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Abstract—Many fundamental challenges in robotics, based
in manipulation or locomotion, require making and breaking
contact with the environment. To represent the complexity of
frictional contact events, impulsive impact models are especially
popular, as they often lead to mathematically and computation-
ally tractable approaches. However, when two or more impacts
occur simultaneously, the precise sequencing of impact forces
is generally unknown, leading to the potential for multiple
possible outcomes. This simultaneity is far from pathological,
and occurs in many common robotics applications. In this work,
we propose an approach for resolving simultaneous frictional
impacts, represented as a differential inclusion. Solutions to our
model, an extension to multiple contacts of Routh’s method,
naturally capture the set of potential post-impact velocities. We
prove that solutions to the presented model must terminate. This
is, to the best of our knowledge, the first such guarantee for
set-valued outcomes to simultaneous frictional impacts.

I. INTRODUCTION

Modern robots are fast and strong, and, in some situa-
tions, their capabilities eclipse those of humans. However,
when these robots interact with their environment, whether
by manipulating objects or traversing over uneven surfaces,
they do so with far less skill than their human counterparts.
Critical challenges facing the field lie in modeling, planning,
and control of robots in these complex, multi-contact settings,
particularly for locomotion [43] and manipulation [23].

Rigid-body models of dynamics and contact (see Stewart
[38] or Brogliato [4] for an overview) are widely used in
robotics, as they can lead to far more tractable methods
than approaches which explicitly attempt to capture the stiff
interaction between objects. These approaches have also led to
complementarity-based simulation schemes, such as [1, 10, 16,
22,36, 37] and others. Recent research, using complementarity
models, has also been conducted into multi-contact optimal
planning [25, 27, 28] and control [15, 29]. Similar applications
have been seen for manipulation (e.g. [34]), including quasi-
static approaches [7, 14]. When impacts occur, rigid-body
models approximate the event as an instantaneous change in
velocity due to an impulsive force.

The approaches above, now deeply ingrained within the
robotics community, universally assume that it is possible
to determine a single potential post-impact velocity, even
during simultaneous multi-contact. However, as observed in
[17, 18, 36, 41, 42] and others, including recent analysis of
robot locomotion [30], the resolution of simultaneous impacts
is dependent upon the sequence in which they are resolved.

Simulation schemes to this problem (e.g. [9, 11, 19, 22, 24, 36,
41] and many others) focus on generation of a single solution
via a heuristic (symmetry [22], potential energy [41], etc.).
However, for many practical applications in robotics, it is not
possible to create a model detailed enough to reliably disam-
biguate between the multiple potential solutions; essentially,
the disambiguation performed by common simulation schemes
is not grounded in physical principles. Even were we to be
given such detail, this lack of uniqueness often represents an
extreme sensitivity to initial conditions: slight perturbations in
the initial state of the system might lead to different impact
sequences. As a result, rather than focus on producing a single
potential solution, here we consider the set of such solutions.

As the motivating examples in III-A will demonstrate,
simultaneous impacts are not limited to unlikely, pathological
events but are, in fact, regular occurrences in robotics and
require careful analysis. From the perspective of planning,
learning, and control, it is critical to understand the role
of this non-uniqueness (alternatively, extreme sensitivity), as
some of the broad challenges in executing dynamic, multi-
contact motion likely arise from these issues. For example,
methods which use a simulator to learn or plan a motion may,
unwittingly, be planning for an ambiguous, therefore unstable,
outcome due to multi-contact. Furthermore, as the set of these
ambiguous outcomes is often non-convex, it is insufficient to
try to capture this sensitivity via simple models of uncertainty.

Many methods have been proposed for modeling single
impacts (e.g. [3, 6, 31, 39], and others) along with recent
data-driven models [12, 20], experimental validation [13], and
efforts to translate multi-contact simulated motions to real
robots [40]. Comparable results for simultaneous impacts have
largely focused on simulation, with the intent to produce a
single, reasonable solution (e.g [1, 10, 36]), where Anitescu
and Potra [1] and Drumwright and Shell [10] guarantee
termination of their numerical methods. Other related work
addresses specialized, restricted settings. Seghete and Murphey
[35] developed a model where solutions were guaranteed to
exist, but assumed that contact normal vectors are linearly
independent. Burden et al. [5] studied discontinuous vector
fields, with strong results and applications to robot impacts,
but are similarly restricted to frictionless contact. Johnson et al.
[21] treated a limited form of friction, but assumed that contact
occurs only at massless limbs. For a quasi-static model, thus
without impact, Halm and Posa [14] guaranteed existence of



solutions for multi-contact motion.

This work extends Routh’s graphical model [31] to address
simultaneous, inelastic impacts by permitting impulses to
occur in arbitrary sequences. As a result, the model produces
a set-valued map that captures the inherent lack of uniqueness.
We believe this is the appropriate description for robotic plan-
ning and control, as motions that present as non-unique will,
for physical systems, display extreme sensitivity to any errors
in estimation or control. In contrast with prior literature, the
presented model captures a broad class of frictional systems.
In III, we describe the model and a number of its theoretical
properties and in IV we prove the key result that the impact
model is guaranteed to terminate. To the best of the authors’
knowledge, this work presents the first known formal result
for set-valued solutions to simultaneous frictional impact.

