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LOW-RANK MATRIX APPROXIMATIONS DO NOT NEED
A SINGULAR VALUE GAP*

PETROS DRINEAST AND ILSE C. F. IPSEN*

Abstract. Low-rank approximations to a real matrix A can be conputed from ZZT A, where Z
is a matrix with orthonormal columns, and the accuracy of the approximation can be estimated from
some norm of A —ZZT A. We show that computing A — ZZT A in the two-norm, Frobenius norms,
and more generally any Schatten p-norm is a well-posed mathematical problem; and, in contrast to
dominant subspace computations, it does not require a singular value gap. We also show that this
problem is well-conditioned (insensitive) to additive perturbations in A and Z, and to dimension-
changing or multiplicative perturbations in A—regardless of the accuracy of the approximation. For
the special case when A does indeed have a singular values gap, connections are established between
low-rank approximations and subspace angles.
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1. Introduction. An emerging problem in theoretical computer science and
data science is the low-rank approximation ZZ7 A of a matrix A € R™*™ by means
of an orthonormal basis Z € R™** [9, 28].

The ideal low-rank approximations in the two most popular Schatten p-norms,
the two (operator) norm || - ||2 and the Frobenius norm || - |, consist of left singular
vectors Uy, associated with the k dominant singular values o1 (A) > -+ > o1 (A) of A.
The approximation errors are minimal and depend on subdominant singular values,

(I - UxU;)A|2 = max o;(A), I(I—-UyUL)A|F =
j>k+1

A popular approach is to compute Z as an orthonormal basis for a dominant subspace
of A, via subspace iteration or Krylov space methods [12, 19].

However, the computation of dominant subspaces range(Uy,), an important prob-
lem in numerical linear algebra [21, 22], is well posed only if the associated singular val-
ues are separated from the subdominant singular values by a gap o (A)—ok+1(A) > 0
[18, 23, 25, 26, 27, 29], which exploit perturbation results for invariant subspaces of
Hermitian matrices [4, 5]. It is not enough, though, for the gap to exist. It must also
be sufficiently large to guarantee that range(Uy) is robust (well-conditioned) to tiny
perturbations in A, such as roundoff errors. Thus, effort has been put into deriving
bounds that not require the existence of the singular value gap o1 (A) —oi+1(A) > 0.
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Contribution. The purpose of our paper, following up on [6], is to establish a
clear distinction between the mathematical problems of low-rank approximation on
the one hand, and approximation of dominant subspaces on the other. We show that
the approximation problem |||(I — ZZT)Al|||, is well posed in any Schatten p-norm,
and furthermore well-conditioned under perturbations in A and Z. To the best of
our knowledge, these findings (summarized in section 1.4) are novel, of unparalleled
clarity, and fully general. Specifically, they

1. make no demands on the accuracy of the approximation ZZT A,

2. hold in all Schatten p-norms,

3. apply to large classes of perturbations: Additive rank-preserving pertur-
bations in the basis Z; and additive, multiplicative, and even dimension-
changing perturbations in A.

However, if one so chooses to compute Z from a dominant subspace of A, one better
be assured of the existence of a sufficiently large singular value gap, for otherwise this
is a numerically unstable algorithm.

Overview. After reviewing the singular value decomposition (section 1.1), Schat-
ten p-norms (section 1.2), and angles between subspaces (section 1.3), we highlight
the main results (section 1.4) and discuss their relevance. This is followed by proofs
for low-rank approximations (section 2), and relations to subspace angles (section 3,
Appendix A).

1.1. Singular value decomposition (SVD). Let the non-zero matrix A €
R™*" have a full singular value decomposition (SVD) A = UEVT where U € R™*™
and V € R™*" are orthogonal matrices?, i.e.,

uuT =vuTu =1, vvT =vTv =1,,
and X € R™*" is a diagonal matrix with diagonal elements
(1.1) lAll2 =01(A) > -+ > 0,(A) >0, r = min{m,n}.

For 1 < k < rank(A), the respective leading k columns of U and V are U, € R™*k
and Vj € R™**, They are orthonormal, U{Uk =1, = V{Vk, and are associated
with the & dominant singular values

3, = diag (01(A) -+ ow(A)) € RF¥F,
Then
(1.2) A, = UE.VF = U, UFA
is a best rank-k approximation of A in the two norm, and in the Frobenius norm,

I- U, UDA = [[A—A = i A —Blsp.
¢ KUp)Al2,r = | kll2,F i I ll2,F

Projectors. We construct orthogonal projectors to capture the target space, i.e.,
a dominant subspace of A.

DEFINITION 1.1. A matrix P € R™*™ js an orthogonal projector, if it is idem-
potent and symmetric:

(1.3) P2 = P = P”.

IThe superscript T' denotes the transpose.
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Ezamples.
o If Z € R™** has orthonormal columns with Z7Z = I, then ZZ" is an
orthogonal projector.
e For 1 < k < rank(A), the matrix U, U} = AkAL is the orthogonal projector
onto the k-dimensional dominant subspace range(Uy) = range(Ay). Here
the pseudo inverse is A}LC = VkElleg.

1.2. Schatten p-norms. These are norms defined on the singular values of real
and complex matrices and thus special cases of symmetric gauge functions. We briefly
review their properties, based on [3, Chapter IV] and [16, sections 3.4-3.5].

DEFINITION 1.2. For integers p > 1, the Schatten p-norms on R™*™ qare

IAll, = /or(A)P+-+or (AP, r=min{m,n}.

