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Introduction
In the United States, breast cancer is the most common cancer in females and is the second most common 

cause of  cancer death in women (1). While major advances have been achieved in treatment of  early-stage 

breast cancer, many women still die from metastatic disease. The use of  neoadjuvant chemotherapy has 

recently emerged as a promising method to increase treatment efficacy in patients with early-stage breast 

cancer, with improved patient survival shown to be correlated with complete eradication of  invasive 

tumor in the primary breast lesion and lymph nodes (pathologic complete response [pCR]) upon surgery 

following neoadjuvant chemotherapy. This has been demonstrated in multiple clinical trials, including 

National Surgical Adjuvant Breast and Bowel Project (NSABP) protocol B18, in which 1523 women with 

In clinical breast cancer intervention, selection of the optimal treatment protocol based on 

predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict the 

likelihood of breast cancer response to neoadjuvant chemotherapy using patient-specific tumor 

vasculature biomarkers. A semiautomated analysis was implemented and performed on 3990 

histological images from 48 patients, with 10–208 images analyzed for each patient. We applied 

a histology-based mathematical model to 30 resected primary breast cancer tumors and then 

evaluated a cohort of 18 patients undergoing neoadjuvant chemotherapy, collecting pre- and 

posttreatment pathology specimens and MRI data. We found that core biopsy samples can be 

used with acceptable accuracy to determine histological parameters representative of the 

whole tissue region. Analysis of model histology parameters obtained from tumor vasculature 

measurements, specifically diffusion distance divided by the radius of the drug-delivering blood 

vessel (L/rb) and blood volume fraction (BVF), provides a statistically significant separation of 

patients obtaining a pathologic complete response (pCR) from those who do not. With this model, 

it is feasible to evaluate primary breast tumor vasculature biomarkers in a patient-specific manner, 

thereby allowing a precision approach to breast cancer treatment.
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early-stage breast cancer were randomly assigned to preoperative versus postoperative anthracycline-based 

chemotherapy (2). There was no difference in disease-free survival (DFS) or overall survival (OS) between 

treatment groups at 5 years. However, in the 683 women who received neoadjuvant treatment, outcomes 

were significantly better in women who achieved pCR compared with those without pCR (5-year OS 

87.2% vs. 76.9%–78.4%, P = 0.06; DFS 83.6% vs. 60.3%–71.7%, P = 0.0004) after neoadjuvant therapy 

(3). Response to chemotherapy and pCR rates are known to vary by breast cancer subtype and chemother-

apy regimen. This caveat notwithstanding, pCR has been shown to be a suitable surrogate end point for 

survival in patients with high-risk ER-positive/HER2-negative (i.e., luminal B), HER2-positive (nonlumi-

nal), and triple-negative disease, though not for those with low-risk ER-positive/HER2-negative (luminal 

A) breast cancer (4). Data also support that women who have a response to neoadjuvant chemotherapy 

but do not achieve a pCR have improved long-term outcomes when compared with those who do not 

respond, by using response in the primary breast lesion as a surrogate for chemosensitivity. Mittendorf  et 

al. described and validated a novel breast cancer staging system for assessing prognosis after neoadjuvant 

chemotherapy on the basis of  pretreatment clinical stage (CS), posttreatment pathologic stage (PS), and 

estrogen receptor status and grade (EG), known as the CPS+EG score (5). The ability of  the CPS+EG 

score to stratify outcome was confirmed in both internal and external cohorts, with a score of  <2 corre-

sponding with a 5-year disease-specific survival (DSS) ranging from 88% to 96%, while DSS was reduced, 

with a score of  >3, ranging from 72% to 88% (5).

