( Tzs jp(f) )

PEP [2;s] i (a b)eP

for any choice of the set of indices Joiq := {j1,---,7dp} C [2;s]. Note that an induction
has N-degree less than Y7_, [;—>"%_, I;.. Let us consider
several cases to analyze all arlsing terms.

hypothesis asserts that T
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1) All differentiations 9;, are applied to Vy Sy or a;, from (x;,0;,)"*. By definition,
these terms give rise to the function F(; ). The terms obtained in this way have the
required form with the set of indices Jyeq := Joia U {1}.

2) One differentiation 9;, is applied to the function F;  for some w, and all other

differentiations 0;, are applied to Vi Sn. Using Remark 5.9, we see that these terms
have the required form with Jye. := Joia\{w} and the arising function G, () in
the product of the pairings.

3) Consider all other terms. We will show that they do not contribute to the leading
order. We fix the set {j1,...,Jp} C [2;s]. Let us define the function

Hj,.. 5, (%) = > 11 g(la,zb)(f)+Tj‘2ff“,jp(f)

_ (a,b)eP
Jp

.....

From Lemma 5.8 it follows that H := H'jl’,__,jp (Z) has N-degree at most »;_,1

P .1, but for any index a the function d,H has a N-degree less than Y5 1

p .
=1 ljp N
We analyze the expression

i —
i —

N
1 = —N\ T7 —
. (Z(zil&l)ll> VN SNF (i) (@) ... Fiy ) (D) H ().

i1=1

As before, we can write the result of the application of our differential operator as a
sum of terms of the form

k170 (031 Nog Sw)™ .. (931 Nlog Sw))™ Ot [Far,y» | -0l | Fi, )| 0l [H(@))

(mal - zaz) cee (zlh - xar+1)

Syma, ..

0r41

Since (321 [log SN])d1 ... (82 [log SN])dt has N-degree at most dy + do + - - + dy, it is
easy to see that the highest N-degree terms are present in the expression

21, (D, [10g SN 041 | Fir | - 081 | For, )| 00 [7(@)

(xal - maz) cee (xal - xar+l)

SYyMay,....ar 41 , (5.18)

di+fi+- o+ fotho+r=1l. (5.19)

Let us estimate the N-degree of this expression for fixed di, fi,..., fp, ho, .
Let B be the set of indices ¢ € {1,...,p} such that f; = 0. Then this term is the
product of [],. 5 F1,) and a certain symmetric function. Our goal is to show that the

N-degree of this symmetric function can be estimated as less than Y 7, l; — Y ienli
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with the exception of cases 1) and 2) considered above, which means that this symmetric
function is a part of T5(Z).

The function 9y, [logS N]d1 has N-degree at most d;. The summation over indices
contributes the N-degree r+ 1. If f; # 0, then 8{:; [‘F(ln)} has N-degree at most [;,. This
and (5.19) means that if two different f; are not equal to 0, then the result has N-degree
at most Zle li = ;epli — 1. However, if hq is greater than 0, then we obtain the total
N-degree less than >, l; — >, 5 li. Therefore, if the term (5.18) contributes to the
degree Y7 1 I; — > ;. li, then hg = 0 and only one of the indices f; can be equal to non
zero. This leaves out only two possibilities: if all f; are equal to 0, then we are in the
case 1) considered above, and if one of f; is not equal to 0, then we are in the case 2)
considered above. This concludes the proof of the proposition. O

5.5. Gaussian behavior

For a positive integer [ let us set:

N

Z(xiai)lvNSN

i=1

L= Foy (1Y) =

5.20
T (5.20)

=1

This is the expectation of the [th moment of the probability measure with the Schur
generating function Sy .

Lemma 5.11. For any positive integer s and any positive integers ly,...,ls we have

1 ol N
VSN (Z(xh&;l)ll — El1> (Z(l.bai(z)lz . E12>

i1=1 ia=1

= > Il %w.w@ +Tw(f)\f=1,

=1 PG’PQ (a,b)eP

N
X ... (Z(xisﬁis)ls _ Els> VnSN

is=1

where Ty(&) has N-degree less than > ;_, 1

Proof. We use (5.17) to compute (5.21), and our goal is to show that the appearance
of Ey,’s cancels out all terms from the right-hand side of (5.17) with the non-empty set
J = {j1,J2,--.,Jp}, and the right-hand side of (5.21) comes from the term with the
empty set J.

We use the following notation: Let {ai,...,a,} be a subset of [s]; we denote by
{b1,...,bs—y} the complimentary subset such that {ai,...,a,} U {b1,...,bs—} = [s].
Analogously, for {j1,...,jp} C {b1,...,bs—w} we denote by {ki1,...,ks—w—p} the com-
plementary subset such that {j1,...,5p} U{k1, .., ks—w—p} = {b1,. -, bs—w}-
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Proposition 5.10 yields

N N N

1
Vv S Z (xibl 8ib1 )lbl Z ($i526ib2>lb2 e Z (xibsiw aibb,,,w)lbsiw‘/NSN
NON G = iby=1 iy, =1
= > Fiay) @) - F, ) (@) Ary, by (5:22)

p=0 {Jla 7JP}C{b17~~~:bs—w}

where

L b11-~7b —w (2.
Ak b P Z H gla,lb) ..... jps “(@);

we use an additional superscript here (in comparison with Proposition 5.10) because
we apply Proposition 5.10 to a different set of indices. Note that Ay, . x,_,_, does not
depend on the choice of {ji,...,j,}: It depends on {k1, ..., ks—y—p} only.

Opening the parenthesis in the left-hand side of (5.21), we write it as

1
-)YE, E, ...E
S U E By B g

{alﬂ'“va’lU}G[s]

N N N
X Z (zibl aibl )lbl Z (xb‘lz aibz )lbz T Z (xibs—w aibs—w )leﬂU VNSN (523)
iy, =1 ipy =1 ib, =1 s

Applying (5.22) and substituting & = (1V), we see that (5.23) turns into the sum of
terms of the form

(=1)“Emy By - By Ak ks, (1Y), (5.24)
where {my, ma, ..., Myipt={a1,az2,..., 0, }{j1,J2, ..., dp}, and {mq,ma, ..., Myip U
{k1, ..., ks—w—p} = [s]- The summation goes over all possible choices of {a1,as,...,ay}

and {jl,jg, . 7jp}-

Let us fix the set {Mi,...,Mw} = {m1,ma,...,Myyp}. Note that the same term
(5.24) can be obtained for all possible choices of a’s and j’s such that the union of these
sets of indices is {Mi,..., My }; the only difference is the sign (—1)*. Collecting all
terms of this form, we see that the total coefficient is

(VOV) - (Vf) g (et (g)

which is always 0 unless W = 0. Therefore, the only term which survives all cancellations
in (5.23) is the term with w = 0 and p = 0 which in combination with Proposition 5.10
implies Lemma 5.11. O
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Proposition 5.12. Let py be an appropriate sequence of measures on GTy, N =1,2,....
Recall that Fy is defined in (5.5), Gy is defined in (5.14), [, pyep for P € Py is
defined in the beginning of Section 5.4, and E; is defined in (5.20). Then for any positive
integer s and any positive integers ly,...,ls we have

N N
1 1 Il l2
N S Vs (Z(xiﬁil) —Eh> (Z(mia%) —Elz>

11=1 ig=1

_ngnooNlﬁ s Z H Gt (&

=1 PePj (a,b)eP

N
X ... (Z(misﬁis)“ — El5> VNSN

is=1

Proof. Passing to the limit in the equation (5.21) and using the definition of the N-degree
of a function, we obtain from Lemma 5.11 the statement of the proposition. O

6. Computation of covariance

In this section we will compute the covariance in the setting of Theorems 2.8, 2.9,
2.10, 2.11.

