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Characterizing the properties of black holes is one of the most important science objectives for
gravitational-wave observations. Astrophysical evidence suggests that black holes that are nearly
extremal (i.e. spins near the theoretical upper limit) might exist and, thus, might be among the
merging black holes observed with gravitational waves. In this paper, we explore how well current
gravitational wave parameter estimation methods can measure the spins of rapidly spinning black
holes in binaries. We simulate gravitational-wave signals using numerical-relativity waveforms for
nearly-extremal, merging black holes. For simplicity, we confine our attention to binaries with spins
parallel or antiparallel with the orbital angular momentum. We find that recovering the holes’ nearly
extremal spins is challenging. When the spins are nearly extremal and parallel to each other, the
resulting parameter estimates do recover spins that are large, though the recovered spin magnitudes
are still significantly smaller than the true spin magnitudes. When the spins are nearly extremal
and antiparallel to each other, the resulting parameter estimates recover the small effective spin but
incorrectly estimate the individual spins as nearly zero. We study the effect of spin priors and argue
that a commonly used prior (uniform in spin magnitude and direction) hinders unbiased recovery of
large black-hole spins.

I. INTRODUCTION

Beginning with the first discovery of gravitational waves
(GWs) passing through Earth in 2015, to date the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) [1]
and Virgo [2] have announced five detections of GWs from
merging binary black holes (BBH) [3–7]. As LIGO and
Virgo approach their design sensitivity, they are expected
to detect hundreds of merging BH binaries [5, 8].

One important objective of the GW observations is
the measurement of the masses and spins of the merging
BHs. This is interesting in its own right, but accurate
characterization of the systems’ properties is also crucial
for astrophysical inference. The masses and the spins of
the binary components can reveal information about the
way these binaries were formed and about the properties
of the BH progenitors. While most formation scenarios
predict similar mass distributions for merging BHs [9–
11], it has been suggested that spin measurements might
be able to offer information about different formation
channels and the BH progenitor properties, e.g. [12–23].

Besides spin directions, spin magnitudes carry impor-
tant information as well, since they depend on the angular
momentum of the BH’s stellar progenitor and its evolution.
At the moment, there remains considerable uncertainty in
BH spin measurements, with mild tension between spins
inferred from GW observations [3–7], stellar evolution
models [24] and X-ray binary observations [25]. BH spins
inferred from GW observations to date have pointed to-
wards slowly spinning BHs, while inferences of BH spins
from X-ray binaries tend to be higher, including some

inferred spins that are nearly extremal [26, 27], though
these BHs need not be part of the same population [28].
By nearly extremal, we mean spins close to the theoreti-
cal maximum for a Kerr BH, i.e., dimensionless spins χ
satisfying

χ ≡ S

M2
≈ 1, (1)

where S is the spin angular momentum and M is the
mass of the spinning BH and throughout the paper we
use units where G = c = 1.

GW observations primarily provide information about
the effective spin χeff , a combination of the spin compo-
nents along the binary’s orbital angular momentum that
is conserved to second post-Newtonian1 order [29, 30].
Specifically,

χeff =
m1(~χ1 · L̂) +m2(~χ2 · L̂)

m1 +m2
, (2)

where m1 and m2 are the the masses of the larger and
smaller BH respectively, L̂ is a unit vector in the direction
of the orbital angular momentum, and ~χ1 and ~χ2 are the
dimensionless spin vectors of the BHs. The apparent dis-
crepancy between GW and X-ray binary measurements
has lead to stellar evolution models predicting a bimodal-
ity in the spin distribution of BHs. These models suggest

1 The second post-Newtonian order is a term of order (v/c)4 relative
to the leading-order term, where v is some characteristic velocity
of the systems and c is the speed of light.
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that some BHs in future LIGO observations might have
large spins that are also aligned with the orbital angular
momentum [31, 32].

