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Abstract—Due to the prominent development of public trans-

portation systems, the taxi flows could nowadays work as a

reasonable reference to the trend of urban population. Being

aware of this knowledge will significantly benefit regular individ-

uals, city planners, and the taxi companies themselves. However,

to mindlessly publish such contents will severely threaten the

private information of taxi companies. Both their own market

ratios and the sensitive information of passengers and drivers

will be revealed. Consequently, we propose in this work a

novel framework for privacy-preserved traffic sharing among

taxi companies, which jointly considers the privacy, profits, and

fairness for participants. The framework allows companies to

share scales of their taxi flows, and common knowledge will be

derived from these statistics. Two algorithms are proposed for the

derivation of sharing schemes in different scenarios, depending

on whether the common knowledge can be accessed by third

parties like individuals and governments. The differential privacy

is utilized in both cases to preserve the sensitive information for

taxi companies. Finally, both algorithms are validated on real-

world data traces under multiple market distributions.

I. INTRODUCTION

The emergence and dramatic development of smart trans-
portation systems have provided unprecedentedly services for
local residents. The taxi flows in urban area, jointly contributed
by multiple companies, are acting as one major component in
this integrated system. They can depict the fine-grained contour
of urban population [1]. This type of information is critical,
as the government, taxi companies, and regular residents may
all rely on the knowledge to carry out customized plans [2]
[3] [4]. For example, taxi companies may refer the knowledge
to decide whether to deploy extra cabs in specific regions,
or apply new energy automobile for long-term cost reduction
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[5]. The government may apply the knowledge to guide city
plans and public facilities construction [6]. However, the taxi
transactions could also reveal the market ratios of a company,
as well as the detailed information about both drivers and
passengers, which are both sensitive and may thwart the
development of the smart industrial ecosystems [7]. As a
result, we study in this work a novel framework for traffic
flow extraction among multiple taxi companies under privacy
preservation. to facilitate the discovery of taxi traffic flows in
urban area via data publication,

Actually, the discovery of local taxi flows is closely related
to data sharing among involved parties, i.e., the shared knowl-
edge can be aggregated and build the view for traffic flows.
However, besides the privacy concerns, these taxi companies
are also diverse on their market ratios and shapes, and may
hold heterogeneous opinions on data sharing, ranging from
building a general overview of urban traffics to gaining useful
knowledge for subsequent market promotion. Then corre-
sponding schemes for data sharing must treat all companies
accordingly, and derives the knowledge and sharing scheme
acceptable for all. Generally, the derivation of local traffic
flows must take the benefits, the market ratios, and especially
privacy concerns of involved companies into consideration.

Fortunately, the privacy issues have been investigated for
multiple categories of data publication and sharing problems
[8]. The Local Differential Privacy (LDP for short), as an
extension of the basic differential privacy [9], allows multiple
data holders to independently publish and globally merge their
contents under differential privacy, However, these works all
tend to apply same publication mechanism for all participants,
ignoring the pervasively existed heterogeneity among partici-
pants.

As a result, we for the first time investigate a novel
framework for the discovery of city-wide taxi flows via
privacy-preserved data sharing among multiple companies. Our
framework allows involved taxi companies to either build the
traffic overview for general publics or share for their own
profits. Generally, each company holds partial of taxi flows
in different urban regions, and expect to gain knowledge of
total traffic scales in some interested regions. To achieve the
goals, companies share their scales of flows, and observe the
useful knowledge within the shared results. Furthermore, our
framework guarantee the differential privacy for each company,
i.e., companies publish perturbed traffic scales. The main
challenge is to determine for each company the sharing scheme
including the shared regions, and the scales of noise injected in
the perturbation. In another word, this scheme should actually
consider the utilities, privacy preservation, and the fairness
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simultaneously. Specifically, the fairness is defined according
to their privacy devotions, market ratios, and expectation on
the observed flows. All companies should receive balanced
utilities in our framework when combining the three factors.

Our framework mainly considers the sharing of local traffic
flows in two scenarios. In the first case, a third party curator
like the government or the dominating company leads the
share among companies. One common result depicting the
traffic flows in all regions will be aggregated and published
to all involved taxi companies. In this case, we formulate
the traffic flow sharing as a max-min problem, and derives
a corresponding data sharing scheme achieving the max-min
property on utilities. In the second scenario, some third parties
still act as data curators. Companies will only receive partial
of taxi flows in urban regions upon requests. This is the case
for intra-domain knowledge exchange, where taxi companies
simply exchange their information for market understanding
and promotion. We formulate the data sharing problem as a
coalitional game. Then a corresponding algorithm is designed
to derive the scheme for data sharing.

