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Abstract—Unmanned aerial vehicles (UAVs) are becoming
increasingly pervasive in everyday life, supporting diverse use
cases such as aerial photography, delivery of goods, or disaster
reconnaissance and management. UAVs are cyber-physical sys-
tems (CPS): they integrate computation (embedded software and
control systems) with physical components (the UAVs flying in the
physical world). UAVs in particular and CPS in general require
monitoring capabilities to detect and possibly mitigate erroneous
and safety-critical behavior at runtime. Existing monitoring
approaches mostly do not adequately address UAV CPS char-
acteristics such as the high number of dynamically instantiated
components, the tight int elements, and the massive amounts of
data that need to be processed. In this paper we report results
of a case study on monitoring in UAVs. We discuss CPS-specific
monitoring challenges and present a prototype we implemented
by extending REMimps, a framework for software monitoring
so far mainly used in the domain of metallurgical plants.
Additionally, we demonstrate the applicability and scalability of
our approach by monitoring a real control and management
system for UAVs in simulations with up to 30 drones flying in
an urban area.

Index Terms—UAVs, runtime monitoring, cyber-physical sys-
tems.

1. INTRODUCTION

An unmanned aerial system or unmanned aerial vehicle
(UAV), commonly known as a drone, is an aircraft without a
human pilot aboard [10]. Due to recent and ongoing advances,
commercial UAV applications, such as aerial photography,
package delivery, or disaster management, have become in-
creasingly pervasive in everyday life. UAVs are cyber-physical
systems (CPS): they integrate computational logic — on-board
flight controllers and a ground control station (GCS) monitor-
ing and controlling the behavior of a single or multiple UAV's
— with physical processes, i.e., drones performing missions in
the physical world [13]. Furthermore, there are feedback loops
between the software, the hardware, and the physical world.
For example, the software has to react to its current context,
in order to avoid colliding with people or other obstacles.

UAVs in particular, and CPS in general exhibit safety-
critical concerns requiring a thorough safety analysis [7] or
formal verification [17, 33]. Runtime monitoring has proven
viable [15, 20] for detecting and avoiding erroneous behavior.
Diverse runtime monitoring approaches with different foci
have been proposed [22], including requirements monitoring to
check if systems behave according to their requirements [28],

CDL MEVSS, Johannes Kepler University
Linz, Austria
{thomas.krismayer, rick.rabiser, paul.gruenbacher} @jku.at

runtime verification to detect and possibly react to observed
behavior [9], and performance monitoring to collect informa-
tion about the consumption of computing resources by the
monitored system [27].

In our previous work we developed REMinDs, a require-
ments monitoring framework for Systems of Systems (SoS)
and successfully applied it in the domain of automation
software for metallurgical plants [32]. Industrial automation
in a metallurgical plant requires a CPS controlling the metal-
lurgical processes, with feedback loops between the software,
hardware, and the physical world. The automation software is
also an SoS, exhibiting characteristics such as decentralized
control; support for multiple platforms; inherently volatile
and conflicting requirements; continuous evolution and de-
ployment; as well as heterogeneous, inconsistent, and chang-
ing elements [21]. REMinDs was developed to address these
characteristics and is capable of handling different types of
event-based constraints [31]. In our earlier studies we focused
on monitoring the automation software, not interacting with
the plants’ hardware such as cranes, transportation devices, or
robots.

In this paper we describe how we applied REMINDS to a
UAV control system designed for UAV use in an urban area.
Specifically, we used the Dronology research incubator [5]
as our study system. Dronology provides a full project en-
vironment for managing, monitoring, and coordinating the
flights of multiple UAVs. The system provides features to
assign missions and to simultaneously control multiple diverse
UAVs. It can interact with real hardware (the flying physical
UAVs) as well as a fully-fledged, high-fidelity Software-in-
the-Loop (SITL) simulator that enables experimentation with
virtual UAVs. Both physical and virtual UAVs are controlled
by a dedicated GCS that handles commands and messages
received from and sent to the UAV. Dronology can handle
multiple GCS simultaneously and allows virtual and physical
UAVs to interact in the same airspace.

