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Abstract: In this study, we develop a new semiparametric approach to model geo-
statistical data measured repeatedly over time. In addition, we draw inferences
about the parameters and components of the underlying spatio-temporal process.
Dependence in time and across space is modeled semiparametrically, giving rise to
a class of nonseparable and nonstationary spatio-temporal covariance functions. A
two-step procedure is devised to estimate the model parameters based on the like-
lihood of detrended data, and the computational algorithm is efficient owing to the
dimension reduction. Extensions to spatio-temporal processes with general mean
trends are also considered. Furthermore, the asymptotic properties of our proposed
method are established, including consistency and asymptotic normality. A simu-
lation study shows the sound finite-sample properties of the proposed method, and
a real-data example is used to compare our method with alternative approaches.
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1. Introduction

As real-time monitoring technologies continue to advance, data over space
and time are becoming more abundant. Collectively known as spatio-temporal
data, these data arise in many scientific fields, with different data formats and
goals. To analyze the various types of spatio-temporal data, several statistical
models and methods have been developed, including varying coefficients models
(Lu et al. (2009)), hierarchical dynamic spatial models (Zhang, Yao and Tong
(2003); Johannesson, Cressie and Huang (2007); Ghosh et al. (2010)), and fil-
tering and dimensional reduction (Huang and Cressie (1996); Cressie, Shi and
Kang (2010); Brynjarsdottir and Berliner (2014)). For a further discussion on
spatio-temporal statistics, see Cressie and Wikle (2011). In this study, we fo-
cus on spatio-temporal data in which the individual units are spatial sampling
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locations, and at a given sampling location, measures are repeated over time.
We propose a class of semiparametric models with nonseparable and nonstation-
ary spatio-temporal covariance functions. We develop a new methodology for
inferences that balance model flexibility and computational feasibility. We also
establish the corresponding asymptotic properties.

When modeling spatio-temporal data, it is generally important to incorpo-
rate the spatio-temporal covariance. Separablility, such that the spatio-temporal
covariance function is assumed to be a product of the spatial covariance and
the temporal covariance, is a convenient assumption, but can be overly restric-
tive in many applications. Thus, various nonseparable spatio-temporal covari-
ance functions have been proposed. For example, Cressie and Huang (1999)
and Gneiting (2002) constructed nonseparable spatio-temporal covariance func-
tions using a Fourier inversion and completely monotone functions, respectively.
Although the above approaches allow for spatio-temporal nonseparability, the
spatio-temporal processes are assumed to be stationary. To relax the stationar-
ity assumption, Stein (2005) considered asymmetric models, that is, where the
covariance function is spatially isotropic, but not symmetric spatio-temporally.
Fuentes, Chen and Davis (2008) and Rodrigues and Diggle (2010) developed
nonstationary and nonseparable models using a spectral representation and con-
volution, respectively. Although the above methods focus on building covariance
models for spatio-temporal data, it is not always clear how model estimations
and statistical inferences are to be carried out. There is a clear need for an ad-
ditional statistical methodology for the analyzing of spatio-temporal data taken
at regular or irregular sampling locations.

Nonparametric approaches are increasingly used for spatio-temporal mod-
eling, and tend to be robust against covariance function misspecification. For
example, extending the work of Gneiting (2002), Choi, Li and Wang (2013) pro-
posed a nonparametric approximation of completely monotone functions in the
construction of spatial and spatio-temporal covariance structures. Nonparamet-
ric methods may also alleviate the computational burden of estimating spatio-
temporal covariance functions. Based on an originally parametric covariance
function, Zhang, Sang and Huang (2015) proposed a nonparametric full-scale ap-
proximation, that applies reduced-rank techniques and sparse matrix algorithms
to enhance computational efficiency, although theoretical backing is not given.
We believe that there is considerable value to further develop nonparametric
or semiparametric methods and exploring their theoretical properties in spatio-
temporal statistics. Here, we adopt a semiparametric approach to modeling and
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drawing inferences about the spatio-temporal mean function and covariance func-
tion. Moreover, the theoretical properties of our new methods are established,
which seem to be rare in semiparametric spatio-temporal statistics.

In particular, we model dependence over space and time using a Karhunen—
Loeve-type expansion that results in nonseparable and nonstationary spatio-
temporal covariance functions. The model parameters are estimated using a
two-step procedure based on likelihood, and the computational feasibility is en-
hanced further using dimension reduction. Extensions to spatio-temporal models
with a general mean function (or trend) are also considered. Furthermore, the
asymptotic properties of our proposed method, such as consistency and asymp-
totic normality, are investigated and established. These theoretical results are, to
the best of our knowledge, the first of their kind for semiparametric methods for
inferences about spatio-temporal models with nonseparable and nonstationary
covariance functions. A simulation study shows the sound finite-sample proper-
ties of the estimates, and a real-data example compares our method with several
the existing approaches. Our model may also be applied to spatially correlated
functional data, although without replicates at each sampling location (Paul and
Peng (2011); Gromenko et al. (2012); Héormann and Kokoszka (2013)). How-
ever, Gromenko et al. (2012) did not establish the theoretical properties of their
method, whereas Paul and Peng (2011) and Hérmann and Kokoszka (2013) re-
stricted their attention to separable models and the consistency of the sample
means and empirical covariance operators, respectively (see also Horvath and
Kokoszka (2012)).

