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Abstract. We classify rectangular DNA origami structures according
to their scaffold and staples organization by associating a graphical rep-
resentation to each scaffold folding. Inspired by well studied Temperley-
Lieb algebra, we identify basic modules that form the structures. The
graphical description is obtained by ‘gluing’ basic modules one on top
of the other. To each module we associate a symbol and every word
corresponds to a graphical representation of a DNA origami structure.
A set of rewriting rules defines equivalent words that correspond to the
same graphical structure. We propose two different types of basic module
structures and corresponding rewriting rules. For each type, we provide
the number of all possible structures through the number of equivalence
classes of words. We also give a polynomial time algorithim that gives
the shortest word for each equivalence class.

1 Introduction

Self-assembly is a process where smaller components (usually molecules) au-
tonomously assemble to form a larger structure. Self-assembly plays an impor-
tant role in building biomolecular structures and high order polymers [16]. Appli-
cations of self-assembly include nanostructured electric circuits [1,5] and smart
drug delivery [10,15]. A well-known variant of self-assembly is DNA origami in-
troduced by Rothemund [12] where a single-stranded DNA plasmid, called the
scaffold, outlines a shape, while short DNA strands, called staples, connect dif-
ferent parts of the scaffold, fixing the terminal rigid structure. The left side of
Fig. 1 shows a segment of schematic DNA origami where the scaffold is depicted
by a black line while staples are represented by colored lines with arrows. Exper-
imental results of several DNA origami shapes from Rothemund’s original paper
[12] are shown to the right of Fig. 1.

Theoretical approaches to analyze DNA origami have been focused on ef-
ficient sequence design of staples as well as synthetic scaffolds that fold into
the target shape [11,14]. However, the same outlined shape can be obtained in
various different scaffold and staple organizations. In this paper, we use graphi-
cal description to describe different scaffold/staple organization within the same
origami shape. We identify unit building blocks (modules) for the graphical rep-
resentations whose composition (one on top of another) through connecting the
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Fig. 1. (Left) A schematic representation of a DNA origami structure. The scaffold is
a black line and staples are colored lines with arrows. (Right) Various shapes made by
DNA origami. Both figures are from Rothemund [12].

corresponding staple/scaffold strands builds up larger structure. The unit blocks
correspond to symbols in an alphabet, and concatenation of symbols correspond
to composition of the modules. It can be observed that the unit structures within
DNA origami are closely related to the diagram representation of the well studied
Temperley-Lieb algebras. Inspired by these algebras and their monoidal variants
(Jones and Kauffman monoids [3,7,8]), we define rewriting rules that provide
equivalence of words corresponding to their graphical representation equivalence.
In this way, the set of graphical representations of all possible DNA structures
outlining a shape, correspond to the set of equivalence classes of words obtained
through the rewriting rules. We propose two different types of basic module
structures and their corresponding rewriting rules. For each type, we provide
the number of distinct equivalence classes of the words, and hence of the pos-
sible DNA origami structures. We also compute the size of the maximum word
within each class and provide a polynomial time algorithm to obtain the shortest
length word within the class.

2 Preliminaries

An alphabet X' is a non-empty finite set of symbols. A word w = wiws -+ - w, €
X™ is a finite sequence of n symbols over X, and |w| = n denotes the size
of the word. We use ¢ to denote the empty word. A subword or a factor of a
word w = wiws - wy is w = w;---w; where 1 < ¢ < j < n. We use X*
to denote the set of all words over Y. Concatenation of two words = and y is
denoted by z - y, or simply xy.

A word rewriting system (X, R) consists of an alphabet X and a set R C
X% x X* of rewriting rules. An element (z,y) of R is called a rewriting rule,
and is written as  — y. In general, we may rewrite uxv as uyv for u,v € X*
if (z,y) € R, and denote by uaxv — uyv. For a sequence of words u = 1 —
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Fig. 2. Graphical representation of the Jones monoid J4. (a) The generator hs (b) The
relation hihohi = hi (c) The relation h1hi = h1 (d) The relation hihs = hsh;

g = -+ = X, = v in a rewriting system (X, R), we write u —, v. We define an
equivalence class of a word w as [w] = {w’ | w’ —, w using R}. A word wy € [w]
is irreducible if |wo| < |w'| for all w’ € [w]. We use the lexicographically first
irreducible word @ of [w] as the representative word of [w]. We can define the
set of distinct equivalence classes O, and refer to an equivalence class in O by its
representative word if the context is clear. The readers may refer to Book and
Otto [2] for more information about word rewriting systems.

The Temperley-Lieb algebra TL, has been extensively studied in physics
and knot theory [8]. The monoid versions of Temperley-Lieb algebras, called
Kauffman monoids and Jones monoids J,,, have been also well studied [3,7,9].

The generators of 7, are hq,...,h,_1 and satisfy three classes of relations:
1. hihjhi = hl for |Z —]| =1
2. hih; = h;

3. hihj = hjh,i for |Z —]| > 2

The generators and relations can be represented graphically as in Fig. 2 [9].
Each generator h; in 7, is part of a structure that has n + 1 vertical lines
such that a line connects the top (and bottom) ith and 7 + 1st endpoint. The
generator hs in Jy is presented in Fig. 2 (a), connecting the 3rd and the 4th top
and bottom points respectively. Multiplication of two elements corresponds to
concatenation of diagrams, placing the diagram of the first element on top of the
second, and removing closed loops. The relations 1 to 3 can also be expressed
graphically as in Fig. 2 (b) to (d), respectively. Two elements in the Jones monoid
are equal if their graphical representations are equivalent, that is, they have the
same set of connecting segments except loops. For any two elements that have
equivalent diagrams, one word can be rewritten to the other using the sequence
of relations 1 to 3. In simplification of the DNA origami structure, we take the
similar approach that we only take the account of scaffolds and staples that are
visible at the borderline of the whole structure. Thus, we use the Jones monoid
as a base to construct DNA origami words and rewriting systems.