6.1. Covariance for extreme characters

In this section we compute the covariance in the setting of Theorem 2.8 for a special
class of Schur generating functions (see equation (6.9) below). All computations of this
section will be extensively used in the proof of the general result as well.

Let F(z) be a complex analytic function in a neighborhood of the unity, and let

2 F(z) " = aO + a1 (x—=1)4---Fa (@ -1)"+.... (6.1)
be the Taylor expansion of 2! F(x)!"" at z = 1.

Lemma 6.1. Assume that x # 0 is a complex number. With the above notations, we have
T

ii(J L ie r:% ?{ xiy<l+$+(1+y)F(l+y))ldy, (6.2)

r=0 i=0

ly|=e

where € < min(1, |z|).

Proof. The Cauchy integral formula yields

1 1 'F1 b=r
alr = L 1+y) Fl+y) dy.
2mi yitl
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Substituting this into the left-hand side of (6.2) and using the equalities

r—1 i —r

Z LA 1—2"y
i+l )

i—0 Y y—=

and

5 () are e - (v sman) - (e

we arrive at the formula

S (- f 2

S <(<1+y>F< +y>+1ﬂ) (1+§+<1+y>F<1+y>)l>.

Note that the first term in the right-hand side has no pole inside |y| < € and, therefore,

is equal to 0, while the second term coincides with the right-hand side of (6.2). O

Let Fy(x), Fa(x) be analytic complex functions in a neighborhood of the unity. Let
ai’fz] we denote the coefficients determined by (6.1) with F(x) = Fy(x). Let us define
the functions

-r lLr Lr r—
' Fy(x) ™" —ay 2]~ a1 2 (r—=1)—--—a’, 2 (x—1)"1

Bi,(z) = ’ T ’ . (6.3)

F1(2) = % P14 2R +2),  Fals) = % P14 (14 2)B(1 + 2).

Lemma 6.2. With the above notations, we have

k—1 1 l k—1 1 (o b1

k;;@‘)( q >(q+1)!af («"Fi(2) By () -~
_ ; . k w l# i
o b RO e, 60

|z|=€ |w|=2¢

where the contours of integration are counter-clockwise and € < 1.

Proof. By the Cauchy integral formula we have

o9 (:ckFl (x)kilqul’J.(m)) \

Y pIETTIESI,

z=1 " 2ri zat1

|z|=e
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Therefore, the left-hand side of (6.4) can be written as

g: (i) % ]{ (1+2)fF(1+2)"B] (14 %) kf (k ; 1) T 1)F1(11+Z)q+12q+1dz

= |z|=€ 7=0
(6.5)
The binomial theorem gives
’“il -1\ (R(+2) )™ +R0+2) )" 1 (©6)
q g+1 N k E '

q=0

Plugging this expression into (6.5) and observing that the term with —1/k gives zero
contribution (because (1 + 2)*F;(1 + z)kB{7T(1 + z) does not have a pole at zero), we
obtain that the left-hand side of (6.4) equals

l
o 7{81 kZ(r)Bl’7T(1+z)dz.

|2]=e r=0

The definition (6.3) implies that

(et $ () S ()

r=0 r= r=0 i=0

The binomial theorem and Lemma 6.1 allows to rewrite this expression in the form

1 1
O el e (A

lw|=e/2

Therefore, the left-hand side of (6.4) can be expressed as a sum of two terms

o jlé Si(z [§2(2)'] dz — % % $1(2)"70; L_l

|z]=e |z|=€ |w|=€/2

a0 @)

Note that the second term in (6.7) equals

dzdw
(z —w)*

F1(2)"Fa(w)!

(6.8)

Let us move the contour |w| = €/2 to the contour |w| = 2¢ in (6.8). In the process we
get the residue at z = w which cancels with the first term from (6.7).
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Thus, the left-hand side of (6.4) equals

1

zZ—w

(2ri)2 Qi [

|z|=€ |w|=2¢

32(“’)1

1
(2ri)?

El(z)kgg(w)l dzdw,

b
(2 —w)?

|z|=€ |w|=2€

which concludes the proof. O

We now consider a special case of Theorem 2.8. Let p = {pn} be a sequence of
probability measures, where py is a probability measure on GTy, and let {c;}r>1 be
reals such that the function

e’} c .
F(z) = kz 7 _’“1)! (x — 1)k

=1

is well defined in a neighborhood of unity. We assume that the Schur generating function
Sn(Z) := S, (Z) has the form

i=1

N
Sy (Z) = exp <N > FN(:@)> , (6.9)
where {Fy(z)}n>1 is a sequence of holomorphic functions such that
lim 0% Fy(z) = cy, for any k € N.
N —o00

Clearly, such a Schur generating function is appropriate in the sense of Section 2.2 with

Fp(CC) = F(.’E), Gﬂ(xay) =0, and Q(x,y) = ﬁ

Proposition 6.3. Under the assumptions and in the notations of Theorem 2.8 and addi-
tional assumption (6.9), we have

N) (N
~ cov (pl(C )’pz< )) ) -
1\/12,}100 T NkHL T ]{ f §(2)"F(w) mdzdw,

|z|=€ |w|=2¢
where F(z) := i +14+ (1 +2)F(1+2).

Proof. We denote by ~ the equality of highest N-degree.
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As explained in Section 4, we have

E (p,iN)pgN ) =

1 N N
V@ 200" 2 (@ SN ()

i=1 j=1 F=1

R N N
T Wn(@) > (@0 (= T) exp <NZFN T; ) . (6.10)

i=1 j=1 i=1

Therefore, Lemma 5.7 implies that

(N) (N)
cov (py s, 1N
lim ( ) = lim —g(k’l)( )

N—o00 NkJrl o N—oo NkJrl (611)

Let us compute the right-hand side of this formula. By definition (5.14),

1‘518@] [*F(l)] (aal [IOgSN])k_l_q

{al o +1}C[N] (wal _ajaz) (xal _'Z'aq+l)
3o g =

I
iiNg
(]

k—1
( )(q + 1) Syma, ... agi

=1
kol k k—1—q
k—1 T, (0q, [log Sy
~k Z ( )(q + 1) Syma, ... agi @ —(x )[ @ ])_ . )
=0 {a1,...,aq4+1}C[N] q a1 az/ - \ray Ag+1
l L (04, log Sk
XDy, Z Z (l>(r +1)! Symbl,...,bm( mil ( b)1 [ng N]z )
=0 {b1,....b,4+1}C[N] r Thy Tyy) .- \Thy Ty, yq e
(6.12)

The right-hand side of the approximate equality in (6.12) contains only leading terms
from 0, [F(l)} , see (5.13); it is proven by following the same arguments as in Section 5.2.

