Configurations in Android Testing: They Matter

Emily Kowalczyk
University of Maryland, College Park
College Park, MD, USA
emilyk@cs.umd.edu

ABSTRACT

Android has rocketed to the top of the mobile market thanks in
large part to its open source model. Vendors use Android for their
devices for free, and companies make customizations to suit their
needs. This has resulted in a myriad of configurations that are ex-
tant in the user space today. In this paper, we show that differences
in configurations, if ignored, can lead to differences in test outputs
and code coverage. Consequently, researchers who develop new
testing techniques and evaluate them on only one or two configura-
tions are missing a necessary dimension in their experiments and
developers who ignore this may release buggy software. In a large
study on 18 apps across 88 configurations, we show that only one
of the 18 apps studied showed no variation at all. The rest showed
variation in either, or both, code coverage and test results. 15% of
the 2,000 plus test cases across all of the apps vary, and some of the
variation is subtle, i.e. not just a test crash. Our results suggest that
configurations in Android testing do matter and that developers
need to test using configuration-aware techniques.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

KEYWORDS
Android, Mobile Testing

ACM Reference Format:

Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon. 2018. Configurations
in Android Testing: They Matter. In Proceedings of the 1st International
Workshop on Advances in Mobile App Analysis (A-Mobile ’18), September 4,
2018, Montpellier, France. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3243218.3243219

1 INTRODUCTION

Mobile devices are becoming our primary means for performing
day to day activities. They are used to conduct business, for per-
sonal well being and for entertainment. The amount of software
written to run on these devices is exploding, and the mobile land-
scape is beginning to resemble that of highly-configurable software
systems [6, 18], systems where different platforms and features can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

A-Mobile ’18, September 4, 2018, Montpellier, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5973-3/18/09...$15.00
https://doi.org/10.1145/3243218.3243219

Myra B. Cohen
University of Nebraska-Lincoln
Lincoln, NE, USA
myra@cse.unl.edu

Atif M. Memon
University of Maryland, College Park
College Park, MD, USA
atif@cs.umd.edu

be combined in a variety of ways, e.g., apps automatically adapt to
how they detect user movement based on the sensors (proximity,
light, accelerometer) available. This leads to a potential combina-
torial explosion in the number of possible platforms under which
the software must be run and tested, potentially taxing the limit of
developer resources [10].

There has been a large body of research on software testing for
highly-configurable software [16, 18] where studies have shown
that different configurations of the same system may fail or pass
independently on the same test cases. This has led to a plethora
of testing techniques to either sample the possible set of configu-
rations, or order (prioritize) configurations to find faults as early
as possible. However, most of this research has been performed
in a traditional (desktop) domain. There is mounting evidence [4]
that this is problematic in mobile environments as well, including
both of the most popular systems, Android and iOS, where the
term fragmentation has been introduced to represent a subset of
the possible causes.

Modern mobile systems differ from traditional desktop systems
in several ways. First, the software stack works tightly with the
different hardware devices and sensors, meaning changes in hard-
ware are likely to impact software. Second, most devices can rotate
and have differing (small) screen sizes which can make rendering
of information less portable. Third, there is a rapid evolution of
the software development kits (SDKs). Software written today, will
likely be run on newer versions of the SDK, and included libraries
will have been written for earlier SDKs. Last, the need for a large
number of hardware platforms or simulation environments is nec-
essary and it is potentially expensive to test all these systems. The
study that we performed in this paper cost approximately $1,600
using Google‘s Test Lab [7] and we would expect to incur similar
costs on other testing platforms.

In recent years, multiple testing techniques and tools have been
proposed [1, 3, 13-15], however, few have been configuration-aware
in their techniques, implementations or evaluations [5, 8, 15, 17].
Others have pointed to a configurabilty issue, called fragmentation,
which usually refers exclusively to the diversity in Android devices
(OS customizations, display) and API versions. While developers
and researchers have cited fragmentation as a challenge, its impact
on test outputs remains unclear, as does the impact of other factors
(locale, orientation) and their interactions.

