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Abstract Obtaining meteoroid mass from head echo radar cross section depends on the assumed
plasma density distribution around the meteoroid. An analytical model presented in Dimant and
Oppenheim (2017a, https://doi.org/10.1002/2017JA023960; 2017b, https://doi.org/10.1002/2017JA023963)
and simulation results presented in Sugar et al. (2018, https://doi.org/10.1002/2018JA025265) suggest the
plasma density distribution is significantly different than the spherically symmetric Gaussian distribution
used to calculate meteoroid masses in many previous studies. However, these analytical and simulation
results ignored the effects of electric and magnetic fields and assumed quasi-neutrality. This paper presents
results from the first particle-in-cell simulations of head echo plasma that include electric and magnetic
fields. The simulations show that the fields change the ion density distribution by less than ∼ 2% in the
meteor head echo region, but the electron density distribution changes by up to tens of percent depending
on the location, electron energies, and magnetic field orientation with respect to the meteoroid path.

1. Introduction
When a meteoroid enters the Earth's atmosphere, collisions with atmospheric molecules heat the mete-
oroid's surface. Neutral particles ablate from the meteoroid surface once the surface temperature reaches
the sublimation point of the constituent materials. These ablated particles experience high-energy colli-
sions with atmospheric particles and can ionize, creating a dense plasma around the meteoroid. High-power
large-aperture (HPLA) radars, such as the Jicamarca Radio Observatory, ALTAIR, and the Arecibo
Observatory, detect this plasma as a head echo (Chau & Woodman, 2004; Close et al., 2002; Janches &
Revelle, 2005).

HPLA radars can detect multiple head echoes a second, enabling the collection of a vast data set of head
echoes to better understand meteoroid properties such as mass, density, and composition. However, it is
vital to have an accurate model of the plasma that produces a head echo in order to estimate such properties.
Previous studies that use head echoes to calculate meteoroid mass assume a spherically symmetric Gaussian
plasma distribution (Campbell-Brown et al., 2012; Close et al., 2005; Dyrud & Janches, 2008; Zinn et al.,
2011). However, this distribution has not been validated by analytical or empirical evidence. Marshall et al.
(2017) shows that the choice of the plasma distribution shape can cause the calculated electron line density
(and therefore the meteoroid mass) to change by a factor of 3 for a head echo with a set radar cross section
(RCS). This is a large source of error and demonstrates the necessity for a validated head echo plasma density
model.

A recently proposed analytical model, hereinafter referred to as the Dimant-Oppenheim model or the DO
model, validated with numerical simulations suggests a more complex and spherically asymmetric plasma
distribution than the spherically symmetric Gaussian distributions used in the past (Dimant & Oppenheim,
2017a, 2017b; Sugar et al., 2018). However, the DO model assumes that electric and magnetic fields have
a negligible effect on the ion motion and can be ignored. This paper relaxes that assumption and presents
particle-in-cell (PIC) simulations to study the effects of electric and magnetic fields on the head echo plasma.
The DO model also assumes quasi-neutrality, thereby approximating the electron distribution with the ion
distribution. Simulations presented in this paper do not assume quasi-neutrality and track electrons and
ions separately.

The results presented in this paper, as well as the DO model, describe the head echo region of a meteor and
not the meteor trail. The head echo region contains dense plasma that travels with the parent meteoroid,
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while the trail consists of a less dense plasma that remains in the wake of the meteoroid. Because the head
echo moves with the meteoroid, it is limited to a small region of a few 𝜆T , the average distance an ablated
particle travels from the meteoroid before colliding with an atmospheric molecule,

𝜆T =
VT

nA𝜎U
, (1)

where VT is the thermal velocity of the ablated neutral atoms, nA is the atmospheric number density, 𝜎
is the collisional cross section, and U is the meteoroid speed. Beyond a few 𝜆T , an ablated particle has a
significantly different velocity than the parent meteoroid due to momentum exchanging collisions with the
background atmosphere and will generally be significantly behind the meteoroid rather than in the head
echo region. For the purposes of this paper, we define the head echo region (or near-meteoroid region)
to be within 3𝜆T of the meteoroid center because the vast majority of ablated particles beyond 3𝜆T would
have experienced multiple collisions with atmospheric particles and therefore have significantly different
velocities than the meteoroid.

This paper is organized as follows. First we will discuss the methods used to numerically determine the
plasma density distribution around an ablating meteoroid. Second, we will show simulation results and
investigate how different boundary conditions, electron energy models, and magnetic field orientations
affect the ion and electron distributions, as well as how the simulation results compare to the DO model.
Finally, we will conclude with a discussion of the results and future work to investigate the potential impact
on meteoroid mass estimates.

2. Simulations
We used the Electrostatic Parallel Particle-in-Cell simulator (EPPIC) to run our simulations using the Stam-
pede2 system accessed through XSEDE (Oppenheim et al., 2008; Oppenheim & Dimant, 2013; Towns et al.,
2014). EPPIC is a standard electrostatic PIC simulator: Charge density is calculated on a grid over the
simulation domain; the potential at each grid point is calculated via Poisson's equation,

∇2𝜙 = − 𝜌

𝜖0
, (2)

where 𝜙 is the potential, 𝜌 is the charge density, and 𝜖0 is the permittivity of free space; the electric field, E⃗,
is calculated at each particle's position; and each particle's velocity, v⃗ is updated using the Lorentz force,

−→Δv =
q
m

(
E⃗ + v⃗ × B⃗

)
Δt, (3)

where m is the particle mass, q is the particle charge, B⃗ is the magnetic field, and 𝛥t is the simulation time
step. Finally, each particle's position, r⃗, is updated using

−→Δr = v⃗Δt. (4)

EPPIC also includes collision physics, allowing velocity changes as well the creation of ions and electrons
in the event of ionizing collisions. Collisions are described in detail in section 2.4.

