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ABSTRACT: Recent advances in synthetic biology have led to
a wealth of well-characterized genetic parts. As parts libraries
grow, so too does the potential to create novel multi-input
promoters that integrate disparate signals to determine tran-
scriptional output. Our ability to construct such promoters will
outpace our ability to characterize promoter performance, due to
the vast number of input combinations. In this study, we
examine the input−output relations of recently developed
synthetic multi-input promoters and describe two methods for predicting their behavior. The first method uses 1-dimensional
induction data obtained from experiments on single-input systems to predict the n-dimensional induction responses of systems
with n inputs. We demonstrate that this approach accurately predicts Boolean (on/off) responses of multi-input systems
consisting of novel chimeric transcription factors and hybrid promoters in Escherichia coli. The second method uses only a small
amount of multi-input response data to accurately predict analog system response over the entire landscape of input
combinations. Taken together, these methods facilitate the design of synthetic circuits that utilize multi-input promoters.
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The majority of synthetic gene circuits have been built with
a small set of parts (i.e., genetic elements that can affect

gene expression), and this has consequently limited the
complexity of circuit designs.1 Called “the component
problem,” synthetic biologists have encountered a dearth of
well-characterized and orthogonal parts needed to build larger
circuits.2 One approach directed at solving the parts problem
involves identifying and characterizing naturally occurring
parts, a method called parts mining.3 Another approach utilizes
concepts developed for protein engineering to create novel
parts through modification of existing transcription factors.4

Still other ventures have focused on the forward engineering of
regulatory control sequences, including the construction of
synthetic promoters,5 ribosome binding sites,6 and termina-
tors.7

Recent advances toward solving the component problem
have led to a growing repository of orthogonal genetic parts.
Yet, the number of possible part combinations grows much
more quickly than the size of parts libraries. To complicate
matters, the assembly of parts can produce unpredictable
results, as the behavior of each part can change with the
context in which it operates.8−10 Hence, the design and
construction of biological circuits is often based on trial and
error, resulting in a laborious and inefficient process. To
address this issue, some researchers have developed computa-
tional models of synthetic circuits to simulate and evaluate

circuit designs before building them in the lab, accelerating the
process of genetic circuit development.11−14

Of the many types of parts being designed for synthetic
biology, one of the most important classes is the multi-input
promoter. Such promoters allow transcriptional output at one
locus to depend on two or more transcription factors, enabling
the efficient construction of complex regulatory architectures.
Indeed, many synthetic gene circuits have relied on multi-input
promoters, including oscillators,13,15 logic gates,16−19 an image
edge detector,20 a synthetic predator−prey ecosystem,21 and a
pattern formation circuit.22 However, because multi-input
promoters are not common in bacteria, synthetic biologists
have had to resort to engineering novel promoters that
respond to multiple transcription factors. This has led to
various types of multi-input promoters that largely fall into one
of three classes: tandem promoters, hybrid promoters, and
chimera-responsive promoters.
Tandem promoters are constructed by placing two

promoters one after the other.16,17 Therefore, transcription
can be initiated at either of two places, each regulated by a
different transcription factor. One drawback to this approach is
that the 5′ UTRs generated differ depending on the initiation
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site, possibly resulting in different translational activities.8 This
problem can be alleviated by using enzymatic cleavage of the
UTR, thus standardizing the structure of the mRNA and
normalizing translation initiation.8,11

Hybrid promoters (also known as combinatorial promoters)
are engineered to contain more than one operator site at the
core promoter site, which allows different species of tran-
scription factors to bind.15,23−27 This enables these promoters
to respond to different transcription factors simultaneously and
always generate the same mRNA independent of how the
promoter was activated. One drawback of hybrid promoters,
however, is that they can be hard to engineer, as operator sites
must be precisely placed within the promoter.
Chimera-responsive promoters are not engineered pro-

moters. Instead, multiple transcription factors are engineered
to bind the same operator site within the promoter.18,19 To do
this, chimeric transcription factors are constructed by
appending the DNA binding domain (DBD) of one tran-
scription factor to the ligand binding domain (LBD) of
another.28 If multiple transcription factors, each containing the
same DBD, are present in a cell, each will regulate the target
promoter based on the presence or absence of its ligand. The
drawback of this method is that one swaps a DNA engineering
problem for a protein engineering problem. Provided that the
correct operator sites are present, chimeric transcription factors
can be used in conjunction with tandem promoters and hybrid
promoters, increasing the number of potential input combina-
tions.

In light of these recent developments, it has become feasible
to construct novel multi-input promoters with a high number
of inputs. But, as the number of potential input combinations
grows, conventional expression characterization techniques will
become untenable−fully characterizing every input combina-
tion will be unworkable. For example, if one possesses a library
of x transcription factors, then there exist x(x − 1)/2 possible
pairwise combinations. To further complicate matters, if one
wishes to characterize the response curve of an inducible
promoter system with only one input requiring n measure-
ments at different concentrations, then a similar character-
ization for a two-input system would require n2 measurements,
a three-input system n3 measurements, and so on.29

Here, we describe and evaluate two methods for predicting
the output of synthetic multi-input promoters responding to
varying concentrations of multiple inducing ligands. Our first
method uses data only from single-input systems to predict
multi-input system output. We first characterized each of a set
of chimeric transcription factors acting upon a target promoter
in isolation. We then developed naıv̈e models that use only this
single-input information to predict the behavior of two-input
systems consisting of two chimeras operating simultaneously.
With the naıv̈e modeling in place, we constructed and
characterized three two-input chimeric repressor systems in
vivo. Our naıv̈e models accurately predicted the Boolean (on/
off) responses of these chimeric repressor systems. To
demonstrate the flexibility of the method, we successfully