3 DNA Origami Words and Rewriting Systems

3.1 DNA Origami Words

We focus on rectangular DNA origami structures. They can be formed through
variety of ways to fold a scaffold strand and organize the staples connecting
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the scaffolds. We present an algebraic way to distinguish these different ways
of obtaining the same overall shape. We take basic unit structures (modules)
that construct the structure and associate symbols (generators) to these basic
modules. Based on graphical diagrams, and inspired by the Jones monoid dia-
grams, we define equivalence of two origami structures. We define corresponding
rewriting rules that realize the equivalence in the graphical diagrams.

1; 2 2 3t 1; 2 24 3¢
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1y 2 2y 3 1, 2y 2y 3
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Fig. 3. Graphical representation of units of a; and B;. Scaffolds are represented by
black lines and staples are represented by red dotted lines. For better visibility, staples
are shifted right.

In the DNA origami structure, we observe that the structure has columns
made of scaffolds, and staples go along the scaffolds. Between two columns,
there are points where two adjacent scaffolds cross, and also points where two
adjacent staples cross. In addition, scaffolds and staples have directions: adja-
cent scaffolds are anti-parallel, and a scaffold is anti-parallel to the staple on
the scaffold. We represent a graphical structure with types of directed segments
and the corresponding end-point connections. In addition, in order to define
composition of structures when staples are missing in some parts of the struc-
tures, we consider ‘virtual’ staples. We use p = i; (ip) to represent a point
at the top (bottom) of the ith column. We assume that scaffolds at the ith
column go downward if ¢ is odd, and upward if ¢ is even. Hence, a graphi-
cal structure is a tuple (Rsca, Vsca, Rsta, Vsta) Of sets of ordered pairs (p, q) of
points p,q € {i, | 1 <i < mn,x =t or b}. The set Rycq (Rsta) contains ordered
pairs (p, ¢) of points, each pair representing a real scaffold (staple) starting from
p and ending at g, respectively. The set Vieq (Vsta) contains ordered pairs of
points that represent wvirtual scaffolds (staples), which are not visible. Namely,
for columns without scaffolds (staples), we assume that there exist straight scaf-
folds (staples) which are not visible, for convenience of definition of concatena-
tion. For an ordered pair (p, q) of points, we define the reversal pair as (g, p). We
define basic modules and corresponding generators, given n as the width of the
structure. We use X, = {a;, 8; | 1 <4 < n—1} as an alphabet for DNA origami
words with the order ay < -+ < a1 < B < -+ < Bp_1. For each generator ay,
B;, Table 1 shows the set of pairs of scaffolds and staples that describe structures
between the ith and the i41st columns. The four pairs that describe «; (resp.
B;) are called units for a; (resp. 5;). The units of the generator «; (3;) are shown
in Fig. 3.

Each generator y; € X, has a context C(~y;) which consists of pairs (k¢, kp) and
their reverses for k ¢ {i,i+4 1}. The pairs in C(+y;) can be real or virtual. Table 1
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Rsca Rsta
o (b, de), (i+1e, i+1p) (it i41y), (i+1y,in)
Bi (1410, (b, i41p) (i, i), (i+1p,i+1¢)

Table 1. Units for generators of odd 4’s (pairs are reversed for even i’s).

k& {i,i+ 1} Rsca Vsca Rsta Vsta
gmaz(n) odd k (kba kt) (ktv kb)
even k (kt, kb) (kv, kt)
Gota(n) odd k (kb ki) (K, kp)
even k (K¢, kp) (Kb, ke)
Grmin(n) odd k (kb, ke) (K¢, kp)
even k (K¢, kp) (Kb, kt)

Table 2. Summary of the context for odd #’s (pairs are reversed for even i’s).

describes an example of three situations that can be used for three different
descriptions of graphical structures G, az(n), Usta(n)» Imin(n), €ach representing
Yi-

We note that in Gp,qq(n) the context C(v;) has both Vs, and Vi, empty,
while in Gyyq(n) the context C(v;) has Vseo = 0. In the case of G,in(n), all pairs
of the context C(v;) are virtual. Graphical structures of as’s in different G’s are
shown in Fig. 4.
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“virtual” scaffolds and staples

Fig. 4. Different graphical structures of az’s in Grax(s), Gsta(s) and Gmin(sy. Virtual
scaffolds and staples are colored in gray.

Concatenation of words and the corresponding graphical structure is defined
similarly as in the Jones monoid diagrams. Graphical structures that correspond
to words in X are obtained by joining graphical structures of generators as ex-
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plained below. Concatenating two words correspond to joining graphical struc-
tures. We place the graphical structure of the first word on top of the second and
connect the vertical lines that meet. In the case of existence of virtual staples
or scaffolds do the following: If a real scaffold (staple) meets a virtual scaffold
(staple), then the virtual scaffold (staple) becomes real.

ayfBran = a1z

Fig. 5. Concatenation of o182 and a1 under Gin(s)

Fig. 5 shows concatenation of a; 32 and a; under G,,;,,(3). Formally the graph-

ical structure of a word w = wjws is defined as follows: Suppose we have two
words wy and we with graphical structures G(w1) = (Rseal, Vscal, Rstals Vstal)
and G(wz) = (Rsca2, Vscaz, Rsta2, Vstaz) Tespectively, then we obtain the graph-
ical structure G(w) = (Rscas Vsca, Rsta, Vsta) With the following: The scaffold
sets (Rsea and Vseq) are obtained with the procedure (the staples follow an
equivalent procedure):

1.

