
Mnemonic Variable Names in Parsons Puzzles

Amruth N. Kumar
 Computer Science

 Ramapo College of New Jersey
 Mahwah, NJ, USA

 amruth@ramapo.edu

ABSTRACT
In Parsons Puzzles, students are asked to arrange the lines of a
program in their correct order. We investigated the effect of
using mnemonic variable names in the program on the ease with
which students solved the puzzles – whether students were able
to solve puzzles containing mnemonic variable names with
fewer actions or in less time than single-character variable
names. We conducted a controlled study with cross-over design
over four semesters. Much to our surprise, we found no
statistically significant difference between students solving
puzzles with mnemonic variable names versus single-character
variable names – either in terms of the number of actions taken,
the grade earned or the time spent per puzzle. In this paper, we
will describe the experimental setup and data analysis and
present the results of the study. We will discuss some
hypotheses as to why the readability of the variable names did
not impact students’ ability to solve Parsons puzzles.

KEYWORDS
Parsons puzzles; Mnemonic variable names; Controlled study

ACM Reference format:
Amruth N. Kumar. 2019. Mnemonic Variable Names in Parsons
Puzzles. In Proceedings of ACM Global Computing Education
conference (CompEd’19), May 17–19, 2019, Chengdu, Sichuan,
China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3300115.3309509

1 Introduction
Parsons puzzles have gained a lot of popularity since their
introduction [17]. In a Parsons puzzle, the student is presented a
program for a problem, but the lines in the program are scrambled.
The student must reassemble the lines in their correct order. The
puzzles were designed to be an engaging way to learn
programming.

Parsons puzzles have since been proposed for use in exams
[4], since they are easier to grade than code-writing exercises. At
the same time, scores on Parsons puzzles have been found to
correlate with scores on code-writing exercises [4]. Researchers
have found solving Parsons puzzles to be part of a hierarchy of
programming skills alongside code-tracing [15]. In electronic
books, students have been found to prefer solving Parsons
puzzles more than other low-cognitive-load activities such as
answering multiple choice questions and high-cognitive-load
activities such as writing code [6]. Solving Parsons puzzles was
found to take significantly less time than fixing errors in code or
writing equivalent code, but resulted in the same learning
performance and retention [7]. Software to administer Parsons
puzzles have been developed for Turbo Pascal [17], Python (e.g.,
[3,10]) and C++/Java/C# [12].
Lately, there has been interest in finding patterns in how students
go about solving the puzzles [9,11]. Researchers have also looked
into what helps students solve the puzzles better, e.g., sub-goal
labels help students solve puzzles significantly better [16]; adaptive
practice of Parsons puzzles is more efficient while being just as
effective as writing code [5]; but motivational supports did not
seem to help students while solving puzzles [13]. In this vein, we
investigated whether the use of mnemonic variable names in the
code had any effect on solving Parsons puzzles. We report the
results of our study and discuss their implications.

2 The Study

2.1 Hypothesis
Our research hypothesis was that students would find Parsons
puzzles easier to solve when the code in the puzzles used
mnemonic variable names rather than single-character variables
names (e.g., i, j, k).

Several researchers have documented the importance of
mnemonic variable names in programs (e.g., [2,18]): mnemonic
variable names improve the readability of a program whereas
non-mnemonic single-character variable names make a program
harder to read. Mnemonic variable names may lead to better
comprehension than single-character variable names [14]. So, we
expected that students would be able to solve Parsons puzzles
with mnemonic variables faster and with fewer missteps than
puzzles with single-character variables. We presented two
versions of the same program: one with mnemonic variable
names to experimental group and the other, with non-mnemonic
single-character variable names to control group, while keeping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
CompEd '19, May 17–19, 2019, Chengdu,Sichuan, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6259-7/19/05...$15.00
https://doi.org/10.1145/3300115.3309509

mailto:amruth@ramapo.edu
mailto:Permissions@acm.org

all the other factors such as indentation, commenting and
structure the same between the two versions.