2.1. Parameters
The simulations track three types of particles: ablated meteoroid neutrals, electrons, and ions. The electron
mass is set to 10 times the real electron mass to reduce the computational cost of simulations. Artificially
increasing the electron mass is a typical method used in PIC codes to resolve both ion and electron dynamics
in a single simulation (Bret & Dieckmann, 2010). Each simulation particle represents 2,000 real particles.
The background atmospheric neutrals are not modeled as individual particles but rather as a constant uni-
form density of nA. This model is valid because both the simulation domain size and the distance the
meteoroid will travel during the simulation duration are much less than the scale height of the atmosphere
at 100 km, the chosen altitude for the simulation.

We cannot simulate the complete life of the meteor as it moves through the entire ablation region of the
atmosphere (120–75 km) because that would require unfeasible amounts of computation time. We therefore
chose to find the steady state plasma distribution around the meteoroid at 100-km altitude, where nA is
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Table 1
Simulation Parameters

Parameter Value Units
Simulation electron mass (me) 9.1 × 10−30 kg
Simulation ion mass (mi) 3.8 × 10−26 kg
Magnetic field (B⃗) 4.0 × 10−5x̂ T
Elementary charge (q) 1.6 × 10−19 C
Grid (nx × ny × nz) 512 × 512 × 512 points

Grid size (𝛥x = 𝛥y = 𝛥z) 0.005 m
Time step (𝛥t) 2 × 10−8 s
Atmospheric number density (nA) 1019 m−3

Atmospheric particle (N2) mass (mA) 4.7 × 10−26 kg
Ionosphere plasma density (nI ) 1.9 × 109 m−3

Ionosphere electron thermal velocity (VTIe
) 1.96 × 104 m/s

Ionosphere ion thermal velocity (VTIi
) 303.4 m/s

Meteoroid speed (U) 40,000 m/s
Meteoroid radius (rm) 1 × 10−4 m
Ablated particle thermal velocity (VTm) 951 m/s
Ablated particle (Na) mass (mm) 3.8 × 10−26 kg
Ablation rate (C) 2.5 × 1010 simulation particles/s

approximately 1019 m−3. The simulation is in the meteoroid's frame of reference, so atmospheric particles
are moving at −U⃗ = 40ẑ-km/s velocity.

The choice of using 100-km altitude and 40 km/s is based off typical values for meteor head echoes. A study
using the Arecibo Observatory found that typical meteor head echoes moving at 40-km/s velocity are initially
observed between 101- and 111-km altitude (Figure 9b in Janches et al., 2003). Head echoes typically span
about 10 km in altitude making the observable range of 40 km/s about 91–111 km, so 100-km altitude is
a reasonable choice for simulating a 40-km/s meteor head plasma. However, the results can be scaled to
arbitrary altitudes and meteoroid velocities by appropriately scaling 𝜆T . The scaling might not be perfect
because the ratio of the neutral-neutral and ion-neutral collision rates may change slightly as a function of
altitude and meteoroid velocity. These changes can create quantitative but not qualitative differences.

The simulation uses a Cartesian coordinate system defined as follows (unless otherwise specified): ẑ points
along the meteoroid path behind the meteoroid, x̂ points in the direction of the magnetic field, and x̂× 𝑦̂ = ẑ.
The above and other critical simulation parameters are shown in Table 1.

2.2. Initialization
The simulation is initialized with a nighttime ionosphere at 100-km altitude by placing relatively cold (380 K)
and low-density (nI = 1.9 × 109 m−3) ions and electrons in the domain. The particle positions are sam-
pled from a uniform random distribution, and the ith velocity component, Vi, is sampled from a Gaussian
distribution:

Vi ∼
1√

2𝜋VTIp

e
− (Vi−Vdi)2

2V2
TIp , (5)

where Vdi is the drift velocity component in the ith direction, and VTIp
is the ionospheric thermal velocity

for a particle (either an electron [VTIe
] or ion [VTIi

]), constant in all directions. The subscript I is used to
distinguish between ionospheric charged particles and charged particles resulting from ionizing collisions.
We model the meteoroid as a spherically symmetric source of ablated neutral particles placed at the origin
with radius rm and creation rate C.

We do not expect changes in rm to affect the plasma distribution as long as rm is significantly smaller than
the grid spacing (𝛥x) because the spherical source of ablated neutral particles will appear as a point source
in the simulation domain if rm ≪ 𝛥x. Studies have shown that the vast majority of head echoes observed
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by HPLA radars are below 10−7 kg (Close et al., 2005, 2007). Assuming a spherical meteoroid and a density
of 1 g/cm3, a 10−7-kg meteoroid will have an rm = 2.88 × 10−4 m, significantly less than the grid spacing of
5 × 10−3 m used in the simulations.

2.3. Boundary Conditions
There are two types of boundary conditions to consider. The first is a particle boundary, which determines
what happens to a particle that crosses a domain boundary, and the second is a field boundary, which spec-
ifies the boundary conditions used when solving for the potential (equation (2)). The simulation uses both
periodic and open particle boundaries. Particles that cross a periodic boundary are injected at the opposite
side, while particles that cross an open boundary are deleted. At every open boundary there is a constant
stream of particles injected into the domain to simulate the ionosphere plasma outside of the simulation
domain. The number of particles to inject, N, at each time step is

N = AΦΔt, (6)

where A is the area of the injection boundary, and 𝛷 is the flux of particles entering the domain through
the boundary. An injected particle's position on the injection plane is sampled from a uniform random dis-
tribution and then is advanced by a time step of a𝛥t, where a is a random number sampled from a uniform
distribution between [0, 1]. The particle's velocity components parallel to the injection plane are sampled
from a Gaussian distribution (equation (5)), and the velocity component perpendicular to the injection
plane, V⟂, is sampled from a Gaussian flux distribution,

V⟂ ∼
V⟂

VTIp

⎛⎜⎜⎝
√

𝜋

2
Vd⟂

(
1 + erf

(
Vd⟂√
2VTIp

))
+ VTIpe

−V2
d⟂

2V2
TIp

⎞⎟⎟⎠
e
− (V⟂−Vd⟂)2

2V2
TIp , (7)

where Vd⟂ is the drift velocity component in the direction perpendicular to the boundary, and erf is the
error function. The perpendicular velocity component must be sampled from a Gaussian flux rather than
a Gaussian distribution because more particles with high perpendicular velocity components will cross the
boundary than particles with low perpendicular velocity components in a single time step. For example, if
VT was sampled from a Gaussian distribution, then there would be some particles injected with a 0 perpen-
dicular velocity component. However, a particle with a 0 perpendicular velocity component would never
cross the injection plane and therefore should not be injected into the domain. Sampling V⟂ from a Gaussian
flux distribution solves this problem and gives the correct result.

