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ABSTRACT

We present the definition of a new quantity, the pupil difference probability density (PDPD), and describe its
use in the study of imaging systems. Formally, the PDPD is defined as the probability density that two random
points over the pupil, with given separation, have a given wavefront error difference. Under this definition, the
PDPD is the one-dimensional Fourier transform, of the error difference variable, of the OTF. Using the PDPD,
we show that it is possible to understand how certain sources of error affect the OTF. Further, given its geometric
interpretation, this formalism is useful for finding accurate analytic approximations to the OTF.
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1. INTRODUCTION

The OTF of a system, for a given wavenumber k = 2π/λ, is given by:1

OTF(k,ρρρ) =

∫∫
A(q − ρρρ/2)eikW (q−ρρρ/2)A(q + ρρρ/2)e−ikW (q+ρρρ/2) d2q∫∫

A2(q) d2q
, (1)

where W (q) is the aberration function at the pupil point q (in dimensionless pupil units), A(q) ∈ [0, 1] is
the pupil amplitude function (which is normally binary, although the treatment we present remains valid for
an apodized pupil), and ρρρ is a pupil coordinate displacement. Although it is a popular and useful metric of
optical performance, the expression for the OTF is often difficult to calculate explicitly, for even the simplest
of aberrations, and its evaluation is typically done numerically. Although computation speeds today typically
enable the calculation of the OTF of a system to be done quickly, it side-steps any physical or geometrical
intuition to as to why the OTF is degraded by a certain type of error.

By using a new quantity, named the pupil-difference probability density (PDPD), it is possible to conceptually
obtain the OTF from a novel viewpoint. The PDPD, denoted by P (η,ρρρ), is defined as a probability density for
the error ∆W with given pupil displacement ρρρ. That is, for given ρρρ, P (η,ρρρ)dη is the fraction of values of q over
the overlap region for which the aberration difference ∆W (q , ρρρ) falls within the infinitesimal range [η, η + dη].
This function can be expressed mathematically as

P (η,ρρρ) =

∫∫
O(ρρρ)

δ[η −∆W (q , ρρρ)] d2q

aOTFperf(ρρρ)
, (2)

where δ is the Dirac delta distribution and OTFperf(ρρρ) =
∫∫
O(ρρρ)

d2q/a is the system’s optical transfer function

in the absence of errors (W = 0). We can see from this definition that
∫
P (η,ρρρ) dη = 1, for any ρρρ, in accordance
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with its interpretations as a probability density function. With Eq. (2), it is possible to show that there is a
simple Fourier relation between the OTF and the PDPD. This is given by

OTF(k,ρρρ) = OTFperf(ρρρ)P̃ (k,ρρρ), (3)

where

P̃ (k,ρρρ) =

∫
P (η,ρρρ)eikη dη. (4)

The corresponding result for the MTF is

MTF(k,ρρρ) = MTFperf(ρρρ)|P̃ (k,ρρρ)|, MTFperf(ρρρ) = |OTFperf(ρρρ)|. (5)

Equations (3) and (5) state the first main result of this work: for systems where W can be regarded as independent
of wavelength (e.g. reflective systems), the OTF as a function of wavenumber k is simply the Fourier transform
of the PDPD times the OTF of the unaberrated system. Note that for systems in which W does depend on
wavelength, this formulation is still valid, i.e., Eq. (4) still applies. However, because P (η,ρρρ) then also depends
on k, the inverse process of recovering the PDPD from the OTF by inverse Fourier transformation is not possible.

In this work, we focus on two types of error for which the PDPD allows finding simple estimates. The
first concerns quadratic errors at the pupil. In this case, the PDPD turns out to have a nice interpretation: it
is a projection of the overlap region of two shifted copies of the pupil. Furthermore, an analytic closed form
approximation for the OTF can be found by fitting the PDPD with a few function shapes with simple Fourier
transforms.

The second type of error are the groove structures often left behind by some freeform manufacturing processes.
Sub-aperture freeform manufacturing tools leave behind mid-spatial frequency (MSF) errors, whose effect in
optical performance are notoriously difficult to characterize.2–5 For example, for the typical diamond-milling
and turning processes, these errors take the form of either parallel or concentric grooves over the optical part.
We show how the PDPD formalism also leads to simple yet accurate analytic estimates.

