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Abstract 11 

Delamination of rigid objects from an elastic substrate with finite thickness is a fundamental 12 
problem underlying applications such as marine fouling release coatings or anti-icing coatings. 13 
Most existing theoretical studies assume that delamination is driven by forces normal to the 14 
substrate surface, while in practice the delamination force may also include shear components 15 
that are parallel to the substrate surface. In this work, we consider a model system where a rigid 16 
cylindrical punch is detached from an elastic substrate under normal force, shear force or both. 17 
Our focus is to determine the pull-off force and to reveal the delamination mechanics under 18 
various geometrical and loading conditions, specifically the substrate thickness and the position 19 
and angle of the delamination force. To gain theoretical insights, we first study a plane strain 20 
model where a long rigid strip is adhered to an elastic half-space, and obtain an analytical 21 
solution revealing how the pull-off force depends on the loading position and angle. Moreover, 22 
we develop a three-dimensional finite element model to simulate the delamination of a rigid 23 
cylindrical punch from an elastic substrate with finite thickness. Three delamination modes are 24 
identified from finite element results: Mode-I crack propagation, Mode-II crack propagation, 25 
and interface cavitation. For the first two modes, we obtain empirical formulas to calculate the 26 
pull-off force using adhesion energy, substrate modulus, contact radius and substrate thickness. 27 
We also find that the analytical solution derived from the plan strain model can serve as a 28 
qualitative guide to estimate the effect of loading position and angle on the pull-off force.  29 
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1. Introduction 34 

  Adhesion of rigid objects on elastomeric coatings is a ubiquitous problem found in 35 

many engineering applications. For example, marine biofouling, caused by the undesirable 36 

attachment of marine organisms to submerged surfaces such as ship hulls, can increase the 37 

weight of marine vessels and roughen the hull surface, leading to reduced fuel efficiency1 and 38 

increased maintenance costs2. Conventional antifouling coatings are mainly based on using 39 

broad spectrum biocides to prevent the settlement and growth of marine organisms3,4. Serious 40 

environment concerns have been raised towards such toxic coatings4,5, and new non-toxic 41 

technologies to address the biofouling problem are highly desirable6–9. One approach is to 42 

implement fouling release coatings (FRCs)6 consisting of polydimethylsiloxane (PDMS) or 43 

other soft elastomers10. Instead of preventing the attachment of fouling organisms, FRCs can 44 

promote release of the already attached fouling organisms under external forces6 due to their 45 

low surface energy and compliance. Low adhesion strength is also desired for deicing or anti-46 

icing applications, i.e., to mitigate the hazardous ice accretion on aircrafts or wind turbines. 47 

Icephobic coatings based on soft elastomers11–14 have been recently developed to reduce the 48 

force required to release ice blocks from the coating surface.  49 

 50 
Figure 1 (a) Delamination of a rigid cylindrical punch from an elastic substrate under normal 51 
force. (b) Interface cavitation may occur in the limit of thin substrate (a/h >>1).   52 
 53 

  In both applications described above, the force required to delaminate a rigid object, 54 

either a barnacle or an ice block, adhered to the coating surface is an important metric for 55 

evaluating effectiveness of the coating. Theoretical modeling of the adhesion mechanics 56 

involved in the delamination process can enable the prediction of adhesive forces, and thus is 57 

an important step for designing FRCs or icephobic coatings. The most widely used model 58 



3 
 

consists of a rigid cylindrical punch, which represents the fouling organism (e.g. barnacle) or 59 

ice block, in adhesive contact with a soft elastic substrate (i.e., the coating layer) bonded to a 60 

rigid backing surface (see Fig.1a). This model was analyzed in a pioneering work by Kendall15 61 

where delamination was assumed to be driven by a force normal to the substrate. Using an 62 

energy approach, Kendall15 derived the force required to detach the punch from the substrate, 63 

referred to as the pull-off force Fc, in two limiting cases. When the substrate (thickness: h) is 64 

thick in comparison to the punch radius a, the pull-off force is 65 
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where E and ν are the Young’s modulus and Poisson’s ratio of the substrate, respectively, and 67 

Wad is the work of adhesion, i.e. the energy per unit area needed to separate the punch from the 68 

substrate. On the other hand, the thin substrate limit, namely h << a, is more useful in practice 69 

since most coatings fall into the limit. According to Kendall15, the pull-off force in the thin 70 

substrate limit is 71 
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where K is the bulk modulus. However, elastomers are typically incompressible, i.e.,ν  close 73 

to 1/2 and K approaching infinity, for which Eq.(1.2) would predict an infinite pull-off force 74 

and thus is not valid. To understand the origin of this limitation, we note that Eq.(1.2) was 75 

based on the following result for the substrate compliance C proposed by Kendall15: 76 

     2

hC
F a Kπ
∆

= =      (h << a),           (1.3) 77 

where F is the force applied to the punch and ∆ is the corresponding displacement. Note that 78 

for a flat punch with a fixed contact area and assuming linear elasticity, the mechanical response 79 

of the substrate is linear, i.e., ∆ is proportional to F. When the substrate is incompressible, 80 

Eq.(1.3) implies that the substrate compliance is zero, which further leads to the singular pull-81 

off force in Eq.(1.2). Physically this is because when the thin substrate is confined between two 82 

rigid surfaces (i.e., punch and backing surface), the incompressibility constraint can prevent 83 
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deformation of the substrate and thus diminish the compliance. This phenomenon was studied 84 

by Lin et al.16 in detail, where the compliance of thin substrate (h << a) was found to be similar 85 

to Eq.(1.3) except an additional correction factor (1 ) / [3(1 )]ν ν+ − . This correction factor is 86 

equal to 1 when ν =1/2.  87 

  The theoretical difficulty invoked by the bulk modulus in Eq.(1.2) was addressed by 88 

Yang and Li17 who performed a rigorous analysis for incompressible substrate (ν  = 1/2) with 89 

finite thickness. Specifically, they considered two different types of frictional boundary 90 

conditions, no-slip or frictionless, at two interfaces: i) between the punch and the substrate, ii) 91 

between the substrate and the backing surface. If the no-slip condition was assumed on both 92 

interfaces, the compliance C in the thin substrate limit was found to be17     93 

      
3

4

2hC
a Eπ

=             (h << a).              (1.4) 94 

In comparison to Eq.(1.3), the unbounded bulk modulus K is replaced by the Young’s modulus 95 

E in Eq.(1.4). The low compliance due to the confinement of thin substrates is reflected in the 96 

higher-order dependence of C on h/a (i.e., C ~h3/a3 instead of ~h/a as h/a → 0). The pull-off 97 

force corresponding to Eq.(1.4) was found to be17 98 
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This solution predicts that Fc scales with the coating thickness h as Fc ~h−3/2, while Kendall’s 100 

theory predicts that Fc ~h−1/2. Interestingly, the latter scaling, i.e., Fc ~ h−1/2, was often observed 101 

in experimental data with thin substrates, e.g., in adhesion experiments between plastic discs 102 

and gelatin thin films15 and between epoxy studs and silicone elastomer coatings18,19, despite 103 

the theoretical rigorousness of the solution in Eq.(1.5). Yang and Li17 showed that if the 104 

frictionless condition is assumed on both interfaces, the pull-off force is 2 8 / 3c adF a EW hπ= , 105 

much smaller than that in Eq.(1.5) since a/h>>1. This is because the frictionless interfaces 106 

allow lateral strain in the substrate and thus can relax the confinement effect. Although the 107 

scaling Fc ~ h−1/2 for frictionless interfaces is consistent with experimental observations, in 108 

practice the coating layer is typically well bonded to the backing surface20 where the no-slip 109 
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condition should prevail. Indeed, in this work we assume the elastic substrate is bonded 110 

perfectly to the rigid backing surface (see Fig.1a). On the punch/substrate interface, we assume 111 

strong friction and model it using a mixed-mode fracture criterion.      112 

  The discrepancy outlined above was reconciled by Chung and Chaudhury21 who 113 

pointed out that for very thin incompressible substrates (h << a), the delamination process does 114 

not initiate at the periphery of the punch, followed by an unstable interface crack propagation 115 

inward, as assumed by Kendall15 and Yang and Li17. Instead, delamination initiates due to the 116 

interface cavitation instability (see Fig.1b)21–26. Interface cavitation allows local delamination 117 

within the contact area and can also relax the confinement effect for thin and incompressible 118 

substrates. In this case, the pull-off force was determined through a perturbation analysis21: 119 

