
DNA Origami Words and Rewriting Systems

James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

Department of Mathematics and Statistics, University of South Florida
4202 E. Fowler Ave., Tampa, FL 33620, USA

jgarrett1@mail.usf.edu, jonoska@mail.usf.edu,
hweekim@mail.usf.edu, saito@usf.edu

Abstract. We classify rectangular DNA origami structures according
to their scaffold and staples organization by associating a graphical rep-
resentation to each scaffold folding. Inspired by well studied Temperley-
Lieb algebra, we identify basic modules that form the structures. The
graphical description is obtained by ‘gluing’ basic modules one on top
of the other. To each module we associate a symbol and every word
corresponds to a graphical representation of a DNA origami structure.
A set of rewriting rules defines equivalent words that correspond to the
same graphical structure. We propose two different types of basic module
structures and corresponding rewriting rules. For each type, we provide
the number of all possible structures through the number of equivalence
classes of words. We also give a polynomial time algorithim that gives
the shortest word for each equivalence class.

1 Introduction

Self-assembly is a process where smaller components (usually molecules) au-
tonomously assemble to form a larger structure. Self-assembly plays an impor-
tant role in building biomolecular structures and high order polymers [16]. Appli-
cations of self-assembly include nanostructured electric circuits [1,5] and smart
drug delivery [10,15]. A well-known variant of self-assembly is DNA origami in-
troduced by Rothemund [12] where a single-stranded DNA plasmid, called the
scaffold, outlines a shape, while short DNA strands, called staples, connect dif-
ferent parts of the scaffold, fixing the terminal rigid structure. The left side of
Fig. 1 shows a segment of schematic DNA origami where the scaffold is depicted
by a black line while staples are represented by colored lines with arrows. Exper-
imental results of several DNA origami shapes from Rothemund’s original paper
[12] are shown to the right of Fig. 1.

Theoretical approaches to analyze DNA origami have been focused on ef-
ficient sequence design of staples as well as synthetic scaffolds that fold into
the target shape [11,14]. However, the same outlined shape can be obtained in
various different scaffold and staple organizations. In this paper, we use graphi-
cal description to describe different scaffold/staple organization within the same
origami shape. We identify unit building blocks (modules) for the graphical rep-
resentations whose composition (one on top of another) through connecting the

2 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

Fig. 1. (Left) A schematic representation of a DNA origami structure. The scaffold is
a black line and staples are colored lines with arrows. (Right) Various shapes made by
DNA origami. Both figures are from Rothemund [12].

corresponding staple/scaffold strands builds up larger structure. The unit blocks
correspond to symbols in an alphabet, and concatenation of symbols correspond
to composition of the modules. It can be observed that the unit structures within
DNA origami are closely related to the diagram representation of the well studied
Temperley-Lieb algebras. Inspired by these algebras and their monoidal variants
(Jones and Kauffman monoids [3,7,8]), we define rewriting rules that provide
equivalence of words corresponding to their graphical representation equivalence.
In this way, the set of graphical representations of all possible DNA structures
outlining a shape, correspond to the set of equivalence classes of words obtained
through the rewriting rules. We propose two different types of basic module
structures and their corresponding rewriting rules. For each type, we provide
the number of distinct equivalence classes of the words, and hence of the pos-
sible DNA origami structures. We also compute the size of the maximum word
within each class and provide a polynomial time algorithm to obtain the shortest
length word within the class.

2 Preliminaries

An alphabet Σ is a non-empty finite set of symbols. A word w = w1w2 · · ·wn ∈
Σn is a finite sequence of n symbols over Σ, and |w| = n denotes the size
of the word. We use ε to denote the empty word. A subword or a factor of a
word w = w1w2 · · ·wn is w′ = wi · · ·wj where 1 ≤ i ≤ j ≤ n. We use Σ∗

to denote the set of all words over Σ. Concatenation of two words x and y is
denoted by x · y, or simply xy.

A word rewriting system (Σ,R) consists of an alphabet Σ and a set R ⊆
Σ∗ × Σ∗ of rewriting rules. An element (x, y) of R is called a rewriting rule,
and is written as x → y. In general, we may rewrite uxv as uyv for u, v ∈ Σ∗
if (x, y) ∈ R, and denote by uxv → uyv. For a sequence of words u = x1 →

DNA Origami Words and Rewriting Systems 3

(a)

=

(b)

=

(c)

=

(d)

Fig. 2. Graphical representation of the Jones monoid J4. (a) The generator h3 (b) The
relation h1h2h1 = h1 (c) The relation h1h1 = h1 (d) The relation h1h3 = h3h1

x2 → · · · → xn = v in a rewriting system (Σ,R), we write u→∗ v. We define an
equivalence class of a word w as [w] = {w′ | w′ →∗ w using R}. A word w0 ∈ [w]
is irreducible if |w0| ≤ |w′| for all w′ ∈ [w]. We use the lexicographically first
irreducible word ŵ of [w] as the representative word of [w]. We can define the
set of distinct equivalence classes O, and refer to an equivalence class in O by its
representative word if the context is clear. The readers may refer to Book and
Otto [2] for more information about word rewriting systems.

The Temperley-Lieb algebra TLn has been extensively studied in physics
and knot theory [8]. The monoid versions of Temperley-Lieb algebras, called
Kauffman monoids and Jones monoids Jn, have been also well studied [3,7,9].
The generators of Jn are h1, . . . , hn−1 and satisfy three classes of relations:

1. hihjhi = hi for |i− j| = 1
2. hihi = hi
3. hihj = hjhi for |i− j| ≥ 2

The generators and relations can be represented graphically as in Fig. 2 [9].
Each generator hi in Jn is part of a structure that has n + 1 vertical lines
such that a line connects the top (and bottom) ith and i + 1st endpoint. The
generator h3 in J4 is presented in Fig. 2 (a), connecting the 3rd and the 4th top
and bottom points respectively. Multiplication of two elements corresponds to
concatenation of diagrams, placing the diagram of the first element on top of the
second, and removing closed loops. The relations 1 to 3 can also be expressed
graphically as in Fig. 2 (b) to (d), respectively. Two elements in the Jones monoid
are equal if their graphical representations are equivalent, that is, they have the
same set of connecting segments except loops. For any two elements that have
equivalent diagrams, one word can be rewritten to the other using the sequence
of relations 1 to 3. In simplification of the DNA origami structure, we take the
similar approach that we only take the account of scaffolds and staples that are
visible at the borderline of the whole structure. Thus, we use the Jones monoid
as a base to construct DNA origami words and rewriting systems.