Given unlimited computational resources, a meteor head echo plasma would be best modeled with all open
particle boundaries. However, periodic particle boundaries improve the simulation speed and do not dras-
tically affect the near-meteoroid results if the periodic boundary planes are parallel to the meteor path (ẑ)
and sufficiently far from the meteoroid center. For this reason, only the ±ẑ particle boundaries are open and
the ±x̂ and ±𝑦̂ boundaries are periodic and placed 15.79𝜆T from the meteoroid center. This models multiple
meteors moving in parallel at a distance of 31.58𝜆T from each other. Because the boundaries are far away
from the meteoroid and the atmospheric neutrals are moving fast in the ẑ direction, a particle originating in
the near-meteoroid region that travels across a periodic boundary will experience many collisions and be far
behind the near-meteoroid region. Therefore, we consider the periodic ±x̂ and ±𝑦̂ particle boundaries to be
sufficiently far away from the meteoroid and they should not have significant impact on the near-meteoroid
region. We explore the effects of changing the domain size in section 3.2.

The field boundaries are assigned as follows. Boundaries normal to ẑ (the meteoroid path) are set to either
Neumann (∇𝜙BC = 0), Dirichlet, (𝜙BC = 0), or periodic conditions. Boundaries normal to x̂ and 𝑦̂ are always
periodic in order to use a fast spectral field solver along the x and y dimensions. To most closely replicate
a meteor, all field boundaries should be nonperiodic, but fully nonperiodic 3-D solvers require an order
of magnitude more computation time than the partially nonperiodic spectral solvers. We explore the field
boundary condition effects on the near-meteoroid results in section 3.3.

2.4. Collisions
The simulations track three types of particles: ablated meteoroid neutral particles, ions, and electrons, all of
which experience collisions with the background neutral atmospheric particles (denoted as n−n, i−n, and
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e−n, respectively). We do not include collisions between the tracked particles themselves because collisions
with background atmospheric particles are much more frequent due to the over 5 orders of magnitude higher
atmospheric particle density. The collision probability, Pcoll, of any tracked particle with an atmospheric
neutral in a time step is

Pcoll = 1 − exp(−nA𝜎VrelΔt), (8)

where 𝜎 is the collisional cross section and Vrel is the relative velocity magnitude of the particle and the
background atmosphere.

As in Dimant and Oppenheim (2017a, 2017b), all i-n and n-n collisions are treated as elastic collisions. Even
though n-n collisions are often ionizing, the energy in a collision is typically ∼ 200 eV, while the ionization
energy is much less (∼ 5 eV for Na). Therefore, only a small percentage of the total collisional energy will
be lost to ionization.

Similar to Sugar et al. (2018), we use the popular Bronshten (1983) collision cross section model for both
n-n and i-n collisional cross sections,

𝜎in = 𝜎nn = 5.61 × 10−19V−0.8
rel , (9)

where Vrel is the relative velocity between the colliding particles in kilometers per second and 𝜎 is the col-
lisional cross section in square meters. This is admittedly a crude model with two potential issues. First, it
is likely that 𝜎in > 𝜎nn due to a higher ion-neutral interaction potential at far distances. Second, the differ-
ence between 𝜎in and 𝜎nn likely changes with collision velocity since 𝜎 is dependent on the relative velocity
of the colliding particles. We resolve these issues by noting that once the relative speed of colliding particles
is significantly different from the meteoroid speed, the colliding particles move behind the meteoroid and
are not considered part of the head echo because the head echo moves with the meteoroid. Therefore, we
are only concerned with accurately modeling 𝜎in and 𝜎nn for a small range of velocities centered around the
meteoroid velocity. Analysis in section 5.3 of Sugar et al. (2018) uses Lennard-Jones interaction potential
models for N2 to show that 𝜎in and 𝜎nn are equal to within 1% for the relevant collision energies, supporting
the 𝜎in ≈ 𝜎nn assumption.

To determine whether an n-n collision will be ionizing rather than a simple momentum transfer collision,
we use the ionization probability model for Na in Vondrak et al. (2008):

𝛽 = 0.933(Vrel − 8.86)2V−1.94
rel , (10)

where 𝛽 is the probability the collision is ionizing and Vrel again has units of kilometers per second. Meteor
spectra show that singly ionized particles dominate meteor plasma, so we assume no i-n collisions are
ionizing (Ceplecha et al., 1998).

In the event of an n-n ionizing collision, we assume that the ablated meteoroid particle is ionized rather than
the atmospheric particle due to the lower ionization energy of Na compared to N2. The simulation deletes
the ablated neutral particle and creates an Na+ ion and an electron at the collision location. We assume an
elastic scattering model to set the ion velocity, while the electron velocity direction and magnitude in the
center of mass frame are sampled from a random uniform distribution and a Gaussian distribution with
standard deviation equal to 1 eV, respectively. The choice of a sampling from a 1-eV Gaussian distribution
comes from work by Berry (1961) that studies the energy distribution of electrons originating from neutral
heavy particle ionizing collisions. Figure 4 of Berry (1961) shows electron energy distributions for neutral
Argon-Argon collisions with collision energies ranging from 300 to 3,000 eV. The distributions are similar
over all collisional energy ranges, with approximately Gaussian electron energy distributions with standard
deviation of ∼ 1 eV and slightly fatter tails than expected for a Gaussian. We explore the effect of different
electron energy distributions in section 3.4.

Electron-neutral collisions are significantly different from i-n and n-n collisions. Experimental and theoret-
ical results shown in Figure 7 of Frost and Phelps (1962) show the elastic collisional rates of electrons and
N2 are orders of magnitude smaller than inelastic collision rates for 0.001–1 eV electron energies. Therefore,
we model the energy loss of inelastic collisions using the method outlined in Oppenheim et al. (2008) and
Oppenheim and Dimant (2013), where electrons experience elastic collisions with neutrals that are a factor
of 50 less massive than the actual neutral particle. The e-n collisional cross section is determined from lin-
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early interpolating the electron-N2 collisional cross section curve reported in Figure 6 of Frost and Phelps
(1962).