      2 3.3 ad
c

W EF a
h

π= ,    (h << a),                     (1.6) 120 

which gives a scaling relation Fc ~h−1/2 consistent with experimental observations. Furthermore, 121 

experimental verification of the scaling relation Fc ~ (WadE/h)1/2 was reported in Chaudhury et 122 

al.27 who used a well-defined model system to control E and Wad independently and to observe 123 

interface cavitation in situ.  124 

  All studies reviewed above are based on the assumption that the delamination force is 125 

normal to the coating surface. In reality, the delamination force can come from different 126 

physical origins depending on the applications. For example, the force to release barnacles or 127 

other fouling organisms from a FRC can be provided by the hydrodynamic shear forces for a 128 

cruising ship28, and the force for ice release can come from the aerodynamic shear force for an 129 

aircraft or the centripetal force for a rotating wind turbine. In all of these scenarios, the 130 

delamination force may include components both parallel and normal to the coating surface29,30. 131 

In particular, the adhesion strength of ice on icephobic coatings is often tested under the shear 132 

mode and reported as the average shear stress at pull-off τice, i.e., the pull-off force divided by 133 

the contact area12–14. Although many theoretical15–17,21,26,31–33 and experimental works21,23–26 134 

have been performed on the delamination mechanics under normal forces, much less work20 135 
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has been done for the mechanics of delamination under shear forces or combined normal and 136 

shear forces. The brief review above implies that even under normal delamination, the pull-off 137 

force is sensitive to the interface separation process. If shear force is present, the stress state of 138 

the substrate during delamination becomes inherently three-dimensional (3D), and a systematic 139 

understanding on how such 3D stress state affects the interface separation process is currently 140 

lacking.   141 

  The focus of this paper is on the delamination mechanics involving a rigid cylindrical 142 

punch in adhesive contact with an elastic substrate under normal and shear forces. This model 143 

system is widely used to evaluate the performance of elastomeric fouling release and icephobic 144 

coatings. The delamination of a cylindrical punch under shear forces involves 3D stress/strain 145 

states in the substrate. To gain theoretical insights towards this complex problem, we first 146 

consider a plane strain geometry in Section 2 where a rigid rectangular punch is detached from 147 

an elastic half-space (with infinite thickness), and obtain analytical solutions for the pull-off 148 

force under combined shear and normal forces. In Sections 3 and 4, we study the delamination 149 

of a rigid cylindrical punch from an elastic substrate with finite thickness using a 3D finite 150 

element (FE) model. The model is described in Section 3 while the results are presented and 151 

discussed in Section 4. Specifically, we identify the pull-off force for different substrate 152 

thickness and loading modes, based on which empirical formulas are developed. The various 153 

delamination modes revealed by the FE results and how they are related to the pull-off forces 154 

are also discussed. Conclusions are given in Section 5. 155 

 156 

2. Plane strain model: 2D analytical solution 157 

2.1 Problem description  158 

In this section, we consider the delamination of a long rigid punch from an elastic half-159 

space as shown in Fig.2a. To facilitate analysis, a Cartesian coordinate system is introduced 160 

such that the x-y plane coincides with the surface of the half-space and the z-axis is directed 161 

into the half-space. The punch, assumed to be infinitely long along the y-axis, is in adhesive 162 
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contact with the half-space and is under line forces P and Q (unit: N/m and distributed along 163 

the y-axis) that are normal and parallel to the x-y plane, respectively. The delamination process 164 

can be modeled as a two-dimensional (2D) plane strain problem in the x-z plane, as shown in 165 

Fig.2b. The origin O is located at the midpoint of the contact area which occupies the region 166 

from x = −a to x = a.  167 

We assume the half-space to be a linear elastic solid with Young’s modulus E and 168 

Poisson’s ratio ν =0.5. The latter is motivated by the fact that most of the soft fouling release 169 

or anti-icing coatings consist of silicone elastomers (e.g. PDMS) which are 170 

incompressible6,14,34. In addition, experimental measurements suggested that the adhesion 171 

strength, defined as the average normal or shear stress on the interface when pull-off occurs, is 172 

on the order of 10-100 kPa between barnacles or ice blocks with such soft substrates6,14,28. 173 

Since the Young’s modulus E for silicone elastomers is on the order of 1MPa6,14, this range of 174 

adhesion strength implies a level of strain that is roughly 1-10%. Therefore, although nonlinear 175 

effects associated with large deformation may still be important for cases with strong adhesion, 176 

linear elasticity is a relevant assumption to the fouling release or anti-icing applications. The 177 

adhesive interaction between the punch and half-space is quantified by the adhesion energy 178 

Wad (unit: J/m2), defined as the energy required to separate a unit area of contact. We assume 179 

the interface adhesion to be isotropic, meaning that Wad is independent of the local separation 180 

mode, e.g., along the normal or shear directions. In other words, Wad is independent of the 181 

mode-mixity of the interface fracture process. As a result, there can be no slip between the 182 

punch and the elastic substrate before delamination occurs. This boundary condition is different 183 

from the experimental study of Chaudhury and Kim20 on the shear induced adhesive failure 184 

between a rectangular block and a thin PDMS film where the block can slide on the PDMS 185 

film before detachment. 186 

 187 
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 188 

Figure 2 Schematic illustration of a rigid punch bonded to an elastic half-space and subjected 189 
to combined shear and normal loadings: (a) three-dimensional and (b) cross-sectional views.  190 

 191 

The two line forces P and Q, acting at the midpoint of the punch with a height H above 192 

the interface (see Fig.2b), can be combined into a resultant force F that makes an angle α with 193 

the x-axis. A positive angle α implies a counterclockwise rotation from the x-axis to the 194 

direction of F. The vertical and horizontal components of F, i.e., P and Q, will be referred to 195 

as the normal force and shear force hereafter, respectively. Simple geometrical considerations 196 

lead to the following equation: 197 

cosQ F α= , sinP F α= .                                (2.1) 198 

We emphasize that F, P and Q are “line forces” for which the unit is force per unit length. Next 199 

we derive an analytical solution illustrating how the critical force at pull-off, denoted by Fc, 200 

depends on mechanical, interface, and geometrical parameters, i.e., E, Wad, a, H and α.  201 

2.2 General solution 202 

Since the punch is assumed to be rigid, either of the two edges of the contact region can 203 
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be considered as the tip of an interface crack. Whether pull-off occurs is determined by 204 

prescribing a fracture criterion at the contact edge, i.e. G = Wad where G is the energy release 205 

rate of the interface crack. To evaluate the energy release rate and hence the pull-off force, we 206 

first need to determine the tractions within the contact region. As shown in Fig.3a, suppose the 207 

elastic half-space is subjected to a distributed normal pressure p(x) and tangential traction q(x) 208 

over the contact region (–a < x < a). The surface tractions are zero outside the contact region. 209 

The displacement components on the surface of the half-space (z =0) due to the tractions p(x) 210 

and q(x) are given35,36  211 

( ) ( ) ( ) ( )( ) ( ) ( )
2

1

2 1 1 2 1
ln

2
a x a

x a a x
u x q s x s ds p s ds p s ds B

E E
ν ν ν
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− − +  = − − − − +  ∫ ∫ ∫ ,   (2.2) 212 
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z a a x
u z p s x s ds q s ds q s ds B