II. BACKGROUND

We now introduce notation for and study the limiting
behaviors of the frictional impact dynamics of rigid multibody
systems. Denote the interior, closure, and convex hull of a set
A as int(A), cl(A), and co(A). We identify the {,-norm and
unit direction of a vector v € R as [[v]|, and ¥ = m,
respectively. We define the open r-radius ball in R™ as B,.
We denote R"™ C R"™ as the vectors with strictly positive
entries and define a function f : @ C R™ — cIR" to be
positive definite if it is strictly positive on  \ {0}. For a
single-valued function f : A — B and a set-valued function
D : A — P(B), we denote the image of A’ C A under f and
D as f(A’) C B and D(A’) C B respectively.

A. Functional Analysis

The results herein are broadly derived from measure theory
and functional analysis; for a thorough background, see Rudin
[32, 33]. For a set 2 C R"”, we equip €2 with the standard
Euclidean metric and norm, and integrals on ) are with
respect to the Lebesgue measure by default. The total time
derivative f(t) of an absolutely continuous function f(t) is
taken in the Lebesgue sense (i.e. f(t) is the anti-derivative of
f' (t), which is defined almost everywhere (a.e.)). Convergence
of a sequence of functions f, to f almost everywhere and
uniformly are denoted f, =<5 f and f, — f, respectively.
A key result for the derivations in this work is the Arzela-
Ascoli Theorem [33]:

Theorem 1 (Arzela-Ascoli). Let (fy),cy be a uniformly
bounded equicontinuous sequence of R"-valued functions on
some compact interval 1. Then there exists a function f and
subsequence (fr, )y Such that fy, % f

B. Differential Inclusions

The dynamics of many robots can be captured accurately
with a system of ordinary differential equations (ODEs) =
f(x,u), which relates € R", the state of the robot (typically
some notion of position and velocity), to © € R™, a set
of inputs (such as motor torques) that can be manipulated.
However, the dynamics of rigid bodies under frictional contact

present complexities that this formulation cannot capture. Im-
pacts between bodies induce instantaneous jumps in velocity
that in general cannot described by an ODE (non-smooth
behaviors). Additionally, when contact occurs at many points,
multiple frictional forces that obey Coulomb’s laws of friction
may exist (non-unique behaviors). It is therefore useful to
define an object that, unlike ODEs, allows for the derivative
at each state to lie in a set of possible values

v € D(v). 1

As the map D(v) associated with friction may not be con-
tinuous, conditions for a function v(¢) to be a solution to the
differential inclusion (1) are weakened from those of an ODE:

Definition 1. For a compact interval I, v : I — R" is
a solution to the differential inclusion v € D(v) if v is
absolutely continuous and ¥(t) € D(v(t)) a.e. on I. Denote
the set of such solutions as SOLp (I).

Solutions to initial value problems for (1) are defined similarly:

Definition 2. For I = [a,b] compact, denote the set of
Sfunctions v(t) € SOLp (I) with v(a) = vg as IVPp (v, I).

For example, consider the differential inclusion

© € —Unit (v) , 2)
where Unit (v) is the set-valued unit direction function
v 0
Unit (v) = 4 108 v 70, @)
clBi v=0.

For any compact interval I = [0, T, the initial value problem
IVP _ynit (vo, I) admits the unique solution

Vo —t ’lAJQ t S Vo N
0 t = volly -
Su,(t) is non-differentiable at ¢t = ||vg||, and thus is not a

solution of any ODE. In general, non-emptiness, regularity,
and closure of IVPp (vg, I) depend on the structure of D(v);
fortunately, solution sets for frictional dynamics are well-
behaved due to their upper semi-continuous (u.s.c.) structure:

Definition 3. A function D : A — P (B) with values closed in
B is upper semi-continuous if ¥ (an),cn € A, (bn)pen € B
with a, — a, b, — b, and b, € D(ay,), we have b € D(a).

Proposition 1 (Aubin and Cellina [2]). Let vo € R™ and I
be a compact interval. If D(v) is uniformly bounded; u.s.c.;
and closed, convex, and non-empty at all v, INGPp (vg, I) is
u.s.c. in vo. Furthermore SOLp (I) as well as IVPp (v, )
are non-empty and closed under uniform convergence.