Neoadjuvant cytotoxic chemotherapy with an anthracycline plus taxane–based regimen, recommend-

ed as a preferred regimen by the National Comprehensive Cancer Network, results in pCR in only a minor 

subset of  patients (6, 7). For example, in SWOG 0012, 185 patients with locally advanced breast cancer 

were treated with standard doxorubicin (Adriamycin) plus cyclophosphamide (AC) given every 21 days 

for 5 cycles, followed by weekly paclitaxel (T) for 12 weeks (8). Overall pCR rate was 21%. However, in 

patients with hormone receptor–negative (HR-negative) tumors, the pCR rate was 29% compared with 

11% in patients with HR-positive tumors. Tumor-specific biomarkers for predicting response have been 

explored, including tumor-infiltrating lymphocytes (TILs). TILs correlate with improved outcomes in sev-

eral cancer types, including colorectal, ovarian, esophageal, renal, lung, pancreatic, and breast cancer 

(9, 10). Specific to early-stage breast cancer (of  particular interest for this work), the presence of  TILs in 

diagnostic needle core biopsy was shown to be an independent predictor of  response to neoadjuvant c 

hemotherapy (11), as was TIL density (12). Unfortunately, our clinical ability to a priori predict pCR to 

neoadjuvant therapy in breast cancer patients remains limited at best. Therefore, in order to maximize 

the utility of  the neoadjuvant therapy strategy in multiple breast cancer subtypes, there is a clinical unmet 

need for tools to identify patients that are likely to respond to neoadjuvant cytotoxic chemotherapy, there-

by allowing a precision approach to cancer treatment.

Over the years, our group has proposed that the characteristics of  the tumor vasculature might be 

a biologic predictor of  response to chemotherapy. This mechanistic hypothesis has been examined in a 

series of  modeling studies to evaluate the prediction of  treatment outcomes based on chemotherapy drug 

diffusion and the physical properties of  several tumor types (13–29). We and other investigators have 

proposed that diffusion barriers may prevent drugs from reaching malignant tumor cells, a functional 

mechanism that might partially underlie drug resistance (30). Our mathematical model for predicting 

tumor response to chemotherapy (denoted by f
kill

, i.e., the fraction of  tumor killed due to therapy) has 

been retrospectively validated in patients with colorectal cancer (CRC) with metastasis to the liver (13). 

In metastatic CRC, the model predicted tumor response to chemotherapy using 3 drug perfusion– and 

diffusion–related parameters: blood volume fraction (BVF) in the tumor, the radius of  blood vessels (r
b
), 

and the drug diffusion distance in tumor tissue (L); such parameters were tumor- and patient-specific, and 

thus were measured on an individual basis.

In this work, we have reasoned that the microanatomic cancer environment and functional attributes 

of  the tumor-associated vasculature might be a biologic predictor of  response to neoadjuvant chemothera-

py in the setting of  human breast cancer. We set out to test, validate, and expand our predictive mathemat-

ical model by rigorously applying it to 3 prospective groups of  human breast cancer patients through an 

integrated evaluation of  histopathology and multiphase contrast-enhanced magnetic resonance imaging 

(MCE-MRI) data with a computer-assisted semiautomated software to enable rapid yet robust throughput 

that may be adapted to routine clinical imaging settings.
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Results
Needle core biopsy feasibility. An overview of our research protocol is shown in Figure 1. We sought to deter-

mine the feasibility of  using diagnostic needle core biopsies to inform a mathematical model for prediction 

of  f
kill

 in women with infiltrating ductal adenocarcinoma of  the breast receiving neoadjuvant anthracycline/

taxane-based combination cytotoxic chemotherapy. As an initial step toward this goal, histopathological 

analysis to obtain model parameters was performed retrospectively on whole tumors from a cohort of  breast 

cancer patients (n = 30, termed cohort A) who underwent upfront either lumpectomy or mastectomy (pri-

mary surgery without prior systemic cytotoxic therapy). For cohort A, we chose to evaluate the spectrum 

of breast cancer, including ER/PR-positive, HER2-positive, and triple-negative breast cancer. There was no 

detectable differentiation between patient groups (HR-positive tumors, HER2-positive, and triple-negative 

breast cancer) in cohort A with regard to model parameters by ANOVA (Supplemental Figure 1; supplemen-

tal material available online with this article; https://doi.org/10.1172/jci.insight.126518DS1).