In this paper we perform an empirical study across a range of
applications, in varying environments— including different hard-
ware, forms (emulators and physical devices), Android API levels,
and orientations- to evaluate the impact of configurability on test
outputs and code coverage. We run over 2,000 tests on a test matrix
of 5 factors, and find that over 15% of test cases vary when run
on differing configurations. The differences include code coverage,
different functional outcomes and system crashes. We also find

A-Mobile ’18, September 4, 2018, Montpellier, France

configuration factors interact, and examine some of the causes of

differences - seeing that changing configurations sometimes finds

subtle test dependencies due to ordering changes across SDKs.
The contributions of this work are:

(1) A case study on tests suites run across 88 configurations
spanning 5 factors including 6 physical devices, 3 virtual
devices, 5 APIs, 2 locales and 2 orientations. To the best of our
knowledge, this is the first study to look at how test outputs
are impacted by variability across device configurations for
multiple Android apps.

(2) Evidence indicating that configuration does matter (15% of
all tests varying across configurations) and factors interact.

In the next section we present background and related work. We
then present our Empirical Study (Section 3) and Results (Section
4). We end with conclusions and future work.

2 BACKGROUND & RELATED WORK

There has been a large body of work on testing Android applications
[1-3,5, 14, 15]. This includes random techniques such as Dynodroid
which incorporates feedback [13], model-based techniques such as
MobiGuitar [1] and SwiftHand [3], and search-based techniques
such as EvoDroid [14] and Sapienz [15]. The notion of variability
in Android is known [9, 11, 19, 20].

The term fragmentation has been used to describe variability
due to vendor customizations (resulting in OS differences and UL
themes), API versions, display (screen density and size), and/or hard-
ware (CPU, RAM). Such variations have been shown to introduce
testing [5] as well as performance and security challenges [12, 21]
where results or vulnerabilities appear only on certain configura-
tions. Other factors beyond those typically associated with frag-
mentation have been shown to impact testing as well. These include
orientation of the device (i.e., landscape or portrait), localization
(which may load different resources) and permissions [17].

While developers and researchers have cited fragmentation as
a challenge, there is only one empirical study, which explores the
features and causes of resulting compatibility issues. Recently, Wei
et al. [20] evaluated 191 bug reports containing compatibility issues
from 5 open source apps to find common types, causes, symptoms,
and fixes. They found that issues could be divided into two types,
those seen on a certain device model (i.e., device specific) and those
that occur with a specific API level (i.e., non-device specific).

The existing research differs in that it studies bug reports and
does not quantify the differences and impact on outcomes such as
code coverage and test results. That is the focus of this this paper.
Our work also differs in that it does not look at a single factor in
isolation (permissions, locale, device model, API), but how their
combined impact may create noisy artifacts.

3 EMPIRICAL STUDY

We focus our study on the following two research questions.
RQ1 (Variation in test outputs): How are test outputs such
as test results and code coverage impacted by the variability seen
across Android devices?
RQ2 (Causes of variation and interaction between factors):
(a) What are the causes of variability in test results in our sample?
(b) Is variation caused by one factor or do multiple factors interact?

Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon

We collect a sample of open source apps with publicly available
test suites, and run each on a test matrix of over 80 configurations.
We selected configurations that are representative of the diversity
seen in Android devices. Our factors are device model, screen size,
form, Android API level, locale and device orientation. Test results
and code coverage are collected for each run, and each app‘s outputs
are evaluated and compared across configurations for variation.

3.1 Apps Studied

We selected apps from F-Droid, an open source app repository. We
placed two constraints on the sample. The apps had to have been
updated in the last two years, to ensure they are likely to cover the
API versions available on Test Lab‘s devices. Second, we required
the test suite be of reasonable size, which we defined as containing
40 or more tests. This allows us to evaluate variation in suites as
well as tests, while staying within a budgeted time on Test Lab.

Our final sample consists of the 18 apps listed in Table 1. We
obtained this by first compiling a list of open source apps listed on
the F-Droid repository on May 20, 2017. In addition, we searched
online for ‘Open Source Android app‘ using Google, and manually
looked through the first 3 pages of results.