Now we will use the special form (6.9) of our function Sy. In this case we see that
Oa, [log Sy] = NF(z,,). Therefore,

b1 k k—1—qnTk—1—
k—1 Tay F'(2a,)" INTTTTE
o) a 1)! “——
(6 ) k Z Z < q > <q + ) SymalW"aQJrl (xal - xag) e (‘Tal - maq-%—l)

q=0 {alv"'7QQ+1}C[N]

! l l—r prl—7
! z, F(xp, ) ""N
% Oay Z Z (r) (r+ 1! Symyp, b,y b !

F=0 {bi,...sbr 11 }CIN] (@01 = @oa) - (To1 = Lo,

=1

(6.13)

Let us analyze this expression for different a’s and b’s. Note that we must have a; €
{b1,...,b,} in order to get a non-zero contribution. Also we see that if [{a1,...,aq+1} N
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{b1,...,bs}| > 2, then the total N-degree is not greater than (k—1—¢)+(—r)+(qg+1)+
(r+1)—2=k+0—1(k—1—qand!—r come from the power of N, g+ 1, r+ 1, and —2
come from the summation over sets of indices); therefore, these terms do not contribute
to the N-degree k+I. We obtain that only terms with {a1, ..., aq+1}N{b1,...,b-} = {a1}
contribute to the limit.

For these terms we use Lemma 5.4 for the symmetrization over b’s and obtain:

k—1
(6.13) & NFFHmamr=1 % " > (k;1> (g+1)!

q=0 {a1,...,aq+1}C[N]

xl;l Fy, (xtu )kiliq

x S a a aa
YMay,....aq41 (Tay — Tay) -+ (X, _maq+1) '
l l
x |3 > (r) Bip(a,)
r=0  {bg,bs,...,br41}C[N] z=1

k—1
= Nkl 3 > (k;1> (g+1)!

a=0{a1,...,aq4+1}C[N]

k@ k—1—q l l
 Symiay.... 0y T (Ter) [Z (T>B;J.(xm>H . (6.14)

(l'a1 - xaz) s (mal - xa‘l‘*'l) r=0 =1

where we use the notation (6.3) with Fy(x) = F(x). We also use that the summation
D faragsr o) contains &~ N7 /(g +1)! terms. For the symmetrization over a’s it is

enough to apply Lemma 5.3. We obtain

k—1 1
(6.14) = NFFES N <l> (k - 1) ﬁag (xkF’(z)quBl’7T(x))| . (6.15)

q=0 r=0 r q —
Thus,
(N) (N) _
cov(pk D) ) o S N S 1
1 - = q k o/ k—1—q n/
J\}gnoo NFE+ K ;; (7’) ( q ) (q + 1)|8x (1} F (33) Bl,r(m))

r=1

Now Lemma 6.2 with Fy(z) = F(z) and F(z) = F(z) implies the statement of the
proposition. 0O

6.2. Computation of one-level covariance in the general case

Here we compute the covariance in Theorem 2.8. We use computations and arguments
from the special case considered in the previous section.
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Proposition 6.4. Let p = {pn} be an appropriate sequence of measures on GTy, N =
1,2,..., and corresponding to functions F,(z) and Q,(z,y). In notations of Theorem 2.8
we have

li covlp, ™) 1 L 1 42)F,0+2) )
Nose  NFFL T (2ri)2 P HEpAL T

|z|=¢ |w|=2¢

!
X (% +1+(14+w)F,(1+ w)> Qp(z, w)dzdw.

Proof. For an integer n we denote by T, (n)(¥) any function of N variables which has
N-degree less than n, and which can change from line to line.

We start our analysis with formulas (6.11) and (6.12) for covariance. Let us fix indices
{a1,...,aq+1} and {b1,...,b,11}, and consider several cases.

1) Assume that {a1,...,a.41} N {b1,..., 0,41} = &. Then

! l l—r
! y, (O, [log Sn)
(9(11 Z Z <T> (’I" + 1)' Symbly--~7br+1 (

7=0 {b1,....br+1}C[N] LTy, — xb2) s (xbl - xbr+l)

l l
=> > N (r)(lr)(r+1)!

=0 {b1,...br41}C
xé)l (8171 [log SN])I7T71 aalabl [log SN]

(xbl - xbz) s (mbl - xb'v'+1)

X Symb17-~~>br+1

Note that the definition of an appropriate sequence of Schur generating functions implies
that (9, [log Sx])'~"" has N-degree at most [ —r — 1, and 9,,8y, [log Sn] has N-degree
at most 0. Moreover, we have

(D, llog SN])' ™"~ = NI E, () 71 + Ti—r—1),
8a1 61,1 [log SN] = Gp(l‘al,xbl) + T(o)- (6.16)

Using these equalities and Lemma 5.2, we get

zh, (O, [log SN))' """ D, Db, [log Sn]
(xbl - ‘Tb2) s (xb1 - xbr+1)
l lerle lfrflG ars B
L, P(xbl) P(z 1 xbl) + T(l—r—l)- (617)
(mb1 - xb2) s (xlh - xbr+1)

Symb1,<~~7br+1

= Symblv---abT+1

Note that the first term in the right-hand side of (6.17) depends on r + 2 variables, not
on N variables. The dependence on all N variables is present only in T(l,r,l); our notion
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of N-degree and Lemma 5.2 guarantee that eventually this function does not contribute
to the covariance.
Using (6.16), (6.17) and Lemma 5.2 again, we further obtain

2k, (Day [log Sy])" 7"

Syma,.,....a
PR (20, = Tay) - (Tay — Tagy,)
(I —r)z}, (s, [log SN T B4, 05, log Sy
X Symblvwvbrﬁ—l
(xbl - mbz) s (‘rb1 - xb'r'+1)
k prk—1— k—1—
e N 9F, (zq 4
— Symal)...7aq+1 ay P( 1)
(Tay — Tay) -+ (Tay — xaq+1)
(L= r)ay, N Fy (a,)' " Gl 7)) |
X SYMi, ... b - + Tpi1—r—q—2)(Z). (618
1, + (xbl — -sz) o (xbl — $b7.+1) (k+1 q 2)( ) ( )
The summation over non-intersecting sets {ai,...,aq+1} and {b1,...,b,41} in (6.12)

contributes the N97"+2 terms. Applying Lemma 5.3 to (6.18) and using equality (I —
r) (i) = 1(121)7 we see that the case of non-intersecting indices contributes the term

k—11-1 <l—1>(k‘—1>
qmo‘”l (q+DIr+DI\ r q

X0 [05Gy (1, w2)a By ) 92LFy (2) 17|

Nk-i—l

(6.19)

I1:1,I2:1

into the leading order. With the use of the Cauchy integral formula and the binomial
theorem (which is applied in the same way as in (6.6)) one can write it in the form

];f:l f{ f ( +1+ 1+2)Fp(1+2))k($+1+(1+w)Fp(1+w))

z|=¢ |w|=2¢e

l

x Gp(1+ 2,1+ w)dzdw. (6.20)

2) Assume that |[{a1,...,a441} N {b1,...,br41}| = 1. Without loss of generality we
can assume that a; = by, and all other indices are distinct. Similarly to the case 1), one
can use equality (6.16) to show that
o8, (Da, [log S])* 7171

Tay = Tay) - (Tay — Tay,,)

Symal,...,aq+1 (

a (Dy, [log Sn])' ™"

Ty, — xb2) s (l.bl - xbr+l)

X aﬂh Symbl, brt1 (

xglNk_l_qFP(xal)k_l_q

Tay = Tay) - (Tay — Tagyy)

= SYMa,... agm {
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N Fp(0,)' "

Ty, — xbz) s (zbl - zbr+1)

X Oa, Symbl, —i—T(kJrl,T,q,l)(f). (6.21)

r+1 (

Note that the summation over indices produces order N"1t9t! terms in this case in
(6.12), so the function T(kﬁ»lfrqul)(j) does not contribute to N-degree k + [. The first
term in the right-hand side of (6.21) gives rise to exactly the same computation as
in Proposition 6.3. As we proved in Proposition 6.3, the contribution of this term to
N-degree k + [ can be written as

NE+ l

(27i)2

|z|=¢ |w|=2¢

(% +1+(1+2)F, 1+ z))k (% + 1+ (1+w)F (1 +w)>

X #dzdw. (6.22)

(z —w)?
It is interesting to note that while this term has very similar form to (6.20), we obtain it as
a result of rather lengthy computations of the whole Section 6.1, though the computation
behind (6.20) in case 1) is much simpler.