Figure 1. Predicting the output of two-input ligand-inducible transcriptional repressor systems. (a) Single-input systems consist of one of three
chimeric repressors, each with a LacO DBD. These chimeric repressors regulate the expression of sfYFP as a function of their cognate inducers. (b)
Single-input response profiles. Points depict mean fluorescence of the flow cytometer distribution, normalized to beads. Error bars represent
standard deviation from three experimental replicates. We fit sigmoidal functions to the fluorescence data (curves). (c) Two-input systems. For
each system, we coexpressed two chimeric transcription factors that simultaneously regulate the PLLacO‑1 promoter driving the expression of sfYFP.
(d) Heatmaps representing the expression of sfYFP for the two-input systems. From left to right and bottom to top, boxes represent 0, 0.001, 0.01,
0.1, 1, and 10 mM of the indicated inducer. First column: Experimental data. Second column: Informed model prediction. Third column: Naıv̈e
model prediction. Black curves indicate location of half-maximal induction.
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extended it to a hybrid promoter system compatible with the
set of characterized chimeric transcription factors.
Our second method is based on the following idea: To

predict the response of a multi-input system for every
combination of inducing ligand concentrations, one has only
to construct the multi-input system in vivo and then test it with
a small number of ligand concentration combinations.
Importantly, the number of measurements needed increases
only linearly with the number of inputs. These measurements
serve as training data for our model, that then predicts multi-
input system response at all inducer concentration combina-
tions. We found this second method to be more accurate than
the first for all of the two-input systems we built, and extremely
accurate for a three-input hybrid promoter system.
Overall, this work provides methods for accurately

predicting the transcriptional output of synthetic multi-input
promoters. This ability is critical to the forward design of
complex gene circuits relying on multiple environmental or
intercellular inputs.

■ RESULTS AND DISCUSSION
Multi-input Chimeric Repressor Systems. We first

developed a “naıv̈e” approach that uses data from single-
input systems to predict the behavior of a multi-input system,
assuming we can factorize input interactions. To do this, we
examined several versions of chimeric AND gates previously
reported by Shis et al.18 These transcriptional AND gates are
built using LacI/GalR family transcription factor chimeras,
each containing the DNA binding domain of LacI and the
ligand binding domain of another family member (Figure 1a):
LacI-L (which responds to isopropyl β-D-1-thiogalactopyrano-
side (IPTG)), RbsR-L (ribose), or TreR-L (trehalose).18

When two different chimeras are present, each will
independently regulate the PLLacO‑1 promoter, meaning that
both ligands will be required for transcription.
We began by determining the system response for each

chimera acting in isolation. To do this, we used flow cytometry
to measure the response of the PLLacO‑1 promoter driving
expression of sfYFP in the presence of each of the three
chimeric repressors individually. As shown in Figure 1b, each
single-input system behaves as expected, with sfYFP expression
monotonically increasing as inducer concentration increases.
We modeled each induction profile with a sigmoidal

function of the form

ε= + =
* +

+ +F I CH I H I
I

I I
( ) ( ) with ( )

p

p p
(1)

Here F denotes fluorescence, I denotes inducer concentration,
ε represents fluorescence in the absence of inducer, C is the
maximum fluorescence increase in response to inducer, p is the
Hill coefficient, and I* is the inducer concentration at which
the Hill function H+ attains its half-maximal value. We fit the
model given in eq 1 to the measured steady-state fluorescence
data for each of the three chimeric repressors (Figure 1b). In
each case, the model tightly fits the data with low error (see
Supporting Information (SI) for fitting details).
Our naıv̈e model uses these single-input induction curves to

predict the two-input expression of systems consisting of two
chimeric repressor species operating simultaneously (Figure
1c): Let F1(I1) and F2(I2) denote the single-input induction
curves (obtained above) for any two of the three inducers
(IPTG, ribose, or trehalose). Using eq 1, we have

ε ε=
* +

+ = ++F I C
I

I I
C H I( ) ( )

p

p p1 1 1
1

,1 1
1 1 1 1 1

1

1 1

ε ε=
* +

+ = ++F I C
I

I I
C H I( ) ( )

p

p p2 2 2
2

,2 2
2 2 2 2 2

2

2 2

The naıv̈e prediction for the two-input system is then given by

α α α α= + + ++ + + +F I I H I H I H I H I( , ) ( ) ( ) ( ) ( )1 2 0 1 1 1 2 2 2 3 1 1 2 2
(2)

That is, we descriptively model two-input system response as a
quadratic polynomial function of H1

+ and H2
+. The first three

terms in eq 2 capture the “leaky” expression that may occur
when at most one inducer is present. Coefficient α3 quantifies
the strength of the interaction term. A two-input system
functions well as an (analog) AND gate when α3 is much larger
than α0, α1, and α2.
The task is now to estimate the parameters α0, α1, α2, and

α3, using only the parameters of F1 and F2. In the absence of
either inducer (i.e., setting H1

+ = H2
+ = 0), we assume the

repressor that binds more tightly in the uninduced state
controls AND gate fluorescence, and thereby obtain

α ε ε= min( , )0 1 2 (3)

Similarly, when both inducers are present at saturating
concentrations, we set H1

+ = H2
+ = 1 and obtain

α α α α ε ε+ + + = + +C Cmin( , )0 1 2 3 1 1 2 2 (4)

When one inducer is present at saturating concentration and
the other is absent, we assume that although repression by the
induced repressor has been relieved, AND gate fluorescence
cannot be greater than single-input fluorescence for the other
repressor in the uninduced state. This assumption is equivalent
to

α α ε α α ε+ = + =,0 1 2 0 2 1 (5)

obtained by setting H1
+ = 1, H2

+ = 0 and H1
+ = 0, H2

+ = 1,
respectively. Combining eqs 3, 4, and 5 yields a system of
equations for the αj:

α ε ε= min( , )0 1 2 (6a)

α α α α ε ε+ + + = + +C Cmin( , )0 1 2 3 1 1 2 2 (6b)

α α ε+ =0 1 2 (6c)

α α ε+ =0 2 1 (6d)

We solve eqs 6 to complete the derivation of our naıv̈e
prediction for AND gate fluorescence. Since no two of the
three single-input induction curves intersect one another (see
Figure 1b), for the sake of clarity we solve eqs 6 assuming F1
(I) ⩾ F2 (I) for every inducer concentration I, obtaining