Intuitively, a map is u.s.c. if its value at each v is not
significantly smaller than its value at any v’ near v. Unit (v),
for example, obeys all requirements of Proposition 1. As it
is a singleton, IVP_ypit (vo,I) is closed, non-empty, and
convex; furthermore, if v,, — v, then s, 2 Sy, With
Sw., € IVP_ynit (Voo, I). An illustration of this system as
well as the function Unit(v) can be found in Figure 1.
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Fig. 1: (a) Graph of Unit(v) for n = 1. Note that Unit(v)
is continuous on v # 0. At 0, Unit takes the value [—1,1],
which contains a continuous extension of ¥ from both the left
(—1) and the right (+1), so that Unit is u.s.c.. (b) Flow field
of the solutions to © € —Unit(v) for n = 2.

C. Frictional Impact Dynamics

Many robots’ dynamics can be modeled as a system of rigid
bodies experiencing contact at up to m points (for a thorough
introduction, see [38] and [4]). The state of such a system can
be represented by configuration g(¢) and velocities v(t) € R™.
The continuous evolution is governed by

M(q)v + C(q,v) = Jnc(@) Anc+ Jrc(@ e, 6

where M (q) is the generalized inertial matrix; C(q, v) en-
compasses Coriolis and gravitational forces; J, c € R™*"
projects the velocity v onto the contact normals; and J; ¢ €
R%#*" projects v onto the contact tangents of the k& < m
frictional contacts. We identify the behavior with a set of
contacts C' = {cy,...,cm}, and identify each contact ¢; with
its related vectors: row ¢ of J, ¢ and rows 2 — 1 and 27
of J; ¢, denoted as J,, ., and J; .,, respectively. Denote the
collection of potential contact sets as C, thus C € C. We
furthermore define C(,, »y € C to be the collection of sets
of m contacts of which £k < m are frictional. The world-
frame contact normal and frictional forces A, c(t) € R™
and A\; c(t) € R?* must lie within the Coulomb friction cone
FCc (q,v); thatis, forall¢ € {1,...,m}and j € {1,...,k},

An,C’ Z 07 A11,073']11,073'0 S 07 (6)
)\t,Cj € _HC]‘ An_’chIlit (Jt,Cj 'U) ) (7)
where A, ., and At,cj are identified similarly to J, ., and

Jic; and pe; > 0 is the friction coefficient for the jth contact.
Additionally, we denote the lumped terms

Jn.C An.C(t)
Jo = . Ac(t) = ’ , 8
e= el rew=[3 ®
Poe={veR":3ceC J,cv <0}, 9)
Ac =int (Pc€) ={v eR": Jn,cv > 0}. (10)
Pc is the set of actively penetrating velocities, where impact
is guaranteed to occur. A¢ are separating velocities, where no

impact can occur. Note that R™\ (PcUA¢) # 0, and velocities
in this set may require impacts, as in Painlevé’s Paradox [38].
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Fig. 2: Velocity throughout an impact resolution by Routh’s
method (image adapted from Posa et al. [29]). At the initial
state, the velocity-projected extreme rays of the friction cone
are shown as solid arrows. The contact begins in a sliding
regime. When v, shown in the dotted line, intersects J;v = 0,
the contact transitions to sticking and the impact terminates
when J,v = 0.

In this work, we focus on inelastic impulsive impacts, during
which velocities change instantaneously. Letting A¢ represent
an impulse, pre- and post-impact velocities, v_ and vy obey

M(q)(vs —v_) = JEAC.

Coulomb friction poses challenges in computing A¢, as an
impact may cause stick-slip transitions or change in slip
direction. For a single contact C' = {c}, Routh [31] proposed a
graphical method describing a path in velocity space (equiva-
lently impulse space) from v_ to v which satisfies Coulomb
friction differentially. To briefly summarize this technique,

1) Increase the normal impulse A,, . with slope A, ..

2) Increment the tangential impulse A; . with slope A; .,
satisfying to Coulomb friction, identical to (7) for the
mid-impact velocity @ = v_ + M(q) 'JLA,, the
velocity after net impulse A..

3) Terminate when the normal contact velocity vanishes!
(i.e. Jn, v = 0) and take vy = .

To later proceed to the multi-contact case, we observe that this
process could be modeled as a u.s.c. differential inclusion:

{0} ve A,
v € D (v) =< F.(v) veP,, (11)
co ({0} U F.(v)) otherwise.

where F(v) is equal to the net increment in velocity due to the
“force” applied in steps 1) and 2) of Routh’s method. Since g
is constant during an impact, we will apply the transformation

M(q)"® to v in (11), leaving
F.(v) = J} . — pe} Unit (J, v) | (12)

where we retain the use of v for ease of notation. For any
v € F.(v), we can associate a set of forces A¢ such that

v=JIX,, Ane=1, Ae € FCo(q,v). (13)
Note that for a frictionless contact (p. = 0), this simplifies to

F. (v) = {JT, (14)

ITo permit resolutions to Painlevé’s Paradox, terminate only when consis-
tency no longer requires an instantaneous change in velocity.



A diagram depicting the resolution of a potential planar
impacts is shown in Figure 2. Solutions may transition between
sliding and sticking, and the direction of slip may even reverse
as a result of each impact. While the path is piecewise linear
in the planar case, this is not true in three dimensions.

