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1. Introduction

1.1. Overview

This article is about the random N -particle configurations on Z and their asymptotic 
behavior as N → ∞. For each N = 1, 2, . . . , let �(N) be a random N -dimensional vector

�(N) =
(
�

(N)
1 > �

(N)
2 > · · · > �

(N)
N

)
, �

(N)
i ∈ Z. (1.1)

Our aim is to deal with global fluctuations of �(N). One way to make sense of those is to 
take an arbitrary test function f(x) and consider linear statistics
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L(N)
f =

N∑
i=1

f

(
�

(N)
i

N

)
. (1.2)

We mostly deal with the case when f(x) is a polynomial (or, more generally, a smooth 
function), yet if f(x) is the indicator function of an interval, then (1.2) merely counts 
the number of random particles inside this interval.

Since by its definition, L(N)
f is a sum of N terms, it is reasonable to expect that it 

grows linearly in N . And, indeed, in the class of systems that we study, 1
N L(N)

f converges 
as N → ∞ to a deterministic limit depending on the choice of f . We will refer to such 
a phenomenon as the Law of Large Numbers, appealing to the evident analogy with a 
similar statement of classical probability dealing with sequences of independent random 
variables.

The next natural question is to study the fluctuations L(N)
f −EL(N)

f as N → ∞. Such 

fluctuations would grow as 
√

N in the systems arising from sequences of independent 
random variables, but the scale is different in our context. We deal with probability 
distributions coming from 2d statistical mechanics (lozenge and domino tilings, families of 
non-intersecting paths), asymptotic representation theory, random matrix theory, and for 
them the typical situation is that L(N)

f − EL(N)
f does not grow as N → ∞. Nevertheless, 

in all cases the fluctuations are asymptotically Gaussian, which justifies the name Central 
Limit Theorem for these kinds of results.

The main theme of the present article is to develop a new toolbox for proving the Law 
of Large Numbers and Central Limit Theorems, which would be robust to perturbations 
of �(N). It is somewhat hard to concisely describe the class of systems where the toolbox 
is helpful. One reason is that we believe our conditions to be in a sense equivalent to the 
LLN and CLT, see the end of Section 1.4 (which, of course, does not make these conditions 
immediate to check). Yet we list below an extensive list of available applications.

Again coming back to the classical one-dimensional probability, a universal tool is 
given there by the method of characteristic functions. For instance, it can be used to 
prove that averages of independent random variables converge to a Gaussian limit under 
very mild assumptions on the distributions of these variables, cf. textbooks [36], [22].

In our context the characteristic functions were not found to be useful, mostly due to 
the fact that the dimension (number of the particles) grows with N , while the individual 
coordinates �(N)

i , i = 1, . . . , N are very far from being independent. Therefore, we suggest 
to replace them by a new notion of Schur generating function which we now introduce.

Recall that a Schur function is a symmetric Laurent polynomial in variables x1, . . . , xN

parameterized by λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) and given by

sλ(x1, . . . , xN ) =
det

[
x

λj+N−j
i

]N

i,j=1∏
1≤i<j≤N (xi − xj) .

Let δN denote the N -tuple (N − 1, N − 2, . . . , 0) and note that the map λ → λ + δN

makes the weakly decreasing coordinates of λ strictly decreasing, as in (1.1).
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For a random N -tuple of strictly ordered integers �(N), as in (1.1), its distribution is 
a function rN of N weakly decreasing integers given by rN (λ) := Prob(�(N) = λ + δN ).

Definition 1.1. The Schur generating function SrN
of a random rN -distributed N -particle 

configuration �(N), is a function of N variables x1, . . . , xN given by

SrN
(x1, . . . , xN ) =

∑
λ

rN (λ) sλ(x1, . . . , xN )
sλ(1, 1, . . . , 1) . (1.3)

In [13] we showed how the Law of Large Numbers can be extracted from the asymp-
totic behavior of Schur generating functions. Interestingly, the answer, i.e. the exact 
formula for limN→∞

1
N L(N)

f depends only on f and the N → ∞ asymptotics of 
SrN

(x1, 1, 1, . . . , 1), that is, all variables except for one can be set to 1 prior to the 
asymptotic analysis. A similar phenomenon was also found in [43] by another method.

Here we make the next step and address the Central Limit Theorem for global fluctu-
ations, the precise statement in this direction is Theorem 2.8. In fact, we go even further, 
and also analyze random sequences of N -particle configurations forming Markov chains, 
see Theorems 2.9, 2.10, 2.11 below. This time the answer, which is the covariance for 
limN→∞

(
L(N)

f − EL(N)
f

)
, depends only on asymptotics of SrN

(x1, x2, 1, 1, . . . , 1), that 
is, all variables except for two can be set to 1 prior to the asymptotic analysis. For 
proving the asymptotic Gaussianity we need more.

Our theorems reduce the LLN and CLT to asymptotic behavior of Schur generating 
functions, which is known in many cases. This leads to proofs of the LLN and CLT for 
a variety of stochastic systems of particles, including:

(1) Lozenge tilings of trapezoid domains, cf. Fig. 2 in Section 3.
(2) Domino tilings of Aztec diamond, cf. Fig. 3 in Section 3 (for the application to 

domino tilings of more complicated domains see [15]).
(3) Ensembles of non-intersecting random walks, cf. Fig. 4 in Section 3.
(4) 2 + 1-dimensional random growth models.
(5) Measures governing the decomposition into irreducible components for tensor prod-

ucts of irreducible representations of the unitary group U(N).
(6) Measures governing the decomposition of restrictions onto U(N) of extreme charac-

ters of the infinite-dimensional unitary group U(∞).
(7) Schur–Weyl measures.

A more detailed exposition of the applications of our method is given in Section 3.

1.2. Previous work on the subject

One advantage of our approach through Schur generating functions is that it is quite 
general, and as a result, in each of our applications we can address more general situations 
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than those rigorously known before. However, particular cases of some of our applications 
were accessible previously by other important techniques. Let us list several of those.

• Determinantal point processes have led to Central Limit Theorems for uniformly 
random lozenge tilings of certain domains in [37], [54], for 2 + 1 dimensional random 
growth in [8], [20], [40]. Similar results for domino tilings of the Aztec diamond were 
announced (without technical details) in [17].

• Asymptotic analysis of orthogonal polynomials through the recurrence relations has 
led to Central Limit Theorems for ensembles of non-intersecting paths with specific 
initial conditions (which also include some tiling models) in [12], [21].

• Discrete loop equations (also known as Nekrasov equations) have led in [9] to Central 
Limit Theorems for discrete log-gases, which has overlaps with specific ensembles of 
non-intersecting paths and tilings.

• Various representation-theoretic ideas, involving, in particular, computations in the 
algebra of shifted symmetric functions and universal enveloping algebra of glN have 
led in [38], [32], [26], [30], [3], [4], [18], [41], [44] to several instances of Central Limit 
Theorem for the probability distributions of asymptotic representation theory.

• Differential operators acting in the algebra of symmetric functions in infinitely-many 
variables were used in [47] for proving the Central Limit Theorem for the Jack 
measures.

Let us emphasize, that despite the existence of several competing methods, most of 
our applications were not previously accessible by any of them. Yet our technique is 
adapted to the study of the global behavior of probabilistic systems, while some of these 
methods are more suitable for the study of the local behavior.

1.3. Continuous models

Replacing �(N)
i ∈ Z by �(N)

i ∈ R in (1.1), we arrive at continuous analogues of the 
particle configurations under consideration. In this fashion, our results are closely related 
to the global asymptotics for the eigenvalues of random matrix ensembles.

One precise example is given by the semiclassical limit, which degenerates the de-
composition of tensor products of irreducible representations of U(N) (one of our appli-
cations) to spectral decomposition of sums of independent Hermitian matrices, see [13, 
Section 1.3] for the details. The Central Limit Theorem for this random matrix problem 
is well-known, see [53, Section 10]. It can be put into the context of the second order 
freeness in the free probability theory, see [46], [45]. In Section 9.4 we explain how the 
covariance for our Central Limit Theorem for tensor products degenerates to the random 
matrix one.

Another degeneration is the appearance of the Gaussian Unitary Ensemble (GUE) as a 
scaling limit of lozenge and domino tilings near the boundary of the tiled domain, see [52], 
[35], [28], [49]. Recall that GUE is the eigenvalue distribution of H = 1 (X + X∗), where 
2
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X is N × N matrix of i.i.d. mean 0 complex Gaussian random variables. And again 
for GUE the Gaussian asymptotics for global fluctuations is well-known and can be 
generalized in (at least) two directions. The first one is a general Central Limit Theorem 
for (continuous) log-gases of [33] based on the loop equations. The second generalization 
is to replace the Gaussian distributions in the definition of GUE by arbitrary ones and to 
study the resulting Wigner matrix. Then the global fluctuations can be accessed by the 
moments method, see e.g. [1, Chapter 2] for an exposition. In more details, one computes 
the moments of the eigenvalues in the following form

E
(

n∏
k=1

Trace
(
Hmk

))
= E

(
n∏

k=1

N∑
i=1

(hi)mk

)
, {hi}N

i=1 are eigenvalues of H. (1.4)

The independence of matrix elements of H paves a way to find the asymptotic of the 
left-hand side of (1.4), which then gives the global asymptotic of linear statistics of the 
form (1.2) with polynomial test functions f(x).

1.4. Moments method

The moments method was never available for the discrete particle configurations as 
in (1.1) for a very simple reason: there is no underlying random matrix or an analogue 
thereof. Here we change this situation by providing a way to efficiently compute (a dis-
crete analogue of) the right-hand side in (1.4). Let us briefly state the key idea.

Let ∂i denote the derivative with respect to the variable xi and consider the differential 
operator

Dm =
∏

1≤i<j≤N

1
xi − xj

(
N∑

i=1
(xi∂i)m

) ∏
1≤i<j≤N

(xi − xj).

A straightforward computation shows that the Schur functions are eigenvectors of Dm:

Dmsλ =
(

N∑
i=1

(λi + N − i)m

)
sλ, λ = (λ1, . . . , λN ).

Therefore, applying such operators to (1.3) we get

E
(

n∏
k=1

N∑
i=1

(
�

(N)
i

)mk

)
=

[(
n∏

k=1

Dmk

)
SrN

]
x1=x2=···=xN =1

. (1.5)

The fact that differential (or difference) operators applied to symmetric functions can be 
used for the analysis of random particle configurations is by no means new, see e.g. [5], 
[6] for recent similar statements, and the asymptotic questions boil down to finding a 
way to analyze the right-hand side of (1.5). This is where the specific and relatively 
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simple definition of Dm shines, as we are able to develop a combinatorial approach (yet 
based on several analytic lemmas) to the right-hand side of (1.5).

One important observed feature is that the right-hand side of (1.5) depends only on 
the values of the Schur generating function SrN

at points (x1, . . . , xN ) such that all 
but a bounded number of coordinates (i.e. the total number is not growing with N) are 
equal to 1. First, this reduces a problem in growing (with N) dimension to a much more 
tractable finite-dimensional form. Second, the values of Schur generating functions at 
such points are very robust and not too sensitive to small perturbations for �(N). This 
is indicated by the results of [29], [28] on the asymptotics of Schur functions, on which 
we elaborate in Section 8. In particular, these results give enough control on the values 
of Schur generating functions to give the asymptotic expansion for the left-hand side of 
(1.5) needed for the Central Limit theorem. In contrast to our method, previous results 
and related approaches in the area, such as those of [3], [5], [6], [4], [47] relied on the exact 
form of the Schur generating function or its analogue; in particular, it was necessary to 
assume its factorization into a product of 1-variable functions.

From the technical point of view, even after all these observations are made, the 
asymptotic analysis still needs many efforts and is much more complicated than that 
of [13] where the Law of Large Numbers was addressed through the same technique.

Let us end this section with a speculation. We believe that it should be possible to 
reverse the theorems of the present article: the knowledge of the Law of Large Num-
bers and Central Limit Theorem should give (perhaps, subject to technical conditions) 
exhaustive information about asymptotics of the Schur generating functions for all but 
finitely many values of coordinates xi equal to 1. We plan to develop this direction in a 
separate publication.1

1.5. Organization of the article

The rest of the text is organized as follows. In Section 2 we formulate our main 
results linking the Central Limit Theorem for global fluctuations to the asymptotic 
of Schur generating functions. Numerous applications of these results are presented in 
Section 3. Section 4 gives a generalization of (1.5) which underlies all our developments. 
The remaining sections present a step-by-step proof for the statements of Sections 2
and 3.
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1.7. Notation

Here we collect some notations that we use throughout this paper. Note that some of 
these notations are slightly unconventional.

By �x we denote the variables (x1, . . . , xN ).
We denote by (1N ) the sequence (1, 1, . . . , 1)︸ ︷︷ ︸

N

.

By ∂i we denote the partial derivative ∂
∂xi

. We use ∂z instead of ∂
∂z . For a function 

of one variable f(x) we sometimes denote the derivative by the conventional notation 
f ′(x). By ∂0

i f we mean the function f itself.
For a differential operator D by D[F (x)]G(x) we mean that the differential operator 

is applied to F (x) only. Let Sr be the group of all permutations of r elements; then

Symx1,...,xr
f(x1, . . . , xr) := 1

r!
∑

σ∈Sr

f(xσ(1), xσ(2), . . . , xσ(r)),

denotes the symmetrization of a function.
Let VN (�x) :=

∏
1≤i<j≤N (xi − xj) be the Vandermond determinant in variables 

x1, · · · xN .
Sometimes we omit the arguments of functions in formulas. For example, we can use 

the symbol VN instead of VN (�x).
We use notations [N ] := {1, 2, . . . , N}, [2; N ] := {2, 3, . . . , N}.∑

{a1,...,ar}⊂[N ] denotes the summation over all subsets of [N ] consisting of r elements.
All contours of integration in this paper are counter-clockwise.

2. Main results

2.1. Preliminaries and Law of Large Numbers

An N -tuple of non-increasing integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) is called a signature
of length N . We denote by GTN the set of all signatures of length N . The Schur function
sλ, λ ∈ GTN , is a symmetric Laurent polynomial defined by

sλ(x1, . . . , xN ) =
det

[
x

λj+N−j
i

]
det

[
xN−j

i

] =
det

[
x

λj+N−j
i

]
∏
i<j

(xi − xj) .

Let r be a probability measure on the set GTN . A Schur generating function
Sr(x1, . . . , xN ) is a symmetric Laurent power series in x1, . . . , xN given by
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Sr(x1, . . . , xN ) =
∑

λ∈GTN

r(λ)sλ(x1, . . . , xN )
sλ(1N ) .

In what follows we always assume that the measure r is such that this (in principle, 
formal) sum is uniformly convergent in an open neighborhood of (1N). Note that the 
uniform convergence of such a series in a neighborhood of (1N ) implies the uniform 
convergence in an open neighborhood of the N -dimensional torus {(x1, . . . , xN ) : |xi| =
1, i = 1, . . . , N}. Indeed, it follows from the estimate |sλ(x1, . . . , xn)| ≤ sλ(|x1|, . . . , |xn|)
(which is an immediate corollary of the combinatorial formula for Schur functions as a 
positive sum of monomials, see [42, Chapter I, Section 5, (5.12)]).

The goal of this paper is to show how to extract information about r with the help of 
Sr(x1, . . . , xN ).

Definition 2.1. A sequence of symmetric functions {FN(�x)}N≥1 is called LLN-appropriate
if there exists a collection of reals {ck}k≥1 such that

• For any N the function log FN (�x) is holomorphic in an open complex neighborhood 
of (1N ).

• For any index i and any k ∈ N we have

lim
N→∞

∂k
i log FN (�x)

N

∣∣∣∣
�x=(1N )

= ck.

• For any s ∈ N and any indices i1, . . . , is such that there are at least two distinct 
indices among them we have

lim
N→∞

∂i1 . . . ∂is
log FN (�x)

N

∣∣∣∣
�x=1N

= 0.

• The power series

∞∑
k=1

ck

(k − 1)! (x − 1)k−1

converges in a neighborhood of the unity.

Definition 2.2. A sequence ρ = {ρN }N≥1, where ρN is a probability measure on GTN , 
is called LLN-appropriate if the sequence {SρN

}N≥1 of its Schur generating functions is 
LLN-appropriate. For such a sequence we define a function Fρ(x) via

Fρ(x) :=
∞∑

k=1

ck

(k − 1)! (x − 1)k−1,

where {ci}i≥1 are the coefficients from Definition 2.1.
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General Example 2.3. Assume that the Schur generating functions of a sequence of prob-
ability measures ρ = {ρN }N≥1, where ρN is a probability measure on GTN , satisfies the 
condition

lim
N→∞

∂1 log SρN
(x1, . . . , xk, 1N−k)

N
= U(x1), for any k ≥ 1,

where U(x) is a holomorphic function, and the convergence is uniform in a complex 
neighborhood of (1k). Then ρN is a LLN-appropriate sequence with Fρ(x) = U(x).

Indeed, for a uniform limit of holomorphic functions the order of taking derivatives and 
limit can be interchanged, which shows that the example above is correct. In applications 
studied in this paper all LLN-appropriate measures will come from the construction of 
Example 2.3. However, we prefer to prove general theorems in a slightly more general 
setting of Definition 2.2.

For a signature λ ∈ GTN consider the measure on R

m[λ] := 1
N

N∑
i=1

δ

(
λi + N − i

N

)
. (2.1)

The pushforward of a measure r on GTN with respect to the map λ → m[λ] defines a 
random probability measure on R which we denote by m[r].

The following theorem is essentially [13, Theorem 5.1]. In Section 10 we comment on 
the slight difference between this formulation and the one given in [13].

Theorem 2.4. Suppose that a sequence of probability measures ρ = {ρ(N)}N≥1, where 
ρ(N) is a probability measure on GTN , is LLN-appropriate, and k ∈ N. Then the random 
measures m[ρ(N)] converge as N → ∞ in probability, in the sense of moments to a
deterministic measure m on R, such that its kth moment equals

∫
R

xkdm(x) = 1
2πi(k + 1)

∮
|z|=ε

dz

1 + z

(
1
z

+ 1 + (1 + z)Fρ(1 + z)
)k+1

, (2.2)

where ε � 1.

2.2. Main result: CLT for one level

Definition 2.5. We say that a sequence of symmetric functions {FN (x1, . . . , xN )}N≥1
is appropriate (or CLT-appropriate) if there exist two collections of reals {ck}k≥1, 
{dk,l}k,l≥1, such that

• For any N the function log FN (�x) is holomorphic in an open complex neighborhood 
of (1N ).
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• For any index i and any k ∈ N we have

lim
N→∞

∂k
i log F (�x)

N

∣∣∣∣
�x=1

= ck.

• For any distinct indices i, j and any k, l ∈ N we have

lim
N→∞

∂k
i ∂l

j log FN (�x)
∣∣
�x=1 = dk,l.

• For any s ∈ N and any indices i1, . . . , is such that there are at least three distinct 
numbers among them we have

lim
N→∞

∂i1∂i2 . . . ∂is
log FN (�x)|�x=1 = 0.

• The power series

∞∑
k=1

ck

(k − 1)! (x − 1)k−1,

∞∑
k=1;l=1

dk,l

(k − 1)!(l − 1)! (x − 1)k−1(y − 1)l−1,

converge in an open neighborhood of x = 1 and (x, y) = (1, 1), respectively.

Definition 2.6. We say that a sequence of measures ρ = {ρN }N≥1 is appropriate (or CLT-
appropriate) if the sequence of its Schur generating functions {SρN

(x1, . . . , xN )}N≥1 is 
appropriate. For such a sequence we define functions

Fρ(x) =
∞∑

k=1

ck

(k − 1)! (x−1)k−1, Gρ(x, y) =
∞∑

k=1;l=1

dk,l

(k − 1)!(l − 1)! (x−1)k−1(y −1)l−1,

Qρ(x, y) = Gρ(1 + x, 1 + y) + 1
(x − y)2 .

General Example 2.7. Assume that the Schur generating function of a sequence of prob-
ability measures ρ = {ρN }N≥1 on GTN satisfies the conditions

lim
N→∞

∂1 log SρN
(x1, . . . , xk, 1N−k)

N
= U1(x1), for any k ≥ 1,

lim
N→∞

∂1∂2 log Sρ(x1, . . . , xk, 1N−k) = U2(x1, x2), for any k ≥ 1,

where U1(x), U2(x, y) are holomorphic functions, and the convergence is uniform in a 
complex neighborhood of unity. Then ρ is a (CLT-)appropriate sequence of measures 
with Fρ(x) = U1(x), Gρ(x, y) = U2(x, y).
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Indeed, for a uniform limit of holomorphic functions the order of taking derivatives and 
limit can be interchanged, which shows that the example above is correct. In applications 
studied in this paper all CLT-appropriate measures will come from the construction of 
Example 2.7. However, we prefer to prove theorems for a slightly more general setting 
of Definition 2.6.

Let ρN be a probability measure on GTN . Set

p
(N)
k :=

N∑
i=1

(λi + N − i)k
, k = 1, 2, . . . , λ = (λ1, . . . , λN ) is ρN -distributed.

The following theorem is the main result of this paper.

Theorem 2.8. Let ρ = {ρN }N≥1 be an appropriate sequence of measures on signatures 
with limiting functions Fρ(x) and Qρ(x, y) (see Definition 2.6).