2. QUADRATIC ERRORS

Previous efforts to find analytic expressions for quadratic errors start with the work by Hopkins6 and De,7 who
derived infinite series expressions for the OTF of systems with defocus and astigmatism, respectively. Stokseth8

derived an empirical approximation to Hopkins’ result, and FitzGerrel et al.9 proposed a visualization of the
effect of defocus on the OTF through the ambiguity function. The approach presented here, on the other hand,
allows deriving a simple analytic approximation for the OTF for defocus, whose error is not more than about 1%
regardless of the level of aberration.10 We then extend this result for the OTF to general anisotropic quadratic
surface errors, including astigmatism.

2.1 Defocus

We begin with the simplest nontrivial aberration, defocus, given by

Wd(q) = h
|q|2

R2
, (6)

where h is the amplitude of the error. The error difference is easily found to be a linear function of the pupil
coordinate:

∆Wd(q, ρρρ) = 2h
q · ρρρ
R2

. (7)

Given the rotational symmetry, the PDPD and OTF depend only on the magnitude of ρρρ and not on its direction.
It is then sufficient to consider the case in which ρρρ is in the horizontal direction, so that x and y represent
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respectively the components of q that are parallel and perpendicular to ρρρ. These coordinates are constrained to
the intervals x ∈ [−xmax, xmax], where xmax = R− ρ/2, and y ∈ [−O(x, ρ),O(x, ρ)], where

O(x, ρ) =

√
R2 −

[
|x|+ ρ

2

]2
rect

(
x

2xmax

)
. (8)

Note that 2O(x, ρ) is the projection of the overlap region onto the x axis.

From Eq. (7) and Fig. 1(a) we see that the contours of constant ∆W are uniformly-spaced straight lines
perpendicular to ρρρ and so the PDPD, as a function of η = ∆W , is simply proportional to the length of these
contours. That is, the PDPD for defocus is a scaled version of the projection of the overlap region,

Pd(η, ρ) =
R2

hρAoverlap(ρ)
O
(
R2

2hρ
η, ρ

)
, (9)

where the change of variables x→ R2η/(2hρ) guarantees that the range in η over which the PDPD differs from
zero coincides with the range of values that ∆W takes within the overlap region, while the prefactor guarantees
normalization.

Figure 1. (a) Overlap region and contours of constant ∆W . (b) Exact upper half overlap region (blue), and its approxi-
mation (orange) constructed as a linear combination of a half ellipse (red, dashed) and a triangle (green, dashed).

Unfortunately, there is no simple closed-form Fourier transform for the PDPD in Eq. (9), despite its relative
simplicity. Nevertheless, it turns out that a surprisingly accurate estimate can be constructed as superposition
of two functions with simple Fourier transforms: a half ellipse and a triangle, whose Fourier transforms are,
respectively, a Bessel function and a sinc function squared. The equations of these half-ellipse and triangle
functions are

E(x, ρ) =
O(0, ρ)

xmax
Re
[√

x2max − x2
]
, (10a)

and

T (x, ρ) = O(0, ρ) triangle

(
x

xmax

)
, (10b)

respectively, where triangle(x) is the unit triangle function. The total approximation to O(x, ρ), denoted by
Oa(x, ρ), is given by a superposition that matches the exact result at x = 0, namely

Oa(x, ρ) = w(ρ)E(x, ρ) + [1− w(ρ)]T (x, ρ), (11)

where the weight factor w(ρ) is chosen so that the area ofOa matches that ofO.10 The corresponding approximate
expression for the OTF is

OTFd(k, ρ)≈Oa(0, ρ)

hρ

[
w

k
J1(kη0)+

η0(1−w)

π
sinc2

(
kη0
2

)]
, (12)

where η0 = 2hρxmax/R
2. Figure 2 compares this result with numerically calculated OTF values.
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Defocus MTF

P/R

Figure 2. Approximate MTF (magnitude of the OTF) in Eq. (12) (solid), along with numerically calculated values (orange
dots), for kh varying from 0 (darkest) to 4 (brightest) in steps of 1.