From this point forward, we will take s to be the “simulation
time” during the resolution of an impact event; we note that
evolution of s does not correspond to evolution of time, but
rather measures the accumulation of impact impulse over an
instantaneous collision. In a slight abuse of notation, and
we will consider total derivatives such as v(s) to be taken
with respect to s. We will also denote the impulse (i.e. the
integrated force) on a contact ¢ over a sub-interval [sy, s3] of
an impact resolution as A (s1, s2). Implicit in Routh’s method
is an assumption that the terminal condition in step 3) will
eventually be reached by any valid choice of increment on
Ag; if it is possible to get “stuck” with J, .v < 0, then
Routh’s method would be ill-defined and not predict a post
impact state. This does not happen in the frictionless case,
as Jp v has constant positive derivative J, .0 = HJnCH;
The frictional case requires more careful treatment. Intuitively,
the added effect of the frictional impulse will be to dissipate
kinetic energy quickly. One may conclude that termination
happens eventually as zero velocity is a valid post-impact state:

Lemma 2. 35S > 0 such that for any solution v(s) €
SOLp, ([0, [|v(0)||5 S]) of the single frictional contact system
defined in (11) and (12), 3s* € [0, [|[v(0)||5 S], Jn,cv(s*) > 0.

Proof: See Appendix A. ]
The implication of Lemma 2 is that a priori, one can
determine an S > 0 proportional to the pre-impact velocity
v_ such that any solution to the differential inclusion (11) on
[0,.5] can be used to construct the post-impact velocity v...
We will see, however, that the extension of this methodology
to multiple concurrent impacts is non-trivial, and that the
physicals systems associated with these models often exhibit
a high degree of indeterminacy.

III. SIMULTANEOUS IMPACT MODEL
A. Motivating Examples

We include, as motivation, two common robotics exam-
ples that exhibit simultaneous impacts: one related to legged
locomotion and the other to manipulation. Both examples,
depending on initial conditions and model properties, can
exhibit non-uniqueness. Before describing our model in full
detail, we present these examples by considering the outcome
of applying Routh’s method to a single contact at a time.

1) Rimless Wheel: The rimless wheel is a commonly used
description of simple robotic walking [8]. Here, we will
analyze the case where two feet contact the ground. This can
occur if the robot were to fall on two feet, simultaneously, or
when one foot is in sustained ground contact and the other
impacts the ground. Note that this example is not limited to a
legged robot with locked hip and knee joints; see [30] for a
thorough analysis of similar legged examples.
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Fig. 3: (a) Possible impact resolution for the rimless wheel
with initial downward vertical velocity (i). A sticking impact
at contact A is resolved first (ii), causing a secondary impact
at B (iii). (b) Impact solutions in contact normal coordinates.
Sequential resolution results one foot lifting off the ground,
while simultaneous resolution results in pure sticking. The
model defined in Section III allows concurrent impacts until
exiting quadrant III on the dashed orange set. Final post-impact
velocities are shown in solid green.

For a simple example, illustrated in Fig. 3, we assume that
both feet strike the ground vertically, with friction sufficient
to sustain sticking. In this case, existing simulation schemes
([1, 37] and others) predict that equal impulses are generated
on both feet, brining the robot to rest immediately. However,
as illustrated in the figure, if the contacts are sequenced one
at a time, other post-impact states are possible where one leg
separates from the ground. For other configurations of this
problem, non-unique solutions exist spanning sticking, sliding,
and separation all for a single initial condition.

2) Nonprehensile Pushing: In this second example, mo-
tivated by nonprehensile pushing of an object, we take a
box-like object (Fig. 4) to have one corner sliding along a
surface before impacting a frictionless second surface. Here,
the impact on the right wall causes a secondary, frictional
impact against the lower wall.

If the first impact is taken to termination before activating
the contact on the right wall, the solution in Fig. 4b is
discovered. Here, the bottom contact is separating and the
right contact is sliding upward. Instead, if the impact switches
prior to termination, shown in Fig. 4c, a slightly different so-
lution emerges. This example illustrates that, in simple cases,
reminiscent of common robotics applications, subtly different
non-unique solutions can emerge from multiple contacts.

B. Model Construction

As post-impact velocity is sensitive to the ordering of
individual impact resolutions, if we would like to predict
as many reasonable post-impact velocities as possible, we
must use as relaxed of a notion of impact resolutions as
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Fig. 4: Two subtly different solutions to a planar motion (a) are shown. (b) The box slides, with friction, to the right along
the bottom (A) contact, before a frictionless impact on the right surface at B. This impact induces a second impact at A. (c)
Here, the incremental impulse switches to B before the first impact terminates.

possible. A similar model, without theoretical results or a
detailed understanding, was proposed by Posa et al. [29] where
it proved useful for stability analysis of robots undergoing
simultaneous impact. We consider a formulation in which at
any given instant during the resolution process, the impacts
are allowed to concurrently resolve at any relative rate:

1) Monotonically increase the normal impulse on each non-
separating contact c at rate A, . > 0 such that

ZAH,C = ||An.,CH1 =1.

ceC

5)

2) Increment the tangential impulse for each frictional
contact ¢ at rate A, . such that A¢c € FCq(v).
3) Terminate when v € Pc.

