
The Maturation of Search-Based Software Testing:
Successes and Challenges

Myra B. Cohen
Department of Computer Science

Iowa State University
Ames, IA, 50011-1090, USA

mcohen@iastate.edu

Abstract—In this paper we revisit the field of search-based
software testing (SBST) in the context of its technological
maturity. We highlight some successes with respect to tools,
hybrid approaches, extensions and industry adoption. We then
discuss some open challenges that remain for SBST including
the need for new approaches to system testing, automated oracle
generation, incorporating humans into the search process, and
leveraging learning through hyper-heuristic search.

Index Terms—SBST, Search Based Software Testing

I. CONTEXT

Search-based software testing (SBST) has matured signif-

icantly since its inception more than 40 years ago. SBST

attributes its beginnings to Miller and Spooner in 19761,

after which a decade passed before SBST surfaced again

in the work of Korel [1]–[3]. Since then, SBST (and its

parent community – that of search-based software engineering,

or SBSE), has significantly expanded its reach. SBSE was

recently given its own category of software development by

the addition of search-based software engineering in the 2012

ACM Computing Classification System [4], the key indexing

system used in the ACM digital library. SBST has consistently

been the largest single category of SBSE, accounting for 927

of 1729 publications (or 54%) (through 2017) in the Search-

Based Software Engineering (SBSE) Repository [5].

The SBST workshop began in 2008, notably around the

same time when usable tools and repeatable experimentation

on open source subjects was starting to take hold. Today, more

than 10 years later we find SBST papers in all of the main

software engineering venues, and authors no longer spend

pages writing background material describing what SBST is,

but rather, as in any mature field, focus on the important and

novel ideas and techniques that bring new contributions to the

state of the art. SBST has been the subject of tool competitions

and tutorials, and has progressed to industrial adoption.

Furthermore, SBST has been applied across most categories

of software testing. It has been applied to unit testing, system

testing, regression testing, functional and structural testing, for

desktop applications, model-based approaches, in the cloud,

for graphical user interaces, and most recently in the mobile

1Harman et al. [1] attribute earlier work on symbolic execution with being
the first instance of SBST, but as they acknowledge, Miller and Spooner
proposed the first concrete test generation SBST technique.

domain. In essence, SBST has become a standard tool in the

testing tool-box; it has become a mature technology.

In this paper I examine this claim of maturity a bit further.

I do not attempt to comprehensively recognize or survey all

of the recent successes and achievements – this would simply

be impossible in a short essay, and instead refer readers to

surveys and essays on SBST [1]–[3]. Instead, I highlight a few

areas where the community has shone brightly in the context

of what I term a maturity-framework. I also suggest some new

challenges and opportunities for our community.

II. A MATURITY-FRAMEWORK

Redwine and Riddle’s seminal paper on technology transfer

[6] details a set of characteristics that lead to a mature software

engineering technique, along with six stages between a purely

academic exercise to an industrial strength solution that is

adopted as a best practice. Their research quotes an average

time of 15-20 years for a technological field to go from

academic folly to practice. While some can argue that the

time to technology transfer has been reduced with the advent

of large open source software repositories, and our ability to

produce usable, scalable research tools, the characteristics for

large technological advances remain the same.

Abstracting from their work, I propose that current tech-

nologies such as SBST which must be scalable, flexible, and

automated share a set of characteristics that can serve as

key indicators, of maturity. These are (1) the existence of

usable and extensible tools, (2) the study of hybrid/alternative

approaches, (3) techical extensions, and finally (4) industrial

adoption.

III. SUCCESSES

In this section I discuss some SBST successes for each of

these maturity-framework facets.

Tools. Over the years, multiple tools have been developed for

the research community including AUSTIN (for C), EvoSuite

for Java and Sapienz for Android [1]. An exemplar for success

is the EvoSuite tool for Java Unit testing [7]. The success of

EvoSuite lies its out of the box usability (e.g. a non-SBST user

can get it running with little effort) and extensibility to the

research community. EvoSuite has recently been made open

source, and it contains a large set of configuration options and

coverage objectives for expert users. In addition, there is an

13

2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST)

978-1-7281-2233-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SBST.2019.00013

associated benchmark of thousands of Java classes where it

has been successfully applied. EvoSuite also competes each

year at the annual SBST tool competition [7], serving as a

bar for others to rise above (it does not always win which is

another indicator of SBST’s breadth and maturity).