2.2 Tools
For this study, we used epplets (epplets.org), a Parsons puzzle tool
[12]. The tool presents the scrambled lines of code in the left panel,
called Problem panel, and has the student reassemble the lines of
code in their correct order in the right panel, called Solution Panel
using drag-and-drop action. Students can also delete a line of code
by dragging it into Trash panel (Please see [12] for a figure of the
user interface). The student is required to solve a puzzle
completely and correctly before going on to the next puzzle. The
tool provides feedback to help the student fix an incorrect solution.
The tool also allows the student to bail out of solving a puzzle
when hopelessly lost.

The tool requires that the student reassemble the code one
line at a time, instead of one program fragment at a time [17]. So,
given a program with n lines of code, a student can solve the
puzzle with n drag-and-drop actions. The tool presents
comments in the code in situ in the solution panel. Students are
expected to drag and drop lines of code under appropriate
comments.

For this study, we had the students solve Parsons puzzles on
two topics: while loops and for loops.

2.2.1 while Loop Puzzle
We had students solve two puzzles on while loops. The first
puzzle was used to get students accustomed to the user interface of
the tool. So, all the students were presented code with mnemonic
variable names on the first puzzle. The puzzle presented code for
the problem: “Read numbers till the same number appears back to
back. Print the first number to appear back to back (e.g., 4 appears
back to back in 3,7,5,7,4,4,5 and is printed).”

The second puzzle presented on while loops was used to
conduct this study. It was for the problem: “Input the face of a
card. Next, read a deck of cards and print how many cards into
the deck the input card is found, followed by its successor. For
example, if the input card is 6, in a deck that starts with the cards
1,8,6,10,7,9,13, the 6 card is in 3rd place and 7 card is in 5th
place.”

The single-character variable code provided to control group
on the second puzzle was as follows (in C++):

#include <iostream>
using namespace std;
int main()
{
 // Declare y
 long y;
 // Declare r
 long r;
 // Declare b
 long b = 1;
 // Read into y the face of the card to look for in the deck
 cout << "Enter the face of the card to look for in the deck (1-13)";

 cin >> y;
 // Find the card and its successor in a deck of cards
 cout << "Enter the cards in the deck one at a time";
 cin >> r;
 while(r != y)
 {
 cin >> r;
 b = b + 1;
 } // End of while loop from line 24
 cout << "Card " << y
 << " found in deck at position " << b;
 y = y + 1;
 cin >> r;
 b = b + 1;
 while(r != y)
 {
 cin >> r;
 b = b + 1;
 } // End of while loop from line 33
 cout << "Card " << y
 << " found in deck at position " << b;
} // End of function main

Note that the code used single-character variable names, with the
characters having no mnemonic association with the purposes
they served. The corresponding mnemonic variable code presented
to experimental group was as follows (in C++):

#include <iostream>
using namespace std;
int main()
{
 // Declare selectCard
 int selectCard;
 // Declare cardDeck
 int cardDeck;
 // Declare counter
 int counter = 1;
 // Read into selectCard the face of the card to look for in the deck
 cout << "Enter the face of the card to look for in the deck (1-13)";
 cin >> selectCard;
 // Find the card and its successor in a deck of cards
 cout << "Enter the cards in the deck one at a time";
 cin >> cardDeck;
 while(cardDeck != selectCard)
 {
 cin >> cardDeck;
 counter = counter + 1;
 } // End of while loop from line 24
 cout << "Card " << selectCard
 << " found in deck at position " << counter;
 selectCard = selectCard + 1;
 cin >> cardDeck;
 counter = counter + 1;
 while(cardDeck != selectCard)
 {

 cin >> cardDeck;
 counter = counter + 1;
 } // End of while loop from line 33
 cout << "Card " << selectCard
 << " found in deck at position " << counter;
} // End of function main

In the two versions of the code presented before, the longest
stretch of code re-assembled by students without the benefit of
any comments is highlighted in bold.

2.2.2 for Loop Puzzle

Once again., we had students solve two puzzles on for loops. The
first puzzle was used to get students accustomed to the user
interface of the tool. So, all the students were presented mnemonic
variable code on the first puzzle. The puzzle presented code for the
problem: “Read two numbers. Calculate the sum of all the numbers
between the two and print it, e.g., if 4 and 7 are read, print 22,
which is the sum of 4,5,6 and 7.”