In this paper we pose the following question: if the BHs
in a LIGO source were to have nearly extremal spins, could
we tell? To address this question, we simulate GW signals
using numerical-relativity (NR) waveforms computed with
the Spectral Einstein Code (SpEC) [33]. We use two
SpEC simulations from the public Simulating eXtreme
Spacetimes (SXS) catalog [34, 35] and two new, previously
unpublished simulations, including one with the highest
BH spins simulated to date. Three simulations have
BH spin magnitudes nearly extremal and spin directions
either both parallel to L̂, both antiparallel to L̂ or one
spin parallel and one antiparallel. The fourth simulation
has moderate BH spins and is included to help assess
the impact of large individual spin magnitudes when they
point in opposite directions. We then use LIGO parameter
estimation methods and tools to infer the properties of
the simulated signals, including their masses and spins.

We find that current parameter estimation methods
can recover large spins, but only if the effective spin is
large (meaning that the spins are either both aligned or
both antialigned with the orbital angular momentum) and
the signal-to-noise ratio (SNR) is sufficiently high. The
recovered spin magnitudes and effective spin are shifted
significantly towards less extremal values under the most
commonly used spin prior assumption. If, on the other
hand, the effective spin is small (meaning that the two
BHs’ spins point in opposite directions), we accurately
recover the small effective spin but incorrectly recover
small individual spins. Our results suggest that if the
Universe contains BBH systems with nearly extremal
spins, GW inference might fail to tell us.

The rest of this paper is organized as follows. In Sec. II,
we describe the NR waveforms, and the simulated GW
signals that we generate from them, as well as our pa-
rameter estimation methods. In Sec. III, we present our
results and discuss the conditions under which we can
measure large spins. We conclude in Sec. IV.

II. METHODS

We calculate our simulated gravitational waveforms
using SpEC. SpEC’s methods, including recent improve-
ments enabling more robust simulations of merging BHs
with nearly extremal spins, are described in Ref. [36] and
the references therein.

We consider four numerical gravitational waveforms
from merging BHs, each simulated with SpEC. The
BHs in each simulation have spins either aligned or an-
tialigned with the orbital angular momentum. Two of
these simulations (SXS:BBH:0305 and SXS:BBH:0306)
were previously presented in Refs. [3, 37, 38] and are
available in the public SXS catalog [35], while the other
two (SXS:BBH:1124 and SXS:BBH:1137) are new. The
configurations are summarized in Table I: SXS:BBH:1124

SXS:BBH: 1/q χ1z χ2z χeff Norbits fGW(Hz)

0305 1.22 0.330 -0.439 -0.016 15.2 16.8

0306 1.3 0.961 -0.899 0.152 12.6 19.4

1124 1 0.998 0.998 0.998 25 14.2

1137 1 -0.969 -0.969 -0.969 12 14.9

TABLE I. Properties of the SXS simulations used in this paper.
The table shows the mass ratio q, spin χ1 of the larger BH,
spin χ2 of the smaller BH, the resulting χeff , the number of
orbits Norbits in the simulation, and the initial GW frequency
of the (` = 2,m = 2) mode for a system with a total mass of
70M�.

has large spins aligned with the orbital angular momen-
tum; SXS:BBH:1137 has large spins antialigned with the
orbital angular momentum; SXS:BBH:0306 has two large
spin pointing in opposite directions, resulting in a small ef-
fective spin; and SXS:BBH:0305 has moderate antiparallel
spins and a small effective spin.

We use the numerical-relativity (NR) data to simulate
GW signals as observed by the two Advanced LIGO
detectors with the projected sensitivity for the second
observing run [39]. As is common practice, we do not add
detector noise on the simulated signal, which is equivalent
to averaging over noise realizations [40]. All intrinsic
parameters of the simulated signals apart from the total
mass are determined by the NR data and are given in
Table I. The total mass of the system is an overall scale
factor in vacuum general-relativity that we are free to
specify. We select extrinsic parameters such that the
orbital angular momentum of the binary points towards
the GW detectors2 and place the binary systems over the
Livingston detector, scaling the source distance to achieve
a signal-to-noise ratio (SNR) of interest. See Ref. [44] for
a description of the details and implementation of the NR
injection infrastructure we make use of.