For all ordered pairs in Rgcq1 and Vgeq1, replace the subscript b by m.

2. For all ordered pairs in Rscq2 and Vseq2, replace the subscript t by m.
3.
4. (Connecting scaffolds) Repeatedly find one of the following pairs of scaffolds

Let Rsca = Rscal ) RscaQ and Vsca = Vsca1 U Vsca2~

if possible and do the corresponding process. Otherwise, move to the next
step.

(a) If there exist (p,im), (¢m,q) € Rsca, delete them and add (p,q) to Rcq.
(b) If there exist (p,im) € Rsca and (im,q) € Vsea, delete them and add

(p? q) to RSCG'
(c) If there exist (p,im) € Vsea and (im,q) € Rsca, delete them and add

(p,q) t0 Rsca-
(d) If there exist (p,im), (im,q) € Vsca, delete them and add (p, ) to Vsca-

. For every pair (p,q) € Rsca U Vsea, delete it if p or ¢ has subscript m.

Fig. 6 describes concatenation process of scaffolds. We replace the subscripts

for the bottom points of w; and the top points of ws by m, which denotes the
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Fig. 6. Scaffold concatenation of wi and ws. Real scaffolds are represented by thick
lines for better visibility.

middle points. Then, we repeatedly search for pairs of scaffolds that meet at the
middle and connect them. We regard the connected scaffold to be virtual only
if both original scaffolds were virtual (step 4 (d)). Finally, we delete all pairs
of scaffolds whose endpoints are at the middle, this includes all internal loops.
Based on Tables 1 and 2, we can define G’s as the sets of all graphical structures
that can be constructed by concatenation of generators.

3.2 DNA Origami Rewriting Systems

It is straightforward that for any alphabet, given two words, the graphical struc-
ture of their concatenation is unique. Thus, if G(w;1) = G(ws) under a G, we may
say wy ~ we under a G and define a rewriting rule wy <+ wy between two equiv-
alent words. Due to difference of context structures, rewriting rules for G,,44(n),
Gsta(n) and Gpin(n) differ from each other. For each structure, we find the set of
basic rewriting rules that is sufficient to describe equivalence, and analyze the
set of distinct equivalence classes.

Omax(n) Case We first observe that all staples and scaffolds in G,,4.(n) are
real. We observe that staples in «; (and scaffolds in f;) are identical to the
diagram of h; in 7, except directions, and directions of scaffolds and staples
do not make conflict in concatenation, which results in bijection between them.
Moreover, scaffolds in «; (and staples in ;) are straight and do not affect the
structure of scaffolds (staples) when concatenated. For convenience, we use 7
and 0 to represent an arbitrary generator, and 7 to denote the complementary
generator of . Then we have the inter-commutation rewriting rule v;7; < 7;;
as in Fig. 7.

We may apply rewriting rules from 7, separately to w, and wy, resulting in
the following rewriting rules:

1. (inter-commutation rule) v;7; <> 7,

2. (idempotency rule) v;y; <> i

3. (intra-commutation rule) v;y; <> v;v; for |i — j| > 2
4. (TL relation rule) v;7y;v; <> v; for |i — j| =1
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Braa a1 B2

Fig. 7. Inter-commutation rewriting rule for G,,qx(3)

Based on the set R,;,4,(n) of these rules, we can define the set O,,44(n) of distinct
equivalence classes. We say that a rule is non-increasing if the resulting word
is not longer than the original word. In the above rules, rules 1,3 and right
directions of rules 2 and 4 form the set of non-increasing rules. We call a sequence
of rewriting rules with only non-increasing rules as non-increasing rewriting.

Let Yoy = {a1,...,an_1} and gy, = {B1,...,Bn_1}. Using the inter-
commutation rule, we may rewrite any word w to w,wp, where w, € E{a)n
and w, € E?ﬁ)n' We say that such word w,wp is in an inter-commutation-
free form. Also, using intra-commutation rules, we may set additional conditions
for w, = (a0 -1 oy )iy iy —1 - - gy ) -+ (@, 5,1 - - - g, ) where iy, is the
maximum subscript in wq, 7j41 > i; and kj41 > k;j for 1 < k < p, and similar
condition for wy. Such w, and w; are unique [7], and we call such w,wy; as a
commutation-free form of w.

We may regard the graphical structure of a word as a pair of scaffolds and
staples, which can be regarded as two independent Jones monoid diagrams.
Knowing that the relations 1 to 3 of the Jones monoid can sufficiently describe
equivalence of diagrams, we have the following theorem:

Theorem 1. For all wy,ws € 2, G(w1) = G(wz) under Gpaqny if and only if
W1~ W USING Rypau(n)- In other words, there exists bijection between Gy, qp(n)
and Omaz(n).

Given n, the number of elements of 7, is equal to the Catalan number C,, =

1 2 2
" [9], and the maximum size of the element is L [4,7]. Thus, the
n+1l\n 4

following remark holds.

2
1 2
Remark 1. Given n, |Opazm)| = < 1 ( n)> , and the maximum size of a
n n

2
n
representative word in (’)mm(n) is 2 {4J .

We may regard relations 1 to 3 of the Jones monoid as rewriting rules, and
define the set O;(,,) of distinct equivalence classes. Since the graphical structures
in Gynaz(n) correspond to products of two Jones monoid diagrams, we first prove
the following Lemma about the Jones monoid and use it to prove correctness of
the proposed optimization algorithm.