The initial search resulted in 2,135 apps, which we then filtered
to include only those whose code had been updated in the last 2
years. For each of the remaining 1,170 apps, we downloaded their
code and estimated the number of tests in each project by grepping
the files in each app's test directories, and counting the number of
test annotations and method names containing "test". All projects
that were estimated to contain more than 30 tests (approx. 31) were
then manually inspected and run. This cutoff was used to account
for imprecision in estimating the test count. Apps that ran 40 or
more tests when run locally were added to our final sample.

Table 1 presents detail for each of the apps including the date of
its last update (at time of download), relevant build information, the
maximum observed size of its test suite, and information related to
its presence on the Play store. All tests are integration tests.

3.2 Device Configurations & Test Matrices

The independent variable in our study is the device configuration.
We define a device configuration as a simplified description of the
system that executes a test suite. Test Lab offers 4 configurable
device parameters, which we use to define a device configuration.
These include:

Device. This is the hardware or simulated hardware that is used
to execute the tests (e.g. Nexus 5,Samsung Galaxy).

Android API level. Google releases a new Android API roughly
every year. At the time of this paper, there are currently 26 API
levels with the majority of devices (approximately 98.8%) spanning
11 levels (API 16-26).

Locale. Each Android device has a default locale set by the user.
The locale indicates a geographical or political region, which is
used by the system to localize the app and load locale-dependent
resources based on the setting.

Device Orientation. The orientation of the device refers to the
device's screen rotation (portrait or landscape).

Table 2 lists the values each of the variables can take in our study.
The first column, device, lists the 9 device models along with their

Configurations in Android Testing: They Matter

A-Mobile ’18, September 4, 2018, Montpellier, France

Table 1: Sample apps. ‘App° is the app‘s name, ‘LOC" is the lines of code in the app‘s source code, ‘# of tests‘ is the max. number
of tests run on any configuration, ‘Updated is the date of the app‘s last update (at the time of download) and ‘Category‘ and
‘Installs‘ are the app‘s category and # of installs if available on Google Play.

App Java LgC i # of Tests e A[;lrget Updated | Commit | Category | Installs
Orgzly 18,532 0 4,838 357 14 25 2017-04-17 | bd44aa2 Prod. 10-50k
AntennaPod 17,186 0 5,642 215 10 23 2016-12-17 | e76e78c Video 100-500k
Open Camera 23,581 0 16,741 173 15 24 2017-02-18 | 9016470 Photo 10-50M
MyExpenses 40,653 0 31,010 156 9 25 2017-04-17 | 993bda0 | Finance 500-1m
AndStatus 38,883 0 14,025 150 16 25 2017-03-15 | dc410f9 Social 5-10k
AnyMemo 20,377 0 11,031 150 15 25 2017-02-08 | b612944 Edu. 100-500k
ForkHub 21,423 0 9,576 143 19 25 2017-03-26 | e50777e Prod. 50-100k
KouChat 9,178 0 466 134 16 24 2016-09-05 | 5769417 Comm. 1-5k
PocketHub 19,839 0 9,915 133 15 25 2017-04-13 | acdbOe6 Prod. 10-50k
Google I/O 26,179 0 10,981 123 16 23 2016-11-06 | 5b09d51 Ref. 500-1m
TopoSuite 21,693 0 11,724 109 15 25 2017-01-17 | e9ea9dc Prod. 1-5k
Loop Habit Tracker | 20,892 0 7,953 105 15 25 2017-04-13 | 96b95ed Prod. 500-1m
Kore 25,445 0 11,036 71 15 25 2017-02-03 | 1cb7787 Video 10-50m
Simple SMS remote | 5,213 0 1,698 71 16 25 2017-01-02 | 8dfb65f Tools 500-1k
KeePassDroid 15,415 | 6,238 | 6,408 68 3 12 2016-11-07 | 4115746 Tools 1-5m
Suntimes Widget 11,503 0 5,918 53 10 24 2017-04-17 | 35b2bbe - -
Poet Assistant 5,719 0 1,804 49 15 25 2017-04-23 | 692698d Ref. 50-100k
Vespucci 49,035 0 32,391 47 9 24 2017-04-08 | 53c0291 Tools 10-50k

Table 2: Device configuration variables and values. Each col-
umn represents a dimension in our test matrix. The matrix
contains all possible combinations of values for device, API,
locale (loc.), and orientation (ort.) with the API value condi-
tioned on the device chosen.

