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a b s t r a c t

An operator satisfies the Global Comparison Property if anytime a function
touches another from above at some point, then the operator preserves the ordering
at the point of contact. This is characteristic of degenerate elliptic operators,
including nonlocal and nonlinear ones. In previous work, the authors considered
such operators in Riemannian manifolds and proved they can be represented by a
min–max formula in terms of Lévy operators. In this note we revisit this theory
in the context of Euclidean space. With the intricacies of the general Riemannian
setting gone, the ideas behind the original proof of the min–max representation
become clearer. Moreover, we prove new results regarding operators that commute
with translations or which otherwise enjoy some spatial regularity.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A map I : C2
b (Rd) → C0

b (Rd) is said to satisfy the Global Comparison Property (GCP) if

u ≤ v in Rd and u(x) = v(x) ⇒ I(u, x) ≤ I(v, x). (1.1)
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The Laplacian operator, as well as its fractional powers −(−∆)α/2 (α ∈ (0, 2)) all satisfy this property.
More generally, given a Lévy measure ν(dy) (a measure on Rd \ {0} such that min{1, |y|2} is integrable with
respect to ν) the operator

I(u, x) =
∫
Rd
u(x+ y) − u(x) − χB1(y)∇u(x) · y ν(dy),

will have the GCP. The GCP is also satisfied by Dirichlet-to-Neumann maps for elliptic equations, generators
of Markov processes, Bellman–Isaacs operators in control and differential games, among many examples.
When the operator is known a priori to be local, then nonlinear examples of maps with the GCP are of the
form,

I(u, x) = F (D2u(x),∇u(x), u(x)),

where F : Sd × Rd × R → R is monotone in its first argument, and Lipschitz continuous in all arguments.
The main contribution of this article is to address when certain operators acting on C2

b (Rd) must
necessarily enjoy a structure similar to those examples above. The canonical object used to address this
question will be a linear operator we choose to say is “of Lévy type”: those operators for which there exist
functions, A(x) ∈ Sd, B(x) ∈ Rd, C(x) ∈ R, and measures µ(x, dy) so that

L(u, x) = tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x) (1.2)

+
∫
Rd
u(x+ y) − u(x) − 1B1(0)(y)∇u(x) · y µ(x, dy),

with A(x) ≥ 0, and sup
x

∫
Rd

min(|y|2 , 1)µ(x, dy) < ∞.

We will review some recent results that show for I : C2
b (Rd) → Cb(Rd) that enjoys the GCP, is Lipschitz,

and has a natural structural constraint, there exists a family of functions, fab and linear operators of Lévy
type, Lab, so that

I(u, x) = min
a

max
b

{fab(x) + Lab(u, x)}. (1.3)

For linear operators, in the 1960s Courrège [19] showed that all of those that satisfy the GCP must have
the form given in (1.2). All of our results here should be considered an extension of Courrège’s result to the
nonlinear setting.

In our previous work, [28], we showed such a min–max representation in (1.3). The result in [28] in
fact dealt with a more general situation where I : C2

b (M) → C0
b (M) where M is a complete Riemannian

manifold. We will review the proof of this result in the context of Euclidean space, where many of the
arguments simplify greatly. Moreover, we prove two refinements of the main result from [28] relevant to the
Euclidean case, one involving translation invariant operators and one for operators that behave continuously
with respect to translation operators. Stated informally, our results are the following:

Theorem 1. An operator I(u, x) that is Lipschitz and satisfies the GCP admits a min–max formula in
terms of Lévy type operators.

Theorem 2. In the previous theorem, assume further that I(u, x) commutes with translations. Then the
Lévy operators appearing in the min–max formula all commute with translations.

Theorem 3. Instead of translation invariance assume that the finite differences of I(u, x) commute with
translations up to a certain error depending on a modulus of continuity ω(·). Then the Lévy operators
appearing in the min–max formula have continuous coefficients with common modulus of continuity of the
form Cω(2(·)).

Theorem 1 is a special case of the main result in [28], and Theorems 2 and 3 are new.
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1.1. Assumptions and main results

Here are our main assumptions.

Assumption 1.1. The map I : C2
b (Rd) → C0

b (Rd) is Lipschitz continuous and has the Global Comparison
Property (1.1).

Assumption 1.2. The map I : C2
b (Rd) → C0

b (Rd) is translation invariant. Namely, for any x, z ∈ Rd and
u ∈ C2

b (Rd) we have
I(τzu, x) = I(u, x+ z), where τzu(x) := u(x+ z). (1.4)

Assumption 1.3. There is a non-increasing function ρ : (0,∞) → R with ρ(R) → 0 as R → ∞ such that
if u, v ∈ C2

b (Rd) are such that u ≡ v in B2R(x0), then

∥I(u) − I(v)∥L∞(BR(x0)) ≤ ρ(R)∥u− v∥L∞(Rd).

Assumption 1.4. There exists a modulus, ω, for all v, u ∈ C2
b (Rd), x, z ∈ Rd, r > 0, we have

|I(v + τ−zu, x+ z) − I(v, x+ z) − (I(v + u, x) − I(v, x)) |

≤ ω(|z|)C(r)
(

∥u∥C2(B2r(x)) + ∥u∥L∞(CBr(x))

)
.

It is allowed that C(r) → ∞ as r → 0; in some examples C(r) may be bounded and in some it may be
unbounded.

The meaning of Assumptions 1.1 and 1.2 is self-evident. Assumption 1.3 seems rather technical, but it
will be necessary to obtain compactness for a family of measures arising in the proof (and this assumption is
satisfied by a broad family of examples). Note however that this assumption is not needed for the translation
invariant case as well as the setting of Theorem 1.9 as these two theorems are obtained with different
methods.

Last but not least, Assumption 1.4 can be thought of as a “coefficient regularity” assumption. For instance,
in the linear and local case, in which I is a Lévy operator without integral part, Assumption 1.4 is equivalent
to the coefficients of the operator having modulus of continuity Cω(·) for some constant C > 0. In fact,
Assumption 1.4 is stated so that it indeed linearizes to this usual assumption that one expects in the linear
case.

Remark 1.5. As mentioned above, one can check that for linear operators, Assumption 1.4 is equivalent
to the coefficients of the local part being uniformly continuous and the Lévy measures being uniformly
continuous in the TV norm along shifts in the base point, i.e.

∥µ(x+ x, ·) − µ(x, ·)∥T V (CBr) ≤ Cω(|z|).

By its design, Assumption 1.4 is a technical artifact of our proof, and as such, it is unlikely to be sharp or
even the most natural assumption. There is most likely room for improvement here. In fact, one indication
of the possibility to make a more natural assumption lies in the fact that even when the original operator,
I, is translation invariant (so the most regular dependence on x), it does not necessarily follow that I also
satisfies Assumption 1.4. This also reflects the fact that we have taken two completely different methods of
proof for the results that concern translation invariant operators, and ones that have a modulus with respect
to translations.
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Remark 1.6. In Section 6, we give a short list of some operators that fall within the scope of
Assumptions 1.1–1.4 and Theorems 1.9–1.14. At the end of Section 6, we give a list of which assumptions
each example satisfies.

Remark 1.7. We note that one subtle improvement of the current work upon our previous one in [28] is
that because of a more streamlined proof for the translation invariant case, we were able to establish the
non-translation invariant case, Theorem 1.9 (below), without the technical Assumption 1.3. This is purely an
artifact of using an approximation scheme in [28] to treat all operators by the same method, and this turns
out to have been not essential when one does not want the extra information provided by Theorems 1.11
and 1.14.

The first theorem uses the notion of “pointwise” C2 or C1, and so we will define that property here.

Definition 1.8. For a fixed x we say that u ∈ C2(x) (“pointwise C2 at x”) if there exists a vector, ∇u(x),
and a symmetric matrix, D2u(x), such that

as y → x,

⏐⏐⏐⏐u(y) − u(x) − ∇u(x) · (y − x) − 1
2(y − x) ·

(
D2u(x)(y − x)

)⏐⏐⏐⏐ ≤ o(|y − x|2).

Similarly if u only enjoys the existence of ∇u(x) and

as y → x, |u(y) − u(x) − ∇u(x) · (y − x)| ≤ o(|y − x|),

we say that u ∈ C1(x) (“pointwise C1 at x”).

Now we can restate Theorems 1–3, in more precise terms.

Theorem 1.9. If I : C2
b (Rd) → C0

b (Rd) satisfies Assumption 1.1, then, for each x, there exists a family of
linear functionals on C2(x) that depend on I and x, called K(I)x, so that for all u ∈ C2(x)

I(u, x) = min
v∈C2

b
(Rd)

max
L∈K(I)x

{I(v, x) + L(u− v)}.

Here, each L ∈ K(I)x, has the form

L(u) = tr(AxD
2u(x)) +Bx · ∇u(x) + Cxu(x) +

∫
Rd
u(x+ y) − u(x) − 1B1(0)(y)∇u(x) · y µx(dy),

and for some universal C, the terms also satisfy the bound for all x:

|Ax| + |Bx| + |Cx| +
∫
Rd

min{1, |y|2} µx(dy) ≤ C∥I∥Lip,C2
b

→C0
b
.

The proof of Theorem 1.9 appears in Section 3.1, which is at the end of Section 3.
We want to point out to the reader that the notation in Theorem 1.9 is intentional in its use of subscripts

for e.g. Ax, etc. This is because our construction does not actually produce L as a linear mapping C2
b → C0

b ,
and so it is not correct to think of having a family of L whose coefficients are actually functions of x. Rather,
it just says that at each x there is a family of functionals that have the desired structure, but it is not clear
that they can be put together across all x to make a family of x-dependent operators.

This situation changes under other assumptions, and in the next two theorems, our method produces a
family of linear operators mapping C2

b (Rd) → C0
b (Rd), all of the form (1.2).
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Theorem 1.10. If I : C2
b (Rd) → C0

b (Rd) satisfies Assumptions 1.1 and 1.2 then there exists a family,
{fab, Lab}a,b∈K(I), that depends only on I, where for all a, b, fab are constants, and Lab are linear translation
invariant operators mapping C2

b (Rd) → C0
b (Rd) of the form (1.2) (i.e. constant coefficients), and for all

u ∈ C2
b (Rd) and x ∈ Rd we have

I(u, x) = min
a

max
b

{fab + Lab(u, x)}.

Furthermore, for a universal C, for all fab and Lab,

|fab| + |Aab| + |Bab| + |Cab| +
∫
Rd

min{1, |y|2} µab(dy) ≤ C∥I∥Lip,C2
b

→C0
b
.

The proof of Theorem 1.10 appears in Section 3.1, which is at the end of Section 3.

Theorem 1.11. If I : C2
b (Rd) → C0

b (Rd) satisfies Assumptions 1.1, 1.3, and 1.4, then, there exists a family,
{fab, Lab}a,b∈K(I), that depends only on I, where for all a, b, fab ∈ C0

b (Rd) are functions, and Lab are linear
operators mapping C2

b (Rd) → C0
b (Rd) of the form (1.2), and for all u ∈ C2

b (Rd), we have

I(u, x) = min
a

max
b

{fab(x) + Lab(u, x)},

and for a universal C, for all fab and Lab,

∥fab∥L∞ + ∥Aab∥L∞ + ∥Bab∥L∞ + ∥Cab∥L∞ + sup
x

∫
Rd

min{1, |y|2} µab(x, dy) ≤ C∥I∥Lip,C2
b

→C0
b
.

Furthermore, if ω is as in Assumption 1.4, then the functions fab, Aab, Bab, Cab, all have a modulus of
continuity Cω(2·), while for each r > 0 we have the estimate,

∥µab(x1) − µab(x2)∥TV(CBr) ≤ C(r)ω(2|x1 − x2|), (1.5)

where as above, C(r) > 0, is a constant that may possibly (but not necessarily) have the property that
C(r) → ∞ as r → 0.

The proof of Theorem 1.11 appears in Section 5.5, which is at the end of Section 5.
Finally, we give a theorem that reduces the possible terms in the min–max over (1.2). Namely, there are

instances in which there may be no second order terms or first order terms. To state this, we abuse notation
slightly, and we give a shorthand as Cβ

b (Rd) to mean the following:

if β = 2 + γ, for γ ∈ (0, 1), then, we mean Cβ
b (Rd) = C2,γ

b (Rd);
if β = 2+, then, we mean Cβ

b (Rd) = C2
b (Rd);

if β = 2, then, we mean Cβ
b (Rd) = C1,1

b (Rd);
if β = 1 + γ, for γ ∈ (0, 1), then, we mean Cβ

b (Rd) = C1,γ
b (Rd);

if β = 1+, then, we mean Cβ
b (Rd) = C1

b (Rd);
if β = 1, then, we mean Cβ

b (Rd) = C0,1
b (Rd);

if β = γ, for γ ∈ (0, 1), then, we mean Cβ
b (Rd) = C0,γ

b (Rd).

(1.6)

Definition 1.12. For a fixed x, we say that u ∈ Cβ(x) (“pointwise Cβ(x)”) if the same requirements of
Definition 1.8 hold, but the estimate on the right hand side takes into account the different decay as follows:

• if, β = 2 + γ, then u has a second order Taylor expansion and the right hand side is O(|y − x|2+γ);
• if, β = 2+, then u has a second order Taylor expansion and the right hand side is o(|y − x|2);
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• if, β = 2, then we include this in the previous case whenever u has a second order Taylor expansion at
x;

• if, β = 1 + γ, then u has a first order Taylor expansion and the right hand side is O(|y − x|1+γ);
• if, β = 1+, then u has a first order Taylor expansion and the right hand side is o(|y − x|);
• if, β = 1, then we include this in the previous case whenever u has a first order Taylor expansion at x;
• if, β = γ ∈ (0, 1), then |u(y) − u(x)| ≤ C |y − x|γ .

Assumption 1.13. All of Assumptions 1.1–1.4 hold, but with all instances of C2
b (Rd) replaced by Cβ

b (Rd).

Theorem 1.14. For each of Theorems 1.9, 1.10, 1.11, we have the following variation: in each case assume
that I satisfies Assumption 1.13, for some β ∈ [0, 2+] (as enumerated above). Then, taking into account
Definition 1.12 for Theorem 1.9, the min–max formula holds in each of the previous results with the following
additions: if β < 2 then Aab = 0 for all a, b, while if β < 1 then Bab = 0 for all a, b and the operators Lab

take the form

Lab(u, x) = Cab(x)u(x) +
∫
Rd
u(x+ y) − u(x) µab(x, dy).

Moreover, the smaller β, the more regular the Lévy measures µab are at y = 0, namely, we have

sup
a,b,x

∫
Rd

min{1, |y|β}µab(x, dy) < ∞.

The proof of Theorem 1.14 appears in Section 5.5, which is at the end of Section 5.

Remark 1.15. In Sections 4 and 5, one can see that at its heart, the fact that the modulus for I is
passed onto the coefficient functions in (1.2) is a consequence of our choice to use a Whitney extension
in an approximation to I, and the Whitney extension is well known to preserve a modulus of continuity.
The actual details are a bit more involved, but that is the main reason. We note the presence of the factor
of 2 in the new modulus is a consequence of the Whitney Extension method; the interested reader can see
[54, Chapter VI].

A further comment regarding the assumptions is in order. Suppose that I satisfies Assumption 1.4 with
ω ≡ 0. In this case, taking v ≡ 0 the assumption says that

I(τ−hu, x+ h) − I(0, x+ h) = I(u, x) − I(0, x),

and if we further assume that I(0, x) is constant (i.e. I applied to the zero function returns a constant), then
we have

I(τ−hu, x+ h) = I(u, x),

that is, I is translation invariant. However, at first sight it is not clear what happens in the reverse
direction. That is, we do not know how to show that a translation-invariant operator automatically satisfies
Assumption 1.4 with ω ≡ 0, and in fact we expect that this assumption can be modified so that it seamlessly
includes the translation invariant operators as well.

1.2. Notation

For the readers’ convenience, a summary of symbols used in the paper is presented below.
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Notation Definition
d Space dimension
C2

b Twice differentiable functions f with bounded f,∇f , and D2f

Cβ
b Bounded functions of class Cβ , see (1.6) for definition

Sd Symmetric matrices of size d× d
∥ · ∥TV Total variation norm for a measure
L(X,Y ) Space of bounded linear operators from X to Y
c.h.(E) The convex hull of a set E
CE Complement of a subset of Rd

F 0(x, v) Upper gradient of a Lipschitz function (Definition 2.1)
∂F (x) Generalized gradient of F at x (Definition 2.3)
Gn Grid with step size 2−n

C(Gn) Space of real valued functions defined in Gn (Definition 4.1)
C∗(Gn) Subset of C(Gn) of functions vanishing outside [−2n, 2n] ∩Gn (Definition 4.1)
(∇n)1u(x) Discrete gradient for step size 2−n (Definition 4.7)
(∇n)2u(x) Discrete Hessian for step size 2−n (Definition 4.8)

1.3. Background

There were roughly two reasons that motivated the results we present in this paper. First of all, the link
between elliptic equations and a min–max formula for operators has a long history, and it has been exploited
extensively in the case of local operators. Until [28], the connection was not known for nonlocal, nonlinear
operators. Even so, the link between the two was natural enough that there are at least a few results that
assumed a structure like (1.3), including [5,35,40,47,48,51], among many others. Thus the theorems here
and in [28] give a sort of a posteriori justification to min–max assumptions that appeared in earlier works.
Secondly, a formula such as (1.3) can be very useful in connecting results about the integro-differential theory
(of which, there has been a large volume recently) with some other pursuits that may not obviously relate to
operators such as (1.2). Two recent projects that exploit or were motivated by the min–max formulas are on
some Hele-Shaw type free boundary evolutions in [16] and some Neumann homogenization problems [30,31].
Both of these relate to linear and nonlinear Dirichlet-to-Neumann maps, studied in [26], and there is plenty
more to learn about the integro-differential structure in the nonlinear setting. The choice to pursue continuity
properties such as the dependence given in (1.5), although a posteriori seems straightforward, was not
initially obvious, and it was motivated by recent results about comparison theorems for viscosity solutions
of integro-differential equations in [27].