3) Assume that [{a1,...,aq+1} N{b1,...,bp11}| > 2. Then the same argument as in
case 2) shows that for the fixed indices the function in the left-hand side of (6.21) has a
N-degree not greater than (k41 —r — g — 1), while the summation over all such indices
contributes only N"t¢. Therefore, all such terms do not contribute to N*¥*¢.

It remains to conclude that the contribution to the N-degree k + [ is given by the
sum of expression from (6.20) and (6.22). Therefore, recalling the definition of @), given
in Definition 2.6, we are done. O

6.3. Covariance in Theorems 2.9, 2.10, 2.11

The arguments of Section 6.2 need only minor modifications in order to compute the
covariance in Theorems 2.9, 2.10, 2.11. In each case, we start with a general formula for
moments (4.6) and analyze it in the same way as in the case of one level.

Covariance in Theorem 2.9.
In this case the joint moments on different levels are given by the following differential

operators
[ar, N]_[ac, N] oy el
E (pMpe™) = DD (@i0)" Vi (@) S ()
i=1 j=1 -

The only difference with computations in Sections 6.1 and 6.2 is that in (6.12) the set
{a1,...,aq+1} is the subset of {1,2,..., [a;, N|} and the set {b1, ..., b,41} is the subset of
{1,2,...,[a¢, N]}. This leads to the appearance of the factor af, aj, inside of summations
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n (6.19) and (6.15). The arising modification of computations is given by Lemmas 6.1
and 6.2 with Fy(z) = £2) and Fy(z) = F(x) . This gives rise to two functions
1

at

51(2):14’14’%7 32(2):1+1+w7
< aty z Aty

instead of one function F(z) (as before, we identify the function F(x) from Section 6.1
and F,(x)). In the end, we obtain

F1(2) F2(w)’

cov(PLath],Pl[aQN]) _ aflaéz
N oo Nk (2ri)2
|z|=¢€ |w|=2¢

1
—2> dzdw.

(z —w)

X <Gp(z,w) +

Covariance in Theorem 2.10.
In this case the moments of power sums are given by the following differential operators

N s9—1 N
(N) _(N) .
B (s pinh) = g 2o @00 TT @) X (09" Vi (@), (2)
i=1 r=s1 j=1 =

Therefore, the right-hand side of (6.12) has a form

k—1 k k—1—gq
k-1 xg (04, [log Hs,])
k ay 1 1
E E ( q )Symal,...,aq+1 (xa1 _ xa2) ]

X — T
q=0{a1,...,aq+1}C[N] ( ai Gq+1)

l 1 l—r
l zy, (O, [log Hy,])
X0u [> Y (T> UL (6.23)

=0 (br,bra }CIN] by bz) ( by b7‘+1) sl

(recall that the functions H; are defined in (2.10)).
The analysis of this expression goes in exactly the same way as before. The only
difference is that instead of (6.16) we need to plug

(8171 [log Hs1])l77‘ = Nlier;(sl)($b1)l7T + T(l—?“)v
(0a [log Hy, )" ™71 = N¥071F ) (0,)F 77 4+ Ty,
81116171 [IOg HSQ} = GP;(S2)(xll1 ) xbl) + T(O)

into (6.23). The appearance of two different functions F),,,)(x) and F,,(,)(x) instead
of one function Fj,(x) leads to a modification of computations of Section 6.2 which is
covered by Lemmas 6.1 and 6.2 with Fi(z) = F,,)(2) and Fp(z) = F,,(s,)(x). This
gives the covariance in Theorem 2.10.
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Covariance in Theorem 2.11
The moments of power sums are given by

E <p[at1 N]p[atz N])

ity Phaojts
- 1 [atzlz:v] k1 to—1 (N)
B Viay, N)(Z1, 2, - T a,, N] = (%) Tllg (@1,2, - @, )
[aty N]
X Z (33.78) "V, N(@1, w2, x[at2N]) zs(;v)(ﬂfl,3327~--7x[at2N])
j=1

=1

The analysis goes in the same way as in the previous two cases with both changes made
simultaneously.

7. Asymptotic normality
7.1. Gaussianity: Theorem 2.8

In the notations of Theorem 2.8 we prove the asymptotic normality of the vector
—k (V) (V)
N v, ~ — Ep; .
keEN (

Note that for any k& we have EpkN) = .F(k)(lN). For any ki, ke in Section 6.2 we
showed that the quantity

(N) (N)
Ccov s
Ck1 ko = hm —(pkl pkz )

N —o0 Nkitkz

exists (and also computed it).

Proposition 7.1. For any positive integers ki, ..., ks we have
N N N N
' E (p,(cl ) Ep( )) e (p,(cs ) Ep( ))
Jim, WRE -0

if s is odd, and

E(p)” —Epf)) ... (o~ Ep})

s

J\}g%o Nkit-+ks = Z H C’fmkb’
PeEPy (a,b)eP

where P is the set of all pairings of {1,2,...,s}.
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Proof. One sees that
N N N N
E (p;(ﬂ '~ Ep}] )) - (p;(cs '~ Ep;) ))

1 N N
= s, (Z(:L’ilail)kl — ]—"(kl)(lN)> (Z(%‘za@)’” f(kz)(lN)>

i11=1 io=1

N
X ... (Z(%Sais)ks .F(ks)(lN)> VNSpN

is=1

r=1
Therefore, the statement of the proposition is a direct corollary of Proposition 5.12. 0O
Proposition 7.1 asserts that the joint moments satisfy the Wick formula (see, e.g., [61,

Section 1.2] for the basic information about Wick formula) which implies the asymptotic
normality. Therefore, Propositions 6.4 and 7.1 readily imply Theorem 2.8.

7.2. Gaussianity: Theorems 2.9, 2.10, 2.11

We discuss the case of Theorem 2.11 only, since this theorem implies Theorems 2.9
and 2.10.

