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Abstract— Many popular applications use traces of user data
to offer various services to their users. However, even if user
data are anonymized and obfuscated, a user’s privacy can be
compromised through the use of statistical matching techniques
that match a user trace to prior user behavior. In this paper,
we derive the theoretical bounds on the privacy of users in
such a scenario. We build on our recent study in the area
of location privacy, in which we introduced formal notions
of location privacy for anonymization-based location privacy-
protection mechanisms. Here, we derive the fundamental limits
of user privacy when both anonymization and obfuscation-
based protection mechanisms are applied to users’ time series
of data. We investigate the impact of such mechanisms on the
tradeoff between privacy protection and user utility. We first
study achievability results for the case where the time-series of
users are governed by an independent and identically distributed
(i.i.d.) process. The converse results are proved both for the
i.i.d. case as well as the more general Markov chain model.
We demonstrate that as the number of users in the network
grows, the obfuscation-anonymization plane can be divided into
two regions: in the first region, all users have perfect privacy;
and, in the second region, no user has privacy.

Index Terms— Anonymization, information theoretic privacy,
obfuscation, privacy-protection mechanism (PPM), user-data
driven (UDD) services.

I. INTRODUCTION

ANUMBER of emerging systems and applications work
by analyzing the data submitted by their users in order

to serve them; we call such systems User-Data Driven (UDD)
services. Examples of UDD services include smart cities,
connected vehicles, smart homes, and connected healthcare
devices, which have the promise of greatly improving users’
lives. Unfortunately, the sheer volume of user data collected
by these systems can compromise users’ privacy [2]. Even
the use of standard Privacy-Protection Mechanisms (PPMs),
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specifically anonymization of user identities and obfuscation
of submitted data, does not guarantee users’ privacy, as adver-
saries are able to use powerful statistical inference techniques
to learn sensitive private information of the users [3]–[7].

To illustrate the threat of privacy leakage, consider three
popular UDD services: (1) Health care: Wearable monitors
that constantly track user health variables can be invaluable in
assessing individual health trends and responding to emergen-
cies. However, such monitors produce long time-series of user
data uniquely matched to the health characteristics of each
user; (2) Smart homes: Emerging smart-home technologies
such as fine-grained power measurement systems can help
users and utility providers to address one of the key challenges
of the twenty-first century: energy conservation. But the mea-
surements of power by such devices can be mapped to users
and reveal their lifestyle habits; and, (3) Connected vehicles:
The location data provided by connected vehicles promises
to greatly improve everyday life by reducing congestion and
traffic accidents. However, the matching of such location
traces to prior behavior not only allows for user tracking, but
also reveals a user’s habits. In summary, despite their poten-
tial impact on society and their emerging popularity, these
UDD services have one thing in common: their utility critically
depends on their collection of user data, which puts users’
privacy at significant risk.

There are two main approaches to augment privacy in
UDD services: identity perturbation (anonymization) [8]–[14],
and data perturbation (obfuscation) [15]–[17]. In anonymiza-
tion techniques, privacy is obtained by concealing the mapping
between users and data, and the mapping is changed peri-
odically to thwart statistical inference attacks that try to de-
anonymize the anonymized data traces by matching user data
to known user profiles. Some approaches employ k-anonymity
to keep each user’s identity indistinguishable within a group
of k − 1 other users [18]–[24]. Other approaches employ
users’ pseudonyms within areas called mix-zones [25]–[27].
Obfuscation mechanisms aim at protecting privacy by per-
turbing user data, e.g., by adding noise to users’ samples
of data. For instance, cloaking replaces each user’s sample
of data with a larger region [28]–[33], while an alternative
approach is to use dummy data in the set of possible data
of the users [34]–[38]. In [39], a mechanism of obfuscation
was introduced where the answer was changed randomly with
some small probability. Here we consider the fundamental
limits of a similar obfuscation technique for providing privacy
in the long time series of emerging applications.
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The anonymization and obfuscation mechanisms improve
user privacy at the cost of user utility. The anonymization
mechanism works by frequently changing the pseudonym
mappings of users to reduce the length of time series that
can be exploited by statistical analysis. However, this frequent
change may also decrease the usability by concealing the
temporal relation between a user’s sample of data, which
may be critical in the utility of some systems, e.g., a dining
recommendation system that makes suggestions based on the
dining history of its users. On the other hand, obfuscation
mechanisms work by adding noise to users’ collected data,
e.g., location information. The added noise may degrade
the utility of UDD applications. Thus, choosing the right
level of the privacy-protection mechanism is an important
question, and understanding what levels of anonymization and
obfuscation can provide theoretical guarantees of privacy is of
interest.

In this paper, we will consider the ability of an adversary
to perform statistical analyses on time series and match
the series to descriptions of user behavior. In related work,
Unnikrishnan [7] provides a comprehensive analysis of the
asymptotic (in the length of the time series) optimal matching
of time series to source distributions. However, there are
several key differences between that analysis and the work
here. First, Unnikrishnan [7] looks at the optimal matching
tests, but does not consider the privacy metrics in this paper.
A significant component of our study is demonstrating that
mutual information converges to zero so that we can con-
clude there is no privacy leakage (hence, “perfect privacy”).
Second, the setting of Unnikrishnan [7] is different in two
key aspects: (a) It does not consider the obfuscation, which
is one of the two major protection mechanisms studied here;
(b) Unnikrishnan [7] only focuses on sources that are inde-
pendent and identically distributed (i.i.d.) while here, models
based on Markov chains are also considered. Third, the setting
of Unnikrishnan [7] assumes a fixed distribution on sources
(i.e., classical inference), whereas we assume the existence
of general (but possibly unknown) prior distributions for
the sources (i.e., a Bayesian setting). Finally, we study the
fundamental limits in terms of both the number of users and
the number of observations, while Unnikrishnan [7] focuses
on the case where the number of users is a fixed, finite value.

Numerous researchers have put forward ideas for quanti-
fying privacy-protection. Shokri et al. [12], [40] define the
expected estimation error of the adversary as a metric to
evaluate PPMs. Ma et al. [11] use uncertainty about users’
information to quantify user privacy in vehicular networks.
To defeat localization attacks and achieve privacy at the
same time, Shokri et al. [15] proposed a method which
finds optimal PPM for a Location Based Service (LBS) given
service quality constraints. In [41] and [42], privacy leakage
of data sharing and interdependent privacy risks are quantified,
respectively. A similar idea is proposed in [43] where the
quantification model is based on the Bayes conditional risk.
Kalantari et al. [44] derived the exact information theoretic
privacy-utility tradeoff for finite blocklengths of data.

Previously, mutual information has been used as a pri-
vacy metric in a number of settings [45]–[51]. However, the

framework and problem formulation for our setting (Inter-
net of Things (IoT) privacy) are quite different from
those encountered in previous works. More specifically, the
IoT privacy problem we consider here is based on a large set
of time-series data that belongs to different users with different
statistical patterns that has gone through a privacy-preserving
mechanism, and the adversary is aiming at de-anonymizing
and de-obfuscating the data.

The discussed studies demonstrate the growing importance
of privacy. What is missing from the current literature is a
solid theoretical framework for privacy that is general enough
to encompass various privacy-preserving methods in the liter-
ature. Such a framework will allow us to achieve provable
privacy guarantees, obtain fundamental trade-offs between
privacy and performance, and provide analytical tools to
optimally achieve provable privacy. We derive the fundamental
limits of user privacy in UDD services in the presence of
both anonymization and obfuscation protection mechanisms.
We build on our previous works on formalizing privacy in
location-based services [52], [53], but we significantly expand
those works here not just in application area but also user mod-
els and settings. In particular, our previous works introduced
the notion of perfect privacy for location-based services, and
we derived the rate at which an anonymization mechanism
should change the pseudonyms in order to achieve the defined
perfect privacy. In this work, we expand the notion of perfect
privacy to UDD services in general and derive the conditions
for it to hold when both anonymization and obfuscation-based
protection mechanisms are employed.

In this paper, we consider two models for users’ data:
i.i.d. and Markov chains. After introducing the general frame-
work in Section II, we consider an i.i.d. model extensively
in Section III and the first half of Section IV. We obtain
achievability and converse results for the i.i.d. model. The
i.i.d. model would apply directly to data that is sampled at
a low rate. In addition, understanding the i.i.d. case can also
be considered the first step toward understanding the more
complicated case where there is dependency, as was done for
anonymization-only Location Privacy-Preserving Mechanisms
(LPPMs) in [52], and will be done in Section IV-C. In partic-
ular, in Section IV-C, a general Markov chain model is used
to model users’ data pattern to capture the dependency of the
user’ data pattern over time. There, we obtain converse results
for privacy for this model. In Section V, we provide some
discussion about the achievability for the Markov chain case.

A. Summary of the Results

Given n, the total number of the users in a network,
their degree of privacy depends on two parameters: (1) The
number of observations m = m(n) by the adversary per
user for a fixed anonymization mapping (i.e., the number
of observations before the pseudonyms are changed); and
(2) the value of the noise added by the obfuscation technique
(as defined in Section II, we quantify the obfuscation noise
with a parameter an , where larger an means a higher level
of obfuscation). Intuitively, smaller m(n) and larger an result
in stronger privacy, at the expense of lower utility for the
users.
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Fig. 1. Limits of privacy in the entire m(n) − an plane: in regions 1, 2,
and 3, users have perfect privacy, and in region 4 users have no privacy.