Then the collection

{N−k(p(N)
k − Ep

(N)
k )}k∈N

converges, as N → ∞, in the sense of moments, to the Gaussian vector with zero mean 
and covariance

lim
N→∞

cov(p(N)
k1

, p
(N)
k2

)
Nk1+k2

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ(1 + z)
)k1

×
(

1
w

+ 1 + (1 + w)Fρ(1 + w)
)k2

Qρ(z, w)dzdw,

where the z- and w-contours of integration are counter-clockwise and ε � 1.

This theorem serves as a model example of our approach. However, for applications 
it is often required to study the joint distributions of several random particle systems. 
Our approach can be applied to (some of) these cases as well: We deal with them in the 
next sections.

2.3. General setting for several levels

Let us introduce a general construction of Markov chains which are analyzable by our 
methods.

For a positive integer m and ε > 0 let Λm
ε be the space of analytic symmetric functions 

in the region

{(z1, . . . , zm) ∈ C
m : 1 + ε > |z1| > 1 − ε, 1 + ε > |z2| > 1 − ε, . . . , 1 + ε > |zm| > 1 − ε}.
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We consider Λm
ε as a topological space with topology of uniform convergence in this 

region.
Consider Λm := ∪ε>0Λm

ε endowed with the topology of the inductive limit. Note 
that for f ∈ Λm the function f(x1, x2, . . . , xm) 

∏
1≤i<j≤m(xi − xj) is an (antisymmetric) 

analytic function. Therefore, it can be written as an absolutely convergent sum of mono-
mials xl1

1 . . . xlm
m , where li ∈ Z, i = 1, 2, . . . , m. Dividing both sides of such a sum by ∏

1≤i<j≤m(xi − xj), we obtain that each element of Λm can be written in a unique way 
as an absolutely convergent sum∑

λ∈GTm

cλsλ(x1, . . . , xm), cλ ∈ C,

in some neighborhood of the m-dimensional torus.
We consider a map pm,n : Λm → Λn with the following properties:
1) pm,n is a linear continuous map.
2) For every λ ∈ GTm we have

pm,n

(
sλ(x1, . . . , xm)

sλ(1m)

)
=

∑
μ∈GTn

c
pm,n

λ,μ

sμ(x1, . . . , xn)
sμ(1n) , c

pm,n

λ,μ ∈ R≥0.

This property says that the coefficients cpm,n

λ,μ must be nonnegative reals (rather than 
arbitrary complex numbers). Note that the sum in the right-hand side is absolutely 
convergent due to the definition of pm,n.

3) For any f ∈ Λm we have

f(1m) = pm,n(f)(1n).

In words, this property asserts that our map should preserve the value at unity.
It follows from conditions 2) and 3) that∑

μ∈GTn

c
pm,n

λ,μ = 1.

Since these coefficients are nonnegative reals one can consider them as transitional prob-
abilities of a Markov chain. In more details, let n1, . . . , ns be positive integers, and let 
pn2,n1 , . . . , pns,ns−1 be maps satisfying conditions above. Let ρ be a probability measure 
on GTns

. Define the probability measure on the set

GTn1 × GTn2 × · · · × GTns

via

Prob(λ(1), λ(2), . . . , λ(s)) = ρ(λ(s))
k∏

c
pni,ni−1

λ(i),λ(i−1) . (2.3)

i=2
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In Section 4 we prove a formula for the expectation of joint moments of signatures 
{λ(i)}i=1,...,s distributed according to this measure.

2.4. Main result: CLT for several levels

In this section we state three multi-level generalizations of Theorem 2.8. They are 
mainly shaped to the applications studied in the present paper. With the use of the 
construction from Section 2.3 it is possible to produce many other similar multi-level 
generalizations of Theorem 2.8; this should be regulated by applications that one has in 
mind.

We consider the following particular examples of the map pm,n from Section 2.3. In 
the first case, it is given by f(x1, . . . , xm) → f(x1, . . . , xn, 1m−n), for m > n. In the 
second case, it is given by sλ(x1, . . . , xm) → g(x1, . . . , xm)sλ(x1, . . . , xm), for m = n and 
a function g(x1, . . . , xm) which is a Schur generating function of a probability measure 
on GTm. Finally, in the third case we combine the two previous ones.

In an attempt to make the exposition more explicit, we repeat the construction of 
Section 2.3 in all three cases below.

Example 1. For λ ∈ GTk1 , μ ∈ GTk2 , with k1 ≥ k2, let us introduce the coefficients 
prk1→k2

(λ → μ) via

sλ(x1, . . . , xk2 , 1k1−k2)
sλ(1k1) =

∑
μ∈GTk2

prk1→k2
(λ → μ)sμ(x1, . . . , xk2)

sμ(1k2) . (2.4)

The branching rule for Schur functions asserts that the coefficients prk1→k2
(λ → μ) are 

non-negative for all λ, μ (see [42, Chapter 1.5]). Plugging in x1 = · · · = xk = 1, we see 
that 

∑
μ∈GTk2

prk1→k2
(λ → μ) = 1.

Let 0 < a1 ≤ a2 ≤ · · · ≤ an = 1 be fixed positive reals, and let ρN be a probability 
measure on GTN .

Let us introduce the probability measure on the set GT[a1N ] ×GT[a2N ] ×· · ·×GT[anN ]
via

Prob(λ(1), λ(2), . . . , λ(n)) := ρN (λ(n))
n−1∏
i=1

pr[ai+1N ]→[aiN ](λ(i+1) → λ(i)),

λ(i) ∈ GT[aiN ] (2.5)

(the fact that all these weights are summed up to 1 can be straightforwardly checked by 
induction over n).

We are interested in the joint distributions of random signatures of this random array. 
For t = 1, 2, . . . , n, let p[atN ]

k be a (shifted) power sum of coordinates of signatures defined 
by the formula
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p
[atN ]
k :=

[atN ]∑
i=1

(
λ

(t)
i + [atN ] − i

)k

, k = 1, 2, . . . ,

where λ(t) is distributed according to the measure (2.5).

Theorem 2.9. Assume that ρ = {ρN } is an appropriate sequence of probability measures 
on GTN , N = 1, 2, . . . , in the sense of Definition 2.6 and corresponding to functions 
Fρ and Qρ. Let us consider the probability measure on the sets of signatures defined by 
(2.5). In the notations above, the collection of random variables

{
N−k

(
p

[atN ]
k − Ep

[atN ]
k

)}
t=1,...,n;k≥1

converges, as N → ∞, in the sense of moments, to the Gaussian vector with zero mean 
and covariance:

lim
N→∞

cov
(

p
[at1 N ]
k1

, p
[at2 N ]
k2

)
Nk1+k2

=
ak1

t1
ak2

t2

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ(1 + z)
at1

)k1

×
(

1
w

+ 1 + (1 + w)Fρ(1 + w)
at2

)k2

Qρ(z, w)dzdw,

where 1 ≤ t1 ≤ t2 ≤ n and ε � 1.

Example 2. Let us start with the following classical fact. For λ, μ ∈ GTN there is a 
decomposition of the product of two Schur functions into a linear combination of Schur 
functions:

sλ(x1, . . . , xN )sμ(x1, . . . , xN ) =
∑

η∈GTN

cη
λμsη(x1, . . . , xN ). (2.6)

The coefficients cη
λμ are well-known under the name of Littlewood–Richardson coeffi-

cients. It is known that for arbitrary λ, μ, η they are nonnegative (see, e.g., [42, Chap-
ter 1.9]).

Let ρ = {ρN }, {r(1)
N }, {r(2)

N }, . . . , {r(n−1)
N } be sequences of appropriate measures, where 

ρN , r(1)
N , . . . , r(n−1)

N are probability measures on GTN . Let g
(N)
1 (�x), . . . , g(N)

n−1(�x) be the 

Schur generating functions of r(1)
N , r(2)

N , . . . , r(n−1)
N , respectively.

Define the coefficients st(N)
(gr)(λ → μ), for λ ∈ GTN , μ ∈ GTN , 1 ≤ r ≤ (n − 1), via

g(N)
r (�x) sλ(�x)

sλ(1N ) =
∑

st(N)
(gr)(λ → μ) sμ(�x)

sμ(1N ) . (2.7)

μ∈GTN
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Note that the series in the right-hand side is absolutely convergent and the coefficients 
st(N)

(gr) are nonnegative. Using (2.6), one can write an explicit formula for them:

st(N)
(gr)(λ → μ) =

∑
η∈GTN

sμ(1N )
sλ(1N )sη(1N )cμ

ληr
(r)
N (η).

Let us define a probability measure on the set

GTN × GTN × · · · × GTN︸ ︷︷ ︸
n factors

. (2.8)

We define the probability of the configuration

(λ(1), λ(2), . . . , λ(n)) ∈ GTN × GTN × · · · × GTN

via

Prob(λ(1), λ(2), . . . , λ(n)) := ρN (λ(n))
n−1∏
i=1

st(N)
gi

(λ(i+1) → λ(i)). (2.9)

Let p(N)
k;s be the kth shifted power sum of λ(s):

p
(N)
k;s :=

N∑
i=1

(
λ

(s)
i + N − i

)k

, k = 1, 2, . . . , (λ(1), . . . , λ(n)) is (2.9)-distributed.

Let

H(N)
n (�x) := SρN

(�x), H
(N)
n−1(�x) := H(N)

n (�x)g(N)
n−1(�x), ... , H

(N)
1 (�x) := H

(N)
2 (�x)g(N)

1 (�x).

(2.10)

It can be directly shown by induction that the functions H(N)
s (�x), are Schur generating 

functions of λ(s), s = 1, . . . , n. Moreover, they are appropriate (in the sense of Defini-
tion 2.5) because g(N)

i and SρN
are appropriate sequences of functions.

Let us denote the corresponding to {H
(N)
s }N≥1 limit functions from Definition 2.6 by 

Fρ;(s)(x), Gρ;(s)(x, y), and Qρ,(s)(x, y).

Theorem 2.10. Assume that ρ = {ρN }, {r(1)
N }, {r(2)

N }, . . . , {r(n−1)
N } are appropriate se-

quences of probability measures, and let g1(�x), . . . , gn−1(�x), Fρ,(s)(�x), Qρ,(s)(�x), pk;s, 
s = 1, . . . , n, be as above. Then the collection of random variables{

N−k
(

p
(N)
k;s − Ep

(N)
k;s

)}

k≥1;s=1,...,n
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converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance:

lim
N→∞

cov
(

p
(N)
k1;s1

, p
(N)
k2;s2

)
Nk1+k2

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ,(s1)(1 + z)
)k1

×
(

1
w

+ 1 + (1 + w)Fρ,(s2)(1 + w)
)k2

Qρ,(s2)(z, w)dzdw, (2.11)

where 1 ≤ s1 ≤ s2 ≤ n and ε � 1.

Example 3. Now let us turn to a case which unites the two previous ones. Let n be a 
positive integer and let 0 < a1 ≤ · · · ≤ an be reals. Let {r(1)

N }, {r(2)
N }, . . . , {r(n−1)

N }, {r(n)
N }

be appropriate sequences of probability measures such that r(i)
N is a probability measure 

on GT[aiN ]. Let g(N)
1 (x1, . . . , x[a1N ]), . . . , g(N)

n−1(x1, . . . , x[an−1N ]), g
(N)
n (x1, . . . , x[anN ]) be 

Schur generating functions of r(1)
N , r

(2)
N , . . . , r(n−1)

N , r
(n)
N , respectively.

Define the coefficients st(N)
(gr);r+1→r(λ → μ), for λ ∈ GT[ar+1N ], μ ∈ GT[arN ], 1 ≤ r ≤

(n − 1), via

g(N)
r (x1, . . . , x[arN ])

sλ(x1, . . . , x[arN ], 1[ar+1N ]−[arN ])
sλ(1[ar+1N ])

=
∑

μ∈GTN

st(N)
(gr);r+1→r(λ → μ)

sμ(x1, . . . , x[arN ])
sμ(1[arN ])

. (2.12)

Note that the series in the right-hand side is absolutely convergent and the coefficients 
st(N)

(gr) are nonnegative. Using (2.4) and (2.6), one can write an explicit formula for them:

st(N)
(gr);r+1→r(λ → μ) =

∑
η1∈GT[arN]

∑
η2∈GT[arN]

sμ(1[arN ])
sη1(1[arN ])sη2(1[arN ])

× cμ
η1η2

pr[ar+1N ]→[arN ](λ → η1)r(r)
N (η2).

In this definition we combine two operations on appropriate Schur generating functions 
which we use in the two previous cases: The substitution of 1’s into some variables and 
multiplication by a function.

Let us define the probability measure on the set

GT[a1N ] × GT[a2N ] × · · · × GT[an−1N ] × GT[anN ].

That is, we want to define the probability of a collection of signatures

(λ(1), λ(2), . . . , λ(n−1), λ(n)),
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where λ(i) is a signature of length [aiN ], i = 1, 2, . . . , n. Let us do this in the following 
way. We define this probability via

Prob(λ(1), λ(2), . . . , λ(n−1), λ(n)) := ρ[anN ](λ(n))
n−1∏
i=1

st(N)
(gi);r+1→r(λ(i+1) → λ(i)). (2.13)

Let p[atN ]
k;t be the kth shifted power sum of λ(t):

p
[atN ]
k;t :=

[atN ]∑
i=1

(
λ

(t)
i + [atN ] − i

)k

,

k = 1, 2, . . . , (λ(1), . . . , λ(n)) is (2.13)-distributed.

Let

H(N)
n (x1, . . . , x[anN ]) := g(N)

n (x1, . . . , x[anN ]),

H
(N)
n−1(x1, . . . , x[an−1N ]) := H(N)

n (x1, . . . , x[an−1N ], 1[anN ]−[an−1N ])g(N)
n−1(x1, . . . , x[an−1N ]),

. . . . . . . . . . . . . . .

H
(N)
1 (x1, . . . , x[a1N ]) := H

(N)
2 (x1, . . . , x[a2N ], 1[a2N ]−[a1N ])g(N)

1 (x1, . . . , x[an−1N ]).

It can be directly shown by induction that the functions H(N)
t (x1, . . . , x[atN ]), are Schur 

generating functions of λ(t), t = 1, . . . , n. Moreover, they are appropriate (in the sense 
of Definition 2.5) because g

(N)
i and SρN

are appropriate sequences of functions. Let 
us denote the corresponding limit functions by Fρ;(t)(x), Gρ;(t)(x, y), Qρ,(t)(x, y), for 
t = 1, 2, . . . , n.

Theorem 2.11. In the notations above, the collection of random functions{
N−k

(
p

[atN ]
k;t − Ep

[atN ]
k;t

)}
t=1,...,n;k∈N

is asymptotically Gaussian with the limit covariance

lim
N→∞

cov
(

p
[at1 N ]
k1;t1

, p
[at2 N ]
k2;t2

)
Nk1+k2

=
ak1

t1
ak2

t2

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ,(t1)(1 + z)
)k1

×
(

1
w

+ 1 + (1 + w)Fρ,(t2)(1 + w)
)k2

Qρ,(t2)(z, w)dzdw,

where 1 ≤ t1 ≤ t2 ≤ s and ε � 1.
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3. Applications

In this section we state several applications of general theorems from Sections 2.2
and 2.4. The theorems are split into two parts: Sections 3.2, 3.4 are devoted to problems 
of asymptotic representation theory, while Sections 3.5, 3.6, 3.7 deal with 2d lattice 
models of statistical mechanics.

3.1. Preliminary definitions

In a considerable part of our theorems an input is given by a sequence λ(N) ∈ GTN , 
N = 1, 2, . . . of signatures. Depending on the context, they encode irreducible repre-
sentations, boundary conditions in statistical mechanics models or initial conditions of 
Markov chains.

In our asymptotic results we are going to make the following technical assumption on 
the behavior of λ(N) as N becomes large.

Definition 3.1. A sequence of signatures λ(N) ∈ GTN is called regular, if there exists a 
piecewise-continuous function f(t) and a constant C such that

lim
N→∞

1
N

∑
j=1...,N

∣∣∣∣λj(N)
N

− f(j/N)
∣∣∣∣ = 0 (3.1)

and ∣∣∣∣λj(N)
N

− f(j/N)
∣∣∣∣ < C, j = 1, . . . , N, N = 1, 2, . . . . (3.2)

Remark 3.2. Informally, the condition (3.1) means that scaled by N coordinates of λ(N)
approach a limit profile f . The restriction that f(t) is piecewise-continuous is reasonable, 
since f(t) is a limit of monotonous functions and, thus, is monotonous (therefore, we 
only exclude the case of countably many points of discontinuity for f). This restriction 
originates in the asymptotic results of [28] and we believe that it, in fact, can be weakened 
for most applications, cf. [49], [43].

It is clear that if the sequence λ(N) is regular, then the sequence m[λ(N)] (defined 
by (2.1)) weakly converges to a probabilistic measure on R with compact support. The 
complete information about such measure can be encoded in several generating functions 
that we now define.

For a probability measure m on R with compact support let us define the Cauchy–
Stieltjes transform Cm(z) by

Cm(z) :=
∫
R

dm(x)
z − x

= z−1 + z−2
∫
R

xdm(x) + z−3
∫
R

x2dm(x) + . . . . (3.3)

This is a power series in z−1 which converges in a neighborhood of infinity.
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Define C(−1)
m (z) to be the inverse series to Cm(z), i.e. such that

C(−1)
m

(
Cm(z)

)
= Cm

(
C(−1)

m (z)
)

= z

(as a power series C(−1)
m (z) has a form 1

z + a0 + a1z + a1z2 + a2z3 + . . . ). Further, set

Rm(z) = C(−1)
m (z) − 1

z
. (3.4)

The function Rm(z) is well-known in the free probability theory under the name of 
Voiculescu R-transform, cf. [58], [48].

Integrating Rm(z), set

Hm(z) :=
ln(z)∫
0

Rm(t)dt + ln
(

ln(z)
z − 1

)
,

which should be understood as a holomorphic function in a neighborhood of z = 1.
The derivative of Hm(z) has a simpler form:

H ′
m(z) = C

(−1)
m (log(z))

z
− 1

z − 1 . (3.5)

The function H ′
m(z) plays an important role in the context of the quantized free convo-

lution, see [13].

3.2. Asymptotic decompositions of representations of U(N)

Here we briefly recall some facts about representations of the unitary group (see 
e.g. [27], [59], [60]) and state a central limit theorem for decompositions of their tensor 
products and restrictions.

Let U(N) be the group of all unitary N × N matrices. It is a classical fact that the 
irreducible representations of U(N) are parameterized by signatures of length N . Let us 
denote by πλ the irreducible representation of U(N) corresponding to the signature λ
(λ is the highest weight of this representation), and let dim(λ) denote the dimension of 
this representation.

Consider a reducible finite-dimensional representation TN of U(N) and let

TN =
⊕

λ∈GTN

cλπλ

be a decomposition of TN into irreducibles.
One of the basic ideas of asymptotic representation theory is to associate with TN a 

probability measure on the set of labels of irreducible representations. In the case of the 
unitary group this results into the definition of the probability measure ρTN

:
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ρTN
(λ) := cλ dim(πλ)

dim(TN ) , λ ∈ GTN . (3.6)

We reduce the study of the asymptotic behavior of such probability measures to their 
moments defined through

pTN

k :=
N∑

i=1
(λi + N − i)k, k = 1, 2, . . . , (λ1, . . . , λN ) is ρT (N)-distributed. (3.7)

One basic operation which creates reducible representations is tensor product. The 
decomposition of the (Kronecker) tensor product πλ ⊗πμ into irreducibles can be written 
with the use of classical Littlewood–Richardson coefficients cη

λμ:

πλ ⊗ πμ =
⊕

η∈GTN

cη
λμπη, λ, μ ∈ GTN ,

with an equivalent definition being (2.6). The Law of Large Numbers for tensor products 
was proven in [13], and here is the Central Limit Theorem.

For two probability measures m1 and m2 with compact support set

Q⊗
m1,m2(x, y) := ∂x∂y

(
log

(
1 − xy

(1 + x)H ′
m1(1 + x) − (1 + y)H ′

m1(1 + y)
x − y

)
+ log

(
1 − xy

(1 + x)H ′
m2(1 + x) − (1 + y)H ′

m2(1 + y)
x − y

))
+ 1

(x − y)2 . (3.8)

Theorem 3.3 (Central Limit Theorem for tensor products). Suppose that λ1(N), λ2(N) ∈
GTN , N = 1, 2, . . . , are regular sequences of signatures such that

lim
N→∞

m[λi(N)] = mi, i = 1, 2, weak convergence.

Let TN = πλ1(N) ⊗ πλ2(N). Then, as N → ∞, the random vector of moments (3.7){
N−k

(
pTN

k − EpTN

k

)}
k≥1

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance

lim
N→∞

cov
(

pTN

k1
, pTN

k2

)
Nk1+k2

= 1
(2πi)2

∮ ∮ (
1
z

+ 1 + (1 + z) (H ′
m1(1 + z) + H ′

m2(1 + z))
)k1
|z|=ε |w|=2ε
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×
(

1
w

+ 1 + (1 + w) (H ′
m1(1 + w) + H ′

m2(1 + w))
)k2

Q⊗
m1,m2(z, w)dzdw, (3.9)

where ε � 1, function H ′
m was defined in Section 3.1, and Q⊗

m1,m2 is defined in (3.8).

Remark 3.4. In this setting the operation of the tensor product of representations can be 
seen as a quantization of the summation of independent random matrices. The degen-
eration from representations to matrices is known as a semiclassical limit, see e.g. [13, 
Section 1.3] and references therein for details. Under this limit transition Theorem 3.3
turns into the result for the spectra of the sum of the Haar-distributed random Her-
mitian matrices with a fixed spectrum. In Section 9.4 we show that in this limit the 
covariance (3.9) turns into the covariance for the random matrix problem, which can be 
found in [53].