We denote by Z, the set of variables (z1,za,...,2q).
We use a general formula (4.6) for moments. In the notations of Theorem 2.11, for
arbitrary s and k..., kg, t1 <tg < --- < t4, we have
4, N] [asN][ar, N] 1 [y v] laeg V] =1
E( at,l at_Q at_sN) e — i O k1 (N) (=
Pty Phaita Phait V[atsN] (f[atsN]) 2221 (ris0:) :H Ir (x[arN])
i1 r=[as; N]
laty N] laty N]—1
X Z (xizaiz)kz H ga("N) (f[aTN]) s
i2=1 r=la¢, N]
lae ]
- N) =
S @400 Viay, 3 (Far, 8 HE (T, 1)
is=1 B

=1

The analysis of this formula is exactly the same as in Sections 5.4, 5.5, and 7.1. Let us
indicate necessary modifications of notations. For 1 < g < s instead of (5.5) we consider
the function
laty N]

o 1
Fayse, (%) :=

! - (N) /=
N - (i0:)" Via,, N)(Z(a,, 8 Hy,  (Zla,, )-
Ht(q )(‘r[ath])‘/[ath] (Tlar, V) im1 !
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For 1 < ¢ < w < s instead of (5.14) we use the function

gy |
- 1—
g(l17l2)§tqvt’w (x[ath]) = Z ( r )

r=0

y > Syma, 4 Oy [Fiz)it,,] (ay [log Htl])h*H.

(xal - ‘raz) s (mal - xawrl)

(7.2)

{a1,...arp1}Clag, N]

Instead of (5.20) we use Ey;, = }'(l);tq(l[‘“qN]). With these changes, all the analysis of
Sections 5 and 7.1 goes in exactly the same way, which gives us the asymptotic normality

. laz, N
of functions {pkaz b1 k1
8. Asymptotics of Schur functions

In this section we recall and extend certain asymptotics of normalized Schur functions,
which were developed in [29], [28], [13].

Recall that we encode a signature A = A\ > --- > Ay by a discrete probability
measure on R via

ml\ = %éa (%) .

We use the notation from Section 3.1. The following theorem is a special case of
Theorem 4.2 from [13].

Theorem 8.1 (/29], [28], [15]). Suppose that A(N) € GTy, N = 1,2,... is a regular
sequence of signatures (see Definition 3.1), such that

lim m[A(N)] = m.

N—oc0

Then for any k =1,2,... we have

.1 sxvy (@1, ..o, 1V TF)
lim —1 =Hpy <o+ Hpy , 8.1
im - log ( on (1) (1) + -+ Hm(zk) (8.1)
where the convergence is uniform over an open complex neighborhood of (x1,...,xE) =

(1%).

Theorem 8.2. Suppose that A(N) € GTy, N =1,2,... is a regular sequence of signatures
such that

lim m[A(N)] = m.

N—o0
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Then we have

S)\(N)(xl,xg, ey Tk, 1Nk)>

lim 991
Ngnoo 102 0g< sA(N)(lN)

— 810, log <1 = (= 1)(p — 1) T Hm (@) = xQH;“(“)) . (8.2)

X1 — Tg
and
N—k
. SA(N)(xlaan"'axkal )
lim 910205 log =0,
N—o0 S)\(N)<1N)
where the convergence is uniform over an open complex neighborhood of (x1,...,x) =

(1%).
Remark 8.3. Note that the limit in (8.2) does not depend on (z3,...,xx).

Proof of Theorem 8.2. Let

sa(171 2, 1N )

S)\(xj;N’]-) = S,\(lN)
Theorem 3.7 of [28] asserts that
8A(N)($1,352,~~,$k71N_k) :ﬁ (N —4)!
S)\(N)(lN) =1 (N — 1)'(1‘1 — 1>N_k

k

k
a,b= _
T L SN - 0" (53
1<a<b< a j=1

det [(z40q)"7"]

Let us consider the application of the differential operator det [(xaaa)bfl] szl. Each
differentiation from it can be applied to Sx(zj; N,1)(z; — 1)V =1 for some j or to the
factors appeared from the other differentiations. Note that the highest degree in N is ob-
tained when each differentiation is applied to Sx(z;; N, 1)(z;—1)V~!. Using Theorem 8.1
we obtain

k
(2a0a)" " [ Sa(ji N 1) (2 — DN
j=1

X . b—1
= N7 ] oy Ny ) (y = N (1 + l‘an(x)> +o(N"7)

Jj=1
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(here and below the convergence in o(+) is uniform over an open complex neighborhood
of (x1,...,21) = (1¥)). Hence,

k
det [(240)"""], ,_ 1HsA 2 N, D)y — DN = T Salass Ny )@y — DN?
Jj=1 Jj=1
b—11F
x| NPOD2 et | (2o 10 HY (24) +0(Nb(b’1)/2)
1= - b=1

where we use that the uniform convergence of analytic functions implies the convergence
of its derivatives. Substituting this formula into (8.3), we get

SA(N)(xh o, ..., Tk, 1N—k)
0109 10
102 log S,\(N)(lN)
p—11k
k det {(ﬁa H, (J;a)) }
o a,b=1
= 010s log H x],N D(z; —1) Hk . . .
a a<b\ta — &b
k <1 Tq +xaH (xa)) - (1 s +bul ( ))
= 0107 log H - ”.
a<b T Ty

z1Hp, (1) — 22 Hy, (22)
X1 — X9

= 8182 log (1 +

Also we see that

N—k
SA(N)(xth?"'axk?l )

SA(N)(lN)

010203 log

Hiplwa)) = (722

LTag — Tp

e (1@
= 010205 10g | [

a<b

Recall that for a representation 7' of U(IN) we define a probability measure pr on
GTy with the use of (3.6). The pushforward of py with respect to the map A — m[A] is
a random probability measure on R that we denote m[pr].

Proposition 8.4. Assume that AV (N),\?(N) € GTyn, N = 1,2,..., are two regular
sequences of signatures such that

lim mADN)]=m;,  lim mA®(N)] = m,,

N—oc0 N —o0
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for probability measures m; and ms with compact supports. Then m[,oﬂ(l)@ﬂ@)] s an
appropriate probability measure on GT with functions

Fp(x) = Hp,, () + Hp, (2),

cHpy (x) — yHy, (y))

Gyl = 0,0, 108 1= (& = 1)y~ 1) LD

o)~ Vi )

+8I8ylog(l—(x—1)(y—l) Ty

Proof. The Schur generating function of the measure m[p_,a s ] is sxa (Z)sye (2).
Therefore, the statement of the lemma follows from Theorems 8.1 and 8.2. O

9. Proofs of applications
9.1. Lozenge tilings and Gaussian Free Field

In this section we prove Theorem 3.14.

Recall that we study the uniform measure on the set of paths Py (AX)). The projection
of this measure to one level GTy;, M < N, produces a probability measure on GTy,.
The branching rule for Schur functions (2.4) shows that its Schur generating function
equals sy (21, ..., 200, IN M) /s 0y (1V).

For a < 1, let pLaN be moments of these measures:

[aN]
M =3 i+ [aN] =), A€ Gy,

i=1

Note that they are random variables.

Proposition 9.1. Let 0 < a3 < --- < ag < 1 be a collection of reals. Under the assumptions
and in the notations of Theorem 3.1/ the collection of random variables

—k; aiN aiN
SR C e | -1
converges to the Gaussian vector (&1, ...,&s) with the covariance
ke K ’ ke
aytayr 1 (1+2)H,(1+2)
- Z 41
COV(&M gt) (27Ti)2 P +1+ ay

|z|=€ |w|=2¢

x (% PP Tl: w))kr 9.0, {log ((% F14+ (14 w)H’m(w)>

Qr




768 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702-781

1
- ( +14+(1+ Z)H;n(z))>} dzdw, (9.2)
z
for1<t<r<s, ek, with H,(w) given by (3.5).

