Navigating the Maze: The Impact of Configurability in
Bioinformatics Software

Mikaela Cashman
Myra B. Cohen

Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE, USA
mikaela.cashman@huskers.unl.edu
myra@cse.unl.edu

ABSTRACT

The bioinformatics software domain contains thousands of appli-
cations for automating tasks such as the pairwise alignment of
DNA sequences, building and reasoning about metabolic models or
simulating growth of an organism. Its end users range from sophis-
ticated developers to those with little computational experience.
In response to their needs, developers provide many options to
customize the way their algorithms are tuned. Yet there is little or
no automated help for the user in determining the consequences
or impact of the options they choose. In this paper we describe
our experience working with configurable bioinformatics tools. We
find limited documentation and help for combining and selecting
options along with variation in both functionality and performance.
We also find previously undetected faults. We summarize our find-
ings with a set of lessons learned, and present a roadmap for creating
automated techniques to interact with bioinformatics software. We
believe these will generalize to other types of scientific software.

CCS CONCEPTS

+ Software and its engineering — Software testing and de-
bugging; - Applied computing — Computational biology;

KEYWORDS
configurability, bioinformatics, software testing

ACM Reference Format:

Mikaela Cashman, Myra B. Cohen, Priya Ranjan, and Robert W. Cotting-
ham. 2018. Navigating the Maze: The Impact of Configurability in Bioin-
formatics Software. In Proceedings of the 2018 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18), September 3—
7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3238147.3240466

1 INTRODUCTION

Bioinformatics software is becoming increasingly sophisticated and
prevalent in its day-to-day use [7]. There is a plethora of software

*Also with, Department of Plant Sciences, University of Tennessee.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ASE ’18, September 3-7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3240466

757

Priya Ranjan”
Robert W. Cottingham
Biosciences Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
pranjan@utk.edu
cottinghamrw@ornl.gov

for aligning, assembling, and analyzing DNA sequences, or for
optimizing and predicting growth in organisms using their meta-
bolic networks. Databases have moved to common data formats
and models, and high performance computing is allowing more
scalable computation. As these bioinformatics systems become
mainstream tools for the biology and bioinformatics community,
their dependability and reliability becomes critical. Scientists are
making decisions and drawing conclusions based on the software
that they use. As in all empirical sciences, the results obtained need
to be repeatable and explainable to others. Yet, recent research has
suggested that better software engineering practices are needed
in bioinformatics software [3, 14, 26, 27, 33, 43], as well as more
sophisticated software testing techniques [21, 29].

Adding to this problem is that as the number and types of tools
are increasing, they are also increasing in flexibility. For instance,
the Basic Local Alignment Search Tool (BLAST) has multiple variants
(e.g. web versus standalone, searching for proteins versus searching
for nucleotides). The customization and flexibility of these tools
indicates bioinformatics is entering a mature phase of software
development — that of other highly-configurable software. Most
tools now provide the end user with many customization options.
The command line version of Nucleotide BLAST (BLASTn) has
over 40 options that a user can modify when running a search.
These options determine how an alignment search is conducted
(e.g. what length subsequences to use in matching, or how the
results are filtered based on quality thresholds). As has been well
documented in the software engineering community, this leads to
a broad spectrum of behaviors and choices for end users, yet it also
creates some potential pitfalls.

Research in the software testing community has already exten-
sively studied the impact that configurability has on testing and
fault detection. Faults may be visible under only specific combina-
tions of configuration options, and different code paths of a program
are executed under different combinations of options [5, 30-32, 35,
36,39-41, 46] which has led to many automated configuration-aware
testing techniques.

While much of the literature on configurability from the soft-
ware testing community focuses on interaction fault detection or
performance issues [5, 18, 19, 24, 31, 35, 44, 45], configurability may
lead to more subtle issues in a scientific domain because scientific
software often uses heuristic or optimization approaches for solv-
ing problems. Some recent research has looked at variability in
programs that calculate partial differential equations [10, 12] and
for numerical solvers [42], but these are not in the bioinformatics

ASE ’18, September 3-7, 2018, Montpellier, France

domain. Recent work that studies bugs in scientific software [8]
does not address these issues of configurability, nor does other work
on testing bioinformatics software [21, 29]. Morrison-Smith et al.
examined how end users interact with bioinformatics software [33].
Users in their study were quoted as saying:

“I don’t necessarily know enough to make sure I'm picking our
settings correct.”

and

“At the end of the day, you just have faith that the program’s
working or not.”

indicating that the user community needs support in under-
standing configurability and dependability for such systems. As
researchers who have spent time working with multiple bioinfor-
matics software programs, and who have experience with config-
urable systems, we have run into many of these problems ourselves.
This has led us to ask what the impact of configurability is on
this domain of software tools and what the implications might
be on the research productivity of the broader community that
uses these on a daily basis. We also want to understand if existing
configuration-aware techniques can help improve this domain.

In this experience report we set out to answer these questions,
and to provide insights for users and developers of bioinformatics
software. While we focus on a single scientific domain, we believe
these results may be more broadly applicable. We learn that config-
urability does impact bioinformatics software. More specifically (1)
the configuration spaces are non-trivial to navigate and correctly
model; (2) the functional outcomes, and those configuration options
that control them are not always easy to identify; (3) performance
may be impacted, sometimes significantly; and (4) configuration
dependent faults exist.

The contributions of this paper are:

(1) A large case study demonstrating our experience with modi-
fying configurations in three commonly used bioinformatics
software systems across four different configuration models;

(2) Evidence that there is variability in both the functional and
performance outcomes of these systems;

(3) A setoflessonslearned and recommendations for developers
and testers of these systems.

The rest of this paper is organized as follows. In the next section
we provide some motivating examples. We follow that with a case
study and results in Sections 3 and 4. We then present some discus-
sion, lessons learned, and suggestions for improvement in Section
5. We end with conclusions and future work in Section 6.

2 MOTIVATING EXAMPLES

The bioinformatics software user community is broad, therefore de-
velopers should consider a spectrum of users. Fig. 1 shows the three
primary users that we consider in this work. At the top level are the
domain experts (or non-software experts). These users have a deep
understanding of the biological problems they are trying to solve,
but will unlikely be familiar with the configurable options and/or
know which defaults are set in the software. Often, they work from
a user interface that limits their options with respect to configura-
bility. We examine one model in our study that is geared towards
this group. As pointed out by Jin et al. [20], configurable systems
usually have multiple ways to interact with configuration options,

758

M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham

(N\

- Domain expert in subject area
- Asks specific biological questions
- Unaware of all configuration options or default values

. J@)
D

Biologist

Bio-Informatics

- Sophisticated user
- May change configuration options, but unlikely to
understand impact

e

Increasing knowledge of configurations

Researcher - /
()
e O - System software expert and developer of options
- Needs testing techniques to find faults and to
@ recommend configuration option defaults
v Developer \- J

Figure 1: Three primary users.

and the highest level (such as menus or a graphical interface) often
only provide a subset of those options.