Model parameters obtained from whole tumors in cohort A patients were subsequently compared 

with a similar analysis of  histopathologic samples from diagnostic needle core biopsies of  a second 

cohort (n = 18, termed cohort B) of  high-risk stage II and III HER2-negative breast cancer (i.e., tri-

ple-negative and high-risk ER-positive/HER2) treated with neoadjuvant anthracycline/taxane-based 

chemotherapy (Figure 2). We found that cohort A had a higher BVF than cohort B, presumably due to 

the whole tumor section analysis in cohort A relative to the limited core biopsy samples in cohort B. 

Due to shape alone, the tissue section from a whole tumor section provides a larger highly vascularized 

tissue region (perimeter of  tumor) for cohort A when compared with the cylindrical shape of  a core 

biopsy for cohort B. This analysis also indicated that vasculature characteristics must be measured on 

an individual basis in breast cancer. We then performed nonlinear regression by fitting the f
kill

 model to 

one of  the patient histological parameters (i.e., BVF) specific to the tumor vasculature of  each patient to 

determine the best fit for L/r
b
 for the entire dataset. We found that the patient samples for both cohorts 

fell along the same regression line (Figure 2); see fitting results in the inset. A correlation analysis 

between f
kill

 [BVF
biopsy

, (L/r
b
)

biopsy
] versus f

kill
 [BVF

biopsy
, (L/r

b
)

fitting
] for cohort B resulted in r = 0.7042. 

Hence, we concluded that needle core biopsy samples may indeed be used to reliably determine histo-

pathological parameters representative of  the whole tissue.

Separation between clinical outcomes by L/r
b
. The CPS+EG score, used as a method to quantify 

response to neoadjuvant chemotherapy, ranges from 0 to 6, with a CPS+EG score <2 corresponding 

to a 5-year DSS from 88% to 96% (5). Our model was unable to discriminate between responders and 

nonresponders in cohort B by using a CPS+EG score of  <2 to define response. However, analysis of  

histopathology measurements, specifically L/r
b
, has provided a statistically significant separation of  

patients achieving a pCR from those that do not (P = 0.0269) (Figure 3). We note that the obtained 

accuracy cannot be fully ascertained due to the small sample size, but the feasibility of  using the param-

eter L/r
b
 to separate patients can be observed and further examined in future larger trials. We also note 

that all of  the patients achieving a pCR in cohort B had triple-negative breast cancer. A single patient 

was identified as a clear outlier, likely due to the sample’s dense population of  TILs (not shown), an 

independent predictor of  response to neoadjuvant chemotherapy (11, 12). Similar dense TIL infiltrates 

were not identified in the other 17 patients in cohort B.

MCE-MRI AUC association to histology L/r
b
. To evaluate model parameters via MRI, an AUC map in the 

tumor region was used to estimate tumor blood perfusion from MCE-MRI data, as described by Pickles et 

al. (31). In order to obtain quantitative data from MCE-MRI, a region of  interest (ROI) must first be defined; 

here, the hotspot of  the tissue ROI (tumor or control tissue) was used to determine the maximum perfusion 

in that tissue region (see Supplemental Figure 7 for visualization of  hotspot). The hotspot region of  the 

tumor was normalized to tissue in the equivalent anatomical location at the mirrored location on the contra-

lateral breast (which represents a normal tissue region); this normalized value was used for analysis shown in 