Finally, we validate the proposed framework on real-world
datasets, and multiple types of market distributions are tested.
According to the experiment results, our algorithms can derive
highly useful overviews for taxi flows under the strict privacy
preservation. The utilities and detailed performance for both
individual companies and the general publics are also evaluated
and discussed in various cases. The main contribution of this
paper includes:

• A formal formulation is proposed for the discovery of
traffic flows among multiple heterogeneous taxi com-
panies. Factors including requests on different regions,
privacy concerns, market ratios, and general utilities are
considered.

• The local differential privacy is for the first time applied
to data share among heterogeneous data holders.

• A novel algorithm for data sharing to derive the general
view for taxi traffic flows is designed.

• A novel algorithm for data sharing supporting knowl-
edge exchange among taxi companies is designed.

• Both theoretical and experimental results are introduced
to demonstrate the effectiveness of designed algorithms.

The remaining of this paper is organized as follow. Section
2 reviews the existing work in this area. Section 3 proposes
the system settings and objectives. Section 4 and 5 introduce
the algorithms designed for two scenarios, and analyze their
performance respectively. Section 6 introduces the evaluation
results. Section 7 concludes the paper.

II. RELATED WORK

Building the knowledge on local traffic flows has been piv-
otal for urban computing and city construction [10],[11]. The
subregions with heavy traffics, the generally trends of flows
during weekday and weekend, and many other knowledge all
contribute to various types of applications. For example, the
study in [2] characterizes the urban mobility flows according
to the taxi data in Manhattan, NY, and Guiyang,China. Some
meaningful statistical results and observations are discussed.

There are also some study focusing on other public applica-
tions, like the plan for novel bus routes [12]. Meanwhile, there
are also a batch of studies investigating the applications for
individuals. Some topics include the discovery of hot paths
[13], and the maintaining of idle time for taxi drivers [14].
However, they mainly assume the data are hold by single party,
or totally available to publics.

As for the privacy preservation toward authorized users,
differential privacy has been treated as the most rigorous
principle [8]. Typical studies in this field try to maximize
the data utility under request privacy preservation. Multiple
intermediate data structures are proposed to improve the ac-
curacy for derived results [15]. The studies in [16] preserve
sensitive data from multiple sources and allow them to be
applied for model training. To extend the differential privacy
to distributed scenarios, the local differential privacy (LDP
for short) has been proposed [17]. The Basic RAPPOR [9]
and RAPPOR [9] proposed by Google are designed to collect
behaviors of users. Other knowledge including heavy hitters
[18], histograms [19][20] can also be extracted under LDP.
Finally, typical terminologies for privacy preservation are also
considered for traffic flow publication [21] [22], such as K-
anonymity, L-diversity, which provides corresponding standard
for indistinguishability. However, all these studies treat all
data owners equally, and ignores the complicated correlations
among them. They fail to provide fairness among taxi compa-
nies in our problem.

III. SYSTEM MODEL

In this section, we first introduce our problem formulation,
including the general system inputs, the assumption on adver-
saries and privacy preservation, and the optimization objective
of the problem.

A. System Inputs

The urban area � is composed of N regions
{G1, G2, · · · , GN}, where each region may refer to some
locally closed blocks. There are K different taxi companies
V = {V1, V2, · · · , VK} serving in the area. For each Vj ,
it owns a traffic flow set MN⇥1 = {mij}N⇥1, where mij

indicates the ratio of taxi service in Gi provided by Vj .
For example, mij could be the scale of pick-up transactions
contributed by company Vj during rush hours in region Gi.

In our framework, one trusted data curator holds the scales
of traffic flows for all companies. The data curators could
be some dominating third parties, for example, the local
government, which collects the information for the purpose
of public security. The curator will determine the sharing and
distributing of the traffic flows, and the supposed receivers
include both taxi companies and general publics.

Taxi companies, as well as the publics, expect to gain knowl-
edge from the traffic flows. Taxi companies apply the knowl-
edge to support subsequent investments, aiming at promoting
their markets and profits. Assume the interested regions for Vi

are denoted as Qi = {I1i, I2i, · · · , INi}, where Iji 2 {0, 1}
indicates whether the traffic flow in Gj is concerned by Vi.
Meanwhile, the publics are interested in the General traffic
flows in the whole area.
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B. Adversary Model and Privacy

In our framework, malicious data viewers are considered
as the adversaries, which could be either business rivals or
malicious individuals. These viewers are honest-but-curious.
They will collect the flow information published by the data
curator, and extract necessary knowledge on the local traffics.
Meanwhile, these data viewers also tries to infer the private
information beneath the flows. Therefore, we apply the Dif-
ferential Privacy (DP for short) to measure the preservation
on both traffic flow scales and every single taxi transaction
for each company. DP is a typical measurement for privacy
preservation of aggregated information among multiple data
owners. The formal definition of DP is given in definition 1.