Our goal is to identify values of an and m(n) that satisfy
perfect privacy in the asymptote of a large number of users
(n → ∞). When the users’ datasets are governed by an i.i.d.
process, we show that the m(n) − an plane can be divided
into two areas. In the first area, all users have perfect privacy
(as defined in Section II), and, in the second area, users have
no privacy. Figure 1 shows the limits of privacy in the entire
m(n) − an plane. As the figure shows, in regions 1, 2, and 3,
users have perfect privacy, while in region 4 users have no
privacy.

For the case where the users’ datasets are governed by
irreducible and aperiodic Markov chains with r states and
|E | edges, we show that users will have no privacy if m =
cn

2
|E |−r +α and an = c�n−

(
1

|E |−r +β
)
, for any constants c > 0,

c� > 0, α > 0, and β > α
4 . We also provide some insights

for the opposite direction (under which conditions users have
perfect privacy) for the case of Markov chains.

II. FRAMEWORK

In this paper, we adopt a similar framework to that employed
in [52] and [53]. The general set up is provided here, and
the refinement to the precise models for this paper will be
presented in the following sections. We assume a system with
n users with Xu(k) denoting a sample of the data of user u
at time k, which we would like to protect from an interested
adversary. We consider a strong adversary that has complete
statistical knowledge of the users’ data patterns based on the
previous observations or other resources. In order to secure
data privacy of users, both obfuscation and anonymization
techniques are used as shown in Figure 2. In Figure 2,
Zu(k) shows the (reported) sample of the data of user u
at time k after applying obfuscation, and Yu(k) shows the
(reported) sample of the data of user u at time k after
applying anonymization. The adversary observes only Yu(k),

Fig. 2. Applying obfuscation and anonymization techniques to users’ data
samples.

k = 1, 2, · · · , m(n), where m(n) is the number of observations
of each user before the identities are permuted. The adversary
then tries to estimate Xu(k) by using those observations.

Let Xu be the m(n)×1 vector containing the sample of the
data of user u, and X be the m(n)×n matrix with uth column
equal to Xu ;

Xu =

⎡
⎢⎢⎢⎣

Xu(1)
Xu(2)

...
Xu(m)

⎤
⎥⎥⎥⎦ , X = [X1, X2, · · · , Xn].

A. Data Samples Model

We assume there are r ≥ 2 possible values (0, 1, · · · , r −1)
for each sample of the users’ data. In the first part of the
paper (perfect privacy analysis), we assume an i.i.d. model
as motivated in Section I. In the second part of the paper
(converse results: no privacy region), the users’ datasets are
governed by irreducible and aperiodic Markov chains. At any
time, Xu(k) is equal to a value in {0, 1, · · · , r − 1} according
to a user-specific probability distribution (pu). pu(i) is the
probability of user u having the data value i , so

pu =

⎡
⎢⎢⎢⎣

pu(1)
pu(2)

...
pu(r − 1)

⎤
⎥⎥⎥⎦ , for each u ∈ {1, 2, · · · , n}.

We also assume pu’s are drawn independently from some
continuous density function, fP(pu), which has support on a
subset of the (0, 1)r−1 hypercube.

All pu’s are know to the adversary, and he/she employs
such to distinguish different users based on statistical match-
ing of those user distributions to traces of user activity of
length m(n).

B. Obfuscation Model

The first step in obtaining privacy is to apply the obfuscation
operation in order to perturb the users’ data samples. In this
paper, we assume that each user has only limited knowledge
of the characteristics of the overall population and thus we
employ a simple distributed method in which the samples of
the data of each user are reported with error with a certain
probability, where that probability itself is generated randomly
for each user. In other words, the obfuscated data is obtained
by passing the users’ data through an r -ary symmetric channel
with a random error probability. More precisely, let Zu be the
vector which contains the obfuscated versions of user u’s data
samples, and Z is the collection of Zu for all users,

Zu =

⎡
⎢⎢⎢⎣

Zu(1)
Zu(2)

...
Zu(m)

⎤
⎥⎥⎥⎦ , Z = [Z1, Z2, · · · , Zn].
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To create a noisy version of data samples, for each user u,
we independently generate a random variable Ru that is
uniformly distributed between 0 and an , where an ∈ (0, 1].
The value of Ru gives the probability that a user’s data sample
is changed to a different data sample by obfuscation, and
an is termed the “noise level” of the system. For the case
of r = 2 where there are two states for users’ data (state 0
and state 1), the obfuscated data is obtained by passing users’
data through a Binary Symmetric Channel (BSC) with a small
error probability [39]. Thus, we can write

Zu(k) =
{

Xu(k), with probability 1 − Ru .

1 − Xu(k), with probability Ru .

When r > 2, for l ∈ {0, 1, · · · , r − 1}:

P(Zu(k) = l|Xu(k) = i) =
⎧
⎨
⎩

1 − Ru, for l = i.
Ru

r − 1
, for l �= i.

Note that the effect of the obfuscation is to alter the probability
distribution function of each user across the r possibilities in a
way that is unknown to the adversary, since it is independent
of all past activity of the user, and hence the obfuscation
inhibits user identification. For each user, Ru is generated
once and is kept constant for the collection of samples of
length m(n), thus, providing a very low-weight obfuscation
algorithm. We will discuss the extension to the case where
Ru is regenerated independently over time in Section V. There,
we will also provide a discussion about obfuscation using
continuous noise distributions (e.g., Gaussian noise).

C. Anonymization Model

Anonymization is modeled by a random permutation � on
the set of n users. The user u is assigned the pseudonym �(u).
Y is the anonymized version of Z; thus,

Y = Perm (Z1, Z2, · · · , Zn; �)

= [
Z�−1(1), Z�−1(2), · · · , Z�−1(n)

]

= [Y1, Y2, · · · , Yn],

where Perm(.,�) is permutation operation with permutation
function �. As a result, Yu = Z�−1(u) and Y�(u) = Zu .

D. Adversary Model

We protect against the strongest reasonable adversary.
Through past observations or some other sources, the
adversary is assumed to have complete statistical knowledge of
the users’ patterns; in other words, he/she knows the probabi-
lity distribution for each user on the set of data samples
{0, 1, . . . , r − 1}, shown by vector pu = [pu(1), pu(2), · · · ,
pu(m)]T . As discussed in the model for the data samples,
the parameters pu , u = 1, 2, · · · , n are drawn independently
from a continuous density function, fP(pu), which has
support on a subset of a defined hypercube. The density
fP(pu) might be unknown to the adversary, as all that is
assumed here is that such a density exists, and it will be
evident from our results that knowing or not knowing fP(pu)
does not change the results asymptotically. Specifically, from

the results of Section III, we conclude that user u has perfect
privacy even if the adversary knows fP(pu). In addition,
in Section IV, it is shown that the adversary can recover the
true data of user u at time k without using the specific density
function of fP(pu), and as result, users have no privacy even
if the adversary does not know fP(pu).

The adversary also knows the value of an as it is a
design parameter. However, the adversary does not know the
realization of the random permutation � or the realizations of
the random variables Ru , as these are independent of the past
behavior of the users. It is critical to note that we assume the
adversary does not have any other auxiliary information or side
information about users’ data.

In [52], perfect privacy is defined as follows:
Definition 1: User u has perfect privacy at time k, if and

only if

lim
n→∞ I (Xu(k); Y) = 0,

where I (X; Y ) denotes the mutual information between ran-
dom variables (vectors) X and Y .
In this paper, we also consider the situation in which there is
no privacy.

Definition 2: For an algorithm for the adversary that tries
to estimate the actual sample of data of user u at time k, define
the error probability as

Pe(u, k) = P
(

˜Xu(k) �= Xu(k)
)
,

where Xu(k) is the actual sample of the data of user u at
time k, ˜Xu(k) is the adversary’s estimated sample of the data
of user u at time k. Now, define E as the set of all possible
adversary’s estimators. Then, user u has no privacy at time k,
if and only if for large enough n,

P∗
e (u, k) = inf

E
P
(

˜Xu(k) �= Xu(k)
)

→ 0.

Hence, a user has no privacy if there exists an algorithm for the
adversary to estimate Xu(k) with diminishing error probability
as n goes to infinity.

Discussion: Both of the privacy definitions given above
(perfect privacy and no privacy) are asymptotic in the number
of users (n → ∞), which allows us to find clean analyt-
ical results for the fundamental limits. Moreover, in many
IoT applications, such as ride sharing and dining recommen-
dation applications, the number of users is large.

Notation: Note that the sample of data of user u at time k
after applying obfuscation (Zu(k)) and the sample of data of
user u at time k after applying anonymization (Yu(k)) depend
on the number of users in the network (n), while the actual
sample of data of user u at time k is independent of the
number of users (n). Despite the dependency in the former
cases, we omit this subscript (n) on

(
Z (n)

u (k), Y (n)
u (k)

)
to

avoid confusion and make the notation consistent.
Notation: Throughout the paper, Xn

d−→ X denotes con-
vergence in distribution. Also, We use P

(
X = x

∣∣Y = y
)

for
the conditional probability of X = x given Y = y. When we
write P

(
X = x

∣∣Y ), we are referring to a random variable that
is defined as a function of Y .
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III. PERFECT PRIVACY ANALYSIS: I.I.D. CASE

A. Two-State Model
We first consider the two-state case (r = 2) which captures

the salient aspects of the problem. For the two-state case,
the sample of the data of user u at any time is a Bernoulli
random variable with parameter pu , which is the probability
of user u having data sample 1. Thus,

Xu(k) ∼ Bernoulli (pu).