Remark 3.5. In a similar way one can prove a central limit theorem for decomposition 
of πλ1 ⊗ πλ2 ⊗ · · · ⊗ πλs for arbitrary positive integer s.

Remark 3.6. There is an approach to decomposition of tensor products via Perelomov–
Popov measures, see [13] for details. In this setting, one obtains a direct relation of these 
measures and free probability. It would be interesting to relate Theorem 3.3 and the 
concept of second-order freeness developed in [46], [45].

Proof of Theorem 3.3. Given that the character of πλ is precisely the Schur function sλ, 
and that taking tensor products corresponds to multiplying the characters, Theorem 3.3
is an immediate corollary of Theorem 2.8 and Proposition 8.4. �

We believe that Theorem 3.3 is new. Yet, there are simpler tensor products whose 
asymptotic decomposition were intensively studied before in the context of the Schur–
Weyl duality, cf. [2], [44]. For that consider a representation WN,n of U(N) in vector 
space (CN )⊗n via g(v1 ⊗ v2 ⊗ · · · ⊗ vn) = g(v1) ⊗ g(v2) ⊗ · · · ⊗ g(vn), g ∈ U(N). The 
decomposition of WN,n into irreducibles is governed by the Schur–Weyl measure, while 
its N → ∞ limit (when n is kept fixed) is the celebrated Plancherel measure of the 
symmetric group S(n).

Theorem 3.7 (Central Limit Theorem for Schur–Weyl measures). Assume that n = �cN2�
for c > 0 and let TN = WN,n, N = 1, 2, . . . . Then, as N → ∞, the random vector of 
moments (3.7)

{
N−k

(
pTN

k − EpTN

k

)}
k≥1

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance
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lim
N→∞

cov
(

pTN

k1
, pTN

k2

)
Nk1+k2

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + c + cz

)k1

×
(

1
w

+ 1 + c + cw

)k2 (
−c + 1

(z − w)2

)
dzdw, (3.10)

where ε � 1.

Proof. It is easy to see that the Schur generating function of TN is given by the normal-
ized character of this representation:

SρN,n
(x1, . . . , xN ) = (x1 + x2 + · · · + xN )n

Nn
.

We have

lim
N→∞

∂1 log SρN,n
(x1, 1N−1)

N
= lim

N→∞

cN2∂1
[
log

(
x1
N + N−1

N

)]
N

= c,

lim
N→∞

∂1∂2 log SρN,n
(x1, x2, 1N−2) = lim

N→∞
∂1∂2

[
cN2 log

(
x1

N
+ x2

N
+ N − 2

N

)]
= −c.

It remains to use Theorem 2.8. �
An earlier proof of Theorem 3.7 is given in [44], while its c → 0 version is the Kerov’s 

Central Limit Theorem for the Plancherel measure, see [38], [32].
Another natural operation on representations of U(N) is restriction onto the subgroup 

U(M) ⊂ U(N), where U(M) is identified with the subgroup of U(N) fixing the last 
N − M coordinate vectors.

Theorem 3.8 (Central Limit Theorem for restrictions). Suppose that λ(N) ∈ GTN , N =
1, 2, . . . , is a regular sequence of signatures such that

lim
N→∞

m[λ(N)] = m, i = 1, 2, weak convergence.

Take 0 < a < 1 and let TN be a representation of U(�αN�) given by TN = πλ(N)|U(�αN�). 
Then, as N → ∞, the random vector of moments (3.7)

{
N−k

(
pTN

k − EpTN

k

)}
k≥1

converges, in the sense of moments, to the Gaussian vector with zero mean and covari-
ance
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lim
N→∞

cov
(

pTN

k1
, pTN

k2

)
Nk1+k2

= ak1+k2

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)H′
m(1 + z)

a

)k1 ( 1
w

+ 1 + (1 + w)H′
m(1 + w)

a

)k2

×
(

∂z∂w

[
log

(
1 − zw

(1 + z)H′
m(1 + z) − (1 + w)H′

m(1 + w)
z − w

)]
+ 1

(z − w)2

)
dzdw,

(3.11)

where ε � 1 and function H ′
m was defined in Section 3.1.

Theorem 3.8 is a particular case of Theorem 3.14, where we also present a more elegant 
formula for the limiting covariance, expressing it in terms of a section of the Gaussian 
Free Field, which we define next.

3.3. Preliminaries: 2d Gaussian Free Field

A Gaussian family is a collection of Gaussian random variables {ξa}a∈Υ indexed by 
an arbitrary set Υ. We assume that all our random variables are centered, i.e.

Eξa = 0, for all a ∈ Υ.

Any Gaussian family gives rise to a covariance kernel Cov : Υ × Υ → R defined by

Cov(a1, a2) = E(ξa1ξa2).

Assume that a function C̃ : Υ ×Υ → R is such that for any n ≥ 1 and a1, . . . , an ∈ Υ, 
[C̃(ai, aj)]ni,j=1 is a symmetric and positive-definite matrix. Then (see e.g. [16]) there 
exists a centered Gaussian family with the covariance kernel C̃.

Let H := {z ∈ C : I(z) > 0} be the upper half-plane, and let C∞
0 be the space of 

smooth real-valued compactly supported test functions on H. Let us set

G̃(z, w) := − 1
2π

ln
∣∣∣∣z − w

z − w̄

∣∣∣∣ , z, w ∈ H,

and define a covariance kernel C : C∞
0 × C∞

0 → R via

C(f1, f2) :=
∫
H

∫
H

f1(z)f2(w)G̃(z, w)dzdz̄dwdw̄.

The Gaussian Free Field (GFF) G on H with zero boundary conditions can be defined 
as a Gaussian family {ξf }f∈C∞

0 with covariance kernel C. The field G cannot be defined 
as a random function on H, but one can make sense of the integrals 

∫
f(z)G(z)dz over 
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finite contours in H with continuous functions f(z), see [55], [19, Section 4], [31, Section 2]
for more details.

In our results GFF will play a role of the universal limit object for two-dimensional 
fluctuations of probabilistic models under consideration. In this sense, GFF plays a 
similar role to Brownian motion and Gaussian distribution.

3.4. Extreme characters of U(∞)

In this section we switch from U(N) to its infinite-dimensional version. Consider the 
tower of embedded unitary groups

U(1) ⊂ U(2) ⊂ · · · ⊂ U(N) ⊂ U(N + 1) ⊂ . . . , U(N) = {uij}N
i,j=1,

where U(N) is embedded into U(N +1) as the subgroup fixing the last coordinate vector. 
The infinite-dimensional unitary group is the inductive limit of these groups:

U(∞) :=
∞⋃

N=1
U(N).

Define a character of the group U(∞) as a continuous function χ : U(∞) → C that 
satisfies the following conditions:

• χ(e) = 1, where e is the identity element of U(∞) (normalization);
• χ(ghg−1) = χ(h), where g, h are any elements of U(∞) (centrality);
• [χ(gig

−1
j )]ni,j=1 is an Hermitian and positive-definite matrix for any n ≥ 1 and 

g1, . . . , gn ∈ U(∞) (positive-definiteness).

The space of characters of U(∞) is obviously convex. The extreme points of this space 
are called extreme characters; they replace characters of irreducible representations in 
this infinite-dimensional setting. The classification of the extreme characters of U(∞) is 
known as the Edrei–Voiculescu theorem (see [57], [24], [56], [51], [10]). It turns out that 
the extreme characters can be parameterized by the set Ω = (α+, α−, β+, β−, γ+, γ−), 
where

α± = α±
1 ≥ α±

2 ≥ · · · ≥ 0,

β± = β±
1 ≥ β±

2 ≥ · · · ≥ 0,

γ± ≥ 0,
∞∑

i=1
(α±

i + β±
i ) ≤ ∞, β+

1 + β−
1 ≤ 1.

Each ω ∈ Ω gives rise to a function Φω : {u ∈ C : |u| = 1} → C via

Φω(u) := exp(γ+(u − 1) + γ−(u−1 − 1))
∞∏ (1 + β+

i (u − 1))
(1 − α+(u − 1))

(1 + β−
i (u−1 − 1))

(1 − α−(u−1 − 1))
. (3.12)
i=1 i i
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Then the extreme character of U(∞) corresponding to ω ∈ Ω is χω given by

χω(U) :=
∏

u∈Spectrum(U)

Φω(u), U ∈ U(∞)

(this product is essentially finite, because only finitely many of u’s are distinct from 1).
Each character gives rise to a probabilistic object known as the central measure on 

the Gelfand–Tsetlin graph. Let us present the necessary definitions.
The Gelfand–Tsetlin graph GT is defined by specifying its set of vertices as 

⋃∞
N=0 GTN

and putting an edge between any two signatures λ ∈ GTN and μ ∈ GTN−1 such that 
they interlace μ ≺ λ, which means

λ1 ≥ μ1 ≥ λ2 ≥ · · · ≥ μN−1 ≥ λN .

We agree that GT0 consists of a single empty signature ∅ joined by an edge with each 
vertex of GT1. A path between signatures κ ∈ GTK and υ ∈ GTN , K < N , is a sequence

κ = λ(K) ≺ λ(K+1) ≺ · · · ≺ λ(N) = υ, λ(i) ∈ GTi, K ≤ i ≤ N.

An infinite path is a sequence

∅ ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(k) ≺ λ(k+1) ≺ . . . .

We denote by PN the set of all paths starting in ∅ and of length N . We denote by P
the set of all infinite paths.

For any character χ of U(∞) one can associate a probability measure on paths P. 
Indeed, for any fixed N let us define a probability measure Mχ

N on GTN via the linear 
decomposition

χ|U(N) =
∑

λ∈GTN

Mχ
N (λ)sλ(u1, . . . , uN )

sλ(1N ) .

Next, define a weight of a subset of P consisting of all paths with prescribed members 
up to GTN by

P χ(λ(1), λ(2), . . . , λ(N)) = Mχ
N (λ(N))
sλ(1N ) . (3.13)

Note that this weight depends on λ(N) only. It can be easily deduced from the branching 
rules for characters of U(N) that this definition is consistent and correctly defines a 
probability measure μχ on P.

We will analyze the asymptotics of probability measures corresponding to certain 
sequences of extreme characters

ω(N) = {{α+
i (N)}i≥1, {α−

i (N)}i≥1, {β+
i (N)}i≥1, {β−

i (N)}i≥1, γ+(N), γ−(N)}.
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In more detail, we will assume that a sequence ω(N) satisfies the following condition.

Condition. We will consider sequences ω(N) such that, as N → ∞, we have

1
N

∑
i≥1

δ(α+
i (N)) → A+,

1
N

∑
i≥1

δ(β+
i (N)) → B+, lim

N→∞

γ+(N)
N

= Γ+,

1
N

∑
i≥1

δ(α−
i (N)) → A−,

1
N

∑
i≥1

δ(β−
i (N)) → B−, lim

N→∞

γ−(N)
N

= Γ−, (3.14)

where A+, A−, B+, B− are arbitrary finite (not necessarily probability) measures on 
R with compact support, Γ+, Γ− are two positive real numbers, and we consider the 
convergence of finite measures in the weak sense. We will denote by J the sextuple (A+,

A−, B+, B−, Γ+, Γ−) which consists of 4 finite measures and 2 real numbers.
A direct computation shows that if a sequence ω(N) satisfies the condition (3.14), 

then we have the following convergence of the Voiculescu functions (3.12)

lim
N→∞

∂z log Φω(N)(1 + z)
N

= F(1 + z), uniformly in |z| < ε, ε > 0, (3.15)

where F = FJ is determined by J with the use of the formula (9.7); we do not need the 
explicit formula for it at this moment.

The description of CLT for extreme characters involves the following functions.

Proposition 3.9. Let F(z) = FJ(z) be the function which is obtained in the limit (3.15). 
For any y ∈ R and η > 0 the equation

1
z

+ 1 + (1 + z)F(1 + z)
η

= y

η

has at most one root z ∈ H. Let DF ∈ R
2 be the set of pairs (y, η) such that this root 

exists. Then the map DF → H from such a pair to such a root is a diffeomorphism.

We prove this proposition in Section 9.2.
Let z → (yF(z), ηF(z)) be an inverse of the map given by Proposition 3.9. Proposi-

tion 3.9 introduces coordinates in which the fluctuations of extreme characters become 
a Gaussian Free Field.

In order to make this statement precise, let us introduce the height function HN :
R × R≥1 × P → Z≥0 given by the formula

HN (y, η, {λ(j)}j≥1) :=
∣∣∣{1 ≤ i ≤ �Nη� : λ

(Nη)
i + �Nη� − i ≥ Ny

}∣∣∣ , (3.16)

where λ(Nη)
i are the coordinates of the signature from GT�Nη� in the path which belongs 

to P.



A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702–781 729
Let us equip P with a probability measure μχω , where ω = ω(N) satisfies the condition 
(3.15). Then HN (y, η) := HN (y, η, ·) becomes a random function which describes a 
certain random stepped surface.

Let us carry HN (y, η) over to H through

HN (z) := HN (yF(z), ηF(z)), z ∈ H.

One might worry that some information is lost in this transformation, as the image of 
the map z → (yF(z), ηF(z)) is smaller than R × R≥0, yet the configuration is actually 
frozen outside this image and there are no fluctuations to study, cf. Figs. 2, 3, where 
random tilings are frozen outside inscribed circles.

For η > 0 and k = 1, 2, . . . define a moment of the random height function as

M
ω(N)
η,k =

+∞∫
−∞

yk (HN (y, η) − EHN (y, η)) dy.

Also define the corresponding moment of GFF via

MF
η,k =

∫
z∈H|ηF(z)=η

yF(z)kG(z)dyF(z)
dz

dz.

Theorem 3.10 (Central Limit Theorem for extreme characters). Assume that the sequence 
of extreme characters ω(N) satisfies condition (3.14). Let HN (z) be a random height 
function on H corresponding to ω(N) as above. Then

√
π (HN (z) − EHN (z)) −−−−→

N→∞
G(z).

In more details, as N → ∞, the collection of random variables {√
πM

ω(N)
A,k }A>0;k∈Z≥0

converges, in the sense of moments, to {MF
A,k}A>0;k∈Z≥0 .

Remark 3.11. For explicit expressions for the covariance of {MF
A,k}A>0;k∈Z≥0 see (9.14).

Remark 3.12. The condition (3.14) for the growth of extreme characters was introduced 
and studied in [4], where the law of large numbers for this probabilistic model was proven. 
Among other connections, the condition (3.14) is related to the hydrodynamical limit 
of random surfaces related to probabilistic particle systems with local interaction, see 
Section 3.3 of [4] for more details.

The proof of Theorem 3.10 is given in Section 9.2. We believe that this statement is 
new for general extreme characters. For the very special case when the only non-zero 
parameter in (3.14) is Γ+ it was previously proven in [8], [3].

The paths of PN and P can be identified with lozenge tilings, which leads us to 
statistical mechanics applications.
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Fig. 1. Lozenge tilings of halfplane corresponding to paths of P. Left panel: Horizontal lozenges encode 
coordinates of signatures in path. Right panel: Some values of the height function.

3.5. Lozenge tilings

Consider a (right) halfplane on the regular triangular lattice. We would like to tile
this halfplane with lozenges (rhombuses) of three types: horizontal , and two others 
, . Let P̂ denote the set of complete tilings of the half-plane subject to two boundary 

conditions: the lozenges become as one goes far up and as one goes far down, see 
Fig. 1.

There is a natural bijection between P̂ and the set P of paths in the Gelfand–Tsetlin 
graph. For that observe that due to combinatorial constraints, there are precisely N

horizontal lozenges with horizontal coordinate N in a tiling of P̂. Let yN
1 > yN

2 > · · · >

yN
N denote the coordinates of these lozenges, where the coordinate system is shown in 

Fig. 1. Then define λ(N) ∈ GTN through

yN
i = λ

(N)
i + N − i, 1 ≤ i ≤ N. (3.17)

A direct check shows that then λ(1) ≺ λ(2) ≺ . . . and moreover (3.17) is a one-to-one 
correspondence between P̂ and P.

In terms of lozenge tilings, the height function HN (y, η, ·) has a very transparent 
meaning: for a given (y, η) it counts the number of horizontal lozenges above (Ny, Nη), 
cf. Fig. 1.2 In this way Theorem 3.10 can be restated as a Central Limit Theorem for 
certain probability measures on lozenge tilings.

2 Many articles use another definition, counting the number of lozenges of types , below the point 
(Ny, Nη). Two definitions of the height function are related by an affine transform, and so the CLT for 
them is the same.
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Fig. 2. Left panel: Lozenge tiling of a trapezoid domain of width N = 6. Right panel: Tilings of a hexagon 
can be identified with tilings of a specific trapezoid domain. Here a sample of uniformly random tiling of 
50 × 50 × 50 hexagon is shown.

There is also a different family of probability measures on lozenge tilings, which we 
can analyze. The definition of these measures is purely combinatorial. Instead of tiling 
a half-plane, let us take a strip of width N , allowing N horizontal lozenges to stick out 
of its right-boundary, see Fig. 1 and left panel of Fig. 2. Note that if we fix the lozenges 
along the right-boundary, then the tiling is deterministic outside a finite trapezoid: above 
the trapezoid we observe only lozenges, and below there are only lozenges (such a 
trapezoid is also shown in the left panel of Fig. 2).

Repeating the bijection P̂ ↔ P we arrive at a correspondence between paths from 
PN and lozenge tilings of trapezoids.

Let us fix λ(N) ∈ GTN and consider the set PN (λ(N)) ⊂ PN of all paths between ∅
and λ(N). This is a finite set. Let us equip this set with a uniform probability measure. 
We are interested in the asymptotic behavior of random paths distributed according 
to this measure. In terms of lozenge tilings, we consider a uniformly random tiling of 
a trapezoid of width N with prescribed (deterministic) positions of horizontal lozenges 
along the right boundary.

Repeating (3.16) we now define the (random) height function Hλ(N)(y, η) of such 
path. As before, in terms of a lozenge tiling, it counts the number of horizontal lozenges 

above a point Ny, Nη. Note that we now have 0 ≤ η ≤ 1, as the tiling is not defined 
outside this range.

As in Section 3.4, the CLT for Hλ(N)(y, η) involves a certain map to the upper half-
plane H. Let us introduce it.

For a probability measure m with compact support on R, we define a map z →
(ym(z), ηm(z)), H → R × R via

ym(z) = z + (z − z̄)(exp(Cm(z̄)) − 1) exp(Cm(z))
exp(Cm(z)) − exp(Cm(z̄)) ,

ηm(z) = 1 + (z − z̄)(exp(Cm(z̄)) − 1)(exp(Cm(z)) − 1)
.
exp(Cm(z)) − exp(Cm(z̄))
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Note that the expressions on the right-hand side of the equations above are invariant 
with respect to complex conjugations, so ym(z) and ηm(z) are indeed real for any z. Let 
Dm ⊂ R

2 be the image of this map. Also set

Fm;η(z) := z + 1 − η

exp(−Cm(z)) − 1 .

Proposition 3.13. a) Assume that m is a probability measure with compact support and 
density ≤ 1 with respect to the Lebesgue measure. Then the map z → (ym(z), ηm(z)) is 
a diffeomorphism between H and Dm ⊂ R × [0, 1].

b) This diffeomorphism can be defined in another way. For fixed (y, η) ∈ R × [0, 1] con-
sider the equation Fm;η(z) = y. Then this equation has either 0 or 1 root in H. Moreover, 
there is a root in H if and only if (y, η) ∈ Dm, and if we put into correspondence to the 
pair (y, η) ∈ Dm the root from H we obtain the inverse of the map z → (ym(z), ηm(z)).

Proof. This is Theorem 2.1 of [23]. Note that there is a slight difference in notations: 
χ = ym + 1 − ηm and ηm = η, where (χ, η) is a notation from [23]. �

As in Section 3.4 we carry the height function Hλ(N)(y, η) over to H through

HN (z) := Hλ(N)(ym(z), ηm(z)), z ∈ H.

As before, we do not lose any information here, as the tiling is frozen outside Dm and 
there are no fluctuations, cf. right panel of Fig. 2, where the lozenge tiling is frozen 
outside the circle inscribed into the hexagon.

Define a moment of the random height function as

M
λ(N)
η,k =

+∞∫
−∞

yk
(

Hλ(N)(y, η) − EHλ(N)(y, η)
)

dy, 0 < η ≤ 1, k ∈ N.

Also define the corresponding moment of GFF via

Mm
η,k =

∫
z∈H;η=ηm(z)

ym(z)kG(z)dym(z)
dz

dz, 0 < η ≤ 1, k ∈ N.

Theorem 3.14 (Central Limit Theorem for lozenge tilings). Suppose that λ(N) ∈ GTN , 
N = 1, 2, . . . , is a regular sequence of signatures such that

lim
N→∞

m[λ(N)] = m, weak convergence, (3.18)

and let HN (z) be the height function for the uniformly random element of PN (λ(N)). 
Then

√
π (HN (z) − EHN (z)) −−−−→ G(z), z ∈ H,
N→∞
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Fig. 3. Left panel: Domino tiling of Aztec diamond of size 5 and corresponding particle system. Right 
panel: Uniformly random domino tiling of Aztec diamond of size 80. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

in the sense that, as N → ∞, the collection of random variables {√
πM

λ(N)
η,k }η>0;k∈Z≥0

converges, in the sense of moments, to {Mm
η,k}η>0;k∈Z≥0 .