Popular Schatten p-norms.
p=1: Nuclear (trace) norm ||A|. = Z;=1 oi(A) = |Al-
p=2: Frobenius norm [[Allr = /377 ,0;(A)2 = [|A]l.
p=o0: Two (operator) norm [[Als = 01(A) = [||Alllco-

We will make ample use of the following properties.

LEMMA 1.3. Let A € R™*", B € R™*¢, and C € R**™,
o Unitary invariance:
If Qi € R**™ with QT Q, =1,,, and Qo € R*™ with Q¥ Qy =1,,, then

1QAQZ I, = lIAl,-
o Submultiplicativity: ||AB|ll, < [|A |, IBlllp-
e Strong submultiplicativity (symmetric norm):
ICABIl, < o1(©)o1(B) I All, = [Cla Bl I Al
o Best rank-k approximation:

I~ UUDAN, = (A~ Adl, = min_ (A -Bll,.

1.3. Principal angles between subspaces. We review the definition of angles
between subspaces, and the connections between angles and projectors.
DEFINITION 1.4 (section 6.4.3 in [11] and section 2 in [29]). Let Z € R™** and

Z € R™¥E with ¢ > k have orthonormal columns so that Z77 =1, and 777 = I,.
Let the singular values of ZTZ be the diagonal elements of the k x k diagonal matriz

cos ©(Z,Z) = diag (cosfy -~ cosfy).
Then0;, 1 < j < k, are defined as the principal (canonical) angles 6, between range(Z)
and range(Z).
To extract such principal angles between subspaces of possibly different dimen-
sions, we make use of projectors.

LEMMA 1.5. Let P = ZZT and P = ZZ7T be orthogonal projectors, where Z €
R™%k gnd Z € R™*t with ¢ > k have orthonormal columns. With 6; being the k

~

principal angles between range(Z) and range(Z), define

sin @(P,IA)) = sin O(Z, 2) = diag (sinf; --- sin6y).
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1. If rank(Z) = k = rank(Z), then
lIsin®(Z, Z)]|, = [I(X-P) P|l, = [I(T-P)P ||,

In particular N R
[(I-P)P[2 =[P —Pl

represents the distance between the subspaces range(P) and range(P).
2. Ifrank(Z) > k = rank(Z), then

| sin®©(Z,Z)|], = [[X-P)P|, < [[A-P)P|,.

~

Proof. The two-norm expressions follow from [11, section 2.5.3] and [27, section 2].
The Schatten p-norm expressions follow from the CS decomposition in [20, Theorem
8.1], [29, section 2], and Appendix A. O

1.4. Highlights of the main results. We present a brief overview of the
main results: The well-conditioning of low-rank approximations under additive per-
turbations in A and the projector basis Z (section 1.4.1); the well-conditioning of
low-rank approximations under perturbations in A that change the column dimen-
sion (section 1.4.2); and the connection between low-rank approximation errors and
angles between subspaces (section 1.4.3).

Thus low-rank approximations of the form [||A — ZZT A[||, are well posed, well
conditioned, and do not need a singular value gap.

1.4.1. Additive perturbations in the projector basis and the matrix. We
show that the low-rank approximation error is insensitive to additive rank-preserving
perturbations in the projector basis (Theorem 1 and Corollary 1), and to additive
perturbations in the matrix (Theorem 2 and Corollary 2).

THEOREM 1 (additive rank-preserving perturbations in the projector basis). Let
A e R™ ", and let Z € R™*¢ be a projector basis with orthonormal columns so that
Z"7 =1,. Denote by Z € R™*¢ a perturbation, and define

2= 1212~ 2.
1. Ifrank(Z) = rank(Z), then

A= ZZT)A I, —ez || Al < [II(T—ZZ1)A I,
<@ =ZZT)Allp +ez | Al -
2. If |Z — Z||» < 1/2, then rank(Z) = rank(Z) and ez < 2 ||Z — Z|».
Proof. See section 2, and in particular Theorem 2.2. 0

REMARK 1. Theorem 1 shows what happens to the approzimation error when the
basis changes from Z to Z. The absolute change in the approximation error is small
if |1Allp s small, and if Z is close to Z and is well conditioned with respect to (left)
1NVersion. N

1. The error for the perturbed basis Z is bounded in terms of €z amplified by the
norm of A.
The additive two-norm expression €z represents both, an absolute and a rel-
ative perturbation, as

. N . ||2_z||2
cz= |ZN|Z - Zll2 = ||Z2l|Z7)]. —=—
———

1Z]]2
Deviation from

s - 1i . .
orthonormality pojative distance
from exact basis
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The first factor is the two-norm condition number |Z|2||Z1||2 of the perturbed
basis with regard to (left) inversion. The second factor is the relative two-
norm distance between the bases. R
The assumption forces the perturbed vectors Zi to be linearly independent, but
not necessarily orthonormal. Hence the Moore—Penrose inverse replaces the
transpose in the orthogonal projector, and the condition number represents
the deviation of Z from orthonormality. R
2. For simplicity, we consider ||Z — Z|2 < 1/2 instead of ||Z — Z||2 < 1. Both

requirements insure that Z has linearly independent columns, hence represents
a basts. R
The stronger requirement ||Z — Z||2 < 1/2 also guarantees that the perturbed
basis Z is well conditioned and that it is close to the ezact basis Z.

The lower bound in Theorem 1 simplifies when the columns of Z are dominant

singular vectors of A. No singular value gap is required below, as we merely pick the
leading k& columns of U from some SVD of A, and then perturb them.