Although UAVs and metallurgical plants are both CPS,
there are obvious differences between them. Most notably,
in the UAV context, multiple drones operate primarily in-
dependently (even though they may cooperate to fulfill a
joint mission and to avoid collisions), while in a plant the
produced material moves through metallurgical machinery.
These and other domain-specific challenges motivated our



research question as to whether REMinps could be adapted
and extended to operate in an entirely different CPS space.
Our paper makes the following contributions: (i) we analyze
UAV CPS characteristics and derive monitoring challenges
specific for UAV CPS; (ii) we extend our REMINDS monitoring
framework for use with a UAV CPS; and (iii) we evaluate the
applicability and scalability of our approach by monitoring
multiple simulated UAVs and checking constraints at runtime.

The remainder of this paper is structured as follows: in
Sections I and III we provide a brief introduction to the areas
of UAV CPS and runtime monitoring and present CPS-specific
monitoring challenges. We then describe our REMinDs frame-
work and the extensions and adaptations that were necessary
to use it for UAV CPS monitoring (Section IV). We evaluate
the extended CPS-REMimbs by applying it to a control and
management system for UAVs in Section V. We conclude
the paper with a discussion (Section VI) and a summary and
outlook on future work (Section VII).

II. CoNTEXT AND RELATED WORK

CPS exist in various domains including industrial and smart
production systems [6, 19], autonomously driving vehicles [3,
24], and Smart Grids [11, 18], to name a few. Hardware and
software components need to be monitored at runtime to detect
and react to undesired or even harmful behaviour [28]. In the
case of UAVs this includes deviations from assigned flight
routes (e.g., due to inaccurate sensor data), unsafe behavior
(e.g., violation of minimum separation distances, or entering
restricted areas), or implausible sensor data (e.g., due to
damaged or faulty hardware). Furthermore, CPS often require
features to adapt themselves to their environment at runtime.
To this end, several approaches for monitoring CPS in general,
and UAVs in particular, have been proposed ranging from
approaches using formal techniques such as temporal logic
to control theory:

In the domain of CPS, Lee et al. [14] have created a system
architecture for industry 4.0-based manufacturing systems.
Their “5C architecture” provides guidelines for developing and
deploying a CPS for manufacturing applications. This includes
condition-based monitoring and capabilities for prognostics
and health management of individual machines and sensors.
Yan et al. [26] proposed a spatio-temporal event model for
cyber-physical systems, which unlike REMinps does not sup-
port checking values and ranges of monitored data.

Doherty et al. [8] presented a task planning and execution
monitoring framework for unmanned aircraft using mission
plans. The framework relies on temporal action logic to
specify the behavior of the system and for reasoning about
actions and changes to constraints (e.g., safety constraints). In
contrast to their approach, REMinDs supports different kinds of
properties including temporal constraints on event sequences
and data checks. Engineers can define constraints in a domain-
specific language (DSL) [23]. Braberman er al. presented
MORPH, a reference architecture for self-adaptation [4]. Us-
ing the MAPE-K model for monitoring, analysis, planning
and execution, they describe three different layers for goal

management, strategy management, and strategy enactment in
the context of mission planning for UAVs. Their architecture,
similar to the REMinDs infrastructure, incorporates probes for
instrumenting the target system and a monitoring (“logging”)
infrastructure combined with a goal model. REMmbs, however,
does not target the adaptation of system behavior but focuses
on collecting events and data from different systems, checking
constraints, and visualizing the monitoring results [12]. Similar
work in the domain of self-adaptive systems, for example by
Shevtsov et al. [25], used Control Theory. They proposed
SimCA* an approach for self-adaptive systems used in the
context of unmanned underwater systems. SimCA* can handle
three different types of requirements — setpoint-, threshold-
and optimized requirements — and can deal with changes of
requirements at runtime.

Machin et al. [15] proposed a formal approach in the
domain of autonomous systems for synthesizing monitored
behavior rules. They use Computation Tree Logic to describe
monitorable properties and a model-checker to validate safety
strategies. However, none of these approaches combine the
structured collection of safety-related assumptions and con-
straints (e.g., in the form of a safety-assurance case) with
monitoring of these constraints at runtime. Barbosa et al. [2]
presented Lotus@Runtime, an approach for monitoring exe-
cution traces of self-adaptive systems via Labeled Transition
Systems. These approaches could complement our approach
with capabilities for self-adaptation, e.g., to dynamically adapt
the behavior of UAVs.