The second puzzle presented on for loops was used to
conduct this study. It was for the problem: “Read the monthly
income for a year. Print its sum. Read the monthly expenses for
the year. Print money left over after expenses.”
The single-character variable code provided to control group on
the second puzzle was as follows (in C++):

#include <iostream>
using namespace std;
int main()
{
 // Declare x
 long double x;
 // Declare r
 long double r;
 // Declare a
 unsigned long a;
 // Read monthly income into x, print sum in r
 r = 0;
 for(a = 1; a <= 12; a ++)
 {
 cout << "Please enter the income for month " << a;
 cin >> x;
 r = r + x;
 } // End of for loop from line 19
 cout << "Sum of monthly income is $ " << r;
 // Read monthly expenses into x, print balance in r after
expenses
 for(a = 1; a <= 12; a ++)
 {
 cout << "Please enter the expenses for month " << a;
 cin >> x;
 r = r - x;
 } // End of for loop from line 30
 cout << "Balance after expenses is $ " << r;
} // End of function main

The corresponding mnemonic variable code presented to
experimental group was as follows, wherein, the longest stretch of
code re-assembled by students without the benefit of comments is
highlighted in bold:

using namespace std;
int main()
{
 // Declare amount
 float amount;
 // Declare balance
 float balance;
 // Declare counter
 unsigned short counter;
 // Read monthly income into amount, print sum in
balance
 balance = 0;
 for(counter = 1; counter <= 12; counter ++)
 {
 cout << "Please enter the income for month "
 << counter;
 cin >> amount;
 balance = balance + amount;
 } // End of for loop from line 19
 cout << "Sum of monthly income is $ " << balance;
 // Read monthly expenses into amount, print balance in
balance after expenses
 for(counter = 1; counter <= 12; counter ++)
 {
 cout << "Please enter the expenses for month " <<
counter;
 cin >> amount;
 balance = balance - amount;
 } // End of for loop from line 30
 cout << "Balance after expenses is $ " << balance;
} // End of function main

2.3 Protocol
We conducted a crossover study. We divided students into two
groups: A and Z. Their treatments on while and for loop
puzzles were as shown in Table 1.

Table 1: Treatment for Groups A and Z on while loop and
for loop Parsons puzzles

Group while loop for loop
A Single-Character Mnemonic
Z Mnemonic Single-Character

The puzzles used in this study were the second puzzles students
solved on while and for loops. This ensured that students
would have overcome any user interface issues by the time they
solved these puzzles.

2.4 Variables
Students were required to completely and correctly solve each
puzzle. The independent variable in the study was the variable
naming scheme in the puzzle presented to the student: mnemonic
versus single-character.
We used four dependent variables:
 The number of steps taken by the student to solve the

puzzle. The steps included moving a line of code from the
problem panel to the solution panel, reordering a line
within the solution panel, and deleting a line from the
problem or solution panel to the trash panel.

 The grade on the puzzle, calculated as 100% if the student
solved the puzzle with as many steps as the number of lines
in the code. If the student took more steps than the number
of lines in the code, each superfluous step was penalized
against one correct step, e.g., if the program contained 20
lines and the student took 30 steps to solve the puzzle
completely and correctly, the student got credit for 10 steps
out of 20. So, the normalized score awarded to the student
was 10 / 20 = 0.5. The normalized score was bound to the
range 0  1.0. This negative grading scheme meant that a
student could score 0 on a puzzle even after having solved it
correctly.

 The time taken by the student to solve the puzzle
completely and correctly, in seconds.

 The time taken per step by the student to solve the puzzle
completely and correctly, calculated as time / number of
steps taken.

2.5 Data Collection
We collected data over four semesters: Fall 2016 – Spring 2018.
The subjects were students in the introductory programming
course, both majors and non-majors. The puzzles were provided as
two of a dozen after-class assignments. The number of students
who solved Parsons puzzles on while and for loops in each
treatment over the four semesters is listed in Table 2. Group A
consisted of students from 5 baccalaureate institutions, 2
community colleges and 2 high schools and Group Z from 6
baccalaureate institutions and one community college.
Students had the option to solve the puzzles on the two topics as
many times as they wanted. For our analysis, we considered data
from only the first time a student solved puzzles on either topic.
Since this was a crossover study, we considered only the students
who had served as both control and experimental subjects, i.e., we
eliminated students who had not solved all four puzzles: two each
on while and for loops. For the same reason, we also eliminated
students who had bailed out of solving any of the four puzzles.
After these eliminations, group A consisted of 34 students and
Group Z consisted of 40 students.