COROLLARY 1 (rank-preserving perturbations of dominant singular vectors). Let

U, € R™*k 4n (1.2) be k dominant left singular vectors of A. Denote by U € Rmxk
a perturbation with rank(U) = k or |Uy — U2 < 1/2, and define

ev = U2 U, — Ul
Then
(X - U UDA]|, < [I(T- TTHA]|, < IIX— U UDA ||, +ev | Al

Proof. See section 2, and in particular Theorem 2.2. 0

Next we consider perturbations in the matrix, with a bound that is completely
general and holds for any projector P in any Schatten p-norm.

THEOREM 2 (additive perturbations in the matrix). Let A and A +E € R™*™,
and denote by P € R™*™ an orthogonal projector as in (1.3). Then

T=P)(A+E) I, = [l T=P)Al, | < [IE,-

Proof. See section 2, and in particular Theorem 2.3. 0

REMARK 2. Theorem 2 shows what happens to the approximation error when the
matriz changes from A to A + E. The change in the approximation error is propor-
tional to the change ||E||, in the matriz. Thus, the low-rank approximation error is
well conditioned (in the absolute sense) to additive perturbations in the matri.

Theorem 2 also implies the following upper bound for a low-rank approzximation
from singular vectors of A + E. Again, no singular value gap is required. We merely
pick the leading k columns Uy obtained from some SVD of A, and the leading k
columns Uy, obtained from some SVD of A + E.

COROLLARY 2 (low-rank approximation from additive perturbations). Let Uy, €
R™*k jn (1.2) be the k dominant left singular vectors of A. Denote by Uy, € R™*k
the same number of dominant left singular vectors of A +E. Then

@ =UUOAll, < [@-UUDAll, < [[X-UUA |, +2 | E |, -
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Proof. See section 2, and in particular Corollary 2.4. ]

Bounds with an additive dependence on E, like the two-norm bound above, can
be derived for other Schatten p-norms as well, and can then be combined with bounds
for E in [1, 2, 10] where A + E is obtained from elementwise sampling from A.

In the context of a different error measure, one can show [13, Theorem 4.5] that

[Ar = Y| r < 1+T‘/EHA —Y||F holds for any Y € R™*" with rank(Y) < k.

1.4.2. Perturbations that change the matrix dimension. We consider per-
turbations that can change the number of columns in A and include, among others,
multiplicative perturbations of the form A = AX. However, our bounds are com-
pletely general and hold even in the absence of any relation between range(A) and
range(A), for the two-norm (Theorem 3), the Frobenius norm (Theorem 4), and gen-
eral Schatten p-norms (Theorem 5).

Our bounds are inspired by the analysis of randomized low-rank approximations
[8], with errors evoking Gram matrix approximations AAT — AAT. Compared to
existing work [7, 15, 28], (1.4) is much more general: It holds for any orthogonal
projector P and is not limited to multiplicative perturbations A = AX where X
samples and rescales columns. The bound (1.7) is identical to [8, Theorem 3].

THEOREM 3 (two-norm). Let A € R™*" and A € R™*¢. Denote by P € Rmxm
an orthogonal projector as in (1.3). Then

(1.4) I(I-P)A|Z - [|[XT-P)A|3| < [[AAT — AAT|,,
and
(1.5) I(I-AAT) A} < [[AAT — AAT,.

More generally, denote by f&k € R™*¢ q best rank-k approximation of A. Then

(1.6) I(I- A A AR < [|AAT — A AT,
and also
(1.7) II—ALAD A2 < A - AglZ+2]|AAT — AAT|,.

Proof. See section 2. Specifically, see Theorem 2.5 for (1.4); Theorem 2.6 for (1.5);
and Theorem 2.7 for (1.7). The bound (1.6) simply follows from (1.5). d

REMARK 3. Theorem 3, as well as Theorems 4 and 5 to follow, show what happens
to the approximation error when the matrix A is replaced by a potentially unrelated
matriz of different dimension. R

Since A and A do not have the same number of columns, the difference A — A is
not defined and cannot be used to measure the perturbations. Without any knowledge
about A, other than it has the same number of rows of A, the most general approach
is to represent the perturbation as the Gram matriz difference AAT — AAT.

1. The change in approximation error is small if A is a good Gram matric
approrimation to A. R

2. The contribution of range(A) orthogonal to range(A) is bounded by the Gram
matriz approzimation error. Both errors are small if the column spaces
of A and A are close. Note that I — AAT is the orthogonal projector onto
range(A)=*.
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3. If we project A instead onto a larger space, that is, the space orthogonal to a
best rank-k approxzimation of A, then the contribution of A in that space can
be bounded by the largest subdominant singular value oyy1(A) plus the Gram
matrix approximation error.

The Frobenius norm bound (1.8) below is the first one of its kind in this generality,
as it holds for any projector P. The bound (1.11) is similar to /8, Theorem 2], being
weaker for smaller k but tighter for larger k.

THEOREM 4 (Frobenius norm). Let A € R™*" and A € R™*¢. Denote by
P € R™*™ an orthogonal projector as in (1.3) with s = rank(P). Then

(1.8) IT-P)A|F — (T~ P) A%

< min{||AAT — AAT|,, Vm —s||AAT — KAT”F},
and
(1.9) [|(I—AAT)A|% < min {||AAT — AAT|,,vVm —s||AAT — AAT|F}.
More generally, denote by Kk € R™*¢ q best rank-k approximation of A. Then
(110) (T~ RAD Al < min {|AAT - RAT|.. Vi~ FIAAT - R&T |},

and
(1.11)
I(T— ArAL) All7 < A — Ayl

+2 min {||AAT — AAT|., Vim — k[|AAT — AAT|z}.

Proof. See section 2. Specifically, see Theorem 2.5 for (1.8); Theorem 2.6 for
(1.9); and Theorem 2.7 for (1.11). The bound (1.10) simply follows from (1.9). d

REMARK 4. Theorem 4 has the same interpretation as Theorem 3. There are two
differences, though.