III. CHALLENGES FOR MoNITORING UAV CPS

In our recent work on requirements-based monitoring [29,
32] we have addressed challenges that arise from the spe-
cific characteristics of SoS. Some of these, such as mon-
itoring across different systems or monitoring of different
technologies [32] also hold true for UAV CPS. However,
when analyzing and experimenting with the Dronology system
we discovered additional characteristics that are crucial for
monitoring UAVs.

Cl-Tight Integration of HW and SW components: In
CPS the actual hardware, in addition to the software, is of
particular interest for monitoring. This means, for instance,
that probes [16] need to be provided for both software and
hardware components. In the case of Dronology and UAV
hardware, this includes sensor data collected from the various
on-board sensors or firmware-related properties from the UAV
flight controllers. Furthermore, since hardware and software
are tightly integrated, often constraints exist between those
two levels. For example, an internal state change in the flight
controller (e.g., from flying to landing) needs to be reflected
in the Dronology control component and will trigger certain
internal actions that can be observed and monitored.

For REMimnps, only software probes have been developed
so far as pointed out above. REMinDs probes need to be able
to send timestamped events, including their type and scope
(representing the event’s origin) and optionally any form of



event data over a network connection to a monitoring server.
This should be possible for most hardware devices.

C2-Dynamic Instantiation of Multiple Instances: CPS
with tightly integrated hardware exhibit a high degree of
dynamism compared to many software systems, as hardware
components may need to be frequently added or removed at
runtime. For instance, in UAVs sensors or devices may be
added during operation. For example, in Dronology, physical
or virtual UAVs can be activated at any time while the
system is running. This dynamism also affects the monitor-
ing infrastructure and poses additional requirements. When
multiple instances of a device exist, the same constraints
may need to be checked for each of the currently operating
devices. This might be easy for data-related constraints, for
example when checking sensor data, but bears additional
complexity when checking constraints on the sequences of
events, possibly happening concurrently in different UAVs.
Multiplicity also needs to be taken into account in the user
interface of a monitoring tool, when informing users about
violations of constraints that occurred on specific instances.
Also, while certain constraints might be applicable to all kinds
of UAVs regardless of their configuration — e.g., the number
of motors — others might only target UAVs equipped with
certain types of sensors or UAVs executing certain tasks.
Furthermore, cross-device constraints may exist that require
data to be collected from multiple components within the CPS.
For example, when checking the minimum safety distance
between UAVs operating in the airspace, and controlled by
Dronology, location data needs to be collected and analyzed
from several different UAVs, potentially operated by multiple
different ground control stations.

While REMmps originally was not intended to support
multiple dynamic component instances, its scope model [29]
does provide support for multiple instances and dealing with
cross-scope constraints. Due to its systems-of-systems fo-
cus, REMinDs also already provides support for defining and
checking constraints across multiple scopes (i.e., systems or
components).

C3-Data-Driven and Event-Driven Monitoring: A key
challenge in the CPS context is that both data and events need
to be processed. In the case of UAVs, data comprises sensor
values indicating attributes such as location, direction, and
speed of the drones. At the same time events such as the start
of a mission or reaching of a waypoint indicate important state
changes that need to be continuously monitored. Furthermore,
hybrid constraints are needed for checking both event and
data properties in a single constraint. For example, a typical
constraint for a UAV is to check that after a mission has
been started, a waypoint is reached within a certain time span
and that the drone has achieved a certain speed and height.
ReMinps addresses this challenge as hybrid constraints can be
defined in its DSL [31].

C4-Data Aggregation and Filtering: The focus on data-
driven constraints corresponds with an increasing amount of
data transmission that needs to be processed at runtime. This
calls for additional mechanisms for locally filtering events

and data to reduce bandwidth and for processing raw data
before subsequent constraint checking. Solutions include sim-
ple filters, reducing the amount of data sent to the monitoring
infrastructure by the probes, as well as more complex functions
for aggregating events and event data. To this end REMinDs
provides support for dynamically activating and deactivating
probes and constraints at runtime, thus enabling dynamic adap-
tation and control of the amount of data to be sent. It further
provides initial support for processing data by facilitating the
development of custom processors that can subscribe to certain
events and perform filtering and aggregation operations.

To the best of our knowledge no framework or runtime
monitoring infrastructure exists that fully addresses all four
challenges. While challenges C1 and C3 are to a large extent
already addressed by REMinps, the other two challenges re-
quired extensions. In the following we thus report on how we
extended and applied REMINDs to provide monitoring support
for the Dronology CPS.

