2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST)

The Maturation of Search-Based Software Testing:
Successes and Challenges

Myra B. Cohen
Department of Computer Science
lowa State University
Ames, IA, 50011-1090, USA
mcohen @iastate.edu

Abstract—In this paper we revisit the field of search-based
software testing (SBST) in the context of its technological
maturity. We highlight some successes with respect to tools,
hybrid approaches, extensions and industry adoption. We then
discuss some open challenges that remain for SBST including
the need for new approaches to system testing, automated oracle
generation, incorporating humans into the search process, and
leveraging learning through hyper-heuristic search.

Index Terms—SBST, Search Based Software Testing

I. CONTEXT

Search-based software testing (SBST) has matured signif-
icantly since its inception more than 40 years ago. SBST
attributes its beginnings to Miller and Spooner in 1976!,
after which a decade passed before SBST surfaced again
in the work of Korel [1]-[3]. Since then, SBST (and its
parent community — that of search-based software engineering,
or SBSE), has significantly expanded its reach. SBSE was
recently given its own category of software development by
the addition of search-based software engineering in the 2012
ACM Computing Classification System [4], the key indexing
system used in the ACM digital library. SBST has consistently
been the largest single category of SBSE, accounting for 927
of 1729 publications (or 54%) (through 2017) in the Search-
Based Software Engineering (SBSE) Repository [5].

The SBST workshop began in 2008, notably around the
same time when usable tools and repeatable experimentation
on open source subjects was starting to take hold. Today, more
than 10 years later we find SBST papers in all of the main
software engineering venues, and authors no longer spend
pages writing background material describing what SBST is,
but rather, as in any mature field, focus on the important and
novel ideas and techniques that bring new contributions to the
state of the art. SBST has been the subject of tool competitions
and tutorials, and has progressed to industrial adoption.

Furthermore, SBST has been applied across most categories
of software testing. It has been applied to unit testing, system
testing, regression testing, functional and structural testing, for
desktop applications, model-based approaches, in the cloud,
for graphical user interaces, and most recently in the mobile

'Harman et al. [1] attribute earlier work on symbolic execution with being
the first instance of SBST, but as they acknowledge, Miller and Spooner
proposed the first concrete test generation SBST technique.

978-1-7281-2233-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SBST.2019.00013

domain. In essence, SBST has become a standard tool in the
testing tool-box; it has become a mature technology.

In this paper I examine this claim of maturity a bit further.
I do not attempt to comprehensively recognize or survey all
of the recent successes and achievements — this would simply
be impossible in a short essay, and instead refer readers to
surveys and essays on SBST [1]-[3]. Instead, I highlight a few
areas where the community has shone brightly in the context
of what I term a maturity-framework. I also suggest some new
challenges and opportunities for our community.

II. A MATURITY-FRAMEWORK

Redwine and Riddle’s seminal paper on technology transfer
[6] details a set of characteristics that lead to a mature software
engineering technique, along with six stages between a purely
academic exercise to an industrial strength solution that is
adopted as a best practice. Their research quotes an average
time of 15-20 years for a technological field to go from
academic folly to practice. While some can argue that the
time to technology transfer has been reduced with the advent
of large open source software repositories, and our ability to
produce usable, scalable research tools, the characteristics for
large technological advances remain the same.

Abstracting from their work, I propose that current tech-
nologies such as SBST which must be scalable, flexible, and
automated share a set of characteristics that can serve as
key indicators, of maturity. These are (1) the existence of
usable and extensible tools, (2) the study of hybrid/alternative
approaches, (3) techical extensions, and finally (4) industrial
adoption.

III. SUCCESSES

In this section I discuss some SBST successes for each of
these maturity-framework facets.
Tools. Over the years, multiple tools have been developed for
the research community including AUSTIN (for C), EvoSuite
for Java and Sapienz for Android [1]. An exemplar for success
is the EvoSuite tool for Java Unit testing [7]. The success of
EvoSuite lies its out of the box usability (e.g. a non-SBST user
can get it running with little effort) and extensibility to the
research community. EvoSuite has recently been made open
source, and it contains a large set of configuration options and
coverage objectives for expert users. In addition, there is an

associated benchmark of thousands of Java classes where it
has been successfully applied. EvoSuite also competes each
year at the annual SBST tool competition [7], serving as a
bar for others to rise above (it does not always win which is
another indicator of SBST’s breadth and maturity).