Lemma 1. Given two elements wy,ws € J,, where we € [wq] is irreducible, we
can mon-increasingly rewrite wy as ws.
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Proof. The detailed proof is given in Appendix A. O

Theorem 2. Given a word wy € [wo] € Opaa(n) of size m, we can find an
irreducible word of [wo] within O(nm?) time.

Proof. For given wy, we first rewrite wg as w in the inter-commutation-free form,
which takes O(m?) time. Then we repeatedly find one of the following conditions
in w if possible and rewrite w accordingly:

1. If w = v1y;v2v;v3 where v1,v2,v3 € X and vy does not have ;41,7 and
Yi—1, then rewrite w as v1v7v;v3.

2. If w = vy1y;v2y;v37;v4 Where vy, va,v3,v4 € X, i — j| = 1 and vy, v3 do not
have v;41,7; and ~;_1, then rewrite w as vyv9y;v3v4.

It is straightforward that two rewritings can be done non-increasingly. We can
iterate ¢’s in the condition 1 and (i, j = i+1 or i—1)’s in the condition 2 to check
if w satisfies the given form for given ¢ in O(m) time. It takes O(nm) time to do
one rewriting in 1 or 2, which decreases the size of the word by a constant. Thus,
it takes O(nm?) to finish the whole process. If we consider the final word w’,
conditions in 1 and 2 are no longer satisfied and there is no sequence of non-
increasing rules that decreases the size of the word. Then, w’ becomes irreducible
from Lemma 1. O

Gsta(n) Case Similar to the G,,,.(n) case, we have the following rewriting rules:

1. (Inter-commutation) v7; < ¥;7:
2. (Idempotency) vy <> vi
3. (Intra-commutation) ~;7y; <> 7;; for |i — j| > 2

[e5Re1e%]

IHEE
a0 Bo

(a) (b)

Fig. 8. Examples of equivalence in Giq(3). (2) cnazar = on (b) aroarfa ~ aifB2

Due to the lack of default real staples in generators, we cannot directly in-
troduce the rewriting rule v;v;7; <> ; for |i — j| = 1. For example, we cannot
rewrite ay sy as ap, since o asay; has a straight real staple at the third column
while a; does not (See Fig. 8 (a).). We introduce the span of a word w as the

set span(w) = U {4,j + 1} of columns.
Yj n w
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Lemma 2. Under Ggia(n), the span equals to the set of columns where real sta-
ples exist.

Proof. The detailed proof is given in Appendix B. O

It is straightforward that two equivalent words should have the same span,
and rewriting rules in the Jones monoid can be applied when both sides have the
same span. For example, ajasai By <> a1 holds as in Fig. 8 (b). In general,
we have the following additional rewriting rules, where ¢ € {«, 8} and v € X*:

4. 0vviYi—17: <> djvy if j=i—1ori—2
5. 0jvvivVig1vi ¢ 6jvy; if j =i+ 1 or i+ 2
6. Vivi—17:v0; <> yvd; if j=1i—1ori—2
7. YiYit17iv0; < Yvdj if j=1+1ori+2

Rules 4 to 7 can be rewritten using rules 1 to 3 and the subset of rules 4 to
7. Before finding such subset, we define a zig-zag word w € X7 to be a word
where each pair of adjacent generators in w have adjacent indices. We call a
maximal subword of increasing (decreasing) indices as zig (zag). For example,
w = azogzeaa is a zig-zag word with a zig-zag-zig sequence in the word.
Using rules 2 to 7, we can rewrite any zig-zag word that consists of single gen-
erators type v as a zig-zag word with at most three zigs or zags, which we call
the zig-zag normal form.

Theorem 3. For wi = 0;vy;7i—17: and wa = 6;v7y; where j =i —1 ori—2, we
can rewrite wy as wg using rules 1 to 8 and the following rule: vjvy;vi—17vi <+
Y07 where v € E{v)n and v = € or y;vY; 15 in the zig-zag normal form.

Proof. The detailed proof is given in Appendix C. O

Similar simplification works for rules 4 to 7, and we may use the following
rewriting rules for v € Ea)n and v = € or y;v; in rule 4 and 5 (y;vy; in rule 6
and 7) is in the zig-zag normal form:

4. vvyivie1vi < yjuviif j=i—1ori—2
5. vvvivit1yi <> yjvy it j =i+ 1lori+2
6. vivic1vivy; < vy ifj=i—1ori—2
T YiYie1Yivy; = vy ifj=i+1lori+2

For given n, let the set Ry, (n) of rewriting rules consist of the above seven
kinds of rules for 1 < 4,5 < n. We can define the rewriting system Ogq(n) =

(Ena Rsta(n))'

Theorem 4. For all wy,wz € Xy, G(wy) = G(wz) under Gyya(n) if and only if
W1 —>s W2 uSing Rgqm)- In other words, there erists bijection between Gyyq(n)
and Osm(n).

Proof. The detailed proof is given in Appendix D. O
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We compute the number of equivalence classes of words in |Ogq(n)|. We use a
binary string of length n to represent the graphical structures in G, (y,) such that
the ¢th bit equals 1 if and only if the ¢th staple and the the ith scaffold is a straight
line. Each binary string is uniquely determined with a tuple (a1,b1,...,ak, bx)
where a; (b;) represents the number of ith consecutive 0’s (1’s). For example, the
8-bit binary string 00111000 corresponds to a tuple (2,3, 3,0). In particular, the
bit 0 corresponds to (1,0) and the bit 1 to (0,1). The set of tuples corresponding

to binary strings of length n is denoted T,, = {p = (a1,b1,...,a5,b;) | k >
k

1, for all i,a;,b; € N® and Z(ai +b;) = n}.

i=1

Theorem 5. Given n € N°, for each tuple p € U T;, let D(p) € N° be
1<i<n
recursively defined as follows:
— forp €Ty, D(0,0) =1.