Proof. By Theorems 8.1, 8.2 this model satisfies the conditions of Theorem 2.9 with
functions F,(x) = H] (x) and

0(e.4) = 5:0, <log (1 B CE ) NEE ;2 - ;1 +y)HL (1 + y))> .

Applying Theorem 2.9, we obtain that the Central Limit Theorem holds for the vector
(9.1) with the covariance

cov(&, &)
ki k / ket / Ky
_atab 1 (4 HL+2\" (L (It w)H (1t w)
o (27i)? ?{ (z+1+ a; > <w+1+ a, )

|z|=€ |w|=2¢

X(azaw{log@Zw(1+z)H{n(1+z)—(1+w)H{n(1+w))]+ 1 >dzdw7

z—w (z —w)?
(9.3)
for 1 <r <t <s,and e < 1. With the use of the equalities 9,0,, log(z — w) = ﬁ

and 0,0, (zw) = 0, we transform (9.3) into (9.2). O

Proposition 9.1 shows that the fluctuations in our model are Gaussian. We next recover
the structure of the Gaussian Free Field, for that we transform the expression for the
covariance.
Lemma 9.2. The expression (9.2) is equal to

271i)2 % 7{ <Z " oo (—10;?2)) - 1)'“ (w e (—10; ((lzv)) - 1)1%

|z|=2C |w|=C

—~

1

where C > 1, that is, the contours of integration contain all poles of the integrand (recall
that the function Cm(2) is defined in (3.3)).

Proof. Let us make a change of variables in (9.2)

- 1 _ 1
zZ= W=

Ch ) (log(1 + 2))’ O (log(1 + w))”
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this change of variables is well-defined since we are dealing with analytic functions in a
neighborhood of the origin.
Using the relation between Cy,(z) and HY,(z) (see equation (3.5)), we have

1
S+1+ =—
z

(1+2)(1+H,(1+2)) 1 (

l + 1-— ag )
Z eXp(_Cm(%)) -1 ,

z

1 1 1+H (1 1 1 1-—
LORICERTICES. A(ERT N e )
w a, ar \W  exp(

1
1 ) 1 ) 11
log| |—+1+(1+wH, ,(14w)]—-(-4+1+0+2H,,(1+2)) | =log|=—=].
w z Wz
Substituting these equalities, we obtain that (9.2) equals

wr f § Gracat) Gracat)

€ |w|=2¢

Making a further change of variables Z — %, w — %, we arrive at (9.4). O

Proof of Theorem 3.14. We recall that the functions ym(z) and nm(z) were defined in
Section 3.5.

For 0 < a < 1let Cy.m be the union of the set {z € H : nm(z) = a} and its conjugate.
A direct check shows that if z — oo then 7y, (2) — 0. Therefore, for a, < a; the contour
C.,;m contains the contour C,,;m. Thus, in (9.4) we can deform the contour |w| = C to
Ca,:m and the contour |z| = 2C to C,,.m without meeting poles of the integrand. We
obtain

(2;)2 f 74 (*W) <w+exp<(§g<$>)—1>kt

|z|=2C |w|=C

1 1

atm

Recall that the values of ym,(z) are real. Using this fact and the equality

2log

zZ—w
Z—w

we can rewrite this expression as
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(2;)2 ]{ ]{ Yim (2)F7 Y (W) 0.0, {2 log

2€EH:Nm (2)=a, wEH:Nm (w)=az

HH dzdw  (9.6)
zZ—Ww

(in this equation we are integrating over curves in the upper half-plane only).
Let us now transform the quantities involved in the statement of the theorem. An in-
tegration by parts gives us

+oo
r (N) (N) N—(k+1) N N
My = / y* (B (Ny, N) = BN (Ny, Ni) ) dy = S (P - BT
—o0

Therefore, Proposition 9.1, Lemma 9.2 and equations (9.5), (9.6) show that the collection
{M]", }n>0kezs, converges to the Gaussian limit and the limit covariance is given by

oo M)
N VTN ADF A T 42 (ky + 1) (ke + 1)
X % j{ Y (2)F Ty (w)F 10,0, {2 log ;ZH dzdw.
ZEH:Nm (2)=a, wEH:Nm (w)=ay
The definition of the Gaussian Free Field implies
o (M, 0, ) = f [ e mo)
z€EH:ar=Nm (z) wEH;a+ =nNm (w)
dym (2) dym(w) [—1 zZ—w
— — 1 .
% 0z dw o 8 @ dzdw

An integration by parts shows that the right-hand sides of two equations differ by a
factor m. This concludes the proof of the theorem. O

9.2. Extreme characters of U(co) and Gaussian Free Field

In this Section we prove Proposition 3.9 and Theorem 3.10.
Recall that Ci(2) is a Stieltjes transform of measure m on the real line (see (3.3)).

Lemma 9.3. Assume that a sequence of extreme characters w(N) satisfies the condition
(3.14) with the limiting sextuple J = {AT,B*, A=, B~,T'T,T7). Then we have the con-
vergence

. Oy log @M (1 +¢)
lim
N—o0 N

=F;(1+1), uniformly in [t| <e, €>0,
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where Fy(1 4 t) is given by the formula

Fy(1+1):= t%CAJr (1> _AR) + L Cg+ (1> i B*(R) lC’Af (1+t>

t 2 t t ) t

t
A=(R) 1 1+t\ B~ (R) r-
t(1+t)t_205< >+t(1+t)+r+(1+t)2' (07)

Proof. The explicit formula for Fj(1 4+ ¢) comes as a direct computation from the
Voiculescu formula (3.12). O

We will need the following elementary technical statement about the measures on R;
we omit its proof.

Lemma 9.4. For each finite measure i on R with compact support there exists a sequence
of measures py such that

lim C,,(2) = Cu(z), as K — oo,

K—oo

and pg has a density with respect to Lebesque measure which does not exceed K'/10.
For a measure m and a € R let sh,(m) be a shift of m into a € R, that is
shy(m)(A + a) = m(A4), for any measurable A C R.
For a measure m and ¢ € R we denote by cm the measure
(em)(A) :=¢-m(A), for any measurable A C R.

For a set A C R let sym(A) be a set obtained from A by reflecting with respect to 0. For
a measure m we denote by sym(m) the measure

(sym(m))(A) := m(sym(A)), for any measurable A C R.
We denote by m; U my the union (equivalently, the sum) of measures m; and ms.

Lemma 9.5. Assume that J = (A", BT, A=, B~,TF,T'"7) is a sextuple that appears in the
limit in the condition (3.14). Then there exists a sequence of probability measures |13,k
with bounded by 1 densities with respect to the Lebesgue measure on R such that theirs
Stieltjes’ transforms satisfy:

Chyi(2) =logz —log(z — 1) + % <<0A+(Z _1)- A+(R))

(z-1)
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+ (BJF(R) +Cp+ (1 - z)) + (CA(Z) - AZ(R)> + (Cg(z) + BGR))

z—1

as K — oo.