α ε α α ε ε α ε ε= = = − = + −C, 0, , ( )0 2 1 2 1 2 3 2 2 1

Our naıv̈e prediction for AND gate fluorescence is therefore
given by

ε ε ε ε ε= + − + + −

×

+

+ +

F I I H I C

H I H I

( , ) ( ) ( ) (( ) )

( ) ( )
1 2 2 1 2 2 2 2 2 1

1 1 2 2 (7)

We emphasize that this model depends only on single-input
information.
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To test the naıv̈e model, we built three two-input expression
systems by pairwise combining the three single-input systems.
For each two-input system, we constructed plasmids that
express a pair of chimeric repressors that regulate expression of
sfYFP driven by the PLLacO‑1 promoter. We measured the mean
production of sfYFP at 6 inducer concentrations for each
inducer, ranging from 0 to 10 mM, producing a total of 36
different induction conditions for each system (Figure 1d, left
column). All three two-input systems exhibited AND gate
behavior: High levels of both inducers were needed to see
significant expression.
The naıv̈e model accurately predicts the Boolean (on/off)

response profiles of the two-input chimeric repressor systems
(Figure 1d, right column; see SI for detailed quantitative error
analysis). This finding supports one of the primary claims of
our paper: The naıv̈e model enables efficient Boolean
characterization of multi-input systems and requires only
single-input data for model specification. We will show that
this claim holds for multi-input synthetic hybrid promoter
systems as well. Although the naiv̈e model succeeds in the
Boolean context, its (analog) predictions are not highly
accurate for some pairs of inducer concentrations. In particular,
the model performs well for all three two-input chimeric
repressor systems when both inducer concentrations are low or
high, but nontrivial prediction errors occur in the TreR-L
systems at low to medium concentrations of trehalose and
medium to high concentrations of the second inducer (ribose
or IPTG). Further, the predicted position for the isocline of
half-maximal induction does not always match the position

obtained from the experimental response profile (black lines in
Figure 1d).
In order to accurately predict analog system response over

the entire landscape of input combinations, we developed a
second predictive method that uses the polynomial-Hill model
described by eq 2 in a different way. Rather than use single-
input information to infer model parameters, our second
predictive method calls for training the model on a small subset
of the data obtained from the experimentally constructed two-
input system. We call the second method “informed
modeling”.
For each pair of chimeric repressors, we fit the 8 parameters

for eq 2 using only measured fluorescence data from just 12 of
the 36 inducer pairs. In particular, we used the 11 inducer pairs
with at least one inducer at 10 mM and the pair with both
inducers at zero (see SI). The informed model then predicts
fluorescence response for any pair of inducer concentrations.
The predictions of the informed model outperform those of its
naiv̈e counterpart for all three of the chimeric repressor pairs
(Figure 1d, center column; see SI for error quantification). In
particular, the informed model accurately predicts the positions
of the three isoclines corresponding to half-maximal induction.
We based our choice of training data set on scalability

considerations. Thinking of the two-input inducer space as a 6-
by-6 grid, the set of inducer pairs with at least one inducer at
10 mM consists of two one-dimensional “slices”. As we explain
in the Discussion, training a D-input system would then
require D one-dimensional slices, so the size of the training
data set scales only linearly with number of inputs. We based

Figure 2. Predicting the output of two-input hybrid promoter systems. (a) Single-input AraC circuit. The PLacAra‑1 promoter drives sfYFP
production in the presence of arabinose. (b) Production of sfYFP after 2 h of induction as a function of arabinose concentration. Points: mean
fluorescence of the flow cytometer distribution. Error bars: standard deviation from three experimental replicates. We fit a sigmoidal function to the
data (green curve). Bars represent sfYFP production at 10 mM arabinose and 10 mM of the other inducer indicated. (c) The two-input case for the
PLacAra‑1 promoter. A chimeric repressor and AraC operate simultaneously. (d) Heatmaps representing the expression of sfYFP for the two-input
systems. From left to right and bottom to top, boxes represent 0, 0.001, 0.01, 0.1, 1, 10 mM of the indicated inducer. First column: Experimental
data. Second column: Informed model prediction. Third column: Naiv̈e hybrid promoter prediction. Black curves indicate location of half-maximal
induction.
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our selection of slices on the idea that the two-input system
responds most sensitively to changes in the concentration of a
given inducer when saturated with the other inducer. The
inducer pair with both inducers at zero calibrates the
fluorescence floor. We do not claim that our choice of training
data set is optimal, only that it works well. In particular, errors
associated with the predictions of the informed model are
nearly as low as those obtained by fitting the polynomial-Hill
model to all of the measured two-input data (see SI).
Multi-input Hybrid Promoter Systems. We conjectured

that the predictive models we developed for the chimeric
repressor systems would also work with another type of multi-
input promoter: the synthetic hybrid promoter. To test this
conjecture, we constructed, observed, and predictively
modeled two-input systems utilizing the PLacAra‑1 promoter, a
hybrid promoter containing an operator site for the activator
AraC and one for the repressor LacI. This promoter (again
driving sfYFP) is compatible with the previously characterized
chimeric repressors, and may be used in the presence of
constitutively expressed AraC and the gene(s) encoding
chimeric repressor(s).
Single-Input Experiments.We first expanded our analysis of

single-input systems to the AraC-regulating PLacAra‑1 single-
input case. We characterized the response of the PLacAra‑1
promoter in the presence of constitutive AraC and no LacI
chimeras (Figure 2a). In particular, we measured mean steady-
state fluorescence of sfYFP in a range of L-arabinose from 0 to
10 mM at 12 concentrations (Figure 2b). As with the chimeric
repressors, we fit a sigmoidal function of the form (eq 1) to the
arabinose induction data (Figure 2b, green curve).
To observe any potential crosstalk, we measured the

response of PLacAra‑1 to 10 mM of IPTG, ribose, and trehalose
at 0 mM and 10 mM of arabinose (Figure 2b, right). The
PLacAra‑1 promoter produced significantly reduced sfYFP
expression with the addition of IPTG. This is consistent with
previous results demonstrating that IPTG inhibits the activity
of native AraC.30 Ribose and trehalose did not have any
nonspecific activatory or inhibitory effects.
Naıv̈e Modeling. As for the two-input chimeric repressor

