JClinsigHT

Predicting breast cancer response to
neoadjuvant chemotherapy based on tumor
vascular features in needle biopsies

Terisse A. Brocato, ..., C. Jeffrey Brinker, Vittorio Cristini

JCI Insight. 2019;4(8):e126518. hitps://doi.org/10.1172/jci.insight.126518.

LG LGIEIR-CIEL TSN Oncology

In clinical breast cancer intervention, selection of the optimal treatment protocol based on
predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict
the likelihood of breast cancer response to neoadjuvant chemotherapy using patient-
specific tumor vasculature biomarkers. A semiautomated analysis was implemented and
performed on 3990 histological images from 48 patients, with 10—208 images analyzed for
each patient. We applied a histology-based mathematical model to 30 resected primary
breast cancer tumors and then evaluated a cohort of 18 patients undergoing neoadjuvant
chemotherapy, collecting pre- and posttreatment pathology specimens and MRI data. We
found that core biopsy samples can be used with acceptable accuracy to determine
histological parameters representative of the whole tissue region. Analysis of model
histology parameters obtained from tumor vasculature measurements, specifically diffusion
distance divided by the radius of the drug-delivering blood vessel (L/,) and blood volume
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In clinical breast cancer intervention, selection of the optimal treatment protocol based on
predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict the
likelihood of breast cancer response to neoadjuvant chemotherapy using patient-specific tumor
vasculature biomarkers. A semiautomated analysis was implemented and performed on 3990
histological images from 48 patients, with 10-208 images analyzed for each patient. We applied

a histology-based mathematical model to 30 resected primary breast cancer tumors and then
evaluated a cohort of 18 patients undergoing neoadjuvant chemotherapy, collecting pre- and
posttreatment pathology specimens and MRI data. We found that core biopsy samples can be
used with acceptable accuracy to determine histological parameters representative of the
whole tissue region. Analysis of model histology parameters obtained from tumor vasculature
measurements, specifically diffusion distance divided by the radius of the drug-delivering blood
vessel (L/r,) and blood volume fraction (BVF), provides a statistically significant separation of
patients obtaining a pathologic complete response (pCR) from those who do not. With this model,
it is feasible to evaluate primary breast tumor vasculature biomarkers in a patient-specific manner,
thereby allowing a precision approach to breast cancer treatment.

Introduction

In the United States, breast cancer is the most common cancer in females and is the second most common
cause of cancer death in women (1). While major advances have been achieved in treatment of early-stage
breast cancer, many women still die from metastatic disease. The use of neoadjuvant chemotherapy has
recently emerged as a promising method to increase treatment efficacy in patients with early-stage breast
cancer, with improved patient survival shown to be correlated with complete eradication of invasive
tumor in the primary breast lesion and lymph nodes (pathologic complete response [pCR]) upon surgery
following neoadjuvant chemotherapy. This has been demonstrated in multiple clinical trials, including
National Surgical Adjuvant Breast and Bowel Project (NSABP) protocol B18, in which 1523 women with
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early-stage breast cancer were randomly assigned to preoperative versus postoperative anthracycline-based
chemotherapy (2). There was no difference in disease-free survival (DFS) or overall survival (OS) between
treatment groups at 5 years. However, in the 683 women who received neoadjuvant treatment, outcomes
were significantly better in women who achieved pCR compared with those without pCR (5-year OS
87.2% vs. 76.9%-78.4%, P = 0.06; DFS 83.6% vs. 60.3%—-71.7%, P = 0.0004) after neoadjuvant therapy
(3). Response to chemotherapy and pCR rates are known to vary by breast cancer subtype and chemother-
apy regimen. This caveat notwithstanding, pCR has been shown to be a suitable surrogate end point for
survival in patients with high-risk ER-positive/HER2-negative (i.e., luminal B), HER2-positive (nonlumi-
nal), and triple-negative disease, though not for those with low-risk ER-positive/ HER2-negative (luminal
A) breast cancer (4). Data also support that women who have a response to neoadjuvant chemotherapy
but do not achieve a pCR have improved long-term outcomes when compared with those who do not
respond, by using response in the primary breast lesion as a surrogate for chemosensitivity. Mittendorf et
al. described and validated a novel breast cancer staging system for assessing prognosis after neoadjuvant
chemotherapy on the basis of pretreatment clinical stage (CS), posttreatment pathologic stage (PS), and
estrogen receptor status and grade (EG), known as the CPS+EG score (5). The ability of the CPS+EG
score to stratify outcome was confirmed in both internal and external cohorts, with a score of <2 corre-
sponding with a 5-year disease-specific survival (DSS) ranging from 88% to 96%, while DSS was reduced,
with a score of >3, ranging from 72% to 88% (5).