We can understand the constraint (15) on A¢ as choosing a
net force that comes from a convex combination of the forces
that Routh’s method might select for any of the individual
contacts ¢ € C'. As in the single contact case, we might instead
think of the selection of a Ax as picking an element of a set
of admissible values for ©. As before, we construct a u.s.c.
differential inclusion to capture this behavior:

Fo(v)=co({fe:c€C, f. € F.(v),v€clP.}), (16)
{0} v e Ao,
Dc(v) = { Fo (v) v e Po, A7)
co ({0} U Fo(v)) otherwise.

We denote total impulse over an interval [s1, s3], Ac (81, 82),
as before. Similar to (13), one can extract Ac(s) from a
solution v(s) such that

'i;:Jg)‘Cv H)‘n,C||1:17

We illustrate the behavior of this model on the rimless wheel
in Figure 3b. While v remains in the third quadrant, the
direction of v is permitted to take any value in the convex cone
outlined by the sold blue and dotted red solutions, including
the simultaneous impact solution. This results in the velocity

Ac € FCc(g,v). (18)

terminating at least one impact on the dashed orange set, after
which behavior is identical to the single-contact system. The
final velocities achievable, shown in solid green, are a superset
of those given by sequential and simultaneous resolution.

C. Properties

The construction of (17) is similar to that of the single
contact system (11); it is furthermore equivalent when C' is a
singleton. We now detail properties of the multi-contact system
that are useful for analyzing its solution set.

1) Existence and Closure: For any C € C, D¢(v) is
closed, uniformly bounded, and convex as it is constructed
from the convex hull of a set of bounded vectors. Therefore
by Proposition 1, we obtain the following:

Lemma 3. For all C' € C, velocities vy, and compact intervals
I, SOLp, (I) and IVPp_ (vo, I) are non-empty and closed
under uniform convergence.

2) Homogeneity: As each Pc and Ac are conic, Fe(v)
and therefore D¢ (v) are positively homogeneous in v. That
is to say, Vk > 0,v € R", D¢(v) = De(kv). Positive
homogeneity induces a similar property on SOLp_, (I):

Lemma 4 (Solution Homogeneity). For all C € C, k > 0,
and compact intervals I, if v(s) € SOLp,. (1), kv(3) €
SOLp,, (kI).

3) Equivalent Minimal Coordinate Systems: In light of
(18), we have that v(s) — v(sg) € Range(JZ) for all
solutions v(s) € SOLp,, (I). It will be useful to analyze the
the evolution of a minimal-coordinate representation of v’s
projection onto Range (JZ). Let R be a matrix with columns
that constitute an orthogonal basis of Range (Jg . Therefore,
RR7 is an orthogonal projector onto Range (JC) and

Jov = (JcR) (R™v) , (19)

4 (R"v) = (JeR)" Acace.

T (20)



Therefore, by defining a new set of contacts () with equal size
to C such that Jg = Jo R, we have that

v(s) € SOLp,, (I) < R"v(s) € SOLp, (I), (1)
vEPe <= R'vePy, (22)
Jov=0 <= v=0. (23)

We denote the collection of contact sets of this size that
comply with the full rank condition (23) as

Fimg) = {Q € Clmy : Jo full rank} . (24)

Note that Q) € F(x ) does not require Jg to have linearly
independent rows; Jg may have more rows than columns with
enough contacts, and ) € F(y,,,) would then imply that every
perturbation of v would perturb at least one contact velocity.

4) Energy Dissipation: A basic behavior of inelastic im-
pacts is that they dissipate kinetic energy K (v) = ||v|\§ We
now examine the dissipative properties of the model, which
function both as a physical realism sanity check and as a
device to prove critical theoretical properties. On inspection
of (6), (7) and (13), K(v(s)) must be non-increasing, and
furthermore, unless v(s) is constant, it will strictly decrease:

Lemma 5 (Dissipation). Let C € C, and let I be a compact in-
terval. If v(s) € SOLp,, (I), then ||v(s)||, is non-increasing.

Theorem 6. Let C € C, and let I be a compact interval. If
v(s) € SOLp.. (I) andv (I) C Pc, ||v(s)|, constant implies
v(s) constant.

Proof: See Appendix B. ]
One might then wonder if K (v) is strictly decreasing on
Pc. One necessary condition would be 0 ¢ D¢ (v*) for every
v* € Pe, as otherwise v(s) = v* would be a solution to the
differential inclusion. We will denote the collection of contacts
that have this property as

N={NeC:0¢Fy(Pn)}.

Critically, A/ covers most situations in robotics, including
grasping and locomotion, with the notable exception being
jamming between immovable surfaces. Sums-of-squares pro-
gramming [26], a form of convex optimization, can be used
to certify membership in V.