Figure 4. We however note that patients further subdivided into categories based on pCR and ER/PR status 

did not demonstrate any further separation with histological parameters (Supplemental Figure 6). This may 

be due to the relatively small sample size used in our analysis, and is planned to be further investigated in the 

future. Correlation between AUC as determined by MCE-MRI and L/r
b
 as calculated by diagnostic needle 

core biopsy is shown in Figure 4. As described above, in cohort B, L/r
b
 demonstrated a positive correlation 

with pCR (i.e., the larger the L/r
b
 value, the better the chance was to achieve a pCR; see Figure 3). Our 

current analysis is limited by small sample size, but these pilot results that suggest a potential correlation 
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between AUC and L/r
b
 are encouraging. AUC may be assessed without core biopsy samples, a potential 

benefit given the limited specimen size obtained at the time of  diagnostic biopsy and the increasingly com-

mon acquisition of  pretreatment breast MRI in women receiving neoadjuvant chemotherapy. We further 

compared model predictions from histopathology data only [i.e., f
kill

(histology)] with that from MRI data 

only [i.e., f
kill

(MRI)] and observed a weak correlation between these two predictions (Supplemental Figure 

5). To further determine whether there exists a statistically significant correlation between f
kill

(histology) and 

f
kill

(MRI), a larger data set beyond the scope of  this initial report will be required in future prospective studies.

Discussion
We have demonstrated the feasibility of  evaluating breast cancer vasculature in a patient-specific man-

ner with a customized semiautomated analysis. The quantities r
b
, BVF, and L are shown to be reliably 

predictive of  tumor f
kill

 when obtained from standard diagnostic needle core biopsy in patients with stage 

II–III breast cancer, particularly those with triple-negative breast cancer achieving a pCR. Application of  

this model for clinical use at the initial diagnostic stage may allow noninvasive prediction of  outcome, 

whereby likelihood of  pCR can be estimated early in the course of  treatment, by using the flowchart in 

Figure 5. The pilot framework introduced here represents steps toward the design of  a subsequent larger 

prospective trials with our mathematical model to potentially select neoadjuvant chemotherapy treatment 

based on predicted response, treating only those patients most likely to have a response with standard 

anthracycline/taxane-based chemotherapy, while referring those unlikely to respond to other standard-of-

care options (e.g., radiation therapy) or even investigational clinical trials.

Tumor vasculature is a chaotic labyrinth of  malformed and destabilized blood vessels that are struc-

turally and functionally impaired (32). Jain has argued that drug delivery to tumors could be enhanced 

through tumor blood vessel normalization and reduced interstitial fluid pressure induced by antiangio-

genic therapy (33). Along those lines of  reasoning, a high L/r
b
 value in patients achieving a pCR is likely 

Figure 1. Research protocol.
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indicative of  a more “normalized” baseline tumor vasculature, perhaps explaining improved response 

to chemotherapy in this subset of  patients. A higher L/r
b
 value suggests that chemotherapy drugs may 

be more effectively delivered in these solid tumors, resulting in an improved kill fraction. Normal tissue 

has regularly spaced (or separated) blood vessels, which increases the value L and thus also L/r
b
. Patient 

tumors with a high L/r
b
 values tended to have “pooled blood,” or regions with highly vascularized tis-

sue, severely limiting blood and drug delivery to poorly vascularized tumor regions. Model parameters 

correlated with pCR following neoadjuvant chemotherapy in women with triple-negative breast cancers, 

but they did not correlate with a less-than-complete response (i.e., CPS+EG score ≤2) in triple-negative 

or high-risk ER-positive/HER2-negative breast cancers. We attribute this, in part, to our relatively small 

breast cancer patient population in the setting of  a proof-of-concept study of  a notoriously heterogeneous 

human tumor. Evaluation of  our enabling mathematical platform in a larger breast cancer patient popu-

lation might potentially allow the incorporation of  other biologic features, including intensity of  ER/PR 

expression, Ki-67 positivity, grade, and presence of  TILs, to aid in predicting response to chemotherapy, 

particularly in those patients destined to achieve less than a pCR.