Table 2: Number of students who solved Parsons puzzles in
each condition over four semesters

 Single-Character Mnemonic
while 67 82
for 75 65

2.6 Data Analysis
On each topic (while and for loop), we compared the control
and experimental group performance on the first puzzle to check if
the two groups were comparable – both the groups were
presented the same code with mnemonic variables for the first
puzzle. We used data from the second puzzle to compare
mnemonic versus single-character variable treatments: control
group was presented single-character variable code and
experimental group was presented mnemonic code.
Table 3 lists the mean and 95% confidence interval of the number
of steps taken, the normalized score, the time in seconds, and the
time taken per step by the two treatment subjects on the first
while loop puzzle. ANOVA analysis yielded no significant
difference between the two groups for steps [F91,73) = 0.6, p =
0.44], grade [F(1,71) = 1.05, p = 0.31], time [F(1,73) = 1.84, p = 0.18]
or time per step [F(1,73) = 1.66, p = 0.20]. So, the two treatment
groups, when provided the same treatment, were comparable.

Table 3: Comparison of the two groups on the first while
loop puzzle with the same treatment

while loop Single-Character
(Group A, N = 34)

Mnemonic
(Group Z, N=40)

Steps 24.65 ± 3.68 22.70 ± 3.40
Grade 0.62 ± 0.13 0.71 ± 0.12
Time 352.92 ± 65.24 292.55 ± 60.15
Time/Step 14.27 ± 1.88 12.61 ± 1.73

Table 4 lists the same figures for the two groups on the second
puzzle on while loops, wherein, control group (A) was presented
single-character code and experimental group (Z) was presented
mnemonic variable code. ANOVA analysis yielded no significant
difference between the two groups for steps [F(1,73) = 0.03, p =
0.86], grade [F(1,73) = 0.02, p = 0.88], time [F(1,73) = 0.10, p = 0.75]
or time per step [F(1,73) = 0.17, p = 0.68]. In other words, the use of
mnemonic variable names had no impact on the number of steps
taken to solve the puzzle, the score earned on the puzzle or the time
taken to solve the puzzle.

Table 4: Comparison of the two groups on the second
while loop puzzle with differential treatments.

while loop Single-Character
(Group A, N = 34)

Mnemonic
(Group Z, N = 40)

Steps 46.29 ± 7.65 47.23 ± 7.05
Grade 0.42 ± 0.13 0.41 ± 0.12
Time 690.38 ± 103.1 667.75 ± 95.05
Time/Step 15.76 ± 2.28 15.12 ± 2.10

Table 5 lists the performance of control (Z) and experimental (A)
groups on the first for loop puzzle, where both were provided
the same treatment, viz., mnemonic variable code. Once again,
ANOVA analysis yielded no statistically significant difference
between the two treatments on the steps [F(1,73) = 0.11, p = 0.74],
grade [F(1,73) = 2.18, p = 0.14], time [F(1,73) = 0.28, p = 0.60] or
time taken per step [F(1,73) = 0.67, p = 0.42]. So, once again, the

two groups were comparable in their performance when provided
the same treatment, viz., mnemonic variable code.

Table 5: Comparison of the two groups on the first for
loop puzzle with the same treatment

for loop Single-Character
(Group Z, N= 40)

Mnemonic
(Group A, N = 34)

Steps 22.98 ± 1.90 22.50 ± 2.06
Grade 0.82 ± 0.07 0.89 ± 0.08
Time 237.25 ± 42.57 253.79 ± 46.17
Time/Step 10.38 ± 1.95 11.57 ± 2.12

Finally, Table 6 lists the figures for the second for loop puzzle,
wherein, control group (Z) was presented single-character variable
code and experimental group (A) was provided mnemonic variable
code. ANOVA analysis yielded no statistically significant
difference between the treatments on steps [F(1,73) < 0.01, p =
0.94], grade [F(1,73) < 0.01, p = 0.93], time [F(1,73) = 1.01, p + 0.32]
or time taken per step [F(1,73) = 1.28, p = 0.26]. So, mnemonic
variables in the code had no impact on the performance of the
students.