Theorem 6 and Lemma 5 have the immediate implication
that K (v) strictly decreases on on Py for N € N:

Theorem 7 (Strict Dissipation). Let N € N and I be a
compact interval. If v(s) € SOLp, (I) and v(I) C P,
llv(s)l|, is strictly decreasing.

(25)

IV. FINITE TIME TERMINATION

While solutions to the underlying differential inclusion are
guaranteed to exist in the multi-contact model, we have yet to
prove that they terminate, as in Routh’s single-contact method.
Termination proofs for other simultaneous impact models (e.g.
[1, 10, 35] and others) exist, but these approaches rely on
comparatively limited impulsive behaviors, and thus cannot
capture essential non-unique post-impact velocities. We now

show that our model exhibits what we understand to be the
most permissive guaranteed termination behavior:

Theorem 8. For any pre-impact velocity v(0) for a contact
set N € N, The differential inclusion (17) will resolve the
impact by some S proportional to ||v(0)]|,.

We will prove this claim as a consequence of kinetic energy
decreasing fast enough to force termination—a significant ex-
pansion of Theorem 7. Even though K must always decrease,
Theorem 7 does not forbid %K (v) — 0. In fact, it is not
possible to create an instantaneous bound %K (v) < —e<0.
For example, consider 2 frictionless, axis-aligned contacts C
such that Jo = I5. For every € > 0, we can pick a velocity

Ve = (1 + 6) |::1:| S PC, (26)
7l ] R
ve = Jo [1:|1—|—6_[1]1_|_66DC(U€)7 27)

and arrive at K > —2¢. However as we take ¢ — 0, v,
converges to to boundary of Pc and thus will only be ably
to sustain a small K for a small amount of time before
terminating the impact. It remains possible that the aggregate
energy dissipation over an interval of fixed nonzero length
can be bounded away from zero. We establish a rigorous
characterization of this quality by defining «(s)-dissipativity:

Definition 4 («(s)-dissipativity). For a positive definite func-
tion a(s) : cIRT — [0, 1), the system © € D¢ (v) is said to be
a(s)-dissipative if for all s > 0, for all v € SOLp,, ([0, s])
s.t. v ([0, ]) € Pe, if [[o(0)[[, = L, [lu(s)]l, <1 = afs).

Denote the collection of contact sets with this property as
D ={D e C:3ap(s),D is ap(s)-dissipative} .  (28)

Intuitively, if K > 0 on Pc and K decreases at a known
nonzero rate, we can show that any trajectory v(s) of the
multi-contact system will exit Pc at a time linearly bounded
in [lv(0)[],:

Lemma 9 (Bounded Exit). Ler ac(s) : cIRT — [0,1)
be positive definite and let C € C be «c(s)-dissipative.

Then ¥S > 0, Vo(s) € SOLDC([O, v(0)], —=

v ([0,1O)l, 755]) £ Pe.

2 ac(S)| )’
Proof: See Appendix C. [ ]
Any contact set C' that complies with the strong assumption
of «(s)-dissipativity is an element of \V, as otherwise v and K
could be constant (i.e. D C N). Far more useful is that we will
show Theorem § arises from the converse: that every C € N/
exhibits «(s)-dissipativity. This is particularly surprising for
systems C' with Jo not full rank, as v(0) could be large,
yet v(s), the projection of v(s) onto Range (JZ), could be
arbitrary small, permitting small K. We observe that the rank
of Jo does not effect whether or not C' € D, as all solutions
will fall into two categories: either vy (s) is large, or the related
minimal coordinate system will exit Pc very quickly:




Theorem 10. Vm > 0,m > k > 0, NN Fp) €D =
NﬁC(m_’k) cD

Proof: See Appendix D. ]
Finally, we prove the primary claim of this work. Intuitively,
if there exists C' € A that is not «(s)-dissipative, then one
could construct a sequence of convergent solutions to v € D¢
that dissipate arbitrarily small amounts of energy. Therefore
their limit, also a solution to ¥ € D¢ as the solution set is
closed, dissipates no energy—leading to a contradiction with
Theorem 7. This argument will be used in an inductive manner,
incrementing the size of the contact sets:

Theorem 11 (Dissipation Inductive Step). Assume N N
Com ity C© D forall m' > kK > 0 with k' < k or k' =k
and m’ < m. Then N'N0 Cp, 1y C D.

Proof: Suppose not. Then by Theorem 10, there is a set
of contacts C € N' N Fm,k)» S > 0, and a corresponding se-
quence of solutions (vj(s))jeN, v7(s) € SOLp,, ([0, 9]), all
starting with velocity magnitude 1 (||vj (O)H , = 1) and never
exiting Pc. We must also have that each dissipates less energy
than the last: [|v7(s)||, > 1~ 3. As D¢ is uniformly bounded,
vJ are unformly bounded and equicontinuous. By Theorem 1
and Lemma 3, we may assume that 3v°°(s) € SOLp,, ([0, 5])
such that v/ = v, Therefore |[v>°(s)||, = 1 for all s and
by Theorem 6 v> is constant. As C' € N, by Theorem 7,
v is not an element of Pc (i.e., Jp,cv™ > 0). As J¢ is
full rank, Jov™ # 0. Let A/(s) be the corresponding force
vector for each v7(s).