2.2 Anisotropic quadratic errors

It is possible to extend these results to general quadratic surface errors given by the expression

Wquad(x, y) =
ax2 + by2 + 2cxy

2R2
, (13)

where a, b, and c are amplitude coefficients. Given the anisotropy of Wquad the PDPD and OTF now depend
on both the magnitude and direction of ρρρ. The error difference, however, is still a linear function of the pupil
position:

∆Wquad(x, y,ρρρ) =
(aρx + cρy)x+ (bρy + cρx)y

R2
. (14)

That is, as shown in Fig. 3, the contours of constant ∆Wquad are again uniformly-spaced straight lines, but these
are no longer perpendicular to the pupil displacement. It is then convenient to introduce a rotated coordinate
system (x′, y′), also shown in Fig. 3, determined by an angle of rotation θ(ρρρ). In this system, ∆Wquad depends
on only the coordinate x′:

∆Wquad(x′, ρρρ) = −x′Cquad(ρρρ), (15)

where

Cquad(ρρρ) =

√
(a2 + c2)ρ2x + 2(a+ b)cρxρy + (b2 + c2)ρ2y

R2
. (16)

We arrive at the result for the PDPD of a general quadratic surface error:

Pquad(η,ρρρ) =
T[η̂(η,ρρρ), ρρρ]

Cquad(ρρρ)Aoverlap(ρ)
, (17)

where T(x′, ρρρ) is the projection of the overlap region onto the x′ axis, and η̂(η,ρρρ) = η/Cquad(ρρρ). Note that this
expression holds for any pupil shape, since this shape is only reflected on the functional form of T. For a circular
pupil, T(x′, ρρρ) is given by

T(x′, ρρρ) =


T1(x′, ρρρ), x ∈ [−x′M,−x′c],
T2(x′, ρρρ), x ∈ [−x′c, x′c],
T3(x′, ρρρ), x ∈ [x′c, x

′
M],

0, otherwise,

(18)
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Figure 3. Here, ∆Wquad is shown for a = −b, c = 0 in the overlap region. By rotating (x, y) by θ, gives a new coordinate
system (x′, y′) where the contours are vertical.

where the functions Ti(x
′, ρρρ) are given by

T1(x′) = 2C−(x′, ρ′x), (19a)

T2(x′) = C+(x′, ρ′x) + C−(x′, ρ′x)− |ρ′y|, (19b)

T3(x′) = 2C+(x′, ρ′x), (19c)

with C±(x′, ρ′x) =
√
R2 − (x′ ± |ρ′x|/2)2. The limits of the ranges in Eq. (18) are the x′ coordinates of the overlap

region’s cusps, ±x′c, and the location of the overlap region’s minimum and maximum x′ values, ±x′M.

Notice from Eq. (18) that there are three cases to consider, illustrated in Fig. 4. For the first case, shown in
(a), none of the regions have empty domains and T is composed of three nonzero segments. The second case,
shown in (b), corresponds to x′c = 0, for which T3(x′, ρρρ) has an empty domain (as in the case of defocus). The
third case, shown in (c), corresponds to x′M = x′c, for which both T1(x′, ρρρ) and T3(x′, ρρρ) have empty domains so
that T3(x′, ρρρ) is the only non-zero region.

Figure 4. Projections of the overlap regions for the cases when (a) 0 6= x′c 6= x′M, (b) x′c = 0, and (c) x′c = x′M. The green
and orange lines indicate the locations of ±x′c, respectively, and the black dashed lines indicate the locations of ±x′M.