We then analyze the simulated data with the parame-
ter estimation software library LALInference [45], which
samples the joint multidimensional posterior distribution
of the binary parameters. The posterior distribution is
calculated through Bayes’ Theorem p(~x|d) ∼ p(~x)p(d|~x),
where p(~x|d) is the joint posterior for the parameters ~x
given data d, p(~x) is the prior distribution, and p(d|~x)
is the likelihood for the data. In GW parameter estima-
tion and under the assumption of stationary and Gaus-
sian detector noise, the likelihood can be expressed as
lnp(d|~x) ∼ −1/2(d − h(~x)|d − h(~x)), where parentheses
denote the noise-weighted inner product [46] evaluated
from a lower frequency of 20Hz (24Hz for SXS:BBH:0306)
and h(~x) is the model for the GW signal.

2 We have verified that this choice does not affect our results,
since the signals we are studying are short and the effect of
spin-precession is suppressed [41–43].
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FIG. 1. Prior probability density for the effective spin when
employing a uniform prior on spin magnitudes and directions
(black, ‘uniform χ’), and a uniform prior on spin components
(red, ‘volumetric’). In both cases the prior on the component
masses is flat.

The above procedure contains two important ingredi-
ents: the prior distribution for the parameters p(~x) and a
waveform model for the GW signal h(~x). For the prior,
we select a uniform distribution for the sky location and
the orientation of the source, a uniform-in-volume distri-
bution for the distance, and a uniform distribution for the
component masses. We explore two prior distributions for
the spin angular momenta. The first (a ‘uniform χ’ prior)
assumes that the spin magnitude and directions have a
uniform distribution, p(χ)dχ ∝ dχ (this is the default
choice for most GW analyses). The second (a ‘volumetric’
prior) assumes that the individual spin components are
uniformly distributed, p(χ)dχ ∝ χ2dχ. The resulting
prior distribution for the effective spin from these two
choices is plotted in Fig. 1. Both priors favor small effec-
tive spins, though the volumetric prior has more support
at high χeff . These prior choices affect parameter infer-
ence [47, 48], and we discuss their impact on measuring
large spins in Sec. III.

We employ two waveform models in the LALInference
analysis, IMRPhenomPv2 [49] and SEOBNRv4 [38], which
both include the inspiral, merger and ringdown phases of
a BBH coalescence. Both models have been extensively
used for the analysis of GW signals, see for example
Refs. [5, 6]. IMRPhenomPv2 includes the effects of spin-
precession in an effective way by parameterizing it through
a single effective parameter χp [50]. SEOBNRv4, on the
other hand, assumes that the spins remain aligned with
the orbital angular momentum throughout the binary
evolution. Both models have been calibrated against
nonprecessing NR simulations (including a simulation
with both spins at 0.994 in the case of SEOBNRv4) and
have been shown to match well the predictions of NR [38].
Neither model results in systematic biases in the case
of GW150914 [51, 52]. We choose to work with both
waveform models both for computational convenience and
as an independent cross-check of our results.

Recovered

SXS:BBH: Parameter Injected ‘uniform χ’ ‘volumetric’

0305

q

M(M�)

χeff

χ1z

χ2z

0.82

70

-0.016

0.330

-0.439

(0.65,1)

70.1+2.4
−2.3

−0.013+0.084
−0.099

−0.002+0.271
−0.258

−0.011+0.274
−0.386

(0.65,1)

70.0+2.6
−2.6

−0.007+0.086
−0.094

0.158+0.551
−0.909

−0.192+0.989
−0.728

0306

q

M(M�)

χeff

χ1z

χ2z

0.77

70

0.152

0.961

-0.899

(0.65,1)

69.5+3.2
−2.9

0.176+0.100
−0.103

0.201+0.388
−0.320

0.109+0.446
−0.411

(0.63,1)

69.5+2.8
−2.6

0.171+0.089
−0.088

0.484+0.427
−0.820

−0.209+1.003
−0.701

1124

q

M(M�)

χeff

χ1z

χ2z

1

70

0.998

0.998

0.998

(0.63,1)

69.4+1.9
−1.3

0.931+0.035
−0.046

(0.89,1)