The remainder of the paper is organized as follows. We propose a nonsepara-
ble and nonstationary spatio-temporal covariance model in Section 2. We develop
an estimation procedure for the detrended spatio-temporal data in Section 3.1,
and in Section 4.1, we extend the results to spatio-temporal data with a general
mean trend. The theoretical properties of our methodology are established as
theorems in Sections 3.2 and 4.2. Numerical examples using simulated and real
data are given in Section 5. The technical details, including theorem proofs, are
provided in the Supplementary Material.

2. Semiparametric Spatio-Temporal Model Formulation

Let R denote a spatial domain of interest in R, with d > 1, and let [0, T
denote the time interval of interest, with 0 < T' < oco. Taking into account pos-
sible spatio-temporal correlation and measurement errors, we model the spatio-
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temporal response variable y(s,t) by
y(s,t) = p(s,t) + (s, 1) + v(s, b), (2.1)

where p(s,t) = E{y(s,t)} is a fixed spatio-temporal mean function, £(s,t) is a
zero-mean spatio-temporal random process, and v(s,t) is a zero-mean measure-
ment error, where s € R and ¢ € [0,T]. For the spatial domain of interest R, our
method allows some irregularity, such as nonconvexity, but the domain needs to
be continuous. In this and the following sections, we assume a zero-mean function
w(s,t) = 0. We consider more general mean functions in Section 4. We further
assume that the measurement error v(s, t) follows an independent and identically
distributed Gaussian distribution with mean zero and variance ¢, independent
of e(s,t).

To model the spatio-temporal random process e(s,t), we assume that it
is a zero-mean Gaussian process with a Karhunen-Loeve (KL)-type expansion
(Ghanem and Spanos (1991)). That is, e(s, ) = 372, &;(s)g;(t), where {£;(s) :
s € R};";l is assumed to be a sequence of independent Gaussian processes, and
{®j(t)}32, is a sequence of eigenfunctions. Thus, (2.1) can be rewritten as

y(s, (s,1) +Z§j t) +v(s,t). (2.2)

In general, we may assume that, for a given s € R, (s, t) € L?[0,T] is a
square integrable random function and is modeled by a stochastic (not necessarily
Gaussian) process with mean zero and a spatio-temporal covariance function
denoted as

y(t,s;t',8') = cov{e(s, t),e(s,t)}, s, 8 €R, t,t' €[0,T].

We further assume that, for two locations s # §', the curves &(s,t) and (s, t’)
have the same (possibly nonstationary) temporal covariance function ~y(¢,t')
(see, e.g., Gromenko et al. (2012); Hérmann and Kokoszka (2013)). Sufficient
conditions to establish (2.2) are given in Appendix A of the Supplementary Ma-
terial. Let \; = var{{;(s)} denote the jth eigenvalue of the covariance function
Yo(t,t"). We further assume cov{¢;(s),&;(s')} =0, for j # j', which ensures the
positive definiteness of the covariance function (¢, s; ', s’) and enhances the com-
putational feasibility (Gromenko and Kokoszka (2013)). From the KL expansion,
we can write the spatio—temporal covariance function as

At 51, o) Zcov{@ ()i ()5 (t). (2.3)
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In spatio-temporal statistics, it is common practice to assume that the spatio-
temporal process £(s,t) in model (2.1) is stationary over space and time. In
contrast, the e(s, t) formulated here using the KL expansion encompasses spatio-
temporal covariance functions that are nonstationary. Specifically, from (2.3),
it is clear that £(s,t) does not need to be stationary in space or time, but can
be stationary in space if £;(s) is a stationary spatial process for all j (Cressie
(1993)). In addition, the spatio-temporal covariance function in (2.3) does not
need to be separable in space and time (Cressie and Huang (1999); Fuentes, Chen
and Davis (2008)), but is separable if A; = 0 for j > 2. Moreover, if any &;(s) is
a nonstationary spatial process, (s, t) is nonstationary in both space and time.

Next, we approximate (2.2) by the first J components; that is, we assume

y(57 t) = :u(sv t) + f(S)TSO(t) + U(S’ t)’ (2'4)

where £(s) = (£1(5),...,&7(s)T and ¢(t) = (¢1(t),...,0s(t)T, for s € R and
t € [0,7]. We further assume that the spatial covariance function of ;(s) is
Xipi(|ls — §'||;0;), where p;(-;6;) is a spatial correlation function in the Matérn
family, with a g¢;-dimensional vector of correlation parameters 6; (Cressie (1993)).
Although there are multiple ways to model a spatial process, we have chosen
the Matérn family because it is theoretically sound and is a popular choice in
practice. That is, the spatio-temporal covariance structure specified in (2.4) is

semiparametric.