3 DNA Origami Words and Rewriting Systems

3.1 DNA Origami Words

We focus on rectangular DNA origami structures. They can be formed through
variety of ways to fold a scaffold strand and organize the staples connecting

4 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

the scaffolds. We present an algebraic way to distinguish these different ways
of obtaining the same overall shape. We take basic unit structures (modules)
that construct the structure and associate symbols (generators) to these basic
modules. Based on graphical diagrams, and inspired by the Jones monoid dia-
grams, we define equivalence of two origami structures. We define corresponding
rewriting rules that realize the equivalence in the graphical diagrams.

α1 α2 β1 β2

1t 2t 2t 3t

1b 2b 2b 3b

1t 2t 2t 3t

1b 2b 2b 3b

Fig. 3. Graphical representation of units of αi and βi. Scaffolds are represented by
black lines and staples are represented by red dotted lines. For better visibility, staples
are shifted right.

In the DNA origami structure, we observe that the structure has columns
made of scaffolds, and staples go along the scaffolds. Between two columns,
there are points where two adjacent scaffolds cross, and also points where two
adjacent staples cross. In addition, scaffolds and staples have directions: adja-
cent scaffolds are anti-parallel, and a scaffold is anti-parallel to the staple on
the scaffold. We represent a graphical structure with types of directed segments
and the corresponding end-point connections. In addition, in order to define
composition of structures when staples are missing in some parts of the struc-
tures, we consider ‘virtual’ staples. We use p = it (ib) to represent a point
at the top (bottom) of the ith column. We assume that scaffolds at the ith
column go downward if i is odd, and upward if i is even. Hence, a graphi-
cal structure is a tuple (Rsca,Vsca,Rsta,Vsta) of sets of ordered pairs (p, q) of
points p, q ∈ {ix | 1 ≤ i ≤ n, x = t or b}. The set Rsca (Rsta) contains ordered
pairs (p, q) of points, each pair representing a real scaffold (staple) starting from
p and ending at q, respectively. The set Vsca (Vsta) contains ordered pairs of
points that represent virtual scaffolds (staples), which are not visible. Namely,
for columns without scaffolds (staples), we assume that there exist straight scaf-
folds (staples) which are not visible, for convenience of definition of concatena-
tion. For an ordered pair (p, q) of points, we define the reversal pair as (q, p). We
define basic modules and corresponding generators, given n as the width of the
structure. We use Σn = {αi, βi | 1 ≤ i ≤ n− 1} as an alphabet for DNA origami
words with the order α1 < · · · < αn−1 < β1 < · · · < βn−1. For each generator αi,
βi, Table 1 shows the set of pairs of scaffolds and staples that describe structures
between the ith and the i+1st columns. The four pairs that describe αi (resp.
βi) are called units for αi (resp. βi). The units of the generator αi (βi) are shown
in Fig. 3.

Each generator γi ∈ Σn has a context C(γi) which consists of pairs (kt, kb) and
their reverses for k 6∈ {i, i+ 1}. The pairs in C(γi) can be real or virtual. Table 1

DNA Origami Words and Rewriting Systems 5

Rsca Rsta

αi (ib, it), (i+1t, i+1b) (it, i+1t), (i+1b, ib)
βi (i+1t, it), (ib, i+1b) (it, ib), (i+1b, i+1t)

Table 1. Units for generators of odd i’s (pairs are reversed for even i’s).

k 6∈ {i, i + 1} Rsca Vsca Rsta Vsta

Gmax(n) odd k (kb, kt) (kt, kb)
even k (kt, kb) (kb, kt)

Gsta(n) odd k (kb, kt) (kt, kb)
even k (kt, kb) (kb, kt)

Gmin(n) odd k (kb, kt) (kt, kb)
even k (kt, kb) (kb, kt)

Table 2. Summary of the context for odd i’s (pairs are reversed for even i’s).

describes an example of three situations that can be used for three different
descriptions of graphical structures Gmax(n), Gsta(n), Gmin(n), each representing
γi.

We note that in Gmax(n) the context C(γi) has both Vsca and Vsta empty,
while in Gsta(n) the context C(γi) has Vsca = ∅. In the case of Gmin(n), all pairs
of the context C(γi) are virtual. Graphical structures of α2’s in different G’s are
shown in Fig. 4.

Gmax(5)

Gmid(5)

Gmin(5)

“virtual” scaffolds and staples

(5b, 5t) ∈ Rsca

(5t, 5b) ∈ Rsta

(5t, 5b) ∈ Vsta

(5b, 5t) ∈ Vsca

(5b, 5t) ∈ Rsca

(5t, 5b) ∈ Vsta

Fig. 4. Different graphical structures of α2’s in Gmax(5), Gsta(5) and Gmin(5). Virtual
scaffolds and staples are colored in gray.

Concatenation of words and the corresponding graphical structure is defined
similarly as in the Jones monoid diagrams. Graphical structures that correspond
to words in Σ∗n are obtained by joining graphical structures of generators as ex-

6 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

plained below. Concatenating two words correspond to joining graphical struc-
tures. We place the graphical structure of the first word on top of the second and
connect the vertical lines that meet. In the case of existence of virtual staples
or scaffolds do the following: If a real scaffold (staple) meets a virtual scaffold
(staple), then the virtual scaffold (staple) becomes real.

α1

α1β2

α1β2α1 = α1β2

⇒

⇒ ⇒

Fig. 5. Concatenation of α1β2 and α1 under Gmin(3)

Fig. 5 shows concatenation of α1β2 and α1 under Gmin(3). Formally the graph-
ical structure of a word w = w1w2 is defined as follows: Suppose we have two
words w1 and w2 with graphical structures G(w1) = (Rsca1,Vsca1,Rsta1,Vsta1)
and G(w2) = (Rsca2,Vsca2,Rsta2,Vsta2) respectively, then we obtain the graph-
ical structure G(w) = (Rsca,Vsca,Rsta,Vsta) with the following: The scaffold
sets (Rsca and Vsca) are obtained with the procedure (the staples follow an
equivalent procedure):

1. For all ordered pairs in Rsca1 and Vsca1, replace the subscript b by m.
2. For all ordered pairs in Rsca2 and Vsca2, replace the subscript t by m.
3. Let Rsca = Rsca1 ∪Rsca2 and Vsca = Vsca1 ∪ Vsca2.
4. (Connecting scaffolds) Repeatedly find one of the following pairs of scaffolds

if possible and do the corresponding process. Otherwise, move to the next
step.
(a) If there exist (p, im), (im, q) ∈ Rsca, delete them and add (p, q) to Rsca.
(b) If there exist (p, im) ∈ Rsca and (im, q) ∈ Vsca, delete them and add

(p, q) to Rsca.
(c) If there exist (p, im) ∈ Vsca and (im, q) ∈ Rsca, delete them and add

(p, q) to Rsca.
(d) If there exist (p, im), (im, q) ∈ Vsca, delete them and add (p, q) to Vsca.