Device API Loc. | Ort.
Nexus 5 (VM, Ph., 1920 x 1080) 19,21,22,23

Nexus 5 (Phys., Ph., 1920 x 1080) 19,21,22,23

Nexus 7 (VM, Tab., 1280 x 800) 19,21,22

Nexus 7 (Phys., Tab., 1920 x 1200) 19,21 EN/ | Prt./
Nexus 9 (VM, Tab., 2048 x 1536) 21,22,23,24,25 | FR Lnd.
Nexus 9 (Phys., Tab., 2048 x 1536) 21

LG G3 (Phys., Ph., 2560 x 1440) 19

Galaxy Tab 3 (Phys., Tab., 600 x 1024) | 19

Galaxy S6 (Phys., Ph., 2560 x 1440) 22

attributes such as form (virtual vs. physical), screen size (phone
vs. tablet), and screen resolution. A screen is labeled a phone if
it is less than 7" and a tablet if greater. The second column, API,
lists the range of API versions the device runs on in Test Lab. The
columns, locale and orientation, list the locales and orientations
our configurations cover.

The variables and values in Table 2 are then used to build the test
matrix each app is run over. The matrix contains 88 configurations
obtained from all possible combinations of the values in Table 2°s
columns with the values for API conditioned on the device. For
example, if we were to build a matrix containing only the Galaxy
Tab 3 and Galaxy S6 the matrix would contain the following 8
configurations: (Galaxy Tab 3, 19, en_US, Port.), (Galaxy Tab 3, 19,

en_US, Land.), (Galaxy Tab 3, 19, fr, Port.), (Galaxy Tab 3, 19, fr,
Land.), (Galaxy S6, 22, en_US, Port.), (Galaxy S6, 22, en_US, Land),
(Galaxy S6, 22, fr, Port.), (Galaxy S6, 22, fr, Land.).

3.3 Testing Platform

We use Google's Test Lab [7] as our platform to run tests since it
provides a cloud based solution, with a full test harness for run-
ning tests on different platforms (both physical and virtual). Testers
submit jobs containing an Android Package Kit (APK), a test APK
containing the test suite, as well as device and configuration infor-
mation that is used to form the test matrix. Test Lab then runs the
tests on each configuration in the matrix, and produces test results,
code coverage, and a video showing the application running during
the test. For virtual devices, Test Lab creates new instances for each
run of a test suite. For physical devices, all app data is deleted, and
if the device allows it, a clean ROM is flashed each time [7].

3.4 Test Artifacts

The test outputs provide our dependent variables for this study.
We measure several aspects of the test output. These include a test
results file, code coverage report, and system log. We describe each
in more detail below.

Test Results: Test results contain information about which tests
ran and their success. Tests either PASS, FAIL, SKIP or are INCON-
CLUSIVE. INCONCLUSIVE and SKIP indicate the test failed to be
executed. We do not discuss these in more detail since they are
not evaluated. Tests that are executed either PASS or FAIL. A test
returns FAIL if it encounters an exception before completing, and
PASS if it completes with no such exception.

Code Coverage: Code coverage is collected for each run using
Jacoco, the Android SDK's default code coverage library. To enable

A-Mobile ’18, September 4, 2018, Montpellier, France

coverage, we altered each app‘s build and manifest file to include
required attributes and permissions, and extended the app's test
runner to ensure the needed permission was granted before writing
to the device. Each coverage executable is then used to generate
an XML report that provides information about the total line and
branch coverage of the suite as well as which lines in the code were
covered during the run. We parse the report for overall statement
coverage, and compare the distribution within each app.