First, the Gram matriz approximation error in the Frobenius norm is amplified
by the factor \/m — rank(P), which is small if rank(P) is close to m and range(P)
covers a large portion of R™. In this case the low-rank approzimation errors are small.

Second, Theorem 4 relates the approximation error in the Frobenius norm to the
Gram matriz approximation error in the trace morm, i.e., the Schatten one-norm.
This is a novel connection and should motivate further work into understanding the
behavior of the trace norm, thereby complementing prior investigations into the two-
and Frobenius norms.

To the best of our knowledge, Theorem 5 is new. It generalizes Theorems 3
and 4, and is the first nontrivial bound to connect low-rank approximations with
Gram matrix approximation errors in general Schatten p-norms.

THEOREM 5 (general Schatten p-norms). Let A € R™*™ and A € R™X¢, De-
note by P € R™*™ an orthogonal projector as in (1.3) with s = rank(P). Then

(1.12) ‘ I@—P)A ;- T-P)A

< min{ I| AAT — RA"||, ). ¢m—s || AAT — AAT ||, }
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and
(1.13) [|@—AAD) AP,

< min{ || AAT — RAT|, 5, ¢/m—s || AAT — AAT ||, }

More generally, denote by Ak € R™*¢ q best rank-k approximation of A. Then
(1.14) [|(X~ AxAD) AJl7 5

< mm{ I| AAT — A, AT l,2. /m—F || AAT — R.AT ||, }

and

(1.15)
(T — ARA]) A2, < |A — Agll2

+ 2min { || AAT — AAT|, 2, ¥m —k || AAT — AAT ||, }.

Proof. See section 2. Specifically, see Theorem 2.5 for (1.12); Theorem 2.6 for
(1.13); and Theorem 2.7 for (1.15). The bound (1.14) simply follows from (1.13). O

1.4.3. Relations between low-rank approximation error and subspace
angle. For matrices A whose dominant singular values are separated by a gap from
the subdominant singular values, we bound the low-rank approximation error in terms
of the subspace angle (Theorem 6) and discuss the tightness of the bounds (Remark 6).

To guarantee that the k-dimensional dominant subspace of A is well defined
requires the existence of gap after the kth singular value,

IAll2 = 01(A) > - > 04(A) > 01 (A) > - > 0,(A) >0, 7 =min{m,n}.

THEOREM 6. Let Py = AkAL be the orthogonal projector onto the dominant k-

dimensional subspace of A. Denote by P € R™ ™ any orthogonal projector as in
(1.3) with k < rank(P) <m — k. Then

ox(A) [Isin® (P, Py, < [[(T-P)A[l, < [[Allz [[| sin (P, Py) [[[p+[l A — A [ll, -

Proof. See section 3, and in particular Theorem 3.1 for the lower bound, and
Theorems 3.2 and 3.3 for the upper bounds. ]

REMARK 5. This is a comparison between the approximation error (I —P)A on
the one hand, and the angle between the approxzimation range(P) and the target space
range(Py) on the other—uwithout any assumptions on the accuracy of the approxima-
tion.

The singular value gap is required to guarantee that the dominant subspace, rep-
resented by Py, is well defined.

However, the remaining assumptions pose mo constraints in the proper context.
Practical low-rank approximations target subspaces whose dimension is small compared
to that of the host space. To be effective at all, an approximation range(P) must have
a dimension that covers, if not exceeds, that of the target space.

REMARK 6 (tightness of Theorem 6). The subspace angles in lower and upper
bounds are amplified by a dominant singular value; and the upper bound contains an
additive term consisting of subdominant singular values.
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o Ifrank(A) =k, so that A — Ay, = 0, then the tightness depends on the spread
of the nonzero singular values,
or(A) [Isin®(P, Py, < [[[(T-P)All, < [[All2 [I| sin © (P, Pr) |||, -
e [frank(A) = k and 01(A) = -+ = ox(A), then the bounds are tight, and
they are equal to
IX=P) Alll, = [|A[l2 [ sin O, Py) ||, -

e Ifrange(P) = range(Py), so that sin ®(P,Py) = 0, then the upper bound is
tight and equal to
T =P)All, = [|A = Ax |l -

2. Well-conditioning of low-rank approximations. We investigate the ef-
fect of additive perturbations in the projector basis Z on the orthogonal projector
as a whole (section 2.1) and on the approximation error (section 2.2); and the ef-
fect of matrix perturbations on the approximation error (section 2.3). At last, we
relate the low-rank approximation error to the error in Gram matrix approximation
(section 2.4).

2.1. Orthogonal projectors, and perturbations in the projector basis.
We show that orthogonal projectors and subspace angles are insensitive to additive,
rank-preserving perturbations in the projector basis (Theorem 2.1) if the perturbed
projector basis is well conditioned.

THEOREM 2.1. Let Z € R™** be a projector basis with orthonormal columns so
that ZTZ = 1,. Denote by Z € R™** a perturbation, and set ez = ||Z7|2 ||Z — Z]|2.
1. If rank(Z) = rank(Z), then the distance between range(Z) and range(Z) is

1227 — ZZ |2 = || sin ©(Z, Z)||2 < €.

2. If |Z — Z||2 < 1/2, then rank(Z) = rank(Z) and ez < 2 ||Z — Z|».

Proof.
1. The equality follows from Lemma 1.5. The upper bound follows from [24,
Theorem 3.1] and [14, Lemma 20.12], but we provide a simpler proof adapted
for this context. Set F = Z — Z, and substitute

P=7272'=(2+Z-2)72" = (z+F)Z!
into
(1-2ZZ"P =(1-2Z")(Z+F)Z' = (1-2Z")FZ,
and apply Lemma 1.5,
(2.1) Isin®(Z,Z)|; = [|(1— ZZ")P|2 < ||Z7]2 ||F ..