The collision models discussed above drive much of the physics in the simulation, and it is important to note
that there are many different models for collisional cross sections such as Lennard-Jones 12-6 potential mod-
els and Maxwell molecule collisions (Bouanich, 1992; Schunk & Nagy, 2004). We found that some of these
models change 𝜎 by up to a factor of 4, which impacts 𝜆T and has the net effect of changing the spatial scale
of the simulation with little impact on the characteristic shape of the ion and election distributions. Because
there is a reasonably high uncertainty in 𝜎 (and therefore 𝜆T), any attempt to use the plasma distributions
for meteoroid mass estimates should fit 𝜆T to radar data similar to how Marshall et al. (2017) fit the char-
acteristic length parameter, r0, of various plasma density distributions to head echoes using simultaneous
triple-frequency radar observations.

2.5. External Electric Field
The simulation domain is in the meteoroid's frame of reference, but the magnetic field lines are stationary
with respect to the Earth. Therefore, the magnetic field lines are moving with respect to the simulation
domain's frame of reference. The moving magnetic field, B⃗, produces an background electric field,

−→
E′, that

can be calculated using the Lorentz transformation:

−→
E′ = 𝛾

(
E⃗ − V⃗B × B⃗

)
− (𝛾 − 1)

(
E⃗ · V̂B

)
V̂B, (11)

where V⃗B is the magnetic field velocity in the meteoroid frame and 𝛾 is the Lorentz factor,

𝛾 = 1√
1 − ||V⃗B||2∕c2

, (12)

where c is the speed of light. We assume there is no externally applied electric field in the Earth's frame of
reference, so E⃗ = 0. Also, the meteoroid is not moving at relativistic speeds, so 𝛾 ≈ 1 and

−→
E′ ≈ −V⃗B × B⃗. (13)

In the simulations, V⃗B = 4 × 104ẑ m/s and B⃗ = 4 × 10−5x̂ T, resulting in a net external field
−→
E′ = −1.6𝑦̂ V/m.

2.6. Length and Time Scales
To prevent numerical instabilities, the simulation should resolve relevant length and time scales: the gyro-
radii, gyrofrequency, plasma frequency, and Debye length. Also, particles should not cross more than one
grid cell in a single time step on average.

The gyroradius, rg, is calculated using

rg =
mV⟂|q|B , (14)

where m is the particle mass, V⟂ is the velocity component perpendicular to the magnetic field, q is the
particle's charge, and B is the magnetic field magnitude. We assume a 40,000-nT magnetic field, which is
within the range of reported values at 100-km altitude at midlatitudes (Chulliat et al., 2015). The particle
population with the lowest gyroradii will have the lowest average mV⟂, that is, the ionospheric electron
population. Setting V⟂ = VTie and m = me results in rg = 0.0279 m.

The gyrofrequency, 𝜔g, is calculated from

𝜔g =
|q|B

m
. (15)

This gives an electron and ion gyrofrequency of 7.03 × 105 and 168 rad/s, respectively.

The plasma frequency,

𝜔p =

√
nee2

me𝜖0
, (16)
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Figure 1. The number of simulation electrons (blue), ions (red), and
ablated neutrals (black) in the near-meteoroid region as a function of time
for the baseline simulation (Table 1 parameters with Neumann-Neumann ẑ
field boundaries). Ion and electron populations are on the left y axis, while
neutrals correspond to the right y axis.

changes with the electron density and will be different in the background
ionosphere and in the near-meteoroid region. The ionosphere plasma
density (nI) and electron mass (me) reported in Table 1 result in 𝜔p =
7.77×105 rad/s. In our simulations, the near-meteoroid region has a peak
electron density of ∼ 1012 m−3 resulting in 𝜔p = 1.78 × 107 rad/s.

The Debye length, 𝜆D, is defined as

𝜆D =

√
kTe𝜖0

neq2 , (17)

where k is Boltzmann's constant, and Te is the electron temperature.
Using kT = (3∕2)meV 2

T , where VT is the ionosphere electron thermal
velocity (VTIe), the ionosphere Debye length is 0.031 m. We approximate
the minimum Debye length of the near-meteoroid region by taking the
peak electron density (∼ 1012 m−3) and assuming 1-eV electrons. This
results in a 0.0074-m Debye length, which is the smallest length scale we
must resolve. Therefore, we set the grid cell size to 𝛥x = 0.005 m.

To ensure most particles do not cross more than a single grid cell in a time
step, we divide the grid cell size by the fastest expected particle velocity.
The fastest particles will be the 1-eV electrons generated from the ioniz-
ing collisions, resulting in simulation electrons with 108-km/s velocities.
If these electrons are also drifting with the background atmosphere, the

time step must be less than 4.6 × 10−8 s in order to prevent the majority of electrons from crossing multiple
grid cells in a time step. There will be some electrons with energies greater than 1 eV in the tail of the Gaus-
sian velocity distribution, so we set the time step 𝛥t = 2 × 10−8 s. This is the smallest time scale we must
resolve and is adjusted accordingly when exploring the effects of higher electron energies in section 3.4.

3. Simulation Results
In this section we present the results from multiple simulations. First, we present evidence that the simu-
lations reach a steady state in the near-meteoroid region (r∕𝜆T < 3). Second, we investigate domain sizing
effects and show that the domain size is sufficient to obtain reliable results in the near-meteoroid region.
The next subsections explore how different variables affect the head echo plasma by changing one variable
at a time and comparing the results to a baseline simulation. The baseline simulation is run with the Table 1
parameters, B⃗ ⟂ U⃗, and Neumann-Neumann field boundary conditions at the minimum and maximum z
values. The final subsection compares the baseline simulation results to the analytical DO model.