Hybrid Approaches. While, SBST has shown to be success-
ful, no single technique is the most effective and/or efficient
approach in all situations. A mature field can demonstrate and
admit both its strengths and weaknesses. Feldt and Poulding
point out the potential for hybrid and/or alternative optimiza-
tion approaches using empirical evidence [8]. Furthermore,
researchers have combined SBST with constraint-based ap-
proaches and symbolic approaches, with variations that include
tight coupling (e.g. embedding symbolic techniques as part of
the fitness function) and loose interleaving (e.g. alternating
between algorithms).

Technical Extensions. Out of the work on SBST there have
been born several notable extensions. The greatest success
is that of the field of genetic improvement (GI) [9], where
software is automatically modified (and improved) for a given
goal, often a non-functional aspect such as efficiency, energy,
etc. A sub-area of genetic improvement, automated program
repair [10], was the original technical extension which led to
GI. Although, many approaches to automated program repair
today have been proposed that do not utilize SBST techniques,
its roots lie firmly in this domain.

Industry Adoption. Last, I turn to industry adoption, the true
indicator of maturity. One of the original industrial adopters of
SBST (as early as the late 1990’s) was DaimlerChrysler. The
work of Wegener et al. over the years applied SBST for both
functional and structural testing of automotive features such as
automated breaking and parking systems [1]. Other industry
successes include Microsoft and Ericsson [1]. However, the
most visible and I would argue biggest leap for SBST at scale
is the production level success of multi-objective SBST com-
bined with automated program repair for mobile applications
at Facebook [11]. This is a huge advance for our field, not
only because SBST is now front and center at a social media
giant, but because its foundations came out of a research tool,
Sapienz. This quick move from academia to industry (within
a few years) demonstrates that SBST has reached a level of
maturity which is now staged for seamless transfer to real-
world, large-scale use.

IV. CHALLENGES

Despite the success of Sapienz which generates tests using
sequences of events on a mobile device, and hence can be
seen as system-level testing, there has been a stronger focus in
the SBST community on unit (and/or structural level) testing.
There are opportunities for more approaches that focus on
system based testing; testing from requirements, which leads
to some other challenges. The oracle problem (what is the
correct test answer?) has been well studied, but is one of the
primary challenges for SBST. While it is possible to detect
system crashes, other oracles are more difficult. One can use
regression tests (and re-use oracles), but the power of SBST is

its ease of generating tests rather than re-using what is already
there. In addition, oracles for tools that rely on source code
(such as EvoSuite) are dependent on either a human and/or
what can be mined from code (rather than specifications).
Combining SBST with more sophisticated oracles and/or
novel techniques such as search-based metamorphic testing
would bring new power to SBST. Next, incorporating human
knowledge and interaction into search is an important next
step which has received some, but not nearly enough attention.
Last, there is an opportunity to add learning approaches to
search such as that used in hyper-heuristic search [12].

V. CONCLUSIONS

In this paper I have discussed some of the successes
of SBST over the years within the context of a maturity-
framework. I have highlighted some tools, the proposal of
hybrid approaches, technical extensions and industry adoption.
I also discuss some open challenges such as the need for
automated oracles, more approaches to system-based testing,
and ways to incorporate human interaction into search. Last,
I suggest adding learning techniques to augment SBST via
approaches such as hyper-heuristic search.

ACKNOWLEDGMENTS
This work is supported in part by NSF grant CCF-1901543.

REFERENCES
[1]

M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in International
Conference on Software Testing, Verification and Validatio, ICST, April
2015, pp. 1-12.

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742-762, Nov 2010.

P. McMinn, “Search-based software test data generation: A survey,’
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105—
156, 2004.

“The 2012 ACM computing classification system,” 2012. [Online].
Available: https://www.acm.org/publications/class-2012

Y. Zhang, M. Harman, and A. Mansouri, “The SBSE repository.” [On-
line]. Available: http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
S. T. Redwine, Jr. and W. E. Riddle, “Software technology maturation,”
in Proceedings of the International Conference on Software Engineer-
ing,ICSE, 1985, pp. 189-200.

G. Fraser and A. Arcuri, “Evosuite at the SBST 2017 tool competition,”
in International Workshop on Search-Based Software Testing, SBST,
2017, pp. 39-42.

R. Feldt and S. Poulding, “Broadening the search in search-based
software testing: It need not be evolutionary,” in International Workshop
on Search-Based Software Testing, SBST, May 2015, pp. 1-7.

J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415-432, June 2018.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54-72, 2012.

N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
1. Zorin, “Deploying search based software engineering with Sapienz at
Facebook,” in Symposium on Search-Based Software Engineering, SBSE,
2018, pp. 3-45.

Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction test generation strategies using hyperheuristic search,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE,
May 2015, pp. 540-550.

[2]

[3]

[4

=

[5

[l

[6]

[7

—

[8]

[10]

[11]

[12]