IV. REMinDs FOR MoniTorRING CPS

The REMmps framework consists of four layers, each re-
sponsible for a certain part of the monitoring process, and a
fifth cross-cutting layer providing capabilities for managing
variability [32, 30]. The Probing & Instrumentation as well as
the Views layers of the framework allow the development of
arbitrary system-specific probes and monitoring tools for dif-
ferent domains and technologies, whereas the Aggregation &
Distribution and Processing & Analysis layers are independent
of the actual systems to be monitored. An EventBroker serves
as a central aggregation and distribution point between probes,
sending events and data monitored from different systems
on the one hand, and applications consuming and processing
events and data on the other hand.

The Requirements Monitoring Model (RMM) [29] provides
the foundation for the REMmbs framework. The model cap-
tures three dimensions of SoS monitoring: The Monitoring
Scopes define the areas of interest to be monitored and hierar-
chically represent the SoS architecture and, to a certain extent,
the organizational structure of the SoS. SoS Requirements
describe functionalities, properties, or behavior of the SoS
to be checked at runtime. Modelers define constraints that
formalize SoS requirements to be checked at runtime based
on events and event data. SoS Events are collected by probes
instrumenting different systems in the SoS. They conform to
event models providing a uniform representation and common
scheme of events and event data. Links are established between
the three dimensions, i.e., between requirements and scopes,
between constraints (formalized requirements) and events, and
between probes (and their events) and scopes, to analyze and
diagnose SoS behavior.

The RMM enables abstractions from different technolo-
gies and implementation languages (as common in different
systems contributing to an SoS), as well as from different
hardware and software components (cf. Challenge CI). The
generic event representation enables generation of events from
arbitrary sources, containing arbitrary data, e.g., internal states



Listing 1. Two constraints for Dronology system in the REMinps DSL.

// checks battery level provided by the UAV and its
// respective ground control station

trigger = if event 'UAVStateMessage’ occurs

from scope (’GCS.x’)

condition = data(’state’,’data/battery’) >= 15.

// checks the internal sequence of events that must
//occur when a new flight plan is activated
trigger = if event 'FlightPlanActivated’ occurs
condition = events

>’GoToCommand’ where data(’item’,’uavid’)==
trigger .data(’item’, ’uavid’),

"WaypointReached’ where data(’item’, uavid’)==
trigger .data(’item’, uavid’),

occur until event ’FlightPlanComplete’

of a software component or sensor data collected from a
hardware device. This means, that as long as a connection
can be established to the EventBroker, events and data can be
collected from any hardware or software component.

Regarding the instantiation of components at run-
time (cf. Challenge C2), REMinps already provides basic
functionality for dynamically creating scope instances. How-
ever, the simultaneous instantiation of a large number of
individual component instances was not anticipated based on
the requirements in the industrial automation systems REMINDs
has been used before. Thus, modifications in both the REMINDs
user interface and the scope model were necessary for coping
with this additional complexity. Dynamic scope instances now
are created automatically and attached to the respective parent
scope. All constraints assigned to the parent scope are handed
down to the instantiated scopes. This allows our REMINDS
constraint checker [31] to instantiate and check constraints on
individual, dynamically instantiated components. In order to
cope with the large number of scope items in the user interface,
we also added capabilities to expand and collapse scopes and
aggregate information in the parent scope.

The REMmps DSL is capable of handling diverse types of
constraints. Thus, REMmbs is particularly useful for supporting
both event and data-driven constraint checks (cf. Challenge
C3). Furthermore, the DSL supports hybrid constraints com-
bining checks regarding event sequences with data checks.
Two examples of UAV constraints using our constraint DSL
are described in Listing 1. The first one performs a simple
data check on the “StateMessage” provided by the GCS of
the UAV, whereas the second one checks a more complex (in-
ternal) event sequence for flight plan execution.

Additionally, regarding Challenge C4, REMmNDs provides
templates for processors that are instantiated for certain event
types. This allows custom functions to be added and also
provides support for creating new events (and data), which
in turn can be checked by other constraints. This mechanism
can, for example, be used to implement processors that create
custom events for checking restricted no-fly areas or for
calculating distances between UAVs controlled by Dronology
for collision avoidance.