5. For every pair (p, q) ∈ Rsca ∪ Vsca, delete it if p or q has subscript m.

Fig. 6 describes concatenation process of scaffolds. We replace the subscripts
for the bottom points of w1 and the top points of w2 by m, which denotes the

DNA Origami Words and Rewriting Systems 7

jt

jm

jb

w1

w2

⇒

jt

jm

jb

w1

w2

⇒

jt

jb

w1w2

Fig. 6. Scaffold concatenation of w1 and w2. Real scaffolds are represented by thick
lines for better visibility.

middle points. Then, we repeatedly search for pairs of scaffolds that meet at the
middle and connect them. We regard the connected scaffold to be virtual only
if both original scaffolds were virtual (step 4 (d)). Finally, we delete all pairs
of scaffolds whose endpoints are at the middle, this includes all internal loops.
Based on Tables 1 and 2, we can define G’s as the sets of all graphical structures
that can be constructed by concatenation of generators.

3.2 DNA Origami Rewriting Systems

It is straightforward that for any alphabet, given two words, the graphical struc-
ture of their concatenation is unique. Thus, if G(w1) = G(w2) under a G, we may
say w1 ∼ w2 under a G and define a rewriting rule w1 ↔ w2 between two equiv-
alent words. Due to difference of context structures, rewriting rules for Gmax(n),
Gsta(n) and Gmin(n) differ from each other. For each structure, we find the set of
basic rewriting rules that is sufficient to describe equivalence, and analyze the
set of distinct equivalence classes.

Gmax(n) Case We first observe that all staples and scaffolds in Gmax(n) are
real. We observe that staples in αi (and scaffolds in βi) are identical to the
diagram of hi in Jn except directions, and directions of scaffolds and staples
do not make conflict in concatenation, which results in bijection between them.
Moreover, scaffolds in αi (and staples in βi) are straight and do not affect the
structure of scaffolds (staples) when concatenated. For convenience, we use γ
and δ to represent an arbitrary generator, and γ to denote the complementary
generator of γ. Then we have the inter-commutation rewriting rule γiγj ↔ γjγi
as in Fig. 7.

We may apply rewriting rules from Jn separately to wa and wb, resulting in
the following rewriting rules:

1. (inter-commutation rule) γiγj ↔ γjγi
2. (idempotency rule) γiγi ↔ γi
3. (intra-commutation rule) γiγj ↔ γjγi for |i− j| ≥ 2
4. (TL relation rule) γiγjγi ↔ γi for |i− j| = 1

8 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

↔

α1β1 β1α1 α1β2 β2α1

↔

Fig. 7. Inter-commutation rewriting rule for Gmax(3)

Based on the set Rmax(n) of these rules, we can define the set Omax(n) of distinct
equivalence classes. We say that a rule is non-increasing if the resulting word
is not longer than the original word. In the above rules, rules 1,3 and right
directions of rules 2 and 4 form the set of non-increasing rules. We call a sequence
of rewriting rules with only non-increasing rules as non-increasing rewriting.

Let Σ(α)n = {α1, . . . , αn−1} and Σ(β)n = {β1, . . . , βn−1}. Using the inter-
commutation rule, we may rewrite any word w to wawb, where wa ∈ Σ∗(α)n
and wb ∈ Σ∗(β)n. We say that such word wawb is in an inter-commutation-
free form. Also, using intra-commutation rules, we may set additional conditions
for wa = (αi1αi1−1 · · ·αk1)(αi2αi2−1 · · ·αk2) · · · (αipαip−1 · · ·αkp) where ip is the
maximum subscript in wa, ij+1 > ij and kj+1 > kj for 1 ≤ k < p, and similar
condition for wb. Such wa and wb are unique [7], and we call such wawb as a
commutation-free form of w.

We may regard the graphical structure of a word as a pair of scaffolds and
staples, which can be regarded as two independent Jones monoid diagrams.
Knowing that the relations 1 to 3 of the Jones monoid can sufficiently describe
equivalence of diagrams, we have the following theorem:
Theorem 1. For all w1, w2 ∈ Σ∗n, G(w1) = G(w2) under Gmax(n) if and only if
w1 →∗ w2 using Rmax(n). In other words, there exists bijection between Gmax(n)
and Omax(n).

Given n, the number of elements of Jn is equal to the Catalan number Cn =
1

n+ 1

(
2n
n

)
[9], and the maximum size of the element is

⌊
n2

4

⌋
[4,7]. Thus, the

following remark holds.

Remark 1. Given n, |Omax(n)| =
(

1
n+ 1

(
2n
n

))2
, and the maximum size of a

representative word in Omax(n) is 2
⌊
n2

4

⌋
.

We may regard relations 1 to 3 of the Jones monoid as rewriting rules, and
define the set Oj(n) of distinct equivalence classes. Since the graphical structures
in Gmax(n) correspond to products of two Jones monoid diagrams, we first prove
the following Lemma about the Jones monoid and use it to prove correctness of
the proposed optimization algorithm.

Lemma 1. Given two elements w1, w2 ∈ Jn where w2 ∈ [w1] is irreducible, we
can non-increasingly rewrite w1 as w2.

DNA Origami Words and Rewriting Systems 9

Proof. The detailed proof is given in Appendix A.

Theorem 2. Given a word w0 ∈ [w0] ∈ Omax(n) of size m, we can find an
irreducible word of [w0] within O(nm2) time.

Proof. For given w0, we first rewrite w0 as w in the inter-commutation-free form,
which takes O(m2) time. Then we repeatedly find one of the following conditions
in w if possible and rewrite w accordingly:
1. If w = v1γiv2γiv3 where v1, v2, v3 ∈ Σ∗n and v2 does not have γi+1, γi and
γi−1, then rewrite w as v1v2γiv3.