Neoadjuvant cytotoxic chemotherapy with an anthracycline plus taxane-based regimen, recommend-
ed as a preferred regimen by the National Comprehensive Cancer Network, results in pCR in only a minor
subset of patients (6, 7). For example, in SWOG 0012, 185 patients with locally advanced breast cancer
were treated with standard doxorubicin (Adriamycin) plus cyclophosphamide (AC) given every 21 days
for 5 cycles, followed by weekly paclitaxel (T) for 12 weeks (8). Overall pCR rate was 21%. However, in
patients with hormone receptor—negative (HR-negative) tumors, the pCR rate was 29% compared with
11% in patients with HR-positive tumors. Tumor-specific biomarkers for predicting response have been
explored, including tumor-infiltrating lymphocytes (TILs). TILs correlate with improved outcomes in sev-
eral cancer types, including colorectal, ovarian, esophageal, renal, lung, pancreatic, and breast cancer
(9, 10). Specific to early-stage breast cancer (of particular interest for this work), the presence of TILs in
diagnostic needle core biopsy was shown to be an independent predictor of response to neoadjuvant c
hemotherapy (11), as was TIL density (12). Unfortunately, our clinical ability to a priori predict pCR to
neoadjuvant therapy in breast cancer patients remains limited at best. Therefore, in order to maximize
the utility of the neoadjuvant therapy strategy in multiple breast cancer subtypes, there is a clinical unmet
need for tools to identify patients that are likely to respond to neoadjuvant cytotoxic chemotherapy, there-
by allowing a precision approach to cancer treatment.

Over the years, our group has proposed that the characteristics of the tumor vasculature might be
a biologic predictor of response to chemotherapy. This mechanistic hypothesis has been examined in a
series of modeling studies to evaluate the prediction of treatment outcomes based on chemotherapy drug
diffusion and the physical properties of several tumor types (13-29). We and other investigators have
proposed that diffusion barriers may prevent drugs from reaching malignant tumor cells, a functional
mechanism that might partially underlie drug resistance (30). Our mathematical model for predicting
tumor response to chemotherapy (denoted by £, i.e., the fraction of tumor killed due to therapy) has
been retrospectively validated in patients with colorectal cancer (CRC) with metastasis to the liver (13).
In metastatic CRC, the model predicted tumor response to chemotherapy using 3 drug perfusion— and
diffusion-related parameters: blood volume fraction (BVF) in the tumor, the radius of blood vessels (r,),
and the drug diffusion distance in tumor tissue (L); such parameters were tumor- and patient-specific, and
thus were measured on an individual basis.

In this work, we have reasoned that the microanatomic cancer environment and functional attributes
of the tumor-associated vasculature might be a biologic predictor of response to neoadjuvant chemothera-
py in the setting of human breast cancer. We set out to test, validate, and expand our predictive mathemat-
ical model by rigorously applying it to 3 prospective groups of human breast cancer patients through an
integrated evaluation of histopathology and multiphase contrast-enhanced magnetic resonance imaging
(MCE-MRI) data with a computer-assisted semiautomated software to enable rapid yet robust throughput
that may be adapted to routine clinical imaging settings.
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Results

Needle core biopsy feasibility. An overview of our research protocol is shown in Figure 1. We sought to deter-
mine the feasibility of using diagnostic needle core biopsies to inform a mathematical model for prediction
of f,, in women with infiltrating ductal adenocarcinoma of the breast receiving neoadjuvant anthracycline/
taxane-based combination cytotoxic chemotherapy. As an initial step toward this goal, histopathological
analysis to obtain model parameters was performed retrospectively on whole tumors from a cohort of breast
cancer patients (n = 30, termed cohort A) who underwent upfront either lumpectomy or mastectomy (pri-
mary surgery without prior systemic cytotoxic therapy). For cohort A, we chose to evaluate the spectrum
of breast cancer, including ER/PR-positive, HER2-positive, and triple-negative breast cancer. There was no
detectable differentiation between patient groups (HR-positive tumors, HER2-positive, and triple-negative
breast cancer) in cohort A with regard to model parameters by ANOVA (Supplemental Figure 1; supplemen-
tal material available online with this article; https://doi.org/10.1172/jci.insight.126518DS1).