~ JorpeTi, D(p) =1 if p=(0,1) and D(p) = 0 if p = (1,0).
k

— forp=(a1,b1,...,ar,bg) € T, (n > 0) we have D(p) = HD(ai,O).

1 2n\ \ >
— forn > 1, we have D(0,n) = 1 and D(n,0) = <n—|—1< )) - Z D(p).
PET-\{(n,0)}

Then, |Ogqmy| is given as

Osta(m| = d(n) = Y [D(p) x z(p)] — n.

p€Tn
where
(b1 +1) ifh=1,
k—1
bi(b; +1) ]
bi+1)- —— 2 4+1])-(bp+1 k#1,a, =0,
I’(al,bl,...’ak7bk): ( 1 ) Z_H2< 2 > ( k )Zf # ay
k—1
bi(b; +1 _
H<(2+)+1>'(bk+1) ifk#1,a, > 0.
i=1
Proof. The detailed proof is given in Appendix E. O

The sequence d(n) for 1 <n < 10is 1,4, 31,253, 2247, 21817, 227326, 2499598,
28660639, 339816259. It is not listed in the OEIS [13] list of sequences, and the
non-recursive formula of d(n) is still open.

Theorem 6. An upper bound of the size u(n) of a mazimum representative word
in Ogta(n) 8 given by 2™ — 2.

Proof. The detailed proof is given in Appendix F. O
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The bound in Theorem 6 is not tight, and the exact size of a maximum
irreducible word is open.

Theorem 7. Given a word wy € [wo] € Ogpaen) of size m, we can find an
irreducible word of [wo] within O(nm?) time.

The proofs of Lemma 1 and Theorem 2 work similarly for Theorem 7. We
first rewrite wp as w in the inter-commutation-free form. Then we repeatedly
find one of the following conditions in w if possible and rewrite w accordingly:

1. If w = v1y;v27;v3 where vy, v,v3 € X% and vy does not have 7,41, v; and
vYi—1, then rewrite w as viv97y;v3.

2. If w = v17;v27i4+1v37iv4 Where v1,v2,v3,v4 € X, V2, v3 do not have y;41, Vi
and ;_1, there exists d; 11 in v1 or vy, or §; 42 in v1, Vg, v3 Or vy, then rewrite
w as v1v27Y;V3v4.

3. If w = v1y;v27i—1v37v;vs Where v1,va,v3,v4 € X, v9,v3 do not have v;41, i
and 7y;_1, there exists d;_1 in vy or vy, or §;_o in v1, V9, v3 Or vy, then rewrite
W as v1v27;V3V4.

3.3 Concluding Remarks

We have proposed modules and corresponding generators for DNA origami struc-
tures, defined concatenation of words and rewriting rules, and analyzed equiv-
alence classes based on graphical equivalence. One model that we have not dis-
cussed iS Grin(n)- FOr Grin(n), seven types of rewriting rules for G,y hold.
Moreover, we may prove that Theorem 4 holds for G, () using the similar
proof. It turns out that there is bijection between Ggiq(n) and Gpinn), and
Osta(n) = Omzn(n)

Graphical structures corresponding to generators «;’s and ;s in Fig. 3 de-
scribe crossing of scaffolds and staples in DNA origami well, while using only two
types of generators. Here we explore possible further development of generators
that are more plausible to DNA origami.

The first observation on the current generators is that they are vertically and
horizontally symmetric (without directions), which causes the graphical struc-
ture to always have a cup-shaped fragment of a real scaffold at the top as in Fig. 9
(a). DNA origami does not have such fragments at the border of the structure,
which leads us to revise generators to define such borders. Fig. 9 (b) proposes
four different generators that are used to substitute . In these generators, we
introduce asymmetric structures that can be used to construct borders of the
structure. We may define generators for £ similarly. Under the assumption that
we use the same concatenation procedure, for a graphical structure that corre-
sponds to oy, we can make arbitrary number of scaffolds and staples virtual by
concatenation of four new generators as in Fig. 9 (c¢). Now, suppose we define
the rewriting system based on equivalence under such generators. For each pair
of diagrams of 7,,, we have 2n staples and scaffolds which can become virtual.
From analysis similar to the proof of Theorem 5, the size of the set of equivalence
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n+1\n
are sufficient to describe equivalence under such generators is open.

2
1 2
classes becomes (( ( n)> — 1) -22" 4 1. The set of rewriting rules that

[ -0 -0 " { . . N . 3 [
N T T S e S e PP
|
|
o Jessenneds Jesewneeds 0 Jeeeieasds 0 feeessesde Jlesenneds
: | A : v A A v .
| ! Qq1 Qq1Op1 Qq1 Q1 Qurn
|
| | . .l
P LT .
|
|
[ I e O T P
: I ] : ] ] '
| ! Qp1 Qan10q1 01 an1Qql an10p1 an1
| : N . 3 [
O - - e & N S PP
|
|
L (P
i .
| v .
| "
I ! an1 Qq1 Q1001 Qq10U1 Qp10u1 aul
| : L)
P e
|
! |
|
- — = - - - —1
Qul N10q1 Q101 an1Qq1yl an10p10U1 an1Gul
(a) (b) (c)

Fig.9. (a) In a graphical structure generated from «;’s and 8;’s, there always exists
a cup-shaped fragment of a real scaffold at the top (and cap-shaped fragment at the
bottom). (b) Four revised generators that substitutes ;. Virtual scaffolds and staples
are colored in gray. (c) We can make arbitrary staples and scaffolds in a; virtual.