Definition 1 (Differential Privacy [23]): Assume the set of
taxi transactions from taxi company Vi to be Di, and D0

i is
another service set that differs with Di on just one transaction.
Then an algorithm or a data sharing mechanism A for traffic
flow discovery satisfies ✏-differential privacy (✏-DP) where ✏ �
0, if and only if

8y 2 Range(A) : Pr[A(Di) = y]  e✏Pr[A(D0
i) = y],

where Range(A) denotes the set of all possible outputs of A.
Generally, DP assures the adversaries will not learn sig-

nificant information on single transaction from the observed
results, even if they already own strong prior knowledge on the
remaining part of the taxi service set. A larger ✏ indicates the
companies are more tolerable and less sensitive. The privacy
budget of Vi is denoted as ✏max. For simplicity, we will use
terms privacy preference and privacy budgets interchangeably
in our study. The following Laplace mechanism guarantees ✏-
differential privacy [23].

Theorem 1: For any function A(·) : G ! R, the random-
ized algorithm F provides ✏-differential privacy when

F = A(Di) + Lap(
�A

✏
), (1)

where Lap(�A
✏ ) follows Laplace distribution with scaling

factor �A
✏ , and �A refers to the global sensitivity of function

A: max |A(Di)�A(D0
i)|, 8Di

Finally, the composition principles for differential privacy
are given:

Theorem 2 (Parallel Composition [24]): Let
{di1, di2, · · · , diKi} be disjoint transaction sets held by
taxi company Vi, and Ais be a set of Ki data share
mechanisms each providing ✏i-differential privacy. Then
applying all Ais to their corresponding sets dijs can guarantee
a max{✏i}-differential privacy for Vi.

C. Utility for Taxi Companies and Publics

Taxi companies participate in the data sharing to derive
valuable knowledge for their market promotion. Therefore,
they expect to extract knowledge highly consistent with the
ground truth, which leads to unbiased decisions. Assume
M 0

i = {M 0
1i,M

0
2i, · · · ,M 0

Ni} to be the derived traffic flows for
Vi. Then the relative accuracy for Vi is

PN
l=1(|

PK
j=1 mlj �

Mli| · Ili), which is the summation of difference between the

observed values and ground truth in interested area. Consid-
ering that our framework is designed to preserve the private
transactions, each taxi company will likely receive perturbed
scales. Furthermore, the expectation of observed traffic scales
is identical with the ground truth, as the expected value of
Laplace mechanism is zero. Therefore, we apply the following
term to indicate the utility for each company:

Pi =
NX

j=1

KX

k=1

(
mjk✏2jPK
k=1 mjk

), (2)

where 1
✏2j

indicates the variance on the scale of traffic flows
shared by Vj . Generally, a larger ✏j means the taxi company
is less sensitive on its transactions, and therefore generating
results with with less variance � / 1

✏2j
. Then the overall utility

of Vi is the weighted summation of ✏2j in all interested regions,
indicating the total variance in observed results.

IV. SOLUTION FOR COMMON URBAN TRAFFIC SHARING

A. Background and Preliminaries

In the first scenario, a leading third party acts as the trusted
data curator V0. V0 has access to the accurate scales of all
traffic flows, and collects the requests and privacy preference
from all companies. The privacy preference refers to the
maximum ✏max allowed by each company. V0 selects the
proper privacy settings applied for taxi companies, and perturbs
the scales with Laplace mechanism according to the settings.
Finally, the obfuscated flows in each regions are accumulated
and published. This is the case where both taxi companies and
publics are allowed to learn meaningful knowledge from the
data share.

As companies own heterogeneous markets and interests on
traffic flows, V0 is expected derive a sharing scheme acceptable
for all companies. More specific, the scheme should guarantee
the fairness among companies, and jointly consider the utility
and the devotion:

maxmin
i

Pi =
NX

j=1

KX

k=1

(
mjk✏2jPK
k=1 mjk

) · 1
PN

j=1 mji · ✏2i
, (3)

which tries to maximize the minimum relative benefits Pis.
This principle provides a rational benefits for both individual
companies and publics. According to equation 3, the benefit
for each company is influenced by privacy settings provided by
correlated companies in interested regions. More specific, we
can convert the benefits according to the correlations among
companies, by introducing ↵ik =

PN
j=1(

IjimjkPK
l=1 mjl

), and �i =
PN

j=1 mji.