Remark 3.15. For explicit expressions for the covariance of {Mm
η,k}η>0;k∈Z≥0 , see 

Lemma 9.2.

The proof of Theorem 3.14 is given in Section 9.1, and we believe that in this generality 
it is new.

The convergence to the Gaussian Free Field for certain lozenge tiling models was 
first obtained by Kenyon [37]. Theorem 3.14 is closely related to the result obtained by 
Petrov [54]. There are two differences: First, in [54] the convergence is obtained only for 
measures m which consist of finitely many segments with density 1. In Theorem 3.14
an arbitrary measure m with compact support is allowed. The second difference is that, 
though the limit object is the same, the convergence is proved for different sets of ob-
servables.

3.6. Domino tilings

In this section we switch from the triangular grid to the square grid and replace 
lozenges by dominos. Consider an Aztec diamond of size N , which is the side N “saw-
tooth” rhombus drawn on the square grid, as shown in Fig. 3. Following [25], we consider 
tilings of this rhombus with vertical and horizontal 2 × 1 dominos. For a positive real q
it is known that

∑
qnumber of horizontal dominos in Ω = (1 + q)N(N+1)/2.
Ω is a domino tiling of size N Aztec diamond
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Let us pick a random tiling of size N Aztec diamond according to the probability measure 
qnumber of horizontal dominos · (1 + q)−N(N+1)/2. A sample from this measure for q = 1 is 
shown in the right panel of Fig. 3.

Similarly to Section 3.5, we can identify domino tilings with sequences of signatures, 
although the construction is more delicate this time. Coloring the grid in the checker-
board order, we can distinguish four types of dominos: two vertical ones , and two 
horizontal ones , . We further choose one of the horizontal types and one of the 

vertical types; for the sake of being definite let us choose and . We stick to these 
two types and put green particles on the gray squares (of the checkerboard coloring) and 
yellow particles on the white squares, as shown in the left panel of Fig. 3.

Reading the yellow particle configuration from up-right to down-left, we observe N
slices with 1, 2, . . . , N particles, respectively; a 3-particle slice is shown in Fig. 3. The 
particles of the t-particle slice have coordinates y1

t > y2
t > · · · > yt

t , which we identify 
with a signature λ(t) ∈ GTt through

yt
i = λ

(t)
i + t − i, 1 ≤ i ≤ t ≤ N.

We can now define the height function HN(y, η) of uniformly random domino tiling of 
the size N Aztec diamond through the very same formula (3.16) as before. In terms of 
tilings, the height function counts the yellow particles in the down-right direction on the 
given diagonal (of fixed η and growing y) from the point (Ny, Nη).

As before we would like to carry the height function to the upper half-plane. For that 
we need the following proposition.

Proposition 3.16. For any y ∈ R and η ∈ (0; 1] the equation

z2(q − yq) + z(ηq + η + q − y(1 + q)) + η(1 + q) = 0, (3.19)

has 0 or 1 root in H. It has a root in H if and only if the pair (y, η) lies in the ellipse 
inscribed in the Aztec diamond

DA = {(y, η) :
(

(y − η)2

q
+ (y + η − 1)2

)
(1 + q) ≤ 1}.

The map DA → H given by this root is a diffeomorphism. We denote by z →
(yA(z), ηA(z)) the inverse of this map.

This proposition coincides with Lemma 5.1 from [17].
Let us carry HN (y, η) over to H — define

HA;N (z) := HN (yA(z), ηA(z)), z ∈ H.

For 0 < η ≤ 1 and k = 1, 2, . . . , define a moment of the random height function as
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MA,N
η,k =

+∞∫
−∞

yk (HN (y, η) − EHN (y, η)) dy.

Also define the corresponding moment of GFF via

MA
η,k =

∫
z∈H|ηA(z)=η

yA(z)kG(z)dyA(z)
dz

dz.

Theorem 3.17 (Central Limit Theorem for the domino tilings of the Aztec diamond). Let 
HA;N (z) be a random function corresponding to the uniformly random domino tiling of 
the Aztec diamond in the way described above. Then

√
π
(
HA;N (z) − EHA;N (z)

)
−−−−→
N→∞

G(z).

In more details, as N → ∞ the collection of random variables {√
πMA,N

η,k }0<η<1;k∈Z≥0

converges, in the sense of finitely-dimensional distributions, to {MA
η,k}0<η<1;k∈Z≥0 .

Remark 3.18. For the explicit expression for the covariance of {MA
η,k} see (9.16).

Theorem 3.17 was first announced in [17] without technical details. Our proof is given 
in Section 9.3. Moreover, Theorem 3.17 can be extended to random domino tilings of 
more general domains, as shown in [15].

3.7. Noncolliding random walks

We proceed to our final application. Here the general framework is to study N inde-
pendent identical random walks on Z conditioned to have no collisions with each other. 
This model is quite general, as one can start from different random walks, and also the 
initial configuration for the conditional process might vary.

Here we stick to three simplest random walks (but it is natural to expect that the 
results generalize far beyond that). Let R be one of the following:

• The continuous time Poisson random walk R = Rγ of intensity γ > 0.
• The discrete time Bernoulli random walk R = Rβ , where at each moment the particle 

can either jump to the right by one with probability 0 < β < 1 or stay put with 
probability 1 − β.

• The discrete time geometric random walk R = Rα, where for α > 0 at each moment 
the particle jumps to the right i steps with probability (1 − α)αi, i = 0, 1, 2, . . . .

We now define for each N = 1, 2, . . . the N -dimensional noncolliding process XN ;R. 
We fix an arbitrary initial condition XN ;R

1 (0) > · · · > XN ;R
N (0), take N independent 

identically R-distributed random walks started from points XN ;R
1 (0), . . . XN ;R

N (0) and 
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Fig. 4. Four noncolliding Poisson random walks started at configuration (1, 4, 5, 10) and the positions of 
walkers at time t = 2.

define XN ;R(t) as the conditional process given that the trajectories of these random 
walks do not intersect (at all times t ≥ 0), cf. Fig. 4. Note that the condition has 
probability zero, and so one needs to make sense of it. One way here is to start with 
considering distinct ordered speeds (which correspond to the parameters γ, β or α), 
and then make them all equal through a limit transition. We refer to [50], [39] for the 
details of the construction. The result is that XN ;R is a Markov process, which fits 
into the formalism of Section 2.3, more specifically, the maps pN,N are given by the 
multiplication, as in Example 2 of Section 2.4.

Let us identify the points of XN ;R with a signature λ through

XN ;R
i = λi + N − i. (3.20)

In this notation, if R = Rγ and λ(1), . . . λ(n) describe XN ;R(t) at times t1 > t2 > · · · >

tn = 0, then (in the notations of Example 2 in Section 2.4),

gk = exp
(

−Nγ(tk − tk+1) + γ(tk − tk+1)
N∑

i=1
xi

)
, k = 1, . . . , n − 1. (3.21)

If R = Rβ , then (this time tk should be integers)

gk =
N∏

i=1

(
1 + β(xi − 1)

)tk−tk+1 , k = 1, . . . , n − 1. (3.22)

If R = Rα, then (again tk are integers)

gk =
N∏

i=1

(
1

1 − α(xi − 1)

)tk−tk+1

, k = 1, . . . , n − 1. (3.23)

We are in a position to consider the large N -limit of these models. For that assume that 
XN ;R(0) is given through (3.20) by a signature λ(N), and as N → ∞ these signatures 
are regular in the sense of Definition 3.1. Let us choose some k times τ1 > τ2 > · · · >

τk > 0 and consider XN ;R(t) at t = Nτ1, Nτ2, . . . , Nτk. Then using Theorems 8.1, 8.2
for the asymptotic of Schur generating function for λ(N), and explicit formulas (3.21), 
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(3.22), (3.23) we can use Theorem 2.10 and obtain the Central Limit Theorem for the 
global fluctuations of XN ;R(Nτ1), . . . , XN ;R(NτN ). The fluctuations are asymptotically 
Gaussian with covariance given by the double contour integral (2.11). It is plausible that 
the covariance structure can be again described in terms of the Gaussian Free Field, as 
in Sections 3.4, 3.5, 3.6, but we do not address this question in the present paper.

As far as we know, the CLT for global fluctuations was not addressed before in this 
generality. The situation is different for a special case of densely packed initial condition 
λ(N) = (0N ). Then for R = Rγ the CLT (and identification with the Gaussian Free 
Field) was previously addressed in [8] by the technique of determinantal point processes 
and in [3], [41] by computations in the universal enveloping algebra of U(N). Further, for 
all three cases R = Rγ , Rβ , Rα (and still λ(N) = (0N )) the CLT for global fluctuations 
was established in [21] by employing recurrence relations for orthogonal polynomials.

4. Formula for moments

Our method of proof is based on the fact that given the knowledge of Schur generating 
function of a probability measure, one can compute its moments. In order to do this, 
one can apply a certain family of differential operators such that the Schur functions are 
eigenfunctions of these operators. In more details, it is a straightforward computation 
that for a probability measure ρN on GTN with the Schur generating function SN (�x) we 
have

1
VN (�x)

N∑
i=1

(xi∂i)kVN (�x)SN (�x)

∣∣∣∣∣
�x=1

=
∑

λ∈GTN

ρN (λ)
N∑

i=1
(λi +N − i)k = E

N∑
i=1

(λi +N − i)k.

More generally, we have

1
VN (�x)

N∑
i=1

(xi∂i)k
N∑

j=1
(xj∂j)lVN (�x)SN (�x)

∣∣∣∣∣∣
�x=1

= E
(

N∑
i=1

(λi + N − i)k
N∑

i=1
(λi + N − i)l

)
, (4.1)

and the similar formulas hold for the joint moments of several power sums of coordinates.
Let us address now a general case of Markov chains introduced in Section 2.3. In 

Proposition 4.3 below we prove a general formula for moments in this setting. Similar 
formulas for Macdonald processes can be found in [6, Section 4].

We will need the following technical lemmas.

Lemma 4.1. Assume that the sum∑
cl1,...,lN

xl1
1 xl2

2 . . . xlN

N , cl1,...,lN
∈ R, (4.2)
l1,...,lN ∈Z



738 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702–781
absolutely converges in an open neighborhood of the N -dimensional torus {(x1, . . . , xN ) :
|x1| = 1, . . . , |xN | = 1}. Let {ml1,...,lN

}l1,...,lN ∈Z be a sequence of reals such that 
|ml1,...,lN

| ≤ C
(
|l1|k + · · · + |lN |k

)
, where C is a positive real. Then the sum

∑
l1,...,lN ∈Z

ml1,...,lN
cl1,...,lN

xl1
1 xl2

2 . . . xlN

N ,

absolutely converges in an open neighborhood of the N -dimensional torus.

Proof. Let ε > 0 be a real number such that the series (4.2) absolutely converges in 
{(x1, . . . , xN ) : 1 − ε ≤ |xi| ≤ 1 + ε, i = 1, . . . , N}. Consider a series

∑
l1,...,lN ∈Z

∑
signs

|cl1,...,lN
||1 ± ε|l1 |1 ± ε|l2 . . . |1 ± ε|lN , (4.3)

where the sum over signs contains 2N terms corresponding to different choices of signs 
in ± inside the arguments. Note that this series is convergent. Assume that l1, . . . , ls are 
positive, and ls+1, . . . , lN are negative. Then

(1 + ε)l1 . . . (1 + ε)ls(1 − ε)ls+1 . . . (1 − ε)lN ≥ |x1|l1 |x2|l2 . . . |xN |lN . (4.4)

Since for any li’s there is a term of the form (4.4) in the summation (4.3), we obtain 
that there exists D > 1 such that the series

∑
l1,...,lN ∈Z

|cl1,...,lN
|D|l1|+···+|lN |

is convergent. This implies the statement of the lemma. �
Lemma 4.2. Assume that the series

∑
λ∈GTN

cλsλ(x1, . . . , xN ), cλ ∈ R≥0,

absolutely converges in an open neighborhood of the N -dimensional torus {(x1, . . . , xN ) :
|x1| = 1, . . . , |xN | = 1}. Let {mλ}λ∈GTN

be a sequence of reals such that |mλ| ≤
C

(
|λ1|k + · · · + |λN |k

)
, where λ = (λ1, . . . , λN ) and C is a positive real. Then the sum

∑
λ∈GTN

mλcλsλ(x1, . . . , xN ), cλ ∈ R≥0

absolutely converges in an open neighborhood of the N -dimensional torus.
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Proof. Set

f(x1, . . . , xN ) :=
∑

λ∈GTN

cλsλ(x1, . . . , xN ), cλ ∈ R≥0.

Then f(x1, . . . , xN ) is an analytic symmetric function in a neighborhood of the 
N -dimensional torus. Therefore, f(x1, . . . , xN ) 

∏
1≤i<j≤N (xi − xj) is an analytic anti-

symmetric function and can be written as an absolutely convergent sum of monomials:

f(x1, . . . , xN )
∏

1≤i<j≤N

(xi − xj) =
∑

l1,...,lN ∈Z

cl1,...,lN
xl1

1 . . . xlN

N .

Due to antisymmetry we can consider only terms with l1 > l2 > · · · > lN . Then 
Lemma 4.1 shows that the sum∑

l1>···>lN ∈Z

m(l1−N+1,l2−N+2,...,lN )cl1,...,lN
xl1

1 . . . xlN

N

is absolutely convergent in some neighborhood of the N -dimensional torus. Multiplying 
this series by the inverse of the Vandermond determinant, we obtain that the desired 
series ∑

λ∈GTN

mλcλsλ(x1, . . . , xN ), (4.5)

absolutely converges in the region 
∏

i<j(xi − xj) > δ for any δ > 0. Since the series (4.5)
consists of analytic functions, the use of the Cauchy integral formula gives the absolute 
convergence in a neighborhood of the torus. �

For a positive integers m, n set

D(n)
m :=

∏
1≤i<j≤n

1
xi − xj

(
n∑

i=1
(xi∂i)m

) ∏
1≤i<j≤n

(xi − xj).

Proposition 4.3. In notations of Section 2.3 let m1, . . . , mk be positive integers, let 
n1, . . . , nk, pn2,n1 , . . . , pnk,nk−1 be as in Section 2.3, and let ρ be a probability measure 
on GTnk

with the Schur generating function Sρ ∈ Λnk . Assume that (λ(1), . . . , λ(k)) is 
distributed according to (2.3). Then

D(n1)
m1

pn2,n1D(n2)
m2

pn3,n2 . . . pnk,nk−1D(nk)
mk

Sρ(x1, . . . , xnk
)
∣∣∣
x=1

= E
(

n1∑
i1=1

(λ(1)
i + n1 − i1)m1

n2∑
i2=1

(λ(2)
i + n2 − i2)m2 · · ·

nk∑
ik=1

(λ(k)
i + nk − ik)mk

)
, (4.6)

where in the left-hand side we set to 1 all variables after applying all differential operators.
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Proof. We will prove this proposition for k = 2; the proof for general k is analogous. We 
have

D(n2)
m2

Sρ(x1, . . . , xn2) =
∑

λ∈GTn2

Prob(λ(2) = λ)sλ(x1, . . . , xn2)
sλ(1n2)

n2∑
i2=1

(λi2 + n2 − i2)m2 .

Lemma 4.2 shows that this sum is absolutely convergent in an open neighborhood of 
the n2-dimensional torus, and, therefore, belongs to Λn2 .

Thus, one can apply pn2,n1 and obtain

D(n1)
m1

pn2,n1D(n2)
m2

Sρ(x1, . . . , xn2)

= D(n1)
m1

∑
λ∈GTn2

Prob(λ(2) = λ)

⎛⎝ ∑
μ∈GTn1

c
pn2,n1
λ,μ

sμ(x1, . . . , xn1)
sμ(1n1)

⎞⎠ n2∑
i2=1

(λi2 + n2 − i2)m2

=
∑

λ∈GTn2

∑
μ∈GTn1

Prob(λ(2) = λ)cpn2,n1
λ,μ

sμ(x1, . . . , xn1)
sμ(1n1)

n1∑
i1=1

(λ(1)
i + n1 − i1)m1

×
n2∑

i2=1

(
λ

(2)
i2

+ n2 − i2

)m2
.

Plugging (x1, . . . , xn1) = (1n1) and using (2.3) we obtain the statement of the proposi-
tion. �

Therefore, our goal is to compute the asymptotics of the expressions in the left-hand 
side of (4.1) and (4.6). This computation is the content of Sections 5, 6, 7.

5. Technical lemmas

This section contains the technical ingredients for the proofs of our main theorems.

5.1. Preliminary definitions and lemmas

For any N ≥ 1 let FN (�x) be a function of N variables �x. For an integer D we will say 
that a sequence of analytic complex functions {FN (�x)}∞

N=1 has an N -degree at most D
if for any s ≥ 0 (not depending on N) and any indices i1, . . . , is we have

lim
N→∞

1
ND

∂i1 . . . ∂is
FN (�x)|�x=1 = ci1,...,cis

, (5.1)

for some constants ci1,...,is
. In particular, the limit

lim
N→∞

1
ND

FN (�x)|�x=1

should exist (this corresponds to s = 0).
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Similarly, we will say that a sequence of analytic complex functions {FN(�x)}∞
N=1 has 

N -degree less than D if for any s ≥ 0 (not depending on N) and any indices i1, . . . , is

we have

lim
N→∞

1
ND

∂i1 . . . ∂is
FN (�x)|�x=1 = 0.

Our main source of such functions is the following lemma.

Lemma 5.1. Assume that for D ∈ N, a sequence of functions {FN (�x)}∞
N=1 satisfies the 

following condition: For any k ∈ N there exists ε = ε(k) > 0 such that

lim
N→∞

1
ND

FN (x1, . . . , xk, 1N−k) = G(x1, . . . , xk),

where G(x1, . . . , xk) is an analytic function in the neighborhood of (x1, . . . , xk) = (1k), 
and the convergence is uniform in the region |xi − 1| < ε, i = 1, 2, . . . , k. Then 
{FN (�x)}∞

N=1 has a N -degree at most D. If the function G(x1, . . . , xk) equals 0, then 
{FN (�x)}∞

N=1 has a N -degree less than D.

Proof. Let i1, . . . , is be indices from (5.1). For computing the expression ∂i1 . . . ∂is
FN (�x)

we can set to 1 all variables xi such that i > max(i1, . . . , is) prior to the differentiation. 
After this, let us recall that the uniform convergence of complex analytic functions implies

lim
N→∞

1
ND

∂i1 . . . ∂is
FN (x1, . . . , xk, 1N−k) = ∂i1 . . . ∂is

G(x1, . . . , xk). �
Let F (1)

N (�x) have N -degree at most D1, and let F (2)
N (�x) have N -degree at most D2. 

Then it is easy to see that for any index i the function ∂iF
(1)
N (�x) has N -degree at most D1, 

F
(1)
N (�x) + F

(2)
N (�x) has N -degree at most max(D1, D2), and F (1)

N (�x)F (2)
N (�x) has N -degree 

at most D1 + D2.

Lemma 5.2. Assume that for each N = 1, 2, . . . , FN (�x) is a symmetric analytic function 
in an open neighborhood of (1N ). Then for any indices a1, . . . , aq+1 the function

Syma1,a2,...,aq+1

(
FN (�x)

(xa1 − xa2) . . . (xa1 − xaq+1)

)
(5.2)

is analytic in a (possibly smaller) open neighborhood of 1N . If {FN (�x)} has N -degree at 
most D (less than D), then the sequence (5.2) has N -degree at most D (less than D).

Proof. [13, Lemma 5.4] implies the first claim.
We need to prove that for any indices i1, . . . , is the limit

lim
x1,...,xN =1

∂i1 . . . ∂is
Syma1,a2,...,aq+1

(
FN (�x)

(xa1 − xa2) . . . (xa1 − xaq+1)

)
(5.3)
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has the same N -degree as the function FN . Note that we can immediately specialize to 1
all variables except for xi1 , . . . , xis

, xa1 , . . . , xaq+1 . After this, we deal with a statement 
about the functions with finite (not depending on N) number of variables.

Any coefficient of Taylor expansion of (5.2) can be written as a finite (not depending 
on N) combination of the Taylor coefficients of the function FN . Indeed, it was shown in 
the proof of Lemma 5.4 of [13] (see formula (5.4)) that the Taylor coefficient of FN of the 
term of N -degree M from can contribute to the Taylor coefficients of (5.2) of N -degree 
d with M − (q + s + 1)2 ≤ d ≤ M + (q + s + 1)2, where q + s appears because this is the 
number of variables which were not immediately set to 1.

Therefore, the N -degree of (5.3) is at most that of FN . �
Let F(x) be a complex analytic function of one variable at the neighborhood of the 

unity. Let us introduce the notation for the coefficients in its Taylor expansion

F(x) =: a0 + a1(x − 1) + a2(x − 1)2 + · · · + an(x − 1)n + . . . .

Lemma 5.3. For a function F(x) and positive integer r we have

Symx1,...,xr+1

(
F(x1)

(x1 − x2) . . . (x1 − xr+1)

)∣∣∣∣
�x=1

= 1
(r + 1)!∂

r
xF (x)

∣∣∣∣
�x=1

= ar

r + 1 .