Logcat: A logcat file (log of system messages) for the session
is also collected. It provides detailed information such as when
background services are run, and captures complete stack trace
information for exceptions thrown. The logcat file was used for
RQ2, to obtain information about failures and the state of the device.

3.5 Experimental Setup

Since it is possible for test outputs to vary due to flakiness, we
ran each app twice (see Section 3.6). In order to run the tests, we
were required to build the apps and their test apks ourselves. When
building, we made as few changes as possible, altering the source
code only to enable code coverage. To enable code coverage, we
added the needed properties to the build file and permissions to the
AndroidManifest.xml file. We then extended tests runners to grant
the needed permissions at the end of testing, which was required
for configurations running APIs greater than or equal to API 23.

All runs took place during non-business hours during August-
October 2017. Combined over 290,486 instances of tests were run.
The runs amounted to over 248 hours of testing on physical devices
and 293 hours on virtual devices.

3.6 Calculation of Metrics

3.6.1 RQI (Variation in test outputs). For this RQ we evaluate
two output files, their test results and code coverage, and look for
differences between configurations within each app.

Each run of the test suite on a configuration outputs a test results
file. The results for each configuration are then used to form a
results matrix for that execution of the test matrix. To account for
flakiness, we combine the results for both runs before measuring
variation so we can identify tests that produced different results
within configuration between runs. When combining the matrices,
we resolve each cell value using the following rules: If the test
passes on a configuration for both runs, the corresponding cell for
the test and configuration is given the value PASS. If it fails on
both runs, the cell is given the value FAIL. And if it passes during
one run but fails on the other, the cell is given the value FLAKE.
There were several tests that either timed out or terminated early
on configurations, and had 1 result instead of 2. Due to budget
restrictions, we used the result of the successful run as the test’s
result in the combined results matrix. Note the majority of tests
(over 85%) had two results. After the results for both runs have been
aggregated, we use the resulting matrix to determine the number of
tests that varied between configurations, where a test is considered
to vary if it passed on one configuration and failed on another.

Code coverage was also compared between configurations. We
collected the overall statement coverage percentage for every run
on every configuration and evaluated the distribution for each app.

Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon

3.6.2 RQ2 (Causes of variation and interaction of variables). In
RQ2, we look to better understand the causes of variation. Since
determing the cause of configuration-dependent failures can be
difficult [20], we manually evaluate 2 apps, the app with the most
variation as well as 1 randomly selected. We then look at the types
of exceptions thrown in configuration-dependent failures across
the entire sample.

We also constructed classification trees for each varying test
and failure, where a failure is an exception type and line number
thrown. For each unique failure within a test we constructed a
decision tree using the output of all test runs that executed the line.
All configuration variables were features, and a boolean indicating
whether the exception was thrown at that line as it’s target. The
resulting tree provides an explanation of the variables and values
that may lead the exception to surface at that line. The trees were
created using Weka’s J48 algorithm. The trees used 10-fold cross
validation, had the minimum number of instances required to split
set to 1, and were left unpruned.

In addition to causes, we also evaluated whether configuration-
dependent failures occurred when multiple variables interacted.
Variable interaction was first detected by the length of the path
from the exception leaf to the root, and then evaluated manually.

3.7 Threats to Validity

We explore our study’s primary threats to validity below.

Construct validity. Some of the variation we report may be
caused by flakiness and not the configuration. We have attempted
to reduce this by running the apps twice, and also accounting for
signs of flakiness in our results.

External validity. Our sample contains only 18 apps. However,
these are from a wide range of categories from a popular open
source repository, F-Droid and we used objective criteria to filter
out candidates from our sample.

Internal validity. We acknowledge that it is possible there were
faults in the tools used to collect code coverage etc. However, we
used a standard platform (Test Lab).

4 RESULTS

RQ1 (Variation in test outputs). Figure 1 presents the percentage
of tests in each app‘s suite that varied. The dark blue bars show
the percentage of varying tests in each app‘s suite, and light blue
indicates the percentage of these tests that flaked on at least one
configuration. The app, Vespucci, had the highest percentage of
varying tests with nearly half (46.81%) of its tests varying. The
app, KeePassDroid, had the least variation (0%) with all tests giving
consistent results. Overall, nearly half of the apps in our sample (8
out of 18) had over 20% of their tests vary across configurations.