systems, we developed a naıv̈e model that predicted, based
solely on single-input information, the Boolean behavior of the
activator-repressor hybrid systems. We conjectured that the
model (eq 7) would not work well for the hybrid systems
because of the architectural differences between the PLLacO‑1
and PLacAra‑1 promoters (see SI for verification of this
conjecture). We therefore developed a new naıv̈e model for
the hybrid systems, described as follows.
Start with the single-input induction curves for the chimeric

repressors (R) and the activator (A), now denoted

ε= ++F I C H I( ) ( )R R R R R R

ε= ++F I C H I( ) ( )A A A A A A

respectively. As before, the new naıv̈e model has the structure

α α α

α

= + +

+

+ +

+ +

F I I H I H I

H I H I

( , ) ( ) ( )

( ) ( )
A R 0 1 A A 2 R R

3 A A R R (8)

To specify the αj, we set (HA
+, HR

+) equal to (0, 0), (1, 1), (1,
0), and (0, 1), respectively, and model as follows:

α ε=0 R (9a)

α α α α ε ε+ + + = + +C C( )( )0 1 2 3 A A R R (9b)

α α ε+ =0 1 R (9c)

α α ε ε+ =0 2 A R (9d)

The system (eqs 9) follows from two assumptions. First, when
the repressor is uninduced, AND gate fluorescence is εR
regardless of arabinose concentration. This assumption is
based on the relationship FA

+ (IA) ⩾ εA > εR between the single-
input induction curves. Second, we assume that when the
repressor is fully induced, AND gate fluorescence values are
given by geometrically averaging corresponding single-input
fluorescence values. This assumption is based on the idea that
repressor may bind the hybrid promoter with low probability
even at saturating repressor cognate inducer concentrations.

A Caveat. We constructed the naıv̈e model for the hybrid
promoter systems using single-input chimeric repressor data
from another promoter: the PLLacO‑1 promoter. This was
necessary given our experimental methodology because the
PLacAra‑1 promoter does not produce transcription without
AraC bound, so we could not generate repressor-only
induction curves for the hybrid promoter.
In general, such a scheme could be problematic, especially

for promoters with substantially different expression ranges.
However, we believe our methodology was sound because the
expression ranges of the PLLacO‑1 and PLacAra‑1 promoters are
comparable in our context. Regardless, our naiv̈e model for the
hybrid promoter accurately predicts in vivo two-input Boolean
system responses, as described below.

Implementation and Prediction of Two-Input Hybrid
Promoter Systems. To test the new naıv̈e model, we
coexpressed AraC and one of the chimeric repressors, which
simultaneously regulate the PLacAra‑1 promoter (Figure 2c). We
measured mean sfYFP production at 6 inducer concentrations
for each inducer, ranging from 0 mM to 10 mM, producing a
total of 36 different induction conditions (Figure 2d, left
column).
As we conjectured, the hybrid promoter naıv̈e model

(Figure 2d, right column) accurately predicts digital (on/off)
system responses (see SI for error quantification). Further, this
new naıv̈e model outperforms the model (eq 7) for the ribose-
arabinose and trehalose-arabinose systems. As expected, the
hybrid promoter naıv̈e model fails for the IPTG-arabinose
system, due to the crosstalk between IPTG and the activation
of the promoter by AraC. In future work, we intend to develop
systematic theoretical and experimental frameworks for
treating various types of crosstalk, including ligand-tran-
scription factor interference and signaling molecule (HSL)
crosstalk. Capturing the latter is important for the bioengineer-
ing of synthetic microbial consortia.
As for the chimeric repressor systems, we developed an

informed model for the hybrid promoter systems that
accurately predicts analog response over the landscape of
induction conditions, once trained with a small amount of the
two-input fluorescence data. For each activator-repressor pair,
we fit the 8 parameters for the model described by eq 8 using
only measured fluorescence data from just 12 of the 36 inducer
pairs. In particular, we used the 11 inducer pairs with at least
one inducer at 10 mM and the pair with both inducers at zero.
For the ribose-arabinose and trehalose-arabinose systems, the
informed model accurately predicts fluorescence response for
the remaining 24 inducer pairs and outperforms the hybrid
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promoter naıv̈e model (Figure 2d, center; see SI for error
quantification). The informed model fails to capture IPTG-
arabinose system response due to the aforementioned crosstalk
between IPTG and AraC.
Three-Input Prediction and Measurement. To test the

utility of our methodology in higher dimensions, we
constructed a three-input system that responds to a
combination of arabinose, ribose, and trehalose (Figure 3a).
We constructed the system by coexpressing RbsR-L and TreR-
L and cotransforming the PLacAra‑1 promoter.

By combining modeling techniques used for the chimeric
repressor systems and the hybrid promoter systems, we
developed a naıv̈e model that predicts three-input system
Boolean behavior as a function of the arabinose, ribose, and
trehalose single-input induction curves. The three-input naıv̈e
model naturally generalizes the two-input version in eq 2, and
has the form

α α α α

α

= + + +

+

+ + +

+ + +

F I I I H I H I H I

H I H I H I

( , , ) ( ) ( ) ( )

( ) ( ) ( )
1 2 3 0 1 1 1 2 2 2 3 3 3

4 1 1 2 2 3 3 (10)

See SI for information on how we deduce the αi from the
single-input induction curves. To test the naıv̈e model, we
measured fluorescence at 108 inducer combinations: 6 levels of
arabinose and ribose (0, 0.001, 0.01, 0.1, 1, 10 mM of each),
and 3 levels of trehalose (0, 0.1, 10 mM). The naıv̈e model
(Figure 3b, top) accurately predicts digital (on/off) measured
system response (Figure 3b, bottom; see SI for error
quantification), but quantitative discrepancies exist. In
particular, measured system behaviors at 0.1 mM and 10
mM trehalose essentially match, a prediction that the naıv̈e
model does not completely capture. The naıv̈e model falters
here because the inflection point for the trehalose single-input
induction curve is located at 0.15 mM, while the three-input
system behaved experimentally as if 0.1 mM trehalose already
saturates.
As with the two-input systems, we conjectured that an

informed model would yield superior performance. We
specified such a model by fitting the 11 parameters in eq 10,
using a small subset of the 108 inducer combinations for which
measurements were taken. In particular, we used the 13
inducer triples with at least two inducers at 10 mM and the
triple with all inducers at zero (see Discussion for justification).
The informed model predicts (analog) system response for the
remaining 108 − 14 = 94 inducer combinations with a high
level of accuracy (Figure 3b, middle; see SI for error
quantification).