As mentioned earlier, for linear operators, the representation of (1.2) goes back to Courrège [19]. This
was naturally connected with generators of Markov processes and boundary excursion processes for reflected
diffusions. Hsu [32] provides a similar representation for the Dirichlet to Neumann map for the Laplacian in a
smooth domain Ω , and this corresponds to studying the boundary process for a reflected Brownian motion. If
I is not necessarily linear but happens to satisfy the stronger local comparison principle, there are min–max
results by many authors, e.g. Evans [21], Souganidis [53], Evans–Souganidis [22] and Katsoulakis [38]. In this
case, the operator takes the form,

I(u, x) = F (x, u(x),∇u(x), D2u(x)),

which can be expressed as in Theorem 1.9, but with µ(x, dh) ≡ 0. This was extended to even include
the possibility of weak solutions acting as a local semi-group on BUC(Rd), related to image processing,
in Alvarez–Guichard–Lions–Morel [1], and to weak solutions of sets satisfying an order preserving set flow
by Barles–Souganidis in [6]. In [1] it was shown under quite general assumptions that certain nonlinear
semigroups must be represented as the unique viscosity solution to a degenerate parabolic equation.



Please cite this article as: N. Guillen and R.W. Schwab, Min–Max formulas for nonlocal elliptic operators on Euclidean Space, Nonlinear Analysis
(2019), https://doi.org/10.1016/j.na.2019.02.021.

8 N. Guillen and R.W. Schwab / Nonlinear Analysis xxx (xxxx) xxx

Although it is still too early to tell, one hopes that theorems like those presented here can create a bridge
between some nonlocal equations for which regularity questions arise and the known results about such
equations when a min–max structure is known to hold. In the local setting, there are a number of results
that leverage the min–max to shed new light on certain issues, and it would be interesting to see if similar
things can be done for the nonlocal theory (see the discussion in [28, Section 1] for an incomplete list of such
results). The types of regularity results that could find new applications via the min–max theorems here fall
into roughly three categories: Krylov–Safonov type results; regularity for translation invariant equations; and
Schauder type regularity results. For Krylov–Safonov, this means that solutions of fully nonlinear equations
can be shown to enjoy Hölder estimates depending only on the L∞ norm of the solution; some examples
are: [10,14,15,37], and [49], among many others. For translation invariant equations, these are the results that
show solutions to translation invariant equations very often enjoy C1,α regularity under mild assumptions;
some examples are: [10,17,41,44,50], among others. Finally, for Schauder regularity, we mean results that
show that for x-dependent operators, under certain regularity for the coefficients (such as Dini), solutions
will have as much regularity as those equations with “constant coefficients”; some examples are: [20,36,43],
among others. On top of questions of the type of Krylov–Safonov regularity mentioned above, there is another
family of regularity results that accompanies existence and uniqueness techniques for viscosity solutions
of elliptic partial-differential/integro-differential equations, and it is typically referred to as the Ishii–Lions
method, going back to [34]. Both this Ishii–Lions regularity and comparison results could connect well with
the operators treated in this paper, as many of the existing works on nonlocal equations assume a min–max.
The types of results that could be applicable are like those in [2–5], and [35], among others.

There is some more discussion of related works and background inside of the examples that we list in
Section 6.

1.4. Another description of operators satisfying the GCP

Let us describe an elementary but useful way to view operators satisfying the GCP, which is also related
to the min–max representation. First, we introduce a family of functional spaces.

Definition 1.16. For β ∈ [0, 2+] (using the abuse of notation in (1.6)) we define the space L∞
β as follows.

First, if β ̸= 1+,
L∞

β := {h ∈ L∞(Rd) | |h(y)| = O(|y|β) as |y| → 0},

while for β = 1+,
L∞

β := {h ∈ L∞(Rd) | |h(y)| = o(|y|β) as y → 0}.

(We note the first space requires “Big-O”, while the second space requires “little-o”.) The spaces L∞
β are

Banach spaces, with norms given by
sup

y
|h(y)| min{1, |y|β}−1.

Now, suppose we are given a continuous function

F : L∞
β (Rd) × Sd × Rd × R × Rd → R.

Assume that this function is monotone (non-decreasing) with respect to the first two variables. Then, given
u ∈ Cβ

b (Rd) define
I(u, x) := F (δxu,D

2u(x),∇u(x), u(x), x)

where we are using the notation δxu(y) := u(x + y) − u(x) − ∇u(x) · yχB1(0)(y) for β ≥ 1, and δxu(y) :=
u(x+ y) − u(x) for β < 1. It is clear the operator I thus defined has the GCP.
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Do all operators with the GCP arise in this form? It is easy to see that the answer is positive, at least
when β < 2. Given I : Cβ(Rd) → C0(R), with β < 2, we define a function

F : L∞
β (Rd) × Rd × R × Rd → R,

by the formula F (h, p, u, x) := I(τ−xh+τ−xp ·(·)χB1 +u, x). It is straightforward to see that for F so defined
and u ∈ Cβ

b (Rd) we have
I(u, x) = F (δxu,∇u(x), u(x), x).

2. Real valued Lipschitz functions on Banach spaces

In this section we review various well known facts about Lipschitz functions on Banach spaces, following
Clarke’s book [18, Chapter 2]. We will refer most of the proofs to the relevant section in [18]. The section
ends with Theorem 2.6 which yields a min–max formula for any real valued, Lipschitz F , such a result is
neither new nor surprising, but we present it here in complete detail for the sake of completeness.

We fix a Banach Space, denoted by X, an open convex subset K ⊂ X, and a function

F : K ⊂ X → R,

which is assumed Lipschitz with constant L > 0, that is

|F (x) − F (y)| ≤ L∥x− y∥ ∀ x, y ∈ K. (2.1)

Definition 2.1. The upper gradient of F at x ∈ K in the direction of v ∈ X, is defined as

F 0(x, v) := lim sup
t↘0

F (x+ tv) − F (x)
t

.

This can be seen as a function F 0 : K ×X → R.

Proposition 2.2. The function F 0(x, v) has the following properties

(1) For any x ∈ K, v ∈ X, and λ > 0 we have F 0(x, λv) = λF 0(x, v).
(2) For any x ∈ K, and v, w ∈ X we have |F 0(x, v) − F 0(x,w)| ≤ L∥v − w∥.
(3) If (xk, vk) → (x, v) then lim supF 0(xk, vk) ≤ F 0(x, v).
(4) F 0(x,−v) = (−F )0(x, v).

Proof. We refer the reader to [18, Proposition 2.1.1]. □

Definition 2.3. The generalized gradient of F at x ∈ K is the subset of X∗ given by

∂F (x) := {ℓ ∈ X∗ | F 0(x, v) ≥ ⟨ℓ, v⟩ ∀ v ∈ X}.

We will denote by ∂F the convex hull of the union of ∂F (x),

∂F := c.h.
(⋃

x∈K
∂F (x)

)
.

Proposition 2.4. The set ∂F (x), x ∈ K, has the following properties
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(1) ∂F (x) is a non-empty, convex, weak∗-compact subset of X∗.
(2) ∥ℓ∥ ≤ L for every ℓ ∈ ∂F (x).
(3) For any v ∈ X, we have that

F 0(x, v) = max
ℓ∈∂F (x)

⟨ℓ, v⟩.

Proof. We refer the reader to [18, Proposition 2.1.2]. □

The following theorem, due to Lebourg, is a generalization of the mean value theorem for differentiable
functions.

Theorem 2.5 (Lebourg’s Theorem). Let x, y be points in K. Then there exist z of the form z = tx+ (1 − t)y
for some t ∈ [0, 1], such that for some ℓ ∈ ∂F (z)

F (x) − F (y) = ⟨ℓ, x− y⟩.

Proof. We refer the reader to [18, Theorem 2.3.7]. □

Using the generalized gradient and Lebourg’s theorem we can easily prove a min–max formula for
Lipschitz functionals. Observe this is a general result for Lipschitz functionals in general Banach spaces,
and it does not involve anything like GCP (functionals with the GCP on Cβ

b (Rd) are considered in the next
section).

Theorem 2.6. Let F : K ⊂ X → R be a Lipschitz function, with K convex, then for all x ∈ K,

F (x) = min
y∈K

max
ℓ∈∂F

{F (y) + ⟨ℓ, y − x⟩}.

Proof. According to Theorem 2.5, given x, y ∈ K there is some ℓ ∈ ∂F such that

F (x) − F (y) = ⟨ℓ, x− y⟩.

In other words, for any x and y in K we have the inequality

F (x) ≤ max
ℓ∈∂F

{F (y) + ⟨ℓ, x− y⟩} .

This also yields an equality for y = x, thus F (x) = miny∈K maxℓ∈∂F {F (y) + ⟨ℓ, x− y⟩}. □

3. Functionals with the GCP, revisited

Throughout this section K denotes an open convex set of Cβ
b (Rd) (see (1.6)). Moreover, for ρ > 0, we

shall write
Kρ =

{
u ∈ Cβ

b (Rd) | ∥v − u∥Cβ < ρ ⇒ v ∈ K
}
.

Definition 3.1. Let F be a map F : K ⊂ Cβ
b (Rd) → R and x ∈ Rd. Such a functional is said to have the

Global Comparison Property with respect to x if F (u) ≤ F (v) for any pair of functions u, v ∈ K such that
u(y) ≤ v(y) for all y and u(x) = v(x) –we will say in such a case that v touches u from above at x.
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The following two auxiliary functions will be useful throughout the section: Fix ϕ0 : R → R, a
nondecreasing C∞ function such that 0 ≤ ϕ0 ≤ 1, ϕ0(x) = 0 for x ≤ 0, ϕ0(x) = 1 for x ≥ 1. Then,
given r,R > 0 we define the functions

ϕr,R(y) := ϕ0

(
|y| −R

r

)
(3.1)

ψr,R(y) := 1 − ϕr,R(y) (3.2)

The following Proposition was first proved in [28, Lemma 4.15, Corollary 4.16], we review the proof here for
the reader’s convenience.

Proposition 3.2. Suppose that F : K ⊂ Cβ
b (Rd) → R is a Lipschitz functional which has the GCP with

respect to x. Fix ρ > 0. There is a constant C(F, ρ) such that given R > 0, r ∈ (0, 1), and u, v ∈ Kρ, then

|F (u) − F (v)| ≤ C(F, ρ)r−β
(

∥u− v∥Cβ(BR+r(x)) + ∥u− v∥L∞(Rd\BR(x))

)
.

Remark 3.3. It is worth comparing Proposition 3.2 with Assumption 1.3. In the latter, one is interested
in how I(u, x) depends very little on the values of u far away from x (so, as r → ∞), whereas the former
deals with a weak version of this property that holds only for r ∈ (0, 1) but which follows alone from the
GCP without the need for further assumptions on F .

Proof. Take ϕ ∈ C2
b (Rd), such that 0 ≤ ϕ ≤ 1 and ϕ(x) = 0. Then, for any y we have

u(y) ≤ w(y) := u(y) + ϕ(y)
(
∥u− v∥L∞(spt(ϕ)) − (u(y) − v(y))

)
,

with the above being an equality for y = x. Now, let ρ0 be chosen so that

2∥ϕ∥C2(Rd)ρ0 ≤ ρ.

Then, let us suppose that u, v ∈ Kρ are such that ∥u − v∥
C

β
b

(Rd) ≤ ρ0. In this case, we have w ∈ K since
u ∈ Kρ and in this case the GCP says that

F (u) ≤ F (w).

Moreover, F (w) ≤ F (v) + L∥w − v∥Cβ and w − v = (1 − ϕ)(u− v) + ϕ∥u− v∥L∞(spt(ϕ)), thus

F (u) − F (v) ≤ L∥(1 − ϕ)(u− v)∥Cβ + L∥u− v∥L∞(spt(ϕ))∥ϕ∥Cβ .

Consider the function ϕ(y) = ϕr,R(y − x). Thanks to r ∈ (0, 1), the following estimates hold

∥ϕ∥Cβ ≤ Cr−β ,

∥(1 − ϕ)(u− v)∥Cβ ≤ Cr−β∥u− v∥Cβ(BR+r).

Substituting these in the inequality for F (u) − F (v), the desired inequality follows when ∥u − v∥Cβ is no
larger than ρ0. Otherwise, ∥u− v∥Cβ ≥ ρ0 and iterating the inequality in the previous case one obtains that

|F (u) − F (v)| ≤ C(F, ρ)r−β
(

∥u− v∥Cβ(BR+r(x)) + ∥u− v∥L∞(Rd\BR(x))

)
. □

Lemma 3.4. Let F : K ⊂ Cβ
b (Rd) → R be a Lipschitz functional which has the GCP with respect to x.

Then, for every ℓ ∈ ∂F we have

⟨ℓ, v⟩ ≤ 0 if v ≤ 0 everywhere and v(x) = 0.
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In other words, if F has the GCP with respect to x, then any ℓ arising as a generalized gradient of F also has
the GCP with respect to x. Furthermore, for any such ℓ and r ∈ (0, 1) we have

|⟨ℓ, v⟩| ≤ Cr−β
(

∥v∥Cβ(Br) + ∥v∥L∞(Rd)

)
.

Proof. Let u ∈ K, and let v ∈ Cβ
b (Rd) be such that

v ≤ 0 in Rd, v(x) = 0.

Then, ut = u+ tv touches u from below at x for each small t, therefore F (ut) ≤ F (u) for every t, and

F 0(u, v) = lim sup
t→0

F (u+ tv) − F (u)
t

≤ 0.

Since,
max

ℓ∈∂F (u)
⟨ℓ, v⟩ = F 0(u, v),

it follows that ⟨ℓ, v⟩ ≤ 0 for any ℓ ∈ ∂F (u), and the first part of the Lemma is proved. For the second part,
one argues similarly, except that instead of invoking the GCP, one applies Proposition 3.2 in order to pass
the same estimate for any ℓ ∈ ∂F . □

Fix a functional ℓ having the GCP with respect to x. Then, define Cℓ by

Cℓ := ⟨ℓ, 1⟩. (3.3)

This associates a constant Cℓ to any ℓ having the GCP. Likewise, we shall associate a vector Bℓ and positive
semi-definite matrix Aℓ. First, let us introduce some notation,

S := {ϕ ∈ C2
c (B2(0)) | ϕ ≡ 1 in a neighborhood of 0, 0 ≤ ϕ ≤ 1 in all of Rd}. (3.4)

Given ϕ, η ∈ S, define the function

Pϕ,η,u,x(·) =

⎧⎨⎩u(x) + ϕ(· − x)(∇u(x), · − x) + 1
2η(· − x)(D2u(x)(· − x), · − x) if β ∈ [2, 3),
u(x) + ϕ(· − x)(∇u(x), · − x) if β ∈ [1, 2),

u(x) if β ∈ (0, 1).
(3.5)

For x = 0 we will simply write Pϕ,β,u. Observe that, for example, if β = 2 then Pϕ,η,u,x is a smooth function
which, in a neighborhood of x, coincides with the second order Taylor polynomial of the function u at the
point x.

Definition 3.5. Given any ϕ ∈ S let Bℓ,ϕ be the vector defined by

(Bℓ,ϕ, e) = ⟨ℓ, ϕ(·)(·, e)⟩, ∀ vectors e.

At the same time, given η ∈ S let Aℓ,η be the symmetric matrix defined by

tr(Aℓ,ηM) = ⟨ℓ, η(·) 1
2 (M(·), ·)⟩, ∀ symmetric matrices M.

The following lemmas will characterize all of functionals having the GCP with respect to 0 (compare with
Courrege’s original proof [19], see also [28]).
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Lemma 3.6. Let ℓ : Cβ
b (Rd) → R be a bounded linear functional which has the GCP with respect to 0, and

ϕ, η ∈ S (defined in (3.4)). There is a positive measure µℓ on Rd \ {0} with∫
Rd\{0}

min{1, |y|β} µℓ(dy) ≤ C∥ℓ∥,

such that for any u ∈ Cβ
b (Rd) we have the following representation,

for β ≥ 2, and u ∈ Cβ
b (Rd) ∩ C2(0),

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕ,∇u(0)) + tr(Aℓ,ηD
2u(0)) +

∫
Rd
u(y) − Pϕ,η,u(y) µℓ(dy),

for β ∈ [1, 2), and u ∈ Cβ
b (Rd) ∩ C1(0),

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕ,∇u(0)) +
∫
Rd
u(y) − Pϕ,η,u(y) µℓ(dy),

for β ∈ (0, 1), and u ∈ Cβ
b (Rd),

⟨ℓ, u⟩ = Cℓu(0) +
∫
Rd
u(y) − u(0) µℓ(dy).

(The notation, C2(0) and C1(0), appears in Definition 1.8.)

Remark 3.7. We want to note that the dependence of µ only on ℓ is not a typo. Even though the vector
Bℓ,ϕ and matrix Aℓ,η clearly depend on the functions ϕ and η, the reader can see in the proof in (3.6) that
µℓ does not depend on ϕ or η.

Proof. It suffices to prove the representation formula for u ∈ C2
b (Rd) (even if β ̸= 2), as it trivially extends

to all of Cβ
b (Rd) by approximation. We fix u ∈ C2

b (Rd) ∩ C2(0). We recall Pϕ,η,u is defined in (3.5). Since
Pϕ,η,u ∈ Cβ

b (Rd) for each fixed ϕ, η, we may write

u = u− Pϕ,η,u + Pϕ,η,u,

and linearity gives
⟨ℓ, u⟩ = ⟨ℓ, Pϕ,η,u⟩ + ⟨ℓ, u− Pϕ,η,u⟩

Let us study each of these two terms. Using the definition of Cℓ, Bℓ,ϕ, and Aℓ,η, we have for β ≥ 2

⟨ℓ, Pϕ,η,u⟩ = u(0)⟨ℓ, 1⟩ +
d∑

i=1
∂iu(0)⟨ℓ, xiϕ(x)⟩ + 1

2

d∑
i,j=1

∂2
iju(0)⟨ℓ, η(x)xixj⟩

= Cℓu(0) + (Bℓ,ϕ,∇u(0)) + 1
2 tr(Aℓ,ηD

2u(0)),

as well as the corresponding expressions in the other cases when β < 2. Next, we analyze the second term
in the expression for ⟨ℓ, u⟩ above, that is

⟨ℓ, u− Pϕ,η,u⟩.

First take the case β ̸= 1. Given w ∈ Cβ
b (Rd), define w̃ by

w̃(x) := w(x) |x|β

1 + |x|β
.

Observe that since β ̸= 1, the function 1̃ = |x|β(1 + |x|β)−1 belongs to Cβ
b (Rd). The linear transformation

w ↦→ w̃ defines a linear functional ℓ̃ via the relation

⟨ℓ̃, w⟩ := ⟨ℓ, w̃⟩.
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This clearly defines a bounded functional on Cβ
b (Rd). In fact, however, this functional extends uniquely to

a bounded functional in C0
b (Rd): since w̃ is touched from above at 0 by the function ∥w∥L∞ 1̃, the GCP

guarantees that
|⟨ℓ̃, w⟩| ≤ ∥w∥L∞⟨ℓ, |x|β

1+|x|β
⟩.