Per Section II, the parameters pu , u = 1, 2, · · · , n are drawn
independently from a continuous density function, fP (pu),
on the (0, 1) interval. We assume there are δ1, δ2 > 0 such
that:1 {

δ1 < fP (pu) < δ2, pu ∈ (0, 1).

fP (pu) = 0, pu /∈ (0, 1).

The adversary knows the values of pu , u = 1, 2, · · · , n
and uses this knowledge to identify users. We will use capital
letters (i.e., Pu) when we are referring to the random variable,
and use lower case (i.e., pu) to refer to the realization of Pu .

In addition, since the user data (Xu(k)) are i.i.d. and have
a Bernoulli distribution, the obfuscated data (Zu(k)) are also
i.i.d. with a Bernoulli distribution. Specifically,

Zu(k) ∼ Bernoulli (Qu),

where

Qu = Pu(1 − Ru) + (1 − Pu)Ru

= Pu + (1 − 2Pu) Ru ,

and recall that Ru is the probability that user u’s data sample
is altered at any time. For convenience, define a vector where
element Qu is the probability that an obfuscated data sample
of user u is equal to one, and

Q = [Q1, Q2, · · · , Qn].

Thus, a vector containing the permutation of those probabili-
ties after anonymization is given by:

V = Perm (Q1, Q2, · · · , Qn; �)

= [
Q�−1(1), Q�−1(2), · · · , Q�−1(n)

]

= [V1, V2, · · · , Vn],

where Vu = Q�−1(u) and V�(u) = Qu . As a result, for
u = 1, 2, · · · , n, the distribution of the data symbols for the
user with pseudonym u is given by:

Yu(k) ∼ Bernoulli (Vu) ∼ Bernoulli
(
Q�−1(u)

)
.

The following theorem states that if an is significantly larger
than 1

n in this two-state model, then all users have perfect
privacy independent of the value of m(n).

Theorem 1: For the above two-state model, if Z is the
obfuscated version of X, and Y is the anonymized version
of Z as defined above, and

• m = m(n) is arbitrary;
• Ru ∼ Uniform[0, an], where an = c�n−(1−β) for any

c� > 0 and 0 < β < 1;

1The condition δ1 < fP (pu) < δ2 is not actually necessary for the
results and can be relaxed; however, we keep it here to avoid unnecessary
technicalities.

Fig. 3. Distribution of Qu given Pu = pu .

Fig. 4. Case 1: The support of the distributions is small relative to the
difference between p1 and p2.

then, user 1 has perfect privacy at time k as n goes to
infinity.

The proof of Theorem 1 will be provided for the case
0 ≤ p1 < 1

2 , as the proof for the case 1
2 ≤ p1 ≤ 1 is analogous

and is thus omitted.
Intuition behind the Proof of Theorem 1: Since m(n)

is arbitrary, the adversary is able to estimate very accu-
rately (in the limit, perfectly) the distribution from which
each data sequence Yu , u = 1, 2, · · · , n is drawn; that is,
the adversary is able to accurately estimate the probability Vu ,
u = 1, 2, · · · , n. Clearly, if there were no obfuscation for each
user u, the adversary would then simply look for the j such
that p j is very close to Vu and set ˜X j (k) = Yu(k), resulting
in no privacy for any user.

We want to make certain that the adversary obtains no infor-
mation about X1(k), the sample of data of user 1 at time k.
To do such, we will establish that there are a large number of
users whom have a probability pu that when obfuscated could
have resulted in a probability consistent with p1. Consider
asking whether another probability p2 is sufficiently close
enough to be confused with p1 after obfuscation; in particular,
we will look for p2 such that, even if the adversary is given
the obfuscated probabilities V�(1) and V�(2), he/she cannot
associate these probabilities with p1 and p2. This requires that
the distributions Q1 and Q2 of the obfuscated data of user 1
and user 2 have significant overlap; we explore this next.

Recall that Qu = Pu + (1 − 2Pu)Ru , and Ru ∼
Uniform[0, an]. Thus, we know Qu

∣∣Pu = pu has a uniform
distribution with length (1 − 2 pu)an . Specifically,

Qu
∣∣Pu = pu ∼ Uniform [ pu, pu + (1 − 2 pu)an].

Figure 3 shows the distribution of Qu given Pu = pu .
Consider two cases: In the first case, the support of the

distributions Q1
∣∣P1 = p1 and Q2

∣∣P2 = p2 are small relative
to the difference between p1 and p2 (Figure 4); in this case,
given the probabilities V�(1) and V�(2) of the anonymized
data sequences, the adversary can associate those with p1
and p2 without error. In the second case, the support of the
distributions Q1

∣∣P1 = p1 and Q2
∣∣P2 = p2 is large relative

to the difference between p1 and p2 (Figure 5), so it is
difficult for the adversary to associate the probabilities V�(1)

and V�(2) of the anonymized data sequences with p1 and p2.
In particular, if V�(1) and V�(2) fall into the overlap of the
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Fig. 5. Case 2: The support of the distributions is large relative to the
difference between p1 and p2.

support of Q1 and Q2, we will show the adversary can only
guess randomly how to de-anonymize the data. Thus, if the
ratio of the support of the distributions to

∣∣p1 − p2
∣∣ goes

to infinity, the adversary’s posterior probability for each user
converges to 1

2 , thus, implying no information leakage on the
user identities. More generally, if we can guarantee that there
will be a large set of users with pu’s very close to p1 compared
to the support of Q1

∣∣P1 = p1, we will be able to obtain perfect
privacy as demonstrated rigorously below.

Given this intuition, the formal proof proceeds as follows.
Given p1, we define a set J (n) of users whose parameter pu

of their data distributions is sufficiently close to p1
(Figure 5; case 2), so that it is likely that Q1 and Qu cannot
be readily associated with p1 and pu .

The purpose of Lemmas 1, 2, and 3 is to show that,
from the adversary’s perspective, the users in set J (n) are
indistinguishable. More specifically, the goal is to show that
the obfuscated data corresponding to each of these users could
have been generated by any other users in J (n) in an equally
likely manner. To show this, Lemma 1 employs the fact that,
if the observed values of N uniformly distributed random
variables (N is size of set J (n)) are within the intersection
of their ranges, it is impossible to infer any information about
the matching between the observed values and the distribu-
tions. That is, all possible N ! matchings are equally likely.
Lemmas 2 and 3 leverage Lemma 1 to show that even if the
adversary is given a set that includes all of the pseudonyms

of the users in set J (n)
(

i.e., �(J (n))
�= {�−1(u) ∈ J (n)

})

he/she still will not be able to infer any information about the
matching of each specific user in set J (n) and his pseudonym.
Then Lemma 5 uses the above fact to show that the mutual
information between the data set of user 1 at time k and the
observed data sets of the adversary converges to zero for large
enough n.

Proof of Theorem 1:
Proof: Note, per Lemma 6 of Appendix A, it is sufficient

to establish the results on a sequence of sets with high
probability. That is, we can condition on high-probability
events.

Now, define the critical set J (n) with size N (n) = ∣∣J (n)
∣∣ for

0 ≤ p1 < 1
2 as follows:

J (n) = {u ∈ {1, 2, . . . , n} : p1 ≤ Pu ≤ p1 + εn;
p1 + εn ≤ Qu ≤ p1 + (1 − 2 p1)an},

where εn = n
−
(

1− β
2

)
, an = c�n−(1−β), and β is defined in the

statement of Theorem 1.
Note for large enough n, if 0 ≤ p1 < 1

2 , we have
0 ≤ pu < 1

2 . As a result,

Qu
∣∣Pu = pu ∼ Uniform (pu, pu + (1 − 2 pu)an).

Fig. 6. Range of Pu and Qu for elements of set J (n) and probability density
function of Qu

∣∣Pu = pu .

Fig. 7. Range of Pu and Qu for elements of set J (n) and probability density
function of Q1

∣∣P1 = p1.

We can prove that with high probability, 1 ∈ J (n) for large
enough n, as follows. First, Note that

Q1
∣∣P1 = p1 ∼ Uniform (p1, p1 + (1 − 2 p1)an).

Now, according to Figure 7,

P
(

1 ∈ J (n)
)

= 1 − εn

(1 − 2 p1) an

= 1 − 1

(1 − 2 p1) c�n
β
2

,

thus, for any c� > 0 and large enough n,

P
(

1 ∈ J (n)
)

→ 1.

Now in the second step, we define the probability W (n)
j for

any j ∈ �(J (n)) = {�(u) : u ∈ J (n)} as

W (n)
j = P

(
�(1) = j

∣∣V,�(J (n))
)
.

W (n)
j is the conditional probability that �(1) = j after

perfectly observing the values of the permuted version of
obfuscated probabilities (V) and set including all of the
pseudonyms of the users in set J (n)

(
�(J (n))

)
. Since V and

�(J (n)) are random, W (n)
j is a random variable. How-

ever, we will prove shortly that in fact W (n)
j = 1

N (n) , for
all j ∈ �(J (n)).

Note: Since we are looking from the adversary’s point
of view, the assumption is that all the values of Pu , u ∈
{1, 2, · · · , n} are known, so all of the probabilities are con-
ditioned on the values of P1 = p1, P2 = p2, · · · , Pn = pn .
Thus, to be accurate, we should write

W (n)
j = P

(
�(1) = j

∣∣V,�(J (n)), P1, P2, · · · , Pn

)
.

Nevertheless, for simplicity of notation, we often omit the
conditioning on P1, P2, · · · , Pn .