E E
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π − −

− − +  = − − + − +  ∫ ∫ ∫ ,   (2.3) 213 

where ( )xu x   and ( )zu x   are the horizontal and vertical components of the surface 214 

displacement, respectively. The constants B1 and B2 need to be determined by choosing a 215 

reference datum point on the surface. They can be removed by taking gradients of the 216 

displacement components along the surface, which gives, 217 

 
( ) ( ) ( )( ) ( )
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a
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x E x s E

ν ν ν
π −

− − +∂
= − −
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= − +
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 220 

 221 
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Figure 3 (a) Schematic view of the distributed shear and normal tractions acting on the top 222 
surface of the elastic half-space. The deformed surface profile is illustrated by the blue dashed 223 
line. (b) Cross-section of the half-space and the punch under external forces. The undeformed 224 
and deformed states are illustrated with green solid lines and blue dashed lines, respectively. 225 
Point A represents the loading position and is located at the z-axis with a height H above the 226 
interface.  227 

 228 

Since rigid punch is bonded to the half-space, the surface displacements within the 229 

contact region can be specified by the motion of the punch. Specifically, the punch is expected 230 

to rotate by a small angle β under combined normal and shear forces (see Fig.3b), which leads 231 

to the following expressions for surface displacements, 232 

       ( ) ( ) ( )0 1 cosx xu x u x β= − −  ,                                 (2.6) 233 

              ( ) ( )0 sinz zu x u x β= + ,                                    (2.7) 234 

where (0)xu  and (0)zu  are surface displacement components at O where x=0. Substituting 235 

Eqs.(2.6) and (2.7) to Eqs.(2.4) and (2.5) will allow us to solve the surface tractions p(x) and 236 

q(x) from a set of coupled integral equations. When the incompressibility of the half-space, i.e., 237 

ν =0.5, is assumed, the normal and shear components are decoupled, leading to the following 238 

equations for p(x) and q(x): 239 

( )31 cos
2

ax
a

q su ds
x E x s

β
π −

∂
= − = −

∂ −∫ ,                            (2.8) 240 

( )3sin
2

az
a

p su ds
x E x s

β
π −

∂
= = −

∂ −∫ .                              (2.9) 241 

Moreover, equilibrium of the rigid punch implies the following force and moment balance 242 

equations: 243 

    ( )
a

a
Q q x dx

−
= ∫ ,               (2.10) 244 

    ( )
a

a
P p x dx

−
= −∫ ,              (2.11) 245 
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    ( )
a

a
QH xp x dx

−
= ∫ .               (2.12) 246 

Note that Eq.(2.12) results from the moment balance of the rigid punch about the point O. 247 

Combing Eqs.(2.8)-(2.11), we can obtain the following solutions for the surface tractions: 248 

( ) ( )
( ) ( )1/2 1/22 2 2 2

2 1 cos
,

3
E x Qq x a x a

a x a x

β

π

−
= − + − ≤ ≤

− −
 ,             (2.13) 249 

( )
( ) ( )1/2 1/22 2 2 2

2 sin ,
3

E x Pp x a x a
a x a x

β

π
= − − ≤ ≤

− −
 .                  (2.14) 250 

The angle of rotation β can be solved by substituting Eq.(2.14) into Eq.(2.12), which gives 251 

   
2

sin
3
EaQH π β= .                     (2.15) 252 

 Next we denote normal and shear stress components exposed on the surface of the 253 

elastic half-space as ( ) ( , 0)z zx x zσ σ≡ =  and ( ) ( , 0)xz xzx x zτ τ≡ = . Using Eqs.(2.13)-(2.14), 254 

we obtain 255 

      ( ) ( )
( ) ( )2 1/2 1/22 2 2 2

2 ,z
QH x Px p x a x a
a a x a x

σ
π π

= − = − + − ≤ ≤
− −

,         (2.16) 256 

 ( ) ( )
( )1/22 2

,xz
Qx q x a x a

a x
τ

π
= − = − − ≤ ≤

−
,                           (2.17) 257 

where we have applied the infinitesimal deformation assumption that β <<1 and retained only 258 

the first order terms of β. Specifically, the first term of q(x) is proportional to (1−cosβ) ~β2 and 259 

thus is neglected in Eq.(2.17), while the coefficient 2Esinβ/3 in the first term of p(x) is 260 

substituted by 2QH/πa2 using Eq.(2.15). The two equations above show that both the normal 261 

and shear stress components exhibit a square root singularity at the contact edges x = ± a. This 262 

is because the contact edge is equivalent to the tip of an interface crack between the rigid punch 263 

and the elastic half-space. Note that the stress field near the tip of an interface crack often 264 

exhibits an oscillatory singularity37, which is not present here because the substrate is 265 
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incompressible (ν =1/2) and the oscillation is removed16. The Mode I and II stress intensity 266 

factors, denoted by KI and KII respectively, at the two bonding edges x = ± a can be calculated 267 

as follows: 268 

( ) ( ) ( )lim 2 2a
zI x a

Q H PK x a x
aa a

σ π
π π→

= − = − + ,                   (2.18) 269 

( ) ( ) ( )lim 2a
xzII x a

QK x a x
a

τ π
π→

= − = − ,                             (2.19) 270 

( )
( )

( ) ( )lim 2 2a
zI x a

Q H PK x a x
aa a

σ π
π π

−

→ −
= + = + ,                  (2.20) 271 

( )
( )

( ) ( )lim 2a
xzII x a

QK x a x
a

τ π
π

−

→ −
= + = − .                           (2.21) 272 

These expressions of the KI and KII allow us to evaluate the energy release rate at the two 273 

contact edges based on the following equation16:  274 

( )
2

2 21
2 I IIG K K

E
ν 

 
 

−= + .                                          (2.22) 275 

Using Eqs.(2.18)–(2.21) and setting the Poisson’s ratio ν =0.5, we obtain the following results 276 

for the strain energy release rates at x = ±a:  277 

  ( )
2

23 2
8

a QHG P Q
aE aπ

−   = + +     
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2
23 2

8
a QHG P Q

aE aπ
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.      (2.23) 278 

Without loss of generality, we assume both P and Q to be positive, which implies that G (-a) > 279 

G (a). As a result, delamination should initiate at the left edge where x = −a. Recalling that the 280 

interfacial adhesion energy is by Wad and the substrate is elastic, the onset of delamination 281 

occurs when G(−a) =Wad. Using Eq.(2.1), we obtain the following equation for the critical force 282 

Fc to initiate delamination: 283 

2
2

2

2
13 cos cos sin
4

ad
c

aEWF
H H
a a

π

α α α
=

 
+ + 

 

,           (2.24) 284 
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where α is the angle of the combined force F in Fig.2b (0 ≤ α ≤ π/2). Note that Fc is a 285 

monotonically decreasing function of the contact width a. This implies that the delamination 286 

process is unstable under force control once it initiates at the contact edge. Therefore, the Fc in 287 

Eq.(2.24) is the pull-off force we are looking for.   288 

 289 

2.3 Pull-off force 290 

  Although we have assumed that the delamination process is independent of the local 291 

fracture modes at the contact edge, i.e., Wad is mode-independent, the pull-off force does 292 

depend on the mode of delamination, represented by the direction α and height H of the 293 

delamination force F. For example, under normal separation where α =π/2, the pull-off force, 294 

denoted by Pc, is  295 

8
3

ad
c

aEWP π
= .                                               (2.25) 296 

On the other hand, under shear delamination where angle α = 0, the pull-off force Qc given by 297 

Eq.(2.24) is 298 

2

2

8

3 4 1

ad
c

aEWQ
H
a

π
=

 
+ 

 

.                                              (2.26) 299 

Interestingly, the shear pull-off force Qc is smaller than the normal pull-off force Pc except 300 

when H=0.  301 

To further illustrate the effect of H and α on the pull-off force Fc, we use the normal 302 

pull-off force Pc as the benchmark to define the following normalized pull-off force: 303 