3. Covariance Estimation and Theoretical Properties
3.1. A two-step estimation procedure

We now turn to the estimation of the covariance function in (2.4), assuming
that p(s,t) is known. We relax this assumption and consider a general mean
trend in Section 4.

Suppose data are observed at n sampling locations sy, ..., s,, and at sam-
pling location s;, y(s;,t) is observed at m; time points t;1,...,tim,,. Let ys, =
(y(sisti1), -+, y(sistim,))T denote the observed data at sampling location s;,
y = (ySTl,...,ySTn)T denote the observed data at all the sampling locations,
Us, = (y(si,tin) — p(sistin)s -, y(Sis tim,) — 11(si, tim,))* denote the detrended
data at sampling location s;, ¥ = (gjé,Tl,...,gjg;)T denote the detrended data
at all the sampling locations, and N = ", m; denote the total number of
observations. Furthermore, let ®; = (¢(ti1),. .., @(tim,)) denote a J x m; ma-
trix of eigenfunctions at sampling location s;, ® = diag{®y,...,®,} denote a
block diagonal matrix of eigenfunctions at all the sampling locations, A;; =
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(cov{&;(si), & (si)}) =y = diag{ipi(llsi — sirll;01),- .-, Aspa(llsi — sull; 65)}
denote a J x J diagonal matrix for the covariance between sampling locations
si and sy, and A = [A; |7

»._, denote an n x n block matrix for the covariances

between all pairs of sampling locations. It follows that the variance-covariance
matrix of y is
cov(y) = X = oTAd 4 o2 1y,

where, from (2.1), o2 is the measurement error variance, and Iy is the identity
matrix with rank N.
Thus, the negative log-likelihood function of the parameters in (2.4) is

1 1 N
(N o(t),0;,0%) = §gTzflgj + 5 log{det(3)} + - log(2m), (3.1)
where A = (A1,..., A7 and o(t) = (p1(t),...,0s(t)T. Maximizing (3.1)

yields the maximum likelihood estimates of the eigenvalues A, eigenfunctions
©(t), gi-dimensional correlation parameters 6;, and measurement error variance
o2. However, such a computation is intensive, if not infeasible, because there are
J —1—23-]:1 ¢j+1 unknown parameters and J unknown functions involved. To over-
come this challenge, we develop a two-step procedure that is likelihood-based,
but computationally more feasible than the maximum likelihood estimation. The
theoretical properties of the resulting estimates are established in Section 3.2.
In Step I of the estimation procedure with

A / -1
E y52> 517 )7

where §(si,t) = y(s;,t) — p(s;,t), we estimate A and ¢(t) as follows. First, let
©1(t) be the maximizer of

T T
i / / S0t 1) F(¢))dedt’ (3.2)

where ||flla = (£, )&, (f,9)a = i f(E)g(t)dt + o [; f"(t)g"(t)dt is an inner
product, and a > 0 controls the smoothness of the resultlng maximizer When
a = 0, we denote || f|| = (f, £)*/? and (f,g) fo t)dt. Consequently, the

standardized ©1(t), defined as p1(t) = p1(t)/||p1(t )||, prov1des an estimate of
@1(t). For j > 2, let ¢;(t) be the maximizer of (3.2), subject to the constraints
(f,¢r)a =0, for k < j. Similarly, define @;(t) = ¢;(t)/||@;(t)| as the estimate
of p;(t). Next, given ¢;(t), the estimate of \; is

/\—//w Polt,t)@;(t)dtdt’, j=1,...,J.
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The computation in Step I can be carried out by an algorithm for smoothed
functional principal component analyses, using a basis expansion (Silverman
(1996)). Although this algorithm is fast to compute and the consistency of
the resulting estimates is well established when the data are drawn indepen-
dently from a stochastic process, its applicability and the estimation properties
for spatio-temporal data have not been adequately studied. We pursue this in
Section 3.2.

In Step II of the estimation procedure, we estimate 6; and o2 by minimizing
the negative log-likelihood function (3.1), given ¢(t) = @(t) and A = X, as follows:

~ 1 4. 1 N
065, 0%%, B(0)) = S35 + 3 log{det(8)} + 5 log(2m).

The resulting estimates are denoted as §j and 2. The computational complexity
is of order O(N?), where N is the total number of observations, owing to the
inversion and the determinant calculation of an N x N matrix X, which is still in-
tensive for large V. Thus, we further improve the computational efficiency using

the Sherman—Morrison—Woodbury formula and Sylvester’s determinant theorem
(Harville (2008)),

Y= (TAD + 0% Iy) " = 072y — o 20T {0dT 4+ 2N o,

IOkl
det(2) = det(TAD + 6%Ix) = o2 det(A) det( —+ /\—1),
g

which reduce the computational complexity to a smaller order of O(.J3n?), where
n is the number of sampling locations. A similar approach is adopted by Ny-
chka et al. (2015), although our method is semiparametric for spatio-temporal
processes and theirs is nonparametric for spatial-only processes.