Proof. This is Lemma 5.5 in [13]. �
Lemma 5.4. We have

lim
x2,...,xr+1→1

(
F(x1)

(x1 − x2)(x1 − x3) . . . (x1 − xr+1) + F(x2)
(x2 − x1)(x2 − x3) . . . (x2 − xr+1)

+ · · · + F(xr+1)
(xr+1 − x1)(xr+1 − x2) . . . (xr+1 − xr)

)

= F(x1) − a0 − a1(x1 − 1) − · · · − ar−1(x1 − 1)r−1

(x1 − 1)r
. (5.4)

Note that we do not set the value of the variable x1 in the left-hand side.

Proof. In the left-hand side of (5.4) the first term has a limit as x2, . . . , xr+1 → 1, and 
the sum of other terms has a limit by Lemma 5.3 applied to the function F(x)/(x − x1). 
We obtain that the left-hand side of (5.4) equals

F(x1)
(x1 − 1)r

+ 1
(r − 1)!∂

r−1
x

[
F(x)

x − x1

]∣∣∣∣
x=1
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= F(x1)
(x1 − 1)r

+
r−1∑
k=0

(
r − 1

k

)
∂k

x [F(x)] (−1)r−1−k(r − 1 − k)!
(x − x1)r−1−k

∣∣∣∣
x=1

= F(x1) − a0 − a1(x1 − 1) − · · · − ar−1(x1 − 1)r−1

(x1 − 1)r
. �

5.2. Expectation-contributing terms

Let us introduce notations which we will use in the rest of Section 5. Let ρ = {ρN } be 
an appropriate sequence of measures on GTN with the Schur generating function SN =
SρN

(x1, . . . , xN ), and limiting functions Fρ(x), Gρ(x, y), and Qρ(x, y) (see Definition 2.6). 
In this section we will analyze expressions which eventually contribute to the leading 
order of the expectation of the moments of the measure ρN .

For an integer l > 0 let us introduce the notation

F(l)(�x) := 1
SN (�x)VN (�x)

N∑
i=1

(xi∂i)l
VN (�x)SN (�x). (5.5)

Lemma 5.5. The following statements hold:
a) The functions F(l)(�x) have N -degree at most l + 1.
b) For any index i the functions ∂iF(l)(�x) have N -degree at most l.
c) For any indices i �= j the functions ∂i∂jF(l)(�x) have N -degree less than l.

Proof. Since SN (1N ) = 1, the function log SN is well-defined in a neighborhood of (1N )
and we can rewrite (5.5) in the following form:

F(l)(x1, . . . , xN ) := 1
SN VN

N∑
i=1

(xi∂i)l
VN exp(log SN ).

We will write the result of the application of the differential operator ∂i to exp(log SN )
in the form

∂iSN = ∂i exp(log SN ) = ∂i[log SN ] exp(log SN ). (5.6)

After the application of all differential operators in (5.5) in this fashion we can cancel 
SN in the numerator and the denominator and write F(l)(�x) as a large sum of factors of 
the form

c0xl−s0
i (∂s1

i [log SN ])d1 . . . (∂st
i [log SN ])dt

(xi − xa1) . . . (xi − xar
) , (5.7)

where i, a1, . . . , ar are distinct indices, {sj} and {dj} are nonnegative integers such that 
s1 < s2 < · · · < st and
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r + s0 + s1d1 + · · · + stdt = l, (5.8)

and c0 depends on r, {sj}, {dj}, but does not depend on N or a1, . . . , ar. Since the 
operator 

∑N
i=1(xi∂i)l is symmetric, all terms obtained from (5.7) by permuting variables 

xi, xa1 , . . . , xar
are present in our sums. Therefore, F(l)(�x) can be represented as a sum

F(l)(�x) =
∑

r,{sj},{dj}
(r + 1)!

×
∑

{a1,...,ar+1}⊂[N ]

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)
, (5.9)

where the first sum is subject to (5.8), and we omitted the dependence of c0 on 
r, {sj}, {dj}.

Let us now prove three 3 statements of Lemma 5.5.
a) First, let us consider the asymptotics of the expression

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣
�x=1

.

Note that each factor 
(
∂s1

a1
[log SN ]

)d1 has N -degree at most d1, since ρN is an appropriate 
sequence. Therefore, Lemma 5.2 and equality (5.8) imply that this function has N -degree 
l − r at most. The expression

∑
{a1,...,ar+1}⊂[N ]

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣∣
�x=1

contains O(Nr+1) terms of this form; therefore, it has N -degree at most N l+1.
b) We are interested in the asymptotics of the expression

∂i

∑
{a1,...,ar+1}⊂[N ]

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣
�x=1

.

(5.10)

Let us consider two cases.
b1) First, consider a term

∂i Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣ (5.11)

�x=1
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with i /∈ {a1, . . . , ar+1}. Note that there are O(Nr+1) such terms. We need to apply the 
operator ∂i to one of the factors ∂sq

a1 log SN , because only these factors depend on xi in 
this case. Note that

∂i(∂sq
a1

log SN )dq = dq(∂sq
a1

[log SN ])dq−1∂i

[
∂sq

a1
log SN

]
has N -degree at most dq − 1. Assume that the operator ∂i is applied to (∂s1

a1
[log SN ])d1

(other cases can be considered analogously). Then the expression can be written as a 
sum of terms of the form

Syma1,...,ar+1

(
c0xl−s0

a1
∂i

[
(∂s1

a1
[log SN ])d1

]
. . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣
�x=1

.

Lemma 5.2 asserts that this sum has N -degree at most (d1 −1) +d2 +d3 + · · ·+dt. Recall 
that r + s0 + s1d1 + · · · + stdt = l. We see that the maximum of N -degree is achieved 
at t = 1, s0 = 0, s1 = 1, d1 = l − r. It follows that the expression (5.11) has N -degree 
at most l − r − 1. Taking into account that there are O(Nr+1) terms of such a form, we 
obtain that the sum has N -degree at most l.

b2) Now let us consider the term of the form (5.11) with i ∈ {a1, . . . , ar+1}. Since i
is fixed, there are O(Nr) terms of such form. Note that since the function

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣
�x=1

has N -degree at most l − r, then its derivative also has degree at most l − r. Therefore, 
the sum of all terms of such a form has N -degree at most l, which concludes the proof 
of the claim b).

c) We are interested in the asymptotics of the expression

∂i∂j

∑
{a1,...,ar+1}⊂[N ]

Syma1,...,ar+1

(
c0xl−s0

a1
(∂s1

a1
[log SN ])d1 . . . (∂st

a1
[log SN ])dt

(xa1 − xa2) . . . (xa1 − xar+1)

)∣∣∣∣∣
�x=1

.

(5.12)

Again, let us consider several cases related to whether indices i and j are from 
{a1, . . . , ar+1} or not.

c1) If both indices i and j are outside of {a1, . . . , ar+1}, and both differentiations ∂i

and ∂j are applied to same log SN . Since ∂a∂i∂j log SN has N -degree less than 0, the 
same considerations as in the case b1) imply the statement of proposition.

c2) If both indices are outside of {a1, . . . , ar+1}, and these differentiations are applied 
to different ∂a1 [log SN ]. It is easy to see that in this case all terms have N -degree at 
most l − 1 which is even stronger than we need.
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c3) If i ∈ {a1, . . . , ar+1} and j is outside of this set, then we lose one degree of N
in the summation over sets of indices and another degree when we differentiate log SN . 
Therefore, all these terms have N -degree at most l − 1, what is stronger than we need.

c4) If i, j ∈ {a1, . . . , ar+1}, then we lose two degrees in the summation over sets of 
indices. Again, all such terms give contribution N -degree l − 1 at most. This concludes 
the proof of the lemma. �
Remark 5.6. Note that we have

∂iF(l)(�x) = ∂i

[
l∑

r=0

(
l

r

)
(r + 1)!

×
∑

{a1,...,ar+1}⊂[N ]

Syma1,...,ar+1

(
xl

a1
(∂a1 [log SN ])l−r

(xa1 − xa2) . . . (xa1 − xar+1)

)⎤⎦ + T̂(l)(�x), (5.13)

where the function T̂(l)(�x) has N -degree less than l. Indeed, the proof of Lemma 5.5 shows 
that the highest N -degree is obtained in the case s1 = 1, d1 + r = l, s2 = s3 = · · · = 0. 
A coefficient 

(
l
r

)
appears because we need to apply l − r differentiations to exp(log(SN ))

and r differentiations to VN .

5.3. Covariance-contributing terms

For positive integers l1, l2 let us define one more function by

G(l1,l2)(�x) := l1

l1−1∑
r=0

(
l1 − 1

r

) ∑
{a1,...,ar+1}⊂[N ]

(r + 1)!

× Syma1,...,ar+1

xl1
a1

∂a1

[
F(l2)

]
(∂a1 [log SN ])l1−1−r

(xa1 − xa2) . . . (xa1 − xar+1) . (5.14)

The meaning of this function is given by the next lemma; essentially, this lemma 
describes the covariance in our probability models.

Lemma 5.7. For any positive integers l1, l2 we have

1
VN SN

N∑
i1=1

(xi1∂i1)l1

N∑
i2=1

(xi2∂i2)l2 [VN SN ] = F(l1)(�x)F(l2)(�x)+G(l1,l2)(�x)+ T̃ (�x), (5.15)

where G(l1,l2)(�x) has N -degree at most l1 + l2, and T̃ (�x) has N -degree less than l1 + l2.
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Proof. The left-hand side of (5.15) can be written as

1
VN SN

N∑
i1=1

(xi1∂i1)l1
[
VN SN F(l2)(�x)

]
.

Applying differentiations ∂i1 with the use of (5.6), we can rewrite it as the sum of terms 
of the form

Syma1,...,ar+1

c0xl1−s0
a1

∂s1
a1

[
F(l2)

] (
∂s2

a1
[log SN ]

)d2
. . .

(
∂st

a1
[log SN ]

)dt

(xa1 − xa2) . . . (xa1 − xar+1) ,

for nonnegative integers r, s0, s1, . . . , st, d2, . . . , dt, such that s2 < s3 < · · · < st and

s0 + s1 + s2d2 + · · · + stdt + r = l1. (5.16)

From terms with s1 = 0 we obtain FF(l1)(�x)F(l2)(�x). Let us deal with other terms.
Let us estimate N -degree of all terms with fixed collection of numbers r, s0, s1, . . . , st, 

d2, . . . , dt. Lemma 5.5 asserts that ∂s1
a1

[
F(l2)

]
has N -degree at most l2 since s1 ≥ 1. 

Therefore, the total N -degree of these terms is at most l2 + d2 + · · · + dt + (r + 1) (as 
usual, we apply Lemma 5.2 here). Given (5.16) and s1 ≥ 1, it is clear that this number 
is maximal for s0 = 0, s1 = 1, s2 = 1, d2 = l1 − 1 − r; for this choice of parameters 
our sum of terms has N -degree at most l1 + l2, and for all other terms the expression 
l2 + d2 + · · · + dt + (r + 1) is smaller and the total contribution of all other terms have 
N -degree less than l1 + l2.

The terms with s0 = 0, s1 = 1, s2 = 1, d2 = l1 − 1 − r are exactly those which are 
present in the expression (5.14). �
Lemma 5.8. The function G(l1,l2)(�x) has N -degree at most l1 + l2. For any index i the 
function ∂iG(l1,l2)(�x) has N -degree less than l1 + l2.

Proof. The first statement was proven in the previous lemma. We know that G(l1,l2)(�x)
is the sum of terms

Syma1,...,ar+1

xl1
a1

∂a1

[
F(l2)

]
(∂a1 [log SN ])l1−1−s

(xa1 − xa2) . . . (xa1 − xar+1) ,

over r = 0, 1, . . . , l1 − 1, and all sets {a1, . . . , ar+1} ⊂ {1, . . . , N}. When we differentiate 
the sum of these terms by ∂i, we need to consider two cases. First, the terms with i inside 
{a1, . . . , ar+1} has N -degree at most l1 + l2 −1, because the index i is fixed and the total 
number of terms has smaller order in N . Second, if i is outside of {a1, . . . , ar+1}, then ∂i

should be applied to ∂a1

[
F(l2)

]
or ∂a1 [log SN ]. By Lemma 5.5 ∂i∂a1

[
F(l2)

]
has N -degree 

less than l2, and our conditions on log SN imply that ∂1∂a1 [log SN ] has N -degree less 
than 1. Therefore, for these terms the N -degree also decreases due to this differentiation; 
we obtain that the total N -degree of the expression is less than l1 + l2. �
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Remark 5.9. The proof of Lemma 5.7 shows that

1
VN (�x)SN (�x) l1

N∑
i=1

(
xi∂i

[
F(l2)(�x)

])
(xi∂i)l1−1 [VN (�x)SN (�x)] = G(l1,l2)(�x) + T̄(l1+l2)(�x),

where T̄(l1+l2)(�x) has N -degree less than l1 + l2.

5.4. Product of several moments

For a positive integer s and a subset {j1, . . . , jp} ∈ [s] we denote by Ps
j1,...,jp

the 
set of all pairings of the set {1, 2, . . . , s}\{j1, . . . , jp}. In particular, this set is empty 
if {1, 2, . . . , s}\{j1, . . . , jp} has odd number of elements. We will also need the notation 
P2;s

j1,...,jp
which stands for the set of all pairings of {2, . . . , s}\{j1, . . . , jp}. For a pairing 

P we denote by 
∏

(a,b)∈P the product over all pairs (a, b) from this pairing.

Proposition 5.10. For any positive integer s and any positive integers l1, . . . , ls we have

1
VN SN

N∑
i1=1

(xi1∂i1)l1

N∑
i2=1

(xi2∂i2)l2 · · ·
N∑

is=1
(xis

∂is
)ls [VN SN ]

=
s∑

p=0

∑
{j1,...,jp}∈[s]

F(lj1 )(�x) . . . F(ljp )(�x)

⎛⎝ ∑
P ∈Ps

j1,...,jp

∏
(a,b)∈P

G(la,lb)(�x) + T̃ 1;s
j1,...,jp

(�x)

⎞⎠ ,

(5.17)

where T̃ 1;s
j1,...,jp

(�x) has N -degree less than 
∑s

i=1 li −
∑p

i=1 lji
.

Proof. We will prove this statement by induction over s. For s = 1 the statement follows 
from definition (5.5). For s = 2 it follows from Lemma 5.7. Assume that we already 
proved it for s −1. Let us apply the operators 

∑N
is=1(xis

∂is
)ls , . . . , 

∑N
i2=1(xi2∂i2)l2 , and 

use the induction assumption. We need to analyze the expression

1
VN SN

(
N∑

i1=1
(xi1∂i1)l1

)⎡⎣VN SN

s−1∑
p=0

∑
{j1,...,jp}∈[2;s]

F(j1)(�x) . . . F(jp)(�x)

×

⎛⎜⎝ ∑
P ∈P[2;s]

j1,...,jp

∏
(a,b)∈P

G(ka,kb)(�x) + T̃ 2;s
j1,...,jp

(�x)

⎞⎟⎠
⎤⎥⎦ ,

for any choice of the set of indices Jold := {j1, . . . , jp} ⊂ [2; s]. Note that an induction 
hypothesis asserts that T̃ 2;s

j1,...,jp
has N -degree less than 

∑s
i=2 li−

∑p
i=1 lji

. Let us consider 
several cases to analyze all arising terms.
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1) All differentiations ∂i1 are applied to VN SN or xi1 from (xi1∂i1)l1 . By definition, 
these terms give rise to the function F(l1). The terms obtained in this way have the 
required form with the set of indices Jnew := Jold ∪ {1}.

2) One differentiation ∂i1 is applied to the function Fjw
for some w, and all other 

differentiations ∂i1 are applied to VN SN . Using Remark 5.9, we see that these terms 
have the required form with Jnew := Jold\{w} and the arising function G(l1,ljw )(�x) in 
the product of the pairings.

3) Consider all other terms. We will show that they do not contribute to the leading 
order. We fix the set {j1, . . . , jp} ⊂ [2; s]. Let us define the function

H̃j1,...,jp
(�x) :=

⎛⎜⎝ ∑
P ∈P[2;s]

j1,...,jp

∏
(a,b)∈P

G(la,lb)(�x) + T̃ 2;s
j1,...,jp

(�x)

⎞⎟⎠ .

From Lemma 5.8 it follows that H̃ := H̃j1,...,jp
(�x) has N -degree at most 

∑s
i=2 li −∑p

i=1 ljp
, but for any index a the function ∂aH̃ has a N -degree less than 

∑s
i=2 li −∑p

i=1 ljp
.

We analyze the expression

1
VN SN

(
N∑

i1=1
(xi1∂i1)l1

)
VN SN F(j1)(�x) . . . F(jp)(�x)H̃(�x).

As before, we can write the result of the application of our differential operator as a 
sum of terms of the form

Syma1,...,ar+1

xk1−s0
a1 (∂s1

a1 [log SN ])d1 . . . (∂st
a1 [log SN ])dt ∂f1

a1

[
F(kj1 )

]
. . . ∂

fp
a1

[
F(kjp )

]
∂h0

a1

[
H̃(�x)

]
(xa1 − xa2 ) . . . (xa1 − xar+1 ) .

Since 
(
∂s1

a1
[log SN ]

)d1
. . .

(
∂st

a1
[log SN ]

)dt has N -degree at most d1 + d2 + · · · + dt, it is 
easy to see that the highest N -degree terms are present in the expression

Syma1,...,ar+1

xl1
a1

(∂a1 [log SN ])d1 ∂f1
a1

[
F(kj1 )

]
. . . ∂

fp
a1

[
F(kjp )

]
∂h0

a1

[
H̃(�x)

]
(xa1 − xa2) . . . (xa1 − xar+1) , (5.18)

where

d1 + f1 + · · · + fp + h0 + r = l1. (5.19)

Let us estimate the N -degree of this expression for fixed d1, f1, . . . , fp, h0, r.
Let B be the set of indices i ∈ {1, . . . , p} such that fi = 0. Then this term is the 

product of 
∏

i∈B F(li) and a certain symmetric function. Our goal is to show that the 
N -degree of this symmetric function can be estimated as less than 

∑s
i=1 li −

∑
i∈B li, 
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with the exception of cases 1) and 2) considered above, which means that this symmetric 
function is a part of T̃B(�x).

The function ∂a1 [log SN ]d1 has N -degree at most d1. The summation over indices 
contributes the N -degree r +1. If fi �= 0, then ∂fi

a1

[
F(lji

)

]
has N -degree at most lji

. This 
and (5.19) means that if two different fi are not equal to 0, then the result has N -degree 
at most 

∑s
i=1 li −

∑
i∈B li − 1. However, if h0 is greater than 0, then we obtain the total 

N -degree less than 
∑s

i=1 li −
∑

i∈B li. Therefore, if the term (5.18) contributes to the 
degree 

∑s
i=1 li −

∑
i∈B li, then h0 = 0 and only one of the indices fi can be equal to non 

zero. This leaves out only two possibilities: if all fi are equal to 0, then we are in the 
case 1) considered above, and if one of fi is not equal to 0, then we are in the case 2) 
considered above. This concludes the proof of the proposition. �
5.5. Gaussian behavior

For a positive integer l let us set:

El := F(l)(1N ) = 1
VN SN

N∑
i=1

(xi∂i)lVN SN

∣∣∣∣∣
�x=1

. (5.20)

This is the expectation of the lth moment of the probability measure with the Schur 
generating function SN .

Lemma 5.11. For any positive integer s and any positive integers l1, . . . , ls we have

1
VN SN

(
N∑

i1=1
(xi1∂i1)l1 − El1

)(
N∑

i2=1
(xi2∂i2)l2 − El2

)

× . . .

(
N∑

is=1
(xis

∂is
)ls − Els

)
VN SN

∣∣∣∣∣
�x=1

=
∑

P ∈Ps
∅

∏
(a,b)∈P

G(la,lb)(�x)

∣∣∣∣∣∣
�x=1

+ T̃∅(�x)
∣∣
�x=1 ,

(5.21)

where T̃∅(�x) has N -degree less than 
∑s

i=1 li.

Proof. We use (5.17) to compute (5.21), and our goal is to show that the appearance 
of Eli

’s cancels out all terms from the right-hand side of (5.17) with the non-empty set 
J = {j1, j2, . . . , jp}, and the right-hand side of (5.21) comes from the term with the 
empty set J .

We use the following notation: Let {a1, . . . , aw} be a subset of [s]; we denote by 
{b1, . . . , bs−w} the complimentary subset such that {a1, . . . , aw} ∪ {b1, . . . , bs−w} = [s]. 
Analogously, for {j1, . . . , jp} ⊂ {b1, . . . , bs−w} we denote by {k1, . . . , ks−w−p} the com-
plementary subset such that {j1, . . . , jp} ∪ {k1, . . . , ks−w−p} = {b1, . . . , bs−w}.
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Proposition 5.10 yields

1
VN SN

N∑
ib1 =1

(xib1
∂ib1

)lb1

N∑
ib2 =1

(xib2
∂ib2

)lb2 · · ·
N∑

ibs−w
=1

(xibs−w
∂ibs−w

)lbs−w VN SN

=
s∑

p=0

∑
{j1,...,jp}⊂{b1,...,bs−w}

F(lj1 )(�x) . . . F(ljp )(�x)Ak1,...,ks−w−p
, (5.22)

where

Ak1,...,ks−w−p
:=

∑
P ∈Pb1,...,bs−w

j1,...,jp

∏
(a,b)∈P

G(la,lb)(�x) + T̃
b1,...,bs−w

j1,...,jp
(�x);

we use an additional superscript here (in comparison with Proposition 5.10) because 
we apply Proposition 5.10 to a different set of indices. Note that Ak1,...,ks−w−p

does not 
depend on the choice of {j1, . . . , jp}: It depends on {k1, . . . , ks−w−p} only.