Pi = (↵i1✏
2
1 + ↵i2✏

2
2 + · · ·+ ↵iK✏2K) · i

�i✏2i
(4)

According to equation set 4, we observe that ↵ik > 0 if and
only if there is at least one region Gj concerned by Vi, and
Vk shares market in Gj .
We also introduce a graph structure called Benefiting

Graph GB = {V,E}, where V refers to all companies,
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and E = {eij}, i, j 2 {1, 2, · · · ,K}. We assume eij exists
when ↵ji > 0,and GB is a directed graph. eij means the
traffic flows shared by Vi contributes to the utility of Vj , and
larger privacy setting will improve the utility. Furthermore, a
strongly connected component of GB indicates a set of vertex
CL = {Vi1 , Vi2 , · · · , ViL}, such that there is a path connecting
any Vij , Vik inside. We also propose an improved definition for
fairness among companies according to the graph.

Definition 2: For an arbitrary set of companies
{Vi1 , Vi2 , · · · , ViL} in a strongly connected component,
the privacy settings {✏i1 , ✏i2 , · · · , ✏iL} achieves a balanced
state when no other assignments {✏0i1 , ✏

0
i2 , · · · , ✏

0
iL} can

provide Pi < P 0
i  P 0

j < Pj , Pk = P 0
k, 8k 6= i, j for at least

one pair of i, j, or increase the utility for all companies under
the given privacy budget.

Definition 2 generally ensures companies receive fair ben-
efits according to their devotion, while the budgets are suf-
ficiently applied to maintain good overall utility for both
companies and other third parties. This new definition of
fairness can further improve the balance among companies by
overcoming the unnecessary conservation on privacy budgets.

B. Common Knowledge Acquisition Algorithm

This part introduces in details the algorithm designed for
Common Urban Traffic Knowledge Sharing. The algorithm
takes the market ratios, the interested regions, and the privacy
budgets of all companies as inputs, determines the privacy
settings ✏is applied by these companies in the data sharing,
and outputs the privacy-preserved scales of local traffics for
all regions. For clarity, the algorithm is named as Common

Knowledge Acquisition Algorithm (CKAA for short).
CKAA is mainly composed of four parts. It first derives

the benefit graph and the benefiting equation set according to
the inputs. Then CKAA searches for all strongly connected
components in the graph. In the third phase, CKAA deter-
mines the privacy settings for all companies according to the
benefiting formulas and the strongly connected components.
The privacy settings achieve the requirements in Definition
2. Finally, CKAA perturbs the scale of traffic flows in each
region for each company and publishes the final results. Next
we provide the details for each phase.

In the first phase, CKAA initializes the benefit graph GB

from the inputs. Every company is represented by a vertex
in GB . For simplicity, we utilize Vi to denote both the
company and its corresponding vertex in GB . Furthermore,
there is a directed edge from Vi to Vj ,8i, j, if and only if
Vi owns markets in any of regions requested by Vj . We also
construct the benefiting formulas like equations 4, which is
also derived from the inputs by ↵ik =

PN
j=1(

IjimjkPK
l=1 mjl

), and

�i =
PN

j=1 mji.
In the second phase, CKAA derives all strongly con-

nected components (SCC for short) from GB , denoted as
C1, C2, · · · , CP . We apply the Kosaraju’s algorithm [25] for
the detection of C1, C2, · · · , CP . The main idea of the al-
gorithm is to first reverse all edges in GB , and applies a
post-order Depth First Search (DFS for short) to traverse all
vertices. Then the algorithm pops up the top vertex from

the stack, and applies a second DFS starting from the top
vertex in the original GB . After the DFS, a strong connected
component will be derived, and corresponding vertices are
labeled. The algorithm iteratively pops up the unlabeled top
vertices from the stack, and derives subsequent SCCs. The
whole algorithm terminates when all vertices are labeled.
After this phase, CKAA partitions all companies into multiple
groups as C1, C2, · · · , CP .