As in the case of defocus, Eq. (17) provides a geometric link between the PDPD of quadratic errors and the
projection of the pupils’ overlap area, but the result does not admit a simple closed-form Fourier transform to
obtain the OTF. To address this issue, we again propose an approximation to the PDPD in terms of simple
functions with simple Fourier transforms. The proposed approximation to the overlap region is given by

Φ(x′, ρρρ) = wE(ρρρ)E(x′, ρρρ) + wD(ρρρ)D(x′, ρρρ) + wT (ρρρ)T (x′, ρρρ), (20)
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for |x′| ≤ x′M and zero otherwise, where the basic functions are a half ellipse, a parabolic segment, and a trapezium
(the difference of two similar triangles):

E(x′, ρρρ)=
M(ρρρ)

x′M

√
x′2M − x′2, (21a)

D(x′, ρρρ)=
M(ρρρ)

x′2M
(x′2M − x′2), (21b)

T (x′, ρρρ)=
Q(ρρρ)

x′M − x′c

[
x′Mtriangle

(
x′

x′M

)
−x′ctriangle

(
x′

x′c

)]
. (21c)

Furthermore, Q(ρρρ) = T3(x′c, ρρρ) is the value of T at the cusps, and M(ρρρ) = T2(0, ρρρ) is the maximum value of T.
The weights are chosen to preserve the area of the overlap region.10 Notice that in the limit when the aberration
is rotationally symmetric (defocus), the parabola disappears and the trapezium reduces to a triangle, recovering
the previous result.

By using this approximation, the PDPD can be estimated as

Pquad(η,ρρρ) ≈ Φ[η̂(η,ρρρ), ρρρ]

Cquad(ρρρ)Aoverlap(ρ)
, (22)

and its Fourier transform gives the following approximate OTF:

OTFquad(k,ρρρ) ≈ 1

Cquad(ρρρ)R2

{
wE(ρρρ)M(ρρρ)

J1(kηM)

k

+
4wD(ρρρ)M(ρρρ)

πη2M

[
sin(kηM)− ηMk cos(kηM)

k3

]
+

2wT (ρρρ)Q(ρρρ)

π(ηM − ηc)

[
cos(kηc)− cos(kηM)

k2

]}
, (23)

where ηM = Cquad(ρρρ)x′M and ηc = Cquad(ρρρ)x′c. A comparison of the MTFs calculated from Eq. (23) with those
computed numerically is seen in Fig. (5). The RMS error is around 1%.

Figure 5. Numerically generated MTF (colored left plots) and percentage difference between the numerical MTFs and the
analytic forms in Eq. (23) (grayscale right plots), for (ka, kb, kc) equal to: (2,−2, 0) (a), (4,−4, 0) (b), (2, 2/3, 1) (c), and
(4, 4/3, 2) (d). The maximum difference is less than 1%.

3. PERIODIC ERRORS

Freeform manufacturing tools, which are typically smaller than the optical surface they are finishing/polishing,
leave behind errors whose characteristic frequencies are between those described by low-order Zernike terms and
those attributed to surface roughness. These errors, known as mid-spatial frequency (MSF) errors, pose a range
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of performance issues.2–5 Especially important for manufacturers, they complicate the ability to set effective
tolerances for surface quality.

As mentioned in Sec. 1, the PDPD can be used to understand how periodic errors affect the OTF.11 Similar
methods were shown to be effective on another metric of optical performance: the Strehl ratio.12 In fact, the
methods presented here is valid for errors that are periodic with any frequency, not just those of MSF.

3.1 One-dimensional examples

To illustrate how the PDPD gives a simple picture of MTF performance, we now consider four different periodic
error patterns in one dimension: a binary rectangular groove with fill factor 1/2, a symmetric triangular groove,
a sinusoidal groove, and a piecewise parabolic groove. These groove profiles are chosen because their simplicity
helps illustrate the concepts introduced here and allow analytic solutions. In particular, the piecewise parabolic
groove structure mimics the profile left behind by a diamond tool. For all patterns, the spatial period is denoted
by T and the peak-to-valley height by h. Throughout, the dependence on the one-dimensional separation ρ is
expressed in terms of the shorthands ρ̂T = (ρ mod T )/T and z = 1−|1−2ρ̂T |. The groove patterns we examine,
and the corresponding PDPD and its Fourier transform are presented in Table 1. Illustrations of these results is
shown in Fig. 6. The plots for the PDPD within the second column are shown on their side so that they can be
related to the error differences shown in purple in the first column.