2. If w = v1γiv2γjv3γiv4 where v1, v2, v3, v4 ∈ Σ∗n, |i− j| = 1 and v2, v3 do not
have γi+1, γi and γi−1, then rewrite w as v1v2γiv3v4.

It is straightforward that two rewritings can be done non-increasingly. We can
iterate i’s in the condition 1 and (i, j = i+1 or i−1)’s in the condition 2 to check
if w satisfies the given form for given i in O(m) time. It takes O(nm) time to do
one rewriting in 1 or 2, which decreases the size of the word by a constant. Thus,
it takes O(nm2) to finish the whole process. If we consider the final word w′,
conditions in 1 and 2 are no longer satisfied and there is no sequence of non-
increasing rules that decreases the size of the word. Then, w′ becomes irreducible
from Lemma 1.

Gsta(n) Case Similar to the Gmax(n) case, we have the following rewriting rules:
1. (Inter-commutation) γiγj ↔ γjγi
2. (Idempotency) γiγi ↔ γi
3. (Intra-commutation) γiγj ↔ γjγi for |i− j| ≥ 2

⇒

α1α2α1

α1

=

(a)
α1α2α1β2

⇒ ↔

α1β2

(b)

Fig. 8. Examples of equivalence in Gsta(3). (a) α1α2α1 � α1 (b) α1α2α1β2 ∼ α1β2

Due to the lack of default real staples in generators, we cannot directly in-
troduce the rewriting rule γiγjγi ↔ γi for |i − j| = 1. For example, we cannot
rewrite α1α2α1 as α1, since α1α2α1 has a straight real staple at the third column
while α1 does not (See Fig. 8 (a).). We introduce the span of a word w as the
set span(w) =

⋃
γj in w

{j, j + 1} of columns.

10 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

Lemma 2. Under Gsta(n), the span equals to the set of columns where real sta-
ples exist.

Proof. The detailed proof is given in Appendix B.

It is straightforward that two equivalent words should have the same span,
and rewriting rules in the Jones monoid can be applied when both sides have the
same span. For example, α1α2α1β2 ↔ α1β2 holds as in Fig. 8 (b). In general,
we have the following additional rewriting rules, where δ ∈ {α, β} and v ∈ Σ∗n:

4. δjvγiγi−1γi ↔ δjvγi if j = i− 1 or i− 2
5. δjvγiγi+1γi ↔ δjvγi if j = i+ 1 or i+ 2
6. γiγi−1γivδj ↔ γivδj if j = i− 1 or i− 2
7. γiγi+1γivδj ↔ γivδj if j = i+ 1 or i+ 2

Rules 4 to 7 can be rewritten using rules 1 to 3 and the subset of rules 4 to
7. Before finding such subset, we define a zig-zag word w ∈ Σ∗n to be a word
where each pair of adjacent generators in w have adjacent indices. We call a
maximal subword of increasing (decreasing) indices as zig (zag). For example,
w = α3α4α3α2α1α2 is a zig-zag word with a zig-zag-zig sequence in the word.
Using rules 2 to 7, we can rewrite any zig-zag word that consists of single gen-
erators type γ as a zig-zag word with at most three zigs or zags, which we call
the zig-zag normal form.

Theorem 3. For w1 = δjvγiγi−1γi and w2 = δjvγi where j = i− 1 or i− 2, we
can rewrite w1 as w2 using rules 1 to 3 and the following rule: γjvγiγi−1γi ↔
γjvγi where v ∈ Σ∗(γ)n and v = ε or γjvγi is in the zig-zag normal form.

Proof. The detailed proof is given in Appendix C.

Similar simplification works for rules 4 to 7, and we may use the following
rewriting rules for v ∈ Σ∗(γ)n and v = ε or γjvγi in rule 4 and 5 (γivγj in rule 6
and 7) is in the zig-zag normal form:

4. γjvγiγi−1γi ↔ γjvγi if j = i− 1 or i− 2
5. γjvγiγi+1γi ↔ γjvγi if j = i+ 1 or i+ 2
6. γiγi−1γivγj ↔ γivγj if j = i− 1 or i− 2
7. γiγi+1γivγj ↔ γivγj if j = i+ 1 or i+ 2

For given n, let the set Rsta(n) of rewriting rules consist of the above seven
kinds of rules for 1 ≤ i, j ≤ n. We can define the rewriting system Osta(n) =
(Σn, Rsta(n)).

Theorem 4. For all w1, w2 ∈ Σ∗n, G(w1) = G(w2) under Gsta(n) if and only if
w1 →∗ w2 using Rsta(n). In other words, there exists bijection between Gsta(n)
and Osta(n).

Proof. The detailed proof is given in Appendix D.

DNA Origami Words and Rewriting Systems 11

We compute the number of equivalence classes of words in |Osta(n)|. We use a
binary string of length n to represent the graphical structures in Gsta(n) such that
the ith bit equals 1 if and only if the ith staple and the the ith scaffold is a straight
line. Each binary string is uniquely determined with a tuple (a1, b1, . . . , ak, bk)
where ai (bi) represents the number of ith consecutive 0’s (1’s). For example, the
8-bit binary string 00111000 corresponds to a tuple (2, 3, 3, 0). In particular, the
bit 0 corresponds to (1, 0) and the bit 1 to (0, 1). The set of tuples corresponding
to binary strings of length n is denoted Tn = {p = (a1, b1, . . . , ak, bk) | k ≥

1, for all i, ai, bi ∈ N0 and
k∑
i=1

(ai + bi) = n}.

Theorem 5. Given n ∈ N0, for each tuple p ∈
⋃

1≤i≤n
Ti, let D(p) ∈ N0 be

recursively defined as follows:

– for p ∈ T0, D(0, 0) = 1.
– for p ∈ T1, D(p) = 1 if p = (0, 1) and D(p) = 0 if p = (1, 0).

– for p = (a1, b1, . . . , ak, bk) ∈ Tn, (n > 0) we have D(p) =
k∏
i=1

D(ai, 0).

– for n > 1, we have D(0, n) = 1 and D(n, 0) =
(

1
n+ 1

(
2n
n

))2
−

∑
p∈Tn\{(n,0)}

D(p).

Then, |Osta(n)| is given as

|Osta(n)| = d(n) =
∑
p∈Tn

[D(p)× x(p)]− n.

where

x(a1, b1, . . . , ak, bk) =



(b1 + 1) if k = 1,

(b1 + 1) ·
k−1∏
i=2

(
bi(bi + 1)

2 + 1
)
· (bk + 1) if k 6= 1, a1 = 0,

k−1∏
i=1

(
bi(bi + 1)

2 + 1
)
· (bk + 1) if k 6= 1, a1 > 0.