(0.84,1)

(0.61,1)

70.8+1.9
−1.3

0.960+0.029
−0.055

(0.94,1)

(0.84,1)

1137

q

M(M�)

χeff

χ1z

χ2z

1

70

-0.969

-0.969

-0.969

(0.72,1)

73.8+3.6
−2.7

−0.811+0.150
−0.106

(-1,-0.65)

(-1,-0.59)

(0.77,1)

74.1+2.9
−3.1

−0.790+0.112
−0.144

(-1,-0.57)

(-1,-0.60)

TABLE II. Injected and recovered parameters for the four SXS
simulations we study. For each simulated signal (first column)
we quote the injected value (third column) and the recovered
values (fourth and fifth column) for the mass ratio, the total
mass, the effective spin, and the two spin components along the
orbital angular momentum (third column). The fourth column
shows results obtained with IMRPhenomPv2 and the ‘uniform
χ’ prior, while the fifth column presents results with SEOBNRv4

and the ‘volumetric’ prior. The recovered values we quote are
either median and 90% credible intervals or one-sided 90%
credible intervals, depending on whether the corresponding
posterior rails agains a prior boundary, as further explained
in, for example, [53].

III. RESULTS

In this section, we present the results of the
LALInference parameter estimation study performed on
the simulated signals described in Sec. II, and we discuss
our ability to robustly characterize nearly extremal BHs
in GW observations. Our results indicate that a standard
parameter estimation study, such as the one employed
by the LIGO and VIRGO collaborations, can lead to a
reasonable estimation of the total mass, mass ratio, and ef-
fective spin of nearly-extremal BHs. However, we recover
a systematic offset in χeff away from extremality, which
is compensated by a systematic bias in the total mass,
an outcome of the mass–spin degeneracy. Our parameter
estimates are summarized in Table II for both priors of
Fig. 1.
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FIG. 2. Marginalized posterior probability density for the
effective spin for simulated signals at an SNR of 25 (solid lines)
and 12 (dotted lines), and a total mass of 70M�. The data
are analyzed with IMRPhenomPv2 and the ‘uniform χ’ prior of
Fig. 1 (see Fig. 7 for a reanalysis with the ‘volumetric’ prior).
The vertical dashed lines denote the true values of the effective
spin. In all cases, the effective spin is measured, though this
measurement is biased when the true value of χeff is close to
±1. For small values of the true effective spin, the posterior
becomes more narrow as the SNR of the signal increases. For
large (absolute value) effective spins, on the other hand, the
posterior both becomes more narrow and shifts towards the
true value as the signal becomes stronger.

A. Source characterization

The effective spin χeff is one of the best measured spin
parameters with GWs. Therefore, it is commonly em-
ployed to characterize spin measurability and to study
the formation channels of BBHs. Figure 2 shows the
marginalized posterior probability density for χeff for four
simulated signals using the NR simulations of Table I,
analyzed with the spin-precessing model IMRPhenomPv2.
In all cases, the effective spin posterior is significantly
different than the employed ‘uniform χ’ prior (see Fig. 1)
indicating that the posteriors are data driven. However,
this measurement is not accurate in the case where the
true χeff value is close to the edges of its prior range.
Specifically, for cases SXS:BBH:1124 and SXS:BBH:1137,
the true value is outside the 99% posterior credible in-
terval, consistent also with the findings of Ref. [54]. In
the next section we discuss this bias and its dependence
on the specific form of the default, ‘uniform χ’ spin prior
employed here, which disfavors large χeff values.