Case 1: One contact has strictly deactivated (3¢ € C,
J,,.cv>® > 0). But then as v/ % v, by taking a subsequence
starting from sufficiently high 7 we may assume that c never
activates (V7,t, Jn,cvj(s) > 0), and therefore at least one of
the other contacts is always active (v7([0, S]) C Pen f¢})- But
then only the forces from C' \ {c} determine ¥7, and thus
v/ € SOLp,, ., ([0,5]). As removing a contact shrinks the
set of possible forces to apply (Fo\(y € Fo), C\ {c} e N
and contains m — 1 contacts. Then by assumption, for some
a(s), C\ {c} is a(s)-dissipative. But ij(s)H2 — 1. Contra-
diction!

Case 2: At least one contact always
slides  (Jy,cv™® #0, J,cv>*=0). Let W =
{weC:||Jwv>®|, >0} # 0 be the set of contacts
that slide for velocity v°°. Then as Unit is us.c.,

Vw € W, Unit (J;,v7) = Unit (J;,v°°) (i.e. convergence
of the velocity to v*° implies convergence of the direction of
sliding on each contact in W). Therefore WLOG by taking a
subsequence starting from sufficiently high j we may assume
Vw € W, 3d; ., d2 w, ds,, sufficiently close to — iy, Jy,, 0>
and associated new contacts wy, Wz, w3 such that

Jn,wi = Jn,w + dz:th,w7 (29)
0,07 (s) <0, (30)
JIN (s) € Al w(s)co <U {Jn,wi}> a.e., (31

AA

B
d;'\‘:.#——-— -pA Unit(J %)
TN
d, N
\
\
‘. Atx
— A, —|

Fig. 5: Conversion of a frictional contact into three frictionless
contacts. As j — 0o, we can contain A, in an arbitrarily

small neighborhood around —NwA%,me- We pick the
neighborhood to be a small triangle with vertices d; ., such
that all A{yw lie in A, weo ({d1 v, d2w,ds w}), thus (31). If
the triangle is small, each d; will be nearly anti-parallel to
Jt,v>, implying (30).

for i € {1,2,3}. Denote W = |J, , w; and C = (CUW)\
W. (30) and (31) in conjunction' imply that, for velocities
v/(s) ~ v>°, each sliding frictional contact pushes mostly
in one direction. Furthermore, the associated frictional force
can be generated by three frictionless contacts tilted away
from the sliding direction (v/ € SOLp,, ([0,S5])) which
never deactivate (v’([0,5]) C Pg). Figure 5 illustrates this
construction. As C' has strictly fewer frictional contacts than
C and is not a(s)-dissipative (||v? (S)H2 — 1), by assumption
we must have that C & A. By definition of A there must
exist some penetrating velocity v € P such that 0 € Fiz(v)
is a permissible net force. We therefore must be able to
find individual contact forces A, zfz with A,z > 0 and
fz € Fz (v) for each contact ¢ € C such that Y .~ A, ¢ = 1
and Zaeé Anzfe = 0. As no combination of the origingl
contacts C' can create zero net force alone, one of the w € W
must strictly activate (A, 4 fo 7 0). By construction of W and
W and the assumption of Case 2, we have Jonwv™ =0,
and thus ffv> = 0 for each ¢ € C\ W and flv>® < 0
for each w € W. Thus Y _.sAnaf2 v < 0. But then
> scé An,efe # 0. Contradiction! [ ]
We are now ready to prove the main result of this section.
Proof of Theorem 8: We will reach the claim by showing

N =D. N 2 D trivially. Any C € F1) is of the form

{0} Ac = {jv >0}
De(v) = 4 {j} Po={jv<0} (2
co({0,5}) Jjv=0

with v, 7 € R, j # 0. Such a system is a-dissipative with

ac(s) =min {145}

C(l,o) C D by Theorem 10. A/ C D follows from nested
induction on (m, k) via Theorem 11. Therefore, N =D. ®

(33)

V. CONCLUSION

Non-unique behavior is a pervasive complexity that is
present in both real-world robotic systems and common mod-



els capturing frictional impacts between rigid bodies—and
thus accurate incorporation of such phenomena is an essen-
tial component of robust planning, control, and estimation
algorithms. Our model presents a state-of-the-art theoretical
foundation for the capture of this behavior, because despite
the high versatility of allowing impacts to resolve at arbitrary
relative rates, it is guaranteed to terminate in finite time under
far more modest conditions than shown for previous models.