Hybrid Approaches. While, SBST has shown to be success-

ful, no single technique is the most effective and/or efficient

approach in all situations. A mature field can demonstrate and

admit both its strengths and weaknesses. Feldt and Poulding

point out the potential for hybrid and/or alternative optimiza-

tion approaches using empirical evidence [8]. Furthermore,

researchers have combined SBST with constraint-based ap-

proaches and symbolic approaches, with variations that include

tight coupling (e.g. embedding symbolic techniques as part of

the fitness function) and loose interleaving (e.g. alternating

between algorithms).

Technical Extensions. Out of the work on SBST there have

been born several notable extensions. The greatest success

is that of the field of genetic improvement (GI) [9], where

software is automatically modified (and improved) for a given

goal, often a non-functional aspect such as efficiency, energy,

etc. A sub-area of genetic improvement, automated program

repair [10], was the original technical extension which led to

GI. Although, many approaches to automated program repair

today have been proposed that do not utilize SBST techniques,

its roots lie firmly in this domain.

Industry Adoption. Last, I turn to industry adoption, the true

indicator of maturity. One of the original industrial adopters of

SBST (as early as the late 1990’s) was DaimlerChrysler. The

work of Wegener et al. over the years applied SBST for both

functional and structural testing of automotive features such as

automated breaking and parking systems [1]. Other industry

successes include Microsoft and Ericsson [1]. However, the

most visible and I would argue biggest leap for SBST at scale

is the production level success of multi-objective SBST com-

bined with automated program repair for mobile applications

at Facebook [11]. This is a huge advance for our field, not

only because SBST is now front and center at a social media

giant, but because its foundations came out of a research tool,

Sapienz. This quick move from academia to industry (within

a few years) demonstrates that SBST has reached a level of

maturity which is now staged for seamless transfer to real-

world, large-scale use.

IV. CHALLENGES

Despite the success of Sapienz which generates tests using

sequences of events on a mobile device, and hence can be

seen as system-level testing, there has been a stronger focus in

the SBST community on unit (and/or structural level) testing.

There are opportunities for more approaches that focus on

system based testing; testing from requirements, which leads

to some other challenges. The oracle problem (what is the

correct test answer?) has been well studied, but is one of the

primary challenges for SBST. While it is possible to detect

system crashes, other oracles are more difficult. One can use

regression tests (and re-use oracles), but the power of SBST is

its ease of generating tests rather than re-using what is already

there. In addition, oracles for tools that rely on source code

(such as EvoSuite) are dependent on either a human and/or

what can be mined from code (rather than specifications).

Combining SBST with more sophisticated oracles and/or

novel techniques such as search-based metamorphic testing

would bring new power to SBST. Next, incorporating human

knowledge and interaction into search is an important next

step which has received some, but not nearly enough attention.

Last, there is an opportunity to add learning approaches to

search such as that used in hyper-heuristic search [12].

V. CONCLUSIONS

In this paper I have discussed some of the successes

of SBST over the years within the context of a maturity-

framework. I have highlighted some tools, the proposal of

hybrid approaches, technical extensions and industry adoption.

I also discuss some open challenges such as the need for

automated oracles, more approaches to system-based testing,

and ways to incorporate human interaction into search. Last,

I suggest adding learning techniques to augment SBST via

approaches such as hyper-heuristic search.

ACKNOWLEDGMENTS

This work is supported in part by NSF grant CCF-1901543.

REFERENCES

[1] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in International
Conference on Software Testing, Verification and Validatio, ICST, April
2015, pp. 1–12.

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742–762, Nov 2010.

[3] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[4] “The 2012 ACM computing classification system,” 2012. [Online].
Available: https://www.acm.org/publications/class-2012

[5] Y. Zhang, M. Harman, and A. Mansouri, “The SBSE repository.” [On-
line]. Available: http://crestweb.cs.ucl.ac.uk/resources/sbse repository/

[6] S. T. Redwine, Jr. and W. E. Riddle, “Software technology maturation,”
in Proceedings of the International Conference on Software Engineer-
ing,ICSE, 1985, pp. 189–200.

[7] G. Fraser and A. Arcuri, “Evosuite at the SBST 2017 tool competition,”
in International Workshop on Search-Based Software Testing, SBST,
2017, pp. 39–42.

[8] R. Feldt and S. Poulding, “Broadening the search in search-based
software testing: It need not be evolutionary,” in International Workshop
on Search-Based Software Testing, SBST, May 2015, pp. 1–7.

[9] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, June 2018.

[10] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[11] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with Sapienz at
Facebook,” in Symposium on Search-Based Software Engineering, SBSE,
2018, pp. 3–45.

[12] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction test generation strategies using hyperheuristic search,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE,
May 2015, pp. 540–550.

14