In the third phase, CKAA determines the privacy settings
for companies. To achieve this, CKAA first checks the inter-
edges among all components C1, C2, · · · , CP , and extracts
all components with only out-edges, marked as Co1, Co2, · · · .
Then for each Coi, CKAA sets the benefits of all companies
inside to be identical. In this case, there are |Coi| privacy
settings to be determined, and |Coi| � 1 equations, where
| · | denotes the cardinality of the set. CKAA iteratively sets
the privacy setting of each company to be maximum, and
derives the settings for remaining companies by solving these
equation sets. It stops when the all derived results are no larger
than the maximum budget. Subsequently, CKAA updates the
determined settings in GB , and deletes all inter-edges whose
source vertices have their privacy settings determined. After the
updating, CKAA starts over and searches for new components
with only out-edges. The third phase ends when the settings
for all companies are decided.

In the fourth phase, CKAA perturbs the traffic flows with
assigned settings to generate the final scales of local traffic for
all regions. For each company Vj and region Gi,

m0
ij = mij + Lap(✏j), (5)

where m0
ij is the published scale of traffic flows for Vj in

region Gi. Finally, CKAA publishes a perturbed city-wide
view for the scales of traffic flows, where the size of flows
in an arbitrary region Gi is

Mi =
KX

j=1

m0
ij . (6)

C. Performance Analysis

In this part, we first prove that our algorithm can achieve the
requested fairness in Definition 2. Secondly, CKAA is proved
to guarantee the ✏-differential privacy for all companies.

Fairness:

As is shown in Definition 2, the fairness expects both the
fully utilization of privacy budgets and the balanced benefits
among companies. We can easily achieve the first requirement
as CKAA always tries to make full use of the privacy budget,
and any other assignment of privacy settings will lead to the
violation of privacy for at least one company. For the second
conclusion, we can prove it with the following theorem.

Lemma 1: Assume {Vi1 , Vi2 , · · · , ViL} to be a strong con-
nected component in GB . Then the max-min principle
maxminkL Pik is achieved when Pi1 = Pi2 = · · · = PiL .

Proof: We prove the theorem by contradiction.
Denote {✏i1 , ✏i2 , · · · , ✏iL} to be the privacy assignment for

companies in one strongly connected component, and there
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is another assignment {✏0i1 , ✏
0
i2 , · · · , ✏

0
iL} making some P 0

ij 6=
Pik and maxminP 0

ik > maxminPik . We say two companies
share markets when their traffic flows in some regions are
requested by each other. Then one of the following facts holds
for {✏0i1 , ✏

0
i2 , · · · , ✏

0
iL}:

1) There are multiple companies with minimum benefit, and
each of them, saying Vij , shares markets with at least one
company with larger benefit, denoting by Vik . If ✏ik  ✏max,
we can simply increase ✏ik and achieve new benefits:

P 0
ik = P 0

il , (7)

where both benefits are larger than P 0
ij .

2) There are multiple companies with minimum benefit, and
only partial of them share markets with companies with higher
benefits. Then we can first apply the strategy in case 1 to
increase the benefits for these companies. All remaining com-
panies slightly decrease their budgets to make their benefits
identical with other companies affected in the first step. Then
we can still achieve a new assignment for privacy settings that
increases the benefits for all companies.

3) There are multiple companies with minimum benefit, and
none of them shares markets with companies with higher ben-
efits. This is contradicted with the facts that these companies
fall in the same strongly connected component.

Therefore, when the benefits for companies in one strongly
connected components are non-identical, we can always derive
another assignment to increase the minimum benefit. The proof
is completed.

We can extend the proof to all components, and CKAA
follows the requested fairness in definition 2. Furthermore, as
CKAA tries to make full use of privacy budgets under the
fairness principle, it also meet the maximization of utility in
definition 2. Generally, we have:

Theorem 3: The privacy settings derived by CKAA can
maximize the minimum benefits for companies in all SCCs,
and the utility is also maximized under the principle of
fairness.

Privacy Preservation:
Now we analyze the performance of CKAA on privacy p-

reservation. The main steps for privacy preservation are located
in the fourth phase, where each company perturbs its scale of
traffic flows in each region according to the assigned privacy
setting. The perturbed results are accumulated and construct
the final outputs. The global sensitivity of the function is 1 as
the existence or absent of a transaction will affect the scale
of traffic flows by 1. The following theorem demonstrate the
privacy preservation of CKAA.

Theorem 4: CKAA guarantees ✏max-differential privacy on
the traffic flows for all involved taxi companies.
CKAA achieves ✏max-differential privacy in each region, as
Laplace mechanism is adopt and the max budget is bounded
for each company. Furthermore, as the traffic scales are disjoint
in different regions, CKAA can guarantee the ✏max-DP in all
regions according to the parallel principle in theorem 2.