This shows ℓ̃ is a uniquely defined continuous functional on C0
b (Rd) whose norm as a functional on C0

b (Rd)
is no larger than ∥ℓ∥∥ |x|β

1+|x|β
∥Cβ . It follows there is a measure µ̃ such that

⟨ℓ̃, w⟩ =
∫
Rd
w(y) µ̃(dy). (3.6)

Moreover, since ⟨ℓ̃, w⟩ ≥ 0 whenever w ≥ 0, µ̃(dy) is a non-negative measure. Now, since u ∈ C2
b (Rd), we

have that the function
w(x) := (u(x) − Pϕ,η,u(x))1 + |x|β

|x|β
,

remains continuous as x → 0, so w ∈ C0
b (Rd) and thus ⟨ℓ̃, w⟩ is well defined. In this case, we have

⟨ℓ, u− Pϕ,η,u⟩ = ⟨ℓ̃, w⟩,

and we obtain the formula

⟨ℓ, u− Pϕ,η,u⟩ =
∫
Rd

(u(y) − Pϕ,η,u(y)) 1 + |y|β

|y|β
µ̃(dy).

In particular, taking µ(dy) := 1+|y|β

|y|β
µ̃(dy), it follows that∫

Rd\{0}
min{1, |y|β}µ(dy) ≲ ∥ℓ∥∥ |x|β

1+|x|β
∥Cβ < ∞,

and
⟨ℓ, u− Pϕ,η,u⟩ =

∫
Rd\{0}

u(y) − Pϕ,η,u(y) µ(dy).

Revisiting the expression of ℓ, we have when β ≥ 2

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕ,∇u(0)) + 1
2 tr(Aℓ,ηD

2u(0)) +
∫
Rd\{0}

u(y) − Pϕ,η,u(y) µ(dy),

and the analogous formulas follow for the other cases where β ̸= 1, per the change in definition of the
function Pϕ,η,u in (3.5). It remains to consider the case β = 1.

Since |x| is not a C1 function, we are going to approximate it by a more regular function. For every small
ε > 0 we repeat the argument above with β = 1 + ε and conclude that for some µε we have the formula

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕ,∇u(0)) +
∫
Rd\{0}

u(y) − Pϕ,η,u(y) µε(dy),

and this measure µε is positive and satisfies the bound∫
Rd\{0}

min{1, |y|β}µ(dy) ≲ ∥ℓ∥∥ |x|1+ε

1+|x|1+ε ∥C1 .

Since
sup

ε∈(0,1)
∥ |x|1+ε

1+|x|1+ε ∥C1 < ∞,
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it follows that the respective finite measures {µ̃ε}ε∈(0,1) have uniformly bounded mass. Therefore, it is not
difficult to show (using ℓ to get tightness for the µ̃ε) that along a subsequence ε → 0 we can find a limit µ̃,
and if we let µ := (1 + |y|)|y|−1

µ̃ then ∫
Rd\{0}

min{1, |y|}µ(dy) < ∞,

and again, for any u ∈ C2
b (Rd),

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕ,∇u(0)) +
∫
Rd\{0}

u(y) − Pϕ,η,u(y) µ(dy), □

We consider the following special functions. For δ > 0, define (see (3.2) for definition of ψr,R)

ϕδ(x) := ψδ,1−2δ, (3.7)
ηδ(x) := ψδ,δ(x). (3.8)

Note that ϕδ ≡ 1 inside B1−2δ and ϕδ ≡ 0 outside B1−δ, while ηδ ≡ 1 inside Bδ and ηδ ≡ 0 outside B2δ.
Furthermore, we note that δ ≤ δ′ implies that ηδ ≤ ηδ′ .

Lemma 3.8. Assume that β ∈ [0, 3), l : Cβ
b (Rd) → R is a bounded linear functional with the GCP with

respect to 0, and that Aℓ,η, Bℓ,ϕ are as in Definition 3.5. Taking ηδ as in (3.8), the limit

Aℓ := lim
δ↘0

Aℓ,ηδ
,

exists for all β ∈ [0, 3), and Aℓ ≡ 0 if β < 2. Moreover, if ϕδ is as in (3.7), there is a sequence δk ↘ 0 such
that the following limit exists

Bℓ := lim
k→∞

Bℓ,ϕδk
.

Proof. Let η1, η2 ∈ S and such that η1 ≤ η2. Then for any positive semi-definite M we have

1
2η1(x)(Mx, x) ≤ 1

2η2(x)(Mx, x), with equality at x = 0.

Since ℓ has the GCP with respect to 0, it follows that

⟨ℓ, 1
2η1(x)(Mx, x)⟩ ≤ ⟨ℓ, 1

2η2(x)(Mx, x)⟩.

From this monotonicity and the elementary inequality |⟨ℓ, 1
2η(x)(Mx, x)⟩| ≤ C|M | maxij ∥ηxixj∥Cβ we

conclude that the following limit exists for every positive semi-definite M

lim
δ↘0

⟨ℓ, 1
2ηδ(x)(Mx, x)⟩.

At the same time, when β < 2 we have ∥ηδxixj∥Cβ → 0 as δ ↘ 0 for all i, j, so in this case the limit
is zero. Now, given a symmetric matrix M , write M = M+ − M−, where both M+ and M− are positive
semi-definite. Then, we also have that the limit

lim
ϕ∈S,η↘0

⟨ℓ, 1
2η(x)(Mx, x)⟩

exists for any symmetric matrix M . It is clear then that this limit is linear as a function of M , and therefore,
there is a unique symmetric matrix Aℓ such that

tr(AℓM) = lim
η↘0

⟨ℓ, 1
2η(x)(Mx, x)⟩. (3.9)
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Moreover, this matrix Aℓ is positive semi-definite and Aℓ,ηδ
→ Aℓ as δ ↘ 0, and Aℓ = 0 when β < 2. It

remains to analyze the limit of Bℓ,ϕδ
along a subsequence. For every δ ∈ (0, 1)

(Bϕδ
)i = ⟨ℓ, ϕδxi⟩.

Now, recall the estimate from Lemma 3.4, which implies

|⟨ℓ, ϕδxi⟩| ≤ C(∥ϕδxi∥Cβ(B1/2) + ∥ϕδxi∥L∞(Rd)).

A direct computation shows that
sup

0<δ<1
∥ϕδxi∥Cβ(B1/2) < ∞.

It follows that
sup

0<δ<1
|Bϕδ

| < ∞,

and by compactness, there must be a subsequence δk → 0 for which {Bℓ,ϕδk
}k converges. □

Lemma 3.9. Assume that β ∈ [0, 3). Let ℓ : Cβ
b (Rd) → R be a bounded linear functional which has the

GCP with respect to 0. For β ≥ 2 and any u ∈ Cβ
b (Rd) ∩ C2(0), we have the representation

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,∇u(0)) + tr(AℓD
2u(0)) +

∫
Rd
u(y) − u(0) − χB1(0)(∇u(0), y) µℓ(dy).

This representation is unique. This means that if there were C̃, B̃, Ã and µ̃ a measure in Rd \ {0} all such
that

⟨ℓ, u⟩ = C̃u(0) + (B̃,∇u(0)) + tr(ÃD2u(0)) +
∫
Rd
u(y) − u(0) − χB1(0)(∇u(0), y) µ̃(dy).

for all u, then C̃ = Cℓ, B̃ = Bℓ, Ã = Aℓ, and µ̃ = µℓ. Furthermore, if β < 2 and u ∈ Cβ(Rd) ∩ C1(0), then
Aℓ = 0, and if β < 1, then Bℓ = 0 and the integrand on the right can be replaced with just u(y) − u(0).

Proof. Let δ, δ′ ∈ (0, 1). Applying Lemma 3.6 with the functions ϕδ and ηδ′ ,

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕδ
,∇u(0)) + tr(Aℓ,ηδ′D

2u(0)) +
∫
Rd
u(y) − Pϕδ,ηδ′ ,u(y) µℓ(dy).

Since min{1, |y|β} is integrable against µℓ, it follows that

lim
δ′↘0

∫
Rd\{0}

ηδ′(y)(D2u(0)y, y) µℓ(dy) = 0.

Therefore,

lim
δ′↘0

∫
Rd\{0}

u(y) − Pϕδ,ηδ′ ,u(y) µℓ(dy) =
∫
Rd\{0}

u(y) − u(0) − ϕδ(y)(∇u(0), y) µℓ(dy).

Then, thanks to Lemma 3.8, the formula for ⟨ℓ, u⟩ becomes (for every fixed δ ∈ (0, 1))

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,ϕδ
,∇u(0)) + tr(AℓD

2u(0)) +
∫
Rd\{0}

u(y) − u(0) − ϕ(y)(∇u(0), y) µℓ(dy).

Now, let δk ↘ 0 be chosen so that Bℓϕδk
→ Bℓ (which can be done thanks to Lemma 3.8). From the

definition of ϕδ, we have that

u(y) − u(0) − ϕδk
(y)(∇u(0), y) is monotone in k.
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At the same time, for every y ∈ Rd we have

lim
k→∞

ϕδk
(y) = χB1(0).

Therefore, by monotone convergence we have

lim
k→∞

∫
Rd\{0}

u(y) − u(0) − ϕδk
(y)(∇u(0), y) µℓ(dy) =

∫
Rd\{0}

u− u(0) − χB1(y)(∇u(0), y) µℓ(dy).

From where it follows that

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,∇u(0)) + tr(AℓD
2u(0)) +

∫
Rd\{0}

u(y) − u(0) − χB1(0)(y)(∇u(0), y) µℓ(dy),

as claimed. It remains to prove the uniqueness part. For this, it is enough to show that if for all u we have
⟨ℓ, u⟩ = 0 and

⟨ℓ, u⟩ = Cℓu(0) + (Bℓ,∇u(0)) + tr(AℓD
2u(0)) +

∫
Rd
u(y) − u(0) − χB1(0)(∇u(0), y) µℓ(dy),

then Cℓ = 0, Bℓ = 0, Aℓ = 0 and µℓ = 0. First, consider any u with compact support which is disjoint from
{0}, for such a u we have

⟨ℓ, u⟩ =
∫
Rd
u(y) µℓ(dy),

Since u can be any function with compact support in Rd \ {0}, it follows that µℓ = 0. Evaluating ℓ at the
function u(x) ≡ 1 we obtain Cℓ = 0. Lastly, evaluating ℓ at all of the functions of the form (x, e), e ∈ Rd and
(Mx, x), M symmetric matrix, we see that Bℓ · e = 0 for any vector e and tr(AM) = 0 for any symmetric
matrix M , so that Bℓ = 0 and Aℓ = 0. □

By a simple change of variables, Lemma 3.9 implies the following.

Corollary 3.10. Assume that x is fixed, β ∈ [0, 3), and let ℓ : Cβ
b (Rd) → R be a bounded linear functional

which has the GCP with respect to x. For β ≥ 2 any u ∈ Cβ
b (Rd) ∩ C2(x) we have the representation

⟨ℓ, u⟩ = Cℓu(x) + (Bℓ,∇u(x)) + tr(AℓD
2u(x)) +

∫
Rd
u(x+ y) − u(x) − χB1(0)(∇u(x), y) µℓ(dy).

As before, this representation is unique, and when β < 2 and u ∈ Cβ
b (Rd) ∩C1(x), we have Aℓ = 0, while for

β < 1 we have Bℓ = 0 and the integrand can be replaced with just u(x+ y) − u(x).

3.1. Proofs of Theorems 1.9 and 1.10

With Lemmas 3.4 and 3.9 and Corollary 3.10 in hand, we can now prove Theorems 1.10 and 1.9.

Proof of Theorem 1.10. Consider the functional,

F (u) := I(u, 0).

Now, by Theorem 2.6, we have that

F (u) = min
a

max
b

{fab + ⟨ℓab, u⟩}.
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By Lemma 3.4, each ℓab is a linear operator having the GCP with respect to 0, in which case Lemma 3.9
says that for u ∈ Cβ

b (Rd) ∩ C2(0),

⟨ℓab, u⟩ = tr(AabD
2u(0)) +Bab · ∇u(0) + Cabu(0) +

∫
Rd
u(y) − u(0) − χB1(0)(∇u(0), y) µab(dy).

The translation invariance of I boils down to the identity

I(u, x) = F (τxu).

Therefore,
I(u, x) = min

a
max

b
{fab + ⟨ℓab, τxu⟩}

However, ⟨ℓab, τxu⟩ has a simple expression, namely

tr(AabD
2u(x)) +Bab · ∇u(x) + Cabu(x) +

∫
Rd
u(x+ y) − u(x) − 1B1(0)∇u(x) · y µab(dy),

and this proves the theorem. □

Proof of Theorem 1.9. The beginning of the proof is similar to that of the previous one. For each x ∈ Rd,
define a functional

Fx(u) := I(u, x), ∀ u ∈ Cβ
b (Rd).

Applying Theorem 2.6, it follows that

Fx(u) := min
v∈C

β
b

(Rd)
max

ℓ∈∂Fx

{Fx(v) + ⟨ℓ, u− v⟩}.

Applying Lemma 3.4, it follows that for any ℓ ∈ ∂Fx

⟨ℓ, u⟩ = Cu(x) + (B,∇u(x)) + tr(AD2u(x)) +
∫
Rd
u(x+ y) − u(x) − χB1(0)(∇u(x), y) µ(dy).

Since Fx(v) = I(v, x) this proves the Theorem, with K(I)x = {L | L(u) = ⟨ℓ, u⟩ for ℓ ∈ ∂Fx} . □

Remark 3.11. It is worthwhile to compare the proof of Theorem 1.9 to the much longer and complicated
one given in [28]. The simplicity here is made possible by the use of a mean value theorem for Lipschitz
functionals ( Theorem 2.5) in the infinite dimensional setting, which suffices to prove Theorem 1.9 as it
involves a min–max formula in terms of linear functionals in C2

b and not linear operators from C2
b (Rd) to

C0
b (Rd). The more complicated method from [28] is however still of value, specially if one is interested in

obtaining a min–max representation in terms of a family of linear operators from C2
b to C0

b . Moreover, it
is by adapting the method from [28] that we are able to prove Theorem 1.11, after analyzing the spatial
properties of the finite dimensional approximations (see in Section 5).

4. Finite dimensional approximations to Cβ
b (Rd)

4.1. Graph approximations

The following nested family of sets will be important in what follows

Gn := 2−nZd.

It will be convenient to write hn := 2−n. Then, hn represents the maximum possible distance between x ∈ Rd

and Gn, and in particular dist(x,Gn) ≤ hn for all x ∈ Rd. Observe that

G1 ⊂ G2 ⊂ G3 . . . ,

and note also the union of the sets Gn is dense in Rd.
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Fig. 1. A (periodic) cube decomposition of Rd \ Zd.

Definition 4.1. We consider the following function spaces

C(Gn) := {u : Gn → Rd},
C∗(Gn) := {u ∈ C(Gn) | u(x) = 0 if x ̸∈ [−2n, 2n]d}.

These spaces will be related to Cβ
b (Rd) by restriction, which we think of as a map denoted by Tn and given

by
Tn : Cβ

b (Rd) → C(Gn), Tnu := u|Gn .

Remark 4.2. The space C∗(Gn) is a finite dimensional vector space.

4.2. Cube decomposition and partition of unity

In this section we shall apply the Whitney theory to extend functions in a grid rZd to all of Rd. Since it is
in our interest for the Whitney construction to be compatible with the grid structure, we shall do the usual
cube decomposition making sure the resulting family of cubes is invariant under translations by vectors in
rZd, the resulting construction is illustrated in Fig. 1.

Lemma 4.3. For every r > 0, there exists a collection of cubes {Qk}k such that

(1) The cubes {Qk}k have pairwise disjoint interiors.
(2) The cubes {Qk}k cover Rd \ rZd

(3) c1diam(Qk) ≤ dist(Qk,Zd) ≤ c2diam(Qk).
(4) For every h ∈ rZd, there is a bijection σh : N → N such that Qk + h = Qσhk for every k ∈ N.

Proof. We consider the case r = 1, once the collection of cubes is {Qk}k obtained in this case, the general
case follows via scaling by taking the family {rQk}k .

Consider the cube Q0 = [−1/2, 1/2]d, let M0 denote the family of 2d equal size cubes obtained from Q0
by bisecting each of its sides. Let Mk denote the family of cubes obtained from applying this same procedure
to each of the cubes in Mk−1. Note that the side length of each cube in Mk is just 2−k. Now, we construct
a family F0 as follows, with Rk := {2

√
d2−k ≤ |x| ≤ 2

√
d2−(k−1)} for each k ∈ N, then

F0 :=
⋃
k

{Q ∈ Mk : Q ∩Rk ̸= ∅}.
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Observe that if Q ∈ F0 then Q ∈ Mk for some k and there is some x ∈ Q such that 2
√
d2−k ≤ |x| and

|x| ≤ 2
√
d2−(k−1). This means,

√
d2−k = 2

√
d2−k − diam(Q) ≤ dist(Q, 0) ≤ 2

√
d2−k,

and since diam(Q) =
√
d2−k, we conclude that

diam(Q) ≤ dist(Q, 0) ≤ 4diam(Q) ∀ Q ∈ F0.

On the other hand, we have that ⋃
Q∈F0

Q = [−1/2, 1/2]d \ {0}.

If F denotes the subfamily of maximal cubes in F0, it follows that: the union of these cubes is still
[−1/2, 1/2]d \ {0}, the inequality diam(Q) ≤ dist(Q, 0) ≤ 4diam(Q) holds for each Q ∈ F , and the cubes
have pairwise disjoint interiors.

Denote by {Qk}k an enumeration of the family of cubes of the form Q+ z, where Q ∈ F and z ∈ Zd. It
is clear that {Qk}k covers all of Rd \ Zd and that these cubes have pairwise disjoint interiors. Furthermore,
for any h ∈ Zd the map Q → Q+h gives a bijection of the set {Qk}k onto itself, therefore one can represent
it via a bijection σh : N → N so that Qk + h = Qσhk. Last but not least, as each cube of the form Q + z

is closest to z than to any other point in Zd, property (3) follows from the respectively inequality for the
family F . □

Remark 4.4. We apply Lemma 4.3 with r = 2−n, for some n ∈ N, and for the rest of the section shall
refer to the resulting cubes as {Qn,k}k.