2. To show rank(Z) = rank(Z) in the case |Z —Z||2 < 1/2, consider the singular
values 0;(Z) = 1 and ¢;(Z), 1 < j < s. The well-conditioning of singular
values [11, Corollary 8.6.2] implies

’1*%’(2)

=|0(@) - 0;@)| < IFla<1/2,  1<j<s

Thus min; << aj(i) >1/2 > 0 and rank(f’) = rank(Z) = s = rank(P).
Hence (2.1) holds with

(2.2) |5in ©(Z,Z) |2 < | Z"||2|[F |2 < 2[|F]Jo- O
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2.2. Approximation errors, and perturbations in the projector basis.
We show that low-rank approximation errors are insensitive to additive, rank-
preserving perturbations in the projector basis (Theorem 2.2), provided the perturbed
projector basis remains well-conditioned.

THEOREM 2.2. Let A € R™*" and let Z € ]RTX’“ be a projector basis with
orthonormal columns so that ZTZ = 1. Denote by Z € R™** a perturbation, and
set €z = ||ZT||2 U\Z — ZHQ

1. If rank(Z) = rank(Z), then

(X = ZZ")A |, —ez |l Alll, < 11— ZZD)A]l,
<M@—=ZZN)A |, +ez [ Al -

2. If |Z — Z||y < 1/2, then rank(Z) = rank(Z) and ez < 2 ||Z — Z|».
3. If, in addition, Z = Uy, are k dominant singular vectors of A, then

(X = U UDAl, < IX = ZZNAl, < (X~ UUDA |, +ev (Il Alllp,

where ey = ||Z1 )2 |Ux — Z 2.
Proof. Abbreviate P = ZZ" and P= ZZT, and write

~

I-P)A=(I-P)A+ (P-P)A.

1. Apply the triangle and reverse triangle inequalities, followed by strong sub-
multiplicativity in Lemma 1.3. Then bound the second summand according
to item 1 in Theorem 2.1 as follows,

(P —P)Al, < I ZF[|2 |1Z ~ Z]2 Il Alll, = ez I A, -

2. This follows from item 2 in Theorem 2.1.
3. In the lower bound, use the optimality of the SVD from Lemma 1.3. 0

2.3. Approximation errors, and perturbations in the matrix. We show
that low-rank approximation errors are insensitive to matrix perturbations that are
either additive (Theorem 2.3 and Corollary 2.4), or dimension changing (Theorem 2.5).

THEOREM 2.3 (additive perturbations). Let A, E € R™*™ denote by P € R™*™
an orthogonal projector as in (1.3), and let p > 1 be an integer. Then

T =P)Al, = 1 Ell, <[[T-P)(A+E)[, <[I(T-P)A[l, + [ E |l

Proof. Apply the triangle and reverse triangle inequalities, followed by strong
submultiplicativity in Lemma 1.3, and the fact that an orthogonal projector P satisfies
IT—PJs < 1. d

COROLLARY 2.4 (low-rank approximation from singular vectors of A + E). Let

U, € R™*% in (1.2) be k dominant left singular vectors of A; and let ﬁk € R™*F pe
k dominant left singular vectors of A + E. Then

(X -TUOAl, < [[X-UUOA[, < [[T-UUO)A I, +2 [ E ], -

Proof. The lower bound follows from the optimality of the SVD of A in all Schat-
ten p-norms; see Lemma 1.3.
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As for the upper bound, set P = ﬁkﬁ{ in the upper bound of Theorem 2.3,
X =T UDAl, < [IX-UUL) (A+E) [l + [ El, -

Since ﬁk are singular vectors of A + E, the optimality of the SVD of A + E, see
Lemma 1.3, followed by another application of Theorem 2.3, yields

I(T-UxU) (A+E)l, = _min ||(1-2Z") (A+E)], < [|(I-U,U) (A+E) |l
=1k
<@ =T Al + 1 E Il -
THEOREM 2.5 (perturbations that change the number of columns). Let A €
R™*™ and A € R™*¢. Denote by P € R™*™ an orthogonal projector as in (1.3), set

s =rank(P), and let p > 1 be an even integer. Then
1. Two norm (p = o)

‘||(I—P)A||§—||(I—P)A§ < JAAT — AAT .

2. Schatten p-norm (p even)

| I @ P)A|— || @—P)A|]

< min{ | AAT — AAT||,0, ¢/m—s || AAT — AAT ||, }
3. Frobenius norm (p = 2)

\||<I—P>K|% Cja-P)AlZ

< min {||1111T — AAT|,, Vm—s|AAT - AAT||F}~

Proof. The proof is motivated by that of [8, Theorems 2 and 3|. If s = m, then
P =1,, and the bounds follow from the reverse triangle inequality. So let s < m.

1. Two-norm. The invariance of the two-norm under transposition and the tri-
angle inequality imply

I(T—P)A[3 = |[AT(I-P)3 = (1 P)AA"(1-P)]|,

— |(1-P)AATAI—-P) + (I-P) (&&T - AAT) (I-P)|.