First, we need a lemma from elementary probability.
Lemma 1: Let N be a positive integer, and let

a1, a2, · · · , aN and b1, b2, · · · , bN be real numbers such
that au ≤ bu for all u. Assume that X1, X2, · · · , X N are
independent random variables such that

Xu ∼ Uniform[au, bu].
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Let also γ1, γ2, · · · , γN be distinct real numbers such that

γ j ∈
N⋂

u=1

[au, bu] for all j ∈ {1, 2, .., N}.

Suppose that we know the event E has occurred, meaning
that the observed values of Xu’s are equal to the set of γ j ’s
(but with unknown ordering), i.e.,

E ≡ {X1, X2, · · · , X N } = {γ1, γ2, · · · , γN },
then

P
(
X1 = γ j |E

) = 1

N
.

Proof: Lemma 1 is proved in Appendix B. �
Using the above lemma, we can state our desired result

for W (n)
j .

Lemma 2: For all j ∈ �(J (n)), W (n)
j = 1

N (n) .
Proof: We argue that the setting of this lemma is

essentially equivalent to the assumptions in Lemma 1. First,
remember that

W (n)
j = P

(
�(1) = j

∣∣V,�(J (n))
)
.

Note that Qu = Pu+(1−2Pu)Ru , and since Ru is uniformly
distributed, Qu conditioned on Pu is also uniformly distributed
in the appropriate intervals. Moreover, since Vu = Q�−1(u),
we conclude Vu is also uniformly distributed. So, looking
at the definition of W (n)

j , we can say the following: given
the values of the uniformly distributed random variables Qu ,
we would like to know which one of the values in V is
the actual value of Q1 = V�(1), i.e., is �(1) = j? This
is equivalent to the setting of Lemma 1 as described further
below.

Note that since 1 ∈ J (n), �(1) ∈ �(J (n)). Therefore, when
searching for the value of �(1), it is sufficient to look inside
set �(J (n)). Therefore, instead of looking among all the values
of Vj , it is sufficient to look at Vj for j ∈ �(J (n)). Let us
show these values by V� = {v1, v2, · · · , vN (n) }, so,

W (n)
j = P

(
�(1) = j

∣∣V�,�(J (n))
)
.

Thus, we have the following scenario: Qu , u ∈ J (n) are
independent random variables, and

Qu
∣∣Pu = pu ∼ Uniform[pu, pu + (1 − 2 pu)an].

Also, v1, v2, · · · , vN (n) are the observed values of Qu with
unknown ordering (unknown mapping �). We also know from
the definition of set J (n) that

Pu ≤ p1 + εn ≤ Qu ,

Qu ≤ p1(1 − 2an) + an ≤ Pu(1 − 2an) + an,

so, we can conclude

v j ∈
N (n)⋂
u=1

[pu, pu + (1 − 2 pu)an] for all j ∈ {1, 2, .., N (n)}.

We know the event E has occurred, meaning that the observed
values of Qu ’s are equal to set of v j ’s (but with unknown
ordering), i.e.,

E ≡ {Qu, u ∈ J (n)} = {v1, v2, · · · , vN (n) }.
Then, according to Lemma 1,

P
(
Q1 = v j |E, P1, P2, · · · , Pn

) = 1

N (n)
.

Note that there is a subtle difference between this lemma and
Lemma 1. Here N (n) is a random variable while N is a fixed
number in Lemma 1. Nevertheless, since the assertion holds
for every fixed N , it also holds for the case where N is a
random variable. Now, note that

P(Q1 = v j |E, P1, P2, · · · , Pn)

= P

(
�(1) = j

∣∣∣∣E, P1, P2, · · · , Pn

)

= P

(
�(1) = j

∣∣∣∣V�,�(J (n)), P1, P2, · · · , Pn

)

= W (n)
j .

Thus, we can conclude

W (n)
j = 1

N (n)
.

�
In the third step, we define ˜

W (n)
j for any j ∈ �(J (n)) as

˜

W (n)
j = P

(
�(1) = j

∣∣Y,�(J (n))
)
.

˜

W (n)
j is the conditional probability that �(1) = j after

observing the values of the anonymized version of the obfus-
cated samples of the users’ data (Y) and the aggregate
set including all the pseudonyms of the users in set J (n)

(i.e., �(J (n))
�= {

�−1( j) ∈ J (n)
}
). Since Y and �(J (n)) are

random, ˜

W (n)
j is a random variable. Now, in the following

lemma, we will prove
˜

W (n)
j = 1

N (n) , for all j ∈ �(J (n)) by
using Lemma 3.

Note in the following lemma, we want to show that even if
the adversary is given a set including all of the pseudonyms of
the users in set J (n), he/she cannot match each specific user
in set J (n) and his pseudonym.

Lemma 3: For all j ∈ �(J (n)),
˜

W (n)
j = 1

N (n) .
Proof: First, note that

˜

W (n)
j =

∑
for all v

P
(
�(1) = j

∣∣Y,�(J (n)), V = v
)

· P
(

V = v
∣∣Y,�(J (n))

)
.

Also, we note that given V, �(J (n)), and Y are independent.
Intuitively, this is because when observing Y, any information
regarding �(J (n)) is leaked through estimating V. This can
be rigorously proved similar to the proof of [52, Lemma 1].
We can state this fact as

P
(

Yu(k)
∣∣Vu = vu ,�(J (n))

)
= P

(
Yu(k)

∣∣Vu = vu
) = vu .
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The right and left hand side are given by Bernoulli(vu)
distributions.

As a result,

˜

W (n)
j =

∑
for all v

P
(
�(1) = j

∣∣�(J (n)), V = v
)

× P
(

V = v
∣∣Y,�(J (n))

)
.

Note W (n)
j = P

(
�(1) = j

∣∣�(J (n)), V
)
, so

˜

W (n)
j =

∑
for all v

W (n)
j P

(
V = v

∣∣Y,�(J (n))
)

= 1

N (n)

∑
for all v

P
(

V = v
∣∣Y,�(J (n))

)

= 1

N (n)
.

�
To show that no information is leaked, we need to show

that the size of set J (n) goes to infinity. This is established
in Lemma 4.

Lemma 4: If N (n) = |J (n)|, then N (n) → ∞ with high
probability as n → ∞. More specifically, there exists λ > 0
such that

P

(
N (n) >

λ

2
n

β
2

)
→ 1.

Proof: Lemma 4 is proved in Appendix C. �
In the final step, we define

̂

W (n)
j for any j ∈ �(J (n)) as

̂

W (n)
j = P

(
X1(k) = 1

∣∣Y,�(J (n))
)
.

̂

W (n)
j is the conditional probability that X1(k) = 1 after

observing the values of the anonymized version of the obfus-
cated samples of the users’ data (Y) and the aggregate set
including all of the pseudonyms of the users in set J (n)

(�(J (n))). ̂

W (n)
j is a random variable because Y and �(J (n))

are random. Now, in the following lemma, we will prove
̂

W (n)
j

converges in distribution to p1.
Note that this is the probability from the adversary’s point

of view. That is, given that the adversary has observed Y as
well as the extra information �(J (n)), what can he/she infer
about X1(k)?

Lemma 5: For all j ∈ �(J (n)), ̂

W (n)
j

d−→ p1.
Proof: We know

̂

W (n)
j =

∑

j∈�(J (n))

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)

· P
(
�(1) = j

∣∣Y,�(J (n))
)
,

and according to the definition ˜

W (n)
j =

P
(
�(1) = j

∣∣Y,�(J (n))
)
, we have

̂

W (n)
j =

∑

j∈�(J (n))

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)
˜

W (n)
j

= 1

N (n)

∑

j∈�(J (n))

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)
.

We now claim that

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)
= p1 + o(1).

The reasoning goes as follows. Given �(1) = j and
knowing Y, we know that

Y�(1)(k) = Z1(k) =
{

X1(k), with probability 1 − R1.

1 − X1(k), with probability R1.

Thus, given Y j (k) = 1, Bayes’ rule yields:

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)

= (1 − R1)
P(X1(k) = 1)

P(Y�(1)(k) = 1)

= (1 − R1)
p1

p1(1 − R1) + (1 − p1)R1
= 1 − o(1),

and similarly, given Y j (k) = 0,

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)

= R1
P(X1(k) = 1)

P(Y�(1)(k) = 0)

= R1
p1

p1 R1 + (1 − p1)(1 − R1)
= o(1).

Note that by the independence assumption, the above proba-
bilities do not depend on the other values of Yu(k) (as we are
conditioning on �(1) = j ). Thus, we can write

̂

W (n)
j = 1

N (n)

∑

j∈�(J (n))

P
(

X1(k) = 1
∣∣�(1) = j, Y,�(J (n))

)

= 1

N (n)

∑

j∈�(J (n)),Y j (k)=1

(1 − o(1))

+ 1

N (n)

∑

j∈�(J (n)),Y j (k)=0

o(1).

First, note that since
∣∣{ j ∈ �(J (n)), Y j (k) = 0

}∣∣ ≤ N (n),
the second term above converges to zero, thus,

̂

W (n)
j →

∣∣{ j ∈ �(J (n)), Y�(1)(k) = 1
}∣∣

N (n)
.

Since for all j ∈ �(J (n)), Y j (k) ∼ Bernoulli (p1 + o(1)), by a
simple application of Chebyshev’s inequality, we can conclude
̂

W (n)
j → p1. Appendix D provides the detail. �
As a result,

X1(k)|Y,�(J (n)) → Bernoulli(p1),
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thus,

H
(

X1(k)
∣∣Y,�(J (n))

)
→ H (X1(k)).