3.1. Steady State
Because the simulation domain is significantly larger than the near-meteoroid region, achieving a steady
state solution for the entire domain would take excessive amounts of computation time. Rather than achiev-
ing a steady state for the entire domain, we report the simulation results once an approximate steady state is
achieved for the near-meteoroid region. Figure 1 shows the number of neutrals, ions, and electrons within
the near-meteoroid region as a function of time. We consider a simulation to reach steady state once the
number of near-meteoroid electrons changes by less than 0.03% in 1.5 × 10−5 s. This cutoff was chosen
because the number of near-meteoroid particles is close to the asymptote and a consistent time is necessary
to compare different simulations.

3.2. Domain Size
To ensure the simulation domain size is large enough to produce reliable results in the near-meteoroid
region, we run three simulations of different domain sizes and see if steady state results converge as the
domain size increases. Each simulation runs with the Table 1 parameters except with different nx, ny, and
nz. The “small” simulation has nx = ny = nz = 128, a cube with 7.90𝜆T sides; the “medium” simulation
has nx = ny = nz = 256, a cube with 15.79𝜆T sides; and the “large” simulation has nx = ny = nz = 512, a
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Figure 2. The ion (top row) and electron (bottom row) densities along three different contours for simulations with different domain sizes. The small, medium,
and large domain results are in blue, black, and red, respectively. The left plots show densities on a contour along the meteoroid path ahead of the meteoroid,
the middle plots show axially averaged (about the meteoroid path) densities on a contour perpendicular to the meteoroid path that passes through the
meteoroid center, and the right plots show densities on a contour along the meteoroid path behind the meteoroid.

cube with 31.58𝜆T sides. We expect the boundaries to significantly impact the ion and electron density dis-
tributions for the small simulation because the entire near-meteoroid region barely fits inside the domain.

Figure 3. The percent difference between the small-large (blue),
small-medium (black), and medium-large (red) sized simulations of
electron densities (solid lines) and ion densities (dashed lines) along the
perpendicular contour. The percent difference increases as distance to the
boundary decreases for the small-large and small-medium lines, but not for
the medium-large.

As explained in section 2.3, the periodic particle boundaries simulate an
infinite number of meteors moving parallel to each other. If the bound-
aries are not sufficiently far from the meteoroid center, then the parallel
meteor particle distributions will overlap and result in artificially high
particle densities.

The boundary effects are apparent in Figure 2, which shows the ion (top
row) and electron (bottom row) densities along three different contours
for the three simulations. The three contours are as follows: along the
meteor path ahead of the meteoroid (left plots), along a line perpendic-
ular to the meteoroid path that passes through the meteoroid (middle
plots), and along the meteoroid path behind the meteoroid (right plots).
These three contours (ahead, perpendicular, and behind) will be used to
explore the effects of other parameters in upcoming sections. The con-
tours perpendicular to the meteor path show data that have been axially
averaged about the meteor path. Even though the densities are not axially
symmetric, the axial averaging is done to present a low-noise parameter
for comparing different simulations. There are two main contributions to
the noise, small number of PIC particles and small number of grid cells
used to calculate the density. Each data point for the contours along the
meteor path is calculated from a single grid cell, while the data points for
the contour perpendicular to the meteor path are calculated from the axi-
ally averaged density at multiple grid cells. As r∕𝜆T increases along the
perpendicular contour, more grid cells are used in the axial average. How-
ever, as z∕𝜆T increases for the contours along the meteor path, the density
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Figure 4. Electron densities in the xz plane for the Neumann-Dirichlet (top left), Dirichlet-Neumann (top right),
Dirichlet-Dirichlet (bottom left), and periodic (bottom right) field boundary conditions. The near-meteoroid region
(r∕𝜆T < 3) is inside the blue circle. Density values are in per cubic meter.

is still calculated from a single grid cell and the number of PIC particles decreases. This causes the noise
to increase with distance from the meteoroid center for the contours along the meteor path (low number
of particles and low number of grid cells) and the noise to remain small even at large distances from the
meteoroid center for the perpendicular contour (low number of particles but large number of grid cells).

Figure 2 shows how the simulation results change with domain size and converge to a solution as the domain
becomes larger. The left plots show little difference in ion and electron densities along the meteor path ahead
of the meteoroid between the three simulations. This is likely due to the steep falloff in ion and electron
density as the distance from the meteoroid increases in front of the meteoroid. At around z∕𝜆t = −3, the
ion density approximately equals the ionosphere plasma density (nI = 1.9 × 109 m3). However, the ion and
electron densities are significantly higher than nI for r∕𝜆T > 2 along the perpendicular contour (middle
plots) and for z∕𝜆T > 3 behind the meteor (right plots). This suggests that the small domain boundaries
are not sufficiently far away from the meteoroid center and there is significant overlap between the parallel
meteor particle distributions in the half-space behind the meteor.

A clear trend of the error caused by a finite domain size is that the error increases as the distance to the
boundaries decreases. This phenomenon can be seen in Figure 3, which shows the electron (solid lines)
and ion (dashed lines) density percent difference between all combinations of the small, medium, and large
simulations along the perpendicular contour (small-large difference in blue, small-medium difference in
black, and medium-large difference in red). Because the boundaries significantly affect the small domain,
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Figure 5. The ion (top row) and electron (bottom row) densities along three different contours for simulations with different boundary conditions along the
two bounding planes perpendicular to the meteoroid path (ẑ). The Neumann-Neumann, Neumann-Dirichlet, Dirichlet-Neumann, Dirichlet-Dirichlet, and
periodic results are in blue, black, red, cyan, and magenta, respectively. The left plots show densities on a contour along the meteoroid path ahead of the
meteoroid, the middle plots show axially averaged (about the meteoroid path) densities on a contour perpendicular to the meteoroid path that passes through
the meteoroid center, and the right plots show densities on a contour along the meteoroid path behind the meteoroid. Not all colors are visible on every plot
because the different simulations produce similar densities and the lines are on top of each other.

the black and blue lines show increasing percent difference as r∕𝜆T approaches the boundary. The red lines
do not show this trend, suggesting that the large simulation's size is sufficient for the boundaries to have
negligible effect on the near-meteoroid region.