< |1~ P)AAT(T-P)|; + |1~ P) (AAT - AAT) (I~ P)|}.
The first summand on the right equals

IT-P)AAT(I-P)|. = [(I-P)A|3,
while the second one can be bounded by submultiplicativity and ||[I — Pljs <1,
|- P) (AAT — AAT) (1~ P)|2 < T - P} |AAT — AAT|;
< |AAT — AAT ;.
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This gives the upper bound
IX-P)A[Z — [T -P)A[3 < [[AAT — AAT ..
Apply the inverse triangle inequality to show the lower bound,
—[[AAT — AAT|s < (T - P)A — [[(I - P)A]f3.

2. Schatten p-norm (p even). The proof is similar to that of the two-norm, since
an even Schatten p-norm is a Q-norm [3, Definition IV.2.9], meaning it represents a
quadratic gauge function. This can be seen in terms of singular values, where for any
matrix C,

/2
IICIE =3 (50" = 3 (o,(6C™)"* = [ICCT 1775
J J
Hence

(2.3) ICI = NCCT /2 -

Abbreviate M = AAT — AAT, and B = I — P where BY = B and ||B||; = 1.
Since singular values do not change under transposition, it follows from (2.3) and the
triangle inequality that

(24) [BA[7=[|A"B||; = |BAATB||,/> = [[BAATB + BMB ||,/
< IBAATB [,z + [ BMB||,/2 .

Apply (2.3) to the first summand on the right, [|B AAT B|||,,» = [|B A2, and insert
it into the above inequalities,

(2.5) IBAJS—IBAJZ < [BMB |l -

1. Derivation of the first term in the minimum: Bound the rightmost term
in (2.5) with strong submultiplicativity and ||B]|2 = 1,

IBMB[,/2 < B3 | Mlll,/2 < [IM]],/2,
which gives the upper bound
IBA I BAJZ < M|, -
Apply the inverse triangle inequality in (2.4) to show the lower bound
~ Ml < [IBAZ —~[IBAJJ.
2. Derivation of the second term in the minimum: From
rank (BMB) < rank(B) =rank(I-P)=m —s>0

follows 0;(B) = 1, < j < m — s. With the nonascending singular value
ordering in (1.1), the Schatten p-norm needs to sum over only the largest
nonzero m — s singular values. This, together with the singular value inequal-
ity [17, (7.3.14)]

0;i(BMB) < 0y(B)?0;(M) =1 0,(M), 1<j<m-—s,
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gives for the rightmost term in (2.5):

m—s m—s
2
IIBMBJI27 = > (0;(BMB)”* < 3~ 1 (o; (M)
j=1 J=1

Then apply the Cauchy—Schwarz inequality to the vectors of singular values:

> (0,(M))” < Vim=s I M2,

J=1

Merging the last two sequences of inequalities gives

2
IBMBJ[?5 < Vim —s || M ||5/2

Thus [[|[BMB|||,/2 < ¥/m — s || M]||,, which can now be substituted into (2.5).
3. Frobenius mnorm. This is the special case p = 2 with |||A]|z = ||A||F and
Al = 1A

2.4. Approximation error, and Gram matrix approximation. We gener-
alize [8, Theorems 2 and 3] to Schatten p-norms.

THEOREM 2.6. Let A € R™*" C € R™*¢ with s = rank(C); and let p > 1 be an
even integer. Then
1. Two-norm (p = o0)

[I-cChHAl; < |[AAT —CCT.

2. Schatten p-norm (p even)

0-CC AN < win {[IAAT-CCT 2, ¥ =5 [|AAT-CCTl, .
3. Frobenius norm (p = 2)

[(I-CCHA|%Z < min{AAT —CCT,, Vvm—s|AAT - CCT||F}.

Proof. Set P = CC' and A = C. The properties of the Moore—Penrose inverse
imply

I-P)A=(I-cchc=c-ccfc=o.

When substituting this into Theorem 2.5, the second summand on the left of the
bounds drops out.

In addition, for the Frobenius and Schatten p-norm bounds, use rank(P) =
rank(C) = s. |

Recall Mirsky’s Theorem [17, Corollary 7.4.9.3], an extension of the Hoffman—
Wielandt theorem to any unitarily invariant norm and, in particular, Schatten p-
norms: For A,H € R™*", the singular values o;(AAT) and o;(HHT), 1 < j < m,
are also eigenvalues and they satisfy

(2.6) Y loj(AAT) — oy (HHT)P < || AAT —HH" ||1.

j=1
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THEOREM 2.7. Let A € R™*" and C € R™*¢. Denote by Ci a best rank-k
approzimation to C; and let p > 1 be an even integer. Then
1. Two-norm (p = o0)

IT-CLCH AL < ||A— A3 +2[|AAT - CCT ..
2. Schatten p-norm (p even)

(T CxC) All7 < [|A — Ax]l2
+ 2min {|| AAT=CC"||, /2, Vm — k|| AA™=CCT |||, }.
3. Frobenius norm (p = 2)
I(T- CLCl) All% < A — Ayl
+ 2min {|[AAT — CCT||., Vim — k |AAT — CCT||p}.

Proof. We first introduce some notation before proving the bounds.
0. Set-up. Partition A = Apy+A | and C = Cx+C, to distinguish the respective
best rank-k approximations A and Cj. From AkAJT_ =0 and CkCJT_ = 0 follows

(2.7) AAT = AJAT A AT, cc?=c,cf+c .

Since the relevant matrices are symmetric positive semidefinite, eigenvalues are equal
to singular values. The dominant ones are

0j(ArAL) = 0;(AAT) = 0;(A)?,  0;(CCf) = 0;(CC") =0;(C)*, 1<j<k,
and the subdominant ones are, with j > 1,
oj(ALAT) = 014 (AAT) = 041j(A)?,  0(CLCT) = 0445(CCT) = 0415 (C)%.
To apply Theorem 2.5, set A= C, P= CkCL. Then rank(P) = rank(Cy) = k and
I-P)A=(I-C,C})(Cr+CL)=C,.
Thus
(2.8) I (= CxCLICl, = 1T =P) Al7 = [ICL I -
Two-norm. Substituting (2.8) into the two-norm bound in Theorem 2.5 gives
(2.9) IT—CkCL) A3 < [CL|3 + [AAT — CCT 5.