3.2. Theoretical properties

We now investigate the asymptotic properties of the estimates obtained from
the proposed two-step procedure in Section 3.1. Let P, denote convergence in
probability and L, denote convergence in distribution. We consider the in-
creasing domain asymptotics, such that the distance between any two sampling
sites is greater than a constant. We assume the following regularity conditions
for Theorem 1. Let R, denote the spatial domain R at the n*th stage of the
asymptotics.

(A.1) The eigenvalues of vo(t,t') satisfy Ay > Ag > --- > 0.

(A.2) The smoothness parameter satisfies « — 0 as n — 0.
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(A3) Doy iy 252 2oy EHE (s0)€5 (s ) YE{E ()€ (si1)} = o(n?) as n —

(.¢]

(A4) S0 S0y Y52 E{E(50)€ (si) })? = o(n?) as n — oo.

Conditions (A.1) and (A.2) establish the consistency of 5\j and ¢;(t) for the
functional data analysis (Silverman (1996)), and are assumed here for spatio-
temporal data. For a spatio-temporal separable covariance function with J =1,
Condition (A.1) can be relaxed to Ay > Ay > <Ay > 0, Ap41 = -+ = 0, for
some M > 0. Conditions (A.3) and (A.4) refer to the covariance function of
the spatial random process £;(s) and hold for commonly used spatial covariance
functions, some of which are shown in the Supplementary Material.

In Theorem 1, we establish the consistency of the estimated eigenvalues
Xj and the estimated eigenfunctions @; obtained from Step I of the two-step
procedure given in Section 3.1.

Theorem 1. Under (2.2) and (A.1)-(A.4), for each j, we have
~ P ~ P
A= g, () — 1,
~ T ~
as n — 00, where (@j,¢;) = fo ;(t)p;(t)dt.

Theorem 1 assumes that the mean function is known, which we relax in
Theorem 3.

Next, we establish the asymptotic properties for the estimates of the spatial
parameters 6; from Step II, given A, ;(t), and 0. For an n x n matrix A, let
pi(A) denote the ith largest eigenvalue of A, and let ||All2 = max;—1 ___,{pi(AT
A)}/2 denote the spectral norm of A. Define

Aj = [eov{&(s:), & (s} oy = apilllsi = sill; 07)]7 s
whose (7,7")th component is the ((i—1)m+j, (i’ —1)m+j)th component of A. With
qg= ijl qj, let 9 = (6T, ... ,6§)T denote a g-dimensional vector and define 9y =
(HlTO, ey 0§O)T, where 0o denotes the true value of the correlation parameter in
pj(-;6;). Moreover, define DyA; = OANj/00;, DpwA; = 82Aj/89j,k80j7k/, and
Wy kk' = tr{(A]’ + O'QIn)_l(DkAj)(Aj + O'QIn)_l(Dk/Aj)}, for k, K = 1,.. Nl
and j = 1,...,J. Finally, with ¥; denoting the Ith component of ¢, define
DlE = 62/819[, D”/E = 822/819[8191/, Dl/\ = (3/\/619[, Dll’/\ = 82/\/819[8191/, and
th, = tr{S N (DX)S YDy D)}, for LI =1,...,4q.
The regularity conditions for Theorem 2 are as follows.

(A.5) The correlation function p;(-,-;6;) is twice differentiable with respect to
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6;, with continuous second-order derivatives for 0; € Q;, where (2; is an
open set.

(AG) Asn — oo, ||A]H2 B 0(1), HDkA]HQ = 0(1), and HDkk’A]HQ = 0(1), for
kk'=1,...,¢jand j =1,...,J.

(A.7) For some § > 0, there exist positive constants C}, such that ||DkAj||;2 <
Cpn~ Y%7 for k = L,...,qjand j=1,...,J.

(AS) For any ]{?, kK = ]., sy 4y, Q5 kK = limn%oo{wmkk/ (wj7kkwj’k/k/)_l/2} exists
and Aj = [a; kr]{ —q is nonsingular, for j =1,...,J.

(A.9) There exists a positive constant cg, such that HA;IHQ < ¢ < o0, for
j=1,...,J.

(A.10) As n — oo, m; = O(1) and <I>;TFCI>,; =m;l,,

P

Conditions (A.5)—(A.9) are standard assumptions made about Gaussian ran-
dom fields in spatial linear models to ensure the smoothness, growth, and con-
vergence of the information matrix (Mardia and Marshall (1984)). For spatio-
temporal data, we assume (A.5)-(A.9) for &;(s), a spatial Gaussian process, in
the Karhunen—Loeve-type expansion. Condition (A.10) is based on the orthonor-
mality of the eigenfunctions ¢;(t); that is, fOT i(t)py(t)dt =1if j = j', and 0
otherwise. Together with (A.5)-(A.9), (A.10) ensures the smoothness, growth,
and convergence of the information matrix for spatio-temporal data (Sweeting
(1980)).