Variation in code coverage was less common, but did exist. Fig-
ure 2 shows the variation seen in each apps statement coverage
percentages. Note two apps, Open Camera and KouChat, are not
included in Figure 2. This is because a test in each app's suite killed
the process, resulting in the suite not completing and code cover-
age not being collected. Only configurations where the suite ran to
completion are included in Figure 2.

Simple SMS Remote had the largest amount of coverage varia-
tion with a range of 10.89%, while Vespucci (10.7%), Poet Assistant

Configurations in Android Testing: They Matter

(8.2%), Suntimes Widget (5.3%), and MyExpenses (3.9%) also showed
variation. The apps on the left side of the figure show the most
variation in code coverage. These are also the apps with the highest
number of varying tests. The apps on the right side of the figure
are those with the least variation in tests results and code coverage.

B Total % of varying tests
% of tests with at least one config flaky

n w N
S S S

Percentage of varying tests (%)

=5

. e
T QO T & ¢ § ® © B = o F L 9 2 g 2 D
8 = 5 5 5 £ % &8 & ¥ g & £ 2 2 2 E B
2 o » E x § 2 e 2 2 0o ¢ & £ T =g 5
@ =) ‘B) 4 2 T c o I3 3 [e] n 2 = =]
S 8 2 5 S 3 2§ £ ¢ 8 2 % & z &
> 8 T o0 = 8 c 2 w L £) Z 4
3 = E 8 £ > o
S 3 2 £ § < s 8
a o P é X
a
£ 3
172}

Figure 1: Variation in test results across configurations. The
‘% of varying tests‘ is the percentage of tests in the app‘s suite
that pass on one configuration and fail on another.

80

; -

-~
o

@
S

1
3

HIlH
\

Percentage of Statements Covered (%)

-
¥
|
1
|

i
|

Vespucci

Google /10

Poet Assistant
Kore

Simple SMS Remote
Loop Habit Tracker
Suntimes Widget
AntennaPod
Orgzly
MyExpenses
TopoSuite
AndStatus
PocketHub
ForkHub
AnyMemo
KeePassDroid

Figure 2: Variation in statement coverage across configura-
tions.

RQ2 (Causes of variation and interaction among factors).
We first look at a randomly selected app, TopoSuite, as well as the
app with the most variation, Vespucci. We then look at the types of
exceptions thrown by varying tests across all apps.

TopoSuite. The first app we examined was TopoSuite. TopoSuite
is an application for land surveyors, and allows users to manage and
perform calculations on geographical points. It had little variation

A-Mobile ’18, September 4, 2018, Montpellier, France

Table 3: Frequent causes of variation in TopoSuite and
Vespucci. ‘Cause’ is the factor that caused the failure (‘A
is for API, ‘D device, ‘L locale, ‘O° orientation, ‘F* form,
‘SS‘ screen size). Number in each cell is the number of tests
whose failure was caused by the factor.

App Cause
A|D|L|O|F|SS

TopoSuite | 1 | 2

Vespucei |24 |4 |6 |3 |3 |1

—_

in its outputs with only 4 of its 109 tests varying and code cover-
age variation of 3.6%. We manually inspected TopoSuite's outputs
and found its varying tests were due to 3 configuration-dependent
failures that surfaced in 4 tests. Table 3 shows the causes for each
test. All failures were caused by a single factor with 2 tests failing
due to device, 1 APL and 1 locale.