The second observation on the current generators is that we do not consider
which side of the scaffold the staple is on. In the DNA origami structure, staples
can be on the left or the right of the scaffold, and these two cases are distin-
guished. Moreover, for two adjacent staples at the opposite side of the same
scaffold, they either disconnect or connect by crossing the scaffold. To model
this observation, we may introduce revised graphical structures for o and 3 as
in Fig. 10 (a). Staples are either at the left or the right of the scaffold, and some
staple ends are extending which can be connected to other staples regardless of
the side. We assume that two adjacent staples can be connected except when
two are non-extending ends and at the opposite side. This additional condition
for staple connection changes some of the commutation rewriting rules—for ex-
ample, a1 +» Braq as in Fig. 10 (b). Algebraic analysis on relations based on
such generators is done by Garrett et al. [6]. The set of rewriting rules that are
sufficient to describe equivalence under such generators is still open.
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Fig. 10. (a) Revised generators a1 and /1. Two diagonal ends of staples in « represent
extending staple-ends. (b) Adjacent staples can be connected except when two are non-
extending ends and at the opposite side.
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A  Proof of Lemma 1

We recall the rewriting rules for 7,.

2. hih]thhl for |Z*]| 22

We rewrite the statement as follows: Suppose wy,ws € J,, wso is irreducible
and we can rewrite wy as ws using ¢ rules. Then, for all ¢ > 1, there exists a
sequence of non-increasing rules that rewrites w; as wo. We prove the statement
by induction on ¢.

— When ¢t = 1, we have w; which can be rewritten as wy using one rule. Since
wy is irreducible, the rule should be non-increasing.

— Suppose the statement holds for all ¢ < x. When ¢t = = + 1, we have the
sequence of x 4+ 1 rewriting rules that rewrites wy as ws. If the first rule is
non-increasing, then we can rewrite w; as wy by a sequence of non-increasing
rules using the induction hypothesis. Now, we assume that the first rule is
increasing and the rest of the rules are non-increasing. Note that rule 2 is
the only rule that changes location of generators. Moreover, applying rules
1 or 3 on a word do not result in an additional pair of generators that rule
2 can be applied.

o If the first rule is rule 1 (h; — h;h;), the resulting two «;’s should
be involved in non-increasing rule 1 or 3 in the following sequence. The
straight sequence of Fig. 11 (a) shows an example of such sequence where
the left h; is used in rule 1 and the right h; is used in rule 3, where blue
areas represent generators that h; can switch the location with using
rule 2. For such sequence, we can always find another sequence without
increasing rules as the right sequence of Fig. 11 (a).

o If the first rule is rule 3 (h; — h;hjh; for |i — j| = 1), the resulting h;
should be involved in non-increasing rule 1 or 3 in the following sequence.
Without loss of generality, we assume that j = i 4+ 1. Since h;11h; #
hihit1, hj cannot be used in rule 1. The straight sequence of Fig. 11 (b)
shows an example of such sequence where the middle h; = h;y1 is used
in rule 3, and blue areas represent generators that h; o can switch the
location with. For such sequence, we can always find another sequence
without increasing rules as the right sequence of Fig. 11 (b).

B Proof of Lemma 2

We can prove the statement by induction on the size of the word. It is straight-
forward that the statement holds for generators. Assume that the statement
holds for all |w| = m. For a word w’ = w~;, if ¢ and ¢ 4+ 1 are both in span(w),
concatenation does not change the span and the statement holds. If 7 or ¢ + 1
are not in span(w), then the span has new columns, and the graphical structure
of w’ has real staples for these columns, which makes the statement true.
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rule 1 (increasing) rule 3 (increasing)
LIel Tefnl Taf 1] L I I Y I Y \§

rule ZL rule 2,

0 7 7 O 77 7 I O 79 9 IO 7 I A

rules 1 and 3 (non-increasing) rule 3 (non-increasing)

[Inl T Tn]] [T Tapednl T ]
rule zl rule zl rule 1 (non-increasing)
rules 1 and 3 (non-increasing)
[T Telal ] Tnkd
rule 1i rule 1 (1wu—incrcasing)i
[ Twl ] " [T Tebd T ] o
a

Fig. 11. Examples of sequences of rewriting rules that leads to the same element, where
one uses only non-increasing rules. (a) The first rule is rule 1. (b) The first rule is rule
3.

C Proof of Theorem 3

First, we prove that we may assume § = ~. If § =7, we can rewrite v as a con-
catenation of a prefix v, € Ea)n and a suffix vs € EE%)n. Then, 0;v,vsViVi—17: —
Uy 05YiYi—1YiVs — Vy0;YiVs — 0;U4VsY; = 007, and vice versa.

Second, we prove that we may assume v € X(,. If v ¢ Y(,),, we can
rewrite v as a concatenation of a prefix vy € X7, and a suffix vy € Xz, .
Then, v;jv,v5YiYi—1V — VYU YiYi—1% — VYUY — ViUyU5Ye = V0%, and
vice versa.

Now, given § = v and v € X(,),,, we claim that we may assume v = € or §;vy;
is in a zig-zag normal form. For rule 4, We prove the statement by induction on
the size of the maximal prefix p of v that is a zig-zag word. When p = €, if v # ¢,
for the first generator 4 of v, k # j —1, j+1 holds and we can switch ¢; and
when j # k or use rule 2 when j = k. In both cases, we can induce rule 4 using
rules with v = e¢. Now assume that the statement holds for all p € X, where
|p| < m. For |p| = m + 1, we may assume that ,p is in a zig-zag normal form,
since rewriting to a zig-zag normal form can be done by rules in the induction
hypothesis. We define the max index maz(p) (min index min(p)) of d;p to be
the maximum (minimum) index of generators in ¢;p. The m+2nd generator -,
of v can switch with the last generator of p, and we have the following cases:

1. If t > maxz(p) + 1, we can move 7, to the left of §; and the statement holds.

2. If t = maxz(p)+1, we consider two cases. If §;p has only a zig, then 4 extends
the zig and the statement holds. If §,p has a zig and a zag, then there exists
a subword Vi,az(p)—1Ymaz(p) Ymaz(p)—1 10 p. We can rewrite the subword as
Ymaz(p)—1 using rules in the induction hypothesis, and then move ~; to the
left of ;.