Since conditioning reduces entropy,

H
(

X1(k)
∣∣Y,�(J (n))

)
≤ H

(
X1(k)

∣∣Y),
and as a result,

lim
n→∞ H (X1(k)) − H

(
X1(k)

∣∣Y) ≤ 0,

and

lim
n→∞ I (X1(k); Y) ≤ 0.

By knowing that I (X1(k); Y) cannot take any negative value,
we can conclude that

I (X1(k); Y) → 0.

�

B. Extension to r-State

Now, assume users’ data samples can have r possibilities
(0, 1, · · · , r − 1), and pu(i) shows the probability of user u
having data sample i . We define the vector pu and the matrix p
as

pu =

⎡
⎢⎢⎢⎣

pu(1)
pu(2)

...
pu(r − 1)

⎤
⎥⎥⎥⎦ , p = [p1, p2, · · · , pn

]
.

We assume pu(i)’s are drawn independently from some con-
tinuous density function, fP(pu), which has support on a
subset of the (0, 1)r−1 hypercube (Note that the pu(i)’s sum
to one, so one of them can be considered as the dependent
value and the dimension is r − 1). In particular, define the
range of the distribution as

Rp =
{
(x1, x2, · · · , xr−1) ∈ (0, 1)r−1

: xi > 0, x1+x2+· · ·+xr−1 < 1, i = 1, 2, · · · , r −1

}
.

Figure 8 shows the range Rp for the case where r = 3. Then,
we assume there are δ1, δ2 > 0 such that:{

δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu /∈ Rp.

The obfuscation is similar to the two-state case. Specifically,
for l ∈ {0, 1, · · · , r − 1}, we can write

P(Zu(k) = l|Xu(k) = i) =
⎧⎨
⎩

1 − Ru, for l = i.
Ru

r − 1
, for l �= i.

Theorem 2: For the above r -state model, if Z is the obfus-
cated version of X, and Y is the anonymized version of Z as
defined previously, and

• m = m(n) is arbitrary;

• Ru ∼ Uniform[0, an], where an = c�n−
(

1
r−1 −β

)
for any

c� > 0 and 0 < β < 1
r−1 ;

Fig. 8. Rp for case r = 3.

then, user 1 has perfect privacy at time k as n goes to
infinity.

The proof of Theorem 2 is similar to the proof of
Theorem 1. The major difference is that instead of the random
variables Pu , Qu , Vu , we need to consider the random vectors
Pu, Qu, Vu . Similarly, for user u, we define the vector Qu as

Qu =

⎡
⎢⎢⎢⎣

Qu(1)
Qu(2)

...
Qu(r − 1)

⎤
⎥⎥⎥⎦.

In the r -state case,

Qu(i) = Pu(i)

(
1 − Ru(i)

)
+
(

1 − Pu(i)

)
Ru

r − 1

= Pu(i) +
(

1 − r Pu(i)

)
Ru

r − 1
.

We also need to define the critical set J (n). First, for i =
0, 1, · · · , r − 1, define set J (n)

i as follows. If 0 ≤ p1(i) < 1
r ,

then,

J (n)
i =

{
{u ∈ {1, 2, . . . , n} : p1(i) ≤ Pu(i) ≤ p1(i) + εn

; p1(i)+εn ≤ Qu(i) ≤ p1(i) + (1 − r p1(i))
an

r − 1

}
,

where εn = n
−
(

1
r−1 − β

2

)
, an = c�n−

(
1

r−1 −β
)
, and β is defined

in the statement of Theorem 2.
We then define the critical set J (n) as:

J (n) =
r−1⋂
l=0

J (n)
i .

We can then repeat the same arguments in the proof of
Theorem 1 to complete the proof.

IV. CONVERSE RESULTS: NO PRIVACY REGION

In this section, we prove that if the number of observations
by the adversary is larger than its critical value and the noise
level is less than its critical value, then the adversary can
find an algorithm to successfully estimate users’ data samples
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Fig. 9. p1, sets B(n) and C(n) for case r = 2.

with arbitrarily small error probability. Combined with the
results of the previous section, this implies that asymptotically
(as n → ∞), privacy can be achieved if and only if at least one
of the two techniques (obfuscation or anonymization) are used
above their thresholds. This statement needs a clarification
as follows: Looking at the results of Montazeri et al. [52],
we notice that anonymization alone can provide perfect privacy
if m(n) is below its threshold. On the other hand, the threshold
for obfuscation requires some anonymization: In particular,
the identities of the users must be permuted once to prevent
the adversary from readily identifying the users.

A. Two-State Model

Again, we start with the i.i.d. two-state model. The data
sample of user u at any time is a Bernoulli random variable
with parameter pu .

As before, we assume that pu’s are drawn independently
from some continuous density function, fP (pu), on the (0, 1)
interval. Specifically, there are δ1, δ2 > 0 such that:

{
δ1 < fP (pu) < δ2, pu ∈ (0, 1).

fP (pu) = 0, pu /∈ (0, 1).

Theorem 3: For the above two-state mode, if Z is the
obfuscated version of X, and Y is the anonymized version
of Z as defined, and

• m = cn2+α for any c > 0 and α > 0;
• Ru ∼ Uniform[0, an], where an = c�n−(1+β) for any

c� > 0 and β > α
4 ;

then,user 1 has no privacy at time k as n goes to infinity.
Since this is a converse result, we give an explicit detector

at the adversary and show that it can be used by the adversary
to recover the true data of user 1.

Proof: The adversary first inverts the anonymization
mapping � to obtain Z1(k), and then estimates the value
of X1(k) from that. To invert the anonymization, the adversary
calculates the empirical probability that each string is in state 1
and then assigns the string with the empirical probability
closest to p1 to user 1.

Formally, for u = 1, 2, · · · , n, the adversary computes Yu ,
the empirical probability of user u being in state 1, as follows:

Yu = Yu(1) + Yu(2) + · · · + Yu(m)

m
,

thus,

Y�(u) = Zu(1) + Zu(2) + · · · + Zu(m)

m
.

As shown in Figure 9, define

B(n) = {x ∈ (0, 1); p1 − �n ≤ x ≤ p1 + �n} ,

where �n = n−(1+ α
4 ) and α is defined in the statement of

Theorem 3. We claim that for m = cn2+α, an = c�n−(1+β),
and large enough n,

1) P
(
Y�(1) ∈ B(n)

)→ 1.

2) P

(
n⋃

u=2

(
Y�(u) ∈ B(n)

))→ 0.

As a result, the adversary can identify �(1) by examining Yu ’s
and assigning the one in B(n) to user 1. Note that Y�(u) ∈ B(n)

is a set (event) in the underlying probability space and can be
written as

{
ω ∈ � : Y�(u)(ω) ∈ B(n)

}
.

First, we show that as n goes to infinity,

P
(

Y�(1) ∈ B(n)
)

→ 1.

We can write

P
(

Y�(1) ∈ B(n)
)

= P

⎛
⎜⎜⎝

m∑
k=1

Z1(k)

m
∈ B(n)

⎞
⎟⎟⎠

= P

⎛
⎜⎜⎝p1 − �n ≤

m∑
k=1

Z1(k)

m
≤ p1 + �n

⎞
⎟⎟⎠

= P

⎛
⎜⎜⎝p1−�n−Q1 ≤

m∑
k=1

Z1(k)

m
− Q1 ≤ p1 + �n − Q1

⎞
⎟⎟⎠.

Note that for any u ∈ {1, 2, · · · , n}, we have

|pu − Qu | = |1 − 2 pu|Ru

≤ Ru ≤ an,

so, we can conclude

P
(

Y�(1) ∈ B(n)
)

= P

⎛
⎜⎜⎝

m∑
k=1

Z1(k)

m
∈ B(n)

⎞
⎟⎟⎠

≥ P

⎛
⎜⎜⎝−�n + an ≤

m∑
k=1

Z1(k)

m
− Q1 ≤ −an + �n

⎞
⎟⎟⎠

= P

(∣∣∣∣∣
m∑

k=1

Z1(k) − m Q1

∣∣∣∣∣ ≤ m(�n − an)

)
.

From the Chernoff bound, for any c, c�, α > 0 and β > α
4 ,

P

(∣∣∣∣∣
m∑

k=1

Z1(k) − m Q1

∣∣∣∣∣ ≤ m(�n − an)

)

≥ 1 − 2e
− m(�n−an )2

3Q1

≥ 1 − 2e
−
(

1
3Q1

)(
cn2+α

)( 1

n
1+ α

4
− c�

n1+β

)2

≥ 1 − 2e
− 1

3

(
cn2+α

)( 1

n
1+ α

4
− c�

n1+β

)2

→ 1.

As a result, as n becomes large,

P
(

Y�(1) ∈ B(n)
)

→ 1.
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Now, we need to show that as n goes to infinity,

P

(
n⋃

u=2

(
Y�(u) ∈ B(n)

))
→ 0.

First, we define

C(n) = {x ∈ (0, 1); p1 − 2�n ≤ x ≤ p1 + 2�n} ,

and claim as n goes to infinity,

P

(
n⋃

u=2

(
Pu ∈ C(n)

))
→ 0.

Note

4�nδ1 < P
(

Pu ∈ C(n)
)

< 4�nδ2,

and according to the union bound, for large enough n,

P

(
n⋃

u=2

(
Pu ∈ C(n)

))
≤

n∑
u=2

P
(

Pu ∈ C(n)
)

≤ 4n�nδ2

= 4n
1

n1+ α
4
δ2

= 4n− α
4 δ2 → 0.