V. SOLUTION FOR LOCAL TRAFFIC EXCHANGE

A. Background and Preliminaries

In the second scenario, there is also a trusted data curator
V0 maintaining the markets, interests, and privacy preference
for taxi companies. Unlike the first scenario, V0 implements
a local exchange of knowledge among taxi companies. This
data curator will assign the privacy setting for each company
in each region, and determines a set of company-region pairs
indicating the companies and corresponding regions that a
taxi company should exchange its markets with. This is the
case where companies locally derive knowledge on traffic
flows via data sharing, and no common knowledge will be
published. As companies concentrate on their own profits, the
main objective is to keep the sharing rational and stable among
them. Furthermore, the flows in each region could be perturbed
once an shared multiple times, which further facilitate the
exchange among companies.

We formulate the interactions among companies as a coali-
tional game, where all companies form the player set V . The
strategies XV are composed of all feasible sharing among
companies, which is the combination of shared region and the
privacy setting applied between two arbitrary companies. The
merit of a sharing is correlated with the shared markets and
the accuracy, which is denoted as mijP

kK mkj
· ✏2i .

Based on the formulation of the coalitional game, the data
sharing actually indicates a subset of exchanges X E

V from
XV for companies. The actual utility P 0

j for company Vj is
correlated with the summation of all retrieved traffic flows
during the coalition. Then the accuracy of the results is
applied to evaluate the utility as companies expect unbiased
and reliable knowledge. We apply the typical core solution to
evaluate the performance of a coalitional in our framework.

Definition 3: The Core for a coalitional game ⌦ is a set
X E

V ⇢ XV , such that there are no other subsets X E0

V s
providing larger benefits Pis for all involved companies.
Before introducing details of the proposed algorithm, we

briefly introduce the Dependent Graph applied by the process.
The Dependent Graph GD = {R,E} is a directed graph,
where R includes all companies, i.e., |R| = K. Assume ri to
stand for company Vi. Then there is a directed edge eli between
vertices ri and an arbitrary rl when company Vl requests the
traffic market in some regions owned by Vi. Furthermore, we
set multiple weights on eli as { m1iP

pK m1p
· ✏2max,

m2iP
pK m2p

·
✏2max, · · · , mNiP

pK mNp
·✏2max}, indicating the maximum benefit

Vi can provide by safely sharing its market in each region.
The dependent graph is diverse from benefiting graph on the
definition of weights to facilitate a fine-grained coalition.

B. Local Traffic Exchange Algorithm

In this part, we introduce the process of each step for EKAA.
The main idea of EKAA is to iteratively derive currently best
interactions for sharing, and updates the dependent graph GD

accordingly.
Initially, EKAA sorts weights on all edges in descending

order. Edges with identical weights are stored in one slot in
the list. Then starting from the edge eijs in the first slot, EKAA
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sets wij = wi0j0 , where ei0j0 is the edge succeeding to eij in
the sorted list. Edges in last slot keeps their weight stable.

In each iteration, EKAA derives a top-order circle from GD.
EKAA first deletes the vertices with only in-edges in GD.
The weight of each edge is set to be the maximum weight
among its candidate set. EKAA starts from a random vertex.
EKAA searches for the edge with maximum weights, saying
ei1i2 . Then EKAA traverses to next vertices ri3 , where wi2i3
is the maximum weights among all out edges of ri2 . EKAA
repeats the procedure until the most recent vertex rik refers to
a company once appeared in the path, i.e., partial of visited
vertices form a circle Crl. Vertices in the circle, together with
the corresponding regions contributing the weights on each
edge, are included in the final outputs. Meanwhile, all the
weights in selected edges are removed from the candidate
sets, and the second largest weights in the sets are applied.
The whole edges are removed when all non-zero weights are
included in the outputs. Then EKAA starts over with removing
vertices with only in-edges in GD, and selects another vertex
to search for next top-order circle.

The searching process terminates when all edges have been
deleted or all vertices have been removed. EKAA outputs a
set of circles {Cr1, Cr2, · · · }, where each circle contains a
list of companies, and the regions and privacy settings applied
for sharing among them. Then EKAA perturbs the scale of
traffic flows for each company in each region according to
their weights. The noise is also introduced by the Laplace
mechanism:

m0
ij = mij + Lap(✏ij), (8)

wherem0
ij is the published market size for Vj in region Gi, and

✏ij is the privacy setting for Vj in region Gi. Finally, EKAA
delivers the obfuscated markets to corresponding companies in
circles.