3. If min(p) < t < maz(p), we can move y; into J; so that J; has a sub-
word Y45y where |s — t| = 1. We can rewrite the subword as 7; using rules
in the induction hypothesis.
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4. If t = min(p) + 1, the case is similar to the case of t = maz(p) + 1.
5. If ¢ < min(p) + 1, we can move ; to the left of d; and the statement holds.

The above case analysis also holds for p = v, and we can claim that d;v; is in
a zig-zag normal form.

D Proof of Theorem 4

Note that if wy —. wa using Ryyq(n), then G(w;) = G(ws) under Gyq(y) from
definitions of rewriting rules. If G(w1) = G(w2) under G,,,44(n) and span(w;) =
span(wz), then G(w1) = G(wz) under Gyq(pn). Moreover, if G(w1) = G(wz)
under Gpaz(n) and span(wi) # span(wz), then G(wi) # G(wz) under Gyq(n)
from Lemma 2. Thus, G(w;) = G(ws2) under Gyqny if and only if Gpap(n) and
span(wy) = span(wsy). From Theorem 1, the set of the following (general) rules
are sufficient to describe equivalence under G,,q4(n) When vy, vy € X7,

- V1YY 02 £ V175702

- V1772 < V17iV2

. V1YY U2 <> v17Y,Yive for |i — j| > 2
. V1YiYYiv2 > v1Yve for li—jl=1

> W N

Now, there exists a set P of a pair (w1, ws) of words where G(w;) = G(ws)
under Graap(n) and Gapa(ny, a set H of a pair (w3, wy) of words where G(w3) =
G(w4) under Gpop(n) and G(w3z) # G(wa) under Gyyq(n), and the other set N of
a pair (ws,wg) of words where G(ws) # G(wg) under Gp,ap(n) and Ggya(n). The
sets P,H, N are disjoint and PU H UN = X* x X*. For each pair in P (H),
there exists the set of all sequences of rules in R,,,,(,) that rewrites wy as ws
(w3 as wg). Now, Rp,qq(n) can be partitioned into two sets Rairr and Rsame,
where all rules in Rg;r¢ have different span for two sides and all rules in Rsqme
have the same span for two sides. Then, the following statements hold:

1. For a pair (wy,ws) € P, there exists a sequence of rules that rewrites w;
as wy only using rules in Rggme: For a pair (wy,wy) € P, there exists a
word w3 which is irreducible in O,q0(n) and (w1, w3), (w2, w3) € P. From
Lemma 1, there exists a sequence of non-increasing rules that rewrite w; as
ws3. We observe that the only rules that changes the size of the word are
rule 2 and 4. Rule 2 does not change the span, and non-increasing rules in
rule 4 do not increase the size of the span. Since w; ~ w3 under Gyiq(n),
span(wy) = span(ws). Thus, there exists a sequence of rules that rewrites
w1 as ws only using rules in Rgqme. The same statement holds for we, which
yields a sequence of rules that rewrites wy as ws only using rules in Rsqme-

2. For a pair (ws,wy) € H, all sequences of rules that rewrite w3 as w4 have a
rule from Rg;ff.

Since Rsame € Riaz(n), for a pair (ws,ws) € N, ws cannot be rewritten as
wg using Rggme. Then, we can claim that a pair (wq,ws) is in P if and only
if w1 —« wz using Rsame- Rules 1 to 3 from R,,4,(n) have the same span for
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the both sides, and they are in Ryqme. For rule 4 from R,,q4(n), the subset of
the rules where both sides have the same span is rules 4 to 7 in Ry (). Thus,
Rgtan) = Rsame and G(wy) = G(w2) under Gsta(n) if and only if wy —. ws
using Rgta(n)-

E Proof of Theorem 5

’ € I (651 I (6] I Q1009 I (65 10%] I (a5 %1051 ‘ [eHYe5Ke%) ‘

€ € [e%1 [e %) a0 Qo0 a1 Qo ‘
Jeit B1 a1 s ajasfy azar B |arasar By

Ba B2 a1 B2 az32 a1 a0 o 1232
B1B2 B152 a1f1f | asBifa | araafifa| azarBife
B21 B231 a1B281 | aofBaBi | aranBefBi] azanBafy

B15251 B16251
B2182 B2182

Fig. 12. The set of representative words in Ogq(3). Gray headers represent represen-
tative words corresponding to elements in 73, and the thick box represents the set of
representative words in Opaz(3)-

Fig. 12 enumerates representative words in O4(3). We observe that the set
of representative words in Oy, (n) is a superset of the set of representative words
in Opqz(n)- Graphically, we observe that Gq(n) is a superset of the set of a pair
of diagrams of 7,,, where we regard one as scaffolds and the other as staples. In
particular, when a consecutive set of columns adjacent to the span is occupied
with both real straight scaffold and staple, there also exists a structure with
virtual straight staples in these columns as in Fig. 13.

I

[e5ReDIeRIeDTe%) (a5 DYe5] [e5)

Fig. 13. Since the third and the fourth columns of a1 azasazay are occupied with both
real straight scaffold and staple, we also have structures where the staple at the fourth
column is virtual (a1a2a1) and staples at the third and the fourth columns are virtual

(a1).