Let ¢"(9,9) = (9%0(\, ¢(t),0;,02))/(09 99T) be the second-order deriva-
tives of £(\, p(t),0;, o%) with respect to . Under (A.5)—(A.10), the asymptotic
normality of §] is established in the following theorem.

Theorem 2. Under (2.4) and (A.5)—(A.10), we have
H(00)*(0 = 99) = N(0,1,),
as n — oo, where ¢ = ijl 4, 9 = (79?, . ,@)T, and H (o) = E{—0"(¥9,0)}

is the information matriz for ¥.

Although Theorems 1 and 2 give the consistency and asymptotic normality
of the parameter estimates, they are established for detrended spatio-temporal
data. We relax this assumption in Section 4.
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4. Extensions to Spatio-Temporal Data with Trend
4.1. A modified two-step estimation procedure

In geostatistics, the mean function tends to vary over space and, thus,
wu(s,t) = E{y(s,t)} depends on location s. In addition, u(s,t) is usually un-
known and needs to be estimated. There are various methods to estimate
wu(s,t), such as kernel smoothing, which often yields consistent estimates (Alt-
man (1990)). Here, we let fi(s,t) denote an estimated mean trend and g4(t) =
y(s,t) — (s, t) denote the detrended process. Furthermore, let g5, = (y(s;, ti1) —
f(sistin), - y(Sistim,) — [i(Si, tim,))T denote the detrended data, and §j = (7,

.. ,gjz;/)T denote the detrended data at all the sampling locations. The two-step
estimation procedure developed in Section 3.1 for detrended data can be applied
here by replacing (s, t), ¥s,, and ¢ with g(s,t), gs,, and g, respectively.

Specifically, in Step I of the modified two-step procedure, let o(t,t') =

n=tS L y(si,t)y(siyt'). For j =1, let $1(t) be the maximizer of

”fmax_l/ / o (t, ') f(t)dtdt' . (4.1)

For j > 2, let ¢;(t) be the maximizer of (4.1), subJect to the constraints (f, ox)a =
0 for k < j. After standardization, cpj( ) = ©;(t)/]|¢;(t)|| becomes the estimate
of p;(t). The estimate of \; is

T T
A= / / Qi )p;()dtdt', j=1,...,J.
0o Jo
In Step II of the modified two-step procedure, the negative log-likelihood
function (3.1), after substituting in the estimated mean function, takes the form
1 1 N
0N, o(t),0;,0%) = §gTE—137 + 3 log{det(X)} + 510g(27r),
and is minimized with ¢(t) = @(t) and A = A held fixed. The resulting estimates
are denoted as 6; and 7°.

Next, we consider a linear regression for the mean function, u(s,t) = x(s, )’ 3,
where z(s,t) = (21(s,1),...,7,(s,t))T denotes p covariate functions at location
s and time ¢, and 8 = (B4, ... ,Bp)T denotes a p-dimensional vector of regression
coefficients. The model (2.4) becomes

y(s,t) = x(s, )" 5 + Zﬁg s)p;(t) +v(s, 1). (4.2)
7=1
Let X(s;) = (z(si,ti1), - .-, 2(8i,tim,))T denote an m; x p design matrix at

sampling location s; and X = (X(s1)7,...,X(s,)")T denote an N x p design
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matrix. Thus, the negative log-likelihood function of the parameters in model
(2.4) is

€00, 5,01,0%) = (y - Xy 51 L= XD

X0 <;> log{det(3)} + (g)log(%r).
(4.3)

A practical choice of fi(s,t) is fi(s,t) = 2(s,t)T Bols, Where Bgs = (XTX) !
XTy is the least squares estimate of 3. Then, Step I of the modified two-step

estimation procedure can be carried out as before. In Step II, however, we
minimize the negative log-likelihood function (4.3) with respect to 3, 6;, and o2,
with ¢(t) = @(t) and A = X held fixed. The resulting estimates are denoted as
B , é\j, and 2.

4.2. Theoretical properties

Now, we consider the asymptotic properties of the parameter estimates ob-
tained from the modified two-step procedure above under additional regularity
conditions. First, we assume the following about the fourth moment of the esti-
mated mean function.

(A.11) As n — oo, there exists a sequence ¢, — 0, such that E{f(s,t) —
u(s, 1)} < cp, for t € [0, T], where ¢, does not depend on s.

For the kernel-smoothing estimate fi(s,t), (A.11) can be verified to hold under
certain conditions (El Machkouri (2007)).

Theorem 3 establishes the consistency of the parameter estimates in Step I
of the modified estimation procedure for an unknown mean function su(s,t).

Theorem 3. Under the assumptions of Theorem 1 and (A.11), we have
~ p A P
A A (@)

as n — oo.