Proof. First, note that log(z)—log(z—1) is the Stieltjes transform of the uniform measure
on [0;1]. Next, we will consider several other signed measures with total weight 0 which
give rise to other terms in expression (9.8). It follows that the union of the uniform
measure on [0; 1] and all signed measures will have weight 1, and we will check that it is
a probability measure.

Let I; be a (negative) measure with the density —A*(R)K %/ on the segment
[1 — K~Y10:1]. Let A* := Lshyi(A*) (note that the total weight of A* is 1/K).
Then the measure A" U I; has total zero weight and the Stieltjes transform of the form
 (Carz = 1) = 8 + 0(1/K).

Let I be a (positive) measure with the density B+ (R)K~%/10 on the segment [1;1 +
K~Y10], Let Bt(K) be a sequence of measures given by Lemma 9.4 applied to the
measure sym(sh_;(B8%)). Then the measure —+ B+ (K) U I, has total zero weight and

the Stieltjes transform of the form + (CB+ (1-2)+ lf:_(ﬂf))> +o(1/K).

The measures for A~ and B~ are constructed in an analogous way. In order to obtain
the term K(z—iw + 0(1/K) let us consider the measure which has density T+ K ~%/10 on
the interval [1;1 4 K ~'/1°] and density (—I't K~8/19) on the interval [1 — K~/19;1]. In

an analogous way we obtain the term —1/KL; 4 o(1/K).

Finally, let us notice that all negative measures in the construction above are placed
on the segment from 0 to 1 (recall that beta parameters are bounded by 1, see (3.12))
and has densities which decrease with K. In the same time, all positive parts in the
constructed signed measures lie outside of the segment [0; 1]. Therefore, for large K the
union of all these 6 measures with total weight zero and the uniform measure (with
weight 1) on the segment [0; 1] forms a probability measure which has a required form
of the Stieltjes transform, and the density of this measure does not exceed 1. O

Proof of Proposition 3.9. We prove this Proposition by a limit transition from Proposi-
tion 3.13.

Let K > 0 be a large real number. Let us consider the probability measure p3,x on R
which is given by Lemma 9.5. Let us apply Proposition 3.13 to the measure py,5x. As a

result, we obtain a diffeomorphism between D and H. For a fixed pair (z,a) € D,

M3 K
it is given by a unique root of the equation

: (9.9)
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which lies in H (the uniqueness of such a root is a part of Proposition 3.13). We can
rewrite it in the form

Chy i (2) =log(z —x) —log(z —x +a —1).

Let us now set x = %, a = %, for some fixed X € R and A > 0. For large K we
obtain
X A-X 1
Cpoe2) = 108(2) ~logls~1) = 1=~ 2 s o). ©10)

Note that Lemma 9.3 and Lemma 9.5 show that

Cros e (2) = log(2) — log(z — 1) + ﬁFJ (1 + z—ll> +o (%) S (01)

Plugging (9.11) into (9.10), cancelling log(z) — log(z — 1) and multiplying by K, we get

z 1
X=A Fy(14+ —— 1). 12
z+2_13<+z_1)+0() (9.12)
Let us do a change of variables ¢t = Z—il Equation (9.12) shows that
X 1 Fi(1+1)
— =1+t |(-+— 9.13
- (25, (9.13)

which has a form given by Proposition 3.9.
Note that the function

K (Cuy(2) —log(z — X/K) +log(z — X/K + A/K — 1))

is analytic and converges uniformly on compact sets inside H as K — oo. Therefore, the
number of zeros of this function inside H cannot increase in the limit as K — oo. Thus,
for any pair (X, A) the equation (9.13) has no more than one solution in H, which shows
the existence of Dy from the statement of Proposition 3.9 and the existence of the map

On the other side, the bijection H — D is given by the explicit formulas:

NI K

o ) s g E DO (2) =BG (2)
He exp(C#J;K (Z)) - eXp(CNJ;K (2)) ,
(2 = 2)(exp(Cluy 1 (2)) = D(exp(Cpype (2)) — 1)
eXp(ClLJ;K (2)) - exp(CHJ;K (2>)

aNJ;K(Z) =1+
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(these functions are solutions to (9.9)). In the limit K — oo and with the change of

variables t = Z—il as above, these functions converge to the functions

(1+ )1+ D) (F5(1+ 1) — tF5(1 + 1))
t—t

1+ 1) (tF3(1+1t) — tF3(1 +1))

t—t

X(t) =

)

A(t) = ( t —tFy(1+1).

Note that for any ¢ € H these limiting functions are solutions to (9.13) with X = X (¢)
and A = A(t). Therefore, the map Dy — H is a bijection. Moreover, this is a diffeomor-
phism since the functions X (¢) and A(t) are differentiable, and the differentiability of
the map Dy — H is provided by the Implicit Function theorem.

Proof of Theorem 3.10. Recall that we have a probability measure p,wv) on the set of
paths P in the Gelfand-Tsetlin graph. Let pa,; be the shifted moments of the random

signature A(IND distributed according to this measure:
AN
pask =y (A + [AN] )",
i=1

Our probabilistic model clearly satisfies assumptions of Theorem 2.9, with F,(z) =
F;(z), and G,(z) = 0. Applying it, we obtain that the random variables {pa;, —
Epa.k}asok>1 converge to the jointly Gaussian limit with zero mean and covariance

lim COV(PA, k> DAL ks ) _ 1 7{ j{ 1 14+ (1+2)Fy5(1+2)\™
(27i)?

N—o0 Nkitkz z A1

|z]=¢€ |w|=2¢

(1+2)FJ(1+Z)>k2 1
Ao (z —w)

X <$+1+(1+w) sdzdw, (9.14)
where 0 < A7 < Ay and e < 1.

Note that the formula (9.14) for covariance already contains the cross factor ﬁ
this is a key indication of the presence of the Gaussian Free Field. The derivation of
Theorem 3.10 from (9.14) is completely analogous to the derivation of Theorem 3.14 from
(9.4) modulo the fact that one needs to use Proposition 3.9 instead of Proposition 3.13

in order to deal with the arising level curves. 0O
9.83. Domino tilings of Aztec diamond and Gaussian Free Field
In this section we prove Theorem 3.17.

Let us formally describe the probability measure on a particle system which turns out
to be equivalent to the domino tiling model.
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Foreacht =1,2,...,N let \(®¥), v(®) be signatures of length ¢, and let 3 := q+1’ where
q is a parameter from Sectlon 3.6.
Define the coefficients k(A®) — v®) via
t
SA(t) Ty, - 't' , L H 1— B + Bm Z K/()\(t) N U(t)) Sp(t) (xla . 't' 7.’1}t> )
SA(t) 1 1 ) Sv(t)(l )
1= vt eGT,

Recall that the coefficients pr,_,, ;(v® — A¢=D) were defined in Section 2.4. The
branching rule and the Pieri rule for Schur polynomials imply that the coefficients
K(A® = v®) and pr, ., ;(v® — A=) are nonnegative.

Define the probability measure on the sets of signatures of the form (AY), v(V),
AN=1 p(N=1) " A®) @) AD) by the formula

Prob(AN) p(N) NN=1) [, (N=1) = A@2) (2 A1)
= 1y =(on) H/{()\(’) — U(’))priﬁ(ifl)(v(’) — A1y (9.15)
i=2

(it can be directly checked by induction that the total sum of these weights is 1). Let
Sy be the set of such configurations that has a nonzero probability measure.