Table 6: Comparison of the two groups on the second for
loop puzzle with differential treatments

for loop Single-Character
(Group Z, N= 40)

Mnemonic (Group
A, N = 34)

Steps 37.20 ± 3.46 37.38 ± 3.76
Grade 0.59 ± 0.11 0.58 ± 0.12
Time 443.0 ± 56.0 484.68 ± 60.73
Time/Step 12.17 ± 1.37 13.32 ± 1.49

Next, we conducted ANCOVA analysis of the grade on the second
puzzle, with treatment as the fixed factor and grade on the first
problem as a covariate. For this analysis, we combined the data
from both the loops. We found no main effect for treatment
[F(1,145) = 0.51, p = 0.48]: the grade with single-character variable
version was 0.53 ± 0.08 compared to 0.49 ± 0.08 with mnemonic
variable version. Similarly, ANCOVA analysis of the time taken
per step on the second puzzle with the time taken per step on the
first puzzle as covariate yielded no significant effect for treatment
[F(1,147) = 0.28, p = 0.60]: subjects spent 13.82 ± 1.27 seconds per
step with single-character variable version compared to 14.30 ±
1.27 seconds with mnemonic variable version. So, even after
accounting for variations in student performance on the first puzzle,
we found no effect of treatment on their performance on the second
puzzle.
We compared the performance on the first puzzle with that on the
second puzzle on each topic. On each topic, everyone was
presented mnemonic variable version on the first puzzle, but only
one of the two groups (A/Z) was presented mnemonic version on
the second puzzle while the other group was presented single-
character version. Since the puzzles were different, and involved
different numbers of lines of code, we compared only the time
taken per step. If mnemonic variables decreased puzzle-solving

time, the group that was presented single-character version on the
second puzzle would have spent significantly more time on the
second puzzle compared to the first puzzle than the mnemonic
variable group. The time spent per step for the two groups on the
two puzzles in the two topics are listed in Table 7. Repeated
measures ANOVA analysis yielded no significant interaction
between the puzzle and treatment on while loops [F(1,72) = 1.07,
p = 0.30] or for loops [F(1,72) = 1.31, p = 0.26]. So, working with
mnemonic variable code on one puzzle did not influence the
performance of students on a subsequent puzzle.

Table 7: Repeated measures comparison of the time taken
per step on the first and second puzzles for the two groups

while loop Single-Character
(Group A, N = 34)

Mnemonic
(Group Z, N=40)

Puzzle 1 14.27 ± 1.88 12.61 ± 1.73
Puzzle 2 15.76 ± 2.28 15.12 ± 2.10

for loop Single-Character

(Group Z, N= 40)
Mnemonic
(Group A, N = 34)

Puzzle 1 10.38 ± 1.95 11.57 ± 2.12
Puzzle 2 12.17 ± 1.37 13.32 ± 1.49

We computed the average grade on the first puzzle on each topic
and used it to group students into two: less-prepared students who
scored below average and better-prepared students who scored
average or above. One-way ANOVA of the grade on the second
puzzle with treatment and preparedness as fixed factors yielded
interaction between the two factors as shown in Table 8, but it was
not statistically significant. Similar analysis of the time taken per
step yielded a significant interaction between the two factors
[F(1,147) = 7.475, p = 0.007]: less-prepared students spent more
time with mnemonic treatment than single-character treatment
whereas better-prepared students spent more time with single-
character treatment than mnemonic treatment. This was not an
artifact of the puzzle topic (while versus for) because the
interaction with topic was not significant. So mnemonic variables
in Parsons puzzle code may differentially affect students based on
their level of preparation.

Table 8: The effect of treatment on the grade and time
taken per step on the second puzzle by less- versus better-
prepared students

Grade Single-Character Mnemonic
Less 0.40 ± 0.13 (33) 0.46 ± 0.16 (22)
Better 0.60 ± 0.11 (41) 0.50 ± 0.10 (52)

Time per step Single-Character Mnemonic
Less 11.81 ± 1.94 (33) 15.49 ± 2.38 (22)
Better 15.44 ± 1.74 (41) 13.79 ± 1.55 (52)

2 Results and Discussion
We expected that students would be able to solve Parsons puzzles
faster and with fewer steps when the puzzles contained mnemonic
variables instead of single-character variables. But, the results of
the study did not support this hypothesis, much to our surprise.
We considered various explanations for this outcome.