Noise in Multi-input Promoters. In addition to
predicting mean multi-input system responses, we sought to
understand how noise in multi-input systems depends on the
number of inputs, input types, and promoter architecture. This
is especially vital given that multi-input promoters may be used
as biosensors. Noise in sensor output will propagate forward
through the circuit, potentially affecting downstream circuit
performance.31

For each single-input system and each inducer concen-
tration, we measured the distribution of sfYFP production in
the population and computed the robust coefficient of
variation (RCV) of this distribution. The RCV is obtained
by dividing the interquartile range by the median of the
distribution. We began our analysis by looking for a functional
relationship between the square of RCV and fluorescence, as
previous findings show that the relationship between noise and
overall expression should be linear above a threshold of protein
copy number.32,33 However, our results are inconsistent with
previous findings, as both high- and low-noise regimes
emerged at intermediate expression levels (Figure 4a).
To investigate the reason, we more closely examined

examples of high and low noise for both the PLLacO‑1 and
PLacAra‑1 promoters. In the case of high noise for the PLacAra‑1
promoter, the fluorescence distribution is bimodal (Figure 4b).
Indeed, in all cases where arabinose was an inducing molecule,
intermediate amounts caused bimodality in the population.
The bimodality observed in the arabinose-inducible case is
consistent with previous studies,34 as the ara operon is under
native regulatory control in our system and this configuration
causes an all-or-nothing response in the population at
intermediate amounts of arabinose.35,36 We found that
fluorescence distribution, and therefore RCV behavior,
changed depending on the type of promoter used. For

Figure 3. Predicting the output of a three-input hybrid promoter
system. (a) Circuit diagram. (b) Mean fluorescence for various
inducer combinations. Arabinose and ribose concentrations: 0, 0.001,
0.01, 0.1, 1, 10 mM. Trehalose concentrations: 0, 0.1, 10 mM. Top
row: Naıv̈e hybrid promoter prediction. Middle row: Informed model
prediction. Bottom row: Measured data.
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instance, we found that when high noise occurs with the
PLLacO‑1 promoter, the fluorescence distribution is unimodal
(Figure 4c). We suspect this might have been caused by the
different mechanisms by which each of the small molecule
inducers enter the cell. For instance, in our systems, IPTG
both diffuses and is actively transported,37,38 while arabinose,
ribose, and trehalose are all transported by their respective
transporters. We did not modify the native transporters of
these sugars in our strains.
We also examined how noise magnitude varies as a function

of inducer concentrations. For the single-input systems, noise
magnitude peaked at the inflection points of the induction
curves (Figure 4f−i). This behavior is consistent with the
theory that a noisy input would produce the noisiest output at
the inflection point of the system.39 The spikes in noise level at
the inflection points were substantial for arabinose and IPTG,
but only modest for ribose and trehalose. RCV spikes for the
ribose and trehalose cases may have been only modest because
the transporters of these sugars may have been active at the
tested concentrations.
Extending this thinking to the two-input systems, we

observed that noise magnitude peaked near the isoclines
corresponding to production halfway between minimal and
maximal expression (Figure 4j−o). Further, noise character-
istics depended on which pair of inducers were involved. For
example, systems involving arabinose exhibited noise spikes
along the arabinose axis at intermediate arabinose concen-
trations. When pairing two inducers that individually produced
low noise, the resultant two-input system also produced low

noise (e.g., with ribose and trehalose). Therefore, at least with
the systems we examined, the multi-input promoters inherited
the noise characteristics of their constituent parts.

Discussion. As our ability to design and construct
sophisticated synthetic circuits continues to grow, so too
must our ability to predict the performance of such circuits in
silico.18 Here, we have developed and tested two predictive
methods. The naıv̈e method is philosophically ideal in that our
naıv̈e models accurately predict multi-input system Boolean
responses using only single-input data (and knowledge of
promoter architecture). The informed method provides a high
level of (analog) accuracy, but requires a small amount of
multi-input data.
Importantly, both predictive methods scale to systems with

large numbers of inputs. In particular, the amount of multi-
input data needed to train our informed models scales linearly
with the number of inputs, while the number of inducer
combinations that such models predict scales exponentially:
Suppose we wish to predict a D-input system, where each input
takes V possible values. Our informed method would
accurately predict system response for all VD input
combinations, while requiring only D(V − 1) + 2 values for
model specification.
When using a small amount of multi-input data to train our

informed models, one natural question arises: Why have we
chosen the particular “one-dimensional” subset of the multi-
input data as we have? Would not another subset work just as
well, or perhaps better? Answering the first question, by
selecting the “one-dimensional” subset of multi-input data by