Furthermore, for every n and k, we will denote the center of Qn,k by yn,k, and for each n and k we will
denote by ŷn,k the unique point in Gn such that

dist(yn,k, Gn) = |yn,k − ŷn,k|,

(note that there is only one since by construction not a single center yn,k lies at equidistance to two different
lattice points).

In particular, for each of the bijections σh : N → N from Lemma 4.3 we have

yn,k + h = yn,σhk, ŷn,k + h = ŷn,σhk, ∀ n, k.

Remark 4.5. In all what follows, given a cube Q, we shall denote by Q∗ the cube with same center as Q
but whose sides are increased by a factor of 9/8. Observe that for every n and k, we have Q∗

n,k ⊂ Rd\22−nZd,
and that any given x lies in at most some number C(d) of the cubes Q∗

k.

Proposition 4.6. For every n, there is a family of functions ϕn,k(x) such that

(1) 0 ≤ ϕn,k(x) ≤ 1 for every k and ϕn,k ≡ 0 outside Q∗
n,k (using the notation in Remark 4.5)

(2)
∑

k ϕn,k(x) = 1 for every x ∈ Rd \Gn.
(3) There is a constant C, independent of n and k, such that

|∇iϕn,k(x)| ≤ C

diam(Qn,k)i
.

(4) For every z ∈ Gn, we have
ϕn,k(x− z) = ϕn,σzk(x), ∀ k, x,

where σz are the bijections introduced above.
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Proof. Fix a C∞ function ϕ such that

0 ≤ ϕ ≤ 1,
ϕ ≡ 1 in Q0 = [−1/2, 1/2]d,
ϕ ≡ 0 outside Q∗

0.

Let ℓ(Q) denote the common length for the sides of Qn,k, and with yn,k as given in Remark 4.4 we define

ϕ̃n,k := ϕ

(
x− yn,k

ℓn,k

)
.

Consider the function
Φ(x) =

∑
k

ϕ̃n,k(x).

It follows from Remark 4.5 that given any x ,at most C(d) of the terms appearing in the sum are non-zero
in a neighborhood of x, and therefore Φ is a smooth function. Then, define

ϕn,k(x) := ϕ̃n,k(x)Φ(x)−1.

It is clear that the functions {ϕn,k}k satisfy properties (1) and (2). Property (3) follows easily from the chain
rule, using the differentiability of the function ϕ. It remains to check property (4), let z ∈ Gn, then

ϕn,k(x− z) = ϕ

(
x− (yn,k + z)

ℓ(Qn,k)

)
Φ(x− z)−1

= ϕ

(
x− yn,σzk

ℓ(Qn,σzk)

)
Φ(x)−1 = ϕn,σzk(x),

where we used that ℓ(Qn,k) = ℓ(Qn,σzk), which follows clearly from the definition of σz. □

4.3. Discrete derivatives

In what follows, it will be in our interest to approximate the first and second derivatives of a function
u ∈ Cβ

b (Rd) (see (1.6) for our convention regarding the meaning of Cβ
b ) at a point x ∈ Gn using only

information about the values of u on Gn. This motivates the following two definitions (we recall that
hn = 2−n).

Definition 4.7. The vector (∇n)1u(x) is defined via the system of equations (k = 1, . . . , d)

((∇n)1u(x), ek) := (2hn)−1[u(x+ hnek) − u(x− hnek)]

Definition 4.8. The matrix (∇n)2u(x) is defined via the system of equations (k, ℓ = 1, . . . , d),

((∇n)2u(x)ek, eℓ) := h−2
n [u(x+ hnek + hneℓ) − u(x+ hnek) − u(x+ hneℓ) + u(x)]

Remark 4.9. From the definition it is clear that these discrete derivatives commute with translations with
respect to a vector z ∈ Gn. That is, given a function u and z ∈ Gn then for every x ∈ Gn we have

((∇n)1τzu)(x) = ((∇n)1u)(x+ z)

Depending on how regular the function u is, these discrete derivative operators enjoy quantitative
“continuity estimates” as functions on Gn. An important point being that these estimates are uniform in n
once u is fixed.
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Proposition 4.10. There is a universal constant C such that for u ∈ Cβ
b (Rd) and x ∈ Gn,

|(∇n)1u(x) − ∇u(x)| ≤ C∥u∥Cβhβ−1
n , if β ∈ [1, 2],

|(∇n)2u(x) −D2u(x)| ≤ C∥u∥Cβhβ−2
n , if β ∈ [2, 3).

Proof. See the Appendix. □

Proposition 4.11. Fix u ∈ Cβ
b (Rd). Then, given x1, x2 ∈ Gn, we have

|u(x1) − u(x2)| ≤ C∥u∥Cβ |x1 − x2|β , if β ∈ [0, 1],
|(∇n)1u(x1) − (∇n)1u(x2)| ≤ C∥u∥Cβ |x1 − x2|β−1

, if β ∈ [1, 2],
|(∇n)2u(x1) − (∇n)2u(x2)| ≤ C∥u∥Cβ |x1 − x2|β−2

, if β ∈ [2, 3].

Proof. See the Appendix. □

4.4. The Whitney extension and projection operators.

Definition 4.12.

pβ
u,k(x) :=

⎧⎨⎩u(ŷn,k) if β ∈ [0, 1)
u(ŷn,k) + (∇1

nu(ŷn,k), x− ŷn,k) if β ∈ [1, 2)
u(ŷn,k) + (∇1

nu(ŷn,k), x− ŷn,k) + 1
2
(
∇2

nu(ŷn,k)(x− ŷn,k), (x− ŷn,k)
)

if β ∈ [2, 3)

We are now ready to define the Whitney extension operator.

Eβ
n(u, x) :=

⎧⎨⎩u(x) if x ∈ Gn,∑
k

pβ
u,k(x)ϕn,k(x) if x ̸∈ Gn. (4.1)

The projector operator πβ
n : Cβ

b (Rd) → Cβ
b (Rd) is given by

πβ
n := Eβ

n ◦ Tn, (4.2)

where we recall that Tnu = u|Gn (Definition 4.1).

Theorem 4.13. There is a constant C such that for any n and any u ∈ Cβ
b (Rd) we have

∥πβ
nu∥Cβ(Rd) ≤ C∥u∥Cβ(Rd).

Proof. This follows arguing exactly as in [54, Chapter VI, Theorem 3 and 4], making use of the regularity
estimates in Proposition 4.11. Since this is a standard argument, we omit the details. □

Proposition 4.14. Let z ∈ Gn and u ∈ Cβ
b , then.

πβ
n(τzu) = τzπ

β
n(u).

Proof. Let us show that πβ
n(τzu)(x) = τzπ

β
n(u)(x) for every x ∈ Rd and z ∈ Gn. Note that if x ∈ Gn then

the equality is trivial, so let us take x ∈ Rd \Gn and z ∈ Gn, then we have

πβ
n(τzu)(x) =

∑
k

pβ
τzu,k(x)ϕn,k(x).
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Furthermore, it is not difficult to check that (see Remark 4.9)

pβ
τzu,k(x) = pβ

u,σzk(x+ z),

while part (4) of Proposition 4.6 implies that

ϕn,k(x) = ϕn,σzk(x+ z).

From these two identities we conclude that

πβ
n(τzu)(x) =

∑
k

pβ
u,σzk(x+ z)ϕn,σzk(x+ z) =

∑
k

pβ
u,k(x+ z)ϕn,k(x+ z) = τzπ

β
n(u)(x),

where we used that σz is bijective, this proves the proposition. □

Remark 4.15. Given ε ∈ (0, 1) there is a C > 1 such that for every n ∈ N, x0 ∈ Gn, and unit vector
x∗ ∈ Rd there is some x1 ∈ Gn and s > 0 such that

|sx∗ − (x1 − x0)| ≤ hn, C
−1hε

n ≤ |x1 − x0| ≤ Chε
n.

Indeed, this follows from the fact that hε
nx∗ ∈ [−hε

n, h
ε
n]d and that [−hε

n, h
ε
n]d ∩ (Gn − x0) is a hn-net in

[−hε
n, h

ε
n]d, so there is x1 ∈ [−hε

n, h
ε
n]d ∩ (Gn −x0) such that |hε

nx∗ − (x1 − x0)| ≤ hn. Then, the inequalities
for |x1 − x0| follow from two applications of the triangle inequality and the fact that ε < 1 and hn ≤ 1/2
for all n ≥ 1.

Proposition 4.16. Let w ∈ Cβ
b (Rd) be such that w(x) ≥ 0 for every x ∈ Gn and such that w(x0) = 0 at

some x0 ∈ Gn. Then, there is a universal C such that

|∇πβ
nw(x0)| ≤ C∥w∥Cβhmin{2,β}−1

n , if β ≥ 1,
|(∇2πβ

nw(x0))−| ≤ C∥w∥Cβh(min{3,β}−2)/2
n , if β ≥ 2.

Here, for a given symmetric matrix D, D− denotes its negative part.

Proof. Fix any x ∈ Gn. Thanks to Proposition 4.10 and the fact that |x− x0| ≥ hn we have

|w(x) − w(x0) − (∇πβ
nw(x0), x− x0)| ≤ C∥w∥Cβ |x− x0|min{2,β}

.

Since w(x0) = 0, and w(x) ≥ 0 by assumption,

0 ≤ (∇πβ
nw(x0), x− x0) + C∥w∥Cβ |x− x0|min{2,β}

.

It is easy to see there is some x1 ∈ Gn such that |x0 − x1| = hn and

(∇πβ
nw(x0), x1 − x0) = −|∇πβ

nw(x0)|ℓ∞ |x1 − x0|,

and therefore,
(∇πβ

nw(x0), x1 − x0) ≤ −C−1
d |∇πβ

nw(x0)| |x1 − x0|.

Combining these inequalities and recalling Theorem 4.13 it follows that

|∇πβ
nw(x0)| ≤ C∥w∥Cβhmin{2,β}−1

n .
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This proves the estimate for the gradient when β ≥ 1. Now assume β ≥ 2, the beginning of the argument
in this case goes along similar lines. For any x ∈ Gn we have that

|w(x) − w(x0) − (∇πβ
nw(x0), x− x0) − 1

2 (∇2πβ
nw(x0)(x− x0), x− x0)| ≤ C∥w∥Cβ |x− x0|min{3,β}

,

where we have once again used Theorem 4.13. Thus, since w(x0) = 0 and w(x) ≥ 0 for x ∈ Gn,

(∇πβ
nw(x0), x− x0) + 1

2 (∇2πβ
nw(x0)(x− x0), x− x0) + C∥w∥Cβ |x− x0|min{3,β} ≥ 0.

Now, since we are on a lattice, it is obvious that for any x ∈ Gn we have that x′ := 2x0 − x ∈ Gn. In this
case we can add up the inequalities for x and x′, and conclude that

(∇πβ
nw(x0), x− x0) + 1

2 (∇2πβ
nw(x0)(x− x0), x− x0)

+ (∇πβ
nw(x0), x′ − x0) + 1

2 (∇2πβ
nw(x0)(x′ − x0), x′ − x0) + 2C∥w∥Cβ |x− x0|min{3,β} ≥ 0.

Since x′ − x0 = −(x− x0), we conclude that

(∇2πβ
nw(x0)(x− x0), x− x0) + 2C∥w∥Cβ |x− x0|min{3,β} ≥ 0, ∀ x ∈ Gn.

Let x∗ ∈ Rd be a unit vector such that

−(∇2πβ
nw(x0)x∗, x∗) = |(∇2πβ

nw(x0))−|

According to Remark 4.15, there is x1 ∈ Gn and s > 0 such that

|sx∗ − (x1 − x0)| ≤ hn, C−1hε
n ≤ |x1 − x0| ≤ Chε

n.

For this x1 we have

|(∇2πβ
nw(x0))−|s2 = −(∇2πβ

nw(x0)x∗, x∗)s2

≤ −(∇2πβ
nw(x0)(x1 − x0), x1 − x0) + C∥w∥Cβ |sx∗ − (x1 − x0)|.

This, together with the previous step, shows that

C−2|(∇2πβ
nw(x0))−|(hε

n)2 ≤ 2C∥w∥Cβhmin{3,β}ε
n + C∥w∥Cβhn,

again having used Theorem 4.13. Simplifying, this becomes

|(∇2πβ
nw(x0))−| ≤ C∥w∥Cβ (h(min{3,β}−2)ε

n + h1−ε
n ).

Choosing ε = 1/2, and noting (min{3, β} − 2) ≤ 1, we conclude that

|(∇2πβ
nw(x0))−| ≤ C∥w∥Cβh(min{3,β}−2)/2

n . □

We fix an auxiliary function η0 : [0,∞) → R+, with η0 ∈ C∞(R+), and

0 ≤ η0 ≤ 1, η′
0(t) ≥ 0 for all t, η0(t) = t for t ≤ 1/2, η0(t) = 1 for t ≥ 1. (4.3)

The function η0, as well as the following two estimates, will be useful in the next section. Essentially, η0(t)
should be thought of as a smooth replacement for min{1, t}.
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Lemma 4.17. Let 1 ≤ β < β0 < 3, and consider w ∈ Cβ0
b (Rd) and x0 ∈ Gn such that

w ≥ 0 in Gn and w(x0) = 0.

Then, there is a function Rβ0,n,w,x0 such that R(x0) = 0, and

πβ
nw(x) +Rβ0,n,w,x0(x) ≥ 0, ∀ x ∈ Rd,

∥Rβ0,n,w,x0∥Cβ(Rd) ≤ Chγ
n∥w∥Cβ0 (Rd),

for some constant γ = γ(β, β0) ∈ (0, 1).

Remark 4.18. For β ∈ (0, 1), it is straightforward that w ≥ 0 in Gn guarantees that πβ
nw ≥ 0 everywhere,

that is, the Whitney extension for β ∈ (0, 1) is order preserving. Accordingly, Lemma 4.17 is only needed
for β > 1.

Proof. We consider the cases 1 ≤ β < 2 and β ≥ 2 separately. First suppose β ∈ [1, 2). Let ϕ0(t) be a
smooth function such that 0 ≤ ϕ0(t) ≤ 1 for all t, ϕ0(t) = 1 for t ≤ 1/4 and ϕ0(t) = 0 for t ≥ 1. Then set

w̃(x) = πβ
nw(x) − (∇πβ

nw(x0), x− x0)ϕ0(x− x0).

For each x ∈ Rd, let x̂ denote a point in Gn such that |x− x̂| = dist(x,Gn) ≤ hn. Then, since w(x̂) ≥ 0 for
any x̂ (from the assumption), we have

w̃(x) = w̃(x̂) + (w̃(x) − w̃(x̂))
≥ −(∇πβ

nw(x0), x− x0)ϕ0(x− x0) − C∥w̃∥Cβ0 |x̂− x|
≥ −(∇πβ

nw(x0), x− x0)ϕ0(x− x0) − C∥w̃∥Cβ0hn.

By Proposition 4.16, we have |∇πβ
nw(x0)| ≤ C∥w∥Cβ0hn when β0 > 1, therefore,

w̃(x) ≥ −C∥w∥Cβ0hn, ∀ x ∈ Rd,

where we have used Theorem 4.13 to bound ∥πβ
nw∥

C
β
0

. On the other hand, since β0 > 1 and ∇w̃(x0) = 0,
we have

w̃(x) ≥ −∥w̃∥Cβ0 |x− x0|β0 ,

≥ −C∥w∥Cβ0 |x− x0|β0 ∀ x ∈ Rd,

Now, we take η0 as in (4.3) and define the function

R̃(x) := 2C∥w∥Cβ0hnη0

(
|x− x0|β0

hn

)
.

If |x− x0|β0 ≥ hn/2, then
w̃(x) + R̃(x) = w̃(x) + C∥w∥Cβ0hn ≥ 0.

If on the contrary, |x− x0|β0 ≤ hn/2, then

w̃(x) + R̃(x) = w̃(x) + C∥w∥Cβ0 |x− x0|β0 ≥ 0.

We conclude that
w̃(x) + R̃(x) ≥ 0, ∀ x ∈ Rd.
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On the other hand, an elementary computation (see the Appendix) shows that

∥R̃∥Cβ ≤ Chγ
n∥w∥Cβ0 .

Finally, let
Rβ0,n,w,x0(x) := R̃(x) − (∇πβ

n(x0), x− x0)ϕ0(x− x0).

We conclude that ∥Rβ0,n,w,x0∥Cβ ≤ Chγ
n∥w∥Cβ0 and

πβ
nw(x) +Rβ0,n,w,x0(x) ≥ 0, ∀ x ∈ Rd.

This proves the Proposition when β ∈ [1, 2). The argument for β ≥ 2 is similar, we only highlight the main
differences. This time, we subtract not just the first order part of w near x0, but also the second order part,
namely we consider the function

˜̃w := πβ
nw(x) − (∇πβ

n(x0), x− x0)ϕ0(x− x0) − 1
2 ((∇2πβ

n(x0))−(x− x0), x− x0)ϕ0(x− x0).

Then, one applies again Proposition 4.16 and use the regularity of w to obtain (in analogy to the previous
case)

˜̃w(x) ≥ −C∥w∥Cβ0 max{hn, |x− x0|β0}

The respective function ˜̃R is defined exactly as R̃ and one argues as in the previous case. □

Remark 4.19. The argument in the proof provides – after small modifications – a closely related result:
if instead of w ∈ Cβ

b (Rd) we assume that w ∈ C0
b (Rd) and that for some M > 0 and β0 > β we have

|w(x)| ≤ M |x− x0|β0 , ∀ x ∈ Rd,

then there is as before a function R̂β0,n,w,x0 such that R̂β0,n,w,x0(x0) = 0 and πβ
nw(x) + Rβ0,n,w,x0(x) ≥ 0

for all x, but this time the Cβ estimate for R̂β0,n,w,x0 is

∥R̂β0,n,w,x0∥Cβ ≤ Chγ
n(∥w∥L∞ +M).

The following proposition will be useful later in the proof of Proposition 5.8.

Proposition 4.20. Let 1 ≤ β < β0 < 3 or β ∈ (0, 1) and β0 = β. Fix f ∈ C∞
c (Rd), and let η0 be as in

(4.3). Let x0 ∈ Gn and w(x) = f(x− x0)η0(|x− x0|β0), then

πβ
n(w, x) ≤ C∥f∥L∞η0(|x− x0|β0), ∀ x ∈ Rd, if β ∈ (0, 1),
πβ

n(w, x) ≤ C∥f∥L∞η0(|x− x0|β0) + R̂β0,n,w,x0(x), ∀ x ∈ Rd, if β ∈ [1, 2],

for some function R̂β0,n,w,x0 such that R̂β0,n,w,x0(x0) = 0 and

∥R̂β0,n,w,x0∥Cβ ≤ C∥f∥L∞hγ
n,

where γ is as in Lemma 4.17.