2
2

2

1

4 cos 4 cos sin 1

c
c

c

FF
P H H

a a
α α α

= =
 

+ + 
 

.          (2.27) 304 

The fact that cF ≤ 1 implies that normal delamination requires the largest pull-off force. Figure 305 
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4 shows a 3D surface plot of the normalized pull-off force versus α and H, as well as the 306 

dependence of pull-off force on α for different values of H/a. 307 

We first observe that cF  is a monotonically decreasing function with increasing H. 308 

This is because the shear component Q of the delamination force can cause the punch to rotate 309 

in the clockwise direction. Larger H results in a larger torque by Q and hence larger rotation. 310 

Such rotation can modify the local mixed-mode fracture conditions at the two contact edges (x 311 

= ±a) by developing an extra normal stress at the interface that decays from the left contact 312 

edge to the right one. This effect, under a special case of α =0 (i.e., shear delamination), has 313 

been discussed in Chaudhury and Kim20. It can create an uneven distribution of energy release 314 

rate (see Eq.(2.23)), and cause the delamination to initiate only at the left contact edge (x = −a). 315 

In contrast, under a pure normal force, both contact edges are subjected to the same energy 316 

release rate, and thus will experience delamination simultaneously. This mechanism causes Fc 317 

to decrease with increasing H. When H=0, cF  =1 regardless what the angle α is. In this 318 

particular case, the punch does not rotate, and the energy release rates at both contact edges are 319 

equal to each other. The angle α can only affect the mode-mixity conditions at the two contact 320 

edges. However, since we have assumed Wad is independent of the local mixed-mode condition, 321 

the pull-force becomes independent of α and is equal to the normal pull-off force Pc. 322 

Next we discuss the effect of angle α. The normalized pull-off force cF   is not a 323 

monotonic function of α. Indeed, we find that cF  reaches the following minimum: 324 
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when α is equal to αm below:  326 
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This implies that for a given value of H/a, the direction of the delamination force can be 328 

adjusted to minimize the pull-off force according to Eq.(2.29). For example, the angle αm 329 
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required to minimize the pull-off force would decrease to 0 as H/a approaches infinity, meaning 330 

that in the limit of large H/a, the shear delamination mode (α =0) should be applied to minimize 331 

the pull-off force.  332 

 333 

 334 

Figure 4 (a) Contour plot of the normalized pull-off force versus H/a and α. (b) The 335 
dependence of the pull-off force on α for different values of H/a. 336 

 337 

In this section we have used a 2D plane strain model to understand how the pull-off 338 

force depends on the mode of delamination, represented by the angle α and loading position H. 339 

The analytical solutions obtained in this section can be potentially used to guide the design of 340 

delamination modes to enhance or reduce the pull-off force. Moreover, the fundamental 341 

insights established in this section will also help us understand the 3D delamination behaviors 342 

to be considered in Section 3 and 4.  343 

 344 

3. Finite element model: 3D simulations 345 

3.1 Model description 346 

In this section, we consider the delamination process of a rigid cylindrical punch from 347 

an elastic substrate under normal and shear forces, as schematically shown in Fig.5a. Here we 348 

assume the substrate has a finite thickness h and is bonded to a rigid backing surface. This is 349 
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motivated by the fact that in practice the FRC or anti-icing coatings are usually supported by a 350 

stiff surface, and the coating thickness is comparable or even smaller than dimensions of the 351 

adhering objects (e.g. barnacles or ice blocks). Therefore, the half-space assumption may not 352 

always be satisfied for practical applications and the effect of finite substrate thickness needs 353 

to be accounted for. 354 

The existing solutions for pull-off forces reviewed in Section 1 focused on normal 355 

delamination, where one can take advantage of axisymmetry to solve the interface fracture 356 

problem into a 2D domain. In our case, the combined normal and shear forces would induce a 357 

3D stress and strain fields in the elastic substrate, which is difficult to solve analytically. 358 

Therefore, we resort to numerical simulations and build an FE model in ABAQUS (v6.14, 359 

Simulia Inc, Providence, RI) to calculate the pull-off force. Figure 5b shows the finite element 360 

model wherein the symmetry allows us to simulate a half of the cylinder and substrate. The 361 

cylindrical punch is modeled as a discrete rigid body, and the soft substrate with Young’s 362 

modulus E is modeled as an incompressible neo-Hookean solid. The substrate is meshed into 363 

263080 C3D8RH elements and 920 C3D6H elements. We have performed mesh convergence 364 

test (see Appendix 1) to ensure mesh independence of our results. The adhesive interaction on 365 

the contacting interface is described by a cohesive zone model38, which will be discussed in 366 

Section 3.2. Regarding boundary conditions, the circumferential and bottom surfaces of the 367 

substrate are fixed, and the lateral cross-section exposed by the symmetry cut is subjected to 368 

the symmetry boundary condition, i.e., no normal displacements and no shear tractions. The 369 

delamination force is applied to the cylindrical punch, and the point of action is located on the 370 

central axis of the punch with a height H above the substrate surface (see Fig.5b). To make sure 371 

that the delamination process is not affected by the circumferential boundary of the substrate, 372 

the radius of the substrate is set to be 10 times of the punch radius.  373 

Since the punch may become tilted forward due to the shear force during delamination, 374 

its front edge can be pressed into the substrate, which may cause severe local stress 375 

concentrations and mesh distortion. To resolve this problem, we introduce a fillet of 0.1r, where 376 

r denotes the punch radius, at the bottom edge of the punch (see inset of Fig.5b). As a result, 377 
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the contact radius is 0.9r rather than r. We will denote the contact radius as a to maintain 378 

consistency with notations of the plane strain model. Since the punch is rigid, introduction of 379 

the fillet does not affect the local stress states near the delamination site (see inset of Fig.5a). 380 

Therefore, the delamination behavior and pull-off force is independent of the fillet.  381 

We use the dynamic implicit solver in ABAQUS to capture the rapid unloading once 382 

the delamination process is initiated. In addition, we adopt displacement-controlled loading to 383 

stabilize the simulation, namely that a prescribed displacement along the desired angle α, 384 

instead of a prescribed force, is applied to the punch, while other degrees of freedom of the 385 

rigid punch (e.g. rotation) are unconstrained. A local Cartesian coordinate system with one axis 386 

aligned with the loading direction is used to ensure that the direction of delamination force is 387 

kept constant throughout the entire simulation. The main advantage of the displacement 388 

controlled loading is that it can capture pull-off force and the subsequent delamination much 389 

more efficiently than the force controlled loading.  390 

 391 

 392 

Figure 5 (a) Schematic of a cross-section of a cylindrical rigid punch adhering to a finite-393 
thickness soft substrate with the bottom surface being fixed. The applied force and thus the 394 
deformation of the substrate are non-axisymmetric. (b) 3D mesh of FE model of the punch and 395 
the substrate with a representative thickness. The symmetry of the model allows us to perform 396 
the simulation by using the half-model. The inset shows the fillet of the punch. The cylinder 397 
radius subtracted by the fillet radius is defined as a. 398 

 399 

3.2 Cohesive zone model 400 

The cohesive zone model is defined by prescribing a relation between the mechanical 401 
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traction on the interface and the relative separation between the two contacting surfaces. 402 

Complete interface failure occurs when the maximum separation δf is reached and the traction 403 

reduces to 0. The energy required to achieve complete interface failure of a unit contacting area 404 

is defined as the adhesion energy Wad. In general, the global delamination behavior, e.g. the 405 

pull-off force, is insensitive to the detailed shape of the traction-separation curve, as long as 406 

Wad is kept constant and the maximum separation δf is much smaller than the characteristic 407 

length scales of the contacting region38. Therefore, we adopt a simple bi-linear traction-408 

separation law for our cohesive zone model, which is illustrated in Fig.6. The adhesion energy 409 

Wad is equal to the area underneath the traction-separation curve. To validate our cohesive zone 410 

model, we tested the effects of different parameters for the cohesive zone model. Using normal 411 

delamination as a benchmark example, we find that the pull-off forces predicted by our 412 

simulations based on the following cohesive zone parameters agree well with those given by 413 