The logical progression from these theoretical results is to
develop a numerical scheme to generate the post-impact veloc-
ity set. Constructing approximate solutions to the differential
inclusion poses significant challenges associated with discon-
tinuities in v. While simple Euler schemes will converge to
the true solution set [2], the convergence rate is unknown, and
simulation time and therefore computational complexity would
scale linearly with the scale of ||v_||, given Theorem 8. Tools
from time-stepping schemes (e.g. [1, 37]) may circumvent
these issues. Another strategy is to precompute a formula for
the entire post-impact set as a function of v_. Sums-of-squares
programming presents potential for construction of an outer
approximation.

Future generalizations of the model include elastic impacts
using Poisson restitution; resolution of Painlevé’s Paradox; and
a full rigid body dynamics model that has continuous solutions
through impact.

APPENDIX
A. Proof of Lemma 2

Let R be a matrix with columns that constitute an orthogo-
nal basis of Range (J r ) By equivalence of norms there exists

€ > 0 such that
1 Tnc0lly + 1 el > € || R ], (34)

Pick S = (emin (g, 1)) . Let V(s) = ||RT'U(S)||§. Assume
v(s) € P, for s < s* = HRTv(O)HzS < |v(0)]], S.

V =20"RR"v, (35)
€2 (Jn ~ peUnit (Jy.o0)" Jpe ) RRTv,  (36)
=-2 ||Jn-,Cv||1 - 2”6 ||Jt,ch2 ) (37)
< —2emin (pte, 1) VV | (38)

2
on [0, 5*] and thus V' (s*) < ( V(0) — emin (e, 1) s*) =
0. Therefore J,, v (s*) = 0.

B. Proof of Theorem 6

Let v(s) € SOLp,, (I) with v(s) non-constant. Let Ac(s)
be the associated vector of force variables. As v(s) is con-
tinuous, we may select s* € intI such that V§ > 0, v(s) is
non-constanton [s*, s*+4d]. Let A= {a € S : J, qv(s*) < 0}
be the set of active contacts at s = s*. Let B the the largest
subset of A such that J, pv = 0 and J; pv = 0. As v is
continuous, 36, > 0 and € > 0 such that Vs € [s*, s*+6.] C I,

o Joc\av(s) > €

o J,,v(s) < —e for c € A\ B frictionless

o Jpev(s) < —eor [[Jcv(s)], > e forc € A\ B
frictional.

Therefore no new contacts activate before s* + d., and
v(s) = v(s") +IEAC(s™,s) = v(s") + T AA(s",5), (39)

on [s*,s* 4+ . Select one such s with v(s) # v(s*). By
Lemma 5,

1 2
A LGOIl

=w(s")" (v(s) = v(s")) + % lo(s) =v(s)l5 . @D

= (Tavpvls) A5 1) + 3 lo(s) — ()]

1
02> 3 o(s)l; - (40)

(42)
Therefore, we must have HAA\B(S*, t)H1 > 0. Finally,
K(v(s)) = K(v(s")) +/ (Jeo(n) Ac(r)dr,  (43)
< K(v(s%) — el|Aas(s™, 9)[1, (44)
< K(v(s")). 45)

Therefore ||v||, is non-constant.

C. Proof of Lemma 9

Assume WLOG by Lemma 4 that ||[v(0)||, = 1 and that
v(s) € Poon0 < s < %(S) As C is ac(s)-dissipative,
ds1 € [0,5] such that ||v (s1)]|, < 1 — ac(S). A sequence

(8k)pen can be iteratively constructed by Lemma 4 such that
o Sk € |:Sk,1, Sk—1+ S (1 - Oéc(S))k71:| - {O, %(S)]
k
o flv(sp)lly < (1= ac(9)) [lv (se-1)ll, < (1 = ac(9))

Therefore dso, € [O, %(S)} with s, — Soo and by continuity
of v, v (s0) =0 ¢ Pc.

D. Proof of Theorem 10

Let C € N N Cnp. Let R and N be matrices with
columns that constitute orthogonal bases of Range (J&) and
Null (J¢), respectively. Therefore there exists contact set @
of size (m, k) and a positive definite function ag(s) such that
Jo = JcR is full column rank, Po = RTPc, and Q is
aq(s)-dissipative. Let s > 0, v € SOLp,, ([0, s]), [lv(0)||, =
1, and v([0,s]) € Pc. Decompose v(s) = vg(s) +
vn(s) = RRTv(s) + NNTv(0). We must have RTv €
SOLp,, ([0, s]). Therefore as RTv([0,s]) € RTPc = Pq,
by Lemma 9, s < HRTv(O)||2 a5 Thus lvr(0)]], >
aq(s) [[v(0)]; and

[o(s)]l3 = o ()15 + lvr(s)l3 . (46)
< Jon ()3 + (1 = ag(s))? lvr(0)5, @7
< [v(0)[I5 — aq(s) (1 — ag(s)) [vr(0)]5. (48)
<1—a(s) (1 —agq(s)). (49)

Therefore C' is (1 =/l (1- aQ))-dissipative.
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