For model (4.2), we establish the asymptotic properties of B and é\] from
Step 11, given A, ¢;(t), and 0. An additional regularity condition is assumed
about the design matrix, which is standard for spatial linear models (Mardia and
Marshall (1984)).

(A.12) The design matrix X has full rank p and is uniformly bounded in the
max norm, with lim,, (X7 X)™! =0.

Let £7(8,8) = (0%(\, ¢(t), B,04,0%))/ (98 9BT) be the second-order deriva-
tive of £(\, p(t), B, 0, 0%) with respect to 3. The asymptotic normality of 3 and
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QA]- are established in Theorem 4.

Theorem 4. Under the assumptions of Theorem 2 and (A.12), we have

H(Bo)'/? Opxq B Bo D
( Ogxp H(ﬁ0)1/2> {(5) B <§0)} — N(0, Ip1q),

as n — oo, where H(By) = E{—¢"(Bo, Bo)} is the information matriz for 8 and
Opxq denotes a p X q zero matriz.

The proof of the proposition and theorems above are provided in the Sup-
plementary Material. The Gaussian assumption can be readily relaxed in Theo-
rems 1 and 3, but not for Theorems 2 and 4.

5. Numerical Examples
5.1. Simulation study

A simulation study is conducted to investigate the finite-sample properties of
our spatio-temporal semiparametric covariance (SemiCov) method developed in
Sections 2—4. First, the covariates x(s, t) are generated from standard normal dis-
tributions with a cross-covariate correlation of 0.5, and the regression coefficients
are set to 8 = (4,3,2,1,0,0, O)T. Each covariate is standardized to have sample
mean zero and sample variance one and the response has a sample mean zero.
Thus, there is no intercept in this model. The spatio-temporal process is defined
as £1(s,t) = &1(s)p1(t) + &2(s)p2(t), where & (s) and & (s) are independent zero-
mean stationary and isotropic Gaussian processes, with exponential covariance
functions Aj exp(—d/r1) and A9 exp(—d/rz), respectively, for the spatial distance
d, with \y = 2.5, 71 = 0.5, A2 = 0.5, and ro = 0.3. Moreover, ¢1(t) = ¢ cos(nt)
and @o(t) = cosin(nt) are orthonormal functions on [0,1], with normalization
constants c¢; and cg, respectively. The number of sampling locations is set to
n = 50, 100, and 150, and the locations are randomly distributed within the
spatial domain R = [0,1] x [0,1], where [ = 2~ ™n!/2. At each sampling location,
20 time points are set at t; = (20 —1)/(2m), for i = 1,...,m and m = 20. For
each sample size n, 100 data sets are simulated.

For each simulated data set, we apply our method to estimate the regres-
sion coefficients 3, spatial parameters (r1,72), eigenvalues (A1, A2), eigenfunctions
(1(t), p2(t)), and measurement error variance o2. We compare our method with
two alternative methods, namely, the ordinary least squares, which ignores both
spatial and temporal dependence (denoted as ALT;), and the functional data
analysis, which accounts for temporal, but not spatial dependence (denoted as
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Figure 1. The 95% pointwise simulation intervals for o1 (¢) (left) and ¢o(t) (right) using
our method. The true o1 (t) and ps(t) are indicated as a gray solid line. The pointwise
simulation intervals for n = 50, 100, and 150 are indicated as black dotted, dashed, and
solid lines, respectively.

ALT3). Moreover, the prediction in space and time is performed using all three
approaches.

Figure 1 gives the 95% pointwise simulation intervals for the eigenfunctions
©;(t), defined as

{00} {eP0 a0}

where (ﬁy) (t) is the ith largest value of {(ﬁ;(t) :1=1,...,100}, and @;(t) is the
estimate of ¢;(t) from the ith simulated data set. The results show that the true
eigenfunctions are captured by the 95% pointwise simulation intervals. Moreover,
the intervals become narrower as the number of sampling locations n increases,
supporting the theory that the estimates of ;(t) and ¢o(t) are consistent.
Table 1 reports the mean and the standard deviation of the regression coef-
ficient estimates from 100 simulated data sets using the three approaches. The
regression coeflicient estimates have a lower bias, and the standard deviations
become smaller as the number of sampling locations n increases. Moreover, both

our SemiCov method and the functional data analysis outperform the ordinary
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Table 1. The mean, and standard deviation (SD) of the regression coefficient estimates,
and the mean square prediction errors under the proposed SemiCov method, ALT;, and
ALT,, as well as the mean estimated standard deviation (SDm) under the SemiCov

method for sample sizes n = 50, 100, and 150.