C. Analysis

In this section, we first prove the stability of the proposed
algorithm. EKAA can derive a core set for coalition among
participated companies.

The stability of a coalitional game indicates the achieved
scheme for data exchange will be convincing and accepted by
all taxi companies. In the typical coalitional game, the core set
is usually adopt to evaluate the stability of the scheme, which
is given in definition 3. We prove that the proposed algorithm
can generate a core set for data sharing among participants.

Theorem 5: The cooperation scheme {Cr1, Cr2, · · · } de-
rived by EKAA is a core set for all involved participants.

Proof: We prove the theorem by contradiction.
Assume there is another sharing scheme {Cr01, Cr02, · · · }

providing better benefits for all involved participants. Then all
sharing schemes must forms a circle. Otherwise, the participant
at the tail of the path may abandon the cooperation while its
benefits remains the same. Meanwhile, one of the following
conditions must hold for {Cr01, Cr02, · · · }:
1) The pairs of sharing among companies are identical

with {Cr1, Cr2, · · · }, but participants receives higher utilities
as the selected regions are different in the scheme. This is

contradicted with the fact that EKAA will priorly select the
region with maximum utility.

2) There are some circles unique in {Cr01, Cr02, · · · }, where
none of its sharing pairs appeared in the original scheme.
However, this is also impossible since EKAA will iteratively
derives feasible circles. In this case, the unique circles will also
be constructed in EKAA, as their participant-region-participant
pairs are all unique.

3) There are some circles in {Cr01, Cr02, · · · } partially over-
lapping with circles in the original scheme. Assume Cr0i to be
the circle, and it is different from one circle in original scheme
starting from vertex r0ik . Furthermore, the original next-hop
company for r0ik is not included in {Cr01, Cr02, · · · }. Then the
utilities for r0ik will be decreased as its next-hop company is
different from the one in the original scheme, which provides
maximum utility.

Generally, EKAA can achieve the same utility for involved
participants whenever there is a better scheme, which means
no schemes can increase the utilities for all of them. Therefore,
EKAA can derive a core set for the coalition game.

VI. EXPERIMENTS

This section evaluates the effectiveness of our algorithms
through extensive experiments. It first introduces the applied
dataset and basic settings. Then multiple aspects of evaluation
results are presented, including the overview of published
traffic flows, and the effectiveness of proposed algorithms.

A. Datasets and Settings

Datasets. We apply the dataset recording the taxi transac-
tions in New York during the year 2017 [26]. The dataset
includes approximately 1.1 billion of taxi transactions, each
recording the pick-up and drop-off locations of the tour.
Specifically, we focus on those flows starting from or ending
in Manhattan, and the goal of the data sharing is to publish the
total number of transactions in each subregion in the district.

Parameters. In our evaluation, the whole area is partitioned
into 15 regions, each combining a group of nearby blocks. We
conduct the experiment in different settings by varying mainly
three parameters, including the privacy budgets ✏max, the
request ratio �, and the size of companies K. The request ratio
refers to the proportion of regions requested by compnanies.
The default value for privacy budget is 10, the request ratio is
set to 0.3, and the company size is 10. We assume companies
share the markets in the whole area. Four types of market
sharing modes are considered. These modes refer to some of
the real market sharing in local business, depending on whether
market-dominating companies exist and how remaining com-
panies share the market. In Dominating Mode, the dominating
companies own majority of markets in the whole area, and the
following companies share the remaining parts. In Stage Mode,
the large company still owns a relative large portion of markets
in the area. The medium companies constitute moderate sizes
of traffic flows, and small companies own the remaining minor
parts. In Overlapping Mode and Non-overlapping Mode (Non-
OLP for short), companies own similar markets in the whole
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area, They are mainly differ in whether many taxi companies
contribute to the flows in each region.

Algorithms To the best of our knowledge, no previous
works have studied the data sharing among multiple companies
considering the fairness, market ratios, requests, and privacy
simultaneously. Therefore, we implement and evaluate some
baseline algorithms: Global Max-Min method: the utilities of
all companies are set to be identical. Market-Based method:
the fairness is evaluated based on the market ratio. Random
Response (R-Response for short) method: follow the same
strategy for scheme generation in EKAA, while applying
randomly determined regions instead of the assigned one.
Company Level method: the market of each company will
be selected only once under EKAA.