Table 1. Four groove shapes with their PDPD (second column) and the PDPD Fourier transform (third column).

Groove shape P (η, ρ) P̃ (k, ρ)

z

2
[δ(η − h) + δ(η + h)] z cos(kh)

Rectangular +(1− z)δ(η) +(1− z)

1− z
2

[δ(η − zh) + δ(η + zh)] (1− z) cos(zkh)

Triangular +
1

2h
rect

( η

2zh

)
+

sin(zkh)

kh

Re

(
1

π
√

[h sin(πρ̂T )]2 − η2

)
J0[kh sin(πρ̂T )]

Sinusoidal

1

8hρ̂T (1− ρ̂T )
rect

[
η

8hρ̂T (1− ρ̂T )

]
sin[4khρ̂T (1− ρ̂T )]

4khρ̂T (1− ρ̂T )
Piecewise parabolic
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Figure 6. The PDPD functions for one-dimensional (a) rectangular, (b) triangular, (c) sinusoidal, and (d) piecewise
parabolic periodic groove patterns. The left column shows two copies of the groove pattern (blue and orange) separated
by ρ, and their difference (purple). The center and right columns are the corresponding PDPD and the modulus its Fourier
transform (solid green). The dashed and dotted green lines show the approximations 1−k2D(ρ)2/2 and exp[−k2D(ρ)2/2],
described in Section 6. Here, we used ρ = T/6.

3.2 Parallel groove patterns

Here we show how the PDPD can be used to understand typical groove structures left behind by diamond milling:
parallel tracks as seen in Fig. 7(a). If the surface in question is located near a plane conjugate to the aperture
stop, the error W at the pupil is approximately proportional to the surface error. Consider, for example, a
circular pupil of radius R across which the error has the shape of grooves aligned with the y-axis. Under the
assumption that R is much larger than the groove width T we can use the approximation P (η,ρρρ) ≈ P1(η, ρx),
where ρx is the x-component of ρρρ. This means that the MTF is given by

MTF(k,ρρρ) ≈ MTFperf(ρρρ)|P̃1(k, ρx)|. (24)

Figure 7 illustrates this result for the case of 5 parabolic groove profiles across the pupil.

Figure 7. (a) Circular pupil whose error presents five parabolic grooves of height h across its diameter, aligned in the
vertical direction. (b-d) MTF as a function of both kh and spatial frequency for different radial slices, corresponding to
the directions of the orange, green, and blue arrows shown in (a). The axis variable ρ/R equals the normalized spatial
frequency f/fc, where f is the spatial frequency in the direction of the radial slice and fc is the coherent cutoff frequency
for the circular pupil.

3.3 Concentric groove patterns

The framework of the PDPD shows its true power when applied to a system for which the errors are composed of
concentric circular grooves with identical cross sections. These are the typical types of groove tracks left behind
by diamond turning. This means, in this case, the error is only a function of the radial pupil coordinate q with
radial period T . It is the rotational symmetry of such a problem that can be explicitly exploited in ways that
would otherwise be difficult to do without the PDPD. The PDPD is shown to be be expressed as:11

P (η, ρ) ≈ 1

F (ρ)

[
A(ρ)

2
Q̂tP1(η, ρ) +

B(ρ)√
2
Q̂τP 1(η, ρ/2) + E(ρ)P0(η)

]
, (25)
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Figure 8. Diagrams representing the various coordinates, for ρ < R (a,b) and ρ ≥ R (c,d). In (a) and (c), two copies of the
pupil with a rotationally symmetric periodic groove pattern are shown, mutually displaced by ρ. The distances to a given
point q from the centers of the pupils are r1 and r2. The elliptic and hyperbolic (red and blue) regions in the (qx, qy)
space over which both sets of grooves are nearly parallel map onto straight bands (red and blue) in the (ρ, r) space.

and the corresponding OTF estimate is found as 4F times the Fourier transform in η of this result:

OTF(k, ρ) ≈ 4

[
A(ρ)

2
Q̂tP̃1(k, ρ) +

B(ρ)√
2
Q̂τ P̃ 1(k, ρ/2) + E(ρ)P̃0(k)