V. Cast Stupy: THE DrRoNoLOGY UAV SYSTEM

To investigate the usefulness of the REMinDs framework in
the context of a UAV CPS, we applied it to the Dronology
system. This included the creation of a Dronology monitoring
model (i.e., scopes for hardware and software components,
constraints to be checked, and types of events); developing
probes generating the events in the Dronology system; and
implementing processors to aggregate events and data for
complex constraints. Furthermore, to evaluate scalability, we
collected performance data for the REMinps framework and the
constraint checker for three different scenarios using the SITL
simulator. More precisely, we aimed to answer the following
research questions:

RQI: Is the REMINDS approach applicable to a UAV CPS,
i.e., can the essential constraints be defined and monitored?
Based on the architecture of the Dronology system, we se-
lected four different internal components and the external GCS
and created scopes and constraints to be checked at runtime
for these elements.

RQ2: Does the REMINDS framework and the constraint
checking approach scale to the needs of UAV CPS? To assess
the scalabiliy in the context of UAV CPS, which involve a
potentially high number of hardware instances, we conducted
a series of simulations with an increasing number of UAVs,
events, and constraint instances to be checked at runtime.
Specifically, in three different simulation runs we measured the
number of events collected, the number of constraint checks,
as well as the time necessary to evaluate single constraint
instances.

A. RQI: Applicability to Dronology CPS

ReMinps was designed to instrument technologically het-
erogeneous systems using probes [32]. Collecting events and
data from Dronology and the respective UAVs was thus pretty
straightforward. We implemented a “Connector” that receives
information from the Dronology internal monitoring compo-
nent as JSON messages and transforms them into REMinps’
internal representation of events and data, the foundation for
subsequent constraint checks. We thus could collect informa-
tion from both the actual hardware (i.e., the UAVs connected
via a GCS) as well as internal states and information provided
via probes instrumenting the Dronology system itself (cf.
Challenge C1). Internally, we employed a logging approach
in Dronology for our prototype implementation. Logging
statements are directly added to the source code to relay
information to REMinps. This could be easily replaced by other
techniques, such as aspect-oriented probes we have used in the
past to instrument and monitor systems without direct access
to the source code [32].

Specifically, for monitoring the internal behavior of Dronol-
ogy we decided to instrument four vital components of the
system and represent them as scopes in our RMM (cf. Fig. 1):
UAV Flight Management handling active flights (including safe
take-off and landing), UAV Route Planning handling flight
plans (i.e., series of waypoints) and assigning them to UAVs,
UAV Vehicle Control internally managing the individual UAVs



TABLE I

CONSTRAINTS MONITORED IN THE DRONOLOGY SYSTEM.

Constr. Type Description # Constraints checked Median Eval. Time [ms]
S1 S2 S3 S1 S2 S3
C-01 data Flight-Controller Mode: The internal mode of the UAV needs 179,566 358,786 536,667 022 0.74 0.70
to be set to either “GUIDED” or “STABILIZE”.
C-02 data Speed-Limit: The UAVs ground speed must not exceed 36 179,566 358,786 536,667 0.27 0.58 0.72
km/h (10 my/s).
C-03 data Altitude-Limit: The UAVs exceed a maximum altitude of 120 179,566 358,786 536,667 026 0.58 0.72
m (400 ft).
C-04 data Battery-Level: The battery level of the UAV must not go 179,566 358,786 536,667 027 0.57 0.72
below 10%.
C-05 data GPS-Fix: The UAV must have at least a fix with 5 satellites 179,566 358,786 536,667 0.2 0.55 0.69
at any time.
C-06 internal  Separation-Distance: The minimum distance between each 1,490,954 6,416,862 13,631,540 0.11 0.66 0.69
UAV flying must be > 10 m at any time.
C-07 internal ~ Handshake-Location: The home location of the UAV sent on 10 20 30 1.35  2.02 3.67
handshake with the GCS must correspond to the location
received afterwards.
C-08 internal ~ GoTo-Waypoint: After a “Take-off” command is issued by the 10 20 30 | 13.84 1.12 1.17
system a “Goto-Waypoint” command must be issued within
5 seconds.
C-09 internal ~ GoTo-Waypoint: After a “Goto-Waypoint” command is issued 2,784 5,248 8,414 347 127 1.22
by the system a “Set-Groundspeed” command must be issued
within 5 seconds.
C-10 internal  FlightPlan Sequence: When a new flight plan is assigned to 56 110 141 7.63 0.84 0.95
a UAV, any number of “Goto-Waypoint” commands may be
executed before a “FlightPlan-Complete” event is received.

and their internal states and performing respective transitions,
and UAV Safety Monitor handling internal data such as location
in the airspace. In total we created 12 different probe points
collecting information from these four components.