As a result, we can conclude that all pu’s are outside of C(n)

for u ∈ {2, 3, · · · , n} with high probability.
Now, we claim that given all pu’s are outside of C(n),

P
(
Y�(u) ∈ B(n)

)
is small. Remember that for any

u ∈ {1, 2, · · · , n}, we have

|pu − Qu | ≤ an.

Now, noting the definitions of sets B(n) and C(n), we can write
for u ∈ {2, 3, · · · , n},

P
(

Y�(u) ∈ B(n)
)

≤ P
(∣∣Y�(u) − Qu

∣∣ ≥ (�n − an)
)

= P

(∣∣∣∣∣
m∑

k=1

Zu(k) − m Qu

∣∣∣∣∣ > m(�n − an)

)
.

According to the Chernoff bound, for any c, c�, α > 0 and
β > α

4 ,

P

(∣∣∣∣∣
m∑

k=1

Zu(k) − m Qu

∣∣∣∣∣ > m(�n − an)

)

≤ 2e
− m(�n−an )2

3Q1

≤ 2e
−
(

1
3Q1

)(
cn2+α

)( 1

n
1+ α

4
− c�

n1+β

)2

≤ 2e
− 1

3

(
cn2+α

)( 1

n
1+ α

4
− c�

n1+β

)2

.

Now, by using a union bound, for any β > α
4 , we have

P

(
n⋃

u=2

(
Y�(u) ∈ B(n)

))
≤

n∑
u=2

P
(

Y�(u) ∈ B(n)
)

≤ n

⎛
⎝2e

− 1
3

(
cn2+α

)( 1

n
1+ α

4
− c�

n1+β

)2⎞
⎠,

and thus, as n goes to infinity,

P

(
n⋃

u=2

(
Y�(u) ∈ B(n)

))
→ 0.

So, the adversary can successfully recover Z1(k). Since
Z1(k) = X1(k) with probability 1 − R1 = 1 − o(1), the adver-
sary can recover X1(k) with vanishing error probability for
large enough n. �

B. Extension to r-State

Now, assume users’ data samples can have r possibilities
(0, 1, · · · , r − 1), and pu(i) shows the probability of user u
having data sample i . We define the vector pu and the matrix p
as

pu =

⎡
⎢⎢⎢⎣

pu(1)
pu(2)

...
pu(r − 1)

⎤
⎥⎥⎥⎦ , p = [p1, p2, · · · , pn

]
.

We also assume pu’s are drawn independently from some
continuous density function, fP (pu), which has support on
a subset of the (0, 1)r−1 hypercube. In particular, define the
range of distribution as

Rp

=
{
(x1, x2, · · · , xr−1) ∈ (0, 1)r−1

: xi > 0, x1 + x2 + · · · + xr−1 < 1, i = 1, 2, · · · , r − 1

}
.

Then, we assume there are δ1, δ2 > 0 such that:{
δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu /∈ Rp.

Theorem 4: For the above r -state mode, if Z is the obfus-
cated version of X, and Y is the anonymized version of Z as
defined, and

• m = cn
2

r−1 +α for any c > 0 and 0 < α < 1;

• Ru ∼ Uniform[0, an], where an = c�n−
(

1
r−1 +β

)
for any

c� > 0 and β > α
4 ;

then, user 1 has no privacy at time k as n goes to infinity.
The proof of Theorem 4 is similar to the proof of

Theorem 3, so we just provide the general idea. We sim-
ilarly define the empirical probability that the user with
pseudonym u has data sample i

(
Yu(i)

)
as follows:

Yu(i) = |{k ∈ {1, 2, · · · , m} : Yu(k) = i}|
m

,

thus,

Y�(u)(i) = |{k ∈ {1, 2, · · · , m} : Zu(k) = i}|
m

.

The difference is that now for each u ∈ {1, 2, · · · , n},
Yu is a vector of size r − 1. In other words,

Yu =

⎡
⎢⎢⎢⎣

Yu(1)

Yu(2)
...

Yu(r − 1)

⎤
⎥⎥⎥⎦.
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Fig. 10. p1, sets B�(n) and C�(n) in Rp for case r = 3.

Define sets B�(n) and C �(n) as

B�(n)

=
{
(x1, x2, · · · , xr−1) ∈ Rp

: p1(i) − ��
n ≤ xi ≤ p1(i) + ��

n, i = 1, 2, · · · , r − 1

}
,

C �(n)

=
{
(x1, x2, · · · , xr−1) ∈ Rp

: p1(i)−2��
n ≤ xi ≤ p1(i) + 2��

n, i = 1, 2, · · · , r − 1

}
,

where ��
n = n

−
(

1
r−1 + α

4

)
. Figure 10 shows p1 and sets B�(n)

and C �(n) for the case r = 3.

We claim for m = cn
2

r−1 +α , an = c�n−
(

1
r−1 +β

)
, and large

enough n,

1) P
(
Y�(1) ∈ B�(n)

)→ 1.

2) P

(
n⋃

u=2

(
Y�(u) ∈ B�(n)

))→ 0.

The proof follows that for the two-state case. Thus, the adver-
sary can de-anonymize the data and then recover X1(k) with
vanishing error probability in the r -state model.

C. Markov Chain Model

So far, we have assumed users’ data samples can have r
possibilities (0, 1, · · · , r − 1) and users’ pattern are i.i.d.. Here
we model users’ pattern using Markov chains to capture the
dependency of the users’ pattern over time. Again, we assume
there are r possibilities (the number of states in the Markov
chains). Let E be the set of edges. More specifically, (i, l) ∈ E
if there exists an edge from i to l with probability p(i, l) > 0.
What distinguishes different users is their transition probabil-
ities pu(i, l) (the probability that user u jumps from state i
to state l). The adversary knows the transition probabilities
of all users. The model for obfuscation and anonymization is
exactly the same as before.

We show that the adversary will be able to estimate the data
samples of the users with low error probability if m(n) and

an are in the appropriate range. The key idea is that the
adversary can focus on a subset of the transition probabilities
that are sufficient for recovering the entire transition probabil-
ity matrix. By estimating those transition probabilities from
the observed data and matching with the known transition
probabilities of the users, the adversary will be able to first
de-anonymize the data, and then estimate the actual samples
of users’ data. In particular, note that for each state i , we must
have

r∑
l=1

pu(i, l) = 1, for each u ∈ {1, 2, · · · , n},

so, the Markov chain of user u is completely determined by a
subset of size d = |E |−r of transition probabilities. We define
the vector pu and the matrix p as

pu =

⎡
⎢⎢⎢⎣

pu(1)
pu(2)

...
pu(|E | − r)

⎤
⎥⎥⎥⎦ , p = [p1, p2, · · · , pn

]
.

We also consider pu’s are drawn independently from some
continuous density function, fP (pu), which has support on a
subset of the (0, 1)|E |−r hypercube. Let Rp ⊂ R

d be the range
of acceptable values for pu , so we have

Rp =
{
(x1, x2, · · · , xd ) ∈ (0, 1)d

: xi > 0, x1 + x2 + · · · + xd < 1, i = 1, 2, · · · , d

}
.

As before, we assume there are δ1, δ2 > 0, such that:
{

δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu /∈ Rp.

Using the above observations, we can establish the follow-
ing theorem.

Theorem 5: For an irreducible, aperiodic Markov chain
with r states and |E | edges as defined above, if Z is the
obfuscated version of X, and Y is the anonymized version
of Z, and

• m = cn
2

|E |−r +α for any c > 0 and α > 0;

• Ru ∼ Uniform[0, an], where an = c�n−
(

1
|E |−r +β

)
for any

c� > 0 and β > α
4 ;

then, user 1 has no privacy at time k as n goes to infinity.
The proof has a lot of similarity to the i.i.d. case, so we

provide a sketch, mainly focusing on the differences. We argue
as follows. If the total number of observations per user is
m = m(n), then define Mi (u) to be the total number of
visits by user u to state i , for i = 0, 1, · · · , r − 1. Since the
Markov chain is irreducible and aperiodic, and m(n) → ∞, all
Mi (u)
m(n) converge to their stationary values. Now conditioned on
Mi (u) = mi (u), the transitions from state i to state l for user
u follow a multinomial distribution with probabilities pu(i, l).

Given the above, the setting is now very similar to the i.i.d.
case. Each user is uniquely characterized by a vector pu of
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size |E | − r . We define sets B��(n) and C ��(n) as

B��(n) =
{
(x1, x2, · · · , xd ) ∈ Rp

: p1(i) − ���
n ≤ xi ≤ p1(i) + ���

n, i = 1, 2, · · · , d

}
,

C ��(n) =
{
(x1, x2, · · · , xd ) ∈ Rp

: p1(i)−2���
n ≤ xi ≤ p1(i)+2���

n, i = 1, 2, · · · , d

}
,

where ���
n = n

−
(

1
|E |−r + α

4

)
, and d = |E | − r . Then, we can

show that for the stated values of m(n) and an , as n becomes
large:

1) P
(

Y�(1) ∈ B��(n)
)

→ 1,

2) P

(
n⋃

u=2

(
Y�(u) ∈ B ��(n)

))
→ 0,

which means that the adversary can estimate the data of user 1
with vanishing error probability. The proof is very similar to
the proof of the i.i.d. case; however, there are two differences
that need to be addressed:

First, the probability of observing an erroneous observation
is not exactly given by Ru . In fact, a transition is distorted if
at least one of its nodes is distorted. So, if the actual transition
is from state i to state l, then the probability of an erroneous
observation is equal to

R�
u = Ru + Ru − Ru Ru = Ru(2 − Ru).