Figure 4. Noise in multi-input systems. (a) Noise (square of RCV) as a function of overall fluorescence. Each point is a flow cytometer
measurement of one induction level for one of the systems mentioned previously. Measurements from PLLacO‑1 are in red and measurements from
PLacAra‑1 are in green. Points with squared RCV value greater than one are darker. There appears to be no overall pattern that relates fluorescence to
noise. (b, c, d, e) Fluorescence distributions associated with points marked by arrows in (a). These smoothed fluorescence distributions represent
cases of high noise in the PLacAra‑1 system, high noise in the PLLacO‑1 system, low noise in the PLLacO‑1 system, and low noise in the PLacAra‑1 system,
respectively. Note that the distribution is bimodal in (b). Dotted line represents median and gray region represents the interquartile range. (f, g, h,
i) Square of RCV as a function of inducer concentration in the single-input cases. Hill functions expressing fluorescence as a function of inducer
concentration are drawn in the background. Noise is generally highest at the inflection point of each induction curve, and is more pronounced in
the AraC and LacI-L systems. (j, k, l, m, n, o) Square of RCV as a function of inducer concentrations for the two-input systems. Isoclines
representing the midpoint between minimal and maximal production are drawn over the heatmaps. Noise is generally largest near the isoclines. The
arabinose-IPTG two-input system is an exception, due to inducer crosstalk.
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varying one inducer at a time while holding the others at full
induction, we probe the full dynamic range of each individual
inducer. To validate our choice, we compared the error
associated with our informed model prediction to the error
produced by using all of the multi-input data to fit the
underlying model. Importantly, these error values essentially
match for all of the systems we tested (see SI). This
observation leaves open the possibility that other training
data sets may work just as well.
We have presented two methods for predicting the output of

multi-input synthetic promoter/transcription factor systems.
Practitioners should consider the following when selecting a
method. The naıv̈e method is ideal when the user has a vast
library of well-characterized single-input devices and wishes to
evaluate the digital (on/off) behavior of potential designs
without having to perform additional lab work. The naıv̈e
method provides predictions that will aid the user in narrowing
down the large design space of potential multi-input
combinations and in selecting candidates to build or analyze
further. The informed method excels when the user has already
constructed a multi-input system and wishes to probe the
entire induction space. By collecting a small set of induction
data, the rest of the induction space can be predicted to a high
degree of accuracy.
Our informed method of prediction captures the analog

nature of the inputs/output signal transduction of multi-input
promoters. Such promoters are often treated as digital devices,
because it can be too resource-intensive to test the entire input
space. Digital inputs/output approximation works in certain
situations. However, when designing microbes for complex
environments such as the gut microbiome or soil, relevant
signals may be in constant flux. An analog predictive approach
is therefore necessary, as it facilitates the design of circuits that
can accommodate a range of signals.40 The analog approach
assists with the parts problem as well: Analog circuits can
require fewer parts than their digital counterparts to compute a
given function.41

The polynomial-Hill modeling framework that we use for
our naıv̈e and informed methods of prediction is descriptive
rather than mechanistic. For those who favor mechanistic
modeling, we have developed and tested a statistical
mechanical model for operator site binding (see SI). This
energy modeling framework describes binding to DNA by
transcription factors and σ-factor using the Boltzmann−Gibbs
distribution.16,25,42 For all of the multi-input systems we built,
the energy model performs essentially as well as the original
informed model, when trained on the same data set (see SI).
Overall, our predictive methodologies facilitate the design of

synthetic microbes that rely on multiple environmental inputs.

■ MATERIALS AND METHODS
Strains and Plasmids. All experiments were performed in

the E. coli strain CY15 (MG1655 ΔlacIΔsdiA::ara-
C::lasR::rhlR). The plasmid pH6 was used as the reporter
plasmid for experiments concerning the PLLacO‑1 promoter. The
PLacAra‑1 sfYFP reporter plasmid pDZ041 was generated by
PCR amplification of the PLacAra‑1 promoter with sfYFP
expression cassette and the backbone of the pH6 reporter
plasmid using primers with BsaI sites on the overhang. The
two fragments were assembled in a Golden Gate reaction.43

Plasmids that express the chimera repressors were previously
described in the methods of Shis et al.18 As a control, an empty
plasmid was generated by PCR amplification of the backbone

of the chimera plasmid with BsaI sites on the overhang. Strains
for characterization were made by cotransformation of a
plasmid containing either a single or a pair of chimeric
repressors or an empty plasmid with a reporter plasmid. A
colony from the transformation was inoculated in LB media
containing ampicillin and kanamycin and grown overnight.
The culture was then used to make a −80 °C stock by mixing
1:1 with 50% (v/v) glycerol.

Growth and Induction Measurements. Frozen stocks of
strains cotransformed with the appropriate plasmid were
streaked onto LB agar plates containing ampicillin and
kanamycin and incubated overnight. A colony from the plate
is inoculated in 3 mL of LB media containing ampicillin and
kanamycin and grown for 14−16 h. The LB culture is diluted
100:1 into M9 media containing 0.4% (v/v) glycerol and 0.2%
(w/v) CAS amino acids with antibiotics in a round-bottom 96
well plate and incubated at 37 C in a microplate shaker at 800
rpm for 2 h. At this time, cultures were induced and diluted by
the addition of and equivalent volume of M9 media containing
2× inducer at a 1:1 ratio. The induced cultures were returned
to the plate shaker and grown for 2 h and then placed on ice.
The final OD600 of these cultures ranged from 0.3 to 0.4 as
measured in a Tecan Infinite M1000.

Flow Cytometry. Flow cytometry was performed using a
Millipore Guava HT Cyte Flow Cytometer with a custom blue
and green laser setup and an auto sampling tray. Before the
start of data collection each day, Spherotech Rainbow
Calibration Particles (8 peaks) (Spherotech, RCP-30−5A,
Lot# AH01) were measured for calibration. Cultures were
diluted 100:1 into phosphate buffered saline (Invitrogen)
containing 34 ug/mL chloramphenicol on ice in a 96 well
plate. The plate was transferred to a 37 C incubator for 1 h to
allow the sfYFP fluorophore to mature. The plate is then
placed on ice for 15 min. The plate is then placed inside the
Guava HT Cyte. The machine gain settings were FSC: 128,
SSC: 64, YEL: 64, with an SSC threshold of 20. All other
settings were set to default. 15 000 events were collected for
each sample. Data files were exported using the Guava InCyte
software to FCS3.0 files. These files were opened using the
FlowCal software package44 with a customized I/O handling
script specific to to InCyte’s FCS3.0 export files. Samples were
first gated by density in forward and side scatter, taking 50%
the densest region in the forward and side scatter plane using
FlowCal’s built in function. The readout of the fluorescence
channel in arbitrary units was normalized to units of molecules
of equivalent R-phycoerythrin (MEPE) using a calibration
curve generated by the beads run on the same experimental
day. The mean and robust coefficient of variance (RCV) were
calculated using FlowCal’s built in functions. RCV is defined as
the interquartile range divided by the median of the
distribution. The RCV was used to reject spurious signals
that would affect the calculation of the variance.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssyn-
bio.8b00165.