We defined ten different constraints related to safe behavior
of the UAV (e.g., maximum prescribed altitude, minimum
separation distance) and internal functionality, such as correct
execution of a flight plan. A full list of constraints can be
found in Table L.

Internal constraints, for example, include proper transitions
between different states (e.g., a drone may only take-off after
safety checks have been performed), or data checks upon
activation (e.g., when a new UAV is activated at a location,
its position needs to be within a predefined area surrounded
by a geofence). The simulated or physical UAVs are managed

Dronology
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Monitor Management Planning Management §!‘¢/ E’!‘ﬁ/ X
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Fig. 1. Monitoring scopes of the requirements monitoring model for Dronol-
ogy.

by their respective GCS, which dynamically instantiates UAV
scopes when they register with the GCS. Constraints regarding
UAV data — real or simulated — (cf. C-01 — C-05 in Table I)
are associated with the GCS and are automatically instantiated
for each new UAV scope (cf. Fig. 2).

Some of the constraints used in our experiments are safety-
critical, such as the proper mode when a UAV is activated
(cf. C-01), or maintaining a minimum battery level (cf. C-
04). Others provide important information regarding the over-
all system’s behavior (e.g., C-08 or C-09), checking that
a command sent to the UAV has been received within a
certain amount of time. For such constraints we used REMiNDs’
capabilities for defining the severity for different constraints.

We also used REMmnDs capabilities to implement processors
that interface with REMiNDs and pre-process raw events and
data before checking constraints. For example, for calculating
the distance between UAVs, a “Separation Distance” processor
collected and aggregated location events sent by the UAV
instances and periodically calculated the distance between
them which in turn resulted in new “processed_distance”
events that were used for checking the respective minimum
separation distance constraint (cf. constraint C-06).

B. RQ2: Scalablity

For demonstrating the scalability of REMinDs in the context
of a UAV CPS, we conducted a series of simulations with
Dronology. We used our monitoring infrastructure and the
ardupilot SITL simulator [1], a high-fidelity simulator — which



Fig. 2. ReMips monitoring GUI showing Dronology internal scopes (left)
and dynamically instantiated UAV scopes (right).

we connected to the Dronology environment — for conducting
simulations with virtual UAVs. We performed three different
simulation runs, with an increasing number of UAVs (from
10 to 30) resulting in a growing number of events collected
and constraints checked. An overview of the three scenarios
alongside the results can be found in Table II. For each of
the scenarios we performed a 5-hour simulation run where we
randomly assigned flight routes (i.e., a series of waypoints) to
the UAVs.

The goal of our evaluation was to investigate, whether the
ReEMmbs infrastructure is capable of handling the events of
the UAVs and the different kinds of constraints. We did not
perform an extensive, long-running performance analysis of
the monitoring infrastructure or the constraint checker, as this
was part of our previous work [31, 32].

To minimize invalid data measurements due to the influence
of the Java Compiler we included a warm-up time of 5
minutes before each run. We measured the number of events
that occurred, the number of constraint checks performed,

TABLE 11
SIMULATION SCENARIOS WITH # EVENTS AND # CONSTRAINT CHECKS.

Scen. # UAVs  Scope || #Events # Const. Checks
UAV Flight Mgmt. 5,570 2,784
GCS 358,859 897,827
S1 10 UAV Safety Monitor 1,489,708 1,490,954
UAV Route Planning 1,823 56
UAV Vehicle Control 206 10
(Total) \ \ 1,856,166 2,391,641
UAV Flight Mgmt. 10,488 5,268
GCS 715,768 1,793,930
S2 20  UAV Safety Monitor 6,400,708 6,416,862
UAV Route Planning 3,609 110
UAV Vehicle Control 387 20
(Total) \ \ 7,130,949 8,216,190
UAV Flight Mgmt. 16,856 8,444
GCS 1,073,074 2,683,321
S3 30 UAV Safety Monitor 13,628,342 13,631,540
UAV Route Planning 3,609 141
UAV Vehicle Control 624 30
(Total) \ \ 14,723,450 16,323,476

the (median) evaluation time for each constraint (in ms), and
the memory consumption of the framework (in MB). The
simulation environment and the monitoring infrastructure were
set up on a standard Desktop machine with an Intel(R) Xeon
CPU with 3.40GHz and 64GB RAM running Windows 10
64-Bit.