Model parameters obtained from whole tumors in cohort A patients were subsequently compared
with a similar analysis of histopathologic samples from diagnostic needle core biopsies of a second
cohort (n = 18, termed cohort B) of high-risk stage II and III HER2-negative breast cancer (i.e., tri-
ple-negative and high-risk ER-positive/HER2) treated with neoadjuvant anthracycline/taxane-based
chemotherapy (Figure 2). We found that cohort A had a higher BVF than cohort B, presumably due to
the whole tumor section analysis in cohort A relative to the limited core biopsy samples in cohort B.
Due to shape alone, the tissue section from a whole tumor section provides a larger highly vascularized
tissue region (perimeter of tumor) for cohort A when compared with the cylindrical shape of a core
biopsy for cohort B. This analysis also indicated that vasculature characteristics must be measured on
an individual basis in breast cancer. We then performed nonlinear regression by fitting the f, model to
one of the patient histological parameters (i.e., BVF) specific to the tumor vasculature of each patient to
determine the best fit for L/7, for the entire dataset. We found that the patient samples for both cohorts
fell along the same regression line (Figure 2); see fitting results in the inset. A correlation analysis
between f, [BVF L/ rb)biopsy] versus f,, [BVFbiOpsy, L/ rb)ﬁmng] for cohort B resulted in » = 0.7042.
Hence, we concluded that needle core biopsy samples may indeed be used to reliably determine histo-

biopsy’

pathological parameters representative of the whole tissue.

Separation between clinical outcomes by L/r,. The CPS+EG score, used as a method to quantify
response to neoadjuvant chemotherapy, ranges from 0 to 6, with a CPS+EG score <2 corresponding
to a 5-year DSS from 88% to 96% (5). Our model was unable to discriminate between responders and
nonresponders in cohort B by using a CPS+EG score of <2 to define response. However, analysis of
histopathology measurements, specifically L/7,, has provided a statistically significant separation of
patients achieving a pCR from those that do not (P = 0.0269) (Figure 3). We note that the obtained
accuracy cannot be fully ascertained due to the small sample size, but the feasibility of using the param-
eter L/, to separate patients can be observed and further examined in future larger trials. We also note
that all of the patients achieving a pCR in cohort B had triple-negative breast cancer. A single patient
was identified as a clear outlier, likely due to the sample’s dense population of TILs (not shown), an
independent predictor of response to neoadjuvant chemotherapy (11, 12). Similar dense TIL infiltrates
were not identified in the other 17 patients in cohort B.

MCE-MRI AUC association to histology L/7,. To evaluate model parameters via MRI, an AUC map in the
tumor region was used to estimate tumor blood perfusion from MCE-MRI data, as described by Pickles et
al. (31). In order to obtain quantitative data from MCE-MRI, a region of interest (ROI) must first be defined;
here, the hotspot of the tissue ROI (tumor or control tissue) was used to determine the maximum perfusion
in that tissue region (see Supplemental Figure 7 for visualization of hotspot). The hotspot region of the
tumor was normalized to tissue in the equivalent anatomical location at the mirrored location on the contra-
lateral breast (which represents a normal tissue region); this normalized value was used for analysis shown in
Figure 4. We however note that patients further subdivided into categories based on pCR and ER/PR status
did not demonstrate any further separation with histological parameters (Supplemental Figure 6). This may
be due to the relatively small sample size used in our analysis, and is planned to be further investigated in the
future. Correlation between AUC as determined by MCE-MRI and L/7, as calculated by diagnostic needle
core biopsy is shown in Figure 4. As described above, in cohort B, L/7, demonstrated a positive correlation
with pCR (i.e., the larger the L/7, value, the better the chance was to achieve a pCR; see Figure 3). Our
current analysis is limited by small sample size, but these pilot results that suggest a potential correlation
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1. Apply math modeling to Cohort A to identify primary resected whole tumor

parameters

e Cohort A: 30 patients with primary resected breast cancer (10 ER/PR+, 10 HER2+,
10 TN)

e Measure tumor parameters: blood volume fraction BVF, blood vessel radius r,, and
diffusion distance L, and calculate fy using Eq. 1