]
. (26)

In these results, A(ρ), B(ρ), and E(ρ) are the areas shown in blue, red, and green in Fig. 8, respectively, such
that A(ρ) +B(ρ) +E(ρ) = F (ρ). Note that if the pupil were noncircular or if it were not centered at the center
of the grooves (due, for example, to an off-axis beam footprint), the approximate result above would still be
valid, as long as the areas A, B, E, and F are calculated with the appropriate boundaries. Furthermore, the
quantities associated to P1, P 1, and P0 are directly related to the one-dimensional PDPD that corresponds to
the groove profile of the tracks. This directly links the one-dimensional results to this case. Also, t = Min(ρ, T )
and τ = −Min(2R− ρ, T ), and the integral operator Q̂x applied to a function f(ρ) is defined as

Q̂xf(ρ) =

∫ 1

0

f(ρ− xv)√
v

dv. (27)

Since this operator has the form of a convolution and is applied to periodic functions with period T , the
easiest way to calculate its effect is through a Fourier series expansion of the function it acts on. That is, if the
periodic function (assumed here to be even) is written as

f(ρ) =
1

2
a0 +

∞∑
m=1

am cos

(
2πmρ

T

)
, (28)

then it can be shown that this operator simply modifies the Fourier series as

Q̂xf(ρ) = a0

+

√
T

|x|

∞∑
m=1

am√
m

[
C

(
2

√
m|x|
T

)
cos

(
2πmρ

T

)
+ sgn(x)S

(
2

√
m|x|
T

)
sin

(
2πmρ

T

)]
, (29)

where C and S are the Fresnel cosine and sine integrals, respectively. Hence, in order to solve the integrals in
Eq. (26), we have to find the Fourier coefficients am for P̃1. These coefficients are summarized in Table 2 for the
1D PDPD Fourier transforms in Table 1. Note that, for computational purposes, only a finite number of terms
in the Fourier series are used, and the number required to achieve a given level of error depends on kh. The
last column on Table 2, labelled as m10%, gives a simple estimate of the terms m ≤ Max(0,m10%) to be used
to achieve an error of under 10%. In all cases, a single Fourier coefficient (m = 1) is sufficient to achieve this

level of error for peak-to-valley aberration heights up to about half a wavelength. Finally, notice that P̃0(k) in
Eq. (26) corresponds simply to a0/2, given explicitly in Table 2.
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Table 2. Fourier expansion coefficients (second and third columns) for the functions P̃ (k, ρ) in Table 1, corresponding to
the groove structures shown in the first column. The fourth column shows an estimate of how many Fourier terms are
needed (m ≤ Max(0,m10%)) for the truncated Fourier series to achieve an error below 10%.

Groove shape P̃0(k) = a0/2 am m10%

1 + cos(kh)

2
[1− cos(kh)]

2[1− (−1)m]

m2π2
1

Rectangular

2− 2 cos(kh)

k2h2
4k2h2[1− (−1)m cos(kh)]

(k2h2 −m2π2)2
−0.375

Triangular +0.330kh

J2
0 (kh/2) 2J2

m(kh/2) −0.851
Sinusoidal +0.481kh

π

2kh

[
C2

(√
2kh

π

)
π

8|kh|

∣∣∣∣Erfi

[
(1 + i)(2kh−mπ)

4
√
kh/2

]
−1.184

Piecewise parabolic +S2

(√
2kh

π

)]
+Erfi

[
(1 + i)(2kh+mπ)

4
√
kh/2

]∣∣∣∣2 +0.521kh

Figure 9 shows plots of these MTF estimates for the same four groove patterns, as well as of each of the three
individual contributions to the estimate in Eq. (26), for kh = 1.6. Notice that for kh 6= 0 the MTF presents an
initial peak for ρ < T , followed by oscillations around a baseline, shown in gray in Fig. 9; this general behavior
for the MTF has been described before by employing a different approach.2 It turns out that the equation for
this baseline is very simple, and gives a basic estimate of the MTF for ρ > T . Note from Eq. (29) and the fact

that a0 = 2P̃0(k) that the first and second terms in Eq. (26) include parts proportional to P̃0(k), and that these,

added to the third term of Eq. (26), give simply MTFperf(ρ)P̃0(k). Therefore, this baseline is simply the MTF of

the unaberrated system scaled by P̃0(k). The number of oscillations around the baseline is precisely the number
of periods across the surface. The amplitude of these oscillations depend on both the number of periods across
the surface, from the OTF’s dependence on A(ρ) and B(ρ), and h from the OTF’s dependence on the Fourier
coefficients am, shown in Table 2.