With the notation in (2.7), add and subtract op41(AAT) = |AL||2 = |A — A3,
and then apply Weyl’s theorem,

ICL3 = CLCT ||z = ors1(CCT)
< |ok41(CCT) — oy (AAT)| + [[ALI3
< JAAT —CCT 2 + |A — Ayl3.

Substituting this into (2.9) gives

I(T— CLCL) All5 < A — Ag[5 +2|AAT — CCT 2.
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Schatten p-norm (p even). Substituting (2.8) into the Schatten p-norm bound in
Theorem 2.5 gives

(2.10)
II(X—crCh Al <l CLI

+ min { || AAT — CCT|l,j2, ¥/m — & || AAT —CCT ||, }.

From (2.5) follows [[|CL||2 = [|[CLCT]||,/2. For a column vector x, let

llp

1[Iy = glzml/”
i

be the ordinary vector p-norm, and put the singular values of C CJT_ into the vector
T
CcC| = (O’l(CJ_C{) O’m,k(CJ_C{)) .

Move from matrix norm to vector norm

m—k m—Fk

2 2 2
llcL et = Z o;(CLCT P/ = Z (er)?* = llleL I3 -
J= J=

Put the singular values of A | AT into the vector
T
a|; = (UI(ALAI) O'm_k(AJ_Af)) 5
and apply the triangle inequality in the vector norm

ICLCT Iz = llerllpz < lller —arlllpe + 2Ly

Substituting the following expression

m—k m—k
2
llarllZs=>" o (ALAT? = > oj (AL =[|AL|Z
j=1 j=1

into the previous bound and applying (2.5) again gives

(2.11) NCLlly = NCLCTllp/2 < lllew —ar lllpz + AL -

1. Derivation of the first term in the minimum in (2.10):
Apply Mirsky’s Theorem (2.6) to the first summand in (2.11):

m—k
/2
llew —arllys = D ox;(CCT) — oys (AAT)”
p/2

<3 |y (CCT) — oy (AAT)? < ||CCT — AAT 7.

Take the p/2 square root on both sides,

ller —arlly2 < ICCT — AAT], e,
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and substitute this into (2.11), so that
CLIl; < MALE -+ CCT — AAT [,z -

The above, in turn, substitute into (2.10) to obtain the first term in the
minimum,

(T — CxCL) A2 < IAL |2 +2 | CCT — AAT ||,,/o -

2. Derivation of the second term in the minimum in (2.10):
Consider the first summand in (2.11), but apply the Cauchy—Schwarz inequal-
ity before Mirsky’s Theorem (2.6):

m—k

/2
ller —aull?)s = > |ok;(CCT) — ory;(AAT)”

Jj=1

—k
|03+ (CCT) = o1 (AAT) [

3

<vm-k

<.
Il
—

\
< ViR | Y Iy (CCT) — oy (AAT)P

=1

s

<~

<Vm—k || CCT — AAT ||2/2.
Take the p/2 square root on both sides,
ller —aillyz < &/m—k || CCT — AAT]l,,
and substitute this into (2.11), so that
ICLIE < AL +¥/m —k | CCT — AAT |, .

The above, in turn, substitute into (2.10) to obtain the second term in the
minimum,

@ —CrCh All; < AL IZ +2¥/m —k || CC" — AAT ||,
3. Frobenius morm. This is the special case p = 2 with |||A]|z = ||A|r and
1A = [JA]. 0

3. Approximation errors and angles between subspaces. We consider ap-
proximations where the rank of the orthogonal projector is at least as large as the
dimension of the dominant subspace, and relate the low-rank approximation error to
the subspace angle between projector and target space. After reviewing assumptions
and notation (section 3.1), we bound the low-rank approximation error in terms of
the subspace angle from below (section 3.2) and from above (section 3.3).

3.1. Assumptions. Given A € R™*" with a gap after the kth singular value,
lAll2 =01(A) > -+ > 0k(A) > o 11(A) > - > 0,.(A) >0, r = min{m, n}.

The gap assures that the k-dimensional dominant subspace is well posed. Partition
the full SVD A = UXVT in section 1.1

U=(Uy U), V=(Vy Vi), Z=diag(S =.),
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where the dominant parts are
3y =diag (01(A) -+ ok(A)) € RF¥F, U € Rk, V) € Rk,
and the subdominant ones
¥, € Rm—k)x(n=k) U, € Rmx(m=k) V, e RWx(n=k),
Thus A is a ”direct sum”
A=A, +A,, where A, =UpX, Vi, A, =U,Z,V,
and
(3.1) AAl=0=A AT
The goal is to approximate the k-dimensional dominant left singular vector space,
(3.2) P, = U, U} = A,A]

To this end, let P € R™*™ be an orthogonal projector as in (1.3), whose rank is at
least as large as the dimension of the targeted subspace,

rank(P) > rank(Py).

3.2. Subspace angle as a lower bound for the approximation error. We
bound the low-rank approximation error from below by the subspace angle and the
kth singular value of A, in the two-norm and the Frobenius norm.