Regarding the mass parameters, Fig. 3 shows the two-
dimensional posterior for the effective spin and the mass
ratio (top panel), and the total mass of the system (bot-
tom panel)3. It is well known that the effective spin is
correlated with either the mass ratio or the total mass,
depending on the duration of the signal [46]. For longer

3 In this and all similar two-dimensional plots with multiple level
contours each line corresponds to a 10% increment in the proba-
bility.
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FIG. 3. Marginalized two-dimensional posterior probability
density for the effective spin parameter and the mass ratio (top
panel) and for the effective spin and the total mass (bottom
panel) for four simulated signals at an SNR of 25 and a total
mass of 70M�. The data are analyzed with IMRPhenomPv2 and
the ‘uniform χ’ prior of Fig. 1. The true value is denoted with
a cross of the same color as the corresponding contours. For
short signals such as the ones studied here, the effective spin is
predominantly correlated with the total mass, as demonstrated
in the bottom panel. This correlation is almost broken for
the longest duration signal (SXS:BBH:1124, blue posterior)
for which the effective spin shows a small correlation with the
mass ratio (top panel).

signals that include a long inspiral phase, the effective
spin is correlated with the mass ratio, as they both af-
fect the GW phase at the same post-Newtonian order.
On the other hand, if a signal consists primarily of the
merger phase, the effective spin is correlated with the
total mass, since they both affect the frequency of the
merger. This trend is visible in Fig. 3, where the M −χeff

correlation is more pronounced than the q−χeff one for all
signals other than SXS:BBH:1124. Since SXS:BBH:1124
has a large positive spin angular momentum it is sub-
ject to the effect commonly called “orbital hangup”, an
outcome of post-Newtonian spin-orbit coupling [55, 56]
(cf. the discussion in Sec. 4.2 of [36] and the references
therein). This makes SXS:BBH:1124 last longer and be
more inspiral-dominated, and hence more susceptible to
the q–χeff correlation.

Finally, the properties of the final remnant BH are ex-
amined in Fig. 4 which shows the marginalized posterior
distribution for the remnant mass and spin. As expected
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FIG. 4. Marginalized two-dimensional posterior probability
density for the mass and the spin of the remnant BH for four
simulated signals at an SNR of 25 and a total mass of 70M�.
The data are analyzed with IMRPhenomPv2 and the ‘uniform
χ’ prior of Fig. 1. The true value is denoted with a cross of
the same color as the corresponding contours.

from the discussion of Fig. 3, reliably extracting the prop-
erties of the final BH is challenging if the component spins
are large. Specifically, the true values are within the 90%
posterior credible region only in the SXS:BBH:0305 case.

B. Spin measurability

In the following we consider the measurability of var-
ious spin parameters in more detail. Figure 5 presents
posterior probabilities for the binary spin components
along the orbital angular momentum (top panel) and χeff

and χp (bottom panel). Recall that the spin parameter
χp quantifies the amount of spin-precession present in the
system [50]. In each panel, we show results for all four sim-
ulated signals at SNR 25; the true parameters are shown
as crosses in colors matching the corresponding contours.
We find that the large individual spin components can
only robustly be measured when both spins are large and
parallel to each other. Conversely, configurations with
spins antiparallel to each other are recovered as consistent
with slowly-spinning binaries, as also alluded to by Fig. 2.
The bottom panel of Fig. 5 shows that the χp posteriors
extend to large values of χp. However, comparison of
these posteriors with the χp prior shows that the poste-
rior is prior-dominated and we cannot constrain χp from
the data [57].

Figure 6 examines the individual spin magnitudes and
shows contours of the two-dimensional posterior probabil-
ity density for the individual spin magnitudes for the four
simulated signals with SNR 25. Crosses indicate the true
values for the spins. The recovered individual spins are
high when the true spins are nearly extremal and parallel
to each other but not when the true spins are antiparallel
to each other. This suggests that the individual spin
magnitudes of rapidly spinning BHs can only be reliably
measured if the spins point in the same direction, creat-
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FIG. 5. Marginalized two-dimensional posterior probability
density for the binary components’ spins along the orbital
angular momentum (top panel) and for the effective spin
χeff and χp (bottom panel). The data are analyzed with
IMRPhenomPv2 and the uniform prior of Fig. 1. The spin
components are not recovered accurately, though the bias is
less pronounced when the individual spins are large and both
parallel or both antiparallel to the orbital angular momentum.

ing a larger effective spin χeff , in agreement with Fig. 5.
The difficulty of measuring individual spin magnitudes in
general has been previously discussed in Ref. [58].