Nevertheless, here the order only matters, and the above

expression is still in the order of an = O

(
n

−
(

1
|E |−r +β

))
.

The second difference is more subtle. As opposed to the
i.i.d. case, the error probabilities are not completely indepen-
dent. In particular, if Xu(k) is reported in error, then both
the transition to that state and from that state are reported in
error. This means that there is a dependency between errors of
adjacent transitions. We can address this issue in the following
way: The adversary makes his decision only based on a subset
of the observations. More specifically, the adversary looks
at only odd-numbered transitions: First, third, fifth, etc., and
ignores the even-numbered transitions. In this way, the number
of observations is effectively reduced from m to m

2 which again
does not impact the order of the result (recall that the Markov
chain is aperiodic). However, the adversary now has access to
observations with independent errors.

V. PERFECT PRIVACY ANALYSIS: MARKOV CHAIN MODEL

So far, we have provided both achievability and converse
results for the i.i.d. case. However, we have only provided the
converse results for the Markov chain case. Here, we inves-
tigate achievability for Markov chain models. It turns out
that for this case, the assumed obfuscation technique is not
sufficient to achieve a reasonable level of privacy. Loosely
speaking, we can state that if the adversary can make enough
observations, then he can break the anonymity. The culprit
is the fact that the sequence observed by the adversary is

Fig. 11. A state transition diagram.

Fig. 12. The state transition diagram of the new Markov chain.

no longer modeled by a Markov chain; rather, it can be
modeled by a hidden Markov chain. This allows the adversary
to successfully estimate the obfuscation random variable Ru

as well as the pu(i, l) values for each sequence, and hence
successfully de-anonymize the sequences.

More specifically, as we will see below, there is a funda-
mental difference between the i.i.d. case and the Markov chain
case. In the i.i.d. case, if the noise level is beyond a relatively
small threshold, the adversary will be unable to de-anonymize
the data and unable to recover the actual values of the data sets
for users, regardless of the (large) size of m = m(n). On the
other hand, in the Markov chain case, if m = m(n) is large
enough, then the adversary can easily de-anonymize the data.
To better illustrate this, let us consider a simple example.

Example 1: Consider the scenario where there are only two
states and the users’ data samples change between the two
states according to the Markov chain shown in Figure 11.
What distinguishes the users is their different values of pu .
Now, suppose we use the same obfuscation method as before.
That is, to create a noisy version of the sequences of data
samples, for each user u, we generate the random variable
Ru that is the probability that the data sample of the user is
changed to a different data sample by obfuscation. Specifically,

Zu(k) =
{

Xu(k), with probability 1 − Ru .
1 − Xu(k), with probability Ru .

To analyze this problem, we can construct the underlying
Markov chain as follows. Each state in this Markov chain is
identified by two values: the real state of the user, and the
observed value by the adversary. In particular, we can write

(Real value, Observed value) ∈ {( 0, 0), (0, 1), (1, 0), (1, 1)}.
Figure 12 shows the state transition diagram of this new
Markov chain.
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We know

π00 = π0(1 − Ru) = pu

1 + pu
(1 − Ru).

π01 = π0 Ru = pu

1 + pu
Ru .

π10 = π1 Ru = 1

1 + pu
Ru .

π11 = π1(1 − Ru) = 1

1 + pu
(1 − Ru).

The observed process by the adversary is not a Markov
chain; nevertheless, we can define limiting probabilities.
In particular, let θ0 be the limiting probability of observing
a zero. That is, we have

M0

m
d−→ θ0, as n → ∞,

where m is the total number of observations by the adversary,
and M0 is the number of 0’s observed. Then,

θ0 = π00 + π10 = (1 − Ru)pu + Ru

1 + pu
.

Also, let θ1 be the limiting probability of observing a one, so

θ1 = π01 + π11 = pu Ru + (1 − Ru)

1 + pu
= 1 − θ0.

Now the adversary’s estimate of θ0 is given by:

θ̃0 = (1 − Ru)pu + Ru

1 + pu
. (1)

Note that if the number of observations by the adversary can
be arbitrarily large, the adversary can obtain an arbitrarily
accurate estimate of θ0. The adversary can obtain another
equation easily, as follows. Let θ01 be the limiting value of the
portion of transitions from state 0 to 1 in the chain observed
by the adversary. We can write

θ01 = P {(00 → 01), (00 → 11), (10 → 01), (10 → 11)}
= π00(1 − Ru) + π10 pu Ru + π10(1 − pu)(1 − Ru).

As a result,

θ̃01 = pu(1 − Ru)2 + Ru (pu Ru(1 − Ru)(1 − pu))

1 + pu
. (2)

Again, if the number of observations can be arbitrarily large,
the adversary can obtain an arbitrarily accurate estimate
of θ01. By solving (1) and (2), the adversary can successfully
recover R and p; thus, he/she can successfully determine the
users’ data values.

VI. DISCUSSION

A. Markov Chain Model

As opposed to the i.i.d. case, we see from Section V that if
we do not limit m = m(n), the assumed obfuscation method
will not be sufficient to achieve perfect privacy. There are a
few natural questions here. First, for a given noise level, what
would be the maximum m(n) that could guarantee perfect
privacy in this model? The more interesting question is, how
can we possibly modify the obfuscation technique to make it
more suitable for the Markov chain model? A natural solution

seems to be re-generating the obfuscation random variables
Ru periodically. This will keep the adversary from easily
estimating them by observing a long sequence of data at
a small increase in complexity. In fact, this will make the
obfuscation much more robust to modeling uncertainties and
errors. It is worth noting, however, that this change would
not affect the other results in the paper. That is, even if the
obfuscation random variables are re-generated frequently, it is
relatively easy to check that all the previous theorems in
the paper remain valid. However, the increase in robustness
to modeling errors will definitely be a significant advantage.
Thus, the question is how often should the random variable Ru

be re-generated to strike a good balance between complexity
and privacy? These are all interesting questions for future
research.

B. Obfuscating the Samples of Users’ Data Using
Continuous Noise

Here we argue that for the setting of this paper, continuous
noise such as that drawn from a Gaussian distribution is not a
good option to obfuscate the sample of users’ data drawn from
a finite alphabet when we want to achieve perfect privacy. For
a better understanding, let us consider a simple example.

Example 2: Consider the scenario where the users’ datasets
are governed by an i.i.d. model and the number of possible
values for each sample of the users’ data (r ) is equal to 2
(two-state model). Note that the data sequence for user u is a
Bernoulli random variable with parameter pu .

Assume that the actual sample of the data of user u at
time k (Xu(k)) is obfuscated using noise drawn from a
Gaussian distribution (Su(k)), and Zu(k) is the obfuscated
version of Xu(k). That is, we can write

Zu(k) = Xu(k) + Su(k);
where Su(k) ∼ N

(
μ(Ru), σ

2(Ru)
)
, is independent of Xu(k),

and Ru is the noise parameter which is chosen from some dis-
tribution. Here, μ(Ru) and σ 2(Ru) are some known functions
of Ru . We also apply anonymization to Zu(k), and, as before,
Yu(k) is the reported sample of the data of user u at time k
after applying anonymization. Per Section II, anonymization is
modeled by a random permutation �(u) on the set of n users.

Now, the question is as follows: Is it possible to achieve
perfect privacy independent of the number of adversary’s
observation (m) while using this continuous noise (Su(k)) to
obfuscate the sample of users’ data?

Note that

E[Zu(k)] = pu + μ(Ru), (3)

and

V ar (Zu(k)) = pu(1 − pu) + σ 2(Ru). (4)

In this case, when the adversary’s number of observations is
arbitrarily large, the adversary can obtain good estimates of
E[Zu(k)] and V ar (Zu(k)) for each user with an arbitrarily
small error probability. Then, by using (3) and (4), the adver-
sary can recover pu and Ru . As a result, the adversary can de-
anonymize the data and then recover Xu(k). The conclusion
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here is that a continuous noise distribution can potentially
give information to the adversary when used for obfuscation
of finite alphabet data. A method to mitigate this issue is to
regenerate the random variables Ru frequently (similar to our
previous discussion for Markov chains). Understanding the
optimal frequency of such a regeneration and detailed analysis
in this case is an interesting future research direction.

VII. CONCLUSIONS

In this paper, we have considered both obfuscation and
anonymization techniques to achieve privacy. The privacy level
of the users depends on both m(n) (number of observations per
user by the adversary for a fixed anonymization mapping) and
an (noise level). That is, larger m(n) and smaller an indicate
weaker privacy. We characterized the limits of privacy in the
entire m(n) − an plane for the i.i.d. case; that is, we obtained
the exact values of the thresholds for m(n) and an required for
privacy to be maintained. We showed that if m(n) is fewer than
O
(

n
2

r−1

)
, or an is larger than �

(
n− 1

r−1

)
, users have perfect

privacy. On the other hand, if neither of these two conditions
is satisfied, users have no privacy. For the case where the
users’ patterns are modeled by Markov chains, we obtained a
no-privacy region in the m(n) − an plane.

Future research in this area needs to characterize the exact
privacy/no-privacy regions when user data sequences obey
Markov models. It is also important to consider different ways
to obfuscate users’ data sets and study the utility-privacy trade-
offs for different types of obfuscation techniques.

APPENDIX A
LEMMA 6 AND ITS PROOF

Here we state that we can condition on high-probability
events.