The next type of user in this figure is the bioinformatics expert
user who has both a deep knowledge of the biological domain, and
with computation and automation. This type of user will often run
experiments using scripts and will have some knowledge of which
configuration options can be altered. However, they are unlikely
to understand the full impact of those changes, nor do we expect
them to be experts in software development or testing.

Finally, the expert developer is someone with extensive develop-
ment experience with the domain, who has also built the application.
They will be familiar with all of the configuration options and will
have experimented with each, however, they may lack techniques
and methods to test the large configuration space for correctness
or to optimize and determine the best default values of each.

During the course of this experience report we have acted in
the first two roles (both as biologist end users and as bioinformat-
ics specialists). We have also reached out to developers with our
findings and report on all of those experiences here.

We now present two motivating scenarios. These are based on

recent interactions we have had with several popular bioinformatics
software systems.
Scenario One We first describe our experience using an existing,
popular, bioinformatics tool, Basic Local Alignment Search Tool
(BLAST). Fig. 2 shows a set of configuration options for the online
Nucleotide BLAST query system (BLASTn) [1] which searches a
single (or multiple) database for the match to a single (or multiple)
sequence (via queries). The user can simply run a query or they can
open a screen that allows them to change the core search algorithm
options. We show this screen in Fig. 2. Users can change any or all
of these options. In this screen there are five pull down menus, five
check boxes, and three text boxes that take numeric inputs, for a
total of 13 configurable options. Each of the pull down menus has
a number of values (or options) that can be selected.

Suppose we limit exploration to just four options for each of the
pull down menus and text boxes. This leads to a possible space of
(2° x 48) which is over two million configurations. We can reduce
this slightly if one considers the dependency between the checkbox
species-specific repeats (boxed in red in the figure) and its associated
pull down, since that is only active when the box is checked, but this
also complicates the modeling and exploration of the configuration
space because that dependency must be satisfied.

Navigating the Maze: The Impact of Configurability in Bioinformatics Software

Choose a BLAST algorithm @

BLAST

Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)

Show results in a ney

(©)Algorithm parameters

General Parameters

w window

Restore default search parameters

Max target
sequences

100
Select the maximum number of aligned sequences to display &
Short queries Automatically adjust parameters for short input sequences &

Expectthreshold 19
Word size 2 Bo
Max matchesina
query range

Scoring Parameters
Match/Mismatch

Scores
Gap Costs Linear)

2 B©

Filters and Masking
Filter Low complexity regions &
((_ Species-specific repeats for: _Homo sapiens (Human) Be)

Mask Mask for lookup table only &

Mask lower case letters &

BLAST Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)
Figure 2: BLASTn online algorithm configuration options.
Boxed elements are discussed in the text.

In this system each of the blue circled question marks provides
user help. For instance, the Match/Mismatch Scores pull down list
shows the following text when the question mark is clicked ‘Reward
and penalty for matching and mismatching bases. more...”. If one
clicks on ‘more’they are taken to a webpage with a long description
of these configuration options. This is helpful to an expert user, but
may confuse other users, and still leaves the bioinformatics expert
with a less than desirable outcome. We also note that the command
line version of this tool lacks the same level of help.

Even if the configuration options make sense to the bioinformat-
ics expert, the actual practical impact on the returned sequences
from the query when changing this option is unknown. Biologists
often develop a lab lore of what to change and often leave the rest
of the options alone. To actually understand the full impact, a bi-
ologist would need to set up a series of interactive experiments.
Furthermore, this is just one configurable option. If we consider
combinations with other choices, the number of configurations
grows exponentially with the number of configurable options.
Scenario Two We next describe our experience with an applica-
tion that assembles a set of short DNA strings called reads into
larger continuous strings called contigs using an online web in-
terface (i.e. again from a biologist’s perspective). We attempted to
recreate data from a tutorial for an application called MEGAHIT
from the Department of Energy Systems Biological Knowledge-
base (KBase) [2, 23]. The web version is simply a wrapper for a
commonly used command line tool also called MEGAHIT [28].

We used the default values for each of the configuration options
used in the tutorial. We noticed that one configuration option (k-
max) did not make sense since it represents a read length (the
number of elements in the sequence to read) and was set to 141,
higher than the input sequence (100) used in the tutorial - typically
something a user will not do. We ran the application anyway and
got a completed assembly with 284 contigs. We then read the log
and noticed that the system reported it changed the k-max for us
to 119. But this was done silently (no notification) and was only
found by our exploration of the log. This number is also greater
than the maximum read size from the input set of reads. We then

759

ASE ’18, September 3-7, 2018, Montpellier, France

ran the tool and set the k-max to 119. This time we saw 285 contigs
and thus inconsistent results. Last we set the k-max to 99 (below
the read length) and expected to see one of the above numbers, but
instead got 289 contigs.

We contacted a developer of the web app and were told that
the problem is due to edge cases. The mismatch is due to the use
of configuration options that combined with the input data do
not make sense, and that the system autocorrects for us. However,
the software did not document this clearly to the end user. Since
the software was modifying values automatically to correct the
incorrect k-max option value, we were getting inconsistent results.
The developer confirmed that this is a bug and said that they would
fix this in a future release.

These scenarios lead us to ask what the situation is like for
the various users of bioinformatics software and what the impact
of modifying configuration options might be. We do not expect
broad expertise in software engineering from these users, therefore
we want to understand what the implications might be for those
using these systems. We also want to understand if configuration-
aware techniques can help to uncover differences in either or both
functional and performance outcomes of these tools and if there is
a cautionary tale for this community. Our answer for both is yes.

3 CASE STUDY - EXPERIMENTING WITH
CONFIGURATIONS

In this section we present our case study. We explore the following
research questions:

RQ1 Does manipulating configurations in bioinformatics software
lead to failures?

RQ2 What is the impact of manipulating configurations on program
behavior? To answer this we ask two sub questions:

a) What is the impact on program functionality?

b) What is the impact on program performance?

Our last research question focuses on the ability to use common
sampling techniques that might reduce user effort and improve
scalability when exploring configuration options.

RQ3 How effective is sampling in these configuration spaces?

3.1 Bioinformatics Programs

We select three bioinformatics programs, all of which are config-
urable, and all available for different types of end users. These
tools come from three different areas of study: genome annotation,
genome assembly, and metabolic modeling. In the metabolic mod-
eling tool we study two different versions. The first is meant for
non-expert users and run from a graphical user interface (GUI). The
second is geared towards the experienced bioinformatics user, and
run on the command line. This gives us four unique configuration
spaces. For each area, we chose a tool that (1) is widely used, (2) is
configurable, (3) has some tutorial or other documentation that pro-
vides common inputs along with expected outputs to avoid author
bias, and (4) can be run through automated scripts.

Table 1 shows the three bioinformatics program subjects along
with the lines of code (LOC) using CLOC [6]. We describe each
application below. We also show the total number of configuration
options, along with those chosen for each model broken down by
type. For example, the FBA-MFA subject has 21 Boolean and 14

ASE ’18, September 3-7, 2018, Montpellier, France

float options. Last we give the size of the full configuration space
including constraints (Section 3.2 contains details for each model).