Proof. The detailed proof is given in Appendix E.

The sequence d(n) for 1 ≤ n ≤ 10 is 1, 4, 31, 253, 2247, 21817, 227326, 2499598,
28660639, 339816259. It is not listed in the OEIS [13] list of sequences, and the
non-recursive formula of d(n) is still open.

Theorem 6. An upper bound of the size u(n) of a maximum representative word
in Osta(n) is given by 2n − 2.

Proof. The detailed proof is given in Appendix F.

12 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

The bound in Theorem 6 is not tight, and the exact size of a maximum
irreducible word is open.

Theorem 7. Given a word w0 ∈ [w0] ∈ Osta(n) of size m, we can find an
irreducible word of [w0] within O(nm2) time.

The proofs of Lemma 1 and Theorem 2 work similarly for Theorem 7. We
first rewrite w0 as w in the inter-commutation-free form. Then we repeatedly
find one of the following conditions in w if possible and rewrite w accordingly:

1. If w = v1γiv2γiv3 where v1, v2, v3 ∈ Σ∗n and v2 does not have γi+1, γi and
γi−1, then rewrite w as v1v2γiv3.

2. If w = v1γiv2γi+1v3γiv4 where v1, v2, v3, v4 ∈ Σ∗n, v2, v3 do not have γi+1, γi
and γi−1, there exists δi+1 in v1 or v4, or δi+2 in v1, v2, v3 or v4, then rewrite
w as v1v2γiv3v4.

3. If w = v1γiv2γi−1v3γiv4 where v1, v2, v3, v4 ∈ Σ∗n, v2, v3 do not have γi+1, γi
and γi−1, there exists δi−1 in v1 or v4, or δi−2 in v1, v2, v3 or v4, then rewrite
w as v1v2γiv3v4.

3.3 Concluding Remarks

We have proposed modules and corresponding generators for DNA origami struc-
tures, defined concatenation of words and rewriting rules, and analyzed equiv-
alence classes based on graphical equivalence. One model that we have not dis-
cussed is Gmin(n). For Gmin(n), seven types of rewriting rules for Gsta(n) hold.
Moreover, we may prove that Theorem 4 holds for Gmin(n) using the similar
proof. It turns out that there is bijection between Gsta(n) and Gmin(n), and
Osta(n) = Omin(n).

Graphical structures corresponding to generators αi’s and βi’s in Fig. 3 de-
scribe crossing of scaffolds and staples in DNA origami well, while using only two
types of generators. Here we explore possible further development of generators
that are more plausible to DNA origami.

The first observation on the current generators is that they are vertically and
horizontally symmetric (without directions), which causes the graphical struc-
ture to always have a cup-shaped fragment of a real scaffold at the top as in Fig. 9
(a). DNA origami does not have such fragments at the border of the structure,
which leads us to revise generators to define such borders. Fig. 9 (b) proposes
four different generators that are used to substitute α1. In these generators, we
introduce asymmetric structures that can be used to construct borders of the
structure. We may define generators for β similarly. Under the assumption that
we use the same concatenation procedure, for a graphical structure that corre-
sponds to α1, we can make arbitrary number of scaffolds and staples virtual by
concatenation of four new generators as in Fig. 9 (c). Now, suppose we define
the rewriting system based on equivalence under such generators. For each pair
of diagrams of Jn, we have 2n staples and scaffolds which can become virtual.
From analysis similar to the proof of Theorem 5, the size of the set of equivalence

DNA Origami Words and Rewriting Systems 13

classes becomes
((

1
n+ 1

(
2n
n

))2
− 1
)
·22n+ 1. The set of rewriting rules that

are sufficient to describe equivalence under such generators is open.

α∩1

α∪1

α⊳1α⊲1α⊳1

α∩1α⊳1α⊲1

α⊳1α⊲1α∪1

α∩1α⊳1α⊲1α∪1

α⊳1

α∩1α⊳1

α⊳1α∪1

α∩1α⊳1α∪1

α⊲1

α⊲1

α∩1α⊲1

α⊲1α∪1

α∩1α⊲1α∪1

α∪1α∩1

α∩1

α∪1

α∩1α∪1

(b) (c)(a)

Fig. 9. (a) In a graphical structure generated from αi’s and βi’s, there always exists
a cup-shaped fragment of a real scaffold at the top (and cap-shaped fragment at the
bottom). (b) Four revised generators that substitutes α1. Virtual scaffolds and staples
are colored in gray. (c) We can make arbitrary staples and scaffolds in α1 virtual.

The second observation on the current generators is that we do not consider
which side of the scaffold the staple is on. In the DNA origami structure, staples
can be on the left or the right of the scaffold, and these two cases are distin-
guished. Moreover, for two adjacent staples at the opposite side of the same
scaffold, they either disconnect or connect by crossing the scaffold. To model
this observation, we may introduce revised graphical structures for α and β as
in Fig. 10 (a). Staples are either at the left or the right of the scaffold, and some
staple ends are extending which can be connected to other staples regardless of
the side. We assume that two adjacent staples can be connected except when
two are non-extending ends and at the opposite side. This additional condition
for staple connection changes some of the commutation rewriting rules—for ex-
ample, α1β1 = β1α1 as in Fig. 10 (b). Algebraic analysis on relations based on
such generators is done by Garrett et al. [6]. The set of rewriting rules that are
sufficient to describe equivalence under such generators is still open.

Acknowledgment

This work is partially supported by NIH R01GM109459, and by NSF’s CCF-
1526485 and DMS-1800443. This research was also partially supported by the
Southeast Center for Mathematics and Biology, an NSF-Simons Research Center
for Mathematics of Complex Biological Systems, under National Science Foun-
dation Grant No. DMS-1764406 and Simons Foundation Grant No. 594594.

14 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

(a)

α1 β1

α1β1 β1α1

=

(b)

Fig. 10. (a) Revised generators α1 and β1. Two diagonal ends of staples in α1 represent
extending staple-ends. (b) Adjacent staples can be connected except when two are non-
extending ends and at the opposite side.

References

1. T. Bhuvana, K. C. Smith, T. S. Fisher, and G. U. Kulkarni. Self-assembled
CNT circuits with ohmic contacts using Pd hexadecanethiolate as in situ solder.
Nanoscale, 1(2):271–275, 2009.