Opening the parenthesis in the left-hand side of (5.21), we write it as

∑
{a1,...,aw}∈[s]

(−1)wEla1
Ela2

. . . Elaw

1
VN SN

×
N∑

ib1 =1
(xib1

∂ib1
)lb1

N∑
ib2 =1

(xba2
∂ib2

)lb2 · · ·
N∑

ibs−w
=1

(xibs−w
∂ibs−w

)lbs−w VN SN

∣∣∣∣∣∣
�x=1

(5.23)

Applying (5.22) and substituting �x = (1N ), we see that (5.23) turns into the sum of 
terms of the form

(−1)wEm1Em2 . . . Emw+p
Ak1,...,ks−w−p

(1N ), (5.24)

where {m1, m2, . . . , mw+p}={a1, a2, . . . , aw}∪{j1, j2, . . . , jp}, and {m1, m2, . . . , mw+p}∪
{k1, . . . , ks−w−p} = [s]. The summation goes over all possible choices of {a1, a2, . . . , aw}
and {j1, j2, . . . , jp}.

Let us fix the set {M1, . . . , MW } = {m1, m2, . . . , mw+p}. Note that the same term 
(5.24) can be obtained for all possible choices of a’s and j’s such that the union of these 
sets of indices is {M1, . . . , MW }; the only difference is the sign (−1)w. Collecting all 
terms of this form, we see that the total coefficient is(

W

0

)
−

(
W

1

)
+ · · · + (−1)w+p

(
W

W

)
,

which is always 0 unless W = 0. Therefore, the only term which survives all cancellations 
in (5.23) is the term with w = 0 and p = 0 which in combination with Proposition 5.10
implies Lemma 5.11. �
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Proposition 5.12. Let ρN be an appropriate sequence of measures on GTN , N = 1, 2, . . . . 
Recall that F(l) is defined in (5.5), Gk,l is defined in (5.14), 

∏
(a,b)∈P for P ∈ Ps

∅ is 
defined in the beginning of Section 5.4, and El is defined in (5.20). Then for any positive 
integer s and any positive integers l1, . . . , ls we have

lim
N→∞

1
N l1+···+ls

1
VN SN

(
N∑

i1=1
(xi1∂i1)l1 − El1

)(
N∑

i2=1
(xi2∂i2)l2 − El2

)

× . . .

(
N∑

is=1
(xis

∂is
)ls − Els

)
VN SN

∣∣∣∣∣
�x=1

= lim
N→∞

1
N l1+···+ls

∑
P ∈Ps

∅

∏
(a,b)∈P

G(la,lb)(�x)

∣∣∣∣∣∣
�x=1

.

(5.25)

Proof. Passing to the limit in the equation (5.21) and using the definition of the N -degree 
of a function, we obtain from Lemma 5.11 the statement of the proposition. �
6. Computation of covariance

In this section we will compute the covariance in the setting of Theorems 2.8, 2.9, 
2.10, 2.11.

6.1. Covariance for extreme characters

In this section we compute the covariance in the setting of Theorem 2.8 for a special 
class of Schur generating functions (see equation (6.9) below). All computations of this 
section will be extensively used in the proof of the general result as well.

Let F (x) be a complex analytic function in a neighborhood of the unity, and let

xlF (x)l−r = al,r
0 + al,r

1 (x − 1) + · · · + al,r
n (x − 1)n + . . . . (6.1)

be the Taylor expansion of xlF (x)l−r at x = 1.

Lemma 6.1. Assume that x �= 0 is a complex number. With the above notations, we have

l∑
r=0

r−1∑
i=0

(
l

r

)
al,r

i xi−r = 1
2πi

∮
|y|=ε

1
x − y

(
1 + 1

y
+ (1 + y)F (1 + y)

)l

dy, (6.2)

where ε � min(1, |x|).

Proof. The Cauchy integral formula yields

al,r
i = 1

2πi

∮ (1 + y)lF (1 + y)l−r

yi+1 dy.
|y|=ε
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Substituting this into the left-hand side of (6.2) and using the equalities

r−1∑
i=0

xi

yi+1 = 1 − xry−r

y − x
,

and

l∑
r=0

(
l

r

)
1 − xry−r

xrF (1 + y)r
=

(
1 + 1

xF (1 + y)

)l

−
(

1 + 1
yF (1 + y)

)l

,

we arrive at the formula

l∑
r=0

r−1∑
i=0

(
l

r

)
al,r

i xi−r =
∮

|y|=ε

dy

y − x

×
((

(1 + y)F (1 + y) + 1 + y

x

)l

−
(

1 + 1
y

+ (1 + y)F (1 + y)
)l

)
.

Note that the first term in the right-hand side has no pole inside |y| ≤ ε and, therefore, 
is equal to 0, while the second term coincides with the right-hand side of (6.2). �

Let F1(x), F2(x) be analytic complex functions in a neighborhood of the unity. Let 
al,r

i,[2] we denote the coefficients determined by (6.1) with F (x) = F2(x). Let us define 
the functions

Bl,r(x) :=
xlF2(x)l−r − al,r

0,[2] − al,r
1,[2] · (x − 1) − · · · − al,r

r−1,[2] · (x − 1)r−1

(x − 1)r
. (6.3)

F1(z) := 1
z

+ 1 + (1 + z)F1(1 + z), F2(z) := 1
z

+ 1 + (1 + z)F2(1 + z).

Lemma 6.2. With the above notations, we have

k

k−1∑
q=0

l∑
r=0

(
l

r

)(
k − 1

q

)
1

(q + 1)!∂
q
x

(
xkF1(x)k−1−qB′

l,r(x)
)∣∣∣∣∣

x=1

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

F1(z)kF2(w)l 1
(z − w)2 dzdw, (6.4)

where the contours of integration are counter-clockwise and ε � 1.

Proof. By the Cauchy integral formula we have

∂q
x

(
xkF1(x)k−1−qB′

l,r(x)
)∣∣

x=1 = q!
2πi

∮ (1 + z)kF1(1 + z)k−1−qB′
l,r(1 + z)

zq+1 dz.
|z|=ε
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Therefore, the left-hand side of (6.4) can be written as

l∑
r=0

(
l

r

)
k

2πi

∮
|z|=ε

(1 + z)kF1(1 + z)kB′
l,r(1 + z)

k−1∑
q=0

(
k − 1

q

)
1

(q + 1)F1(1 + z)q+1zq+1 dz.

(6.5)

The binomial theorem gives

k−1∑
q=0

(
k − 1

q

)(
F1(1 + z)−1z−1)q+1

q + 1 =
(
1 + F1(1 + z)−1z−1)k

k
− 1

k
. (6.6)

Plugging this expression into (6.5) and observing that the term with −1/k gives zero 
contribution (because (1 + z)kF1(1 + z)kB′

l,r(1 + z) does not have a pole at zero), we 
obtain that the left-hand side of (6.4) equals

1
2πi

∮
|z|=ε

F1(z)k
l∑

r=0

(
l

r

)
B′

l,r(1 + z)dz.

The definition (6.3) implies that

l∑
r=0

(
l

r

)
Bl,r(1 + z) =

l∑
r=0

(
l

r

)
(1 + z)lF2(1 + z)l

zrF2(1 + z)r
−

l∑
r=0

(
l

r

) r−1∑
i=0

al,r
i,[2]z

i

zr
.

The binomial theorem and Lemma 6.1 allows to rewrite this expression in the form

F2(z)l − 1
2πi

∮
|w|=ε/2

1
z − w

F2(w)ldw.

Therefore, the left-hand side of (6.4) can be expressed as a sum of two terms

1
2πi

∮
|z|=ε

F1(z)k∂z

[
F2(z)l

]
dz − 1

(2πi)2

∮
|z|=ε

∮
|w|=ε/2

F1(z)k∂z

[
1

z − w
F2(w)l

]
. (6.7)

Note that the second term in (6.7) equals

1
(2πi)2

∮
|z|=ε

∮
|w|=ε/2

F1(z)kF2(w)l dzdw

(z − w)2 . (6.8)

Let us move the contour |w| = ε/2 to the contour |w| = 2ε in (6.8). In the process we 
get the residue at z = w which cancels with the first term from (6.7).
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Thus, the left-hand side of (6.4) equals

− 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

F1(z)k∂z

[
1

z − w
F2(w)l

]

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

F1(z)kF2(w)l 1
(z − w)2 dzdw,

which concludes the proof. �
We now consider a special case of Theorem 2.8. Let ρ = {ρN } be a sequence of 

probability measures, where ρN is a probability measure on GTN , and let {ck}k≥1 be 
reals such that the function

F (x) :=
∞∑

k=1

ck

(k − 1)! (x − 1)k−1

is well defined in a neighborhood of unity. We assume that the Schur generating function 
SN (�x) := SρN

(�x) has the form

SN (�x) = exp
(

N
N∑

i=1
FN (xi)

)
, (6.9)

where {FN (x)}N≥1 is a sequence of holomorphic functions such that

lim
N→∞

∂k
xFN (x) = ck, for any k ∈ N.

Clearly, such a Schur generating function is appropriate in the sense of Section 2.2 with 
Fρ(x) = F (x), Gρ(x, y) = 0, and Q(x, y) = 1

(x−y)2 .

Proposition 6.3. Under the assumptions and in the notations of Theorem 2.8 and addi-
tional assumption (6.9), we have

lim
N→∞

cov
(

p
(N)
k , p

(N)
l

)
Nk+l

=
∮

|z|=ε

∮
|w|=2ε

F(z)kF(w)l 1
(z − w)2 dzdw,

where F(z) := 1
z + 1 + (1 + z)F (1 + z).

Proof. We denote by ≈ the equality of highest N -degree.
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As explained in Section 4, we have

E
(

p
(N)
k p

(N)
l

)
= 1

VN (�x)

N∑
i=1

(xi∂i)k
N∑

j=1
(xj∂j)lVN (�x)SN (�x)

∣∣∣∣∣∣
�x=1

= 1
VN (�x)

N∑
i=1

(xi∂i)k
N∑

j=1
(xj∂j)lVN (�x) exp

(
N

N∑
i=1

FN (xi)
)∣∣∣∣∣∣

�x=1

. (6.10)

Therefore, Lemma 5.7 implies that

lim
N→∞

cov
(

p
(N)
k , p

(N)
l

)
Nk+l

= lim
N→∞

G(k,l)(1N )
Nk+l

. (6.11)

Let us compute the right-hand side of this formula. By definition (5.14),

G(k,l)(1N )

= k

k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
(q + 1)! Syma1,...,aq+1

xk
a1 ∂a1

[
F(l)

]
(∂a1 [log SN ])k−1−q

(xa1 − xa2 ) . . . (xa1 − xaq+1 )

∣∣∣∣∣∣
�x=1

≈ k

k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
(q + 1)! Syma1,...,aq+1

xk
a1

(∂a1 [log SN ])k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

×∂a1

⎡⎣ l∑
r=0

∑
{b1,...,br+1}⊂[N ]

(
l

r

)
(r + 1)! Symb1,...,br+1

xl
b1

(∂b1 [log SN ])l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

⎤⎦∣∣∣∣∣∣
�x=1

.

(6.12)

The right-hand side of the approximate equality in (6.12) contains only leading terms 
from ∂a1

[
F(l)

]
, see (5.13); it is proven by following the same arguments as in Section 5.2.

Now we will use the special form (6.9) of our function SN . In this case we see that 
∂a1 [log SN ] = NF (xa1). Therefore,

(6.12) ≈ k

k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
(q + 1)! Syma1,...,aq+1

xk
a1

F (xa1)k−1−qNk−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

×∂a1

⎡⎣ l∑
r=0

∑
{b1,...,br+1}⊂[N ]

(
l

r

)
(r + 1)! Symb1,...,br+1

xl
b1

F (xb1)l−rN l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

⎤⎦∣∣∣∣∣∣
�x=1

.

(6.13)

Let us analyze this expression for different a’s and b’s. Note that we must have a1 ∈
{b1, . . . , br} in order to get a non-zero contribution. Also we see that if |{a1, . . . , aq+1} ∩
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{b1, . . . , br}| ≥ 2, then the total N -degree is not greater than (k−1 −q) +(l−r) +(q+1) +
(r + 1) − 2 = k + l − 1 (k − 1 − q and l − r come from the power of N , q + 1, r + 1, and −2
come from the summation over sets of indices); therefore, these terms do not contribute 
to the N -degree k+l. We obtain that only terms with {a1, . . . , aq+1} ∩{b1, . . . , br} = {a1}
contribute to the limit.

For these terms we use Lemma 5.4 for the symmetrization over b’s and obtain:

(6.13) ≈ Nk+l−q−r−1k
k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
(q + 1)!

× Syma1,...,aq+1

xk
a1

Fa1(xa1)k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)∂a1

×

⎡⎣ l∑
r=0

r!
∑

{b2,b3,...,br+1}⊂[N ]

(
l

r

)
Bl,r(xa1)

⎤⎦∣∣∣∣∣∣
�x=1

= Nk+l−q−1k
k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
(q + 1)!

×Syma1,...,aq+1

xk
a1

Fa1(xa1)k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

[
l∑

r=0

(
l

r

)
B′

l,r(xa1)
]∣∣∣∣∣

�x=1

, (6.14)

where we use the notation (6.3) with F2(x) = F (x). We also use that the summation ∑
{a1,...,aq+1}⊂[N ] contains ≈ Nq+1/(q + 1)! terms. For the symmetrization over a’s it is 

enough to apply Lemma 5.3. We obtain

(6.14) ≈ Nk+lk
k−1∑
q=0

l∑
r=0

(
l

r

)(
k − 1

q

)
1

(q + 1)!∂
q
x

(
xkF ′(x)k−1−qB′

l,r(x)
)∣∣∣∣∣

x=1

. (6.15)

Thus,

lim
N→∞

cov
(

p
(N)
k , p

(N)
l

)
Nk+l

= k

k−1∑
q=0

l∑
r=0

(
l

r

)(
k − 1

q

)
1

(q + 1)!∂
q
x

(
xkF ′(x)k−1−qB′

l,r(x)
)∣∣∣∣∣

x=1

.

Now Lemma 6.2 with F1(x) = F (x) and F2(x) = F (x) implies the statement of the 
proposition. �
6.2. Computation of one-level covariance in the general case

Here we compute the covariance in Theorem 2.8. We use computations and arguments 
from the special case considered in the previous section.
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Proposition 6.4. Let ρ = {ρN } be an appropriate sequence of measures on GTN , N =
1, 2, . . . , and corresponding to functions Fρ(x) and Qρ(x, y). In notations of Theorem 2.8
we have

lim
N→∞

cov(p(N)
k , p

(N)
l )

Nk+l
= 1

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ(1 + z)
)k

×
(

1
w

+ 1 + (1 + w)Fρ(1 + w)
)l

Qρ(z, w)dzdw.

Proof. For an integer n we denote by T̃(n)(�x) any function of N variables which has 
N -degree less than n, and which can change from line to line.

We start our analysis with formulas (6.11) and (6.12) for covariance. Let us fix indices 
{a1, . . . , aq+1} and {b1, . . . , br+1}, and consider several cases.

1) Assume that {a1, . . . , aq+1} ∩ {b1, . . . , br+1} = ∅. Then

∂a1

⎡⎣ l∑
r=0

∑
{b1,...,br+1}⊂[N ]

(
l

r

)
(r + 1)! Symb1,...,br+1

xl
b1

(∂b1 [log SN ])l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

⎤⎦
=

l∑
r=0

∑
{b1,...,br+1}⊂[N ]

(
l

r

)
(l − r)(r + 1)!

× Symb1,...,br+1

xl
b1

(∂b1 [log SN ])l−r−1
∂a1∂b1 [log SN ]

(xb1 − xb2) . . . (xb1 − xbr+1) .

Note that the definition of an appropriate sequence of Schur generating functions implies 
that (∂b1 [log SN ])l−r−1 has N -degree at most l −r −1, and ∂a1∂b1 [log SN ] has N -degree 
at most 0. Moreover, we have

(∂b1 [log SN ])l−r−1 = N l−r−1Fρ(xb1)l−r−1 + T̃(l−r−1),

∂a1∂b1 [log SN ] = Gρ(xa1 , xb1) + T̃(0). (6.16)

Using these equalities and Lemma 5.2, we get

Symb1,...,br+1

xl
b1

(∂b1 [log SN ])l−r−1
∂a1∂b1 [log SN ]

(xb1 − xb2) . . . (xb1 − xbr+1)

= Symb1,...,br+1

xl
b1

N l−r−1Fρ(xb1)l−r−1Gρ(xa1 , xb1)
(xb1 − xb2) . . . (xb1 − xbr+1) + T̃(l−r−1). (6.17)

Note that the first term in the right-hand side of (6.17) depends on r + 2 variables, not 
on N variables. The dependence on all N variables is present only in T̃(l−r−1); our notion 
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of N -degree and Lemma 5.2 guarantee that eventually this function does not contribute 
to the covariance.

Using (6.16), (6.17) and Lemma 5.2 again, we further obtain

Syma1,...,aq+1

xk
a1

(∂a1 [log SN ])k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

× Symb1,...,br+1

(l − r)xl
b1

(∂b1 [log SN ])l−r−1
∂a1∂b1 log SN

(xb1 − xb2) . . . (xb1 − xbr+1)

= Syma1,...,aq+1

xk
a1

Nk−1−qFρ(xa1)k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

× Symb1,...,br+1

(l − r)xl
b1

N l−r−1Fρ(xb1)l−r−1G(xa1 , xb1)
(xb1 − xb2) . . . (xb1 − xbr+1) + T̃(k+l−r−q−2)(�x). (6.18)

The summation over non-intersecting sets {a1, . . . , aq+1} and {b1, . . . , br+1} in (6.12)
contributes the Nq+r+2 terms. Applying Lemma 5.3 to (6.18) and using equality (l −
r)
(

l
r

)
= l

(
l−1

r

)
, we see that the case of non-intersecting indices contributes the term

Nk+l
k−1∑
q=0

l−1∑
r=0

kl

(q + 1)!(r + 1)!

(
l − 1

r

)(
k − 1

q

)
×∂q

1
[
∂r

2Gρ(x1, x2)xk
1Fρ(x1)k−1−qxl

2Fρ(x2)l−1−r
]∣∣

x1=1,x2=1 (6.19)

into the leading order. With the use of the Cauchy integral formula and the binomial 
theorem (which is applied in the same way as in (6.6)) one can write it in the form

Nk+l

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)Fρ(1 + z)
)k (

1
w

+ 1 + (1 + w)Fρ(1 + w)
)l

× Gρ(1 + z, 1 + w)dzdw. (6.20)

2) Assume that |{a1, . . . , aq+1} ∩ {b1, . . . , br+1}| = 1. Without loss of generality we 
can assume that a1 = b1, and all other indices are distinct. Similarly to the case 1), one 
can use equality (6.16) to show that

Syma1,...,aq+1

xk
a1

(∂a1 [log SN ])k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

× ∂a1

[
Symb1,...,br+1

xl
b1

(∂b1 [log SN ])l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

]

= Syma1,...,aq+1

xk
a1

Nk−1−qFρ(xa1)k−1−q
(xa1 − xa2) . . . (xa1 − xaq+1)



760 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702–781
× ∂a1

[
Symb1,...,br+1

xl
b1

N l−rFρ(xb1)l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

]
+ T̃(k+l−r−q−1)(�x). (6.21)

Note that the summation over indices produces order Nr+q+1 terms in this case in 
(6.12), so the function T̃(k+l−r−q−1)(�x) does not contribute to N -degree k + l. The first 
term in the right-hand side of (6.21) gives rise to exactly the same computation as 
in Proposition 6.3. As we proved in Proposition 6.3, the contribution of this term to 
N -degree k + l can be written as

Nk+l

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)F ′
ρ(1 + z)

)k (
1
w

+ 1 + (1 + w)F ′
ρ(1 + w)

)l

× 1
(z − w)2 dzdw. (6.22)

It is interesting to note that while this term has very similar form to (6.20), we obtain it as 
a result of rather lengthy computations of the whole Section 6.1, though the computation 
behind (6.20) in case 1) is much simpler.

3) Assume that |{a1, . . . , aq+1} ∩ {b1, . . . , br+1}| ≥ 2. Then the same argument as in 
case 2) shows that for the fixed indices the function in the left-hand side of (6.21) has a 
N -degree not greater than (k + l − r − q − 1), while the summation over all such indices 
contributes only Nr+q. Therefore, all such terms do not contribute to Nk+l.

It remains to conclude that the contribution to the N -degree k + l is given by the 
sum of expression from (6.20) and (6.22). Therefore, recalling the definition of Qρ given 
in Definition 2.6, we are done. �
6.3. Covariance in Theorems 2.9, 2.10, 2.11

The arguments of Section 6.2 need only minor modifications in order to compute the 
covariance in Theorems 2.9, 2.10, 2.11. In each case, we start with a general formula for 
moments (4.6) and analyze it in the same way as in the case of one level.

Covariance in Theorem 2.9.
In this case the joint moments on different levels are given by the following differential 

operators

E
(

p
[at1 N ]
k1

p
[at2 N ]
k2

)
= 1

VN (�x)

[at1 N ]∑
i=1

(xi∂i)k1

[at2 N ]∑
j=1

(xj∂j)k2VN (�x)SN (�x)

∣∣∣∣∣∣
�x=1

.