The puzzles used in the study involved 3 variables each. It
could be argued that the readability of a program is not impaired
if it contains only three variables that are poorly named. But,
poorly named variables make it harder to track the flow of data
in the program, especially in the section of the code that involves
back-to-back loops – the section boldfaced in the listings
presented earlier. This is true even for experienced
programmers, not just novices. Nevertheless, we plan to repeat
the study with puzzle programs involving many more than 3
variables.

It could be argued that the programs presented in the puzzles
are short: 19-24 lines long. But, they are complicated enough for
beginning programmers. It could be argued that the comments
provided by the tool in the solution panel make it easy to
assemble some of the lines of code such as variable declarations
and input statements. But, some comments in the program are
followed by 9 – 19 lines of back-to-back code, wherein, students
had to reassemble code without any assistance from comments.
Since these uncommented lines carry out the actual
computations in the program, assembling them is the hardest
part of each puzzle.

A third possible explanation is that mnemonic variables
indeed facilitate solving Parsons puzzles, but the effect size is so
small that we need much larger sample sizes to evaluate the
hypothesis - power analysis yielded observed power of 5% to 14%
for many of the analyses. We plan to repeat the controlled
experiment every semester, and plan to revisit this study with
additional data in the future.

In a recent study, professional developers were presented two
versions of six library code segments: one with mnemonic
variables and the other with meaningless single-character
variable names. In three of the code segments, no statistically
significant difference was observed between the two treatments
in terms of code comprehension [1]. Authors of the study
attributed this surprising result to the use of poorly chosen
mnemonic names. It turns out, choosing mnemonic names is not
as objective an exercise as one might like – the probability that
two people choose the same name for a variable was found to be
less than 20% in one study [8]. Even if universally acceptable
mnemonic names are used, they may hinder program
comprehension by serving as misleading “beacons” (code
elements that illuminate the code’s function) when novices hold
an incorrect model of the purpose of the program [1].

The counter-arguments to these issues that confound the
utility of mnemonic names are: 1) we chose mnemonic names
from the problem statement provided for each puzzle (e.g.,
cardDeck) or listed them in the comments preceding each
section (e.g., amount); and 2) unlike in the earlier study [1]
wherein, programmers had to guess the purpose of each code

segment, we described the purpose of each Parsons puzzle
program in the accompanying problem statement. So, even
though we found mnemonic variable names did not seem to
provide any benefits and this result concurs with some of the
results found in the previous study [1], the reasons why are not
the same. Given the counter-intuitive nature of our result, this
study should be reproduced in different settings before any
definitive conclusions are drawn.

We expect students to build a mental model of the semantics
of the program as they solve a Parsons puzzle: tracing each
variable through its lifecycle, tracing the flow of data and control
through the program, and thereby, understanding how each line
of code fits into the overall program. If so, mnemonic variables
would make it easier to build such a model by making it easier to
trace each variable through its lifecycle and trace the flow of
data through the program. Single-character variables on the
other hand force the reader to scan the program repeatedly to re-
establish the purpose of each unhelpfully named variable.

May be students resort to techniques other than constructing
a complete mental model of the program to solve Parsons
puzzles. So, the use of mnemonic variables neither helps nor
hurts their ability to solve the puzzles. If a student can solve a
Parsons puzzle without building a mental model of the
underlying program first, it is essential for researchers to isolate
and identify the alternative puzzle-solving techniques, and see
whether and how those techniques contribute to the learning of
programming. In the future, we plan to test whether students re-
assemble the lines of code in a puzzle in random order, or in an
order influenced by the semantics of the lines of code.

ACKNOWLEDGMENTS
Partial support for this work was provided by the National
Science Foundation under grants DUE 1502564 and DUE-
1432190.

REFERENCES
[1] Eran Avidan and Dror G. Feitelson. 2017. Effects of variable names on

comprehension an empirical study. In Proceedings of the 25th International
Conference on Program Comprehension (ICPC '17). IEEE Press, Piscataway, NJ,
USA, 55-65. DOI: https://doi.org/10.1109/ICPC.2017.27.