2. R. V. Book and F. Otto. String-rewriting Systems. Springer, 1993.
3. M. Borisavljević, K. Došen, and Z. Petric. Kauffman monoids. Journal of Knot

Theory and its Ramifications, 11(2):127–143, 2002.
4. I. Dolinka and J. East. The idempotent-generated subsemigroup of the Kauffman

monoid. Glasgow Mathematical Journal, 59(3):673–683, 2017.
5. Y. Eichen, E. Braun, U. Sivan, and G. Ben-Yoseph. Self-assembly of nanoelec-

tronic components and circuits using biological templates. Acta Polymerica, 49(10-
11):663–670, 1998.

6. J. Garrett, N. Jonoska, H. Kim, and M. Saito. Algebraic systems for DNA origami
motivated from Temperley-Lieb algebras. CoRR, abs/1901.09120, 2019.

7. V. F. R. Jones. Index for subfactors. Inventiones Matheematicae, 72:1–25, 1983.
8. L. H. Kauffman. Knots and Physics. World Scientific, 2001.
9. K. W. Lau and D. G. FitzGerald. Ideal structure of the Kauffman and related

monoids. Communications in Algebra, 34(7):2617–2629, 2006.
10. J. Li, C. Fan, H. Pei, J. Shi, and Q. Huang. Smart drug delivery nanocarriers with

self-assembled DNA nanostructures. Advanced Materials, 25(32):4386–4396, 2013.
11. P. W. K. Rothemund. Design of DNA origami. In Proceedings of 2005 International

Conference on Computer-Aided Design, pages 471–478, 2005.
12. P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.

Nature, 440(7082):297–302, 2006.
13. The on-line encyclopedia of integer sequences. https://oeis.org/.
14. R. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, and M. Bathe.

Designer nanoscale DNA assemblies programmed from the top down. Science,
352(6293):1534, 2016.

15. G. Verma and P. A. Hassan. Self assembled materials: design strategies and drug
delivery perspectives. Physical Chemistry Chemical Physics, 15(40):17016–17028,
2013.

16. G. M. Whitesides and M. Boncheva. Beyond molecules: Self-assembly of mesoscopic
and macroscopic components. Proceedings of the National Academy of Sciences of
the United States of America, 99(8):4769–4774, 2002.

https://oeis.org/

DNA Origami Words and Rewriting Systems 15

A Proof of Lemma 1

We recall the rewriting rules for Jn.

1. hihi ↔ hi
2. hihj ↔ hjhi for |i− j| ≥ 2
3. hihjhi ↔ hi for |i− j| = 1

We rewrite the statement as follows: Suppose w1, w2 ∈ Jn, w2 is irreducible
and we can rewrite w1 as w2 using t rules. Then, for all t ≥ 1, there exists a
sequence of non-increasing rules that rewrites w1 as w2. We prove the statement
by induction on t.

– When t = 1, we have w1 which can be rewritten as w2 using one rule. Since
w2 is irreducible, the rule should be non-increasing.

– Suppose the statement holds for all t ≤ x. When t = x + 1, we have the
sequence of x + 1 rewriting rules that rewrites w1 as w2. If the first rule is
non-increasing, then we can rewrite w1 as w2 by a sequence of non-increasing
rules using the induction hypothesis. Now, we assume that the first rule is
increasing and the rest of the rules are non-increasing. Note that rule 2 is
the only rule that changes location of generators. Moreover, applying rules
1 or 3 on a word do not result in an additional pair of generators that rule
2 can be applied.
• If the first rule is rule 1 (hi → hihi), the resulting two αi’s should

be involved in non-increasing rule 1 or 3 in the following sequence. The
straight sequence of Fig. 11 (a) shows an example of such sequence where
the left hi is used in rule 1 and the right hi is used in rule 3, where blue
areas represent generators that hi can switch the location with using
rule 2. For such sequence, we can always find another sequence without
increasing rules as the right sequence of Fig. 11 (a).
• If the first rule is rule 3 (hi → hihjhi for |i − j| = 1), the resulting hj

should be involved in non-increasing rule 1 or 3 in the following sequence.
Without loss of generality, we assume that j = i + 1. Since hi+1hi 6=
hihi+1, hj cannot be used in rule 1. The straight sequence of Fig. 11 (b)
shows an example of such sequence where the middle hj = hi+1 is used
in rule 3, and blue areas represent generators that hi+2 can switch the
location with. For such sequence, we can always find another sequence
without increasing rules as the right sequence of Fig. 11 (b).

B Proof of Lemma 2

We can prove the statement by induction on the size of the word. It is straight-
forward that the statement holds for generators. Assume that the statement
holds for all |w| = m. For a word w′ = wγi, if i and i + 1 are both in span(w),
concatenation does not change the span and the statement holds. If i or i + 1
are not in span(w), then the span has new columns, and the graphical structure
of w′ has real staples for these columns, which makes the statement true.

16 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

hihi hihj

rule 2

rule 1 (increasing)

rules 1 and 3 (non-increasing)

rule 2

rule 1

rule 2

rules 1 and 3 (non-increasing)

(a)

hi+2

rule 3 (increasing)

αi+2 hi+1

hi+1

rule 2

rule 3 (non-increasing)

rule 2

rule 1 (non-increasing)

rule 2

rule 1 (non-increasing)

(b)

hi hi hi hi

hihihihi

hi hi

hi hi

hi

hi hi hi

hi

hi hi

hihi

hi hi

hihi

hi

hi

hj

hj hj

hi+2

hi+2

hi+2hi+2

hi+2

hi+2

hi+2

hi+2hi+2

Fig. 11. Examples of sequences of rewriting rules that leads to the same element, where
one uses only non-increasing rules. (a) The first rule is rule 1. (b) The first rule is rule
3.

C Proof of Theorem 3

First, we prove that we may assume δ = γ. If δ = γ, we can rewrite v as a con-
catenation of a prefix vγ ∈ Σ∗(γ)n and a suffix vδ ∈ Σ∗(δ)n. Then, δjvγvδγiγi−1γi →
vγδjγiγi−1γivδ → vγδjγivδ → δjvγvδγi = δjvγi, and vice versa.

Second, we prove that we may assume v ∈ Σ(γ)n. If v /∈ Σ(γ)n, we can
rewrite v as a concatenation of a prefix vγ ∈ Σ∗(γ)n and a suffix vγ ∈ Σ∗(γ)n.
Then, γjvγvγγiγi−1γi → vγγjvγγiγi−1γi → vγγjvγγi → γjvγvγγi = γjvγi, and
vice versa.