During the three five-hour simulation runs, approximately
1.9 (S1), 7.1 (S2) and 14.7 (S3) million events and related
data were captured, and 2.4 (S1), 8.2 (S2), and 16.3 million
constraints checks were performed resulting in an average of
about 133 checks per second for S1, 457 checks per second
for S2, respectively 907 checks per second for S3. A detailed
overview of events collected for the five different scopes
(cf. Section V-A), as well as checks performed for the different
constraints can be found in Table II and Table I.

Similar to our previous work [31] we also measured the time
required for performing a constraint check (i.e., triggered by
an event received from Dronology). Our goal was to assess
whether the type of the system, or the different types of
constraints that were checked influence the evaluation time as
they rely on checking different kinds of data with different
frequencies and complexity. An overview of the different
constraints and their evaluation times can be found in Fig. 3.
The median evaluation times are low, ranging from 0.11 ms
(C-06) to 13.89 ms (C-08), which is more than sufficient to
provide instant feedback to the user, at runtime. In scenario 1,
the evaluation times for CO1-C06 are below 1ms, while for
C07-C10 they range from 1 to 14ms. For scenarios 2 and 3,
the evaluation times for all constraints are around 1ms, except
for C-07. Overall, these evaluation times are acceptably very
low. The higher evaluation times for some constraints can be
explained by the fact that multiple event data elements such
as location and waypoint information need to be processed.
Also, the memory consumption of the Java Virtual machine
remained unobtrusive with a maximum of 930 MB during the
S3 five-hour evaluation run.

VI. DiscussioN AND THREATS TO VALIDITY

We had to extend REMinps with additional capabilities
for adding processors and providing better support for dy-
namic instantiation of scopes in order to address the spe-
cific challenges of monitoring the UAV CPS. Our evaluation
demonstrates that the REMinps framework and its constraint
checking mechanism are capable of checking constraints on
large numbers of events as needed in CPS. The monitoring
model allowed us to model the Dronology CPS and to express
domain-relevant constraints for both internal components and
the external hardware components in the constraint DSL of
ReMinps (RQ1). Additionally, the constraint checker and the
framework itself were able to handle very large numbers of
events (>14 million for S3) and constraint checks (> 16 million
for S3) during the five-hour simulation runs (RQ2). We are
therefore confident that the framework implementation is a
suitable basis for (UAV) CPS applications.

As with any case study research, the results of our work
might not generalize beyond the case of UAV control and
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management that we considered. We presented an in-depth
analysis of the selected case, which we believe is of value
to the CPS community. Further, our study has confirmed
that REMinDs is extensible and flexible to address monitoring
challenges specific to CPS. We are thus confident that it can
be adapted to other similar systems.

Regarding data measurement, as the scenarios are based on
using simulated UAVs, the resulting events and data might
be different using physical UAVs and hardware. However,
by using the high-fidelity SITL-simulator, and based on our
experiences with both virtual and physical UAVs, we argue
that these resemble the actual behavior of physical UAVs to a
large extent. In terms of simulation parameters, we increased
the number of UAVs for each simulation run (from 10 for
S1, to 30 for S3) to demonstrate scalability under realistic
conditions. Another threat to validity is the duration of our
evaluation runs. While five-hour runs may seem rather short
for typically long running CPS systems, previous evalua-
tions [29, 31] of the monitoring framework confirmed that
REMmbs is capable of handling large amounts of events and
data also over longer periods of time. Also, in the context
of UAVs missions typically take less than five hours due to
limitations such as battery capacity.

VII. CONCLUSIONS

In this paper we presented a case study in which the
REMmbs requirements monitoring framework was used to
monitor a CPS infrastructure for managing and controlling
UAVs. Based on analyzing the case study system Dronology,
we derived new challenges for monitoring CPS and then
presented the extensions we developed for REMmDps to ad-
dress these challenges. Our experimental results show that
ReEMmbs, together with the extensions we implemented for
the Dronology system, can monitor the CPS at runtime based
on collecting events from different software and hardware
components and can also effectively check constraints. In our
future work we plan to add support for adapting the behavior
of UAVs based on constraint evaluation results. We will also
improve the visualization of monitoring results for different
components of the CPS.
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