 Evaluate model parameters by ER, PR, and HER2 status

amples as a surrogate for

o Cohort B: 18 patients treated with anthracycline/taxane based neoadjuvant
chemotherapy

e Measure tumor parameters from core biopsy samples: blood volume fraction BVF,
blood vessel radius rp,, and diffusion distance L, and calculate fyy using Eq. 1

e Obtain pre-treatment perfusion measurements by diffusion contrast MRI as a proxy
of tumor parameters

3. Apply model

« Evaluate the post-neoadjuvant chemotherapy clinical response in Cohort B patients
at the time of surgery, including CPS+EG clinical scores and pCR

e Correlate fy with pCR and CPS+EG score
e Correlate MRI results with response and histology results

Figure 1. Research protocol.
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between AUC and L/7, are encouraging. AUC may be assessed without core biopsy samples, a potential
benefit given the limited specimen size obtained at the time of diagnostic biopsy and the increasingly com-
mon acquisition of pretreatment breast MRI in women receiving neoadjuvant chemotherapy. We further
compared model predictions from histopathology data only [i.e., f, (histology)] with that from MRI data
only [i.e., f,(MRI)] and observed a weak correlation between these two predictions (Supplemental Figure
5). To further determine whether there exists a statistically significant correlation between f (histology) and
J(MRI), a larger data set beyond the scope of this initial report will be required in future prospective studies.

Discussion

We have demonstrated the feasibility of evaluating breast cancer vasculature in a patient-specific man-
ner with a customized semiautomated analysis. The quantities 7,, BVF, and L are shown to be reliably
predictive of tumor f, when obtained from standard diagnostic needle core biopsy in patients with stage
II-1ITI breast cancer, particularly those with triple-negative breast cancer achieving a pCR. Application of
this model for clinical use at the initial diagnostic stage may allow noninvasive prediction of outcome,
whereby likelihood of pCR can be estimated early in the course of treatment, by using the flowchart in
Figure 5. The pilot framework introduced here represents steps toward the design of a subsequent larger
prospective trials with our mathematical model to potentially select neoadjuvant chemotherapy treatment
based on predicted response, treating only those patients most likely to have a response with standard
anthracycline/taxane-based chemotherapy, while referring those unlikely to respond to other standard-of-
care options (e.g., radiation therapy) or even investigational clinical trials.

Tumor vasculature is a chaotic labyrinth of malformed and destabilized blood vessels that are struc-
turally and functionally impaired (32). Jain has argued that drug delivery to tumors could be enhanced
through tumor blood vessel normalization and reduced interstitial fluid pressure induced by antiangio-
genic therapy (33). Along those lines of reasoning, a high L/7, value in patients achieving a pCR is likely
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Figure 2. Model analysis. f, , values were determined as (i) calculated from measured values (points; cohort A: mea-

sured from resected whole-tumor histology, cohort B: measured from needle biopsy) and (ii) model best-fit (Equa-
tion 1) line to the full data set (black line). Cohort A: 30 patients underwent primary surgery without prior systemic
therapy; data were analyzed by using histology semiautomated analysis and the mathematical model. Cohort B:
18 patients receiving neoadjuvant chemotherapy; data are shown to distinguish patients with pathologic complete
response (pCR) versus those without pCR. Each point is f, , calculated for an individual patient by using averages of

BVF, r,, and L measured directly from tumor tissue stained with CD34 by immunohistochemistry. The black line shows

f. calculated from Equation 1 with optimized parameter L/r, = 13.6981 (determined from fitting, r* = 0.79875). The f,,,
regression line includes fitting of both cohort A and cohort B patients (n = 48). Error bars are calculated based on error
in BVF measurements and the respective variation that it causes when incorporated into the f, . equation (Equation

kil
1). Correlation analysis of measured f,,, and computed f, , for all 48 patients is shown in Supplemental Figure 2.