Yang and Li17:  414 

0
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1 , 0.01
2

fad
f

W
a

δ
δ δ

σ
= = = .                                         (3.1) 415 

These parameters will be used throughout our simulations. Note that the element size within 416 

the contacting area is selected to be smaller than δf to ensure mesh convergence within the 417 

cohesive zone.  418 

To identify the extent of partial interface separation in the simulations, we use a damage 419 

variable D defined by the cohesive zone model. This variable D ranges from 0 to 1, with 1 420 

representing complete separation. Let δm represent the maximum separation of the cohesive 421 

zone attained in the loading history. When δm is less than δ0 (i.e., the separation at peak stress; 422 

see Fig.6), damage does not occur and D =0. Damage is initiated once δm >δ0 and D is 423 

calculated according to the linear evolution model: 424 
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In a 3D model, the traction-separation relation needs to be defined along three directions: one 426 
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normal to the interface and the other two tangential to the interface. Here, we assume an 427 

isotropic interfacial behavior with respect to three directions. The damage initiation is governed 428 

by a quadratic stress criterion which requires 429 
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,                                     (3.3) 430 

with σn, σs, σt representing the normal and the two shear tractions, respectively, and the damage 431 

behavior in mixed mode are described by the built-in power law with the exponent of 2, i.e., 432 
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where Wn, Ws and Wt represent the work done by the normal and the two shear adhesive stresses, 434 

respectively. 435 

 436 

 437 

Figure 6 An example of the traction-separation law for the cohesive zone model. 438 

 439 

3.3 Model parameters and dimensional analysis 440 

The FE model described above involves a number of material and geometrical 441 

parameters: substrate Young’s modulus E, substrate thickness h, contact radius a, height of 442 

delamination force H, angle of delamination force α, and adhesion energy Wad. Here we 443 

perform a dimensional analysis to reduce the number of independent parameters. First, we use 444 

the π theorem to get 445 
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       2 , , ,c adF W a ag
Ea Ea h H
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 ,                                           (3.5) 446 

where Fc is the pull-off force and g is an unknown function. To further simplify this equation, 447 

we assume infinitesimal deformation so that the elastic substrate can be considered as a linear 448 

system represented by a compliance C with   449 

 CF∆ =  ,                                                         (3.6) 450 

where F is the force applied to the punch and ∆ is the corresponding displacement. Following 451 

Kendall15, we can derive the following expression for the total potential energy of the system 452 

(punch + substrate): 453 

       
21
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where A is the contact area. Initiation of delamination requires the following equation to be 455 

satisfied: 456 

       
2

0
2
cT

ad
FU C W

A A
∂ ∂

= − − =
∂ ∂

 .                                           (3.8) 457 

Since ∂C/∂A is independent of the adhesion energy Wad, Eq.(3.8) suggests that the pull-off force 458 

Fc scales with 1/2
adW . Using this scaling and Eq.(3.5), we can write 459 

*
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.       (3.9) 460 

The scaling relation in Eq.(3.9) will be used to guide our interpretation of the pull-off force 461 

data in Section 4. 462 

 463 

4. Results and Discussions 464 

  In this section we present the FE results for the pull-off force Fc under various 465 

geometric and loading conditions and, more importantly, the adhesion mechanics underlying 466 

the pull-off forces. Eq.(3.9) motivates us to define a normalized pull-off force to reduce the 467 



21 
 

number of independent parameters. Similar to the plane strain case in Section 2, we use the 468 

pull-off force Fc0 for an elastic half-space (a/h =0) under normal separation (α = π/2) as the 469 

reference. According to Eq.(1.1)15, Fc0 for an incompressible substrate is 470 

     
3
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which yields the following definition of normalized pull-off force  472 
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The three independent parameters are: a/h representing the substrate thickness, H/a 474 

representing the location of loading point, and α representing the angle of delamination force. 475 

4.1 Normal separation 476 

 We first consider the case of normal separation as a benchmark to validate our FE model, 477 

since it has been solved in a number of previous theoretical analyses15,17,21,31. For normal 478 

separation, α = π/2 and the delamination process is independent of the height H of loading 479 

point. Therefore, cF  is only a function of a/h. Figure 7 shows the FE results (symbols) of cF  480 

under normal separation for different values of a/h. Also plotted in Fig.7 are existing analytical 481 

solutions in the literature. Specifically, Yang and Li17 performed a rigorous analysis based on 482 

which numerical solutions of the pull-off force were obtained for different substrate thicknesses 483 

as showed by the red solid line. On the other hand, Shull and Crosby31 first used FE simulations 484 

to obtain an empirical expression for the compliance of the punch/substrate system, based on 485 

which the pull-off force is determined by evaluating the energy release rate and setting it equal 486 

to the adhesion energy Wad. This resulted in an analytical formula for the pull-off force as 487 

follows: 488 
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Note that both solutions (i.e., Yang and Li17 and Shull and Crosby31) adopted for comparison 490 

here are based on the assumption of no-slip interface between the punch and the substrate and 491 

between the substrate and the backing surface. As described in Section 1, Yang and Li17 also 492 

considered other cases of frictional boundary conditions. These solutions are not discussed here 493 

since they are based on different interface conditions from our FEM model.  494 

 495 

 496 

Figure 7 Normalized pull-off force versus a/h under normal separation. The symbols (circles: 497 
Mode-I crack propagation; triangles: interface cavitation) represent our FE results. The black 498 
dashed line is obtained by the empirical solution of Shull and Crosby31 and the red solid line is 499 
obtained by the numerical solution of Yang and Li17. Our empirical formula, Eq.(4.4), is plotted 500 
as the blue dash-dot line. The magenta dotted line illustrates the solution of Chung and 501 
Chaudhury21 which accounts for interface cavitation with thin substrates. 502 

 503 

 As can be seen in Fig.7, both Eq.(4.3) by Shull and Crosby31 and the numerical solutions 504 

by Yang and Li17 agree well with our FE results for substrate with large to moderate thickness 505 

(a/h ≤2.5). Interestingly, for thin substrate (a/h >2.5), our FE results are significantly lower 506 

than the theoretical predictions of either Yang and Li17 or Shull and Crosby31. This is because 507 

in both of these studies, the delamination is assumed to initiate at the periphery of the circular 508 

contact region, followed by an unstable Mode-I crack propagation inward, consistent with what 509 

we observed in FE simulations for thick substrates. An example where a/h =0.9 is illustrated 510 

in Fig.8d, where the color map of the interface damage variable D (see Eq.(3.2)) is plotted to 511 
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illustrate the evolution of delaminated region. Recall that D ranges from 0 to 1, with 1 denoting 512 

complete delamination. The pull-off force occurs when delamination started at the outer edge 513 

of the contact area (marked by “N1” in Fig.8a and 8d). In contrast, for thinner substrates (a/h 514 

≥3.95), the delamination does not initiate at the periphery but rather occurs through interface 515 

cavitation. Specifically, when a/h =3.95, Fig.8e shows that delamination first occurs in the 516 

center of the contact area and then propagates outward. When the substrate thickness is further 517 

reduced (a/h =10), multiple cavities may first be formed within the contact area, and then grow 518 

into a larger delaminated region (see Fig.8f). These behaviors found in our simulation results 519 

are consistent with the three normal delamination modes, i.e. edge crack propagation, internal 520 

crack propagation and interface cavitation, experimentally observed in Crosby et al.23 and 521 

Webber et al.24. 522 

 523 

 524 

Figure 8 Delamination behavior under normal separation with different a/h. (a-c) The force-525 
displacement curves during delamination. (d-f) Evolution of the interface damage variable D 526 
(shown in the top view of the substrate surface) to quantify local interface delamination: (d) 527 
a/h = 0.9, (e) a/h = 3.95, (f) a/h = 10.0.  528 
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 The underlying physical mechanism of interface cavitation has been studied in the 529 

literature16,26,39. Briefly, the incompressibility of the substrate, together with the small thickness 530 

and fixed boundary condition at the bottom of the substrate, can lead to a hydrostatic tensile 531 

stress state within the contact area16. In addition, as a/h approaches infinity and assuming 532 

perfectly bonded interface, the normal stress within the contact area was found to be33,39,40: 533 