Polynomial-Hill modeling framework (modeling and
model fitting for single-input gates, polynomial-Hill
modeling for multi-input systems); Model training using
only single-input induction curves: The naıv̈e approach

ACS Synthetic Biology Letter

DOI: 10.1021/acssynbio.8b00165
ACS Synth. Biol. 2018, 7, 1834−1843

1841

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.8b00165/suppl_file/sb8b00165_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.8b00165/suppl_file/sb8b00165_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.8b00165/suppl_file/sb8b00165_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.8b00165
http://pubs.acs.org/doi/abs/10.1021/acssynbio.8b00165
http://dx.doi.org/10.1021/acssynbio.8b00165


(model derivation, model parameter values, and
quantification of model prediction error for the two-
input chimeric repressor systems and the two- and three-
input hybrid promoter systems); Model training using
multi-input induction data: The informed approach
(model fitting techniques, model parameter values, and
quantification of model prediction error for the multi-
input systems); Boltzmann−Gibbs energy modeling
(model derivation, model fitting, model parameter
values, and quantification of model prediction error for
the multi-input systems); Supporting experimental
methods (flow cytometry, plasmids used) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: ott@math.uh.edu.
*E-mail: matthew.bennett@rice.edu.
ORCID
Matthew R. Bennett: 0000-0002-4975-8854
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Ye Chen for useful discussions related to
this work. This work was supported by the National Institutes
of Health grant R01GM117138 (to M.R.B., K.J., W.O.), the
Robert A. Welch Foundation grant C-1729 (to M.R.B.), the
National Science Foundation grants DMS-1662290 (to
M.R.B., K.J.), and DMS-1413437 (to W.O.), and the National
Science Foundation Graduate Research Fellowship Program
grant 1450681 (to D.M.Z.).

■ REFERENCES
(1) Purnick, P. E., and Weiss, R. (2009) The second wave of
synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol.
10, 410−422.
(2) Bennett, M., and Hasty, J. (2009) Overpowering the component
problem. Nat. Biotechnol. 27, 450−451.
(3) Stanton, B. C., Nielsen, A. A., Tamsir, A., Clancy, K., Peterson,
T., and Voigt, C. A. (2014) Genomic mining of prokaryotic repressors
for orthogonal logic gates. Nat. Chem. Biol. 10, 99−105.
(4) Taylor, N. D., Garruss, A. S., Moretti, R., Chan, S., Arbing, M. A.,
Cascio, D., Rogers, J. K., Isaacs, F. J., Kosuri, S., Baker, D., Fields, S.,
Church, G. M., and Raman, S. (2016) Engineering an allosteric
transcription factor to respond to new ligands. Nat. Methods 13, 177−
183.
(5) Brewster, R., Jones, D., and Phillips, R. (2012) Tuning Promoter
Strength through RNA Polymerase Binding Site Design in Escherichia
coli. PLoS Comput. Biol. 8, e1002811.
(6) Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009) Automated
design of synthetic ribosome binding sites to control protein
expression. Nat. Biotechnol. 27, 946−950.
(7) Chen, Y., Liu, P., Nielsen, A. A., Brophy, J. A., Clancy, K.,
Peterson, T., and Voigt, C. A. (2013) Characterization of 582 natural
and synthetic terminators and quantification of their design
constraints. Nat. Methods 10, 659−664.
(8) Brophy, J. A., and Voigt, C. A. (2014) Principles of genetic
circuit design. Nat. Methods 11, 508−520.
(9) Kim, K. H., and Sauro, H. M. (2010) Fan-out in gene regulatory
networks. J. Biol. Eng. 4, 16.
(10) Del Vecchio, D., Ninfa, A. J., and Sontag, E. D. (2008) Modular
cell biology: retroactivity and insulation. Mol. Syst. Biol. 4, 161.
(11) Nielsen, A., Der, B., Shin, J., Vaidyanathan, P., Paralanov, V.,
Strychalski, E., Ross, D., Densmore, D., and Voigt, C. (2016) Genetic
circuit design automation. Science 352, aac7341.