C. Effect of spin prior

The accuracy of the measurement of the effective spin
parameter in Fig. 2 is poor for the two cases where the
true value is close to ±1. In this section, we discuss the
effect of the spin prior on the measurement of large spin
values [47, 48, 59].

Returning to Fig. 2, the dotted lines show the marginal-
ized posteriors for χeff for signals of SNR 12. Stronger
signals enable better parameter measurement and more
narrow posterior distributions. This expectation is con-
firmed for all four systems studied here. Moreover, in the
case of SXS:BBH:1124 and SXS:BBH:1137 the posterior
not only becomes more narrow, but it also shifts closer to
the true value demonstrating the difficulty of measuring
large spins.
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FIG. 6. Marginalized two-dimensional posterior probability density for the binary components’ spin magnitudes for four
simulated signals with an SNR of 25 and a total mass of 70M�. Here χ1 and χ2 are the spins of the larger and smaller BH,
respectively. The data is analyzed with IMRPhenomPv2 and the uniform prior of Fig. 1. The true value is denoted with a cross
symbol. Large individual spins can be measured when the spins are either both parallel or both antiparallel to the orbital
angular momentum (1124 and 1137) but not when one spin is parallel and the other antiparallel (0305 and 0306).

To explore the effect of prior we employ the ‘volumetric’
prior of Fig. 1, which results in higher prior probability
at higher spins, as demonstrated in Fig. 1. Figure 7
shows the posterior distribution for the effective spin for
signals analyzed with the spin-aligned waveform model
SEOBNRv4 with the ‘uniform χ’ (solid lines) and the ‘vol-
umetric’ (dotted lines) spin prior4. In the SXS:BBH:0305
and SXS:BBH:0306 cases, all posteriors are very similar,
suggesting that the prior distribution has a lesser effect
on the posterior when the effective spin is small.

In the case where χeff ∼ ±1 on the other hand,
the choice of prior has a direct impact on the accu-
racy of the measurement. Both for SXS:BBH:1124 and
SXS:BBH:1137 the ‘volumetric’ prior leads to posteriors
that have more support for larger effective spin values,
which are now within the 99% posterior credible interval.
A similar conclusion can be drawn from Fig. 8, which

4 Despite the ‘uniform χ’ and ‘volumetric’ priors being derived in
the context of 3-dimensional spin vectors, we can still apply them
to spin-aligned waveform models that only include a single spin
degree of freedom, the spin component along the orbital angular
momentum χiz . In that case the prior on the sole spin degree
of freedom is the same as the prior on the χiz spin component
under the ‘uniform χ’ or ‘volumetric’ priors.
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FIG. 7. Effective spin posteriors for two choices of the spin
prior. Solid lines indicate the ‘uniform χ’ prior and dotted
lines denote the ‘volumetric’ prior. This analysis is performed
with the spin-sligned waveform model SEOBNRv4.

shows contours for the two-dimensional posterior proba-
bility density for the spin components along the orbital
angular momentum. As expected, all posteriors derived
with the ‘volumetric’ prior have more support for large
values of the spin components.
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FIG. 8. Impact of spin prior on χ1z − χ2z recovery with
the aligned-spin waveform model SEOBNRv4. Shown are incre-
mental contours for the ‘uniform χ’ prior and a solid-line 90%
credible level contour for the ‘volumetric’ prior.

D. Effect of signal duration

Due to the finite length of the NR data, all results pre-
sented in the above subsections assumed a total mass
of 70M�, which is comparable to the total mass of
GW150914 [3]. If the total mass of the system is lower
than this value, the start of the numerical waveform falls
within the sensitive frequencies of the detector, poten-
tially affecting the results of parameter estimation [60].
To study the effect of the signal duration on our results,
instead, we use the waveform model IMRPhenomPv2 to
simulate the GW data with parameters equal to those
of SXS:BBH:1124 and SXS:BBH:1137 but with a total
mass of 30, 50, and 70M�. We employ the same model
for signal recovery and find that the resulting posteriors
are very similar, suggesting that our main conclusions are
unaffected by the signal duration.