σzz(r) =(2F/πa2)(1−r2/a2) based on a first order asymptotic analysis40. This solution indicates 534 

that the normal stress decays as one moves away from the center of the contact region. However, 535 

near the contact edge there exists a boundary layer where the normal stress exhibits a singularity, 536 

because the contact edge is equivalent to the tip of an interface crack between the rigid punch 537 

and the elastic substrate16. This would lead to a steep upturn of the normal stress within the 538 

boundary layer. The size of the boundary layer is bounded by the substrate thickness h and thus 539 

should decrease as the substrate becomes thinner41. Note that a cohesive zone model is 540 

implemented at the punch/substrate interface in our FEM simulations. For thin substrates (i.e., 541 

large a/h), the small boundary layer at the contact region is covered by the cohesive zone, which 542 

regulates the theoretically predicted stress singularity by allowing partial interface separation.  543 

The cohesive zone model may also affect the normal stress distribution by introducing an 544 

additional interface compliance42. Nevertheless, the increased normal stress towards the center 545 

of the contact region as the substrate becomes thinner tends to promote a surface instability 546 

that causes local delamination and hence interface cavitation21,27,43. To distinguish the two 547 

delamination modes, i.e., unstable crack propagation or interface cavitation, in Fig.7 we use 548 

triangular symbols to represent the FE data of pull-off force for cases with interface cavitation 549 

while circular symbols for cases where delamination is dominated by Mode-I crack 550 

propagation. Chung and Chaudhury21 derived a solution for the pull-off force that accounts for 551 

interface cavitation through an energy minimization method. This solution, shown in Eq.(1.6) 552 

and plotted in Fig.7, is consistent with our FE data as the substrate becomes thinner (or a/h 553 

increases). However, our FE data do exhibit a slightly different scaling relation between cF  554 

and a/h from that predicted by Chung and Chaudhury21. We emphasize that since interface 555 

cavitation involves a surface instability of the substrate, the development of cavitation may be 556 
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sensitive to the imperfections within the FE model. In our model, imperfections were not 557 

deliberately seeded into the simulations, but rather came from the geometric irregularities of 558 

the mesh. A systematic study on the effects of imperfections is required to achieve quantitative 559 

conclusions on the pull-off force with interface cavitation, which is beyond the scope of this 560 

paper. Therefore, our focus will be placed on cases where delamination is dominated by 561 

interface crack propagation.  562 

 Finally, we modify Eq.(3.4) to the following form to obtain a more accurate formula 563 

for the normal pull-off force: 564 
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where C1 to C5 are constant coefficients. To ensure that Eq.(4.4) recovers Eq.(4.1) when a/h << 566 

1 and Eq.(1.5) when a/h >>1, we impose two constraints: C1= 8 2 / 3π   and 567 

1 3 5/ / 2C C C π= . By fitting Eq.(4.4) to the numerical results of Yang and Li17 (red solid 568 

line in Fig.7), we found that C2= 2.2002, C3= 0.2684, C4= 5.8186, and C5= 0.7427 (also 569 

summarized in Table 1). In the next section we will show that Eq.(4.4) can also be used to fit 570 

the pull-off force data for some shear separation cases.  571 

 572 

4.2 Shear separation 573 

 In this section, we consider shear separation (α =0) and focus on computing the pull-574 

off force for different substrate thicknesses (a/h) and loading positions (H/a) and understanding 575 

the corresponding delamination mechanisms. 576 

4.2.1 Cases with large H/a 577 

 We start with cases with large H/a. Specifically, Fig.9 plots the normalized pull-off 578 

force cF  defined in Eq.(4.2) versus a/h for H/a = 1.11 and 1.67. The normalized pull-off force 579 

under normal separation is also plotted as a reference for comparison. Clearly the pull-off force 580 
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under shear separation is much lower than that under normal separation. In addition, shear 581 

separation with a larger H/a results in a smaller pull-off force.  582 

 583 

 584 

Figure 9 Normalized pull-off force versus a/h under shear separation with H/a =1.11 and 1.67. 585 
The normal separation case is also included for comparison. The symbols (circles: Mode-I 586 
crack propagation; triangles: interface cavitation) represent our FE results. The solid lines are 587 
obtained by fitting Eq.(4.4) to the FE data with the corresponding coefficients given in Table 588 
1.  589 

 590 

 To understand the mechanism underlying the lowered pull-off force, the evolution of 591 

delamination for H/a =1.11 and three representative substrate thickness (a/h =0.9, 3.95, 10) are 592 

illustrated in Fig.10 using the color maps of the interface damage variable D. For thick substrate 593 

(e.g., a/h =0.9), unlike normal separation where delamination initiates along the periphery of 594 

the contact area (see Fig.8d), Fig.10d shows that delamination initiates at the left edge of the 595 

contact area, followed by an unstable growth of delaminated region across the contact area 596 

(assuming force control). Such localized delamination, caused by rotation of the rigid punch 597 

driven by the rigid punch and the consequent stress concentration at the left edge, leads to the 598 

lower pull-off force under shear separation. This mechanism also implies that increasing H/a 599 

can reduce the pull-off force by promoting rotation of the punch, which is consistent with our 600 

observations in the simulation. When the substrate becomes very thin (e.g., a/h =10), interface 601 

cavitation can be observed in Fig.10f, but is biased towards the left edge due to the stress 602 
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concentration caused by punch rotation. In Fig.9 we use triangular and circular symbols to 603 

denote the FE data for pull-off forces with and without interface cavitation, respectively. 604 

Similar to normal separation, the triangular symbols are much lower than the trend extrapolated 605 

from the circular symbols, indicating that interface cavitation can also reduce the pull-off force 606 

under shear separation. 607 

 Since the shear separation with thick substrates is governed by local Mode-I interface 608 

crack propagation, the pull-off force data for shear separation in Fig.9 follow the similar trend 609 

as the pull-off force for normal separation. Indeed, we find that the shear pull-off force data 610 

can be well captured by shifting the normal pull-off force curve in the log-log plot of Fig.9. 611 

This enables a simple way of obtaining empirical pull-off force formulas for the shear 612 

separation cases by rescaling cF  and a/h based on the shifting factors. As a result, we find 613 

that the pull-off force data under shear separation (circular symbols in Fig.9) can still be well 614 

captured by Eq.(4.4), and the corresponding values of C1 to C5 are listed in Table 1 below.   615 

 616 

 617 
Figure 10 Delamination behavior under shear separation with H/a=1.11 and different a/h. (a-618 
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c) The force-displacement curves during delamination. The corresponding force-displacements 619 
for normal separation is included for comparison. (d-f) Evolution of the interface damage 620 
variable D (shown in the top view of the substrate surface) to quantity local interface 621 
delamination: (d) a/h = 0.9, (e) a/h = 3.95, (f) a/h = 10.0.  622 

 623 

Table 1: Coefficients for the empirical formula Eq.(4.4) of pull-off force under normal or shear 624 

separation. 625 

H/a Valid for C1 C2 C3 C4 C5 

Normal separation 

For any H/a a/h ≤2.5 
8 2
3

π  2.2002 0.2864 5.8186 0.7427 

Shear separation 

1.67 a/h≤3.95 1.3973 1.5663 0.1033 4.1422 0.2680 

1.11 a/h≤3.95 2.0892 1.6472 0.1202 4.3562 0.3117 

0.56 a/h≤1.58 3.9992 1.6715 0.1256 4.4204 0.3256 

4.2.2 Cases with small H/a 626 

Besides the two delamination modes discussed above (i.e., Mode-I crack propagation 627 

and interface cavitation), a new delamination mode for shear separation emerges if H/a is 628 

further decreased. To see that, we plot the normalized pull-off force versus a/h for three cases 629 

of H/a (= 0.56, 0.28, 0) in Fig.11. Specifically, when H/a =0.56, the pull-off force follows the 630 

empirical formula in Eq.(4.4) for substrates with large to moderate thickness (a/h ≤ 1.58). The 631 

corresponding fitting parameters are listed in Table 1. However, for thin substrates (a/h ≥ 2.5), 632 

the pull-off force data points deviate from the trend given by Eq.(4.4) (see Fig.11). To 633 

understand the physical nature of this deviation, the evolution of interface delamination for H/a 634 