Now, given δ = γ and v ∈ Σ(γ)n, we claim that we may assume v = ε or δjvγi
is in a zig-zag normal form. For rule 4, We prove the statement by induction on
the size of the maximal prefix p of v that is a zig-zag word. When p = ε, if v 6= ε,
for the first generator γk of v, k 6= j− 1, j+ 1 holds and we can switch δj and γk
when j 6= k or use rule 2 when j = k. In both cases, we can induce rule 4 using
rules with v = ε. Now assume that the statement holds for all p ∈ Σ(γ)n where
|p| ≤ m. For |p| = m + 1, we may assume that δjp is in a zig-zag normal form,
since rewriting to a zig-zag normal form can be done by rules in the induction
hypothesis. We define the max index max(p) (min index min(p)) of δjp to be
the maximum (minimum) index of generators in δjp. The m+2nd generator γt
of v can switch with the last generator of p, and we have the following cases:

1. If t > max(p) + 1, we can move γt to the left of δj and the statement holds.
2. If t = max(p)+1, we consider two cases. If δjp has only a zig, then γt extends

the zig and the statement holds. If δjp has a zig and a zag, then there exists
a subword γmax(p)−1γmax(p)γmax(p)−1 in p. We can rewrite the subword as
γmax(p)−1 using rules in the induction hypothesis, and then move γt to the
left of δj .

3. If min(p) ≤ t ≤ max(p), we can move γt into δj so that δj has a sub-
word γtγsγt where |s− t| = 1. We can rewrite the subword as γt using rules
in the induction hypothesis.

DNA Origami Words and Rewriting Systems 17

4. If t = min(p) + 1, the case is similar to the case of t = max(p) + 1.
5. If t < min(p) + 1, we can move γt to the left of δj and the statement holds.

The above case analysis also holds for p = v, and we can claim that δjvγi is in
a zig-zag normal form.

D Proof of Theorem 4

Note that if w1 →∗ w2 using Rsta(n), then G(w1) = G(w2) under Gsta(n) from
definitions of rewriting rules. If G(w1) = G(w2) under Gmax(n) and span(w1) =
span(w2), then G(w1) = G(w2) under Gsta(n). Moreover, if G(w1) = G(w2)
under Gmax(n) and span(w1) 6= span(w2), then G(w1) 6= G(w2) under Gsta(n)
from Lemma 2. Thus, G(w1) = G(w2) under Gsta(n) if and only if Gmax(n) and
span(w1) = span(w2). From Theorem 1, the set of the following (general) rules
are sufficient to describe equivalence under Gmax(n) when v1, v2 ∈ Σ∗n.

1. v1γiγjv2 ↔ v1γjγiv2
2. v1γiγiv2 ↔ v1γiv2
3. v1γiγjv2 ↔ v1γjγiv2 for |i− j| ≥ 2
4. v1γiγjγiv2 ↔ v1γiv2 for |i− j| = 1

Now, there exists a set P of a pair (w1, w2) of words where G(w1) = G(w2)
under Gmax(n) and Gsta(n), a set H of a pair (w3, w4) of words where G(w3) =
G(w4) under Gmax(n) and G(w3) 6= G(w4) under Gsta(n), and the other set N of
a pair (w5, w6) of words where G(w5) 6= G(w6) under Gmax(n) and Gsta(n). The
sets P,H,N are disjoint and P ∪ H ∪ N = Σ∗n × Σ∗n. For each pair in P (H),
there exists the set of all sequences of rules in Rmax(n) that rewrites w1 as w2
(w3 as w4). Now, Rmax(n) can be partitioned into two sets Rdiff and Rsame,
where all rules in Rdiff have different span for two sides and all rules in Rsame
have the same span for two sides. Then, the following statements hold:

1. For a pair (w1, w2) ∈ P , there exists a sequence of rules that rewrites w1
as w2 only using rules in Rsame: For a pair (w1, w2) ∈ P , there exists a
word w3 which is irreducible in Omax(n) and (w1, w3), (w2, w3) ∈ P . From
Lemma 1, there exists a sequence of non-increasing rules that rewrite w1 as
w3. We observe that the only rules that changes the size of the word are
rule 2 and 4. Rule 2 does not change the span, and non-increasing rules in
rule 4 do not increase the size of the span. Since w1 ∼ w3 under Gsta(n),
span(w1) = span(w3). Thus, there exists a sequence of rules that rewrites
w1 as w3 only using rules in Rsame. The same statement holds for w2, which
yields a sequence of rules that rewrites w1 as w2 only using rules in Rsame.

2. For a pair (w3, w4) ∈ H, all sequences of rules that rewrite w3 as w4 have a
rule from Rdiff .

Since Rsame ⊆ Rmax(n), for a pair (w5, w6) ∈ N , w5 cannot be rewritten as
w6 using Rsame. Then, we can claim that a pair (w1, w2) is in P if and only
if w1 →∗ w2 using Rsame. Rules 1 to 3 from Rmax(n) have the same span for

18 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

the both sides, and they are in Rsame. For rule 4 from Rmax(n), the subset of
the rules where both sides have the same span is rules 4 to 7 in Rsta(n). Thus,
Rsta(n) = Rsame and G(w1) = G(w2) under Gsta(n) if and only if w1 →∗ w2
using Rsta(n).

E Proof of Theorem 5

ǫ α1 α2 α1α2 α2α1 α1α2α1 α2α1α2

ǫ

β1

β2

β1β2

β2β1

β1β2β1

β2β1β2

ǫ

β1

β2

β1β2

β2β1

β1β2β1

β2β1β2

α1 α2 α1α2 α2α1 α1α2α1 α2α1α2

α1β1

α1β2

α1β1β2

α1β2β1

α2β1

α2β2

α2β1β2

α2β2β1

α1α2β1

α1α2β2

α1α2β1β2

α1α2β2β1

α2α1β1

α2α1β2

α2α1β1β2

α2α1β2β1

α1α2α1β1

α2α1α2β2

Fig. 12. The set of representative words in Osta(3). Gray headers represent represen-
tative words corresponding to elements in J3, and the thick box represents the set of
representative words in Omax(3).