Several technical aspects of  the methodology merit further discussion. To begin, one of  the limitations 

in our previous research in CRC (13) was that the histopathology parameters L and r
b
 were solved for in the 

f
kill

 model, while BVF was previously measured from H&E-stained slides (13). Here, we have updated and 

refined this methodology by measuring these values (L, r
b
, and BVF) directly from tissue sections, utilizing 

vasculature-specific staining to enable better visualization, increasing the accuracy of  analysis. Measurements 

were previously done manually, which is both cumbersome and prone to human operator error. In contrast, 

a computer-assisted software program was customized here to allow for increased accuracy and speed in 

measurements; the semiautomated analysis allowed for rapid throughput, and a total of  3990 patient images 

were analyzed. Moreover, in this work we have correlated clinically relevant treatment response assessments 

(pCR and CPS+EG score) with measured model parameters. Other limitations include differences in tumor 

vasculature staining via immunohistochemistry, although this source of  bias has been greatly minimized 

Figure 2. Model analysis. fkill values were determined as (i) calculated from measured values (points; cohort A: mea-
sured from resected whole-tumor histology, cohort B: measured from needle biopsy) and (ii) model best-fit (Equa-
tion 1) line to the full data set (black line). Cohort A: 30 patients underwent primary surgery without prior systemic 
therapy; data were analyzed by using histology semiautomated analysis and the mathematical model. Cohort B: 
18 patients receiving neoadjuvant chemotherapy; data are shown to distinguish patients with pathologic complete 
response (pCR) versus those without pCR. Each point is fkill calculated for an individual patient by using averages of 
BVF, rb, and L measured directly from tumor tissue stained with CD34 by immunohistochemistry. The black line shows 
fkill calculated from Equation 1 with optimized parameter L/rb = 13.6981 (determined from fitting, r2 = 0.79875). The fkill 
regression line includes fitting of both cohort A and cohort B patients (n = 48). Error bars are calculated based on error 
in BVF measurements and the respective variation that it causes when incorporated into the fkill equation (Equation 
1). Correlation analysis of measured fkill and computed fkill for all 48 patients is shown in Supplemental Figure 2.
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through an automated staining protocol. Finally, while the chemotherapy regimen used was internally con-

sistent, we included all HER2-negative patients, resulting in a far more diverse patient population and thus 

increased heterogeneity in terms of  response to neoadjuvant chemotherapy.

While we present exploratory data regarding the use of  breast MRI to obtain model parameters, 

additional optimization is needed in future work. The clinical MRIs evaluated in this study were acquired 

with routine clinical protocols, which are focused on optimizing workflow and clinical radiology report-

ing instead of  quantitative assessment for precision medicine. However, based on the pilot MRI data 

presented, AUC estimated from MCE-MRI analysis provided encouraging information regarding patient 

response. In our evaluation, hotspot ROI AUC analysis had the best correlation to treatment outcomes, 

when compared with looking at the whole tumor with 3D spherical ROI and a tumor ROI. Thus, the 

region perfused to the greatest extent seems to be the best predictor of  treatment outcomes. There is 

a growing demand for and a body of  evidence supporting development of  precision imaging models. 

For the purposes of  model parameter determination, MCE-MRIs should ideally contain a normalization 

method during acquisition to allow for a controlled method for T1 and B1 mapping (34). In order to 

obtain BVF from breast MRI, arterial input function might be evaluated at the time of  scanning, with the 

ultimate inspirational goal of  eliminating the need for needle core biopsy analysis for model prediction.

The semiautomated histology analysis described here can potentially be used for other solid tumors, 

although thresholding based on vascular staining and tumor types may need to be optimized for each. The 

general applicability of  the mechanistic f
kill

 model to predict response has been examined and confirmed 

in several other cancer types, including CRC with metastasis to liver, glioblastoma, pancreatic cancer, and 

lymphoma (13, 16, 18, 21). The observed consistency across tumor types is attributed to the fact that the 

f
kill

 model was derived from fundamental principles of  mass transport common to many solid tumor types 

(13) and evaluates vasculature characteristics in the tumor prior to treatment, thereby determining the 

efficiency of  the vascular network to deliver drugs to the tumor. Our next steps will expand upon these 

results through inclusion of  a large-scale data set containing more MRI measurements with additional 

time points, along with additional tumor parameters to predict response.