=0.56 and three cases of a/h (= 0.9, 2.5, 10.0) is shown in Fig.12a. Interestingly, when the 635 

substrate is thick (a/h =0.9), we observe the same delamination process illustrated in Fig.10d, 636 

i.e., delamination initiates at the left edge of the contact area due to rotation of the punch and 637 

then spreads across the entire contact area. In contrast, when the substrate is thin (a/h =2.5 or 638 
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10), delamination initiates at both the top and bottom edges of the contact area. This is because 639 

thin substrate is much less compliant along the normal direction, which suppresses the punch 640 

rotation under the delamination force F. As a result, the contacting area is primarily subjected 641 

to shear tractions, and thus delamination is mainly due to a Mode-II interface crack propagation. 642 

We will refer to this mode as Mode-II crack propagation. 643 

 644 

Figure 11 Normalized pull-off force versus a/h under shear separation with H/a =0, 0.28 and 645 
0.56. The normal separation case is also included for comparison. The symbols (circles: Mode-646 
I crack propagation; squares: Mode-II crack propagation) represent our FE results. The solid 647 
lines are obtained by fitting Eq.(4.4) to the FE data with the corresponding coefficients given 648 
in Table 1. The dashed lines are given by Eq.(4.5) and Eq.(4.6).  649 

 650 

 When H/a is further reduced (i.e., 0.28 and 0 in Fig.11), the Mode-II crack propagation 651 

mode prevails and the pull-off force becomes insensitive to H/a. In particular, Fig.12b shows 652 

that when H/a =0, delamination always initiates at the top and bottom edges even for thick 653 

substrate (a/h =0.9). In this mode, the empirical formula in Eq.(4.4) can no longer capture the 654 

FE data of pull-off forces. Instead, we find that the following expression by modifying the form 655 

of Eq.(4.4) and fitting the FE data for H/a =0 and 0.28 in Fig.11, respectively:  656 
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  659 

 660 
Figure 12 The force-displacement curves and the corresponding evolutions of interface 661 
delamination (represented by the color map of damage variable D) for small values of H/a: (a) 662 
H/a=0.56 and (b) H/a=0. For each H/a, three cases with different substrate thicknesses are 663 
studied: a/h = 0.9, 2.5 and 10.0.  664 

 665 

4.2.3 Discussions 666 

We have identified three different delamination modes under shear separation: i) Mode-667 

I crack propagation, ii) Mode-II crack propagation, and iii) interface cavitation. Which mode 668 
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would occur depends on the stress state in the elastic substrate developed during delamination, 669 

which is governed by essentially two parameters: H/a representing height of the applied shear 670 

force and a/h representing the substrate thickness. Using the FE data, we plot a phase diagram 671 

of the delamination modes in Fig.13. Briefly, either the Mode-I crack propagation mode 672 

(circular symbols) or interface cavitation mode (triangular symbols) would occur at large H/a 673 

where rotation of the rigid punch results in a region with concentrated normal traction near the 674 

left edge of the contact area. Delamination tends to occur through interface cavitation for very 675 

thin substrates (i.e., large a/h), and through Mode-I crack propagation for thicker substrates. 676 

On the other hand, the Mode-II crack propagation (square symbols) occurs when the punch 677 

rotation is suppressed by the small H/a.   678 

 679 

Figure 13 Phase diagram of the three delamination modes with respect to H/a and a/h. 680 

 681 

The effect of punch rotation on the pull-off force observed in the 3D FE model is 682 

qualitatively similar to that in the 2D plane strain model. To illustrate this point, recall the 683 

analytical solution of normalized pull-off force for the 2D model given in Eq.(2.27). By setting 684 

α =0, we obtain 685 
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( )2

1

4 1
cF

H a
=

+
 .            (4.7) 686 

Note that this normalized pull-off force of the 2D model is equivalent to that of the 3D model 687 

(see Eq.(4.2)): both definitions use the corresponding normal pull-off force for infinitely thick 688 

substrates as the reference. As shown in Fig.14, Eq.(4.7) predicts that cF  scales with (H/a)−1 689 

when H/a >>1. This trend is consistent with the 3D case with thick substrate (a/h<<1) which 690 

is obtained by extrapolating the empirical formulas in Eqs.(4.4)-(4.6) to the limit of a/h→0, 691 

and is illustrated in Fig.14 using asterisk symbols. Indeed, the quantitative agreement between 692 

the 2D solution and 3D data for thick substrate (a/h <<1) is remarkable. This suggests that 693 

Eq.(4.7) can be used as a quantitative guide for estimating the effect of the height H on pull-694 

off force for thick substrates. Interestingly, the scaling relation that the pull-off force Fc ~ 695 

(H/a)−1 when H/a >>1 was also observed in the experimental data of Chaudhury and Kim20, 696 

even though our 2D model assumes an elastic half space (a/h<<1) while the experimental data20 697 

were for thin substrates (a/h >>1).   698 

 The FE data for a case of thin substrate (a/h =3.95) are also plotted in Fig.14 for 699 

comparison. Interestingly, a non-monotonic dependence of the pull-off force on H/a is observed, 700 

which is due to the transition of delamination modes as H/a is increased. As shown in Fig.13, 701 

when a/h=3.95 and H/a < ~ 0.56, the dominating delamination mode is Mode-II crack 702 

propagation. With this mode, increasing H/a can cause slight rotation of the punch which may 703 

reduce the energy release rate associated with the Mode-II interface crack and hence lead to an 704 

increase in pull-off force. However, when H/a > ~ 0.56, the dominating delamination mode 705 

becomes Mode-I crack propagation where increasing H/a can reduce the pull-off force by 706 

promoting punch rotation and thus enhancing local Mode-I energy release rate at the left edge 707 

of the contact area.    708 
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 709 

Figure 14 Normalized pull-off force versus H/a given by the 2D plane strain model (solid line) 710 
and 3D model for a/h <<1 (asterisks) and a/h = 3.95 (stars).   711 

   712 

4.3 Combined shear and normal forces: effect of loading angle 713 

  In this section, we consider the scenario where the punch is subjected to combined 714 

shear and normal forces, with the resultant force pointing along an angle α above the horizontal 715 

direction (see Fig.5a). Our focus is on how the loading angle α affects the pull-off force, and 716 

therefore we fix H/a =1.11 but vary the substrate thickness (i.e., a/h). The FE data of pull-off 717 

forces are shown in Fig.15, which shows that the pull-off force increases as the loading angle 718 

increases from 0 to π/2. In this set of simulations, we only observe two delamination modes: 719 

Mode-I crack propagation (circular symbols) and interface cavitation (triangular symbols), 720 

similar to the case of shear separation with large H/a (see Fig.9 and 10). In addition, the pull-721 

off force resulting from the Mode-I crack propagation mode can also be well fitted by Eq.(4.4) 722 

through shifting the normal pull-off force curve, and the coefficients C1 to C5 for different 723 

angles α are summarized in Table 2.  724 
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 725 

Figure 15 Normalized pull-off force versus a/h with different loading angles α and H/a =1.11. 726 
The symbols (circles: Mode-I crack propagation; triangles: interface cavitation) represent our 727 
FE results. The solid lines are obtained by fitting Eq.(4.4) to the FE data with the corresponding 728 
coefficients given in Table 2.  729 

 730 

Table 2 Coefficients for the empirical formula Eq.(4.4) of pull-off force under combined 731 
normal and shear forces with H/a =1.11 and different angles α. 732 