THEOREM 3.1. With the assumptions in section 3.1, let p > 1 be an integer. Then
X =P)A[[, > ok (A) [| sin®(P, Py) [, -
Proof. From Lemma 1.5, (3.2), (3.1) and Lemma 1.3 follows
Il sin ©®(P, Py)[|, = [|(T-P) Pyl = [|(T—P) AxAL |,
= [I(T=P) (A + A1) ALl, = (T P) AAL |,
<ALl | @=P)Alll, = A= P)A [, /ox(A).

3.3. Subspace angle as upper bound for the approximation error. We
present upper bounds for the low-rank approximation error in terms of the subspace
angle, the two-norm (Theorem 3.2), and Frobenius norm (Theorem 3.3).

The bounds are guided by the following observation. In the ideal case, where P

completely captures the target space, we have range(P) = range(P)) = range(Ay),
and

[sin®(P, Pi)ll2r =0,  [T=P)Alls.r = [[ALlle.r = [ZLl2r,

thus suggesting an additive error in the general, nonideal case.

THEOREM 3.2 (two-norm). With the assumptions in section 3.1,
[(I=P)A|2 < [[Allz[[sin ©(P, Pg)[2 + [[A = Agllo [ cos O — P, T = Py)f5.

If also k < rank(P) < m — k, then |cos®(I —P,I —Py)|j2 = 1.
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Proof. From A = Ay + A and the triangle inequality follows
(3.3) [T=P)AJ2 < [[(T-P)Agf2 + [XT—-P)A_L[>.

e Bound for the first summand in (3.3):
Since rank(P) > rank(P}), Lemma 1.5 implies

[(T—-P)AL|l2 < [(T—P) Ull2/|Zxll2 = |All2 [(T—P)Pgl2
= A2 || sin © (P, Py)||2.

Substitute this into (3.3),
(34) [(I=P)A[z < [[A]]2[[sinO(P, Pg)[2 + (T - P)A_L]l2.

e Bound for the second summand in (3.3):
Submultiplicativity implies

[(I=P)A Ll <[[X-=P)U_[]2[[ZL]2 = [|A = Agll2 [[T=P)U_l2.
For the last factor, apply the full SVD of A in section 3.1,

range(U | ) = range(U U7) = range(U, U} )+ = range(Py)*
= range(I — Py)

so that
[I-P)ULlz =[[I-P)(I~Py)ll2 =[cos O~ P,I—Py)|.

Thus,
[T=P)AL[l2 < [|A = Agll2[[cos O = P, I —Py)]|>.

Substitute this into (3.4) to obtain the first bound.

e Special case k < rank(P) < m — k:
Setting I — P, = Z,ZT and I - P = ZLZE in Corollary A.2 implies
[[cos®I—P,I— Pyl =1. O

THEOREM 3.3 (Schatten p-norm). With the assumptions in section 3.1, let p > 1
be an integer and I' = cos @(I — P, 1 —Py). Then

1T =P)A[l, < [|A]l2 [l sin O, P) [l
+min {|A — Aglls [ Tlllp, A = Ag[llp [T}

If also k < rank(P) < m — k, then
1T =P)A[l, < [|Afl2 | sin©P, Py) [l + [I| A = A |ll, -
Proof. With Lemma 1.3, the analogue of (3.4) is
(3.5) 1T =P)A[l, < [|All2 [[ sin© P, Pg) [, + [l (T-P)AL ],

There are two options to bound |[|[(I—-P)A ||, = [|(I-P)U_ X, |||,, depending on
which factor gets the two-norm. Either

T=P)ULZ L, <[T=P)UL [, [[ZLlle = [IA = Agllz | T=P) UL,



LOW-RANK APPROXIMATIONS 317

or
IIT=P)ULE ., < [X=P)UL|l2 I ZLlllp = A = Ag [l [[(T=P) UL
As in the proof of Theorem 3.2 one shows
T =P)U_L[l, = [[[cos ©T = P, T —Py)|l|,

as well as the expression for the special case k < rank(P) < m — k. 0

Appendix A. CS decompositions. We review expressions for the CS decom-
positions from [20, Theorem 8.1] and [29, section 2].

Consider two subspaces range(Z) and range(i) whose dimensions sum up to less
than the dimension of the host space. Specifically, let (Z Z,),(Z Z,) € R™*™ be
orthogonal matrices where Z € R™** and Z € R™**. The CS decomposition of the

cross product is

T (s 5\ _ (2TZ Z7Z,\ (Qu Q21
(z z.) (Z ZL)_<Z:£2 Z{ZL>_( Q12>D( sz)7

where Qi1 € RFXF, Qqp € RUM=RX(m=k) ' Q,) € R, and Qg € RIM™OX(m=0) are
all orthogonal matrices.

THEOREM A.1. If k < { <m —k, then

r s L—(r+s) m—(k+0)+r s k—(r+s)

I, 0 r
C S } s
D= 0 Ik—(r-l—s) k — (8 + T)
0 L (kto)4r m—(k+0)+r
S -C S
Ié—(r+s) 0 l— (T + 5)
Here C? + 82 =1, with
C = diag (cos 6, --- cos 93) , S =diag (sin f#p --- sin 93) ,

and
r = dim (range(Z) N range(z)) , m—(k+{)+r=dim (range(ZL) N range(zl)) ,
{—(r+ s)=dim (range(ZL) N range(i)), k—(r+s)=dim (range(Z) N range(iﬁ) .

COROLLARY A.2. From Theorem A.1l follows

~ ~ S
|| sin®(Z,Z)||2,r = || Ll2F Li_(rys) ) ll2,F

|| cos @(Z,Z)”&F = ||ZT2||2,F = H (IT C) Hz,F7

~ ~ I
AN/ — |IZTZ :H m—(k+0)+r _ H :
Jeos O, 1) e = 202 s = | w5022 s
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