3.3. Field Boundary Effects
To investigate field boundary condition effects, we run five simulations with the same parameters outlined in
Table 1 but using different boundary conditions on the two bounding planes perpendicular to the meteoroid
path (ẑ). The bounding plane perpendicular to ẑ in front of the meteoroid is called BP+ and the bounding
plane perpendicular to ẑ behind the meteoroid is called BP−. The five different field boundary configurations
are Neumann-Neumann (∇𝜙 = 0 on both BP+ and BP−), Neumann-Dirichlet (∇𝜙 = 0 on BP+ and 𝜙 = 0
on BP−), Dirichlet-Neumann (𝜙 = 0 on BP+ and ∇𝜙 = 0 on BP−), Dirichlet-Dirichlet (𝜙 = 0 on both BP+
and BP−), and periodic (𝜙xy on BP+ = 𝜙xy on BP− for grid cells located at x, y). As stated in section 2.3, the
other four bounding planes are periodic.

Figure 4 shows the electron density in the xz plane for the Neumann-Dirichlet (top left),
Dirichlet-Neumann (top right), Dirichlet-Dirichlet (bottom left), and periodic simulations (bottom right).
The Neumann-Neumann xz plane electron density is shown in Figure 11 third column, bottom plot and
is very similar to the Neumann-Dirichlet plot. The ion distributions are not shown because they are sim-
ilar across all five simulations. However, there are clear differences in the electron distributions between
simulations with and without a Neumann BP+ boundary. When the BP+ boundary is allowed to have a
nonzero Ez (i.e., a non-Neumann field boundary), a wave-like electron density structure is generated with
wavefronts along ẑ and can be seen in the Figure 4 top right plot and bottom plots.

These structures are likely due to a nonzero Ez along the boundary affecting the injected ionospheric
electrons. As stated in section 2.3, electrons and ions are injected across the BP+ and BP− open particle
boundaries and the injected particle flux is calculated assuming an unperturbed ionosphere. This assump-

SUGAR ET AL. 10



Journal of Geophysical Research: Space Physics 10.1029/2018JA026434

Figure 6. The ion (top row) and electron (bottom row) densities along three different contours for simulations using different electron energy models. The 1-,
5-, and 10-eV electron energy results are in blue, black, and red, respectively. The left plots show densities on a contour along the meteoroid path ahead
of the meteoroid, the middle plots show axially averaged (about the meteoroid path) densities on a contour perpendicular to the meteoroid path that passes
through the meteoroid center, and the right plots show densities on a contour along the meteoroid path behind the meteoroid.

tion is violated when there is a nonzero Ez at the boundary, causing an injection of an incorrect number of
particles for non-Neumann BP+ boundary conditions. The electron density wave structures are not seen in
the Neumann-Dirichlet simulation even though there is a non-Neumann BP− boundary because very few
particles are injected across the BP− boundary. The fast atmosphere velocity in the ẑ direction causes the
particle flux (𝛷 in equation (6)) into the domain across BP− to be 2 orders of magnitude smaller than across
BP+.

While the field boundary conditions have a clear impact on the far-meteoroid region, they have relatively
little impact on the near-meteoroid region. Figure 5 shows ion and electron densities along the front, per-
pendicular, and back contours for the different boundary condition simulations. The ion distributions are
not significantly impacted by the boundary conditions, and the differences are within the noise. However,
there are some slight differences outside of the noise in the electron distribution perpendicular contour (bot-
tom middle plot). The Dirichlet-Neumann simulation has the largest percent difference with the baseline
(Neumann-Neumann) simulation: 11.94% at r∕𝜆T = 9.07, which is far outside the near-meteoroid region.
Inside the near-meteoroid region, the Dirichlet-Neumann simulation also has the largest percent difference
with the baseline simulation, −7.79% at r∕𝜆T = 2.90. The electron density at r∕𝜆T = 2.90 is 2 orders of mag-
nitude smaller than the peak electron density at the meteoroid center, so a −7.79% difference at r∕𝜆T = 2.90
will not have a significant impact on meteoroid mass determination assuming the difference has a negligible
effect on the head echo RCS.

3.4. Electron Energies
We run three different simulations to explore the effect of the model used to assign electron energies after
an ionizing collision. The three simulations use the Table 1 parameters, with the only difference being the
energy model used to assign velocity to electrons created from ionizing collisions. The first simulation uses
the 1-eV distribution described in section 2.4, the second uses a 5-eV distribution, and the third uses a 10-eV
distribution. Figure 6 shows the ion (top row) and electron (bottom row) densities along the usual front,
perpendicular, and back contours, and Figure 7 shows the charge density on a zoomed in portion of the yz
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Figure 7. The charge density in coulombs per cubic meter in the yz (left column), xz (middle column), and xy column (right column) for the 1- (top row), 5-
(middle row), and 10-eV (bottom row) electron model simulations. The near-meteoroid range is inside the blue circle.

(left column), xz, (middle column), and xy (right column) planes for the three different simulations (1 eV on
the top row, 5 eV on the middle row, and 10 eV on the bottom row). The Figure 6 plots show that a changing
electron energy model has no noticeable effect on the ion distributions but a significant effect on the electron
distributions in the near-meteoroid region: As the electron energy increases, the electron density decreases
for r∕𝜆T < 1. Because the ion density remains relatively constant between the simulations, the reduced
electron density in the near-meteoroid region creates a pocket of positive charge density that can be seen in
Figure 7. As the electron energy increases, the positive charge density region becomes larger.

The charge imbalance causes a positive potential that peaks at the meteoroid center and extends out of the
near-meteoroid region and can be seen in Figure 8, a plot of the potential along the meteor path for the three
different electron energy simulations. The potential difference between the center of the meteoroid and
where the meteoroid path crosses the BP+ boundary for the 1-, 5-, and 10-eV simulations is 0.39, 1.17, and
1.58 V, respectively, while the potential difference between the meteoroid center and where the meteoroid
path crosses the BP− boundary is 0.71, 1.93, and 2.19 V, respectively. For each simulation, the electron ther-
mal energy is larger than the peak potential difference between the meteoroid center and either the front or
back boundaries. This allows significant numbers of electrons to escape the potential well and contribute to
the charge imbalance in the near-meteoroid region. Also, as the electron energy increases, the ratio of peak
potential difference to electron energy decreases. This means that as the electron energy increases, a higher
percentage of electrons will escape the near-meteoroid region resulting in a larger charge imbalance.
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Figure 8. The potential along the meteor path for simulations with
different electron energies. The 1-, 5-, and 10-eV results are in blue, black,
and red, respectively.