α Valid for C1 C2 C3 C4 C5 

0 a/h <3.95 2.0892 1.6472 0.1202 4.3562 0.3117 

π/8 a/h<3.95 2.0224 1.9084 0.1869 5.0469 0.4847 

π/4 a/h<3.95 2.3198 1.7146 0.1355 4.5344 0.3515 

3π/8 a/h<2.5 3.5041 1.8739 0.1770 4.9558 0.4589 

π/2 a/h<2.5 
8 2
3

π  2.2002 0.2864 5.8186 0.7427 

 733 

 Interestingly, the FE results suggest that the pull-off force is insensitive to the loading 734 

angle when α is below π/4. When α exceeds π/4, the pull-off force rapidly increases with α 735 

and approaches the limit of normal separation. To illustrate this behavior, in Fig.16 we plot the 736 

dependence of normalized pull-off force cF  on the loading angle α. For the 3D model, we 737 

include two cases: i) thick substrate (a/h<<1) by extrapolating Eq.(4.4) with the coefficients 738 
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given in Table 2, and ii) a case representing thin substrate (a/h =3.95). The qualitatively trend 739 

of how cF  on the loading angle α for both thick and thin substrates agrees with that of the 2D 740 

model predicted by the analytical solution Eq.(2.27). Again, this agreement shows that Eq.(2.27) 741 

derived from the 2D model can be used for estimating the effect of loading angle in the 3D 742 

case with cylindrical punch. 743 

 744 

Figure 16 Normalized pull-off force versus the loading angle for H/a =1.11 given by the 2D 745 
plane strain model (solid line) and 3D model for a/h << 1 (asterisks) and a/h = 3.95 (stars). 746 

 747 

5. Summary and Conclusions 748 

 We presented a theoretical and computational study on the delamination of a rigid 749 

punch from an elastic substrate under normal and shear forces. We first studied a 2D plane 750 

strain model to gain theoretical insights and then developed a 3D FE model to simulate the 751 

complex 3D mechanics involved in the delamination process. From the 2D model, we derived 752 

an analytical solution for the pull-off force using a fracture mechanics approach. This solution, 753 

although based on the assumption of an elastic half-space substrate, was found to capture the 754 

quantitative trend of how pull-off force depend on the loading position H and loading angle α 755 

exhibited in the 3D FE results with thick substrates. Both the 2D analytical model and 3D FE 756 

model show that given the same properties of substrate (i.e., E and h) and interface (i.e., Wad 757 

and a), normal separation requires the largest pull-off force. The main physical mechanism 758 
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behind the lower pull-off force for shear or angled separation is the uneven normal traction due 759 

to the punch rotation, which causes delamination to initiate locally near an edge of the contact 760 

area as opposed to along the entire periphery during normal separation. For shear separation, 761 

we identified three delamination modes: Mode-I crack propagation, Mode-II crack propagation 762 

and interface cavitation. Empirical formulas were obtained for pull-off forces governed by the 763 

first two modes.  764 

Our results have practical implications for the design of fouling release or anti-icing 765 

coatings. Since the delamination force in reality may include both normal and shear 766 

components, the empirical formulas in our work can provide more accurate estimate of the 767 

pull-off force, thereby facilitating the development of more efficient release methods. For 768 

example, it is advantageous to apply shear force during delamination which can greatly reduce 769 

the pull-off force. In addition, a common principle of the delamination modes with low pull-770 

off force is to promote the initiation of local delamination, either through interface cavitation 771 

or the introduction of uneven tractions on the contacting interface. This principle is consistent 772 

with the approach of interface crack initiator recently exploited to improve the release 773 

performance of anti-icing coatings44. 774 

There are several limitations in this study that could be addressed in future work. First, 775 

we assumed infinitesimal deformation and linear elasticity for the substrate to enable analytical 776 

solution for the 2D model and to reduce independent parameters for the 3D FE model. Although 777 

this is a relevant assumption for many coating applications, large deformation may occur for 778 

strong adhesion and soft substrate. In this case, nonlinearity associated with large deformation 779 

may further complicate the delamination mechanics45,46. This question remains to be answered. 780 

Second, we have not discussed in detail the pull-off force governed by the interface cavitation 781 

mode. The FE simulation of interface cavitation would require an extensive imperfection 782 

sensitivity study to validate the FE results, but this will be necessary if thin coatings are 783 

encountered (i.e., a/h>>1). Third, in practice the rigid object to be detached from the elastic 784 

substrate possesses more complex structure21,47. For example, barnacles, a common marine 785 

fouling organism, are known to have a hollow shell structure rather than a solid punch. The 786 
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substrate may not be uniform either: mechanical heterogeneities may be deliberately 787 

incorporated to promote local delamination on the interface. How these complex structures 788 

affect the delamination process, especially under shear or angled separation, remains an open 789 

question and requires further studies.  790 
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 799 

Appendix 1 Finite element model: effect of mesh size and cohesive parameter.  800 

 In our simulations, the cohesive zone models and mesh designs will significantly impact 801 

the FE results of pull-off forces. To validate our computational model, we perform sensitivity 802 

studies regarding the cohesive zone model and mesh size as detailed below.  803 

 Two representative traction-separation laws for the cohesive zone model tested in the 804 

simulation are shown in Fig.17b. In both cases, the following adhesion energy Wad is adopted 805 

to ensure a small deformation of the substrate: 806 

                 0.005adW
aµ

= ,                                          (A1.1) 807 

where µ=E/3 denotes the shear modulus of the substrate. The maximum separation δf values, 808 

which are much smaller than the contact radius a, i.e. δf /a =0.01 and 0.02, are chosen such that 809 

the detailed shape of the traction-separation curve will have negligible effects on the interface 810 

adhesive behavior38. For each traction-separation law, the mesh convergence test is performed 811 
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to obtain a mesh-independent pull-off force, as shown in Fig.17a. 812 

 We focus on the normal separation case with a moderate substrate thickness (a/h=0.9) 813 

and use the numerical solution for the pull-off force by Yang and Li17 shown in Fig.17a as a 814 

benchmark. The FE data for pull-off forces with two traction-separation laws are plotted against 815 

the element numbers, as shown in Fig.17a. Note that the forces are normalized to the normal 816 

pull-off force Fc0 for an elastic half-space (a/h=0) and the dashed line represents the solution 817 

of Yang and Li17. As can be seen in Fig.17a, the pull-off forces for both traction-separation laws 818 

get converged as the mesh is refined. However, the pull-off force for δf/a =0.01 has achieved a 819 

better agreement with the solution by Yang and Li17. This is expected since an interface in linear 820 

fracture mechanics can be theoretically characterized by a traction-separation law in the Dirac-821 

function form, implying that a smaller δf /a can result in a more accurate simulation of the 822 

interface fracture behavior. Another implication by Fig.17a is that a smaller δf/a will require a 823 

more refined mesh design to achieve the mesh-independent results. Interestingly, when the 824 

element size at the edge of the contact region is exactly equal to δf, mesh convergence of the 825 

pull-off force is achieved. This means we cannot infinitely reduce δf/a considering the 826 

computational costs for reliable results.  As a result, to balance computational cost and 827 

numerical accuracy, we choose the interface parameter of δf/a=0.01 and the mesh design of 828 

264000 elements (see Fig.17d) to perform the delamination simulations in the present work.  829 

 830 
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 831 

Figure 17 The mesh convergence tests with two cohesive zone models. (a) Normalized pull-832 
off force versus element numbers under normal separation for the case of a/h=0.9 with two 833 
traction-separation laws. The corresponding numerical result by Yang and Li17, shown in 834 
dashed line, is used as a benchmark. (b) Two representative traction-separation curves with the 835 
same adhesion energy (Wad/(µa)=0.005) but different δf/a values (red: 0.01; blue: 0.02), where 836 
µ=E/3 denotes the substrate shear modulus. (c) Several examples of the mesh designs of the 837 
contact surface used in the simulation. The white dashed line depicts the edge of contacting 838 
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region. (d) Selected mesh design of the lateral cross-section. The inset shows a magnified view 839 
of the mesh.  840 
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