In summary, we report a mathematical modeling framework validated in patients with breast cancer 

from a single-institution study that is planned to be reproduced and further investigated in a large multi-in-

stitutional setting. If  successful, the hypothesis-generating results introduced here may enable the future 

development of  minimally invasive tools to accurately predict tumor response to neoadjuvant chemother-

apy in patients with breast cancer.

Figure 3. Histopathological parameters separate patient groups (pCR and no pCR). Left: Patient groups can be separated by a L/rb value within the range 
of 18.46 (the highest value in the “no pCR” group) and 22.73 (the second-lowest value in the pCR group); see the gray zone. The patient from the pCR group 
that had the lowest L/rb value may be an outlier; see main text for details. Right: Student’s t test determined a statistically significant difference between 
the 2 groups with respect to L/rb (P < 0.05). For each group, the box indicates the interquartile range and median, and the error bar denotes SD.
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Methods
Patient cohorts. Cohort A: The first step in evaluating our model in breast cancer was to analyze model 

parameters in primary resected breast tumors. We used primary resected tumors initially, as this provided 

ample tissue for histologic evaluation. In addition, we chose to evaluate a variety of  breast cancer subtypes 

with regard to estrogen receptor, progesterone receptor, and HER2 expression, as it was unknown wheth-

er model parameters would vary by biomarker status. Thus, in cohort A, we retrospectively determined 

the parameters r
b
, BVF, and L from primary resected breast tumors, reviewing hormone (estrogen and 

progesterone) receptor–positive tumors (n = 10), HER2-positive tumors (n = 10), and tumors negative for 

both HRs and HER2 (triple-negative, n = 10) utilizing de-identified archival paraffin-embedded tissue.

Cohort B: After determination of  model parameters in cohort A, the model was applied to women 

who received neoadjuvant chemotherapy (cohort B). Cohort B (n = 18), as summarized in Table 1, con-

sisted of  women with HER2-negative high-risk stage II–III infiltrating ductal carcinoma of  the breast 

receiving neoadjuvant chemotherapy with a modern anthracycline/taxane-based regimen. High risk was 

based on stage and the opinion of  the treatment provider (and tumor board) that neoadjuvant chemo-

therapy was warranted. As model parameters did not vary by biomarker status in cohort A, in cohort B 

we focused on exclusively HER2-negative patients to increase homogeneity with regard to chemotherapy 

regimen. In cohort B, paraffin-embedded baseline diagnostic needle core biopsy of  primary breast tumor 

before chemotherapy was used to determine model parameters r
b
, BVF, and L via semiautomated histo-

pathology analysis as discussed below. In cohort A, we used whole tumor for analysis and found model 

parameters consistent across the tumor section despite tumor heterogeneity (as described below, identi-

fying tumor, stroma, and vasculature). Thus, we felt confident moving to needle core biopsy alone for 

analysis in cohort B. In addition, in cohort B pre- and post-chemotherapy MRI, performed per standard 

of  care, were used to obtain model parameters via an alternative imaging-based method (detailed below). 

Following neoadjuvant chemotherapy, all patients underwent surgical resection, allowing assessment of  

pathologic response and calculation of  CPS+EG score.