The only difference with computations in Sections 6.1 and 6.2 is that in (6.12) the set 
{a1, . . . , aq+1} is the subset of {1, 2, . . . , [at1N ]} and the set {b1, . . . , br+1} is the subset of 
{1, 2, . . . , [at2N ]}. This leads to the appearance of the factor aq

t ar
t inside of summations 
1 2
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in (6.19) and (6.15). The arising modification of computations is given by Lemmas 6.1
and 6.2 with F1(x) = F (x)

at1
and F2(x) = F (x)

at2
. This gives rise to two functions

F1(z) := 1
z

+ 1 + (1 + z)F (1 + z)
at1

, F2(z) := 1
z

+ 1 + (1 + z)F (1 + z)
at2

,

instead of one function F(z) (as before, we identify the function F (x) from Section 6.1
and Fρ(x)). In the end, we obtain

lim
N→∞

cov(p[at1 N ]
k , p

[at2 N ]
l )

Nk+l
=

ak
t1

al
t2

(2πi)2

∮
|z|=ε

∮
|w|=2ε

F1(z)kF2(w)l

×
(

Gρ(z, w) + 1
(z − w)2

)
dzdw.

Covariance in Theorem 2.10.
In this case the moments of power sums are given by the following differential operators

E
(

p
(N)
k1;s1

p
(N)
k2;s2

)
= 1

VN (�x)

N∑
i=1

(xi∂i)k1

s2−1∏
r=s1

gr(�x)
N∑

j=1
(xj∂j)k2VN (�x)Hs2(�x)

∣∣∣∣∣∣
�x=1

.

Therefore, the right-hand side of (6.12) has a form

k

k−1∑
q=0

∑
{a1,...,aq+1}⊂[N ]

(
k − 1

q

)
Syma1,...,aq+1

xk
a1

(∂a1 [log Hs1 ])k−1−q

(xa1 − xa2) . . . (xa1 − xaq+1)

×∂a1

⎡⎣ l∑
r=0

∑
{b1,...,br+1}⊂[N ]

(
l

r

)
Symb1,...,br+1

xl
b1

(∂b1 [log Hs2 ])l−r

(xb1 − xb2) . . . (xb1 − xbr+1)

⎤⎦∣∣∣∣∣∣
�x=1

(6.23)

(recall that the functions Hs are defined in (2.10)).
The analysis of this expression goes in exactly the same way as before. The only 

difference is that instead of (6.16) we need to plug

(∂b1 [log Hs1 ])l−r = N l−rFρ;(s1)(xb1)l−r + T̃(l−r),

(∂a1 [log Hs2 ])k−q−1 = Nk−q−1Fρ;(s2)(xa1)k−q−1 + T̃(k−q−1),

∂a1∂b1 [log Hs2 ] = Gρ;(s2)(xa1 , xb1) + T̃(0)

into (6.23). The appearance of two different functions Fρ;(s1)(x) and Fρ;(s2)(x) instead 
of one function Fρ(x) leads to a modification of computations of Section 6.2 which is 
covered by Lemmas 6.1 and 6.2 with F1(x) = Fρ;(s1)(x) and F2(x) = Fρ;(s2)(x). This 
gives the covariance in Theorem 2.10.
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Covariance in Theorem 2.11
The moments of power sums are given by

E
(

p
[at1 N ]
k1;t1

p
[at2 N ]
k2;t2

)
= 1

V[at2 N ](x1, x2, . . . , x[at2 N ])

[at1N ]∑
i=1

(xi∂i)k1

t2−1∏
r=t1

g(N)
r (x1, x2, . . . , x[arN ])

×
[at2 N ]∑

j=1
(xj∂j)k2V[at2 N ](x1, x2, . . . , x[at2 N ])H

(N)
t2

(x1, x2, . . . , x[at2 N ])

∣∣∣∣∣∣
�x=1

.

The analysis goes in the same way as in the previous two cases with both changes made 
simultaneously.

7. Asymptotic normality

7.1. Gaussianity: Theorem 2.8

In the notations of Theorem 2.8 we prove the asymptotic normality of the vector {
N−k

(
p

(N)
k − Ep

(N)
k

)}
k∈N

.

Note that for any k we have Ep
(N)
k = F(k)(1N ). For any k1, k2 in Section 6.2 we 

showed that the quantity

Ck1,k2 := lim
N→∞

cov(p(N)
k1

, p
(N)
k2

)
Nk1+k2

exists (and also computed it).

Proposition 7.1. For any positive integers k1, . . . , ks we have

lim
N→∞

E
(

p
(N)
k1

− Ep
(N)
k1

)
. . .

(
p

(N)
ks

− Ep
(N)
ks

)
Nk1+···+ks

= 0,

if s is odd, and

lim
N→∞

E
(

p
(N)
k1

− Ep
(N)
k1

)
. . .

(
p

(N)
ks

− Ep
(N)
ks

)
Nk1+···+ks

=
∑

P ∈Ps
∅

∏
(a,b)∈P

Cka,kb
,

where Ps
∅ is the set of all pairings of {1, 2, . . . , s}.
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Proof. One sees that

E
(

p
(N)
k1

− Ep
(N)
k1

)
. . .

(
p

(N)
ks

− Ep
(N)
ks

)
= 1

VN SρN

(
N∑

i1=1
(xi1∂i1)k1 − F(k1)(1N )

)(
N∑

i2=1
(xi2∂i2)k2 − F(k2)(1N )

)

× . . .

(
N∑

is=1
(xis

∂is
)ks − F(ks)(1N )

)
VN SρN

∣∣∣∣∣
�x=1

.

Therefore, the statement of the proposition is a direct corollary of Proposition 5.12. �
Proposition 7.1 asserts that the joint moments satisfy the Wick formula (see, e.g., [61, 

Section 1.2] for the basic information about Wick formula) which implies the asymptotic 
normality. Therefore, Propositions 6.4 and 7.1 readily imply Theorem 2.8.

7.2. Gaussianity: Theorems 2.9, 2.10, 2.11

We discuss the case of Theorem 2.11 only, since this theorem implies Theorems 2.9
and 2.10.

We denote by �xa the set of variables (x1, x2, . . . , xa).
We use a general formula (4.6) for moments. In the notations of Theorem 2.11, for 

arbitrary s and k1, . . . , ks, t1 ≤ t2 ≤ · · · ≤ ts, we have

E
(

p
[at1 N ]
k1;t1

p
[at2 N ]
k2;t2

. . . p
[ats N ]
ks;ts

)
= 1

V[ats N ](�x[ats N ])

[at1N ]∑
i1=1

(xi1∂i1)k1

[at2 N ]−1∏
r=[at1 N ]

g(N)
r (�x[arN ])

×
[at2 N ]∑
i2=1

(xi2∂i2)k2

[at3 N ]−1∏
r=[at2 N ]

g(N)
r (�x[arN ]) . . .

[atsN ]∑
is=1

(xis
∂is

)ksV[ats N ](�x[ats N ])H
(N)
ts

(�x[ats N ])

∣∣∣∣∣∣
�x=1

.

The analysis of this formula is exactly the same as in Sections 5.4, 5.5, and 7.1. Let us 
indicate necessary modifications of notations. For 1 ≤ q ≤ s instead of (5.5) we consider 
the function

F(l);tq
(�x) := 1

H
(N)
tq

(�x[atq N ])V[atq N ](�x[atq N ])

[atq N ]∑
i=1

(xi∂i)l
V[atq N ](�x[atq N ])H

(N)
tq

(�x[atq N ]).

(7.1)
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For 1 ≤ q ≤ w ≤ s instead of (5.14) we use the function

G(l1,l2);tq,tw
(�x[atq N ]) := l1

l1−1∑
r=0

(
l1 − 1

r

)

×
∑

{a1,...,ar+1}⊂[atq N ]

Syma1,...,ar+1

xl1
a1

∂a1

[
F(l2);tw

]
(∂a1 [log Ht1 ])l1−1−r

(xa1 − xa2) . . . (xa1 − xar+1) . (7.2)

Instead of (5.20) we use El;tq
:= F(l);tq

(1[atq N ]). With these changes, all the analysis of 
Sections 5 and 7.1 goes in exactly the same way, which gives us the asymptotic normality 

of functions {p
[atq N ]
k;tq

}q≥1,k≥1.

8. Asymptotics of Schur functions

In this section we recall and extend certain asymptotics of normalized Schur functions, 
which were developed in [29], [28], [13].

Recall that we encode a signature λ = λ1 ≥ · · · ≥ λN by a discrete probability 
measure on R via

m[λ] := 1
N

N∑
i=1

δ

(
λi + N − i

N

)
.

We use the notation from Section 3.1. The following theorem is a special case of 
Theorem 4.2 from [13].

Theorem 8.1 ([29], [28], [13]). Suppose that λ(N) ∈ GTN , N = 1, 2, . . . is a regular 
sequence of signatures (see Definition 3.1), such that

lim
N→∞

m[λ(N)] = m.

Then for any k = 1, 2, . . . we have

lim
N→∞

1
N

log
(

sλ(N)(x1, . . . , xk, 1N−k)
sλ(N)(1N )

)
= Hm(x1) + · · · + Hm(xk), (8.1)

where the convergence is uniform over an open complex neighborhood of (x1, . . . , xk) =
(1k).

Theorem 8.2. Suppose that λ(N) ∈ GTN , N = 1, 2, . . . is a regular sequence of signatures 
such that

lim m[λ(N)] = m.

N→∞



A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702–781 765
Then we have

lim
N→∞

∂1∂2 log
(

sλ(N)(x1, x2, . . . , xk, 1N−k)
sλ(N)(1N )

)

= ∂1∂2 log
(

1 − (x1 − 1)(x2 − 1)x1H ′
m(x1) − x2H ′

m(x2)
x1 − x2

)
, (8.2)

and

lim
N→∞

∂1∂2∂3 log
(

sλ(N)(x1, x2, . . . , xk, 1N−k)
sλ(N)(1N )

)
= 0,

where the convergence is uniform over an open complex neighborhood of (x1, . . . , xk) =
(1k).

Remark 8.3. Note that the limit in (8.2) does not depend on (x3, . . . , xk).

Proof of Theorem 8.2. Let

Sλ(xj ; N, 1) := sλ(1j−1, xj , 1N−j)
sλ(1N ) .

Theorem 3.7 of [28] asserts that

sλ(N)(x1, x2, . . . , xk, 1N−k)
sλ(N)(1N ) =

k∏
i=1

(N − i)!
(N − 1)!(xi − 1)N−k

×
det

[
(xa∂a)b−1]k

a,b=1∏
1≤a<b≤N (xa − xb)

k∏
j=1

Sλ(xj ; N, 1)(xj − 1)N−1. (8.3)

Let us consider the application of the differential operator det
[
(xa∂a)b−1]k

a,b=1. Each 

differentiation from it can be applied to Sλ(xj ; N, 1)(xj − 1)N−1 for some j or to the 
factors appeared from the other differentiations. Note that the highest degree in N is ob-
tained when each differentiation is applied to Sλ(xj ; N, 1)(xj −1)N−1. Using Theorem 8.1
we obtain

(xa∂a)b−1
k∏

j=1
Sλ(xj ; N, 1)(xj − 1)N−1

= N b−1
k∏

j=1
Sλ(xj ; N, 1)(xj − 1)N−1 ·

(
x

1 − x
+ xH ′

m(x)
)b−1

+ o(N b−1)
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(here and below the convergence in o(·) is uniform over an open complex neighborhood 
of (x1, . . . , xk) = (1k)). Hence,

det
[
(xa∂a)b−1]k

a,b=1

k∏
j=1

Sλ(xj ; N, 1)(xj − 1)N−1 =
k∏

j=1
Sλ(xj ; N, 1)(xj − 1)N−1

×

⎛⎝N b(b−1)/2 det
[(

xa

1 − xa
+ xaH ′

m(xa)
)b−1

]k

a,b=1

+ o
(

N b(b−1)/2
)⎞⎠ ,

where we use that the uniform convergence of analytic functions implies the convergence 
of its derivatives. Substituting this formula into (8.3), we get

∂1∂2 log
sλ(N)(x1, x2, . . . , xk, 1N−k)

sλ(N)(1N )

= ∂1∂2 log

⎛⎜⎜⎜⎜⎝
k∏

j=1
Sλ(xj ; N, 1)(xj − 1)k−1

⎛⎜⎜⎜⎜⎝
det

[(
xa

1−xa
+ xaH ′

m(xa)
)b−1

]k

a,b=1∏k
a<b(xa − xb)

+ o(1)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

= ∂1∂2 log

⎛⎝ k∏
a<b

(
xa

1−xa
+ xaH ′

m(xa)
)

−
(

xb

1−xb
+ xbH ′

m(xb)
)

xa − xb
+ o(1)

⎞⎠
= ∂1∂2 log

(
1 + x1H ′

m(x1) − x2H ′
m(x2)

x1 − x2
(x1 − 1)(x2 − 1)

)
+ o(1).

Also we see that

∂1∂2∂3 log
sλ(N)(x1, x2, . . . , xk, 1N−k)

sλ(N)(1N )

= ∂1∂2∂3 log

⎛⎝ k∏
a<b

(
xa

1−xa
+ xaH ′

m(xa)
)

−
(

xb

1−xb
+ xbH ′

m(xb)
)

xa − xb
+ o(1)

⎞⎠ = o(1). �

Recall that for a representation T of U(N) we define a probability measure ρT on 
GTN with the use of (3.6). The pushforward of ρT with respect to the map λ → m[λ] is 
a random probability measure on R that we denote m[ρT ].

Proposition 8.4. Assume that λ(1)(N), λ(2)(N) ∈ GTN , N = 1, 2, . . . , are two regular 
sequences of signatures such that

lim m[λ(1)(N)] = m1, lim m[λ(2)(N)] = m2,

N→∞ N→∞
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for probability measures m1 and m2 with compact supports. Then m[ρ
πλ(1) ⊗πλ(2) ] is an 

appropriate probability measure on GTN with functions

Fρ(x) = H ′
m1

(x) + H ′
m2

(x),

Gρ(x, y) = ∂x∂y log
(

1 − (x − 1)(y − 1)
xH ′

m1
(x) − yH ′

m1
(y)

x − y

)
+ ∂x∂y log

(
1 − (x − 1)(y − 1)

xH ′
m2

(x) − yH ′
m2

(y)
x − y

)
.

Proof. The Schur generating function of the measure m[ρ
πλ(1) ⊗πλ(2) ] is sλ(1)(�x)sλ(2)(�x). 

Therefore, the statement of the lemma follows from Theorems 8.1 and 8.2. �
9. Proofs of applications

9.1. Lozenge tilings and Gaussian Free Field

In this section we prove Theorem 3.14.
Recall that we study the uniform measure on the set of paths PN (λ(N)). The projection 

of this measure to one level GTM , M ≤ N , produces a probability measure on GTM . 
The branching rule for Schur functions (2.4) shows that its Schur generating function 
equals sλ(N)(x1, . . . , xM , 1N−M )/sλ(N)(1N ).

For a < 1, let p[aN ]
k be moments of these measures:

p
[aN ]
k =

[aN ]∑
i=1

(λi + [aN ] − i)k
, λ ∈ GT[aN ].

Note that they are random variables.

Proposition 9.1. Let 0 < a1 ≤ · · · ≤ as ≤ 1 be a collection of reals. Under the assumptions 
and in the notations of Theorem 3.14 the collection of random variables{

N−ki

(
p

[aiN ]
ki

− Ep
[aiN ]
ki

)}
i=1,...,s

(9.1)

converges to the Gaussian vector (ξ1, . . . , ξs) with the covariance

cov(ξr, ξt) = akt
t akr

r

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)H′
m(1 + z)

at

)kt

×
(

1 + 1 + (1 + w)H′
m(1 + w)

)kr

∂z∂w

[
log

((
1 + 1 + (1 + w)H′

m(w)
)

w ar w
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−
(

1
z

+ 1 + (1 + z)H′
m(z)

))]
dzdw, (9.2)

for 1 ≤ t ≤ r ≤ s, ε � 1, with H ′
m(w) given by (3.5).

Proof. By Theorems 8.1, 8.2 this model satisfies the conditions of Theorem 2.9 with 
functions Fρ(x) = H′

m(x) and

Qρ(x, y) = ∂x∂y

(
log

(
1 − xy

(1 + x)H′
m(1 + x) − (1 + y)H′

m(1 + y)
x − y

))
.

Applying Theorem 2.9, we obtain that the Central Limit Theorem holds for the vector 
(9.1) with the covariance

cov(ξr, ξt)

= akt
t akr

r

(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)H′
m(1 + z)

at

)kt
(

1
w

+ 1 + (1 + w)H′
m(1 + w)

ar

)kr

×
(

∂z∂w

[
log

(
1 − zw

(1 + z)H′
m(1 + z) − (1 + w)H′

m(1 + w)
z − w

)]
+ 1

(z − w)2

)
dzdw,

(9.3)

for 1 ≤ r ≤ t ≤ s, and ε � 1. With the use of the equalities ∂z∂w log(z − w) = 1
(z−w)2

and ∂z∂w(zw) = 0, we transform (9.3) into (9.2). �
Proposition 9.1 shows that the fluctuations in our model are Gaussian. We next recover 

the structure of the Gaussian Free Field, for that we transform the expression for the 
covariance.

Lemma 9.2. The expression (9.2) is equal to

1
(2πi)2

∮
|z|=2C

∮
|w|=C

(
z + 1 − ar

exp (−Cm (z)) − 1

)kr
(

w + 1 − at

exp (−Cm (w)) − 1

)kt

× 1
(z − w)2 dzdw, (9.4)

where C � 1, that is, the contours of integration contain all poles of the integrand (recall 
that the function Cm(z) is defined in (3.3)).

Proof. Let us make a change of variables in (9.2)

z̃ = 1
(−1) , w̃ = 1

(−1) ;

Cm (log(1 + z)) Cm (log(1 + w))
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this change of variables is well-defined since we are dealing with analytic functions in a 
neighborhood of the origin.

Using the relation between Cm(z) and H′
m(z) (see equation (3.5)), we have

1
z

+ 1 + (1 + z)(1 + H′
m(1 + z))

at
= 1

at

(
1
z̃

+ 1 − at

exp(−Cm( 1
z̃ )) − 1

)
,

1
w

+ 1 + (1 + w)(1 + H′
m(1 + w))

ar
= 1

ar

(
1
w̃

+ 1 − ar

exp(−Cm( 1
w̃ )) − 1

)
,

log
((

1
w

+ 1 + (1 + w)H′
m(1 + w)

)
−

(
1
z

+ 1 + (1 + z)H′
m(1 + z)

))
= log

(
1
w̃

− 1
z̃

)
.

Substituting these equalities, we obtain that (9.2) equals

1
(2πi)2

∮
|z̃|=ε

∮
|w̃|=2ε

(
1
z̃

+ 1 − at

exp(−Cm( 1
z̃ )) − 1

)kt
(

1
w̃

+ 1 − ar

exp(−Cm( 1
w̃ )) − 1

)kr

× 1
(z̃ − w̃)2 dz̃dw̃.

Making a further change of variables z̃ → 1
z̃ , w̃ → 1

w̃ , we arrive at (9.4). �
Proof of Theorem 3.14. We recall that the functions ym(z) and ηm(z) were defined in 
Section 3.5.

For 0 < a < 1 let Ca;m be the union of the set {z ∈ H : ηm(z) = a} and its conjugate. 
A direct check shows that if z → ∞ then ηm(z) → 0. Therefore, for ar < at the contour 
Car;m contains the contour Cat;m. Thus, in (9.4) we can deform the contour |w| = C to 
Cat;m and the contour |z| = 2C to Car;m without meeting poles of the integrand. We 
obtain

1
(2πi)2

∮
|z|=2C

∮
|w|=C

(
z + 1 − ar

exp (Cm (z)) − 1

)kr
(

w + 1 − at

exp (Cm (w)) − 1

)kt

× 1
(z − w)2 dzdw = 1

(2πi)2

∮
Car ;m

∮
Cat;m

ym(z)kr ym(w)kt
1

(z − w)2 dzdw. (9.5)

Recall that the values of ym(z) are real. Using this fact and the equality

2 log
∣∣∣∣z − w

z − w̄

∣∣∣∣ = log (z − w)(z̄ − w̄)
(z − w̄)(z̄ − w) ,

we can rewrite this expression as
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1
(2πi)2

∮
z∈H:ηm(z)=ar

∮
w∈H:ηm(w)=at

ym(z)kr ym(w)kt∂z∂w

[
2 log

∣∣∣∣z − w

z − w̄

∣∣∣∣] dzdw (9.6)

(in this equation we are integrating over curves in the upper half-plane only).
Let us now transform the quantities involved in the statement of the theorem. An in-

tegration by parts gives us

Mpr
η,k =

+∞∫
−∞

yk
(

Hλ(N)
(Ny, Nη) − EHλ(N)

(Ny, Nη)
)

dy = N−(k+1)

k + 1

(
p

[Nη]
k+1 − Ep

[Nη]
k+1

)
.

Therefore, Proposition 9.1, Lemma 9.2 and equations (9.5), (9.6) show that the collection 
{Mpr

η,k}η≥0;k∈Z≥0 converges to the Gaussian limit and the limit covariance is given by

lim
N→∞

cov

(
Mpr

ar,kr
, Mpr

at,kt

)
N (kr+1)+(kt+1) = −1

4π2(kr + 1)(kt + 1)

×
∮

z∈H:ηm(z)=ar

∮
w∈H:ηm(w)=at

ym(z)kr+1ym(w)kt+1∂z∂w

[
2 log

∣∣∣∣z − w

z − w̄

∣∣∣∣] dzdw.