Table 1: Case Study Subjects

FBA
BLAST | MEGAHIT GUI MFA
LOC 1,095,106 38,093 | 28,909 28,909
Config. Opts. 58 7 17 52
Configuration Options Selected for Model
Boolean 3 - 3 21
Int - 4 - -
Float 3 - 5 14
String 1 - - -
Total 7 48 8 35
Config. Space 3,000 260 | 25,000 | 1.28 x 101

1. BLAST Our first subject is Nucleotide BLAST Basic Local Align-
ment Search Tool (BLASTn), a popular bioinformatics tool developed
by the National Library of Medicine [1].! Given an unknown DNA
sequence (a query), the application attempts to align the sequence
to a database of known DNA sequences in order to learn its likely
function. Matches are returned with quality scores (percentage ID
and e-values) that indicate how confident the search is with respect
to each possible match. The queries can be run for either a single
DNA sequence or a set of DNA sequences. We use as our input
query, a file of 10,000 sequences from a yeast organism Saccha-
romyces cerevisiae, also known as Baker’s yeast [37]. This input
was used as an example in a tutorial on BLAST for bioinformatics
researchers at our institution [13].

Our other subjects are the two most commonly used analysis
tools taken from the open source GitHub repository of the U.S.
Department of Energy’s System Biology Knowledgebase (KBase) [2].
We can confirm results using their online web interface and are
able to use their tutorials to obtain sample inputs/outputs along
with descriptions of how each of the tools are used. At the time of
this study, KBase has 145 apps deployed providing a wide range
of functionality including next generation sequence analysis tools,
DNA sequence assembly, annotation, and modeling of metabolic
pathways. KBase tools have been used in over 37 publications, and
the methods implemented in the tools in thousands of publications.

2. MEGAHIT Our next subject is the DNA assembler MEGAHIT [22].

The KBase tool is a wrapper for an existing version of MEGAHIT [28].

When DNA is sequenced the result is a set of small sequences of
base-pairs called reads. In order to combine these small sequences,
assembly is used to connect them together into longer sequences
called contigs. This has been used 1,120 times inside of the KBase
narrative as of April, 2018. We use the default paired-end-library
from KBase which contains 386,106 reads all of length 100 basepairs
(bp) from the Rhodobacter bacterium. This library is used in the
KBase online tutorial [23].

3 and 4. Flux Balance Analysis The last program is a metabolic
modeling toolkit that performs a flux balance analysis (FBA). The
metabolism of an organism can be modeled as a set of concurrent

IThe BLAST software contains different variants. Table 1 shows the LOC for the full
BLAST software system. We utilize only one variant of BLAST (BLASTn) in this work.

760

M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham

chemical reactions (a reaction network). FBA optimizes reaction
fluxes (flows) through an organism’s metabolic reaction network to
predict the organism’s growth [17]. It uses linear programming as
the underlying optimization technique. We utilize the open source
standalone version (toolkit) of the FBA from the KBase GitHub
software distribution kit [16]. KBase has a web version of the FBA
application (we refer to this as the FBA-GUI model) that has been
run 7,803 times as of April, 2018. The standalone toolkit (we call
this the FBA-MFA) has a larger set of configurable options available
to the user. A subset of these options are available within the on-
line version in KBase. To understand if the web narrative provides
similar behavior with respect to configurability, we model these
independently. We fix the organism (Escherichia coli) and growth
medium (Carbon-D-Glucose) to match that of the online tutorial
which describes how to use FBA in KBase.

3.2 Creating the Models

Our first step is to develop configuration models for each appli-
cation (we provide these on the supplementary website).” We use
available documentation, such as tutorials, the application inter-
face, online documentation, and we hold discussions with domain
experts. Since we are evaluating functionality as one objective, we
try to avoid modifying configuration options that are clearly func-
tional, therefore we leave those out of our models. For example,
we do not change the growth media in FBA as that will clearly
impact how the organism grows. Other configuration options are
removed for reasons including: dependencies with default configu-
ration options, they only impact output formatting, filter/threshold,
and unique string values that could not be put into equivalence
classes. In choosing the values for the configuration options we
always include the default option and then try to evenly distribute
equivalence classes for other values when it makes sense. We rely
heavily on guidance from the documentation (or online developer
forums) to determine values.

We found that it was non-trivial to construct a configuration
model for each subject. Some configuration options are ill-defined,
there is a lack of documentation, or there are conflicting summaries
in multiple help documents. We also found that the explicit ranges
of values are often missing and we had to reverse engineer default
values. We were quickly lost in the maze of configuration options.
In order to find our way out we communicated with developers
and expert users of the tools to identify configurations of interest
for each model. We discuss some of these experiences next.
BLAST We began with the full list of 58 command line configura-
tion options from the user manual and scheduled two consultations
with an expert user (who is not one of the authors of this paper).
The user was only familiar with some of the configuration options,
therefore their input was useful, but we still ran into several chal-
lenges. We first removed any clearly functional, string, and set
configuration options giving us an initial model of 18 configura-
tion options. However, in running preliminary experiments, we ran
through a total of five iterations of the model due to errors and
inconsistencies in the documentation. At each step we had to stop
and trace the errors back to their cause. Due to space constraints

Zsupplementary dataset:
https://github.com/mikacashman/ASE18SupResources

Navigating the Maze: The Impact of Configurability in Bioinformatics Software

we do not list them all, but summarize the key learning points. In
preliminary testing we came across one error:

BLAST query/options error: Greedy extension must be
used if gap existence and extension options are zero.
Please refer to the BLAST+ user manual.

This error message is due to incompatible configuration options,
but does not name them. After searching web forums with little
success, we searched the source code and found that the no_greedy
option had constraints. The configuration option no_greedy can
not be used when gapopen and gapextend are zero. In our model we
were not changing these values because they are functional, and
their default is 0, therefore we are unable to include the no_greedy
option in our model either.

Table 2: BLAST Configuration Model

Option Name Type Values

dust String | yes, “20 64 1", no
soft_masking Boolean True, False
Icase_masking Boolean True, False
xdrop_ungap Real | 0, 0.1, 0.5, 20, 100
xdrop_gap Real | 0, 0.1, 0.5, 30, 100
xdrop_gap_final Real | 0, 0.1, 0.5, 10, 100
ungapped Boolean True, False

Table 3: MEGAHIT Configuration Model

Option Name | Integer Range Values

min-count [2,10] 2,4,6,8,10
k-min [1,127] odd only | 15, 21, 59, 99, 141
k-max [1,255] odd only | 15,21, 59, 99, 141
k-step [2,28] even only 2,6,12, 20, 28

Constraints: k-min < k-max, k-step < k-max—k-min

Table 4: FBA Configuration Models

Option Name Type Values
flux variability analysis | Boolean True, False
minimize flux Boolean True, False
simulate all single KOs | Boolean True, False
MaxC Float 0, 25, 50, 75, 100
MaxN Float 0, 25, 50, 75, 100
MaxO Float 0, 25, 50, 75, 100
MaxP Float 0, 25, 50, 75, 100
MaxS Float 0, 25, 50, 75, 100
Example of Additional MFA Options
maxDrain Float 0, 250, 500, 750, 1000
minDrain Float | 0, -250, -500, -750, -1000
deltaGSlack Float 0,5, 10, 15, 20
find min_media Boolean True, False
allRevMFA Boolean True, False
useVarDrainFlux Boolean True, False

761

ASE ’18, September 3-7, 2018, Montpellier, France

We also discovered configuration options that behave as filters
that were not obvious when studying the user manuals. Identifying
such functional options was a hard task. Even after looking though
two user manuals and consulting two users some configuration
options’ functionality were still not clear. The word_size option was
removed as it was discovered to be a filtering configuration option
and would clearly change the functional outcome of the query. We
discuss the importance of this in Section 5.