indicative of a more “normalized” baseline tumor vasculature, perhaps explaining improved response
to chemotherapy in this subset of patients. A higher L/, value suggests that chemotherapy drugs may
be more effectively delivered in these solid tumors, resulting in an improved kill fraction. Normal tissue
has regularly spaced (or separated) blood vessels, which increases the value L and thus also L/r,. Patient
tumors with a high L/#, values tended to have “pooled blood,” or regions with highly vascularized tis-
sue, severely limiting blood and drug delivery to poorly vascularized tumor regions. Model parameters
correlated with pCR following neoadjuvant chemotherapy in women with triple-negative breast cancers,
but they did not correlate with a less-than-complete response (i.e., CPS+EG score <2) in triple-negative
or high-risk ER-positive/HER2-negative breast cancers. We attribute this, in part, to our relatively small
breast cancer patient population in the setting of a proof-of-concept study of a notoriously heterogeneous
human tumor. Evaluation of our enabling mathematical platform in a larger breast cancer patient popu-
lation might potentially allow the incorporation of other biologic features, including intensity of ER/PR
expression, Ki-67 positivity, grade, and presence of TILs, to aid in predicting response to chemotherapy,
particularly in those patients destined to achieve less than a pCR.

Several technical aspects of the methodology merit further discussion. To begin, one of the limitations
in our previous research in CRC (13) was that the histopathology parameters L and 7, were solved for in the
J;,y model, while BVF was previously measured from H&E-stained slides (13). Here, we have updated and
refined this methodology by measuring these values (L, 7,, and BVF) directly from tissue sections, utilizing
vasculature-specific staining to enable better visualization, increasing the accuracy of analysis. Measurements
were previously done manually, which is both cumbersome and prone to human operator error. In contrast,
a computer-assisted software program was customized here to allow for increased accuracy and speed in
measurements; the semiautomated analysis allowed for rapid throughput, and a total of 3990 patient images
were analyzed. Moreover, in this work we have correlated clinically relevant treatment response assessments
(pCR and CPS+EG score) with measured model parameters. Other limitations include differences in tumor
vasculature staining via immunohistochemistry, although this source of bias has been greatly minimized
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Figure 3. Histopathological parameters separate patient groups (pCR and no pCR). Left: Patient groups can be separated by a L/r, value within the range
of 18.46 (the highest value in the “no pCR” group) and 22.73 (the second-lowest value in the pCR group); see the gray zone. The patient from the pCR group
that had the lowest L/r, value may be an outlier; see main text for details. Right: Student’s t test determined a statistically significant difference between
the 2 groups with respect to L/r, (P < 0.05). For each group, the box indicates the interquartile range and median, and the error bar denotes SD.
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through an automated staining protocol. Finally, while the chemotherapy regimen used was internally con-
sistent, we included all HER2-negative patients, resulting in a far more diverse patient population and thus
increased heterogeneity in terms of response to neoadjuvant chemotherapy.

While we present exploratory data regarding the use of breast MRI to obtain model parameters,
additional optimization is needed in future work. The clinical MRIs evaluated in this study were acquired
with routine clinical protocols, which are focused on optimizing workflow and clinical radiology report-
ing instead of quantitative assessment for precision medicine. However, based on the pilot MRI data
presented, AUC estimated from MCE-MRI analysis provided encouraging information regarding patient
response. In our evaluation, hotspot ROI AUC analysis had the best correlation to treatment outcomes,
when compared with looking at the whole tumor with 3D spherical ROI and a tumor ROI. Thus, the
region perfused to the greatest extent seems to be the best predictor of treatment outcomes. There is
a growing demand for and a body of evidence supporting development of precision imaging models.
For the purposes of model parameter determination, MCE-MRIs should ideally contain a normalization
method during acquisition to allow for a controlled method for T1 and B1 mapping (34). In order to
obtain BVF from breast MRI, arterial input function might be evaluated at the time of scanning, with the
ultimate inspirational goal of eliminating the need for needle core biopsy analysis for model prediction.