[2] Scott Blinman and Andy Cockburn. 2005. Program comprehension:
investigating the effects of naming style and documentation. In Proceedings of
the Sixth Australasian conference on User interface - Volume 40 (AUIC '05),
Mark Billinghurst and Andy Cockburn (Eds.), Vol. 40. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 73-78.

[3] Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating
Coding Ability Without Writing any Code. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE '17).
ACM, New York, NY, USA, 123-128. DOI:
https://doi.org/10.1145/3017680.3017704.

[4] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new
exam question: Parsons problems. In Proceedings of the Fourth International
Workshop on Computing Education Research (ICER '08). ACM, New York, NY,
USA, 113-124. DOI=http://dx.doi.org/10.1145/1404520.1404532.

[5] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the
Efficiency and Effectiveness of Adaptive Parsons Problems. In Proceedings of
the 2018 ACM Conference on International Computing Education Research (ICER
'18). ACM, New York, NY, USA, 60-68. DOI:
https://doi.org/10.1145/3230977.3231000

[6] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of
Interactive Features Designed to Enhance Learning in an Ebook.
In Proceedings of the eleventh annual International Conference on International
Computing Education Research (ICER '15). ACM, New York, NY, USA, 169-178.
DOI: https://doi.org/10.1145/2787622.2787731.

[7] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving
Parsons problems versus fixing and writing code. In Proceedings of the 17th
Koli Calling International Conference on Computing Education Research (Koli
Calling '17). ACM, New York, NY, USA, 20-29. DOI:
https://doi.org/10.1145/3141880.3141895.

[8] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The
vocabulary problem in human-system communication. Communications of
the.ACM 30,(November 1987), 964-971 DOI=
https://doi.org/10.1145/32206.32212

[9] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How do
students solve parsons programming problems?: an analysis of interaction
traces. In Proceedings of the ninth annual international conference on
International computing education research (ICER '12). ACM, New York, NY,
USA, 119-126. DOI: https://doi.org/10.1145/2361276.2361300.

[10] Petri Ihantola and Ville Karavirta. 2010. Open source widget for parson's
puzzles. In Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education (ITiCSE '10). ACM, New York, NY,
USA, 302-302. DOI: https://doi.org/10.1145/1822090.1822178

[11] Petri Ihantola and Ville Karavirta. 2011.Two-Dimensional Parson’s Puzzles:
The Conceot, Tools, and First Observations. Journal of Information Technology
Education: Innovations in Practice. Vol 10. 2011. 119-132. DOI=
https://doi.org/10.28945/1394

[12] Amruth N. Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles.
In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE '18). ACM, New York, NY, USA, 527-532. DOI:
https://doi.org/10.1145/3159450.3159576.

[13] Amruth N. Kumar. 2017. The Effect of Providing Motivational Support in
Parsons Puzzle Tutors. In Proceedings of Artificial Intelligence in Education. (AI-

ED 2017), Wuhan, China, June 2017, 528-531. DOI=
https://doi.org/10.1007/978-3-319-61425-0_56

[14] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006.
What's in a Name? A Study of Identifiers. In Proceedings of the 14th IEEE
International Conference on Program Comprehension (ICPC '06). IEEE
Computer Society, Washington, DC, USA, 3-12. DOI:
https://doi.org/10.1109/ICPC.2006.51

[15] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008.
Relationships between reading, tracing and writing skills in introductory
programming. In Proceedings of the Fourth International Workshop on
Computing Education Research (ICER '08). ACM, New York, NY, USA, 101-112.
DOI=http://dx.doi.org/10.1145/1404520.1404531.

[16] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE
'16). ACM, New York, NY, USA, 42-47. DOI:
https://doi.org/10.1145/2839509.2844617.

[17] Dale Parsons and Patricia Haden. 2006. Parson's programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (ACE
'06), Denise Tolhurst and Samuel Mann (Eds.), Vol. 52. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 157-163.

[18] Felice Salviulo and Giuseppe Scanniello. 2014. Dealing with identifiers and
comments in source code comprehension and maintenance: results from an
ethnographically-informed study with students and professionals.
In Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE '14). ACM, New York, NY, USA, ,
Article 48 , 10 pages. DOI: http://dx.doi.org/10.1145/2601248.2601251

http://dx.doi.org/10.1145/2601248.2601251