4. CONCATENATION OF ERRORS

There are often multiple error contributions within a single optical system, which may come from separate
surfaces, different manufacturing processes for a single surface, or fluctuating media such as the atmosphere. If
these errors are approximately uncorrelated, the total PDPD is constructed following the standard concatenation
rule for independent probability densities, as a convolution of the PDPDs Pi from each contribution:

P (η,ρρρ) = (P1 ∗ P2 ∗ · · · ∗ Pn)(η,ρρρ). (30)
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Figure 9. MTF for the four simple circular groove shapes, for kh = 1.6. In each figure, the orange dots correspond to
a numerical computation, of the MTF, the black curve corresponds to the estimate in Eq. (26), and the blue, red and
green curves correspond to the contributions from each of the terms in Eq. (26), in that order. The gray curves show the

baseline MTFperf(ρ)P̃0(k).

Then, from the Fourier convolution theorem, the MTF of the total system is simply the MTF of the unaberrated
system times the product of the Fourier transforms of the individual PDPDs:13

MTF(k,ρρρ) = MTFperf(ρρρ)

n∏
i=1

|P̃i(k,ρρρ)|. (31)

Note that, for this relation to hold, the two different error contributions do not need to be uncorrelated due to
independent random fluctuations, but simply from the point of view of the PDPD; for example, two deterministic
groove structures in different directions or with different periods have PDPDs that are effectively uncorrelated.
This is because, for any given ρρρ, if we were to pick a large series of points q spanning the overlap region, the
values of ∆W for the two contributions would be largely uncorrelated.

It can also be shown that the PDPD is related to another error measure that has been used to study effects on
optical performance: the structure function.14–16 It turns out that the PDPD is more general than the structure
function as the structure function D(ρρρ) is just the variance of the PDPD:

D(ρρρ) =

∫∫
O(ρρρ)

∆W 2(q, ρρρ) d2q =

∫
η2P (η,ρρρ) dη. (32)

Furthermore, the PDPD lends itself, as a probability density function, to the incorporation of more realistic
errors. For example, realistic groove tracks left behind by manufacturing tools, or the sinusoidal thermal cycling
seen in freeform manufacturing, may not be perfectly periodic. There can be randomness introduced in both
the amplitude and periodicity of these errors. Since the PDPD itself is a probabilistic quantity, it can easily
be incorporated easily with the random variables that govern the fluctuations in amplitude and period of more
realistic errors.

5. CONCLUDING REMARKS

The PDPD has been shown to be insightful in understanding the effects of MSF errors on optical performance.
Specifically, the processes of diamond milling and turning were studied, but the theory was demonstrated for
various groove profiles and so the results for this project could be extended to other types of MSF contribu-
tions, such as thermal cycling. The theme of the PDPD is its ability to exploit geometries that would otherwise
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be difficult to use in the OTF domain. Furthermore, we saw how the PDPD can be used to understand the
concatenation of uncorrelated errors within an optical system. As mentioned earlier, the PDPD also provides a
foundation to tackle more realistic problems where quasi-periodic errors are present through its interpretation
as a probability density.

Going beyond MSF structures, the PDPD can also be used to understand quadratic surface errors - including
those of defocus and astigmatism. An elegant geometric property of projections was revealed when the PDPD
was implemented, showing that the PDPD is just a projection of the overlap region (an idea that can be ex-
tended to non-circular binary apertures). Once this geometry was understood, it was possible to approximate
these projections with shapes with well-known Fourier transforms in order to get closed-form expressions for the
OTF that are accurate to within 1%.
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