Proof. Define the function w̃(x) := (∥f∥L∞ − f(x− x0))η0(|x− x0|β0). Then w̃(x0) = 0 and

|w̃(x)| ≤ 2∥f∥L∞η0(|x− x0|β0), ∀ x ∈ Rd,

while, since η0 ≥ 0, we also have w̃(x) ≥ 0 for every x ∈ Gn. If β ∈ [1, 2], using Lemma 4.17 and the function
R̂β0,n,w,x0 from Remark 4.19, we have

πβ
n(w̃, x) + R̂β0,n,w,x0(x) ≥ 0, ∀ x,
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This inequality, after some rearranging, yields (for β ∈ [1, 2])

πβ
n(w, x) ≤ ∥f∥L∞πβ

n(η0(| · −x0|β0), x) + R̂β0,n,w,x0(x), ∀ x ∈ Rd.

Since we also have ∥w̃∥L∞ ≤ C∥f∥L∞ , we have again by Remark 4.19

∥R̂β0,n,w,x0∥Cβ ≤ C∥f∥L∞hγ
n,

and the Proposition is proved in this case. For β ∈ (0, 1) we argue along similar lines, using Remark 4.18
instead of Lemma 4.17. □

4.5. Convergence of the projection operators

Lemma 4.21. Let 0 < β < β0 < 3, there is a constant C such that if u ∈ Cβ0
b (Rd), then

∥πβ
nu− u∥Cβ ≤ Chγ

n∥u∥Cβ0 .

Here, γ = γ(β0, β) ∈ (0, 1).

Proof. For notational simplicity let us write f(x) = πβ
nu(x) throughout the proof.

Since u = f throughout Gn, for an arbitrary x ∈ Gn we have (with x̂ denoting a point in Gn such that
dist(x,Gn) = |x− x̂|), with α := min{1, β0}

|u(x) − f(x)| ≤ |f(x) − f(x̂)| + |u(x̂) − u(x)|
≤ |x− x̂|α[f ]Cα + |x− x̂|α[u]Cα

≤ C∥u∥Cβ0h
α
n ≤ C∥u∥Cβ0h

α
n,

where we made use of Theorem 4.13 to obtain [f ]Cα ≤ C∥u∥Cβ . This shows that ∥u− f∥L∞ goes to zero at
some rate determined by β0 and the size of ∥u∥Cβ0 . To prove the lemma we need to also bound the Hölder
seminorm of u− f and its derivatives, according to β0.

The case β, β0 ∈ [0, 1). Fix x1, x2 ∈ Rd. First, suppose that |x1 − x2| ≤ max{|x1 − x̂1|, |x2 − x̂2|}, then

|f(x1) − u(x1) − (f(x2) − u(x2))| ≤ [f − u]Cβ0 |x1 − x2|β0 ≤ C∥u∥Cβ0 |x1 − x2|β0 .

In this case, and since 0 ≤ β < β0 < 1, we have that |x1 − x2|β0−β ≤ max{|x1 − x̂1|β0−β
, |x2 − x̂2|β0−β} ≤

hβ0−β
n . Then, using Theorem 4.13

|f(x1) − u(x1) − (f(x2) − u(x2))| ≤ [f − u]Cβ |x1 − x2|β ≤ C∥u∥Cβ0h
β0−β
n |x1 − x2|β .

Next, suppose that |x1 − x2| > max{|x1 − x̂1|, |x2 − x̂2|}. In this case

|f(x1) − u(x1) − (f(x2) − u(x2))| ≤ ∥f∥Cβ0 |x1 − x̂1|β0 + ∥u∥Cβ0 |x2 − x̂2|β0

≤ C∥u∥Cβ0h
β0−β
n |x1 − x2|β ,

where once again Theorem 4.13 was used. Combining these two estimates, we conclude that

[f − u]Cβ = sup
x1 ̸=x2

|f(x1) − u(x1) − (f(x2) − u(x2))|
|x1 − x2|β

≤ C∥u∥Cβ0h
β0−β
n .

Then, using that hn ≤ 1 for all n ≥ 1, we have

∥f − u∥Cβ ≤ Chγ
n∥u∥Cβ0 .
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The case β, β0 ∈ [1, 2). In this case we trivially have the same estimates from the previous case, and only
need the bounds for first derivative. This is done as follows, first

|∇f(x) − ∇u(x)| ≤ |∇f(x) − ∇f(x̂)| + |∇f(x̂) − ∇u(x̂)| + |∇u(x) − ∇u(x̂)|.

Then, using Theorem 4.13, we have

|∇f(x) − ∇u(x)| ≤ [∇f ]Cβ0−1hβ0−1
n + |∇f(x̂) − ∇u(x̂)| + [∇u]Cβ0−1hβ0−1

n

≤ C∥u∥Cβ0h
β0−1
n + |∇f(x̂) − ∇u(x̂)|.

Recall that ∇f(x̂) = (∇n)1u(x̂), and use Proposition 4.10 to conclude that

|∇f(x) − ∇u(x)| ≤ C∥u∥Cβ0h
β0−1
n + C∥u∥Cβ0h

β0−1
n .

The Hölder seminorm [∇f − ∇u]Cβ is bounded with the same argument used to bound [f − u]Cβ in the
previous case, we omit the details.

The case β = 2, β0 ∈ (2, 3). Right as before, we note that

|D2f(x) −D2u(x)| ≤ |D2f(x) −D2f(x̂)| + |D2f(x̂) −D2u(x̂)| + |D2u(x) −D2u(x̂)|.

Then, applying Theorem 4.13 and Proposition 4.10 as in the previous case, we have

|D2f(x) −D2u(x)| ≤ [D2f ]Cβ0−2hβ0−2
n + |D2f(x̂) −D2u(x̂)| + [D2u]Cβ0−2hβ0−2

n

≤ 2C∥u∥Cβ0h
β0−2
n + |∇f(x̂) − ∇u(x̂)|

≤ 3C∥u∥Cβ0h
β0−2
n .

For the Hölder seminorm, we repeat the argument used in the case β ∈ (0, 1), again we leave the details to
the reader. □

Remark 4.22. If u ∈ C0
b (Rd), then the same argument from Lemma 4.21 can be used to show

lim
n→∞

∥u− π0
n(u)∥L∞(Rd) = 0,

the rate of convergence being determined by the modulus of continuity of u.

5. Analysis of I(u, x) via the finite dimensional approximations

In this section we introduce a sequence of operators In which approximate I. The operators In behave
like operators in a finite dimensional vector space in the sense that they arise from a composition between
linear maps with a Lipschitz map from a finite dimensional space onto itself. This allows us to prove a min–
max formula for In(u, x) at least when x ∈ Gn by using Clarke’s idea of a generalized gradient [18]. More
precisely, we use the fact that In factorizes via a map between finite dimensional vector spaces (which is
what the spaces C∗(Gn) were introduced for), where the generalized gradient can be used, and then lift this
to corresponding maps from Cβ

b (Rd) to C0
b (Rd) using the Whitney extension. The majority of the section is

concerned with deriving estimates and regularity properties for the linear operators arising in the min–max
formula for In, and ultimately concluding such linear operators are pre-compact, which leads to a min–max
formula for the original operator.
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5.1. The operators In and their min–max representation

We are going to approximate the operator I(·, x) via “finite dimensional approximations”, this referring
to maps In : Cβ

b → C0
b , which factorize through a finite dimensional space (see (5.3)).

We introduce a modification of the projection operator π0
n defined in (4.2). First, we define

Prn : C(Gn) → C∗(Gn), Prn(u)(x) := u(x)χ[−2n,2n]d(x).

That is, given u ∈ C(Gn), we define Prn(u) as the function obtained by restricting u to Gn ∩ [−2n, 2n]d and
then extending it to the rest of Gn by zero. Then, we define the modified Whitney extension,

Êβ
n := Eβ

n ◦ Prn,

and the modified projection operator
π̂β

n := Êβ
n ◦ Tn.

These are, respectively, bounded linear maps from C(Gn) to Cβ
b (Rd) and from C0

b (Rd) to Cβ
b (Rd). Now we

are ready to introduce the finite dimensional approximations to the operator I, define

In = π̂0
n ◦ I ◦ π̂β

n, In : Cβ
b (Rd) → C0

b (Rd). (5.1)

That is, to compute In(u, x), we first compute the modified projection π̂β
nu, and compute I(π̂β

nu), to which we
later apply the modified projection π̂0

n. In particular, In only depends on the values of u on Gn ∩ [−2n, 2n]d.
Associated to this, we introduce a map, in, defined as follows

in : C∗(Gn) → C∗(Gn), in = Prn ◦ Tn ◦ I ◦ Eβ
n . (5.2)

From the definition of In, we have In = Eβ
n ◦Prn ◦Tn ◦I ◦Eβ

n ◦Prn ◦Tn, thus we see In and in are themselves
related by

In = E0
n ◦ in ◦ Prn ◦ Tn. (5.3)

The situation for both In and in is represented in the following two diagrams,

Cβ
b (Rd) C0

b (Rd)

Cβ
b (Rd) C0

b (Rd)

In

π̂
β
n

I

π̂0
n

C∗(Gn) C∗(Gn)

Cβ
b (Rd) C0

b (Rd)

in

E
β
n

I

Prn◦Tn

Now, the space C∗(Gn) is finite dimensional (Remark 4.2), and the map in : C∗(Gn) → C∗(Gn) is Lipschitz
continuous. Therefore, tools available for Lipschitz functions in the finite dimensional setting can be applied
to in and then related to In via (5.3).

We recall the generalized derivative of in in the sense of Clarke [18, Section 2.6].

Definition 5.1. Let V be a Banach space, and T : V → V a Lipschitz continuous function. We define the
set of generalized derivatives of T , by

DT := c.h.{L : V → V | L = lim
k
Lk where Lk = DT (xk), T is differentiable at xk ∀ k}.

By Rademacher’s theorem, the set DT is not empty when V is finite dimensional. Applying this to
in : C∗(Gn) → C∗(Gn), we have, first, that Din is non-empty, and secondly that DIn is non-empty as
well, this is proved in Lemma 5.3, where we describe the relationship between Din and DIn. The following
Lemma is the mean value theorem for nonsmooth Lipschitz functions between finite dimensional spaces (note
the similarity with Theorem 2.5).
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Lemma 5.2. Assume that I : Cβ
b (Rd) → C0

b (Rd) is Lipschitz. For any u, v ∈ C∗(Gn), there is a L ∈ Din
such that

in(u, x) − in(v, x) = L(u− v, x).

Proof. We refer the reader to [18, Proposition 2.6.5] for a proof of the lemma. □

The second lemma is basically the chain rule.

Lemma 5.3. Assume that I : Cβ
b (Rd) → C0

b (Rd) is Lipschitz. The set DIn is non-empty, and for any
L ∈ DIn there is a L̃ ∈ Din such that

L = E0
n ◦ L̃ ◦ Tn,

conversely, any L defined in this way for some L̃ ∈ Din belongs to DIn.

Proof. Note that In is differentiable at a point u if and only if in is differentiable at ũ = Tnu, a fact which
follows applying the chain rule to the identities (5.2) and (5.3). Furthermore, at such u’s we have

DIn(u) = E∗
n ◦Din(ũ) ◦ Tn.

If uk is a sequence along which In is differentiable, and Lk := DIn(uk) converges to some L, then the
sequence L̃k := Din(ũk) has a limit L̃, and L = E∗

n ◦ L̃ ◦ Tn, taking the convex hull and by the linearity of
E∗

n and Tn, the lemma follows. □

The following remark will not be of any relevance until the proof of Theorem 1.11 at the end of this
section, but we include it here to illustrate how Lemmas 5.2 and 5.3 immediately yield a min–max formula
for In(u, x) (for x ∈ Gn).

Remark 5.4. Fix n and let x ∈ Gn. Then for any u ∈ Cβ
b (Rd) we have

In(u, x) ≤ max
L∈DIn

{In(v, x) + L(u− v, x)}, ∀ x ∈ Gn, u, v ∈ Cβ
b (Rd). (5.4)

Indeed, according to Lemma 5.2 given u and v says there is some L̃ ∈ Din such that

in(u) − in(v) = L̃(u− v).

In this case, we have E0
n(in(u)) − E0

n(in(v)) = E0
n(L̃(u − v)), and thus setting L := E0

n ◦ L̃ ◦ Tn ∈ DIn, we
have

In(u) = In(v) + L(u− v),

and (5.4) immediately follows.

Next we make an elementary observation regarding the nature of the operators L ∈ DIn. This observation
is merely a consequence of the factorization of In through the space C(Gn).

Remark 5.5. For each L ∈ DIn there is a function K = KL, K : Gn ×Gn → R such that

Lu(x) =
∑

y∈Gn

K(x, y)u(x+ y), ∀ u ∈ Cβ
b (Rd). (5.5)

Indeed, simply let us use the basis functions {ey}y∈Gn ⊂ C(Gn) given by

ey(x) =
{

1 if x = y,
0 if x ̸= y.
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Observe that for any u ∈ Cβ
b (Rd) the function Tnu has finite support, and in particular Tnu =

∑
y∈Gn

u(y)ey

as the sum on the right has at most a finite number of non-zero terms. Thanks to Lemma 5.3, there is some
L̃ ∈ Din such that L = E0

n ◦ L̃ ◦ Tn and therefore,

Lu(x) =
∑

y∈Gn

(L̃ey)(x)u(y) =
∑

y∈Gn−x

(L̃ex+y)(x)u(x+ y), ∀ x ∈ Gn.

Then, defining KL(x, y) = (L̃ex+y)(x) for x, y ∈ Gn the identity (5.5) follows.

For the rest of this section we analyze the operators In and the sets DIn and obtain in the limit a min–
max formula for In. We shall focus on operators satisfying Assumption 1.4. As we see below this property
is inherited – to some extent – by the operators In, and by any operator L ∈ DIn, this fact is covered
in the next two propositions. In the subsections that follow, we will use the spatial regularity afforded by
Assumption 1.4 to show that the operators in the family DIn have coefficients enjoying some regularity,
which in the limit yields regular coefficients.

Proposition 5.6. Let I be Lipschitz and satisfy Assumption 1.4. Let x1, x2 ∈ Gn and h = x1 − x2, and
r ≥ 24−n. Then, for any u, v ∈ Cβ

b (Rd) we have

|In(v + τ−hu, x1) − In(v, x1) − (In(v + u, x2) − In(v, x2)) |

≤ ω(|h|)C(2r)
(

∥u∥Cβ(B4r(x2)) + ∥u∥L∞(CBr(x2))

)
.

where ω(·) is the modulus of continuity and C(·) the function given by Assumption 1.4.

Proof. Observe that

In(v + τ−hu, x1) − In(v, x1) = I(πβ
nv + πβ

n(τ−hu), x1) − In(πβ
n, x1),

and recall that Proposition 4.14 says that πβ
n(τ−hu) = τ−hπ

β
n(u) when Gn + h = Gn.

Therefore, applying the bound in Assumption 1.4 with 3
2r,

|In(v + τ−hu, x1) − In(v, x1) − (In(v + u, x2) − In(v, x2)) |
= |I(πβ

nv + τ−h(πβ
nu), x1) − In(πβ

n, x1) −
(
I(πβ

nv + πβ
nu, x2) − I(πβ

nv, x2)
)

|

≤ ω(|x1 − x2|)C(3r/2)
(

∥πβ
nu∥Cβ(B3r(x)) + ∥πβ

nu∥L∞(CB3r/2(x))

)
.

Now, provided r ≥ 24−n, we have

∥πβ
nu∥Cβ(B3r(x)) ≤ C∥u∥Cβ(B4r(x)),

∥πβ
nu∥L∞(CB3r/2(x)) ≤ C∥u∥L∞(CBr(x)),

the proposition follows. □

Proposition 5.7. Let I be Lipschitz and satisfy Assumption 1.4. Given L ∈ DIn, x1, x2 ∈ Gn, r ≥ 24−n

and u ∈ Cβ
b (Rd), we have the inequality

|L(τ−hu, x1) − L(u, x2)| ≤ ω(|h|)C(2r)
(

∥u∥Cβ(B4r(x2)) + ∥u∥L∞(CBr(x2))

)
. (5.6)

Here, h = x1 − x2 and ω(·) and C(·) are given by Assumption 1.4.
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Proof. Consider any v ∈ Cβ
b (Rd) such that In is differentiable at v with derivative L. Then,

L(τ−hu, x1) = lim
s→0

1
s

(In(v + sτ−hu, x1) − In(v, x1)) ,

L(u, x2) = lim
s→0

1
s

(In(v + su, x2) − In(v, x2)) .

By Proposition 5.6, we have

|L(τ−hu, x1) − L(u, x2)|

= lim sup
s→0

1
s

|In(v + sτ−hu, x1) − In(v, x1) − (In(v + su, x2) − In(v, x2))| ,

≤ ω(|h|)C(2r) lim sup
s→0

1
s

(
∥su∥Cβ(B2r(x)) + ∥su∥L∞(CBr(x))

)
,

= ω(|h|)C(2r)
(

∥u∥Cβ(B2r(x)) + ∥u∥L∞(CBr(x))

)
.

This proves the desired inequality for those L ∈ DIn which happen to be the derivative of In at a point of
differentiability. This property is clearly preserved under limits and convex combinations, so it follows any
L ∈ DIn has the desired property. □

The following proposition is directly related to Proposition 4.20.

Proposition 5.8. Assume that I is Lipschitz and satisfies Assumption 1.1. For f ∈ C∞
c (Rd) let w(x) =

f(x− x0)η0(|x− x0|β) with η0 as in (4.3), then

I(πβ
nu+ πβ

nw, x) − I(πβ
nu, x) ≤ C∥f∥L∞ .

If instead we have w(x) = f(x− x0)η0(|x− x0|β0) with f non-negative and some β0 > β, then

I(πβ
nu+ πβ

nw, x) − I(πβ
nu, x) ≥ −C∥f∥L∞hγ

n,

for some constant γ = γ(β0, β) ∈ (0, 1).