One modification to the model was triggered by a sanity check we

performed to confirm the default configuration reported in the man-
uals was in fact the default. We compared the configuration option
manually set (blastn -db [DATABASE] -query [QUERY] -out [OUT]
-word_size 11 -dust “20 64 1" -soft_masking true -xdrop_ungap 20 -
xdrop_gap 30 -xdrop_gap_final 100 -window_size 40 -off_diagonal_ra
nge 0). To our surprise, the results were not the same. We first re-
ferred back to the manual and command line help menu to ensure
the default values of the configuration options were correct (they
were). After continued inspection we noticed an implicit configura-
tion option (called task) that did not have its own declaration in the
manual or the help menu. BLASTn can be used with four different
tasks and we use the default. However, the default value listed for
a BLASTn option we do use (window_size) is for a different task,
and the task we use has no default value listed for window_size. So
we removed window_size from our model to avoid this constraint.
There are no constraints in the final model.
MEGAHIT. There are seven configuration options accessible from
the web interface. Many of these options determine a list of integer
values called the k-list. This controls the length of the sub-string
used in the database search. For example, we can set a k-min, k-max,
and k-step or explicitly set the entire list with the k-list configuration
option. Similarly the option parameter preset is a different method of
fixing the same options — we exclude both from the model because
they impact functionality. We also fix the configuration option
min-contig-length because it directly impacts our functional result.
We confirmed this model with a KBase developer. When working
with this model we ran into several issues of consistency which we
discussed in Section 2.

The MEGAHIT model has constraints between the configuration
options (such as k-min < k-max). This constraint was not listed
in the documentation, but is considered common knowledge (min
should be less than max) and was mentioned to us by the developer.
We also confirmed this constraint by running initial experiments
where we received an error message. Although it properly returned
an error, the message was not descriptive enough for an end-user
to understand. The final MEGAHIT model is in Table 3 and has 4
configuration options.

FBA For the FBA-GUI subject we first fixed all of the input files
(describing the growth conditions) and ruled out configuration
options that were of type set. Set options were removed as the
number of configuration options is on the order of 102 with no
logical method of partitioning. We also do not use an optional
input (expression data set) to keep the experiment simple. There
was one float type configuration option that was not included in
the command line version of the tool, so it was excluded from the
model as well to ensure we could compare the two. Table 4 displays
the configuration options for the FBA models. The FBA-GUI model

ASE ’18, September 3-7, 2018, Montpellier, France

consists of the first eight configuration options, three Boolean, and
five floats evenly partitioned into five values.

The FBA-MFA model contains 27 additional advanced configura-
tion options, five of which are displayed in the table. The complete
FBA-MFA model contains 35 configuration options, 21 Boolean
and 14 floats evenly partitioned into five values. There are no con-
straints in either model. We believe that the lack of constraints may
be partially due to our selection of configuration options, and leave
further exploration of this as future work.

3.3 Measures of Variability

For program functionality we choose common use cases for each
tool. For performance we measure the program execution time (in
seconds). We describe each of the functional metrics next.

In BLAST the input is a set of query sequences of unknown
function that are checked against a database of query sequences.
There are two main use cases: (1) the user inputs a set of query
sequences and then looks at the best quality hits (defined as 100%
basepair matches and an e-value of 0.0) or (2) the user inputs only
one query sequence at a time and checks for any hits against that
sequence. We explore both use cases. In the first, since there are
large numbers of hits returned, we look at the Top 5, 10, 20, and 100
highest quality hits and compare them to the Default Top 5, 10, 20,
100. We keep the number small since the analysis of the returned
hits is often a manual effort by the user. For the second use case we
count the number of hits for each individual query sequence.

MEGAHIT is used to assemble short DNA reads from sequencers
into continuous DNA sequences. The functional dependent vari-
able is the number of contigs generated. This represents how many
continuous reads of DNA the algorithm was able to assemble. The
objective of the tool is to get the smallest number of long contigs.

The result of the FBA analysis is called the Objective Value (OV)
in our tool. We use this as the functional output.

3.4 Experimental Setup

The BLAST model has a configuration space of 3,000 which is small
enough for us to enumerate and evaluate. We exhaustively run
all configurations for our experiments. We run the command line
BLASTn version 2.6.0 on a LINUX cluster with 100 jobs in parallel,
each job on 1 node with 5GB memory.

The configuration model for MEGAHIT has 260 configurations.
We exhaustively run all configurations in this space as well. The
MEGAHIT app is version used is 2.2.8 in KBase. We run these
experiments in parallel on 10 virtual machines. Each machine runs
CentOS-7-x86_64 with 80 GB disk and 2MB RAM.

The FBA subjects’ source code is extracted and run on a LINUX
cluster in order to scale the experiments and not overload the
KBase servers. Since the total configuration space for FBA-MFA
is too large to study (1.28 x 10'°) we randomly selected 125,000
of these combinations. We use FBA version 1.7.4 running 1,000
jobs in parallel, each job on 1 node with 10GB memory. In order
to test all configurations in the FBA-GUI model (25,000) we test it
directly from the MFAToolkit also running 1,000 jobs in parallel.
We also test and confirm that our functional results matched on
a sample of these when running manually in the KBase online
narrative. In early iterations of our study on FBA-MFA, some of our

762

M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham

runs were hanging (not completing overnight) and this caused the
experiments to stop. We added a timeout factor of 1,000 seconds to
prevent this problem and kill any job that goes beyond this time.
We note that we did have some runs of exactly 1,000 seconds (seen
in our data) that did complete and produce valid outputs. We do
not explore the best cutoff time further in this work, but believe
these are outliers.

3.5 Sampling

To evaluate RQ3 we applied a common configuration-aware testing
technique, combinatorial interaction testing (CIT) [4, 30, 38, 39].
CIT combines all t-way combinations of configuration options to-
gether in at least one run of the sample. Research in traditional
software testing suggests that ¢ between 2 and 6 should be suffi-
cient and that 2 or 3 finds most faults [25]. We used strength 2 to
6 in our study. We used the CASA tool [9] for our lower strength
samples, but were unable to build some of the higher strength sam-
ples so used the ACTS [47] tool for those. When using CASA we
generated 30 samples since it uses randomness and each sample is
different. With ACTS the generation was deterministic therefore we
have a single CIT sample. We also applied a variant of option-wise
testing [44] which has been used in configuration performance
tuning. Option-wise sampling implies binary configuration options
and tests each configuration option being enabled once while the
remaining configuration options are all disabled. Since the config-
uration options in our models are not all binary, we instead use
the default configuration setting as our baseline. Then for each
configuration option and for each value of the configuration option,
we change that one option in the default configuration.