Lemma 6: Let p ∈ (0, 1), and X ∼ Bernoulli(p) be
defined on a probability space (�,F , P). Consider B1, B2, · · ·
be a sequence of events defined on the same probability space
such that P(Bn) → 1 as n goes to infinity. Also, let Y be a
random vector (matrix) in the same probability space, then:

I (X; Y) → 0 iff I (X; Y|Bn) → 0.

Proof: First, we prove that as n becomes large,

H (X |Bn) − H (X) → 0. (5)

Note that as n goes to infinity,

P (X = 1) = P
(
X = 1

∣∣Bn
)

P (Bn) + P
(
X = 1

∣∣Bn
)

P
(
Bn
)

= P
(
X = 1

∣∣Bn
)
,

thus,
(
X
∣∣Bn
) d−→ X , and as n goes to infinity,

H (X |Bn) − H (X) → 0.

Similarly, as n becomes large,

P
(
X = 1

∣∣Y = y
)→ P

(
X = 1

∣∣Y = y, Bn
)
,

and

H (X |Y = y, Bn) − H (X |Y = y) → 0. (6)

Remembering that

I (X; Y) = H (X) − H (X |Y), (7)

and using (5), (6), and (7), we can conclude that as n goes to
infinity,

I (X; Y|Bn) − I (X, Y) → 0.

As a result, for large enough n,

I (X; Y) → 0 ⇐⇒ I (X; Y|Bn) → 0.

�

APPENDIX B
PROOF OF LEMMA 1

Here we provide a formal proof for Lemma 1 which we
restate as follows.

Let N be a positive integer, and let a1, a2, · · · , aN and
b1, b2, · · · , bN be real numbers such that au ≤ bu for all
u. Assume that X1, X2, · · · , X N are N independent random
variables such that

Xu ∼ Uni f orm[au, bu].
Let also γ1, γ2, · · · , γN be real numbers such that

γ j ∈
N⋂

u=1

[au, bu] for all j ∈ {1, 2, · · · , N}.

Suppose that we know the event E has occurred, meaning that
the observed values of Xu ’s is equal to the set of γ j ’s (but with
unknown ordering), i.e.,

E ≡ {X1, X2, · · · , X N } = {γ1, γ2, · · · , γN },
then

P
(
X1 = γ j |E

) = 1

N
.

Proof: Define sets P and P j as follows:

P = The set of all permutations � on {1, 2, · · · , N}.
P j = The set of all permutations � on {1, 2, · · · , N}

such that

�(1) = j.

We have |P| = N ! and |P| = (N − 1)!. Then

P(X1 = α j |E)

=
∑

π∈Pj
fX1,X2,··· ,X N (γπ(1), γπ(2), · · · , γπ(N))∑

π∈P fX1,X2,··· ,X N (γπ(1), γπ(2), · · · , γπ(N))

=
(N − 1)!

N∏
u=1

1
bu−au

N !
N∏

u=1

1
bu−au

= 1

N
.

�
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APPENDIX C
PROOF OF LEMMA 4

Here, we provide a formal proof for Lemma 4 which we
restate as follows. The following lemma confirms that the
number of elements in J (n) goes to infinity as n becomes
large.

If N (n) � |J (n)|, then N (n) → ∞ with high probability as
n → ∞. More specifically, there exists λ > 0 such that

P

(
N (n) >

λ

2
n

β
2

)
→ 1.

Proof: Define the events A, B as

A ≡ p1 ≤ Pu ≤ p1 + εn

B ≡ p1 + εn ≤ Qu ≤ p1 + (1 − 2 p1)an.

Then, for u ∈ {1, 2, . . . , n} and 0 ≤ p1 < 1
2 :

P
(

u ∈ J (n)
)

= P (A ∩ B)

= P (A) P
(
B
∣∣A).

So, given p1 ∈ (0, 1) and the assumption 0 < δ1 < f p < δ2,
for n large enough, we have

P(A) =
∫ p1+εn

p1

fP (p)dp,

so, we can conclude that

εnδ1 < P(A) < εnδ2.

We can find a δ such that δ1 < δ < δ2 and

P(A) = εnδ. (8)

We know

Qu
∣∣Pu = pu ∼ Uni f orm [pu, pu + (1 − 2 pu)an],

so, according to Figure 6, for p1 ≤ pu ≤ p1 + εn ,

P (B|Pu = pu) = p1 + (1 − 2 p1)an − p1 − εn

pu + (1 − 2 pu)an − pu

= (1 − 2 p1)an − εn

(1 − 2 pu)an

≥ (1 − 2 p1)an − εn

(1 − 2 p1)an

= 1 − εn

(1 − 2 p1)an
,

which implies

P (B|A) ≥ 1 − εn

(1 − 2 p1)an
. (9)

Using (8) and (9), we can conclude

P
(

u ∈ J (n)
)

≥ εnδ

(
1 − εn

(1 − 2 p1)an

)
.

Then, we can say that N (n) has a binomial distribution with
expected value of N (n) greater than nεnδ

(
1 − εn

(1−2p1)an

)
, and

by substituting εn and an , for any c� > 0, we get

E
[

N (n)
]

≥ δ

(
n

β
2 − 1

c�(1 − 2 p1)

)
≥ λn

β
2 .

Now by using Chernoff bound, we have

P
(

N (n) ≤ (1 − θ)E
[

N (n)
])

≤ e− θ2
2 E
[
N (n)

]
,

so, if we assume θ = 1
2 , we can conclude for large

enough n,

P

(
N (n) ≤ λ

2
n

β
2

)
≤ P

(
N (n) ≤ E

[
N (n)

]

2

)

≤ e− E[N(n)]
8

≤ e− λn
β
2

8 → 0.

As a result, N (n) → ∞ with high probability for large
enough n. �

APPENDIX D
COMPLETION OF PROOF OF LEMMA 5

Let p1 ∈ (0, 1), and let N (n) be a random variable as
above, i.e., N (n) → ∞ as n → ∞. Consider the sequence
of independent random variables Yu ∼ Bernoulli(pu) for
u = 1, 2, · · · , N (n) such that

1) For all n and all u ∈ {1, 2, · · · , N (n)
}
, |pu − p1| ≤ ζn.

2) lim
n→∞ ζn = 0.

Define

Y = 1

N (n)

N (n)∑
u=1

Yu,

then Y
d−→ p1.

Proof: Note

E[Y ] = 1

N (n)

N (n)∑
u=1

pu

≤ 1

N (n)

N (n)∑
u=1

(p1 + ζn)

= 1

N (n)
· N (n)(p1 + ζn)

= p1 + ζn.

Similarly we can prove E
[
Y
] ≥ p1−ζn . Since as n becomes

large, ζn → 0 and p1 ∈ (0, 1), we can conclude

lim
n→∞ E

[
Y
] = p1. (10)

Also,

V ar
(
Y
) = 1(

N (n)
)2

N (n)∑
u=1

pu (1 − pu)

≤ 1

(N (n))2

N (n)∑
u=1

(p1 + ζn) (1 − p1 + ζn)

= 1

(N (n))2
· N (n) (p1 + ζn) (1 − p1 + ζn)

= 1

N (n)
(p1 + ζn) (1 − p1 + ζn).
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Thus,

lim
n→∞ V ar

(
Y
) = 0. (11)

By using (10), (11), and Chebyshev’s inequality, we can
conclude

Y
d−→ p1.

�
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in 2016. She is currently working toward the Ph.D. degree in Electrical
Engineering at the University of Massachusetts Amherst, Amherst, MA, USA.
Her research interests include Privacy & Security issues with focus on IoT
privacy.

Amir Houmansadr received a Ph.D. degree from the University of Illinois
at Urbana-Champaign in 2012. He is currently an Assistant Professor at the
College of Information and Computer Sciences, University of Massachusetts at
Amherst. His research interests include network security and privacy, which
includes problems, such as Internet censorship resistance, statistical traffic
analysis, location privacy, cover communications, and privacy in the next
generation network architectures. He has received several awards, including
the Best Practical Paper Award at the IEEE Symposium on Security and
Privacy, Oakland, in 2013, a Google Faculty Research Award in 2015, and
an NSF CAREER Award in 2016.

Dennis L. Goeckel (F’11) received the B.S. from Purdue University
in 1992 and the M.S. and Ph.D. degrees from the University of Michigan
in 1993 and 1996, respectively. Since 1996, he has been with the Electrical and
Computer Engineering Department, University of Massachusetts at Amherst,
where he is currently a Professor. He was a Lilly Teaching Fellow from
2000 to 2001. He received the NSF CAREER Award in 1999 and the
University of Massachusetts Distinguished Teaching Award in 2007. He
has served on the Editorial Boards of a number of international journals
in communications and networking, including the IEEE TRANSACTIONS
ON NETWORKING, the IEEE TRANSACTIONS ON MOBILE COMPUTING,
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, and the IEEE
TRANSACTIONS ON COMMUNICATIONS.

Hossein Pishro-Nik received the B.S. degree from Sharif University of
Technology, and the M.Sc. and Ph.D. degrees from the Georgia Institute of
Technology, all in electrical and computer engineering. He is currently an
Associate Professor of electrical and computer engineering with the Univer-
sity of Massachusetts at Amherst, Amherst. His research interests include
information theoretic privacy and security, error control coding, vehicular
communications, and mathematical analysis of wireless networks. His awards
include an NSF Faculty Early Career Development (CAREER) Award, an
Outstanding Junior Faculty Award from UMass, and an Outstanding Graduate
Research Award from the Georgia Institute of Technology.