Proof. We apply Proposition 4.20, and we have with R̂β,n,w,x0 from the same proposition,

πβ
nw(x) ≤ ŵ(x) := C∥f∥L∞

(
η0(|x− x0|β) + R̂β,n,w,x0(x)

)
, ∀ x ∈ Rd,

with equality holding for x = x0. It follows that πβ
nu+ πβ

nw is touched from above at x0 by πβ
nu+ ŵ. Then,

since I(·, x) has the GCP,
I(πβ

nu+ πβ
nw, x) ≤ I(πβ

nu+ ŵ, x)

This means that

I(πβ
nu+ πβ

nw, x0) − I(πβ
nu, x0) ≤ I(πβ

nu+ ŵ, x0) − I(πβ
nu, x0) ≤ C∥ŵ∥Cβ .

Since ∥ŵ∥Cβ = ∥f∥L∞∥η0(| · −x0|β)+ R̂β,n,w,x0∥Cβ ≤ C∥f∥L∞ the first inequality is proved. For the second
inequality, we apply Remark 4.19 directly, and use that I has the GCP to conclude that

I(πβ
nu+ πβ

nw + R̂β0,n,w,x0 , x0) ≥ I(πβ
nu, x0).

Then, using the Lipschitz property of I we conclude that

I(πβ
nu+ πβ

nw, x0) − I(πβ
nu, x0) ≥ −C∥R̂β0,n,w,x0∥Cβ ≥ −Chγ

n∥f∥L∞ ,

where we used that |w(x)| ≤ C∥f∥L∞ min{1, |x− x0|β0} and Remark 4.19 to obtain the last inequality. □
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Proposition 5.9. Let I be Lipschitz and satisfy Assumption 1.3. Let R ≥ 1 and w ∈ Cβ
b (Rd) with w ≡ 0

in B3R(x0), then for any x ∈ ∩BR(x0) we have

|I(πβ
nu+ πβ

nw, x) − I(πβ
nu, x)| ≤ ρ(R)∥w∥L∞(Rd),

where ρ is the rate coming from Assumption 1.3.

Proof. If w ≡ 0 in B3R(x0), then πβ
n ≡ 0 in B2R(x0). In other words, πβ

nu and πβ
nu+ πβ

nw are identically
equal in B2R(x0). Therefore, Assumption 1.3 says that

|I(πβ
nu+ πβ

nw, x) − I(πβ
nu, x)| ≤ ρ(R)∥πβ

nw∥L∞(Rd), ∀x ∈ BR(x0).

By Proposition 4.20, ∥πβ
nw∥L∞(Rd) ≤ ∥w∥L∞(Rd), the proposition is proved. □

5.2. Properties of DIn

For each L ∈ DIn and x ∈ Gn we define a Borel measure µL(x, dy) (which is possibly signed) as follows

µL(x, dy) :=
∑

y∈Gn\{0}

KL(x, y)δx+y. (5.7)

where KL(x, y) is as in Remark 5.5. From its definition, it is immediate that given ϕ ∈ Cβ and x ∈ Gn then

L(ϕ, x) =
∫
Rd
ϕ(x+ y) dµL(x, dy).

Proposition 5.10. Assume that I is Lipschitz and satisfies Assumption 1.1. For each L ∈ DIn and x ∈ Gn,
and η0(t) the function in (4.3),

sup
n

sup
x∈Gn

∫
Rd
f(y)η0(|y|β) µL(x, dy) ≤ C∥f∥L∞ , ∀ f ∈ C∞

c (Rd).

Proof. Fix x0 ∈ Gn. Let us assume first that β ̸= 1. Let w(x) = f(x− x0)η0(|x− x0|β), then

L(w, x0) =
∫
Rd
ϕ(y)η0(|y|β) µL(x0, dy).

Therefore it suffices to show there is a universal constant such that

L(w, x0) ≤ C∥f∥L∞ , ∀ L ∈ DIn.

Let us prove this when L arises as the derivative of In at some v ∈ Cβ
b , namely, that

L(ϕ, x0) = lim
s→0

(In(v + sϕ, x0) − In(v, x0))/s.

In this case, we can apply Proposition 5.8 to the expression on the right and conclude that

lim
s→0

(In(v + sw, x0) − In(v, x0))/s ≤ C∥f∥L∞ ,

where we used that when β ̸= 1 the function η0(| · −x0|β) belongs to Cβ
b (Rd) and the norm ∥η0(| · −x0|β)∥Cβ

is bounded in terms of β, d, and the function η0. This the desired estimate for such L. Since this property is
clearly preserved under limits and convex combinations, it follows that the property holds for all elements
of DIn.
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The case β = 1 proceeds similarly, except one first fixes ε ∈ (0, 1) and considers the function
η0(|x− x0|β+ε) instead. After proceeding as in the previous case, we obtain the estimate∫

Rd
f(y)η0(|y|β+ε) µL(x0, dy) ≤ C∥f∥L∞ ,

for every L ∈ DIn and x0 ∈ Gn. The constant C is independent of ε ∈ (0, 1), since ∥η0(| · −x0|β)∥C1 is
independent of ε when ε > 0. Letting ε ↘ 0 for the integral on the left (and using the special form of
µL(x0, dy)) one obtains the estimate in the case β = 1. □

Proposition 5.11. Assume that I is Lipschitz and satisfies Assumption 1.1. Let f ∈ C∞
c (Rd) be a non-

negative function. There is a constant C = C(I, d, β, β0) such that given β0 > β then for each L ∈ DIn and
x ∈ Gn,

inf
n

inf
x∈Gn

∫
Rd
f(y)η0(|y|β0) µL(x, dy) ≥ −Chγ

n∥f∥L∞ .

As before, η0 is the function in (4.3), and γ = γ(β, β0).

Proof. As in the proof of the previous proposition, we note that if x0 ∈ Gn, w(x) := f(x−x0)η0(|x− x0|β0),
and L ∈ DIn, then

L(w, x0) =
∫
Rd
f(y)η0(|y|β) µL(x0, dy).

As in the previous Proposition, it suffices to show that L(w, x0) ≥ −C∥f∥L∞hγ
n, and from DIn’s definition,

it suffices to show this for those L′s in DIn which are the derivative of In at some u ∈ Cβ
b (Rd). In this case,

given that f ≥ 0, we may apply the second part of Proposition 5.8 to obtain

L(w, x0) = lim
s→0

I(πβ
nu+ πβ

n(sw), x0) − I(πβ
nu, x0)

s
≥ lim

s→0
−C∥sf∥L∞hγ

n

s
= −Chγ

n∥f∥L∞ ,

and the proposition is proved. □

Let us recall the function

Pϕ,η,u,x(·) = u(x) + ϕ(· − x)(∇u(x), · − x) + 1
2η(· − x)(D2u(x)(· − x), (· − x)).

In this section we introduce a variation on this function. This modification takes into account the geometry
of the grid Gn as well as the regularity exponent β, and will be used in a way analogous to the previous
section.

P
(n)
ϕ,η,u,x(·) =

⎧⎨⎩u(x) if β ∈ (0, 1),
u(x) + ϕ(· − x)((∇n)1u(x), · − x) if β ∈ [1, 2),
u(x) + ϕ(· − x)((∇n)1u(x), · − x) + 1

2η(· − x)((∇n)2u(x)(· − x), · − x) if β ∈ [2, 3).

Associated with this, we introduce functions in Gn taking (respectively) scalar, vector, and matrix values.
First, some notation. To functions η, ϕ ∈ S we associate the following family of functions

ϕi(y) = ϕ(y)yi, i = 1, . . . , d, ηij(y) = η(y)yiyj , i, j = 1, . . . , d.

Then, for L ∈ DIn and η, ϕ ∈ S we define a symmetric matrix AL,η, a vector BL,ϕ, and a scalar CL.
These are functions in Gn defined by the formulas,

(AL,η(x))ij = L(τ−xηij , x), i, j = 1, . . . , d, (5.8)
(BL,ϕ(x))i = L(τ−xϕi, x), i = 1, . . . , d, (5.9)

CL(x) = L(1, x).. (5.10)

The functions AL,η, BL,ϕ, CL, and µL give us a representation for L(u, x) for x ∈ Gn.
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Proposition 5.12. Assume that I is Lipschitz. Let L ∈ DIn, then for β ∈ [2, 3) and u ∈ Cβ
b (Rd) we may

write it as

L(u, x) = CL(x)u(x) +BL,ϕ(x) · (∇n)1u(x) + tr(AL,η(x)(∇n)2u(x))

+
∫
Rd
u(x+ y) − P

(n)
ϕ,η,u,x(x+ y) µL(x, dy).

For β ∈ [1, 2)

L(u, x) = CL(x)u(x) +BL,ϕ(x) · (∇n)1u(x) +
∫
Rd
u(x+ y) − P

(n)
ϕ,η,u,x(x+ y) µL(x, dy),

and for β ∈ [0, 1)
L(u, x) = CL(x)u(x) +

∫
Rd
u(x+ y) − u(x) µL(x, dy).

Proof. We do the case β ≥ 2 explicitly, as the others are identical. Let us compute L(u, x) by adding and
subtracting L(P (n)

ϕ,η,u,x, x),
L(u, x) = L(u− P

(n)
ϕ,η,u,x, x) + L(P (n)

ϕ,η,u,x, x).

From Remark 5.5, (5.7), we have that

L(u− P
(n)
ϕ,η,u,x, x) =

∫
Rd
u(x+ y) − P

(n)
ϕ,η,u,x(x+ y) µL(x, dy)

As for the other term, we observe that

L(P (n)
ϕ,η,u,x, x) = u(x)L(1, x) +

d∑
i=1

(∇1u)n
i (x)L(τ−xϕi, x) + 1

2

d∑
i,j=1

(∇n)2
iju(x)L(τ−xηij , x).

Rewriting the terms on the right and gathering the terms, we conclude that

L(P (n)
ϕ,η,u,x, x) = CL(x)u(x) + (BL,ϕ(x), (∇n)1u(x)) + tr(AL,η(x)(∇n)2u(x)).

The remaining cases of β follow from the corresponding definition of P (n)
ϕ,η,u in those cases. □

The next two propositions say that the terms appearing Proposition 5.12 satisfy a uniform continuity in
Gn. The first refers to the measure µL.

Proposition 5.13. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Let L ∈ DIn,

x1, x2 ∈ Gn, and r ≥ 24−n. There is a constant C(r) such that for any ζ ∈ Cc(Rd) such that ζ ≡ 0 in Br,⏐⏐⏐⏐∫
CBr

ζ(y) µL(x1, dy) −
∫

CBr

ζ(y) µL(x2, dy)
⏐⏐⏐⏐ ≤ C(r)∥ζ∥L∞ω(|x1 − x2|),

where ω is the modulus from Assumption 1.4. In particular,

∥µL(x1, dy) − µL(x2, dy)∥TV(CBr) ≤ C(r)ω(|x1 − x2|).

On the other hand, if ζ ∈ C0(Rd) is such that ζ ≡ 0 in B3R(0) for some R > 1, then for any x0 ∈ Gn we
have ∫

Rd
ζ(y) µL(x0, dy) ≤ ρ(R)∥ζ∥L∞(Rd),

where ρ(·) is the function from Assumption 1.3.
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Proof. From the fact that τ−x1ζ and τ−x2ζ vanish in, respectively, Br(x1) and Br(x2), we have

L(τ−x1ζ, x1) − L(τ−x2ζ, x2) =
∫
Rd
ζ(y) dµ(x1, dy) −

∫
Rd
ζ(y) dµ(x2, dy)

=
∫

CBr

ζ(y) dµ(x1, dy) −
∫

CBr

ζ(y) dµ(x2, dy).

Since ζ ≡ 0 in Br, Proposition 5.7 says that, as long as r ≥ 24−n⏐⏐⏐⏐∫
CBr

ζ(y) dµ(x1, dy) −
∫

CBr

ζ(y) dµ(x2, dy)
⏐⏐⏐⏐ ≤ ω(|x1 − x2|)C(r)∥ζ∥L∞(CBr).

This proves the first estimate, for the second one, fix ζ and x0 ∈ Gn, and define w(x) = τ−x0ζ, then

L(w, x0) =
∫
Rd
ζ(y) µL(x0, dy).

Therefore, as before, it suffices for us to bound L(w, x0) for every L ∈ DIn, and from the definition of DIn

it suffices to prove the bound for those L such that L = DIn(v) at some v. In this case, Proposition 5.9 says
that

L(w, x0) = lim
s→0

1
s

(In(v + sw, x0) − In(v, x0)) ≤ ρ(R)∥w∥L∞(Rd) = ρ(R)∥ζ∥L∞(Rd) □

The following notation will be useful in what follows,

α(r, η) := C(2r)
(

max
1≤i,j≤d

∥ηij∥Cβ(B4r) + max
1≤i,j≤d

∥ηij∥L∞(CBr)

)
,

β(r, ϕ) := C(2r)
(

max
1≤i≤d

∥ϕi∥Cβ(B4r) + max
1≤i≤d

∥ϕi∥L∞(CBr)

)
,

where C(r) is as in Assumption 1.4 (see also Proposition 5.6).

Proposition 5.14. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Let L ∈ DIn,

r ≥ 24−n, and x1, x2 ∈ Gn, then

|AL,η(x1) −AL,η(x2)| ≤ α(r, η)ω(|x1 − x2|),
|BL,ϕ(x1) −BL,ϕ(x2)| ≤ β(r, ϕ)ω(|x1 − x2|),

|CL(x1) − CL(x2)| ≤ C(r)ω(|x1 − x2|).

Proof. Fix x1, x2 ∈ Gn and let h = x2 − x1. Applying Proposition 5.7 to x = x1 and h, with the functions
1, ϕi, and ηij , we see that for r ≥ 24−n

|L(τ−x2ηij , x2) − L(τ−x1ηij , x1)| ≤ α(η, r)ω(|x1 − x2|),
|L(τ−x2ϕi, x2) − L(τ−x1ϕ, x1)| ≤ β(ϕ, r)ω(|x1 − x2|),

|L(1, x2) − L(1, x1)| ≤ Cω(|x1 − x2|).

These inequalities respectively amount to the stated estimate for AL,η, BL,ϕ, and CL. □

5.3. Properties of DI

Now, we define the set DI , which plays the role the Clarke differential played for In (we recall that c.h.
stands for “convex hull”).

DI := c.h.{L | ∃{Lnk
}, nk → ∞, Lnk

∈ DInk
s.t L(u, ·) = lim

k
Lnk

(u, ·) ∀ u}. (5.11)
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Remark 5.15. We would like to note a point about notation and definitions, namely why above we have
DI with I as a subscript. This is to avoid confusion (or perhaps, to promote it) by distinguishing it from
the generalized derivative in the sense of Clarke from Definition 5.1. The objects are closely related, and in
fact one would hope that DI = DI, but we are not concerned with whether this is actually the case as the
above definition works for our purposes.

The following is an important Lemma that says – among other things – that DI is non-empty.

Lemma 5.16. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Given a sequence

nk → ∞ and operators Lnk
with Lnk

∈ DInk
for every k, and ϕ, η ∈ S we have the following

(1) There is a subsequence n̄k and functions A(x), B(x), and C(x) defined on Rd and taking values
respectively in S(d), Rd, and R, such that if x ∈ Gn for some n then we have the convergence

ALn̄k
,η(x) → A(x), BLn̄k

,ϕ(x) → B(x), CLn̄k
(x) → C(x).

(2) There is a function µ(x) in Rd, taking values on the space of Lévy measures in Rd, such that for every
r > 0, and every x as before we have the convergence

lim
k→∞

∥µLn̄k
(x) − µ(x)∥TV(CBr) = 0.

(3) The functions A,B,C, all have a modulus of continuity Cω(2(·)), while for each r > 0 we have the
estimate,

∥µ(x1) − µ(x2)∥TV(CBr) ≤ C(r)ω(2|x1 − x2|). (5.12)

(4) If we define L by

L(u, x) := tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x)

+
∫
Rd
u(x+ y) − Pϕ,η,u,x(x+ y) µ(x, dy)

Then, L ∈ DI .
(5) Moreover, if β < 2, then we have A(x) ≡ 0. Furthermore, if β < 1 then B(x) ≡ 0 and L takes the form

L(u, x) = C(x)u(x) +
∫
Rd
u(x+ y) − u(x) µ(x, dy).

Proof. Let us fix η and ϕ. First of all, we invoke Proposition 5.12 to obtain the collection of ALnk
,η, BLnk

,ϕ,
CLnk

, and µLnk
. Furthermore, already as a result of Proposition 5.12, we have item (5) of the lemma.

Step 1. (Extension) We have a sequence of functions defined on varying, monotone increasing sets Gn.
One way to show they converge (along a subsequence) to a function in Rd is by extending them to all of Rd

and check whether the resulting sequences are pre-compact.
With this idea in mind, for each n ∈ N we apply the Whitney extension to ALn,η, BLn,η, CLn,η,

ÂLn,η(x) := E0
n(ALn,η)(x), B̂Ln,ϕ(x) := E0

n(BLn,ϕ)(x), ĈLn(x) := E0
n(CLn)(x).

We repeat the same for µLn , resulting in a map µ̂Ln from Rd to the space of Lévy measures, given by the
formula

µ̂Ln(x, dy) =
∞∑

k=1
ϕn,k(x)µ(xk, dy),

where {ϕk}k is the partition of unity from Proposition 4.6. The functions ÂLn,η, B̂Ln,ϕ, and ĈLn(x) all have
modulus of continuity Cω(2(·)), thanks to Proposition 5.14 and the properties of the Whitney extension
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operator, see [54, Chapter VI, Theorem 3]. The same proof from reference [54] can be applied with minor
modifications to show that for every r > 0 we have

∥µ̂Ln(x1) − µ̂Ln(x2)∥TV(CBr) ≤ C(r)ω(2|x1 − x2|).

Furthermore, for every x, by Proposition 5.13,

|µ̂Ln(x)|(CBR) ≤ ρ(R),

where ρ(R) → 0 as R → ∞. This shows that for each r > 0, the functions {µ̂Ln |CBr }n are an equicontinuous
family of functions taking values inside the space of measures ν which are supported in CBr and such that
ν(CBR) ≤ ρ(R) for all R ≥ r. This space, equipped with the total variation distance, is a compact metric
space.