The definition of the Gaussian Free Field implies

cov
(

Mpr
ar,kr

, Mpr
at,kt

)
=

∫
z∈H:ar=ηm(z)

∫
w∈H;at=ηm(w)

ym(z)kr ym(w)kt

× dym(z)
∂z

dym(w)
dw

[
−1
2π

log
∣∣∣∣z − w

z − w̄

∣∣∣∣] dzdw.

An integration by parts shows that the right-hand sides of two equations differ by a 
factor π. This concludes the proof of the theorem. �
9.2. Extreme characters of U(∞) and Gaussian Free Field

In this Section we prove Proposition 3.9 and Theorem 3.10.
Recall that Cm(z) is a Stieltjes transform of measure m on the real line (see (3.3)).

Lemma 9.3. Assume that a sequence of extreme characters ω(N) satisfies the condition 
(3.14) with the limiting sextuple J = {A+, B+, A−, B−, Γ+, Γ−). Then we have the con-
vergence

lim ∂t log Φω(N)(1 + t) = FJ(1 + t), uniformly in |t| < ε, ε > 0,

N→∞ N
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where FJ(1 + t) is given by the formula

FJ(1 + t) := 1
t2 CA+

(
1
t

)
− A+(R)

t
+ 1

t2 CB+

(
−1

t

)
+ B+(R)

t
− 1

t2 CA−

(
−1 + t

t

)
− A−(R)

t(1 + t) − 1
t2 CB−

(
1 + t

t

)
+ B−(R)

t(1 + t) + Γ+ − Γ−

(1 + t)2 . (9.7)

Proof. The explicit formula for FJ(1 + t) comes as a direct computation from the 
Voiculescu formula (3.12). �

We will need the following elementary technical statement about the measures on R; 
we omit its proof.

Lemma 9.4. For each finite measure μ on R with compact support there exists a sequence 
of measures μK such that

lim
K→∞

CμK
(z) = Cμ(z), as K → ∞,

and μK has a density with respect to Lebesgue measure which does not exceed K1/10.

For a measure m and a ∈ R let sha(m) be a shift of m into a ∈ R, that is

sha(m)(A + a) = m(A), for any measurable A ⊂ R.

For a measure m and c ∈ R we denote by cm the measure

(cm)(A) := c · m(A), for any measurable A ⊂ R.

For a set A ⊂ R let sym(A) be a set obtained from A by reflecting with respect to 0. For 
a measure m we denote by sym(m) the measure

(sym(m))(A) := m(sym(A)), for any measurable A ⊂ R.

We denote by m1 ∪ m2 the union (equivalently, the sum) of measures m1 and m2.

Lemma 9.5. Assume that J = (A+, B+, A−, B−, Γ+, Γ−) is a sextuple that appears in the 
limit in the condition (3.14). Then there exists a sequence of probability measures μJ;K
with bounded by 1 densities with respect to the Lebesgue measure on R such that theirs 
Stieltjes’ transforms satisfy:

CμJ;K (z) = log z − log(z − 1) + 1
((

CA+(z − 1) − A+(R)
)

K (z − 1)



772 A. Bufetov, V. Gorin / Advances in Mathematics 338 (2018) 702–781
+
(

B+(R)
z − 1 + CB+(1 − z)

)
+

(
−CA−(−z) − A−(R)

z

)
+

(
−CB−(z) + B−(R)

z

)

+ Γ+

(z − 1)2 − Γ−

z2

)
+ o

(
1
K

)
, (9.8)

as K → ∞.

Proof. First, note that log(z) −log(z−1) is the Stieltjes transform of the uniform measure 
on [0; 1]. Next, we will consider several other signed measures with total weight 0 which 
give rise to other terms in expression (9.8). It follows that the union of the uniform 
measure on [0; 1] and all signed measures will have weight 1, and we will check that it is 
a probability measure.

Let I1 be a (negative) measure with the density −A+(R)K−9/10 on the segment 
[1 − K−1/10; 1]. Let Ã+ := 1

K sh+1(A+) (note that the total weight of Ã+ is 1/K). 
Then the measure Ã+ ∪ I1 has total zero weight and the Stieltjes transform of the form 
1
K

(
CA+(z − 1) − A+(R)

(z−1)

)
+ o(1/K).

Let I2 be a (positive) measure with the density B+(R)K−9/10 on the segment [1; 1 +
K−1/10]. Let B̃+(K) be a sequence of measures given by Lemma 9.4 applied to the 
measure sym(sh−1(B+)). Then the measure − 1

K B̃+(K) ∪ I2 has total zero weight and 

the Stieltjes transform of the form 1
K

(
CB+(1 − z) + B+(R)

(z−1)

)
+ o(1/K).

The measures for A− and B− are constructed in an analogous way. In order to obtain 
the term Γ+

K(z−1)2 + o(1/K) let us consider the measure which has density Γ+K−8/10 on 

the interval [1; 1 + K−1/10] and density (−Γ+K−8/10) on the interval [1 − K−1/10; 1]. In 
an analogous way we obtain the term −1/K Γ−

z2 + o(1/K).
Finally, let us notice that all negative measures in the construction above are placed 

on the segment from 0 to 1 (recall that beta parameters are bounded by 1, see (3.12)) 
and has densities which decrease with K. In the same time, all positive parts in the 
constructed signed measures lie outside of the segment [0; 1]. Therefore, for large K the 
union of all these 6 measures with total weight zero and the uniform measure (with 
weight 1) on the segment [0; 1] forms a probability measure which has a required form 
of the Stieltjes transform, and the density of this measure does not exceed 1. �
Proof of Proposition 3.9. We prove this Proposition by a limit transition from Proposi-
tion 3.13.

Let K > 0 be a large real number. Let us consider the probability measure μJ;K on R
which is given by Lemma 9.5. Let us apply Proposition 3.13 to the measure μJ;K . As a 
result, we obtain a diffeomorphism between DμJ;K and H. For a fixed pair (x, α) ∈ DμK

it is given by a unique root of the equation

x = z + 1 − α
−Cμ (z) , (9.9)
e J;K − 1
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which lies in H (the uniqueness of such a root is a part of Proposition 3.13). We can 
rewrite it in the form

CμJ;K (z) = log(z − x) − log(z − x + α − 1).

Let us now set x = X
K , α = A

K , for some fixed X ∈ R and A > 0. For large K we 
obtain

CμJ;K (z) = log(z) − log(z − 1) − X

Kz
− A − X

K(z − 1) + o

(
1
K

)
. (9.10)

Note that Lemma 9.3 and Lemma 9.5 show that

CμJ;K (z) = log(z) − log(z − 1) + 1
K(z − 1)2 FJ

(
1 + 1

z − 1

)
+ o

(
1
K

)
. (9.11)

Plugging (9.11) into (9.10), cancelling log(z) − log(z − 1) and multiplying by K, we get

X = Az + z

z − 1FJ

(
1 + 1

z − 1

)
+ o (1) . (9.12)

Let us do a change of variables t = 1
z−1 . Equation (9.12) shows that

X

A
= (1 + t)

(
1
t

+ FJ(1 + t)
A

)
, (9.13)

which has a form given by Proposition 3.9.
Note that the function

K
(
CμJ;K (z) − log(z − X/K) + log(z − X/K + A/K − 1)

)
is analytic and converges uniformly on compact sets inside H as K → ∞. Therefore, the 
number of zeros of this function inside H cannot increase in the limit as K → ∞. Thus, 
for any pair (X, A) the equation (9.13) has no more than one solution in H, which shows 
the existence of DF from the statement of Proposition 3.9 and the existence of the map 
DF → H.

On the other side, the bijection H → DμJ;K is given by the explicit formulas:

xμJ;K (z) = z +
(z − z̄)(exp(CμJ;K (z̄)) − 1) exp(CμJ;K (z))

exp(CμJ;K (z)) − exp(CμJ;K (z̄)) ,

αμJ;K (z) = 1 +
(z − z̄)(exp(CμJ;K (z̄)) − 1)(exp(CμJ;K (z)) − 1)
exp(CμJ;K (z)) − exp(CμJ;K (z̄))
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(these functions are solutions to (9.9)). In the limit K → ∞ and with the change of 
variables t = 1

z−1 as above, these functions converge to the functions

X(t) = (1 + t)(1 + t̄)(tFJ(1 + t) − t̄FJ(1 + t̄))
t − t̄

,

A(t) = (1 + t̄)(tFJ(1 + t) − t̄FJ(1 + t̄))
t − t̄

t − tFJ(1 + t).

Note that for any t ∈ H these limiting functions are solutions to (9.13) with X = X(t)
and A = A(t). Therefore, the map DF → H is a bijection. Moreover, this is a diffeomor-
phism since the functions X(t) and A(t) are differentiable, and the differentiability of 
the map DF → H is provided by the Implicit Function theorem.

Proof of Theorem 3.10. Recall that we have a probability measure μχw(N) on the set of 
paths P in the Gelfand–Tsetlin graph. Let pA;k be the shifted moments of the random 
signature λ([AN ]) distributed according to this measure:

pA;k =
AN∑
i=1

(λ(AN)
i + [AN ] − i)k.

Our probabilistic model clearly satisfies assumptions of Theorem 2.9, with Fρ(z) =
FJ(z), and Gρ(z) = 0. Applying it, we obtain that the random variables {pA;k −
EpA;k}A>0;k≥1 converge to the jointly Gaussian limit with zero mean and covariance

lim
N→∞

cov(pA1;k1 , pA2,k2)
Nk1+k2

= 1
(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)FJ(1 + z)
A1

)k1

×
(

1
w

+ 1 + (1 + w) (1 + z)FJ(1 + z)
A2

)k2 1
(z − w)2 dzdw, (9.14)

where 0 < A1 ≤ A2 and ε � 1.
Note that the formula (9.14) for covariance already contains the cross factor 1

(z−w)2 — 
this is a key indication of the presence of the Gaussian Free Field. The derivation of 
Theorem 3.10 from (9.14) is completely analogous to the derivation of Theorem 3.14 from 
(9.4) modulo the fact that one needs to use Proposition 3.9 instead of Proposition 3.13
in order to deal with the arising level curves. �
9.3. Domino tilings of Aztec diamond and Gaussian Free Field

In this section we prove Theorem 3.17.
Let us formally describe the probability measure on a particle system which turns out 

to be equivalent to the domino tiling model.
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For each t = 1, 2, . . . , N let λ(t), υ(t) be signatures of length t, and let β := q

q+1 , where 
q is a parameter from Section 3.6.

Define the coefficients κ(λ(t) → υ(t)) via

sλ(t)(x1, . . . , xt)
sλ(t)(1t)

t∏
i=1

(1 − β + βxi) =
∑

υ(t)∈GTt

κ(λ(t) → υ(t))sυ(t)(x1, . . . , xt)
sυ(t)(1t) .

Recall that the coefficients prt→t−1(υ(t) → λ(t−1)) were defined in Section 2.4. The 
branching rule and the Pieri rule for Schur polynomials imply that the coefficients 
κ(λ(t) → υ(t)) and prt→t−1(υ(t) → λ(t−1)) are nonnegative.

Define the probability measure on the sets of signatures of the form (λ(N), υ(N),

λ(N−1), υ(N−1), . . . , λ(2), υ(2), λ(1)) by the formula

Prob(λ(N), υ(N), λ(N−1), υ(N−1), . . . , λ(2), υ(2), λ(1))

:= 1λ(N)=(0N )

N∏
i=2

κ(λ(i) → υ(i))pri→(i−1)(υ(i) → λ(i−1)) (9.15)

(it can be directly checked by induction that the total sum of these weights is 1). Let 
SN be the set of such configurations that has a nonzero probability measure.

Proposition 9.6. There is a bijection between SN and the set of domino tilings of the 
Aztec diamond of size N . Moreover, under this bijection the measure (9.15) turns into 
the measure qnumber of horizontal dominos · (1 + q)−N(N+1)/2 on the set of domino tilings of 
the Aztec diamond of size N .

Proof. This fact is well-known, and essentially two sequences of signatures are yellow 
and green particles in Fig. 3. It was implicitly used in [34] and [7]; for a recent exposition, 
see [11]. See also [15], where a generalization of this construction is used for a study of 
domino tilings of more general domains. �

The bijection described in Proposition 9.6 allows to translate all results about a two-
dimensional particle array into the geometric language of domino tilings. We will now 
proceed in the language of arrays.

Proof of Theorem 3.17. Let λ(1), λ(2), . . . , λ(N) be random signatures distributed accord-
ing to the measure (9.15). For a < 1 let pk;t be the k-th power degree of the coordinates 
of the signature λ([aN ]). That is, we have

p
[aN ]
k;t :=

[aN ]∑
i=1

(λ([aN ])
i + [aN ] − i)k.
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Proposition 9.7. In the notations of Theorem 3.17, the collection of random variables 
{N−kp

[aN ]
k;t }k∈N;0<a≤1 is asymptotically Gaussian with the limit covariance

lim
N→∞

cov
(

p
[a1N ]
k1

, p
[a2N ]
k2

)
Nk1+k2

= ak1
1 ak2

2
(2πi)2

∮
|z|=ε

∮
|w|=2ε

(
1
z

+ 1 + (1 + z)(1 − a1)β
a1(1 − β + β(z + 1))

)k1

×
(

1
w

+ 1 + (1 + w)(1 − a2)β
a2(1 − β + β(w + 1))

)k2 1
(z − w)2 dzdw, (9.16)

where 0 < a1 ≤ a2 and ε � 1.

Proof. By construction, the probability measure (9.15) satisfies the assumptions of Theo-
rem 2.11. Note that the Schur generating function on the level [aN ] (that is, on signatures 
of length [aN ]) is equal to

[aN ]∏
i=1

(1 − β + βxi)N−[aN ].

Thus, the application of Theorem 2.11 implies this proposition. �
Notice that the equation (9.16) contains the cross factor 1

(z−w)2 . Using β = q

q+1 , one 
directly checks that the equation

1
z

+ 1 + (1 + z)(1 − a1)β
a1(1 − β + β(z + 1)) = y

η

coincides with the equation given in Proposition 3.16. Theorem 3.17 can be obtained 
from Proposition (9.7) with the use of Proposition 3.16 in exactly the same way as in 
the previous two sections. �
9.4. Tensor products and degeneration to random matrices

There exists a way to degenerate the tensor products of representations into sums of 
Hermitian matrices, see e.g. Section 1.3 of [13] for details. Our goal is to show that under 
this degeneration the covariance for tensor products (given in Theorem 3.3) turns into 
the covariance for the sum of random matrices.

Let ai(N) and bi(N), i = 1, . . . , N , be two sets of reals, let A(N) be a diagonal N ×N

matrix with eigenvalues {ai(N)}N
i=1, and let B(N) be a diagonal N × N matrix with 

eigenvalues {bi(N)}N
i=1. Assume that UN is a uniformly (=Haar-distributed) random 

unitary N × N matrix. Let

HN := A(N) + U−1
N B(N)UN ,
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and let λ1(HN ) ≥ · · · ≥ λN (HN ) be (random) eigenvalues of HN . Set

pk(HN ) :=
N∑

i=1
λk

i (HN ).

Assume that

1
N

N∑
i=1

δ(ai(N)) −−−−→
N→∞

m̂1,
1
N

N∑
i=1

δ(bi(N)) −−−−→
N→∞

m̂2, weak convergence,

where m̂1, m̂2 are probability measures on R with compact supports.
Let

f̂(z) :=
(

−1
z

+ Rm̂1(−z) + Rm̂2(−z)
)(−1)

,

where by F(−1)(z) we mean the functional inverse of the function F(z), and the function 
Rm(z) was introduced in Section 3.1.

In the limit regime N → ∞ the covariance of the functions pk(H) is given by the 
following formula, see [53, Chapter 10]

lim
N→∞

cov(pk(HN ), pl(HN )) = 1
(2πi)2

∮
z

∮
w

zkwl ∂2

∂z∂w

(
log

(
Rm̂2(−f̂(z)) − 1

f̂(z)

−Rm̂2(−f̂(w)) + 1
f̂(w)

)
+ log

(
Rm̂1(−f̂(z)) − 1

f̂(z)
− Rm̂1(−f̂(w)) + 1

f̂(w)

)

− log(z − w) − log
(

1
f̂(w)

− 1
f̂(z)

))
dzdw,

where the contours encircle infinity and no other poles of the integrand.
Let us make a change of variables z = f̂ (−1)(−ẑ) (i.e. ẑ = −f(z)), which, in particular, 

swaps 0 with ∞. Note that conveniently ∂2

∂z∂w F (z, w) · dzdw is a differential form for an 
arbitrary function F (z, w), and thus it does not change at all. Therefore, we obtain

lim
N→∞

cov(pk(HN ), pl(HN )) = 1
(2πi)2

∮
ẑ

∮
ŵ

(
f̂ (−1)(−ẑ)

)k (
f̂ (−1)(−ŵ)

)l

× ∂2

∂ẑ∂ŵ

(
log

(
RB(ẑ) + 1

ẑ
− RB(ŵ) − 1

ŵ

)
+ log

(
RA(ẑ) + 1

ẑ
− RA(ŵ) − 1/ŵ

)
− log

(
f̂ (−1)(−ẑ) − f̂ (−1)(−ẑ)

)
− log

(
− 1

ŵ
+ 1

ẑ

))
dẑdŵ, (9.17)

where contours of integration encircle zero and no other poles.
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Recall the setting and notations of Theorem 3.3. Let m1, m2 be two limiting measures 
for signatures. Theorem 3.3 asserts that random variables pk which corresponds to the 
measure m[T λ1(N) ⊗ T λ2(N)] have the covariance given by the formula

lim
N→∞

N−k−lcov (pk, pl)

= 1
(2πi)2

∮
z

∮
w

(
1
z

+ 1 + (1 + z) (H ′
m1(1 + z) + H ′

m2(1 + z))
)k

×
(

1
w

+ 1 + (1 + w) (H ′
m1(1 + w) + H ′

m2(1 + w))
)l

Q⊗
m1,m2(z, w)dzdw, (9.18)

where contours of integration encircle zero and no other poles.

Proposition 9.8. The right-hand side of (9.18) converges to the right-hand side of (9.17)
in the limit

mi = m̂iδ−1, z = δẑ, w = δŵ, i = 1, 2,

where positive real δ tends to 0.

Proof. By a straightforward computation we have

lim
δ→0

H ′
mi(1 + z) = Rm̂i(ẑ), i = 1, 2.

We can further transform as δ → 0 the Q⊗
m1,m2(z, w) part of (9.18) (without changing 

the integral) to

∂ẑ∂ŵ

(
log

(
1 − ẑŵ

Rm̂1(ẑ) − Rm̂1(w)
ẑ − ŵ

)
+ log

(
1 − ẑŵ

Rm̂2(ẑ) − Rm̂2(w)
ẑ − ŵ

)
− log

(
1 − ẑŵ

Rm̂1(ẑ) + Rm̂2(ẑ) − Rm̂1(w) − Rm̂2(w)
ẑ − ŵ

))
Plugging these limit relations into the right-hand side of (9.18), we obtain that as 

δ → 0 we have

1
(2πi)2

∮
ẑ

∮
ŵ

(
1
z

+ Rm̂1(ẑ) + Rm̂2(ẑ) + o(1)
)k (

1
w

+ Rm̂1(ŵ) + Rm̂2(ŵ) + o(1)
)l

× ∂ẑ∂ŵ

(
log

(
1 − ẑŵ

Rm̂1(ẑ) − Rm̂1(w)
ẑ − ŵ

+ o(1)
)
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+ log
(

1 − ẑŵ
Rm̂2(ẑ) − Rm̂2(w)

ẑ − ŵ
+ o(1)

)
− log

(
1 − ẑŵ

Rm̂1(ẑ) + Rm̂2(ẑ) − Rm̂1(w) − Rm̂2(w)
ẑ − ŵ

+ o(1)
))

dẑdŵ. (9.19)

Therefore, in the limit we obtain the right-hand side of (9.17). �
Remark 9.9. This limit regime of Proposition 9.8 is closely related to the semi-classical 
limit; see Section 1.3 of [13] for more details on this transition.

10. Appendix: Law of Large Numbers

In this section we prove Theorem 2.4. In fact, this is [13, Theorem 5.1], and we 
comment on slight differences here.

The first difference is that [13, Theorem 5.1] requires that the Schur generating func-
tion Sρ of a probability measure ρ = ρ(N) satisfies the condition

lim
N→∞

log Sρ(x1, . . . , xk, 1N−k)
N

= U(x1) + · · · + U(xk), for any fixed k ≥ 1,

where U is a holomorphic function and the convergence is uniform in an open neigh-
borhood of (x1, . . . , xk) = 1N−k. It is clear that this condition implies the properties of 
Definition 2.1 with ∂l

zU(z) = cl, for l ≥ 1. The uniform convergence of holomorphic func-
tions implies the convergence of Taylor coefficients, though the opposite is not always 
correct. However, in the proof of Theorem 5.1 from [13] we use only the convergence of 
Taylor coefficients, so the same proof (see Section 5.2 of [13]) goes without any changes.

The second difference is that the right-hand side of equation (2.2) in Theorem 2.4 is 
written in an integral form rather than in a summation form. The computation which 
shows the equivalence of these two expressions is given in equation (6.2) of [13].
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