E. Model accuracy

Our study suggests that current analyses are sub-
optimal for characterizing signals with large spins. How-
ever, the waveform models used for these analyses may
also lose accuracy at this challenging region of the param-
eter space [38]. This prompts the question: is it hard to
measure large spins because of the posterior properties or
because the waveform models employed misbehave? In
order to fully address this question we would have to per-
form parameter estimation directly using NR waveforms,
something that is currently impossible for the region of
the parameter space we are interested in. However, below
we discuss evidence suggesting that the difficulty to mea-
sure large spins has less to do with the accuracy of the
models, and more with the properties of the likelihood
function and the prior choices.

First, when the SNR of the signal is increased, the
posterior distribution for χeff in the SXS:BBH:1137 and
SXS:BBH:1124 cases shifts towards the true value, as

shown in Fig. 2. Since systematic errors caused by model
inaccuracies do not depend on the SNR, the shift in the
posterior suggests it is mainly the prior that keeps the
posteriors away from large χeff values.

Second, we repeat the analysis described above and
compute the posterior for the effective spin parameter
using a simulated signal created with the numerical wave-
forms and with the IMRPhenomPv2 waveform model. We
find a large similarity between the posterior obtained
with the different data, as shown in Fig. 9. Specifically,
the shift in the posterior due to the change of data in
Fig. 9 is smaller than the shift due to changing the spin
prior in Fig. 7. This suggests that at the injected param-
eter values the NR waveform and the data created with
IMRPhenomPv2 do not possess noticeable differences as far
as parameter estimation is concerned.
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SXS:BBH:1137, IMR injection

FIG. 9. Similar to Fig. 2 for signals created with NR data
(solid lines), and with the IMRPhenomPv2 waveform model
(dotted lines). The similarity between the solid and the dotted
curves suggest that systematic difference between NR and
waveform models are not the dominant cause of our conclusion
that large spins are difficult to measure.

Third, we employ a figure of merit commonly used in
waveform modeling, namely the overlap between the signal
and the template, defined as (d|h(~x))/

√
(d|d)(h(~x)|h(~x)).

Figure 10 shows a scatter plot of the posterior samples for
the SXS:BBH:1137 case of the lower panel of Fig. 3. The
samples are colored by their overlap value; we find overlaps
around 99.5% in the region of the injected parameters,
and they drop as we move away from the true parameters.
We obtain similar results for the other three NR signals
studied here and the SEOBNRv4 model. The high value
of overlap further suggests that systematic biases are
subdominant for this region of the parameter space and
for this SNR value [61].

IV. CONCLUSIONS

In this paper, we assess the prospects of extracting
the spins of nearly extremal BHs in binaries with GW
measurements. We find that measurement of large spins is
challenging. Favorable conditions occur when both spins
are large and parallel to each other, but even in this case
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FIG. 10. Similar to the bottom panel of Fig. 3 for the case of
SXS:BBH:1137 with 5000 scattered posterior samples colored
by the value of their overlap with the simulated data. The
overlap achieved close to the injected value is in the 99.5%
range.

our posteriors are biased away from extremal effective
spins. We argue that this is due to the commonly used
spin priors that disfavor large spins.

Additionally, extremal spins are close to the edge of
the spin priors. This situation is similar to the case of
measuring the mass ratio (or the symmetric mass ratio)
of equal-mass systems. In fact, when the posterior dis-
tribution of a parameter rails agains a prior edge, it is
customary to use one-sided credible intervals or highest-
probability-density intervals (for an extended discussion,
see [53]). However, we find this is not the case for the

effective spin, since its posterior typically does not rail
against the prior edge (see Fig. 2). We attribute this to
the spin prior, which drops to vanishingly small values as
χeff → ±1. In order to overcome this trend and obtain
a likelihood-dominated effective spin posterior, a signal
with large SNR is needed.

Our results showcase again the importance of priors
and prior bounds in GW inference and suggest the use of
a wide range of spin priors. This will not only allow us
to study physical effects such as the large spins described
here, but can also enable further studies such as the
hierarchical analysis described in [20].
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