There are two factors that could contribute to the charge imbalance. The
first is that the high-velocity electrons move away from the meteoroid
faster than the ions. The second is that the electrons are magnetized and
the ions are not (the electron gyroradius is much smaller than their mean
free path, while the ion gyroradius is much larger than their mean free
path), and the background electric field due to the Lorentz transform
causes magnetized particles to E⃗ × B⃗ drift behind the meteor. Therefore,
electrons E⃗ × B⃗ drift while ions do not, further contributing to the charge
imbalance near the meteoroid. The former seems to have more impact
than the latter since the E⃗ × B⃗ drift is equal across the three simulations,
while the electron energy (i.e., thermal velocity) varies. Figures 6 and 7
show that the region of electron depletion increases as the electron ther-
mal velocity increases. Also, the electron depletion region in the yz and xz
planes is roughly circular and centered on the origin. If the E⃗×B⃗ drift were
the main cause of the charge imbalance, we would expect the positive
charge region to be elongated and shifted in the ẑ direction.

3.5. Magnetic Field
We run four simulations to investigate the effects of a background mag-
netic field on the plasma. All four use the parameters in Table 1 except for

the orientation and magnitude of B⃗. The first simulation uses the magnetic field in Table 1 which is oriented
perpendicular to the meteor path (B⃗ = Bx̂), the second has the magnetic field pointed 45◦ to the meteor path
with components along x̂ and ẑ, the third has the magnetic field along ẑ (parallel to the meteor path), and
the fourth has no magnetic field (B⃗ = 0). Figure 9 shows the ion (top row) and electron (bottom row)

Figure 9. The ion (top row) and electron (bottom row) densities along four different contours for simulations with different background magnetic fields. The
B⃗ ⟂ ẑ, B⃗∠45◦ ẑ, B⃗||ẑ, and B⃗ = 0 results are in blue, black, red, and cyan, respectively. The left plots show densities on a contour along the meteoroid path ahead
of the meteoroid, the middle plots show densities on a contour perpendicular to the meteoroid path that passes through the meteoroid center, and the right
plots show densities on a contour along the meteoroid path behind the meteoroid.
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Figure 10. The ne percent difference between the B⃗||ẑ-B⃗ ⟂ ẑ (blue),
B⃗∠45◦ẑ-B⃗ ⟂ ẑ (red), and B⃗ = 0-B⃗ ⟂ ẑ (yellow) simulations along the
perpendicular contour axially averaged about the meteor path.

densities along the usual contours for the four simulations. Similar to
the field boundary conditions and electron energy models, the existence
and orientation of B⃗ does not have a noticeable effect on the ion distribu-
tion. This makes sense because the ions are not magnetized. However, the
electrons are magnetized and B⃗ does have an effect on the electron distri-
butions. Figure 10 shows the electron density percent difference between
the different B⃗ orientation simulations and the baseline simulation along
the perpendicular contour.

There are two main differences in the electron distributions. The first is
that the parallel B⃗ simulation has higher electron densities for contours
along the meteor path in the far-meteoroid region than the other simula-
tions (see bottom left and bottom right plots of Figure 9). This is likely due
to a combination of magnetized electrons that are constrained to move
along B⃗ and the lack of an external E⃗ from the Lorentz transformation
for the parallel B⃗ simulation. The external E⃗ in the B⃗ ⟂ ẑ and B⃗∠45◦ẑ
causes electrons to E⃗× B⃗ drift and have their guiding centers move across
magnetic field lines. Without the external E⃗, electron guiding centers are
restricted to a single magnetic field line. The meteoroid surface is the
largest source of electrons because that is where the ablated neutral den-
sity is the highest. Therefore, a high number of ionizing collisions that
generate free electrons occur near the origin. The guiding center of these
electrons are stuck to the magnetic field line along the z axis for the par-

allel B⃗ simulation, causing an elevated number of electrons along the meteoroid path compared to the other
three simulations. Another way to explain this is that in the Earth's frame of reference, the meteoroid is mov-
ing along a single magnetic field line in the parallel B⃗ simulation and across multiple magnetic field lines
in the B⃗ ⟂ ẑ and B⃗∠45◦ẑ simulations. The guiding centers of electrons created from ionizing collisions near
the meteoroid center are restricted to a single field line rather than spread across multiple field lines for the
B⃗ ⟂ ẑ and B⃗∠45◦ẑ simulations.

Figure 11. Ion (top row) and electron (bottom row) density distributions for the analytical solution, the simulations without electric or magnetic fields, and the
simulation with electric and magnetic fields. The first column shows the plasma densities given by the DO analytical model on the top and the no-fields
simulation results on the bottom. Note that the DO model and the no-fields simulation assume quasi-neutrality so the ion and electron densities are the same.
The rest of the plots show data from the baseline simulation, that is, the simulation with electric and magnetic fields and Table 1 parameters. The second
column shows the axially averaged density averaged about the meteoroid path for ions on the top and electrons on the bottom. The third column shows the
particle densities in the xz plane containing the meteoroid center. The fourth column shows the particle densities in the yz plane containing the meteoroid
center. The near-meteoroid region (r∕𝜆T < 3) is inside the blue circle. DO model = Dimant-Oppenheim model.
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Figure 12. The percent difference of the axially averaged ion (left) and electron (right) densities between the no-fields
and fields simulations with parameters in Table 1. The percent difference, PD, is calculated from PD = 100(nf −nnf )∕nf ,
where nf is the particle density for the fields simulation and nnf is the particle density for the no-fields simulation.
Since there are larger differences in the electron distribution, the electron plot's color ranges within ±20% and the ion
plot's color ranges within just ±5%. The near-meteoroid region (r∕𝜆T < 3) is inside the blue circle.