Metrics Three metrics are applied to evaluate the per-
formance of proposed algorithms, including the utilities, the
average privacy settings, and the ratio of responded requests.
The general utilities and the individual utilities estimate the
accumulated utilities in the requested regions for companies,
i.e., the weighted summation of privacy settings in regions
requested by at least one company. The average privacy
settings indicate the devotion of companies in the first scenario,
and the ratio of responded requests indicates the portion of
requests for each company, which are selected and responded
in the second scenario.

B. Performance on Observed Traffic Flows

This part evaluates the performance on the observed traffic
flows in both scenarios. We will show the overall scales for
traffic flows in each region. The settings in this part follow the
default ones. The observed results are given in Fig.2, and fig.1
introduces the partition of local area in Manhattan, NY.
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Fig. 1: Region Partition

According to the results, both algorithms provide mean-
ingful results. Especially for the CKAA, results are highly
consistent with the ground truth on contours and scales.

We also compare the difference between the observed re-
sults and the ground truth in Table. I and II. The difference
is calculated as the summation of relative difference in all
regions. As we see, our algorithms only constitute small scales
of difference, which is less than 1 in most cases.
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Fig. 2: Observed Taxi Flows in Dominating Market Mode

TABLE I: Average Variance on Pick-up Traffic Flows under
Various Market Modes

Market Mode Dominating Stage Overlapping Non-OLP
CKAA 0.401 0.266 0.518 0.2835
EKAA 8.457 1.074 2.120 0.355

TABLE II: Average Variance on Drop-off Traffic Flows under
Various Market Modes

Market Mode Dominating Stage Overlapping Non-OLP
CKAA 0.347 0.141 0.006 0.142
EKAA 5.684 1.125 1.994 0.429

C. Basic Performance

In this part, we further investigate the performance of both
algorithms under various parameter settings. The objective is
to validate how the changing of parameters will influence the
results for data sharing.

We evaluate the impact of privacy budgets. This metric
indicates the degree to which companies allow to conceal their
private information. Generally, larger privacy budgets indicate
that companies are more flexible on their sensitive transactions,
and will provide more accurate results. We varies the privacy
budgets as 5, 10, 15, 20, 25. The results are given in Fig. 3
and Table. III.

TABLE III: Ratio of Responded Requests in Scenario 2

Market Mode Dominating Stage Overlapping Non-OLP
EKAA 0.831 0.853 0.942 0.836
R-Response 0.831 0.853 0.942 0.8363
Company Level 0.327 0.171 0.259 0.263

As we see, all methods reveal improvements on the total
utilities, due to more privacy budgets devoted into the sharing.
We also find that CKKA algorithm significantly outperforms
the market-based method. Meanwhile, our method is also more
reasonable as it takes both the markets and the requests into
consideration. CKAA also achieves similar performance with
the global max-min method, which indicates that all companies
are included in one single strongly connected component.

The performance of EKKA is also significantly better than
the company-level cooperation method. which means the du-
plicated exchange of noisy data can significantly facilitate
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Fig. 3: Utilities under Various Privacy Budgets in Scenario 1

the cooperation among companies, while keeping the privacy
preserved. Both the utilities and the responded ratios are
improved due to the pervasive coalition. Furthermore, EKKA
also slightly outperforms the randomized response method.
The reason is that EKKA will always respond with best
available markets to facilitate the utilities.

We also consider the heterogeneous request ratios for com-
panies, which means companies own different opinions on how
to promote their markets. The overlapping mode is applied to
mitigate the influence of different market ratios. Companies are
partitioned into lazy (Company 1-3), moderate (Company 4-
6), and active (Company 7-10). each with 0.3, 0.5, 0.7 request
ratios. According to the results, our algorithm can guarantee
the fairness among companies (i.e., 5.111) while the market-
based method fails to achieve a rational result (i.e., 4.957,
1.832, 10.360, 4.491, 6.089, 3.782, 4.467, 7.304, 5.401, 9.789).

VII. CONCLUSION

In this paper, we investigate the problem of privacy-
preserved traffic flow sharing among multiple taxi companies.
The outputs will bring valuable knowledge for subsequent con-
struction in urban district. Two scenarios are investigated based
on whether the final outputs are formed as a general view, and
corresponding algorithms are proposed respectively, where the
first algorithm guarantees the fairness among companies, and
the second algorithm achieves a stable scheme for cooperation.
Both algorithms provide differential privacy for involved com-
panies. Moreover, extensive evaluation results demonstrate the
performance of our solutions. Potential future research includes
the cases where the requests are also sensitive.
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