The semiautomated histology analysis described here can potentially be used for other solid tumors,
although thresholding based on vascular staining and tumor types may need to be optimized for each. The
general applicability of the mechanistic £, model to predict response has been examined and confirmed
in several other cancer types, including CRC with metastasis to liver, glioblastoma, pancreatic cancer, and
lymphoma (13, 16, 18, 21). The observed consistency across tumor types is attributed to the fact that the
iy model was derived from fundamental principles of mass transport common to many solid tumor types
(13) and evaluates vasculature characteristics in the tumor prior to treatment, thereby determining the
efficiency of the vascular network to deliver drugs to the tumor. Our next steps will expand upon these
results through inclusion of a large-scale data set containing more MRI measurements with additional
time points, along with additional tumor parameters to predict response.

In summary, we report a mathematical modeling framework validated in patients with breast cancer
from a single-institution study that is planned to be reproduced and further investigated in a large multi-in-
stitutional setting. If successful, the hypothesis-generating results introduced here may enable the future
development of minimally invasive tools to accurately predict tumor response to neoadjuvant chemother-
apy in patients with breast cancer.

https://doi.org/10.1172/jci.insight.126518 6
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Figure 4. Response to neoadjuvant chemotherapy and MCE-MRI in cohort B. CD34-stained core biopsy samples
measured for L/r, (rb, radius of blood vessel; L, tissue diffusion penetration distance) and its relation to MCE-MRI AUC
analysis, time points 0-5.5 minutes, taken for the hotspot region of the tumor normalized to the measured healthy
tissue at the mirrored anatomical location on the contralateral breast.

Methods

Patient cohorts. Cohort A: The first step in evaluating our model in breast cancer was to analyze model
parameters in primary resected breast tumors. We used primary resected tumors initially, as this provided
ample tissue for histologic evaluation. In addition, we chose to evaluate a variety of breast cancer subtypes
with regard to estrogen receptor, progesterone receptor, and HER2 expression, as it was unknown wheth-
er model parameters would vary by biomarker status. Thus, in cohort A, we retrospectively determined
the parameters 7,, BVF, and L from primary resected breast tumors, reviewing hormone (estrogen and
progesterone) receptor—positive tumors (z = 10), HER2-positive tumors (# = 10), and tumors negative for
both HRs and HER?2 (triple-negative, #» = 10) utilizing de-identified archival paraffin-embedded tissue.

Cohort B: After determination of model parameters in cohort A, the model was applied to women
who received neoadjuvant chemotherapy (cohort B). Cohort B (# = 18), as summarized in Table 1, con-
sisted of women with HER2-negative high-risk stage II-III infiltrating ductal carcinoma of the breast
receiving neoadjuvant chemotherapy with a modern anthracycline/taxane-based regimen. High risk was
based on stage and the opinion of the treatment provider (and tumor board) that neoadjuvant chemo-
therapy was warranted. As model parameters did not vary by biomarker status in cohort A, in cohort B
we focused on exclusively HER2-negative patients to increase homogeneity with regard to chemotherapy
regimen. In cohort B, paraffin-embedded baseline diagnostic needle core biopsy of primary breast tumor
before chemotherapy was used to determine model parameters 7,, BVF, and L via semiautomated histo-
pathology analysis as discussed below. In cohort A, we used whole tumor for analysis and found model
parameters consistent across the tumor section despite tumor heterogeneity (as described below, identi-
fying tumor, stroma, and vasculature). Thus, we felt confident moving to needle core biopsy alone for
analysis in cohort B. In addition, in cohort B pre- and post-chemotherapy MRI, performed per standard
of care, were used to obtain model parameters via an alternative imaging-based method (detailed below).
Following neoadjuvant chemotherapy, all patients underwent surgical resection, allowing assessment of
pathologic response and calculation of CPS+EG score.

Patient outcome evaluation. Patient treatment response was determined after completing neoadjuvant
chemotherapy. Resected specimens were analyzed for pCR (yes/no). In addition, patient treatment
response was assessed by using the CPS+EG score (5). Calculation of CPS+EG score was performed by
the study team based on presenting clinical stage (obtained from pretreatment clinical notes), histologic

https://doi.org/10.1172/jci.insight.126518 7
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grade and estrogen receptor status (determined by routine pathology review of pre-treatment diagnostic
biopsy), and post-neoadjuvant chemotherapy pathologic stage (determined by routine pathology review
of post-treatment resection specimen) as described previously (5). Patient response was defined and ana-
lyzed by (i) pCR: no evidence of viable residual tumor in the primary resected breast specimen following
the completion of neoadjuvant chemotherapy; and (ii) CPS+EG score <2.