Patient outcome evaluation. Patient treatment response was determined after completing neoadjuvant 

chemotherapy. Resected specimens were analyzed for pCR (yes/no). In addition, patient treatment 

response was assessed by using the CPS+EG score (5). Calculation of  CPS+EG score was performed by 

the study team based on presenting clinical stage (obtained from pretreatment clinical notes), histologic 

Figure 4. Response to neoadjuvant chemotherapy and MCE-MRI in cohort B. CD34-stained core biopsy samples 
measured for L/rb (rb, radius of blood vessel; L, tissue diffusion penetration distance) and its relation to MCE-MRI AUC 
analysis, time points 0–5.5 minutes, taken for the hotspot region of the tumor normalized to the measured healthy 
tissue at the mirrored anatomical location on the contralateral breast.
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grade and estrogen receptor status (determined by routine pathology review of  pre-treatment diagnostic 

biopsy), and post-neoadjuvant chemotherapy pathologic stage (determined by routine pathology review 

of  post-treatment resection specimen) as described previously (5). Patient response was defined and ana-

lyzed by (i) pCR: no evidence of  viable residual tumor in the primary resected breast specimen following 

the completion of  neoadjuvant chemotherapy; and (ii) CPS+EG score <2.

Magnetic resonance imaging. Patients had pretreatment and posttreatment gadolinium MCE-MRI scans 

on a 3T MRI (Siemens, Magnetom Tim Trio), which served as an imaging method to determine tumor 

and breast tissue perfusion. MRIs were obtained as part of  routine clinical care prior to the administration 

of  neoadjuvant chemotherapy (pretreatment) and after all planned neoadjuvant chemotherapy was admin-

istered prior to surgery (posttreatment). Baseline axial 3D gradient echo-based (FLASH) T1 scans were 

acquired without contrast using a dedicated 7 channel, receive-only breast coil with fat saturation and with 

the following parameters: 12-degree flip angle, 3.88/1.54 ms TR/TE, 0.9-mm slice thickness, 488 × 358 FE/

PE matrix. Postcontrast images were acquired with the same parameters as baseline images with Magnevist 

(0.2 ml/kg, 2 ml/s) administered intravenously, with image acquisition at 1.5 minutes, 3.5 minutes, and 5.5 

minutes after injection. Three subtraction images were created (post-pre contrast agent injection) and used 

for MRI analysis. Patients with MRIs not conforming to these criteria were excluded from the MRI analysis. 

Analysis of  MRI data was performed with OsiriX Dynamic Contrast-Enhanced (DCE) Tool Plugin (35). 

AUC was measured by using a 3D spherical ROI over the tumor region determined by an attending radiolo-

gist, and the hotspot (maximum signal in a 1-cm3 region given the original ROI) was measured for the tumor. 

For normalization, a control ROI was assessed on the contralateral breast in the same general anatomical 

position as the tumor, considered a baseline for the individual normal tissue vasculature in each patient. 

Supplemental Figure 7 shows representative MRI images along with the analyses performed.

Histopathology. Patient tissue samples were formalin fixed and paraffin embedded, and processed 

per institutional standard of  care, in compliance with American Society of  Clinical Oncology/College 

of  American Pathology (ASCO-CAP) guidelines. The Human Tissue Repository and Tissue Analysis 

Shared Resource at the University of  New Mexico Comprehensive Cancer Center (UNMCCC) served as 

an honest broker for access to all tumor specimens. CD34 antibody staining via immunohistochemistry 

was used to highlight tumor vasculature, and H&E staining was performed to evaluate tissue morphology 

(e.g., tumor versus non-tumor).

Figure 5. Prediction of treatment outcome using both MRI and tumor histology from diagnostic biopsies.
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Histopathology semiau-

tomated analysis. Represen-

tative single sections of  

primary resected tumor for 

patient cohort A, and rep-

resentative single sections 

from needle core biop-

sy samples from patient 

cohort B were analyzed by 

using HALO image analy-

sis software (Indica Labs) 

to separate tissue regions 

in the CD34-stained tissue 

sections into CD34-posi-

tive tissue regions (vascula-

ture), CD34-negative tissue 

regions (non-vasculature 

tissue), and background 

regions (non-tissue). 