(12) Yordanov, B., Dalchau, N., Grant, P. K., Pedersen, M., Emmott,
S., Haseloff, J., and Phillips, A. (2014) A computational method for
automated characterization of genetic components. ACS Synth. Biol. 3,
578−588.
(13) Stricker, J., Cookson, S., Bennett, M., and Mather, W. (2008) A
fast, robust and tunable synthetic gene oscillator. Nature 456, 516−
519.
(14) O’Brien, E. L., Van Itallie, E., and Bennett, M. R. (2012)
Modeling synthetic gene oscillators. Math. Biosci. 236, 1−15.
(15) Chen, Y., Kim, J., Hirning, A., Josic,́ K., and Bennett, M. (2015)
Emergent genetic oscillations in a synthetic microbial consortium.
Science 349, 986−989.
(16) Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust
multicellular computing using genetically encoded NOR gates and
chemical ’wires’. Nature 469, 212−215.
(17) Nielsen, A. A., and Voigt, C. A. (2014) Multi-input CRISPR/
Cas genetic circuits that interface host regulatory networks. Mol. Syst.
Biol. 10, 763.
(18) Shis, D., Hussain, F., Meinhardt, S., Liskin, S., and Bennett, M.
(2014) Modular, Multi-Input Transcriptional Logic Gating with
Orthogonal LacI/GalR Family Chimeras. ACS Synth. Biol. 3, 645−
651.
(19) Chan, C. T., Lee, J. W., Cameron, D., Bashor, C. J., and Collins,
J. J. (2016) ’Deadman’ and ’Passcode’ microbial kill switches for
bacterial containment. Nat. Chem. Biol. 12, 82−86.
(20) Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A.,
Levskaya, A., Marcotte, E. M., Voigt, C. A., and Ellington, A. D.
(2009) A synthetic genetic edge detection program. Cell 137, 1272−
1281.
(21) Balagadde,́ F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M.,
Arnold, F. H., Quake, S. R., and You, L. (2008) A synthetic
Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187.
(22) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss,
R. (2005) A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130−1134.
(23) Cox, R., Surette, M., and Elowitz, M. (2007) Programming
gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145.
(24) Lutz, R., and Bujard, H. (1997) Independent and tight
regulation of transcriptional units in Escherichia coli via the LacR/O,
the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res.
25, 1203−1210.
(25) Chen, Y., Ho, J. M. L., Shis, D. L., Gupta, C., Long, J., Wagner,
D. S., Ott, W., Josic,́ K., and Bennett, M. R. (2018) Tuning the
dynamic range of bacterial promoters regulated by ligand-inducible
transcription factors. Nat. Commun. 9, 64.
(26) Wu, F., Zhang, Q., and Wang, X. (2018) Design of Adjacent
Transcriptional Regions to Tune Gene Expression and Facilitate
Circuit Construction. Cell Syst. 6, 206−215.e6.
(27) Wu, F., Su, R., Lai, Y., and Wang, X. (2017) Engineering of a
synthetic quadrastable gene network to approach Waddington
landscape and cell fate determination. eLife 6, e23702.
(28) Meinhardt, S., Manley, M. W., Jr., Becker, N. A., Hessman, J. A.,
Maher, L. J., III, and Swint-Kruse, L. (2012) Novel insights from
hybrid LacI/GalR proteins: family-wide functional attributes and
biologically significant variation in transcription repression. Nucleic
Acids Res. 40, 11139−11154.
(29) Kaplan, S., Bren, A., Zaslaver, A., Dekel, E., and Alon, U. (2008)
Diverse Two-Dimensional Input Functions Control Bacterial Sugar
Genes. Mol. Cell 29, 786−792.
(30) Lee, S. K., Chou, H. H., Pfleger, B. F., Newman, J. D.,
Yoshikuni, Y., and Keasling, J. D. (2007) Directed evolution of AraC
for improved compatibility of arabinose- and lactose-inducible
promoters. Appl. Environ. Microbiol. 73, 5711−5715.
(31) Hooshangi, S., Thiberge, S., and Weiss, R. (2005) Ultra-
sensitivity and noise propogation in a synthetic transcriptional
cascade. Proc. Natl. Acad. Sci. U. S. A. 102, 3581−3586.
(32) Arren, B., Paulsson, J., Maheshri, N., Carmi, M., Erin, O., Pilpel,
Y., and Barkai, N. (2006) Noise in protein expression scales with
natural protein abundance. Nat. Genet. 38, 636−643.

ACS Synthetic Biology Letter

DOI: 10.1021/acssynbio.8b00165
ACS Synth. Biol. 2018, 7, 1834−1843

1842

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.8b00165/suppl_file/sb8b00165_si_001.pdf
mailto:ott@math.uh.edu
mailto:matthew.bennett@rice.edu
http://orcid.org/0000-0002-4975-8854
http://dx.doi.org/10.1021/acssynbio.8b00165


(33) Taniguchi, Y., Choi, P. J., Li, G., Chen, H., Babu, M., Hearn, J.,
Emili, A., and Xie, S. X. (2010) Quantifying E. coli Proteome and
Transcriptome with Single-Molecule Sensitivity in Single Cells. Science
329, 533−538.
(34) Siegele, D., and Hu, J. (1997) Gene expression from plasmids
containing the araBAD promoter at subsaturating inducer concen-
trations represents mixed populations. Proc. Natl. Acad. Sci. U. S. A.
94, 8168−8172.
(35) Afroz, T., Biliouris, K., Kaznessis, Y., and Beisel, C. L. (2014)
Bacterial sugar utilization gives rise to distinct singlecell behaviours.
Mol. Microbiol. 93, 1093−1103.
(36) Afroz, T., Biliouris, K., Boykin, K. E., Kaznessis, Y., and Beisel,
C. L. (2015) Trade-offs in Engineering Sugar Utilization Pathways for
Titratable Control. ACS Synth. Biol. 4, 141−149.
(37) Alfred, F., Vine, C. E., Caminal, G., and Josep, L. (2012)
Evidencing the role of lactose permease in IPTG uptake by
Escherichia coli in fed-batch high cell density cultures. J. Biotechnol.
157, 391−398.
(38) Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., and
Oudenaarden, A. v. (2004) Multistability in the lactose utilization
network of Escherichia coli. Nature 427, 737−740.
(39) Elowitz, M., Levine, A., Siggia, E., and Swain, P. (2002)
Stochastic Gene Expression in a Single Cell. Science 297, 1183−1186.
(40) Venturelli, O. S., Egbert, R. G., and Arkin, A. P. (2016)
Towards Engineering Biological Systems in a Broader Context. J. Mol.
Biol. 428, 928−944.
(41) Daniel, R., Rubens, J. R., Sarpeshkar, R., and Lu, T. K. (2013)
Synthetic analog computation in living cells. Nature 497, 619−623.
(42) Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T.,
Kondev, J., and Phillips, R. (2005) Transcriptional regulation by the
numbers: models. Curr. Opin. Genet. Dev. 15, 116−124.
(43) Engler, C., Kandzia, R., and Marillonnet, S. (2008) A One Pot,
One Step, Precision Cloning Method with High Throughput
Capability. PLoS One 3, e3647.
(44) Castillo-Hair, Sebastian, M., Sexton, J. T., Landry, B. P., Olson,
E. J., Igoshin, O. A., and Tabor, J. J. (2016) FlowCal: A User-Friendly,
Open Source Software Tool for Automatically Converting Flow
Cytometry Data from Arbitrary to Calibrated Units. ACS Synth. Biol.
5, 774−780.

ACS Synthetic Biology Letter

DOI: 10.1021/acssynbio.8b00165
ACS Synth. Biol. 2018, 7, 1834−1843

1843

http://dx.doi.org/10.1021/acssynbio.8b00165