4 RESULTS

In this section we present the results for each of our research ques-
tions. We discuss the implications in Section 5.

4.1 ROQ1: Failure Detection

BLAST We went through several iterations of the BLAST model
(discussed in Section 3.2) in which we ran into many error messages.
However these turned out to be due to incorrect configurations and
violated dependencies. Once we fixed these, we did not find any
other errors while running the 3,000 configurations.

MEGAHIT 23 configurations failed (9.62%). Five configurations re-
ported an “Error occurs when running sdbg builder count/read2sdbg”
and 18 configurations reported the error “Error occurs when assem-
bling contigs for k = 99” error. We contacted the developers and were
told that both cases are valid configurations, but incompatible with
the input data. The first is due to setting two configuration options
(k-min and k-max) both to 141. The second error only occurs when
k-min=99 and minCount>4. In these cases the program should
have resulted in no contigs, but produced an error. We note that we
worked with bioinformatics experts who use this tool to model our
configuration space, therefore these are not obvious edge cases. The
developer explained that these are both cases where there were no
assembled reads and the tool was failing ungracefully. We did see
35 more cases where there was no assembly, but these did not fail
so we consider them in RQ2. In total 237 out of 260 configuration
ran without errors.

Navigating the Maze: The Impact of Configurability in Bioinformatics Software

FBA-MFA Of the 125,000 configurations tested, 1,285 (1.03%) of
these configurations failed. We see five distinct error messages
(Table 5 summarizes these). 631 runs timed out after 1,000 seconds.
44 configurations caused an error in the linear programming solver
(called SCIP). 54 tests reported an objective value (OV) of negative
0, however the smallest OV should be 0. A total of 447 runs aborted,
and 27 were segmentation faults.

Table 5: FBA-MFA - Errors

Total runs 125,000
Timeout 631 (0.50%)
SCIP Error 44 (0.04%)
Negative 0 OV 154 (0.12%)
Aborted 447 (0.36%)
Segmentation Fault 27 (0.02%)
Total w/out Errors | 123,715 (98.97%)

We first re-ran these tests to confirm that the failures were de-
terministic and then we reported some of these on the KBase help
forum and communicated directly with developers of the FBA pro-
gram. Several of the errors were confirmed. Some were unsurprising
(again due to nonsensical combinations of configuration options)
but some were also tagged as real bugs that should be fixed via
patches to the program. In response to the SCIP error, the help
board told us it was due to the linear programming solver, not the
FBA. We got slightly different feedback from the developer who
was confused by the error. The resulting OV value it gives us when
this occurs is 0 (no growth) so the functional result is correct. The
Aborted error is a memory allocation issue in the C++ code. We
are continuing dialog with the developer to investigate this further.
We discuss more developer feedback in Section 5.

FBA-GUI Of the 25,000 combinations, 16 of these combinations
resulted in an error. All were the SCIP error (similar to the FBA-MFA
example). We confirmed some of these within the KBase online GUI
to ensure that the error occurs there as well. All again returned the
correct zero OV (no growth), but there was an error reported in
the online log. In this case the error may not be obvious to the user,
because the GUI handles this gracefully and returns a result. The
user must examine the log explicitly to see the error.

Summary of RQ1. Three of the four applications suffered from
failures due to us using invalid combinations of configuration op-
tions (i.e. missed dependencies). We also saw some errors that are
due to either external libraries (linear solvers) or the bioinformatics
application itself.

4.2 RQ2 (a): Functionality

BLAST We examined two different use cases for BLAST as dis-
cussed in Section 3.3. For Use Case (1) Table 6 displays the count
of Top X hits that match the default settings exactly (in terms of
sequence ID and order in in list). For example, the count for Top 5
means that 2,000 of the 3,000 configurations’ Top 5 hits match the
Top 5 hits from the default configuration. Overall we see that % of
the configurations do not vary in the Top 20 hits. The remaining
1,000 have a different list of hits than the default. If we look at the

763

ASE ’18, September 3-7, 2018, Montpellier, France

Table 6: BLAST Functional Variance for Use Case 1

Count (percent)
2,000 (66.67%)
2,000 (66.67%)
2,000 (66.67%)

640 (21.33%)
3,000

hits match Top 5

hits match Top 10
hits match Top 20
hits match Top 100
Total in sample

Top 100 hits only 640 configurations gave the same result as the
default options.

For Use Case (2) we look at all 10,000 input sequences as indi-
vidual test cases (Table 7). We see that over half (53.69%) never
find a hit across all 3,000 configurations which is typical behavior.
Another 17.60% of the query sequences always have 1 or 3 hits (no
variation). The remaining 2,871 (28.71%) of the query sequences
have a varying number of hits across the configuration options we
explored.

Table 7: BLAST Functional Variance for Use Case 2

10,000

5,369 (53.69%)
1,760 (17.60%)
2,871 (28.71%)

Total # Query Sequences
Sequences w/out variance (0 hits)
Sequences w/out variance (1-3 hits)
Sequences w/ variable hits

MEGAHIT Of the 260 configurations, we removed the 23 that
resulted in an error. Another 35 (14.50%) resulted in zero assembled
contigs and produced no output. Therefore the total number of
configurations that gave valid assemblies was 202. In Fig. 3 we
show the number of contigs for the 202 configurations with a valid
assembly (of at least 1). We see a large variation in the number of
contigs. The median number of contigs is 324, but the variation
range is from 1 to 672 contigs. This means that configurations
explored have a large impact on the functional result of MEGAHIT.

600
I
@om o o %m{:-)o. ® ®o® o

500
I

400
I

contigs

200
I

Figure 3: MEGAHIT - The red horizontal line represents the
default number of contigs at 284.

FBA-MFA We removed the 1,285 error configurations from the
functional analysis. Of the remaining 123,715 configurations we
saw 39 unique objective values. This suggests that the configuration

ASE ’18, September 3-7, 2018, Montpellier, France

options we are changing have a large impact on functionality. The
majority of the combinations (96.13%) do not grow resulting in an
OV of zero. This is interesting because we fixed the input model
and growth media to match that of the online tutorial using all
default values and that always grows (0.507834). Fig. 4 shows a
distribution of OVs with the x-axis representing OVs, and the
y-axis representing the count. Note that the left most bar (a zero
OV) is elided to fit into this graph. We have identified the default
growth on the graph. It turns out that this is not the most frequently
observed (positive) OV. But it is second (705 occurrences) to a
slightly higher OV that occurs 978 times. This suggests that the
default values are not optimal for this very common organism.
FBA-GUI For these 25,000 tests we saw four unique objective val-
ues (Table 8). Compared with the FBA-MFA tests this has less vari-
ation. However, the majority (67%) still do not grow. Only 18.40%
match the online tutorial with default values, and interestingly,
we can not obtain the higher OV values using the GUI variant of
this application suggesting that the configuration options of the
command line tool provide additional functional benefit to this
application (or they are modifying the “fixed” media indirectly).