TopoSuite‘s variation occurred primarily in testing tools and
libraries. The device specific failures were caused by the same
exception, a RuntimeException that surfaced only on Galaxy Tab 3
devices. The error occurred in the test class‘s setup method, and
was impacted by OS customizations that caused the View object to
be created off the main UI thread — an action prohibited in Android.
Another failure was caused by locale, and was due to an oracle
that had not taken configuration into account. The test computes
distances between location points. It fails on the FR locale, because
values are converted to strings for comparison and the FR locale
uses a comma for the decimal marker instead of an expected period.
The last error in TopoSuite was API-dependent, and happened while
asserting over floating point coordinates. The variation is caused by
the ordering of tests in the suite, which differs across API versions.
APIs greater than 19 ran the test after another test that changed the
coordinate‘s precision to 20 decimal places, without reverting back
to the default after testing. This resulted in all runs passing. API
19 ran the test before this test. As a result, it used the default value
of 3 decimal places and failed. This example is interesting because
of the cause‘s known relationship with flakiness. However, here
runs on the same configuration return a consistent result, but vary
between configurations.

Vespucci. The second app we evaluated was Vespucci. Vespucci
is a map editor that allows users to customize and edit map data.
It had the most variation with 22 of its 47 (46.8%) tests leading to
different results and code coverage with a range of 7% (28-35%).
Table 3 shows the causes. Its errors span all factors including API,
device, locale, and orientation. The majority of failures were caused
by API (21) alone, with other single factor causes including device
(2) and locale (4). 6 failures were caused by interactions. None were
due to orientation, form or screen size alone.

Much of Vespucci's variation also occurred in testing libraries
and tools. For example, the majority of these tests (19/24) were
VerifyErrors caused by a configuration dependent error in a test
mocking library, which throws an API-dependent exception on
API 19. Tests that made use of UI automation libraries were also
impacted by the configuration. Several Espresso tests (4) failed
because of changes in locale. These tests failed when trying to
select a Ul element through the content description attribute, which

A-Mobile ’18, September 4, 2018, Montpellier, France

changes value with locale. Another UI test failed due to 2 factors,
device and API, which causes the the UiAutomator library to behave
differently. The test is supposed to click on a new text field and
insert text, however, on Nexus devices running API 19 the test fails
to select the view and adds text to the previously selected field. The
error is caused by branching behavior in the test library that fails
to call a method to change focus to the newly selected view.

In general, Vespucci's test results were more difficult to analyze
than TopoSuite‘s. One reason was that several (5) tests failed at
different lines (with 1 test failing at 4 different lines on different
configurations). This caused difficulties because results from other
configurations were used to reason about failures, and resulted in
trees for later failures having less information. Unlike Toposuite,
Vespucci also had several tests where factors interacted (device and
API, API and form, device and orientation, and API and locale).
The app also had 2 failures which appear to require up to 3 (orien-
tation, form, screen size) and 4 factors (device, orientation, form,
and locale). However after tracing and recording tests on various
configurations, both appear to be flaky.

Exceptions. A total of 8,249 exceptions were thrown spanning 30
exception types. NullPointerExceptions were the most frequently
seen in our sample (1,143) as well as exceptions in UI tests (No-
MatchingViewException, PerformException) (3,280). VerifyErrors,
FileNotFoundExceptions, and RuntimeExceptions were also com-
mon (1,485). 4 SecurityExceptions also surfaced. 3 were on APIs
greater than or equal to 23, and caused by not requesting permis-
sions at runtime. The other required 2 factors (device and API) and
was due to vendor customizations and differing file systems. The
exception surfaced only on non-Google devices (LG G3 and Galazy
Tab 3) running API 19 when the app's test attempted to access a
file from external storage.

In summary, the test’s in our sample varied due to all factors we
considered (API, locale, orientation, form, screen size, and device)
and spanned 30 exception types. Many of the failures occurred in
testing libraries and tools, suggesting room for improvement in their
implementations or that test writers may need to write tests more
carefully to reduce the number of false positives. While the cause of
many of these failures could be reduced to one configuration factor,
single factor causes could not describe all failures we observed.
Several required factors to interact with interaction of up to 2
factors verified.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have examined the impact of variability on Android
testing. We evaluate 18 apps with existing test suites and run these
on 88 configurations by varying 5 factors— device, AP, form, locale,
and orientation. We show that 15% of the test cases in our study
vary with respect to either (or both) code coverage and test results
indicating that configuration does matter.