HALO uses machine learn-

ing to classify tissue regions 

based on a training set. Tis-

sue regions were separat-

ed into 1 × 1 mm2 square 

regions for analysis using code developed in MATLAB (MathWorks). This code takes the HALO-separated 

regions and measures vasculature radius, r
b
 (�m), along the short axis of  the blood vessel due to the consid-

eration that the blood vessel could be in the plane of  the tissue section, thus ensuring we do not overestimate 

this parameter (Figure 6). Multiple measurements were taken for each blood vessel and averaged to obtain 

a single r
b
 value for each grid analyzed. To ensure the accuracy of  the semiautomated methods developed, 

each measurement was checked multiple times over multiple iterations of  the software analysis. BVF was 

taken to be the vasculature area (red, Figure 6C) divided by the whole tissue region (blue + red). Only tissue 

regions were considered for BVF measurement. Vessels were assumed to supply drug and nutrients to all 

surrounding tissue that was nearest to that vessel; these perimeters define the maximum diffusion length L 

and are shown in black in Figure 6D. The distances between this boundary (black) and the nearest blood 

vessel (red) were measured and averaged for each grid analyzed to get the diffusion penetration distance L 

(�m). We note here that larger blood vessels (which presumably deliver greater amounts of  drug) increase 

the r
b
 value, thus decreasing L/r

b
. This is balanced by L, which may have a longer penetration distance due 

to the increased vascular supply. In other words, it is the ratio of  these two quantities that must be considered 

together instead of  individually when evaluating treatment efficacy.

Mathematical model. Equation 1 shows the f
kill

 equation with parameters r
b
, BVF, and L, which are 

directly measured from histology semiautomated analysis.

   (Equation 1)

f
kill

 is the fraction of  tumor cells killed, r
b
 is the average radius of  blood vessels in the tissue section ana-

lyzed, BVF is the fraction of  blood volume in the tumor, and L is the farthest distance nutrients/drug need 

to travel from a blood vessel to reach all tissue (13).

Statistics. MATLAB and GraphPad Prism 7 were used to determine best fits of  patient averages for BVF, 

r
b
, and L placed into Equation 1 and by using nonlinear regression solving for L/r

b
. Fits were obtained with 

initial values for fit, L/r
b
 = 20 and L/r

b
 > 0.005 for a constraint. For data in Figure 3, 2-tailed Student’s t test 

was used to compare histopathology measurements (L/r
b
) from the 2 groups (pCR and no pCR). P < 0.05 

Table 1. Cohort B patient characteristics

Patient/tumor parameter n (%)
HR-negative, HER2-negative 9 (50)
HR-positive, HER2-negative 9 (50)

Tumor grade
Grade 1 1 (6)
Grade 2 5 (27)
Grade 3 12 (67)

Clinical stage at presentation
Stage II 12 (67)
Stage III 6 (33)

Nodal status
Node positive 11 (61)
Node negative 7 (39)

Chemotherapy regimen
AC Q3 weeks × 4 followed by T weekly × 12 12 (67)
AC Q2 weeks × 4 (dd) followed by T weekly × 12 6 (33)

Response
pCR 5 (28)
CPS + EG score <2 10 (56)

HR, hormone receptor; A, doxorubicin; C, cyclophosphamide; T, paclitaxel; dd, dose 
dense; pCR, complete pathologic response.



1 0insight.jci.org   https://doi.org/10.1172/jci.insight.126518

T E C H N I C A L  A D V A N C E

was considered statistically significant. Additional analysis was done to compare BVF and L/r
b
 to determine 

whether one parameter can be omitted (see Supplemental Figure 3), and to determine whether f
kill

 can be 

predicted with one-parameter BVF, which can be obtained from MRI (see Supplemental Figure 4).

Study approval. For all components of  this research, approvals were obtained from the IRB of  the 

University of  New Mexico Health Sciences Center, study IDs 14-070 and 15-017. Studies were conducted 

according to the principles set out in the Declaration of  Helsinki. Written informed consent was obtained 

from all prospective study patients.
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