We can classify graphical structures in G,,q4(n) by using a binary b of length n,
where the ith digit has 1 if the ith column has both straight scaffold and staple,
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and 0 otherwise. The set of binaries of length n has bijection with the set T,
previously defined. Thus, let D(p) be the number of equivalence classes of words
whose graphical structures correspond to p € T,. It is straightforward that
D(0,1) =1 and D(1,0) = 0. To calculate D(ay, b1, ..., ax, bx), columns that has
1’s in the binary has only one case (straight scaffold and staple), so we need
to multiply all D(a;,0)’s. For D(ay,0), once we know all D(p) where p € T,,,

2
1 2
we can calculate D(aq,0) using the fact that [Gpaz(ay)|* = ( ( a1>> i

ar+1\a
equal to Z D(p).

pETa,

For each D(p), we calculate the number of distinct graphical structures in
Gsta(n)- Suppose we have j consecutive 1’s at the start or the end of the binary
that corresponds to p. For such sequence, we can have j+1 distinct sets of virtual
straight staples. When we have j consecutive 1’s between two consecutive 0s,

j L.

there are Zz +1= w + 1 distinct sets of virtual straight staples. The
number ofZ czllses for each consecutive 1’s should be multiplied, which results in
z(p) in the Theorem. The only exception for this calculation is D(0,n) case,
where we have real straight scaffolds and staples for all columns. The only word
that corresponds to the structure is the empty word ¢, and we need to subtract
n from D(0,n) - 2(0,n) = n + 1, which results in the formula in the theorem.
Fig. 14 shows how we count the number of cases for each D(p).

b=1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
) ) ’ : ) : ) ’ ) )
\ {' \ {' ...... . {' \: {' \: {' ...... . {' \ {V \
_» - -
4 cases 11 cases 5 cases

Arbitrary consecutive virtual staples

Fig. 14. A graphical structure corresponding to D(0,3,2,4,2,4). The binary that cor-
responds to the structure is stated on the structure. For consecutive 1’s in the binary,
we may have arbitrary consecutive virtual staples within.

To justify the counting of virtual staples cases, we claim the following state-
ment: For a graphical structure in Gg4(n), let ¢; be 1 if the ith column has real
straight scaffold and straight staple, and 0 otherwise. Then, a set of maximal
consecutive columns with real straight scaffolds and staples should be adjacent
to the ith column where ¢; = 0, as in Fig. 15 (a). In other words, there is no set
of maximal consecutive columns with real straight scaffolds and staples where
both ends are adjacent to straight scaffolds with straight virtual staples, as in
Fig. 15 (b). We prove the statement by induction on the size of the word. It is
straightforward that the statement holds for the generators. Assume that the
statement holds for all |w| = m. For a word w’ = w-y;, we observe that a column
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in the graphical structure of w’ can have a virtual straight staple only if it had
a virtual straight staple in the graphical structure of w. Thus, if ¢ or ¢ + 1 is
in span(w), the statement holds since the columns that have virtual straight
staples do not change. If ¢ and i + 1 are not in span(w), we insert the unit of
the generator in a set of consecutive columns with straight scaffolds and virtual
staples. In that case, concatenation does not create columns that have straight
scaffolds and real staples, and the statement holds.

ST BT LD

(a) (b)

Fig. 15. The set of maximal consecutive columns with real straight scaffolds and staples
is represented by a blue box. (a) The set is adjacent to the ith column with ¢; = 0 on
the left. (b) Both ends are adjacent to straight scaffolds with straight virtual staples,
which is impossible.

F Proof of Theorem 6

There exists a representative word w,wy € Ogtq(n) in a inter-commutation-free
2

2
% , and u(n) > % . Aside from wqwyp, we may
have representative words in Ogq(n) that exploit rules 4 to 7, not satisfying the
condition that v;v;; is reduced to v; when |i — j| = 1. Namely, we may rewrite
v; in a word w as ;7;7; and have a distinct word if staples in the resulting word
occupy at least one new column.

Given an irreducible word v of size I(v), let s(v) be the size of the span

s(v)

of v. Then, ~5" < I(v) < u(s(v) — 1) holds when v # e. Now, suppose for

a word v = w,vp in a inter-commutation-free form, we want to continuously
rewrite y; as ;7,7 as far as possible while making the resulting words distinct.
Let vg = g, - -y, and vy = B, ---B;,. If v, = ¢, for a resulting word v,
there exists a longer word a;, - --a;, v’ which is distinct. Thus, without loss of
generality, we may assume that v,, v, # €. Now, for the word v, [(v) = I(vg)+1(vp)
and max (s(vg), s(w)) < s(v) < s(ve) + s(vp). Each rewriting of v; to vy
increases s by 1 and [ by 2, and such rewriting becomes impossible once s
becomes n + 1. Without loss of generality, we assume that s(v,) > s(vp). Then,
we may have at most n+ 1 — s(v,) number of rewriting steps, which results in a
word of size [(vg) + l(vp) +2(n+ 1 — s(ve)) = 2n + 2 — 25(vy) + l(ve) + L(vp) <
2

2n+2—2s(vg) +2u(s(vg) —1). Since u(n) > {ZJ, 2n+2—25(vg) +2u(s(v,) —1)

form where |wy| = |wp| =

increases as s(v,) increases. When s(v,) = n+1, u(n) < 2n+2-—2(n+1)42u(n),
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which results in u(n) > 0, which is trivial. For s(v,) =n, u(n) <2n+2—2n+
2u(n—1) = 2u(n—1)+2. From u(1) = 0, we have the upper bound u(n) = 2" —2.
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