When we further examined the results we find some differences
are due to single configuration options, but others more complex —
requiring 2 or more factors to show a difference. The implications
are broad suggesting both developers and researchers should con-
sider multiple configurations when testing and writing tests. Given

Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon

the high cost (time and money) to test across multiple configura-
tions, it also suggests more efficient techniques are needed to help
Android testers.

As future work we plan to explore the impact of noisy test arti-
facts on downstream learning and analysis. We also plan to explore
different sampling techniques and extend our study to more apps.

ACKNOWLEDGEMENTS
This work is supported in part by NSF grant CCF-1745775.

REFERENCES

[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2014. MobiGUITAR - A Tool for Automated Model-Based
Testing of Mobile Apps. IEEE Software (2014).

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration for

Systematic Testing of Android Apps. In Intl. Conf. on Object Oriented Programming

Systems Languages & Applications (OOPSLA). 641-660.

Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of

Android Apps with Minimal Restart and Approximate Learning. In Intl. Conf. on

Obj. Orient. Prog. Syst. Langs. and Apps. (OOPSLA). 623-640.

Tiago Coelho, Bruno Lima, and Jodo Pascoal Faria. 2016. MT4A: A No-

programming Test Automation Framework for Android Applications. In Work-

shop on Automating Test Case Design, Selection, and Evaluation (A-TEST). 59-65.

[5] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso. 2017. Barista: A

Technique for Recording, Encoding, and Running Platform Independent Android

Tests. In Intl. Conf. on Software Testing, Verification and Validation (ICST). 149-160.

Nicolas FuBlberger, Bo Zhang, and Martin Becker. 2017. A Deep Dive into An-

droid’s Variability Realizations. In Intl. Systems and Software Product Line Conf.

(SPLC). 69-78.

[7] Google. 2017. Firebase Test Lab for Android Overview. Retrieved Aug 16, 2017
from https://firebase.google.com/docs/test-lab/overview

[8] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
cross-platform user-interaction record and replay for the fragmented android
ecosystem. In Intl. Symp on Perf. Anal. of Syst. and Soft. (ISPASS). 215-224.

[9] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding Android fragmentation with topic analysis of
vendor-specific bugs. In Reverse Engineering, Working Conf. on. 83-92.

[10] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer Mistakes in

Writing Android Manifests: An Empirical Study of Configuration Errors. In Intl.

Conf. on Mining Software Repositories (MSR). 25-36.

Hammad Khalid, Meiyappan Nagappan, Emad Shihab, and Ahmed E Hassan.

2014. Prioritizing the devices to test your app on: A case study of android game

apps. In Intl. Symp. on Foundations of Software Engineering. 610-620.

Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and de-

tecting performance bugs for smartphone applications. In Intl. Conf. on Software

Engineering. 1013-1024.

[13] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input

Generation System for Android Apps. In Joint Meeting on Foundations of Software

Engineering (ESEC/FSE). 224-234.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented

Evolutionary Testing of Android Apps. In Intl. Symp. on Foundations of Software

Engineering (FSE). 599-609.

[15] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Intl. Symp. on Software Testing and Analysis
(ISSTA). 94-105.

[16] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. 2008. Configuration-aware

Regression Testing: An Empirical Study of Sampling and Prioritization. In Intl.

Symp. on Software Testing and Analysis (ISSTA). 75-86.

Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid:

Permission-aware GUI Testing of Android. In Joint Meeting on Foundations of

Software Engineering (ESEC/FSE). 220-232.

Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-

necki. 2015. Cost-Efficient Sampling for Performance Prediction of Configurable

Systems. In Intl. Conf. on Automated Software Engineering. 342-352.

Sergiy Vilkomir, Katherine Marszalkowski, Chauncey Perry, and Swetha Mahen-

drakar. 2015. Effectiveness of multi-device testing mobile applications. In Intl.

Conf. on Mobile Software Engineering and Systems. 44-47.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmenta-

tion: Characterizing and detecting compatibility issues for Android apps. In Intl.

Conf. on Automated Software Engineering. 226-237.

[21] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In Symp. on Security and Privacy (SP). 409-423.

[2

B3

4

—_
2

[
o

[12

[14

[17

(18

[19

)
=