Table 8: FBA-GUI - Functional Variance

ov Frequency
0 16,808 (67.23%)
0.395492 | 2,048 (8.19%)
0.423195 1,536 (6.14%)
0.507834 4,608 (18.43%)

Summary of RQ2 (a). We saw functional variability in all of our
subjects. The implication for reporting scientific results may be
significant. The greatest variability was in MEGAHIT signaling the
configuration options in the model may be related to functionality.

4.3 RQ2 (b): Performance

BLAST For BLAST we did not see much variation in the runtime.
Most configurations run in 6 seconds (2,959 test cases) and the
remaining 41 tests run in 11 seconds.

MEGAHIT We see a large variation in the runtime of the tests that
produce assemblies. Fig. 5 shows a boxplot with a median runtime
of 313 seconds and a range from 145 to 1,148 seconds. All tests that
lead to an error run in 39 seconds.

FBA-MFA The runtime varies by configuration from less than 1
second to the timeout of 1,000 seconds. 99.50% of the tests finish
in under 100 seconds. We also see a variance in runtime within
the same OV shown in Fig. 6 with the x-axis representing the OV
values, and the y-axis representing the runtime in seconds. Most
of the OV values have a median runtime between 6 and 40 seconds,
but there are many cases of outliers that take significantly longer
to run. This tells us we can achieve the same objective value in
some cases in 1 or 1,000 seconds. We also confirmed these runtimes
are consistent. We randomly picked four OVs and ran all of their
combinations (562 in total) 10 times each. There was a low variance
across each the 10 runs (median of 2.5 seconds).

FBA-GUI All of the configurations finished in less than 42 seconds
with the majority (99.28%) finishing in under 12 seconds. We see the

764

M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham

least amount of variability when the OV is zero (the model does not
grow). However it can still fail to grow but, take up to 21 seconds.
The non-zero OVs all have a median runtime of 6 seconds, but can
range up to 41 seconds. Similar to the FBA-MFA model, we see we
can achieve the same OV with different runtimes as seen in Fig. 7.
Summary of RQ2 (b). For two of the applications, the performance
was not impacted by modifying configurations. However in FBA
the performance varies quite a bit by configuration and it is possible
to get the same OV with very different runtimes.

4.4 RQ3: Sampling

For this RQ we wanted to understand if some common sampling
techniques can be used for efficiency. We leave a full analysis as
future work. We only present data from the two FBA tools since
we could not exhaustively test those configuration spaces.
FBA-MFA Results can be seen in Table 9. For functional output we
see that a 2-way CIT sample only produces three unique objective
values compared to the 39 we saw in our large (125,000) sample.
We don’t see at least half of these unique OVs until we scale up to
a 5-way CIT sample. Similarly, if we analyze the samples for errors
we don’t consistently see all five errors, until the 4-way CIT sample.
This suggests that the software has higher order interactions. The
option-wise testing method only captured five unique OVs and only
one of the errors.

FBA-GUI Results can be seen in Table 10. The total number of
unique OV values (4) in all the samples, show that the CIT samples
can sample the GUI functionality. The SCIP error doesn’t show up
consistently (in at least half the runs) until the 5-way CIT sample.
Summary of RQ3. The 5-way CIT samples detected functional
variance and all errors using only a fraction of the configuration
space, however the lower strength CIT was not as effective. Option-
wise testing did not prove effective in this case. The results do
suggest there is potential for sampling to help improve efficiency.

5 DISCUSSION AND LESSONS LEARNED

Further Developer Feedback One of the developers of the FBA
tools was very responsive to our information sharing and con-
firmed that this type of analysis would be useful for developers. He
confirmed that many of these errors are due to real faults in the
system. Some were unsurprising to him because they were due to
combinations of configuration options that were never meant to be
run together, some others were puzzling and are being examined
now to find the root cause for a bug patch. We believe the first set
of errors can be fixed by either preventing their combination from
happening via code, or through better documentation. The second
class of errors will lead to program repair - both valuable additions.
He provided us additional feedback including:

o It was surprising to see some particular configurations result
in a positive OV value meaning the organism grew. Accord-
ing to his expertise these should not have grown signaling a
possible bug.

o He was surprised that some cases of a zero OV (no growth)
took a significant time to run, suggesting cases of no growth
are not currently optimized in the code.

Navigating the Maze: The Impact of Configurability in Bioinformatics Software

11
100000

1000

o
3
3

Frequency
@
g
8

400

1 1 1 6 3
00 - -
A D Lo A 3
O P & &S P S & 4
A) 9 K H K W D
SR I I I
Q7 Q7 7 o7 o Q QF

978

thuu\

705

ASE ’18, September 3-7, 2018, Montpellier, France

Figure 4: MFA - Boxplot of the frequency of OVs returned from the FBA analysis.

Table 9: FBA-MFA Sampling Results

234 307 291
183
115 77 146
9% 97 79 68
26
6 8 I I
4 - 2 L BN Loz
42 5 .- 0 A) Al D © D o o 3\ D ‘?7 e “ 5 x3 >
PP ITF LS FTFF LIS I TP EFF S S PP F S
) o Wy % el ¥ 3 N S} D' v 5 5 o % Q’ & RN O 3 ’\
SR IR N SHCHIC AR & & S LS ST VTR
LRI VAR U LR SN LK VN 1 Q‘p K & & K AR QIR TS g
Objective Value (OV)

2-way CIT | 3-way CIT | 4-way CIT | 5-way CIT | 6-way CIT | Option-Wise | Random
(30 runs) (30 runs) (1 run) (1 run) (1 run) (1 run) (1 run)
Average # in sample 43 324 2,423 14,346 79,372 78 125,000
Average # uniq OVs 3 10 19 29 40 5 39
Errors (times seen in total # of runs)
Timeout 4 24 1 1 1 0 1
SCIP 0 9 1 1 1 1 1
Aborted 4 15 1 1 1 0 1
Segmentation 0 7 1 1 1 0 1
Negative 0 3 16 1 1 1 0 1
Table 10: FBA-GUI Sampling Results
2-way CIT | 3-way CIT | 4-way CIT | 5-way CIT | 6-way CIT | Option-Wise | Total
(30 runs) (30 runs) (30 runs) (1 run) (1 run) (1 run) Configs
Average # in sample 25 152 6,759 3,129 6,250 24 25,000
Average # uniq OVs 4 4 4 4 4 4 4
Errors (times seen in total # of runs)
SCIP [0 2] 14 1] 1] 0 1

000 @m0

1000
I

om o

800
I

Runtime (seconds)
600
Il

400
I

200
I

Figure 5: MEGAHIT - Runtimes. The red horizontal line rep-
resents the default runtime of 284 seconds.

765

e He remarked that the SCIP error was both “interesting" and
“confusing" and asked for more analysis to help them locate
the bug(s).

In summary, the developer was able to (1) learn about unknown
errors and (2) learn about new ways to potentially optimize runtime.
He also asked us for more details of our analysis and is actively
working on repairing these issues. Finally, he asked us to run ad-
ditional experiments with his models to explore some additional
configuration options.

For MEGAHIT, the developer plans to update the documentation
due to our feedback which may help to improve user understanding
and experience of that tool.