Method 81 B2 B3 f4 Bs Be Bz  MSPE; MSPE,

True Values 4.000 3.000 2.000 1.000 0.000 0.000 0.000 — —
SemiCov 4.001 3.000 1.997 0.996 0.006 —0.006 0.009 2.667 1.112
SD 0.043 0.044 0.045 0.048 0.042 0.043 0.041 1.006 0.177

SDm 0.045 0.045 0.045 0.045 0.045 0.045 0.045 — -
50 ALT, 4.005 3.005 1.996 0.992 0.006 —0.005 0.009 3.927 3.768
SD 0.086 0.077 0.087 0.076 0.081 0.082 0.076 1.703 0.744
ALT, 4.001 3.000 1.997 0.996 0.006 —0.007 0.009 3917 1.114
SD 0.043 0.044 0.045 0.049 0.043 0.043 0.041 1.704 0.177
SemiCov 4.001 2.992 1.998 1.007 0.002 0.000 —0.001 2.610 1.106
SD 0.031 0.030 0.029 0.031 0.033 0.027 0.030 0.715  0.108

SDm 0.031 0.031 0.031 0.031 0.031 0.031 0.031 — —
100 ALT, 3.996 2.991 2.001 1.011 0.005 —0.005 0.004 3.720 3.775
SD 0.053 0.055 0.054 0.058 0.056 0.053 0.057 1.130 0.453
ALT, 4.001 2.992 1.998 1.007 0.002 0.000 —0.001 3.715  1.109
SD 0.031 0.030 0.029 0.032 0.033 0.027 0.030 1.133  0.108
SemiCov 4.001 3.004 1.997 0.997 —0.001 0.000 0.002 2.616 1.093
SD 0.027 0.026 0.025 0.027 0.032 0.024 0.027 0.600 0.105

SDm 0.025 0.025 0.025 0.025 0.025 0.025 0.026 — —
150 ALT, 4.005 3.007 1.991 1.001 —0.001 —0.007 0.005 3.836  3.847
SD 0.043 0.054 0.051 0.048 0.049 0.045 0.045 0.914 0414
ALT, 4.001 3.004 1.997 0.997 0.000 0.000 0.002 3.830 1.095
SD 0.027 0.026 0.025 0.027 0.032 0.023 0.027 0.912 0.105

least squares in terms of yielding smaller standard deviations. This suggests that
incorporating spatio-temporal structures can greatly improve the estimation of
regression coeflicients.

The standard errors of the regression coefficients, eigenvalues, and spatial
parameter estimates can be obtained using the information matrix in Theorem 4.
That is, for each simulated data set, define Sd{g} = diag{H(B\)_l}l/z, sd{X} =
diag{H(X)_l}l/Q, and sd{@} = diag{H(@)_l}lm, where 3, A, and U are the
estimates from the simulated data set, and H(B3), H(\) = E{—¢"(\,\)}, and
H(?¥) are the information matrices for 8, A, and ¢, respectively. From the 100
simulated data sets, the mean of the standard errors (SDm) is computed for our
SemiCov method and presented in Table 1. The results show that these means
are close to the nominal true standard deviations of the regression coefficient

estimates.
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Table 2. The mean and standard deviation (SD) of spatial-temporal coefficient estimates
under our method (SemiCov) for sample size n = 50, 100, and 150.

n Method )\1 T1 )\2 T2 0'2
True Values 2.50 0.50 0.50 0.30 1.00
SemiCov 2.32 0.46 0.48 0.29 1.03
50 SD 0.63 0.20 0.10 0.11 0.08
SDm 0.65 0.18 0.12 0.12 0.05
SemiCov 2.31 0.47 0.52 0.32 1.02
100 SD 0.45 0.14 0.09 0.11 0.05
SDm 0.46 0.13 0.10 0.09 0.03

SemiCov 2.43 0.48 0.53 0.31 1.01
150 SD 0.36 0.10 0.08 0.07 0.03
SDm 0.41 0.11 0.08 0.07 0.03

For the prediction, we consider two scenarios. In Scenario 1, the prediction
is carried out for multiple time points g1, ..., fon at an unsampled location sg.
It is straightforward to show that the best linear unbiased prediction (BLUP) of
y(s0,to) is _ N

J(s0,t0) = x(s0,t0) B+ g X~ (y — X ),

where ¢g is an N-dimensional vector with an ith element of cov{y(so,%0),vi}, i
is the ith element of y, ¥ = cov(y), and B = (XTe=1X)"1XTx~1y (Cressie
(1993)). Because X and ¢( are usually unknown, the estimates of ¥ and ¢y are
substituted in, and an empirical best linear unbiased prediction is obtained.

To quantify the prediction error for the curve at location sg, we use the mean
integral squared error,

T
MISE(s0) = /0 (F(50.1) — y(so, 1)}t

In the simulation study, 7' = 1 and t; are evenly distributed and, thus, MISE(s)
is estimated by m™1 Y7 {4(s0,t0i) — y(so,t0i)}>. Moreover, we generate 5,
10, and 15 additional curves for sample sizes n = 50, 100, and 150, respec-
tively, and set them aside for prediction. Lastly, for the M unsampled curves
at so1,...,Som, we define the first mean squared prediction error (MSPE;) as
M1 M MISE(so;).-

In Scenario 2, we predict missing time points at a sampling location s;, for ¢ =
1,...,n. For m unsampled time points to; = (tpi1,- .- ,tOi’m)T at each location s;,
we define a second mean squared prediction error (MSPEy) as (mn)~1 30 ST,
{9(sistoik) — y(si, toik) 2. For the simulation, predictions are made at {(s;,to;) :
to; = (0.25,0.75)7 i = 1,...,n}.
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Figure 2. The mean squared prediction error (MSPE) for Scenario 1 (left) and Scenario 2
(right) under our method (SemiCov) and two alternative approaches (ALT; and ALT5).