Step 2. (Cantor diagonalization) We now use a standard Cantor diagonalization argument to obtain
locally uniform convergence along a subsequence. We construct a family nested sequences ñm

k in the following
recursive manner. First, ñ1

k is a subsequence of nk along which the functions converge uniformly in B1 to
functions A1(x), B1(x), and C1(x)) defined in B1. Next, suppose that for m ∈ N we have build a nested
family of sequences ñ1

k, . . . , ñ
m
k such that the functions ALñm

k
,η, . . ., etc. converge uniformly in Bm(0) to

functions Am(x) . . ., etc. In this case, we choose ñm+1
k to be a subsequence of ñm

k along which AL
ñm+1

k

,η, . . .

converge uniformly in Bm+1 to functions Am+1(x) . . . and so on.
Having constructed these ñm

k , we define the sequence ñk as ñk := nk
k. The resulting sequences converge

locally uniformly, respectively, to A(x), B(x), and C(x).
Step 3. (Cantor diagonalization continued)
As noted at the end of Step 1, for every r > 0, the sequence {µ̂Lñk

}k is an equicontinuous family of
functions taking values in a compact metric space. Therefore, we can apply the Arzela–Ascoli type theorem
found in [24, p. 202] to obtain a subsequence n̄1

k of ñk and a measure µ1 such that

lim
k→∞

sup
x∈B1

∥µ̂L
n̄1

k

(x) − µ1(x)∥TV(CB1/2) = 0.

Now, suppose we have repeated this m times: we have n̄m
k (a subsequence of n̄m−1

k ), as well as a measure
µm such that

lim
k→∞

sup
x∈Bm

∥µ̂Ln̄m
k

(x) − µm(x)∥TV(CB1/2m ) = 0.

Then, using again the compactness theorem in [24, p. 202] we pick a subsequence n̄m+1
k of n̄m

k and a measure
µm+1 such that

lim
k→∞

sup
x∈Bm+1

∥µ̂Ln̄m
k

(x) − µm+1(x)∥TV(CB1/2m+1 ) = 0.

Observe that the measures {µm} are such that µm+1
|CB1/2m

(x) = µm(x) for all x ∈ Bm, which uniquely defines
a direct limit measure µ(x) for each x ∈ Rd \ {0}. Letting n̄k := n̄k

k we see that for every R > 0 and r > 0
we have

lim
k→∞

sup
x∈BR

∥µ̂L
n̂k

k

(x) − µ(x)∥TV(CBr) = 0.

Since n̄k is a subsequence of ñk, we still have convergence of ALn̄k
,η, . . . to A(x), . . .. Moreover, the continuity

estimates in the previous step all pass to the limit to give respective estimates for A(x), B(x), C(x), and µ(x)
in the respective metrics.

Last but not least, we note that while {µLn̄k
}k are a sequence of signed measures, their limit µ will be a

measure, which follows at once from Proposition 5.11.
Step 4. (Convergence)
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First, note that for fixed u, we have that as n → ∞,

u(x+ ·) − P
(n)
ϕ,η,u,x(x+ ·) → u(x+ ·) − Pϕ,η,u,x(x+ ·) in L∞(Rd),

which in particular guarantees that, for every fixed r > 0,

lim
k→∞

∫
CBr

u(x+ y) − P
(nk)
ϕ,η,u,x(x+ y) µLnk

(x, dy) =
∫

CBr

u(x+ y) − Pϕ,η,u,x(x+ y) µ(x, dy).

Then, by the bound in Proposition 5.10, we conclude that

lim
k→∞

∫
Rd
u(x+ y) − P

(nk)
ϕ,η,u,x(x+ y) µLnk

(x, dy) =
∫
Rd
u(x+ y) − Pϕ,η,u,x(x+ y) µ(x, dy).

Therefore, and taking into account the convergence of ÂLñk
,η, B̂Lñk

,ϕ, and ĈLñk
, and with L(u, x) defined

as in the statement of the Lemma, x ∈ Gn, and u ∈ Cβ
b (Rd), we have

lim
k→∞

Lñk
(x) = lim

k→∞

{
tr(ÂLñk

,ηD
2u(x)) + B̂Lñk

,ϕ · ∇u(x) + ĈLñk
(x)u(x)

}
+ lim

k→∞

∫
Rd
u(x+ y) − P

(ñk)
ϕ,η,u,x(x+ y) µ̂Lnk

(x, dy)

= tr(AD2u(x)) +B · ∇u(x) + C(x)u(x)

+
∫
Rd
u(x+ y) − Pϕ,η,u,x(x+ y) µ̂(x, dy),

and we conclude that L ∈ DI . □

It is to be expected that every L ∈ DI satisfies the GCP, and thus, it has to be an operator of Lévy
type. This is proved in the lemma below, and further, we show that the coefficients in the operator inherit
a modulus of continuity from Assumption 1.4.

Lemma 5.17. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Given L ∈ DI , and

any ϕ, η ∈ S, the operator L can be represented as

L(u, x) = CL(x)u(x) +BL,ϕ(x) · ∇u(x) + tr(AL,η(x)D2u(x))

+
∫
Rd
u(x+ y) − Pϕ,η,u,x(x+ y) µ(x, dy).

Here, µL(x, dy) is a Lévy measure satisfying the continuity estimate (5.12), and

(AL,η)ij(x) = L(τ−xηij , x),
(BL,ϕ)i(x) = L(τ−xϕi, x),

CL(x) = L(1, x),

all have modulus of continuity Cω(2(·)).

Proof. Fix ϕ, η ∈ S. Assume first that L is the limit of a sequence Lnk
with Lnk

∈ DInk
. Then, by

Lemma 5.16 there is a subsequence ñk as well as (matrix, vector, scalar, measure)-valued functions A,B,C,
and µ, all such that

CLñk
(x) → C(x), BLñk

,ϕk
(x) → B(x), ALñk

,ηk
(x) → A(x), µLñk

(x, dy) → µ(x, dy).

and, as a result, we have

L(u, x) = tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x)

+
∫
Rd
u(x+ y) − Pϕ,η,u,x(y) µ(x, dy).
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The estimate in Proposition 5.10 in the limit as n → ∞ implies that∫
Rd
η0(|y|β) µ(x, dy) ≤ C,

for some constant C independent of x and L. Meanwhile, also the n → ∞ limit of the estimate in
Proposition 5.11 implies that µ(x, dy) is a non-negative measure in Rd \ {0}. The positivity of µ means
that the previous estimate is equivalent to∫

Rd
min{1, |y|β} µ(x, dy) ≤ C.

Since Lñk
(u, x) → L(u, x), for every u, we have in particular, for x ∈

⋃
Gk

(ALñk
,η)ij(x) = Lñk

(τ−xηij , x) → L(τ−xηij , x).

From where it follows that (AL,η)ij(x) = L(τ−xηij , x) (and thus for all x, by continuity), the exact same
argument yields that (BL,ϕ)i(x) = L(τ−xϕi, x), and CL(x) = L(1, x), and the lemma is proved. □

Let us now simplify things by doing away with the auxiliary functions ϕ and η. To accomplish this, we
shall make use of the auxiliary functions from Section 3.

ϕδ(x) = ψδ,1−δ, ηδ(x) = ψδ,δ(x), (5.13)

where we recall the two-parameter of functions ψr,R(x) was defined in (3.2). An important property of these
one-parameter families is the bound

sup
δ∈(0,1)

{∥ϕδ∥Cβ(B1/2) + ∥ϕδ∥L∞(Rd) + max
ij

∥ηδxixj∥Cβ(Rd)} < ∞. (5.14)

Corollary 5.18. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Then, any L ∈ DI

has the form,

L(u, x) = C(x)u(x) +B(x) · ∇u(x) + tr(A(x)D2u(x))

+
∫
Rd
u(x+ y) − u(x) − χB1(0)(y)∇u(x) · y µ(x, dy).

Moreover, A,B, and C each have modulus of continuity Cω(2(·)), and for every r > 0 and any x1, x2 ∈ Rd

we have
∥µL(x1) − µL(x)∥TV(CBr) ≤ C(r)ω(2|x1 − x2|).

If β < 2, then A ≡ 0, while if β < 1 then B ≡ 0 and the integrand with respect to µ(x, dy) in the formula
above is replaced with u(x+ y) − u(x).

Proof. Take a decreasing sequence δk such that δk → 0, and let us take the functions ϕδk
and ηδk

, as
defined in (5.13). Then for each k, L has the representation

L(u, x) = CL(x)u(x) +BL,ϕδk
(x) · ∇u(x) + tr(AL,ηδk

(x)D2u(x))

+
∫
Rd
u(x+ y) − Pϕδk

,ηδk
,u,x(x+ y) µ(x, dy),

where AL,ηδk
, BL,ϕδk

, and CL are as in Lemma 5.17. Now, L satisfies the estimate

|L(τ−x1(ηδk
)ij , x1) − L(τ−x2(ηδk

)ij , x2)| ≤ α(1, ηδk
)ω(2|x1 − x2|)



Please cite this article as: N. Guillen and R.W. Schwab, Min–Max formulas for nonlocal elliptic operators on Euclidean Space, Nonlinear Analysis
(2019), https://doi.org/10.1016/j.na.2019.02.021.

N. Guillen and R.W. Schwab / Nonlinear Analysis xxx (xxxx) xxx 41

Thanks to (5.14), it follows that α(1, ηδk
) ≤ C for all k. It follows that {AL,ηδk

}k has a uniform modulus
of continuity. The same argument yields a modulus of continuity for {BL,ϕδk

}k and for the function C(x),
all given by Cω(2|x1 − x2|), with C independent of k and ω being the modulus from Assumption 1.4. This
equicontinuity means these sequences of functions are pre-compact at least when restricted to any compact
subset of Rd, by the Arzela–Ascoli theorem. Therefore, after a Cantor diagonalization argument we see
that along some subsequence mk → ∞ these functions converge locally uniformly in Rd to functions A(x),
B(x), respectively. Of course, the functions A,B, and C all inherit the modulus of continuity Cω(2(·)). The
respective TV-norm continuity estimate for µL follows by applying Proposition 5.13 and passing to the limit
(always recalling that, DI is the convex hull of such limit points).

With the convergence established, we have

lim
k→∞

(
BL,ϕδmk

(x) · ∇u(x) + tr(AL,ηδmk
(x)D2u(x))

)
= B(x) · ∇u(x) + tr(A(x)D2u(x)),

and so, for every u we have the formula

L(u, x) = C(x)u(x) +B(x) · ∇u(x) + tr(A(x)D2u(x))

+ lim
k→∞

∫
Rd
u(x+ y) − Pϕδk

,ηδk
,u,x(x+ y) µ(x, dy),

It remains to compute the limit of the integral, observe that∫
Rd
ηδk

(y)(D2u(x)y, y) µ(x, dy) =
∫

Bδk

ηδk
(y)(D2u(x)y, y) µ(x, dy),

which means that ⏐⏐⏐⏐∫
Rd
ηδk

(y)(D2u(x)y, y) µ(x, dy)
⏐⏐⏐⏐ ≤ C|D2u(x)|

∫
Bδk

|y|2 dµ(x, dy).

Therefore,
lim
k→0

∫
Rd
ηδk

(y)(D2u(x)y, y) µ(x, dy) = 0.

On the other hand, for every y we have

lim
k→∞

(
u(x+ y) − Pϕδk

,ηδk
,u,x(y)

)
= u(x+ y) − u(x) − χB1(y)∇u(x) · y,

and the limit is monotone. Therefore, by monotone convergence we conclude that

lim
k→∞

∫
Rd
u(x+ y) − Pϕδk

,ηδk
,u,x(y) µ(x, dy) =

∫
Rd
u(x+ y) − u(x) − χB1(y)∇u(x) · y µ(x, dy).

and with this the Corollary is proved. □

5.4. Limits of In

Lemma 5.19. Assume that I : Cβ
b (Rd) → C0

b (Rd) is Lipschitz. Let K > 0 and 0 < β < β0 < 3. If
u ∈ Cβ0

b (Rd) is supported in BK , and 2n−2 ≥ K, then

∥Inu− Iu∥L∞(BK ∩Gn) ≤ C2−nγ∥u∥Cβ0 (Rd),

for a universal constant C and γ = γ(β0, β) ∈ (0, 1). Furthermore, we have

lim
n→∞

∥I(u) − In(u)∥L∞(BK ) = 0.



Please cite this article as: N. Guillen and R.W. Schwab, Min–Max formulas for nonlocal elliptic operators on Euclidean Space, Nonlinear Analysis
(2019), https://doi.org/10.1016/j.na.2019.02.021.

42 N. Guillen and R.W. Schwab / Nonlinear Analysis xxx (xxxx) xxx

Proof. Let u be compactly supported in BK , and be such that ∥u∥Cβ0 ≤ M . First, note that since
2n−2 ≥ K, then we have

π̂β
nu = πβ

nu,

thus, In(u) = π̂0
n ◦ I ◦ πβ

n(u). Keeping this in mind, using the Lipschitz property of I, we have

∥I(u) − I(π̂β
nu)∥L∞(Rd) ≤ C∥u− πβ

nu∥Cβ(Rd).

Since 2n−2 ≥ K we have that I(π̂β
nu) = π̂0

nI(π̂β
nu) = In(u) when restricted to BK ∩ Gn, which thanks to

Lemma 4.21 implies the first estimate. Next, Theorem 4.13 guarantees that

∥π̂0
nI(u) − π̂0

nI(π̂β
nu)∥L∞(K) ≤ C∥I(u) − I(π̂β

nu)∥L∞(Rd) ≤ C∥u− πβ
nu∥L∞(Rd).

Thus,

∥In(u) − I(u)∥L∞(K) ≤ ∥π̂0
nI(u) − In(u)∥L∞(K) + ∥π̂0

n(I(u)) − I(u)∥L∞(K)

≤ C∥u− πβ
nu∥Cβ(Rd) + ∥π̂0

n(I(u)) − I(u)∥L∞(K).

Applying Lemma 4.21 to the first term and Remark 4.22 to the second, we conclude that

lim
n→∞

∥Inu− Iu∥L∞(K) = 0. □

Corollary 5.20. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβ
b (Rd). Then for every

u ∈ Cβ
b (Rd) and every R > 0,

lim
n→∞

∥Inu− Iu∥L∞(BR) = 0.

Proof. Fix u ∈ Cβ
b (Rd) and R, ε > 0. For K > 0 (to be determined later), we may decompose u as

u = u0 + u1, where u0 is compactly supported in B2K+1 and u1 ≡ 0 in B2K , all such that

∥ui∥Cβ(Rd) ≤ C∥u∥Cβ(Rd), i = 1, 2.

The constant C > 1 being independent of K. Now, by Assumption 1.3 and since u ≡ u0 in B2K , we have

|I(u0) − I(u)| ≤ ρ(K)∥u− u0∥L∞(Rd) ≤ 2Cρ(K)∥u∥Cβ(Rd).

Choose K large enough so that K ≥ 2R and 2Cρ(R)∥u∥Cβ(Rd) ≤ ε/2. Then, with this K, we apply
Lemma 5.19 two times, and conclude that there is some n0 > 0 such that

|In(u0) − I(u0)| + |In(u0) − In(u)| ≤ ε/2 whenever n ≥ n0.

On the other hand, in all Rd we have the pointwise inequality,

|In(u) − I(u)| ≤ |In(u0) − I(u0)| + |In(u0) − In(u)| + |I(u0) − I(u)|,

and it follows that, for x ∈ BR and n ≥ n0, that

|In(u, x) − I(u, x)| ≤ ε,

and the corollary is proved. □
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5.5. Proofs of Theorems 1.11 and 1.14

We conclude this section with the proofs of the remaining theorems.

Proof of Theorem 1.11. Consider the set DI . The proof will boil down to showing that for any u, v ∈
Cβ0

c (Rd) and any x ∈ Rd there is some L ∈ DI such that

I(u, x) ≤ I(v, x) + L(u− v, x).

Fix u, v and x. Then, by Remark 5.4, for every n we have

In(u, x) ≤ max
Ln∈DIn

{In(v, x) + Ln(u− v, x)}.

In particular, for every n, there is some Ln ∈ DIn such that (with this same u, v and x)

In(u, x) ≤ In(v, x) + Ln(u− v, x).

Let us obtain an inequality as we let n → ∞ along some subsequence. Thanks to Corollary 5.20, for every
x ∈ Rd we have

lim
n→∞

In(u, x) = I(u, x), lim
n→∞

In(v, x) = I(v, x).

On the other hand, Lemma 5.16 says there is a subsequence nk and an operator L such that Lnk
(u− v, x)

converges to L(u− v, x), and moreover L ∈ DI , by the definition of DI . Then, we conclude that

I(u, x) ≤ I(v, x) + L(u− v, x) ≤ sup
L∈DI

{I(v, x) + L(u− v, x)}.

The above holds for any pair of functions u and v and any point x ∈ Rd. Taking the minimum over all v,
we obtain for any u and x,

I(u, x) = min
v∈C

β
b

(Rd)
max
L∈DI

{I(v, x) − L(v, x) + L(u, x)} .

Using v ∈ Cβ
b (Rd) and L ∈ DI as the set of labels, which we rename ab, and letting fab(x) correspond to

the functions I(v, x) − L(v, x), we obtain the desired min–max representation.
The L∞ bounds for the coefficients follow from the construction of Aηk

, etc... in (5.8), (5.9), (5.10). The
continuity of the coefficients and the Lévy measures follows from Lemma 5.16. □

Proof of Theorem 1.14. For the versions of Theorems 1.9 and 1.10 with β < 2 we apply the last part
of Lemma 3.9 to conclude the functionals (or translation invariant operators) appearing in the min–max all
have the corresponding simpler form. As for Theorem 1.11, we use instead the last part of Corollary 5.18 to
obtain the simpler expression for the Lévy operators in the cases where β < 2. □

6. Some examples

In this section we list some examples to which our results apply, yet the integro-differential structure given
in either (1.2) or (1.3) is not readily apparent from the definition of the operator itself. We emphasize that
most cases of the linear examples that we list were already contained in the classic work of Courrège [19], but
we include them here for the sake of illustration. In all of these examples, the operators satisfy the GCP and
the other technical requirements to apply the results presented above. We do not intend to give all details,
but rather just make a list, with some appropriate references. At the end of the section, we list how these
examples relate to Assumptions 1.1–1.4.
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6.1. The statement of the examples.

Example 6.1. The generator of a Markov process. Assume that Xt is a Markov process taking values in
Rd, and that Ex is the expectation of the process, having started from x at t = 0. The generator is defined
as the operator

L(u, x) = lim
t→0

E(u(Xt)) − E(u(X0))
t

,

over all u for which the limit exists. (See Liggett [42, Chapter 3].)