Magnetic resonance imaging. Patients had pretreatment and posttreatment gadolinium MCE-MRI scans
on a 3T MRI (Siemens, Magnetom Tim Trio), which served as an imaging method to determine tumor
and breast tissue perfusion. MRIs were obtained as part of routine clinical care prior to the administration
of neoadjuvant chemotherapy (pretreatment) and after all planned neoadjuvant chemotherapy was admin-
istered prior to surgery (posttreatment). Baseline axial 3D gradient echo-based (FLASH) T1 scans were
acquired without contrast using a dedicated 7 channel, receive-only breast coil with fat saturation and with
the following parameters: 12-degree flip angle, 3.88/1.54 ms TR/TE, 0.9-mm slice thickness, 488 X 358 FE/
PE matrix. Postcontrast images were acquired with the same parameters as baseline images with Magnevist
(0.2 ml/kg, 2 ml/s) administered intravenously, with image acquisition at 1.5 minutes, 3.5 minutes, and 5.5
minutes after injection. Three subtraction images were created (post-pre contrast agent injection) and used
for MRI analysis. Patients with MRIs not conforming to these criteria were excluded from the MRI analysis.
Analysis of MRI data was performed with OsiriX Dynamic Contrast-Enhanced (DCE) Tool Plugin (35).
AUC was measured by using a 3D spherical ROI over the tumor region determined by an attending radiolo-
gist, and the hotspot (maximum signal in a 1-cm?® region given the original ROT) was measured for the tumor.
For normalization, a control ROI was assessed on the contralateral breast in the same general anatomical
position as the tumor, considered a baseline for the individual normal tissue vasculature in each patient.
Supplemental Figure 7 shows representative MRI images along with the analyses performed.

Histopathology. Patient tissue samples were formalin fixed and paraffin embedded, and processed
per institutional standard of care, in compliance with American Society of Clinical Oncology/College
of American Pathology (ASCO-CAP) guidelines. The Human Tissue Repository and Tissue Analysis
Shared Resource at the University of New Mexico Comprehensive Cancer Center (UNMCCC) served as
an honest broker for access to all tumor specimens. CD34 antibody staining via immunohistochemistry
was used to highlight tumor vasculature, and H&E staining was performed to evaluate tissue morphology
(e.g., tumor versus non-tumor).

https://doi.org/10.1172/jci.insight.126518 8
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Table 1. Cohort B patient characteristics Histopathology  semiau-

tomated analysis. Represen-

Patient/tumor parameter n (%) tative single sections of
HR-negative, HER2-negative 9 (50) primary resected tumor for
HR-positive, HER2-negative 9 (50) patient cohort A, and rep-

Tumor grade resentative single sections
Grade 1 1(6) .
Grade 2 5(27) from needle core bI.Op-
Grade 3 12 (67) sy samples from patient

Clinical stage at presentation cohort B were analyzed by
Stage Il 12 (67) using HALO image analy-
Stage lll 6(33) sis software (Indica Labs)

Nodal status to separate tissue regions
Node positive T1(67) in the CD34-stained tissue
Node negative . 7(39) sections into CD34-posi-

ShemaE)STaRyie eIl tive tissue regions (vascula-
AC Q3 weeks x 4 followed by T weekly x 12 12 (67) .

AC 02 weeks x 4 (dd) followed by T weekly x 12 6 (33) ture), CD34-negative tissue

Response regions  (non-vasculature
pCR 5 (28) tissue), and background
CPS + EG score <2 10 (56) regions (non-tissue).