Table 1 shows the prediction performance for different sample sizes; the
associated box-plots for n = 100 are given in Figure 2. The results in Scenario 1
show that ALTs outperforms ALT;, while our SemiCov method outperforms
both ALT; and ALT,. This provides empirical evidence that incorporating the
spatial correlation between locations can substantially improve the predictions
at unsampled locations. In Scenario 2, our SemiCov method and ALTs both
outperform ALT;, and our SemiCov method is slightly better than ALTs for
predicting at sampled locations with missing time points.

Finally, Table 2 reports the mean, standard deviation (SD), and mean stan-
dard error (SDm) of the estimates of the spatio-temporal parameters. The means
of the parameter estimates approach the true values, and the standard deviations
become smaller as the sample size increases. Moreover, the mean standard error
of the spatio-temporal parameter estimates is fairly close to the nominal true
standard deviation. For our SemiCov method, the simulated data sets are fitted
with the number of eigenfunctions, J = 2.

5.2. Data example

This example examines precipitation data (in inches per 24-hour period) for
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Table 3. Precipitation data example without forward selection: Regression coefficient
estimates and mean squared prediction errors under our method (SemiCov) and two
alternative approaches (ALT; and ALT;), along with the standard errors (SE) for our
SemiCov method.

Method Elevation  Slope  Aspect B1M B2M B3M B4M  B5M
SemiCov  0.190 0.003 0.006 0.091 0.006 0.032 —0.208 0.019
SE 0.019 0.010 0.009 0.062 0.026  0.043 0.072  0.037
ALT, 0.046 0.047 0.010 —0.142 —-0.079 0.052 —0.083 0.110
ALT, 0.101 0.026 0.018 —0.145 —0.031  0.091 —-0.077 0.004
B6M B7T™  MSPE; MSPE,
SemiCov ~ 0.016  —0.002 0.143 0.085
SE 0.046 0.040 — —
ALT; -0.011 —0.009 0.474  0.137
ALT, 0.115  —0.047 0.473 0.077

the period January to December, on a log-scale from 259 weather stations in
Colorado (Reich and Davis (2008); Chu, Zhu and Wang (2011)), as shown in
the left-hand panel of Figure 3. There are 10 covariates of interest, including
elevation, slope, aspect, and seven spectral bands from satellite imagery (B1M
through B7M). For model fitting, we use precipitation data for 10 months (ex-
cluding March and October) from 240 weather stations. Two types of prediction
are considered. First, predictions are made for the remaining 19 weather stations,
and the prediction results are summarized by MSPE;. Second, the March and
October precipitation data for the 240 weather stations are predicted, and the
results are summarized by MSPEs.

In the right-hand panel of Figure 3, the empirical variogram over spatial
and temporal lags suggests there is a spatio-temporal dependence for Colorado
precipitation data. A data analysis is performed using our SemiCov method and
two alternative approaches. For our SemiCov method, we choose the number of
components J = 2, such that E;le Xj/zyzl Xj > 80%, as suggested by Zhu,
Fan and Kong (2014). Furthermore, because there is multicollinearity among the
covariates, we apply a forward selection using AIC. The resulting model contains
two covariates, elevation and B4M. The results without the forward selection
are reported in Table 3, and those with the forward selection are reported in
Table 4. For the SemiCov method, there is strong evidence of an elevation and
B4M effect, while there is moderate evidence of an effect of BIM. When predicting
all time points at unsampled locations, our SemiCov method outperforms the two
alternative methods. On the other hand, for the prediction at the two time points
set aside at the sampling locations, both our method and the functional data
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Figure 3. Map of locations of 259 weather stations in the Colorado precipitation data
(left), and the empirical variogram over spatial and temporal lags (right).

Table 4. Precipitation data example with forward selection: Regression coefficient es-
timates and mean squared prediction errors under our method (SemiCov) and two al-
ternative approaches (ALT; and ALTj;), along with the standard errors (SE) for our
SemiCov method.

Method Elevation B4M MSPE; MSPE,
SemiCov 0.203 —0.059 0.140 0.085
SE 0.018 0.013 — —
ALT, 0.054 -0.173 0.469 0.140
ALT, 0.101 —0.102 0.464 0.077

analysis outperform the ordinary least squares method, although the functional
data analysis is slightly better than our method in this case.

Supplementary Material

The Supplementary Material contains the proofs of Proposition 1 and The-
orems 1-4, as well as additional numerical studies.
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