5.1 Lessons Learned

We learned several valuable lessons about configurable bioinfor-
matics software, some of which we believe can be generalized to
other scientific software.

ASE ’18, September 3-7, 2018, Montpellier, France

M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham

o
S - o o) .,
2 ° g Default °
o
o o o o e o B
=) 8 ° 8 o o
S |
o Q °
o o |© 6 o
o o 2
7 o o o o © o ol 8
g 8 - o o o o ° o o o
§ o ° ° o |o© o O o o
) o o o o 8
° o 8 o 8 °© o |8
E S 8 - o 8 § o o
[' ° 3
) g ! o) g § E) 8 o o
:] s 3 8 8
S H E ' 8 g 8 8 E E g o g § g 0
~N o o
ED 8 *‘%?f 8RR %o . IQH E‘Tgﬁ
o FE Y [) = O e PR = s [== P [| e S i PR = e[| B o s [= .5
T + T T T T T T T T T T T T T T T T T T
0 0206639 0309958 0405049 0415792 0423195 0424567 0507834 0548706 0.684199 0731609 0775889 0922755 1.17094

ov

Figure 6: FBA-MFA - Boxplot runtime per OV

Time (seconds)

o o o o

T T T
0 0.395492 0423195 0507834

Figure 7: FBA-GUI - Boxplot runtime per OV.

(1) The meaning of configuration options and constraints be-
tween options are often not clearly documented or easy to
extract even by experienced users.

(2) Changing configuration options can have a large effect on
functionality and it is hard to determine from documentation
which configuration options matter.

(3) Determining an exact functional output (oracle) for the prob-
lem was not straight forward. This suggests that the results
of some experiments using these tools can be left open to
interpretation.

(4) The same functionality can be achieved with varying perfor-
mance.

(5) Unknown and unexpected errors exist in these systems under
specific configurations of parameters.

(6) Sampling may be an effective tool for testing these systems,
but needs more exploration.

5.2 Suggestions for Improvement
(1) Create clear distinctions between functional and per-
formance parameters. Despite our effort to exclude func-
tional options we were unsuccessful. We suggest developers
divide configuration options into classes by their intended
impact on functionality and document this well.
Provide automated and transparent methods for han-
dling dependencies. We found dependencies that caused
errors, and one tool auto corrected to fix dependencies. Both
caused problems. We believe that developers should provide
automated techniques to avoid incompatible options, but
that the dependencies should also be clearly explained to the
end user.
(3) Provide automated tuning algorithms. Despite our com-
bined expertise with these tools and our discussions with

@)

766

expert developers, we found that there was no explanation
for some of the behavior we observed. There is an opportu-
nity for developers to create automated tuning algorithms
to guide all levels of users when manipulating and exploring
configuration spaces.

Developers can benefit from automated configuration-
aware testing techniques. Our experiments suggest that
developers can utilize existing automated configuration-aware
testing tools to build more dependable software. Not only can
it help them find latent faults, but it can help to understand
the differences in functional and performance variance.

6 CONCLUSIONS AND FUTURE WORK

Bioinformatics software is increasingly being used by different
types of users and has become highly configurable. We have stud-
ied this issue to learn how we can build automated techniques for
these tools. We show via a case study that manipulating configu-
ration options in three popular bioinformatics programs can lead
to lots of variability. We find the functionality of these systems are
dependent on the chosen configuration options. We also find that
understanding the configuration models and underlying constraints
is non-trivial and that developers can benefit from configuration-
aware testing tools. Last we see that common existing sampling
techniques may be beneficial. We have provided a set of actions that
developers can take to improve the repeatability and dependability
of these systems.

In future work we plan to build automated approaches to help
address the problems that we found. We may leverage existing
frameworks such as SPL Conquerer [44] which has already been
used in the scientific domain [11] and will explore domain specific
languages to help the users. We also plan to expand our models
to incorporate more complex constraints. Doing so may require
adapting work from [15]. Finally, our approach to creating the
configuration models was largely manual. We plan to automate this
process as seen in other work [34].

ACKNOWLEDGMENTS

This work is supported in part by NSF grant CCF-1745775 and by
the Office of Biological and Environmental Research’s Genomic
Science program within the U.S. Department of Energy Office of
Science, award number DE-AC05-000R22725.

Navigating the Maze: The Impact of Configurability in Bioinformatics Software

REFERENCES

(1]

(2]

3

=

=

=
X0

[10

[11]

[12]

[13]
[14]

=
A

[16

(17

(18]

[20]

[21]

[22]

[23]

[24]

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. 2018. Basic local alignment search tool. Journal of Molecular Biology
215 (2018). Issue 3. https://blast.ncbi.nlm.nih.gov/.

Adam P Arkin, Robert W Cottingham, Christopher S Henry, Nomi L Harris,
Rick L Stevens, Sergei Maslov, et al. 2018. KBase: The United States Department
of Energy Systems Biology Knowledgebase. Nature Biotechnology 36 (2018),
566-569.

Parmit K. Chilana, Carole L. Palmer, and Andrew J. Ko. 2009. Comparing bioin-
formatics software development by computer scientists and biologists: An ex-
ploratory study. In Proceedings of the ICSE Workshop on Software Engineering for
Computational Science and Engineering (SECSE). IEEE Computer Society, 72-79.
David M. Cohen, Siddhartha R. Dalal, Jesse Parelius, and Gardner C. Patton. 1996.
The combinatorial design approach to automatic test generation. IEEE Software
13, 5 (1996), 83-88.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. 2008. Constructing Interac-
tion Test Suites for Highly-Configurable Systems in the Presence of Constraints:
A Greedy Approach. IEEE Transactions on Software Engineering 34, 5 (2008),
633-650.

Al Danial. 2015. CLOC - Count Lines of Code. website. http://cloc.sourceforge.
net/

Geraint Duck, Goran Nenadic, Michele Filannino, Andy Brass, David L. Robertson,
and Robert Stevens. 2016. A survey of bioinformatics database and software
usage through mining the literature. PLoS ONE 11, 6 (2016).

Anthony Di Franco, Hui Guo, and Cindy Rubio-Gonzalez. 2017. A Comprehensive
Study of Real-World Numerical Bug Characteristics. In IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE.

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. 2010. Evaluating
improvements to a meta-heuristic search for constrained interaction testing. In
Empirical Software Engineering (EMSE), Vol. 16. Springer US, 61-102. Issue 1.
Alexander Grebhahn, Christian Engwer, Matthias Bolten, and Sven Apel. 2017.
Variability of stencil computations for porous media. In Concurrency and Compu-
tation: Practice and Experience, Vol. 29. John Wiley & Sons, Ltd. Issue 17.
Alexander Grebhahn, Sebastian Kuckuk, Christian Schmitt, Harald Késtler, Nor-
bert Siegmund, Sven Apel, Frank Hannig, and Jiirgen Teich. 2014. Experiments
on optimizing the performance of stencil codes with SPL Conqueror. In Parallel
Processing Letters, Vol. 24. Issue 3.

Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco J Gaspar,
and Sven Apel. 2017. Performance-influence models of multigrid methods: A
case study on triangular grids. In Concurrency and Computation: Practice and
Experience, Vol. 29. John Wiley & Sons, Ltd. Issue 17.

HCC. 2017. Using BLAST on HCC. https://github.com/unlhcc/job-examples
Dustin Heaton and Jeffrey C. Carver. 2015. Claims About the Use of Software
Engineering Practices in Science. Inf. Softw. Technol. 67, C (Nov. 2015), 207-219.
Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. 2015.
Combining Multi-Objective Search and Constraint Solving for Configuring Large
Software Product Lines. IEEE/ACM International Conference on Software Engi-
neering (ICSE) 1 (2015), 517-528.

Christopher S. Henry. 2017. MFAToolkit GitHub Repository. https://github.
com/cshenry/fba_tools/tree/master/MFAToolkit

Christopher S. Henry, Matthew DeJongh, Aaron A. Best, Paul M. Frybarger, Ben
Linsay, and Rick L. Sevens. 2010. High-throughput generation, optimization and
analysis of genome-scale metabolic models. Nature Biotechnology 28, 9 (2010),
977-982.

Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kastner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer Learning for Performance Modeling
of Configurable Systems: An Exploratory Analysis. In IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 497-508.

Pooyan Jamshidi, Miguel Velez, Christian Késtner, Norbert Siegmund, and Prasad
Kawthekar. 2017. Transfer Learning for Improving Model Predictions in Highly
Configurable Software. In International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). IEEE, 31-41.

Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson. 2014. Configurations
Everywhere: Implications for Testing and Debugging in Practice. In International
Conference on Software Engineering, Software in Practice Track (ICSE). ACM, 215-
225.

Amir Hossein Kamali, Eleni Giannoulatou, Tsong Yueh Chen, Michael A.
Charleston, Alistair L. McEwan, and Joshua W.K. Ho. 2015. How to test bioin-
formatics software?. In Biophysical Reviews, Vol. 7. Springer Berlin Heidelberg,
343-352. Issue 3.

kb-megahit 2017. KBase MEGAHIT SDK Repository.
kbaseapps/kb_megahit

kbase-assembly 2017. Microbial Genome Assembly and Annotation Tutorial.
https://narrative.kbase.us/narrative/notebooks/ws.18188.0bj.6

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina
Souto, Paulo Barros, and Marcelo d’Amorim. 2013. SPLat: Lightweight dynamic

analysis for reducing combinatorics in testing configurable systems. In Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT

https://github.com/

767

™~
S

[26

[27

&
&

[29

[30

(31

(33]

(34]

[35

'w
o

(37]

[38

[39

[40

N
fury

[42

[43

[44

[45

[46

[47

ASE ’18, September 3-7, 2018, Montpellier, France

Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 257-267.
D. Richard Kuhn, Dolores R Wallace, and Albert M. Gallo. 2004. Software fault
interactions and implications for software testing. IEEE Transactions on Software
Engineering 30, 6 (2004), 418-421.

Brendan Lawlor and Paul Walsh. 2015. Engineering bioinformatics: Building reli-
ability, performance and productivity into bioinformatics software. Bioengineered
6, 4 (2015), 193-203.

Felipe da Veiga Leprevost, Valmir C. Barbosa, Eduardo L. Francisco, Yasset Perez-
Riverol, and Paulo C. Carvalho. 2014. On best practices in the development of
bioinformatics software. Frontiers in Genetics 5 (2014), 199.

Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.
2015. MEGAHIT: an ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de Bruijn graph. Bioinformatics 31, 10 (2015).
Anders Lundgren and Upulee Kanewala. 2016. Experiences of testing bioinfor-
matics programs for detecting subtle faults. In Proceedings of the International
Workshop on Software Engineering for Science - SE4Science. IEEE, 16-22.

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proceedings of the International Conference on Software Engineering (ICSE). ACM,
643-654.

Flavio Medeiros, Iran Rodrigues, Marcio Ribeiro, Leopoldo Teixeira, and Rohit
Gheyi. 2015. An empirical study on configuration-related issues: Investigating
undeclared and unused identifiers. In International Conference on Generative
Programming and Component Engineering (GPCE). ACM, 35-44.

Jens Meinicke, Chu-Pan Wong, Christian Kastner, Thomas Thiim, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions
In Highly-Configurable Systems. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, 483-494.

Sarah Morrison-Smith, Christina Boucher, Andrea Bunt, and Jaime Ruiz. 2015.
Elucidating the role and use of bioinformatics software in life science research.
In Proceedings of the British HCI Conference. ACM, 230-238.

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2015.
Where do configuration constraints stem from? An extraction approach and an
empirical study. IEEE Transactions on Software Engineering (TSE) 41 (March 2015),
820-841. Issue 8.

ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and Adam A. Porter.
2016. iGen: Dynamic Interaction Inference for Configurable Software. In Proceed-
ings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 655-665.

Marius Nita and David Notkin. 2009. White-box approaches for improved testing
and analysis of configurable software systems. In International Conference on
Software Engineering (ICSE). IEEE, 307-310.

U.S. National Library of Medicine. [n. d.]. National Center for Biotechnology
Information.

Justyna Petke, Myra B. Cohen, Mark Harman, and Shin Yoo. 2013. Efficiency and
early fault detection with lower and higher strength combinatorial interaction
testing. In European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. ACM, 26-36.

Xiao Qu, Myra B. Cohen, and Gregg Rothermel. 2008. Configuration-aware
Regression Testing: An Empirical Study of Sampling and Prioritization. In Inter-
national Symposium on Software Testing and Analysis (ISSTA). ACM, 75-86.
Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.
2010. Using symbolic evaluation to understand behavior in configurable software
systems. In International Conference on Software Engineering. IEEE, 445-454.
Brian Robinson, Mithun Acharya, and Xiao Qu. 2012. Configuration Selection
Using Code Change Impact Analysis for Regression Testing. In Proceedings of the
IEEE International Conference on Software Maintenance (ICSM). IEEE Computer
Society, 129-138.

Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jiirgen Teich, Harald Kostler,
Ulrich Ride, and Christian Lengauer. 2016. Systems of Partial Differential Equa-
tions in ExaSlang. In Software for Exascale Computing - SPPEXA (Lecture Notes in
Computational Science and Engineering), Vol. 113. Springer, 47-67.

Judith Segal and Chris Morris. 2008. Developing scientific software. IEEE Software
25, 4 (2008), 18-20.

Norbert Siegmund, Alexander Grebhahn, Christian Kastner, and Sven Apel. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM Press, 284-294.
Charles Song, Adam Porter, and Jeffrey S. Foster. 2014. iTree: Efficiently Discov-
ering High-Coverage Configurations Using Interaction Trees. IEEE Transactions
on Software Engineering 40, 3 (March 2014), 251-265.

Cemal Yilmaz, Myra B. Cohen, and Adam Porter. 2006. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE Transactions
on Software Engineering 31, 1 (2006), 20-34.

Linbin Yu, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. 2013. ACTS: A Com-
binatorial Test Generation Tool. In International Conference on Software Testing,
Verification and Validation. 370-375.