Thanks to the fact that E preserves ordering, one can immediately see that L enjoys the GCP. When Xt

is such that L : C2
b → C2

b , this example is covered by Courrège [19]; but if Xt is such that L : Cβ
b → C0

b (in a
Lipschitz fashion) for some 0 < β < 2, then by Theorem 1.14, there are fewer terms (see the list just above
Theorem 1.14 for our use of the notation Cβ

b (Rd)). In this context, the result of Courrège can be seen as a
version of the Lévy–Khintchine formula for a process whose increments need not be stationary.

Example 6.2. The Dirichlet-to-Neumann map for linear, elliptic operators on half-space. Assume that L
is an operator that admits unique bounded solutions on Rd+1

+ and that has a comparison principle. What
we mean by this is the following: we can take u ∈ C1,α

b (Rd) and associate to it the unique bounded solution,
Uu of

L(Uu, X) = 0 in Rd+1
+ , and Uu = u on Rd × 0.

A couple of reasonable examples would be

L(U,X) = tr(A(X)D2U(X)) or L(U,X) = div(A(X)∇U),

where A is uniformly elliptic and Hölder continuous. The Dirichlet-to-Neumann map is then defined as

I(u, x) := ∂nUu(x).

First of all, the assumptions on A are such that for some α′, Uu ∈ C1,α′

b

(
Rd+1

+

)
and hence the normal

derivative is well defined (see, e.g. [23, Chapters 8, 9]). It is not hard to check that this operator satisfies the
GCP, and this fact comes entirely from the property that the solution operator, by the assumed comparison
principle, preserves ordering of solutions whenever the boundary data are ordered (it has nothing to do with
linearity of the solution operator). This is, again, within the context of Courrège’s result, but we can invoke
Theorem 1.14 to remove extra terms of order higher than 1. Ellipticity and scaling show that this is always
an operator of order 1 (and will map C1,α → Cα′). We note that in this example, via linear equations with
nice coefficients, one can derive lots of information about the operator ∂nUu by directly using the Poisson
kernel that represents the solution Uu.

In the context of periodic equations, one can use the results in Sections 4 and 5 to show that the coefficients
in the resulting Lévy operators will share the same periodicity. In fact, this is very straightforward if I is
linear. If instead one looks at almost periodic coefficients, it seems reasonable to hope that the coefficients
will also be almost periodic, but we have not checked this claim. If it is the case, there could be an application
to some boundary homogenization problems with irrationally oriented half-spaces inside a periodic medium,
related to [31]. Operators related to the Dirichlet-to-Neumann mapping of this example are also of interest
in conformal geometry, see Chang–Gonzalez [13]. It is also possible to consider an elliptic equation with
weights in order to obtain some operators of order different than 1, e.g. Caffarelli–Silvestre [9].

Example 6.3. The boundary process of a reflected diffusion. (See Hsu [32], or [33, Chp. IV, Sec. 7]
and/or [45, Sec. 8].)
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In this context, one starts with a diffusion in Rd+1
+ , say Xt, so that Xt reflects off of the bottom boundary

whenever it reaches it. Under a time rescaling of Xt (because it spends zero time on the boundary), the
resulting process can be viewed at times only when it hits Rd × {0}, and induces a pure jump process
on Rd × {0}. This process is generated by an operator of the form (1.2) with A ≡ 0. It turns out that this
generator for the boundary process is exactly the Dirichlet-to-Neumann mapping from the previous example.
This process was studied in a smooth domain for Brownian motion by Hsu [32].

Example 6.4. Subordinated diffusions and Bernstein functions. (See Schilling–Song–Vondraček [46].)

The time-rescaling of the reflected diffusion in the previous example is just one choice of a rescaling, and in
general one can time-rescale diffusions on Rd (so no boundary space here) in a myriad of fashions to create
new stochastic processes from one reference Brownian motion. This is a process known as subordination,
and it can be used to create operators with generators in the class (1.2), starting with one that may
simply only contain the second order term. The generator for the subordinated process will enjoy the GCP
because the generator of the original diffusion also enjoys the GCP. This technique has played a large and
fundamental role in the study of Lévy processes, and one can see it in use in e.g., the book of Schilling–Song–
Vondraček [46], especially [46, Chapter 13]. The subordination formula is closely related to an extension into
plus one space variables, and this extension was used to create operators of fractional order that enjoy the
GCP in the work of Stinga–Torrea [55] and also provide other properties of the fractional operators.

Example 6.5. The Monge–Ampère operator, MA(u, x) = det(D2u).

When one restricts this operator to the subset of C2 of convex functions, then MA is in fact (degenerate)
elliptic and locally Lipschitz. Specifically for each δ > 0, MA is uniformly elliptic (depending upon δ),
Lipschitz, and translation invariant as a mapping,

MA : {u ∈ C2
b (Rd) : 1

δ
> D2u > δ} → C0

b (Rd).

Thus, MA, must enjoy a min–max structure. Experts have known and utilized this min–max property of
MA in the study of fully nonlinear elliptic equations for a long time, and one can show that

(MA(u, x))1/d = 1
d

inf{tr(AD2u(x)) : A ≥ 0, and det(A) = 1}.

In fact, this formula is intimately connected with various investigations into nonlocal operators that should
be an analog of MA in the fractional setting (as of yet, there is not one that is considered better than others).
Some works that address nonlocal analogs of MA are: [8,12], and [29].

Example 6.6. General nonlocal operators as treated in Caffarelli–Silvestre [10,11]. These are simply
operators that are assumed to satisfy the GCP, are defined for all functions in C1,1(Rd), map C2

b (Rd) →
C0

b (Rd), and satisfy a form of uniform ellipticity that is given by the existence of concave respectively convex
operators, M−

L and M+
L so that

for all u, v ∈ C1,1(Rd), M−
L (u− v, x) ≤ I(u, x) − I(v, x) ≤ M+

L(u− v, x). (6.1)

Here, L is a class of linear operators that is usually a particular subset of those that satisfy the Lévy type
condition (1.2).

This context for nonlocal operators was given in [10, Definition 3.1], and it played an important role in
many of the results — especially when L is chosen to contain certain classes of operators. These operators, in
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cases in which they are Lipschitz fall into the scope of our results, and furthermore, the role of the extremal
operators gives extra information about the min–max formula. In particular, as shown in [28, Section 4.6],
when ellipticity occurs with respect to M±

L , then the min–max may be restricted to only utilize linear
functionals (or linear operators) that also satisfy the extremal inequality in (6.1). This also appeared in
a homogenization result by one of the authors in which they were unable to show that the limit operator
had an explicit integro-differential formula, but rather was only integro-differential and uniformly elliptic in
the sense of [10, Definition 3.1] (see the homogenization in [47]).

Example 6.7. The Dirichlet to Neumann map for fully nonlinear elliptic equations. In Example 6.2, the
linearity of L is not necessary, and the function Uu can also be taken to solve a fully nonlinear, uniformly
elliptic equation in Rd+1

+ . These equations always possess a comparison principle (by definition), and under
most reasonable assumptions, the solution Uu will be globally C1,α′ , allowing for the normal derivative to
be defined classically (see [52] for this regularity).

This was a main topic in the recent paper by the authors and Kitagawa [26]. It turns out that the extremal
operators (as in Example 6.6) for the nonlinear D-to-N not only play a crucial role in investigating the Lévy
measures in the min–max, but they also take a refreshingly simple form. The extremal operators in this case,
M±

L of Example 6.6, are simply the Dirichlet-to-Neumann operators for the solutions of the corresponding
extremal operators for the elliptic second order equation in Rd+1

+ . These are usually called the Pucci extremal
operators (see [7]), and solutions to their equations are generally very well behaved. In [26], the properties of
the Lévy measures in the min–max are linked to the harmonic measures for linear equations with bounded
measurable coefficients (e.g. [39]), but there is still more to learn about them before they can be connected
with existing integro-differential theory.

Example 6.8. An operator that drives surface evolution in one and two phase free boundary problems
related to a type of Hele-Shaw flow. Given f ∈ C1,α(Rd), such that 0 < inf f ≤ sup f < ∞, we can define
the unique solution, Uf , of the elliptic equation,

∆Uf = 0 in {(x, xd+1) : 0 < xd+1 < f(x)},
Uf = 1 on {xd+1 = 0}, Uf = 0 on {(x, dd+1) : xd+1 = f(x)}.

This allows to define a (fully nonlinear) operator on f as

I(f, x) := ∂nUf (x, f(x)),

that is, the normal derivative of the solution on the upper boundary given by the graph of f .

For Hele-Shaw flow in the simplified setting that the free boundary is parametrized by the graph of f(·, t),
it can be shown that the free boundary evolves by a normal velocity that at each time is given by I(f, x). The
interpretation here is that fluid flows into the domain under a pressure at the bottom boundary, xd+1 = 0,
and the top edge of the fluid exists at xd+1 = f(x), with Uf representing the pressure of the fluid. This
pressure induces a force on the fluid, which is given by ∂nUf (x, f(x)) at the top boundary. This operator, and
its implications for rewriting a class of free boundary problems that are similar to Hele-Shaw were studied
by the authors and Chang Lara in [16]. In particular, the min–max formula makes it straightforward to
convert the free boundary flow into a nonlocal parabolic equation for f , and this parabolic equation is very
similar to ones that have already been studied in the nonlocal literature (e.g. [51]). When Uf is defined to
be harmonic in the domain determined by f , standard regularity theory immediately gives estimates that
show there is some α′ so that the mapping from f to I(f) is Lipschitz from C1,α(Rd) to Cα′(Rd). In [16] it
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was also shown that the same Lipschitz property can be obtained when Uf is defined as the solution of a
nonlinear uniformly elliptic second order equation instead of just the Laplacian. This operator gives a good
example of what can be said in the translation invariant case of the min–max, and its properties are studied
initially in [16]. Even in the simplest case of defining Uf to be harmonic, the resulting operator I will always
be inherently nonlinear and nonlocal.

6.2. Relationship to Assumptions 1.1 –1.4

Here we list how each of the above examples fits within the context of Assumptions 1.1–1.4.

(Example 6.1). By construction, this L is always linear. Thus, Assumption 1.1 follows from simply
saying that L is a bounded operator on Cβ , which of course requires assumptions on the process, Xt, or
more specifically the transition probability measure for Xt. Again, via linearity, Assumption 1.2 follows
whenever the process, Xt, has stationary and independent increments. Assumptions 1.3 and 1.4 will be
an extra requirement on the transition probability measure for Xt. In particular (although a bit circular),
Assumption 1.4, in view of linearity, is equivalent to the martingale problem for Xt having a solution and
the generator having uniformly continuous coefficients.

(Example 6.2). (The interested reader can see [26] for more details.) Assumption 1.1 holds for C1,α → Cα′

when A is α-Hölder continuous. Assumption 1.2 holds if A is a constant. Assumption 1.3 holds in both
of the above settings, by using a barrier argument (which is easier implemented for the non-divergence
equation). Since I is linear, Assumption 1.4 holds when A is Hölder continuous. Indeed, by linearity, checking
Assumption 1.4 is equivalent to estimating

I(τ−zu, x+ z) − I(u, x).

In the case of divergence equations, one can write down the equations satisfied for V = τ−zUu, and then
also the equation satisfied by W := Uτ−zu − V . The desired estimate is then equivalent to estimating
|∂nW (x+ z)|, i.e. a global Lipschitz estimate for W . Since W satisfies

div(A(X)∇W (X)) = −div((A(X) −A(x− z))∇V ),

we see that by global Lipschitz estimates,

|∇W | ≤ C∥(A−A(· − z))∇V ∥L∞ ≤ C |z|α ,

by the original assumption that A is Hölder continuous. (Note, the Lipschitz estimates here are a standard
modification to, e.g. [25, Lemma 3.2] to allow for a right hand side of the form div(f) with f ∈ L∞.)

(Example 6.3). In most reasonable situations in which the diffusion has regular coefficients, this is
contained in the previous example.

(Example 6.4). This, of course, depends heavily on the original Markov process and the choice of
subordinator. However, one of the most classical situations starts with a Brownian motion and then uses a
Lévy stable subordinator. In this case, the resulting operator is translation invariant, and Assumptions 1.1
and 1.2 follow more or less by construction.

(Example 6.5). This is a translation invariant operator, and as mentioned already satisfies the Lipschitz
property on the specified convex subsets of C2. So, Assumptions 1.1 and 1.2 hold.

(Example 6.6). As this is a general example, the operators only satisfy the given assumptions when
explicitly required to do so. However, the interesting part of this example arises from the fact that the
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knowledge of the extremal inequalities in (6.1) in fact gives more detailed information about the linear
operators that will appear in the min–max of Theorems 1.9–1.14. This is discussed in [28, Section 4.6].

(Example 6.7). This operator satisfies Assumption 1.1 as a mapping of C1,α → Cα′ (for some 0 < α′ < α)
under standard assumptions about F . The relevant regularity theory comes from Silvestre–Sirakov [52].
It can also be checked by using the same type of barrier argument that works for Example 6.2 will show
Assumption 1.3 is also satisfied. Due to the nonlinear nature of the D-to-N in this setting, it is not obvious
how to show that Assumption 1.4 is satisfied — we do not know if it is satisfied or not. Thus, the best one
can say about this operator when it is not translation invariant is the outcome of Theorem 1.9. We simply
note to the interested reader that because of the lack of exact cancellation from the fact that the mapping
is not linear, one probably needs more detailed information about F . Indeed, using the extremal operators
would not help because it would produce

I(v + τ−zu, x+ z) − I(v, x+ z) − (I(v + u, x) − I(v, x)) ≤ M+(τ−zu, x+ z) −M−(u, x)
= M+(u, x) −M−(u, x).

Here we use M± as the extremal operators for I, and also that these are translation invariant. This estimate
completely neglects the influence of the shift, τz, and so it would not be useful (furthermore, one expects
that M+(u, x) > M−(u, x)).

(Example 6.8). As it is stated above, this operator, I, is actually translation invariant, and so it is
straightforward to check that Assumptions 1.1 and 1.2 hold. In the case that the equation for U (i.e. ∆U = 0)
is replaced by either a fully nonlinear operator and/or operator that is not translation invariant, it is harder
to check all of the applicable assumptions. Again, for fully nonlinear equations that define U , in [16] I was
checked to be Lipschitz as a map of C1,α → Cα′ (which took a reasonably non-trivial amount of work).

Appendix. Additional proofs and computations

Proof of Proposition 4.10. Fix u ∈ Cβ
b (Rd), and let x ∈ Gn, then by the regularity of u,

|u(x± hnek) − (u(x) ± hn∇u(x0) · ek)| ≤ C∥u∥Cβhmin{β−1,1}
n .

Therefore,
|u(x+ hnek) − u(x+ hnek) − 2hn∇u(x0) · ek| ≤ C∥u∥Cβhmin{β−1,1}

n

For the second estimate, we shall make use of

|u(x+ hnek) − (u(x) + hn∇u(x0) · e+ h2
n

1
2 (D2u(x)e, e))| ≤ C∥u∥Cβhmin{β−2,1}

n .

Therefore,

u(x+ hnek + hneℓ) − u(x+ hnek) − u(x+ hneℓ) + u(x)
“ = ” u(x) + hn∇u(x0) · (ek + eℓ) + h2

n
1
2 (D2u(x)(ek + eℓ, ek + eℓ))

− (u(x) + hn∇u(x0) · ek + h2
n

1
2 (D2u(x)ek, ek))

− (u(x) + hn∇u(x0) · eℓ + h2
n

1
2 (D2u(x)eℓ, eℓ)) + u(x)

= h2
n

1
2
(
(D2u(x)(ek + eℓ, ek + eℓ) − (D2u(x)ek, ek) − (D2u(x)eℓ, eℓ))

)
= h2

n(D2u(x)ek, eℓ)

It follows that

|u(x+ hnek + hneℓ) − u(x+ hnek) − u(x+ hneℓ) + u(x) − h2
n(D2u(x)ek, eℓ)| ≤ C∥u∥Cβhmin{β−2,1}

n ,

and the proposition is proved. □
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Proof of Proposition 4.11. Fix u ∈ Cβ
b (Rd).

Step 1. Let x ∈ Gn, then

|(∇n)1u(x) − ∇u(x)| ≤ C∥u∥Cβhβ−1
n , if β ∈ [1, 2],

|(∇n)2u(x) −D2u(x)| ≤ C∥u∥Cβhβ−2
n , if β ∈ [2, 3].

Proof of Step 1. By the regularity of u,

|u(x± hnek) − (u(x) ± hn∇u(x0) · ek)| ≤ C∥u∥Cβhmin{β−1,1}
n .

Therefore,
|u(x+ hnek) − u(x+ hnek) − 2hn∇u(x0) · ek| ≤ C∥u∥Cβhmin{β−1,1}

n

Step 2. Given x ∈ Gn, we have

|(∇n)1u(x)| ≤ C∥u∥C1 , |(∇n)2u(x)| ≤ C∥u∥C2 .

Step 3.

|(∇n)1u(x̂) − (∇n)1u(ŷ)| ≤ C∥u∥Cβd(x̂, ŷ)β−1, if β ∈ [1, 2],
|(∇n)2u(x̂) − (∇n)2u(ŷ)| ≤ C∥u∥Cβd(x̂, ŷ)β−2, if β ∈ [2, 3]. □

Computation for Lemma 4.17

∇R̃(x) = 2C∥w∥Cβ0 η
′

(
|x− x0|β0

hn

)
β0|x− x0|β0−1 (x− x0)

|x− x0|

If |x− x0|β0 ≤ hn, then
∇R̃(x) = 2C∥w∥Cβ0β0|x− x0|β0−1 (x− x0)

|x− x0|

This expression is zero except when |x− x0| ≤ h
1/β0
n , so

|∇R̃(x)| ≤ 2C∥w∥Cβ0β0h
1−1/β0
n .

Furthermore, for x, x′ such that |x− x0|β0 ≤ hn, we have

|∇R̃(x) − ∇R̃(x′)| ≤ 2Cβ0∥w∥
C

β
0

⏐⏐⏐⏐|x− x0|β0−1 (x− x0)
|x− x0|

− |x′ − x0|β0−1 (x′ − x0)
|x′ − x0|

⏐⏐⏐⏐
≤ C∥w∥Cβ0h

β0−β
n |x− x′|β .

In conclusion,

∥R̃∥L∞ + ∥∇R̃∥L∞ + [∇R̃]Cβ−1 ≤ C∥w∥Cβ0 (hn + h1−1/β0
n + hβ0−β

n ) ≤ C∥w∥Cβ0h
γ
n. □
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