HR, hormone receptor; A, doxorubicin; C, cyclophosphamide; T, paclitaxel; dd, dose HALQ uses machine learn-

dense; pCR, complete pathologic response. ing to classify tissue regions
based on a training set. Tis-

sue regions were separat-
ed into 1 X 1 mm? square
regions for analysis using code developed in MATLAB (MathWorks). This code takes the HALO-separated
regions and measures vasculature radius, 7, (um), along the short axis of the blood vessel due to the consid-
eration that the blood vessel could be in the plane of the tissue section, thus ensuring we do not overestimate
this parameter (Figure 6). Multiple measurements were taken for each blood vessel and averaged to obtain
a single 7, value for each grid analyzed. To ensure the accuracy of the semiautomated methods developed,
each measurement was checked multiple times over multiple iterations of the software analysis. BVF was
taken to be the vasculature area (red, Figure 6C) divided by the whole tissue region (blue + red). Only tissue
regions were considered for BVF measurement. Vessels were assumed to supply drug and nutrients to all
surrounding tissue that was nearest to that vessel; these perimeters define the maximum diffusion length L
and are shown in black in Figure 6D. The distances between this boundary (black) and the nearest blood
vessel (red) were measured and averaged for each grid analyzed to get the diffusion penetration distance L
(um). We note here that larger blood vessels (which presumably deliver greater amounts of drug) increase
the # value, thus decreasing L/7,. This is balanced by L, which may have a longer penetration distance due
to the increased vascular supply. In other words, it is the ratio of these two quantities that must be considered
together instead of individually when evaluating treatment efficacy.
Mathematical model. Equation 1 shows the £, equation with parameters 7,, BVF, and L, which are
directly measured from histology semiautomated analysis.

VBVE-K, (r, /L) = K, (1, /(L-~BVE))

fiy =2-BVE-
i VBVE -1, /LK (r, /L) -(1- BVF)

(Equation 1)

Jiy 18 the fraction of tumor cells killed, 7, is the average radius of blood vessels in the tissue section ana-
lyzed, BVF is the fraction of blood volume in the tumor, and L is the farthest distance nutrients/drug need
to travel from a blood vessel to reach all tissue (13).

Statistics. MATLAB and GraphPad Prism 7 were used to determine best fits of patient averages for BVF,
7, and L placed into Equation 1 and by using nonlinear regression solving for L/7,. Fits were obtained with
initial values for fit, L/# = 20 and L/r, > 0.005 for a constraint. For data in Figure 3, 2-tailed Student’s # test
was used to compare histopathology measurements (L/7,) from the 2 groups (pCR and no pCR). P < 0.05

https://doi.org/10.1172/jci.insight.126518 9
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A B -
T Outer tissue removed A
Raw CD34 stained core biopsy - | CD34 core biopsy sample with
sample, 1x1 mm? outer removed, 1x1 mm?
BVF 0.0670 Halo analysis
o (um) | 3.9609 -
y Diffusion Map
o) Diffusion
analysis
& y
- —
Halo Diffusion Analysis Map Halo core biopsy sample with

outer removed, 1x1 mm?

Figure 6. Diffusion analysis workflow. (A) Original CD34-stained histology grid before any processing. (B) Same tissue region as in A, but with the outer
inked portion removed due to the increased likelihood of false positives on the perimeter of core biopsy samples (the University of New Mexico Patholo-
gy Department inks tissue cores for quality purposes). (€) Computerized version of B with differentiation between tissue CD34- (blue), vasculature CD34*
(red), and non-tissue regions (gray). (D) Diffusion analysis of image in C, which was performed by code developed in MATLAB. Parameters measured
were: blood vessel radius (r,), blood volume fraction (BVF), and diffusion distance (L). Blood vessels are outlined in red, and the total area of blood ves-
sels in a tissue region is the BVF. Blue shows the central long axis of each vessel (multiple vessel radius measurements were taken perpendicular to this
axis). An average of all vessel radii in each image analyzed is taken to be r, (um). The black lines discretize the image into regions defined by having the
closet proximity to the enclosed vessel; then the distance from each black boundary to the blood vessel boundary (red) is measured; and all distances
averaged is the diffusion penetration distance (L) measured in pm. White is the tumor tissue region, all of which is considered for analysis. Green is the
background/non-tissue region not considered for analysis.

was considered statistically significant. Additional analysis was done to compare BVF and L/7, to determine
whether one parameter can be omitted (see Supplemental Figure 3), and to determine whether f can be
predicted with one-parameter BVF, which can be obtained from MRI (see Supplemental Figure 4).

Study approval. For all components of this research, approvals were obtained from the IRB of the
University of New Mexico Health Sciences Center, study IDs 14-070 and 15-017. Studies were conducted
according to the principles set out in the Declaration of Helsinki. Written informed consent was obtained
from all prospective study patients.
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