The second major difference in electron distributions can be seen in Figure 10, where the percent difference
between the B⃗||ẑ and baseline simulation electron densities along the perpendicular contour between 1 <

r∕𝜆T < 8 is often above 5% and reaches a maximum of 12.8%. There is an even larger difference between
the B⃗||ẑ and B⃗∠45◦ẑ simulations with a maximum percent difference of 17.37% at r∕𝜆T = 1.36. We currently
do not have an explanation for these differences, but they suggest it is important to take into consideration
the effects of magnetic field orientation if using the electron distribution for modeling meteoroid mass from
head echo RCS.

3.6. Comparison to Analytical Solution and No-Fields Simulation
The ion and electron density distributions for the simulation run with the Table 1 parameters (the “fields
simulation"), the ion density distributions for the DO model, and a simulation run without electric or mag-
netic fields (the “no-fields” simulation) are shown in Figure 11. Because the DO model and the no-fields
simulation are axially symmetric about the meteoroid path axis (ẑ) and assume quasi-neutrality, we axially
average the ion densities (which are equivalent to electron densities because of quasi-neutrality) about ẑ.
The results from the simulation with electric and magnetic fields are not axially symmetric, so we present
the ion and electron densities on the xy plane and the yz plane that contain the meteoroid center. Despite
the lack of axial symmetry in the “fields simulation", we also show the axially averaged ion and electron
densities for comparison with the DO model and the no-fields simulation.

There are many interesting aspects to the results in Figure 11. The top row and the bottom left plot show
that the ion densities of the DO model, no-fields simulation, and the fields simulation are remarkably sim-
ilar, suggesting that the DO model's assumption that ion motion is not significantly affected by electric or
magnetic fields is correct. The fields simulation's electron distribution is also similar to the DO model and
no-fields simulation, but there is an axial asymmetry in the far-meteoroid region noticeable in the yz plane
(bottom right plot). This asymmetry is likely due to the external E⃗ = −1.6𝑦̂ V/m required to model the
moving magnetic field lines. Even though the electrons are magnetized, they still experience collisions with
atmospheric neutrals on a spatial scale longer than their gyroradius but smaller than the simulation domain.
The net effect of collisions and the external electric field is a slight electron Pedersen drift in the+𝑦̂ direction,
disrupting the axial symmetry of the DO model and the no-fields simulation.

Figure 12 shows the percent difference of the particle densities axially averaged about the meteor path
between the no-fields simulation and the baseline field simulation. We show the axially averaged val-
ues because there is too much noise in the xz and yz plane cross sections. The top left highlights how
the ion density distribution is hardly affected by the fields, with a maximum percent difference of ∼ 2%
in the near-meteoroid region (ignoring the large fluctuations due to noise along r = 0). However, the
right plot shows much larger electron differences, with a maximum difference of up to ∼ 20% in the
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near-meteoroid region (again, ignoring the large fluctuations due to noise along r = 0). Also, the differences
in the near-meteoroid ion densities do not have structure and appear to be mainly due to noise, while the
near-meteoroid electron density differences have a clear structure.

4. Discussion and Conclusions
The simulations reported in this paper further develop the plasma density model for small meteors reported
in Dimant and Oppenheim (2017a, 2017b) and numerically tested in Sugar et al. (2018) by investigating the
effects of magnetic and electric fields. These simulations are the first published PIC simulations of a meteor
head echo that include electric and magnetic fields and resolve all appropriate length and time scales. We
validated the simulations by investigating the effects of boundary conditions, domain size, and electron
energy models. The results show that the ion distribution is largely unaffected by the background magnetic
field or electric fields generated by the plasma, while the electron distribution is affected by both magnetic
and electric fields.

We examined how the electron distribution is affected by two parameters, the model used to assign electron
energies after ionizing collisions and the background magnetic field orientation with respect to the meteor
path. By varying the energies of electrons created via ionization, we showed a region of positive charge near
the meteoroid that grows as the electron energies increase. We also showed that the B⃗ orientation effects the
electron distribution in both the near- and far-meteoroid regions. There is a clear axial asymmetry when B⃗
is perpendicular to the meteor path.

Nevertheless, the fact that the reported ion distributions remain so similar to the no-fields simulations
despite the different electron distributions is further evidence in support of the DO model's assumption that
magnetic and electric fields have negligible impact on ion distribution. The simulations also support the
results of Dimant and Oppenheim (2017a, 2017b) and Sugar et al. (2018) in that the plasma densities in the
meteor head region are significantly different than the spherically symmetric Gaussian distributions used
to estimate meteoroid mass from head echo observations.

A potential limitation of the PIC simulations presented in this work is that the meteoroid is assumed to be
ablating solely Na atoms and all ions are Na+. While it would be interesting to study the effects of multiple
ion types, we restrict ourselves to a single ion for simplicity. The particular choice of Na has little effect on
the simulations since we treat ionizing collisions as elastic due to the much higher collision energy than
ionization energy. This is a reasonable assumption for other common elements found in meteoroids (Fe,
K, Mg, and Si). We chose Na due to its bright presence in meteor spectra and its low mass which reduces
the mean free path and 𝜆T (Ceplecha et al., 1998). Simulating a more massive element such as iron would
increase the mean free path and would require more grid cells in order to fit the same number of 𝜆T inside
the simulation because of the requirement to resolve the Debye length which would remain unchanged.
Because the data are presented with the spatial coordinates normalized to 𝜆T , scaling the results for different
elements and mean free paths is trivial.

We have not yet fully calculated how these new distributions will affect meteoroid mass estimates. However,
Marshall et al. (2017) investigated five different spherically symmetric plasma distributions and found the
meteoroid mass estimate could change by a factor of 3 depending on the choice of plasma distribution.
Therefore, it is possible that the spherically asymmetric distribution given by the PIC simulations and the DO
model will change mass estimates significantly. We are currently running Finite-Difference Time-Domain
simulations to measure the RCS of plasma distributions derived from the PIC simulations and the DO model.
This will enable a direct comparison of meteoroid mass estimates and the associated errors between these
new plasma distributions and the spherically symmetric Gaussian distributions used in previous studies.
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