Proposition 9.6. There is a bijection between Sy and the set of domino tilings of the
Aztec diamond of size N. Moreover, under this bijection the measure (9.15) turns into
the measure qumber of horizontal dominos (1 4 q)y=NN+1)/2 on the set of domino tilings of
the Aztec diamond of size N.

Proof. This fact is well-known, and essentially two sequences of signatures are yellow
and green particles in Fig. 3. It was implicitly used in [34] and [7]; for a recent exposition,
see [11]. See also [15], where a generalization of this construction is used for a study of
domino tilings of more general domains. O

The bijection described in Proposition 9.6 allows to translate all results about a two-
dimensional particle array into the geometric language of domino tilings. We will now
proceed in the language of arrays.

Proof of Theorem 3.17. Let (), A X(V) be random signatures distributed accord-
ing to the measure (E) 15). For a < 1 let py be the k-th power degree of the coordinates
of the signature A((*N) | That is, we have

[aN]
= > ) 4 [aN] — i)t

=1
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Proposmon 9.7. In the notations of Theorem 3.17, the collection of random variables
{N~ kpkt ]}keN .0<a<1 8 asymptotically Gaussian with the limit covariance

R G S L 0 —a)s \©
N T Ntk (2ri)2 ?{ ]{ ( i 1(1—B+6(z+1))>
€ |lw|=2¢
(1+w)(1—a2)ﬁ
az(1— B+ Blw +1))

1 B2
— 41 dzd 9.16

where 0 < a1 < as and e K 1.

Proof. By construction, the probability measure (9.15) satisfies the assumptions of Theo-
rem 2.11. Note that the Schur generating function on the level [aN] (that is, on signatures
of length [aN]) is equal to

[alN]

[T =B+ )Nl

i=1
Thus, the application of Theorem 2.11 implies this proposition. O

Notice that the equation (9.16) contains the cross factor (Z_ 5. Using 8 = -, one

+
directly checks that the equation
1 (1+2)(1—a1)B Yy

P gy TP} B

coincides with the equation given in Proposition 3.16. Theorem 3.17 can be obtained
from Proposition (9.7) with the use of Proposition 3.16 in exactly the same way as in
the previous two sections. O

9.4. Tensor products and degeneration to random matrices

There exists a way to degenerate the tensor products of representations into sums of
Hermitian matrices, see e.g. Section 1.3 of [13] for details. Our goal is to show that under
this degeneration the covariance for tensor products (given in Theorem 3.3) turns into
the covariance for the sum of random matrices.

Let a;(N) and b;(N), i =1,..., N, be two sets of reals, let A(N) be a diagonal N x N
matrix with eigenvalues {ai(N) vy, and let B(N) be a diagonal N x N matrix with
eigenvalues {b;(N)}Y ;. Assume that Uy is a uniformly (=Haar-distributed) random
unitary N x N matrix. Let

Hy := A(N) + Uy B(N)Un,
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and let A\ (Hy) > -+ > An(Hy) be (random) eigenvalues of Hy. Set

N
pr(Hy) = > N (Hy).
i=1
Assume that
N | X
— Z: d(a;(N)) ~oa? my, N Z 5(b;(N)) ~ 1y, weak convergence,

where m;, my are probability measures on R with compact supports.
Let

f(z) = (_71 + R, (—2) + Rﬁlz(_z)>( ’ ;

where by F(~1)(2) we mean the functional inverse of the function F(z), and the function
R (z) was introduced in Section 3.1.

In the limit regime N — oo the covariance of the functions py(H) is given by the
following formula, see [53, Chapter 10]

hm cov(pr(Hn),pi(HN)) 27” j{f <Og (Rmz(_f(Z)) 1

1 1
—log(z —w) —log | —— — = dzdw,
sz ) o <f<w> f(Z)>>

where the contours encircle infinity and no other poles of the integrand.

Let us make a change of variables z = f(-1)(=2) (i.e. 2 = —f(z)), which, in particular,
swaps 0 with co. Note that conveniently 5° ;wF(z, w) - dzdw is a differential form for an
arbitrary function F'(z,w), and thus it does not change at all. Therefore, we obtain

hm cov(pr(Hn), pi(HN)) 271'1 j{]{ f( D(-2) (f(_l)(_w))l

2

< % <log (RB( )+ % — Ry(i) — %) +log <RA(2) + % — Ra(id) — 1/@)

where contours of integration encircle zero and no other poles.
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Recall the setting and notations of Theorem 3.3. Let m', m? be two limiting measures
for signatures. Theorem 3.3 asserts that random variables p; which corresponds to the
measure m[TAl(N )@ TN )] have the covariance given by the formula

lim N % lcov (pr,01)

N—oc0

:ﬁ%%(%-ﬁ-l-f—(l-f—z)( I’nl(1+z)+H{nz(1+2))>k

!
1
X (E +14+ (1+w) (Hp(1+w)+ H(1+ w))) Qi 2 (2, w)dzdw,  (9.18)
where contours of integration encircle zero and no other poles.

Proposition 9.8. The right-hand side of (9.18) converges to the right-hand side of (9.17)
in the limit

m'=miél, =62 w=06w, i=1,2,
where positive real § tends to 0.
Proof. By a straightforward computation we have
}ig(l)Hr’ni(l +2z)=Rsi(%), i=12.

®

ml,m?2

We can further transform as 6 — 0 the Q
the integral) to

0:04 <log (1 ~ s Fom (2) = R (w)) +log (1 ~ s Fme (2) = R (w)>

Z—w

(z,w) part of (9.18) (without changing

—log <1 — 2

Plugging these limit relations into the right-hand side of (9.18), we obtain that as
0 — 0 we have

o 7{ j{ (3 + R 2) + o)+ o<1>)k (5 + R () + R (0) + o<1>)l

X 8561@ (10g (1 — ZW
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+ log (1 —éﬁ)RA

“log (1 B 212)le (2) + Ru2(2) — R (w) — Rz (w)

Z—w

+ o(l))) dzdi.  (9.19)
Therefore, in the limit we obtain the right-hand side of (9.17). O

Remark 9.9. This limit regime of Proposition 9.8 is closely related to the semi-classical
limit; see Section 1.3 of [13] for more details on this transition.

10. Appendix: Law of Large Numbers

In this section we prove Theorem 2.4. In fact, this is [13, Theorem 5.1], and we
comment on slight differences here.

The first difference is that [13, Theorem 5.1] requires that the Schur generating func-
tion S, of a probability measure p = p(N) satisfies the condition

lN—k)

1
lim 08 p(T1, -, Th =U(x1) +--- +U(xy), for any fixed k > 1,
N—o00 N

where U is a holomorphic function and the convergence is uniform in an open neigh-
borhood of (x1,...,x1) = 1V ~=F. It is clear that this condition implies the properties of
Definition 2.1 with 9.U(z) = ¢, for I > 1. The uniform convergence of holomorphic func-
tions implies the convergence of Taylor coefficients, though the opposite is not always
correct. However, in the proof of Theorem 5.1 from [13] we use only the convergence of
Taylor coefficients, so the same proof (see Section 5.2 of [13]) goes without any changes.

The second difference is that the right-hand side of equation (2.2) in Theorem 2.4 is
written in an integral form rather than in a summation form. The computation which
shows the equivalence of these two expressions is given in equation (6.2) of [13].
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