Fig. 12 enumerates representative words in Osta(3). We observe that the set
of representative words in Osta(n) is a superset of the set of representative words
in Omax(n). Graphically, we observe that Gsta(n) is a superset of the set of a pair
of diagrams of Jn, where we regard one as scaffolds and the other as staples. In
particular, when a consecutive set of columns adjacent to the span is occupied
with both real straight scaffold and staple, there also exists a structure with
virtual straight staples in these columns as in Fig. 13.

α1α2α3α2α1 α1α1α2α1

Fig. 13. Since the third and the fourth columns of α1α2α3α2α1 are occupied with both
real straight scaffold and staple, we also have structures where the staple at the fourth
column is virtual (α1α2α1) and staples at the third and the fourth columns are virtual
(α1).

We can classify graphical structures in Gmax(n) by using a binary b of length n,
where the ith digit has 1 if the ith column has both straight scaffold and staple,

DNA Origami Words and Rewriting Systems 19

and 0 otherwise. The set of binaries of length n has bijection with the set Tn
previously defined. Thus, let D(p) be the number of equivalence classes of words
whose graphical structures correspond to p ∈ Tn. It is straightforward that
D(0, 1) = 1 and D(1, 0) = 0. To calculate D(a1, b1, . . . , ak, bk), columns that has
1’s in the binary has only one case (straight scaffold and staple), so we need
to multiply all D(ai, 0)’s. For D(a1, 0), once we know all D(p) where p ∈ Ta1 ,

we can calculate D(a1, 0) using the fact that |Gmax(a1)|2 =
(

1
a1 + 1

(
2a1

a1

))2
is

equal to
∑
p∈Ta1

D(p).

For each D(p), we calculate the number of distinct graphical structures in
Gsta(n). Suppose we have j consecutive 1’s at the start or the end of the binary
that corresponds to p. For such sequence, we can have j+1 distinct sets of virtual
straight staples. When we have j consecutive 1’s between two consecutive 0’s,

there are
j∑
i=1

i + 1 = j(j + 1)
2 + 1 distinct sets of virtual straight staples. The

number of cases for each consecutive 1’s should be multiplied, which results in
x(p) in the Theorem. The only exception for this calculation is D(0, n) case,
where we have real straight scaffolds and staples for all columns. The only word
that corresponds to the structure is the empty word ε, and we need to subtract
n from D(0, n) · x(0, n) = n + 1, which results in the formula in the theorem.
Fig. 14 shows how we count the number of cases for each D(p).

1 1 1 1 1 1 1 1 10 0 0 0b =

Arbitrary consecutive virtual staples

1 1

4 cases 11 cases 5 cases

Fig. 14. A graphical structure corresponding to D(0, 3, 2, 4, 2, 4). The binary that cor-
responds to the structure is stated on the structure. For consecutive 1’s in the binary,
we may have arbitrary consecutive virtual staples within.

To justify the counting of virtual staples cases, we claim the following state-
ment: For a graphical structure in Gsta(n), let ti be 1 if the ith column has real
straight scaffold and straight staple, and 0 otherwise. Then, a set of maximal
consecutive columns with real straight scaffolds and staples should be adjacent
to the ith column where ti = 0, as in Fig. 15 (a). In other words, there is no set
of maximal consecutive columns with real straight scaffolds and staples where
both ends are adjacent to straight scaffolds with straight virtual staples, as in
Fig. 15 (b). We prove the statement by induction on the size of the word. It is
straightforward that the statement holds for the generators. Assume that the
statement holds for all |w| = m. For a word w′ = wγi, we observe that a column

20 James Garrett, Nataša Jonoska, Hwee Kim, and Masahico Saito

in the graphical structure of w′ can have a virtual straight staple only if it had
a virtual straight staple in the graphical structure of w. Thus, if i or i + 1 is
in span(w), the statement holds since the columns that have virtual straight
staples do not change. If i and i + 1 are not in span(w), we insert the unit of
the generator in a set of consecutive columns with straight scaffolds and virtual
staples. In that case, concatenation does not create columns that have straight
scaffolds and real staples, and the statement holds.

(a) (b)

Fig. 15. The set of maximal consecutive columns with real straight scaffolds and staples
is represented by a blue box. (a) The set is adjacent to the ith column with ti = 0 on
the left. (b) Both ends are adjacent to straight scaffolds with straight virtual staples,
which is impossible.

F Proof of Theorem 6

There exists a representative word wawb ∈ Osta(n) in a inter-commutation-free

form where |wa| = |wb| =
⌊
n2

4

⌋
, and u(n) ≥

⌊
n2

4

⌋
. Aside from wawb, we may

have representative words in Osta(n) that exploit rules 4 to 7, not satisfying the
condition that γiγjγi is reduced to γi when |i− j| = 1. Namely, we may rewrite
γi in a word w as γiγjγi and have a distinct word if staples in the resulting word
occupy at least one new column.

Given an irreducible word v of size l(v), let s(v) be the size of the span

of v. Then, s(v)
2 ≤ l(v) ≤ u(s(v) − 1) holds when v 6= ε. Now, suppose for

a word v = vavb in a inter-commutation-free form, we want to continuously
rewrite γi as γiγjγi as far as possible while making the resulting words distinct.
Let va = αi1 · · ·αip and vb = βj1 · · ·βjq . If va = ε, for a resulting word v′,
there exists a longer word αj1 · · ·αjqv

′ which is distinct. Thus, without loss of
generality, we may assume that va, vb 6= ε. Now, for the word v, l(v) = l(va)+l(vb)
and max (s(va), s(vb)) ≤ s(v) ≤ s(va) + s(vb). Each rewriting of γi to γiγjγi
increases s by 1 and l by 2, and such rewriting becomes impossible once s
becomes n+ 1. Without loss of generality, we assume that s(va) ≥ s(vb). Then,
we may have at most n+ 1− s(va) number of rewriting steps, which results in a
word of size l(va) + l(vb) + 2(n+ 1− s(va)) = 2n+ 2− 2s(va) + l(va) + l(vb) ≤

2n+2−2s(va)+2u(s(va)−1). Since u(n) ≥
⌊
n2

4

⌋
, 2n+2−2s(va)+2u(s(va)−1)

increases as s(va) increases. When s(va) = n+1, u(n) ≤ 2n+2−2(n+1)+2u(n),

DNA Origami Words and Rewriting Systems 21

which results in u(n) ≥ 0, which is trivial. For s(va) = n, u(n) ≤ 2n+ 2− 2n+
2u(n−1) = 2u(n−1)+2. From u(1) = 0, we have the upper bound u(n) = 2n−2.

	DNA Origami Words and Rewriting Systems

